Type.h revision ae92140b542d5c1c096e39e74e59526184819b30
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Basic/IdentifierTable.h"
19#include "clang/AST/NestedNameSpecifier.h"
20#include "clang/AST/TemplateName.h"
21#include "llvm/Support/Casting.h"
22#include "llvm/ADT/APSInt.h"
23#include "llvm/ADT/FoldingSet.h"
24#include "llvm/ADT/PointerIntPair.h"
25#include "llvm/ADT/PointerUnion.h"
26
27using llvm::isa;
28using llvm::cast;
29using llvm::cast_or_null;
30using llvm::dyn_cast;
31using llvm::dyn_cast_or_null;
32namespace clang { class Type; }
33
34namespace llvm {
35  template <typename T>
36  class PointerLikeTypeTraits;
37  template<>
38  class PointerLikeTypeTraits< ::clang::Type*> {
39  public:
40    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
41    static inline ::clang::Type *getFromVoidPointer(void *P) {
42      return static_cast< ::clang::Type*>(P);
43    }
44    enum { NumLowBitsAvailable = 3 };
45  };
46}
47
48namespace clang {
49  class ASTContext;
50  class TypedefDecl;
51  class TemplateDecl;
52  class TemplateTypeParmDecl;
53  class NonTypeTemplateParmDecl;
54  class TemplateTemplateParmDecl;
55  class TagDecl;
56  class RecordDecl;
57  class CXXRecordDecl;
58  class EnumDecl;
59  class FieldDecl;
60  class ObjCInterfaceDecl;
61  class ObjCProtocolDecl;
62  class ObjCMethodDecl;
63  class Expr;
64  class Stmt;
65  class SourceLocation;
66  class StmtIteratorBase;
67  class TemplateArgument;
68  class QualifiedNameType;
69  struct PrintingPolicy;
70
71  // Provide forward declarations for all of the *Type classes
72#define TYPE(Class, Base) class Class##Type;
73#include "clang/AST/TypeNodes.def"
74
75/// QualType - For efficiency, we don't store CVR-qualified types as nodes on
76/// their own: instead each reference to a type stores the qualifiers.  This
77/// greatly reduces the number of nodes we need to allocate for types (for
78/// example we only need one for 'int', 'const int', 'volatile int',
79/// 'const volatile int', etc).
80///
81/// As an added efficiency bonus, instead of making this a pair, we just store
82/// the three bits we care about in the low bits of the pointer.  To handle the
83/// packing/unpacking, we make QualType be a simple wrapper class that acts like
84/// a smart pointer.
85class QualType {
86  llvm::PointerIntPair<Type*, 3> Value;
87public:
88  enum TQ {   // NOTE: These flags must be kept in sync with DeclSpec::TQ.
89    Const    = 0x1,
90    Restrict = 0x2,
91    Volatile = 0x4,
92    CVRFlags = Const|Restrict|Volatile
93  };
94
95  enum GCAttrTypes {
96    GCNone = 0,
97    Weak,
98    Strong
99  };
100
101  QualType() {}
102
103  QualType(const Type *Ptr, unsigned Quals)
104    : Value(const_cast<Type*>(Ptr), Quals) {}
105
106  unsigned getCVRQualifiers() const { return Value.getInt(); }
107  void setCVRQualifiers(unsigned Quals) { Value.setInt(Quals); }
108  Type *getTypePtr() const { return Value.getPointer(); }
109
110  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
111  static QualType getFromOpaquePtr(void *Ptr) {
112    QualType T;
113    T.Value.setFromOpaqueValue(Ptr);
114    return T;
115  }
116
117  Type &operator*() const {
118    return *getTypePtr();
119  }
120
121  Type *operator->() const {
122    return getTypePtr();
123  }
124
125  /// isNull - Return true if this QualType doesn't point to a type yet.
126  bool isNull() const {
127    return getTypePtr() == 0;
128  }
129
130  bool isConstQualified() const {
131    return (getCVRQualifiers() & Const) ? true : false;
132  }
133  bool isVolatileQualified() const {
134    return (getCVRQualifiers() & Volatile) ? true : false;
135  }
136  bool isRestrictQualified() const {
137    return (getCVRQualifiers() & Restrict) ? true : false;
138  }
139
140  bool isConstant(ASTContext& Ctx) const;
141
142  /// addConst/addVolatile/addRestrict - add the specified type qual to this
143  /// QualType.
144  void addConst()    { Value.setInt(Value.getInt() | Const); }
145  void addVolatile() { Value.setInt(Value.getInt() | Volatile); }
146  void addRestrict() { Value.setInt(Value.getInt() | Restrict); }
147
148  void removeConst()    { Value.setInt(Value.getInt() & ~Const); }
149  void removeVolatile() { Value.setInt(Value.getInt() & ~Volatile); }
150  void removeRestrict() { Value.setInt(Value.getInt() & ~Restrict); }
151
152  QualType getQualifiedType(unsigned TQs) const {
153    return QualType(getTypePtr(), TQs);
154  }
155  QualType getWithAdditionalQualifiers(unsigned TQs) const {
156    return QualType(getTypePtr(), TQs|getCVRQualifiers());
157  }
158
159  QualType withConst() const { return getWithAdditionalQualifiers(Const); }
160  QualType withVolatile() const { return getWithAdditionalQualifiers(Volatile);}
161  QualType withRestrict() const { return getWithAdditionalQualifiers(Restrict);}
162
163  QualType getUnqualifiedType() const;
164  bool isMoreQualifiedThan(QualType Other) const;
165  bool isAtLeastAsQualifiedAs(QualType Other) const;
166  QualType getNonReferenceType() const;
167
168  /// getDesugaredType - Return the specified type with any "sugar" removed from
169  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
170  /// the type is already concrete, it returns it unmodified.  This is similar
171  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
172  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
173  /// concrete.
174  QualType getDesugaredType(bool ForDisplay = false) const;
175
176  /// operator==/!= - Indicate whether the specified types and qualifiers are
177  /// identical.
178  bool operator==(const QualType &RHS) const {
179    return Value == RHS.Value;
180  }
181  bool operator!=(const QualType &RHS) const {
182    return Value != RHS.Value;
183  }
184  std::string getAsString() const;
185
186  std::string getAsString(const PrintingPolicy &Policy) const {
187    std::string S;
188    getAsStringInternal(S, Policy);
189    return S;
190  }
191  void getAsStringInternal(std::string &Str,
192                           const PrintingPolicy &Policy) const;
193
194  void dump(const char *s) const;
195  void dump() const;
196
197  void Profile(llvm::FoldingSetNodeID &ID) const {
198    ID.AddPointer(getAsOpaquePtr());
199  }
200
201public:
202
203  /// getAddressSpace - Return the address space of this type.
204  inline unsigned getAddressSpace() const;
205
206  /// GCAttrTypesAttr - Returns gc attribute of this type.
207  inline QualType::GCAttrTypes getObjCGCAttr() const;
208
209  /// isObjCGCWeak true when Type is objc's weak.
210  bool isObjCGCWeak() const {
211    return getObjCGCAttr() == Weak;
212  }
213
214  /// isObjCGCStrong true when Type is objc's strong.
215  bool isObjCGCStrong() const {
216    return getObjCGCAttr() == Strong;
217  }
218
219  /// getNoReturnAttr - Returns true if the type has the noreturn attribute,
220  /// false otherwise.
221  bool getNoReturnAttr() const;
222};
223
224} // end clang.
225
226namespace llvm {
227/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
228/// to a specific Type class.
229template<> struct simplify_type<const ::clang::QualType> {
230  typedef ::clang::Type* SimpleType;
231  static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
232    return Val.getTypePtr();
233  }
234};
235template<> struct simplify_type< ::clang::QualType>
236  : public simplify_type<const ::clang::QualType> {};
237
238// Teach SmallPtrSet that QualType is "basically a pointer".
239template<>
240class PointerLikeTypeTraits<clang::QualType> {
241public:
242  static inline void *getAsVoidPointer(clang::QualType P) {
243    return P.getAsOpaquePtr();
244  }
245  static inline clang::QualType getFromVoidPointer(void *P) {
246    return clang::QualType::getFromOpaquePtr(P);
247  }
248  // CVR qualifiers go in low bits.
249  enum { NumLowBitsAvailable = 0 };
250};
251} // end namespace llvm
252
253namespace clang {
254
255/// Type - This is the base class of the type hierarchy.  A central concept
256/// with types is that each type always has a canonical type.  A canonical type
257/// is the type with any typedef names stripped out of it or the types it
258/// references.  For example, consider:
259///
260///  typedef int  foo;
261///  typedef foo* bar;
262///    'int *'    'foo *'    'bar'
263///
264/// There will be a Type object created for 'int'.  Since int is canonical, its
265/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
266/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
267/// there is a PointerType that represents 'int*', which, like 'int', is
268/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
269/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
270/// is also 'int*'.
271///
272/// Non-canonical types are useful for emitting diagnostics, without losing
273/// information about typedefs being used.  Canonical types are useful for type
274/// comparisons (they allow by-pointer equality tests) and useful for reasoning
275/// about whether something has a particular form (e.g. is a function type),
276/// because they implicitly, recursively, strip all typedefs out of a type.
277///
278/// Types, once created, are immutable.
279///
280class Type {
281public:
282  enum TypeClass {
283#define TYPE(Class, Base) Class,
284#define ABSTRACT_TYPE(Class, Base)
285#include "clang/AST/TypeNodes.def"
286    TagFirst = Record, TagLast = Enum
287  };
288
289private:
290  QualType CanonicalType;
291
292  /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
293  bool Dependent : 1;
294
295  /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
296  /// Note that this should stay at the end of the ivars for Type so that
297  /// subclasses can pack their bitfields into the same word.
298  unsigned TC : 6;
299
300  Type(const Type&);           // DO NOT IMPLEMENT.
301  void operator=(const Type&); // DO NOT IMPLEMENT.
302protected:
303  // silence VC++ warning C4355: 'this' : used in base member initializer list
304  Type *this_() { return this; }
305  Type(TypeClass tc, QualType Canonical, bool dependent)
306    : CanonicalType(Canonical.isNull() ? QualType(this_(), 0) : Canonical),
307      Dependent(dependent), TC(tc) {}
308  virtual ~Type() {}
309  virtual void Destroy(ASTContext& C);
310  friend class ASTContext;
311
312public:
313  TypeClass getTypeClass() const { return static_cast<TypeClass>(TC); }
314
315  bool isCanonical() const { return CanonicalType.getTypePtr() == this; }
316
317  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
318  /// object types, function types, and incomplete types.
319
320  /// \brief Determines whether the type describes an object in memory.
321  ///
322  /// Note that this definition of object type corresponds to the C++
323  /// definition of object type, which includes incomplete types, as
324  /// opposed to the C definition (which does not include incomplete
325  /// types).
326  bool isObjectType() const;
327
328  /// isIncompleteType - Return true if this is an incomplete type.
329  /// A type that can describe objects, but which lacks information needed to
330  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
331  /// routine will need to determine if the size is actually required.
332  bool isIncompleteType() const;
333
334  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
335  /// type, in other words, not a function type.
336  bool isIncompleteOrObjectType() const {
337    return !isFunctionType();
338  }
339
340  /// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10).
341  bool isPODType() const;
342
343  /// isVariablyModifiedType (C99 6.7.5.2p2) - Return true for variable array
344  /// types that have a non-constant expression. This does not include "[]".
345  bool isVariablyModifiedType() const;
346
347  /// Helper methods to distinguish type categories. All type predicates
348  /// operate on the canonical type, ignoring typedefs and qualifiers.
349
350  /// isSpecificBuiltinType - Test for a particular builtin type.
351  bool isSpecificBuiltinType(unsigned K) const;
352
353  /// isIntegerType() does *not* include complex integers (a GCC extension).
354  /// isComplexIntegerType() can be used to test for complex integers.
355  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
356  bool isEnumeralType() const;
357  bool isBooleanType() const;
358  bool isCharType() const;
359  bool isWideCharType() const;
360  bool isIntegralType() const;
361
362  /// Floating point categories.
363  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
364  /// isComplexType() does *not* include complex integers (a GCC extension).
365  /// isComplexIntegerType() can be used to test for complex integers.
366  bool isComplexType() const;      // C99 6.2.5p11 (complex)
367  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
368  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
369  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
370  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
371  bool isVoidType() const;         // C99 6.2.5p19
372  bool isDerivedType() const;      // C99 6.2.5p20
373  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
374  bool isAggregateType() const;
375
376  // Type Predicates: Check to see if this type is structurally the specified
377  // type, ignoring typedefs and qualifiers.
378  bool isFunctionType() const;
379  bool isFunctionNoProtoType() const { return getAsFunctionNoProtoType() != 0; }
380  bool isFunctionProtoType() const { return getAsFunctionProtoType() != 0; }
381  bool isPointerType() const;
382  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
383  bool isBlockPointerType() const;
384  bool isVoidPointerType() const;
385  bool isReferenceType() const;
386  bool isLValueReferenceType() const;
387  bool isRValueReferenceType() const;
388  bool isFunctionPointerType() const;
389  bool isMemberPointerType() const;
390  bool isMemberFunctionPointerType() const;
391  bool isArrayType() const;
392  bool isConstantArrayType() const;
393  bool isIncompleteArrayType() const;
394  bool isVariableArrayType() const;
395  bool isDependentSizedArrayType() const;
396  bool isRecordType() const;
397  bool isClassType() const;
398  bool isStructureType() const;
399  bool isUnionType() const;
400  bool isComplexIntegerType() const;            // GCC _Complex integer type.
401  bool isVectorType() const;                    // GCC vector type.
402  bool isExtVectorType() const;                 // Extended vector type.
403  bool isObjCObjectPointerType() const;         // Pointer to *any* ObjC object.
404  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
405  // for the common case.
406  bool isObjCInterfaceType() const;             // NSString or NSString<foo>
407  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
408  bool isObjCQualifiedIdType() const;           // id<foo>
409  bool isObjCQualifiedClassType() const;        // Class<foo>
410  bool isObjCIdType() const;                    // id
411  bool isObjCClassType() const;                 // Class
412  bool isObjCBuiltinType() const;               // 'id' or 'Class'
413  bool isTemplateTypeParmType() const;          // C++ template type parameter
414  bool isNullPtrType() const;                   // C++0x nullptr_t
415
416  /// isDependentType - Whether this type is a dependent type, meaning
417  /// that its definition somehow depends on a template parameter
418  /// (C++ [temp.dep.type]).
419  bool isDependentType() const { return Dependent; }
420  bool isOverloadableType() const;
421
422  /// hasPointerRepresentation - Whether this type is represented
423  /// natively as a pointer; this includes pointers, references, block
424  /// pointers, and Objective-C interface, qualified id, and qualified
425  /// interface types, as well as nullptr_t.
426  bool hasPointerRepresentation() const;
427
428  /// hasObjCPointerRepresentation - Whether this type can represent
429  /// an objective pointer type for the purpose of GC'ability
430  bool hasObjCPointerRepresentation() const;
431
432  // Type Checking Functions: Check to see if this type is structurally the
433  // specified type, ignoring typedefs and qualifiers, and return a pointer to
434  // the best type we can.
435  const BuiltinType *getAsBuiltinType() const;
436  const FunctionType *getAsFunctionType() const;
437  const FunctionNoProtoType *getAsFunctionNoProtoType() const;
438  const FunctionProtoType *getAsFunctionProtoType() const;
439  const PointerType *getAsPointerType() const;
440  const BlockPointerType *getAsBlockPointerType() const;
441  const ReferenceType *getAsReferenceType() const;
442  const LValueReferenceType *getAsLValueReferenceType() const;
443  const RValueReferenceType *getAsRValueReferenceType() const;
444  const MemberPointerType *getAsMemberPointerType() const;
445  const TagType *getAsTagType() const;
446  const RecordType *getAsRecordType() const;
447  const RecordType *getAsStructureType() const;
448  /// NOTE: getAs*ArrayType are methods on ASTContext.
449  const TypedefType *getAsTypedefType() const;
450  const RecordType *getAsUnionType() const;
451  const EnumType *getAsEnumType() const;
452  const VectorType *getAsVectorType() const; // GCC vector type.
453  const ComplexType *getAsComplexType() const;
454  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
455  const ExtVectorType *getAsExtVectorType() const; // Extended vector type.
456  const ObjCObjectPointerType *getAsObjCObjectPointerType() const;
457  // The following is a convenience method that returns an ObjCObjectPointerType
458  // for object declared using an interface.
459  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
460  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
461  const ObjCInterfaceType *getAsObjCInterfaceType() const;
462  const ObjCInterfaceType *getAsObjCQualifiedInterfaceType() const;
463  const TemplateTypeParmType *getAsTemplateTypeParmType() const;
464
465  // Member-template getAs<specific type>'.  This scheme will eventually
466  // replace the specific getAsXXXX methods above.
467  template <typename T> const T *getAs() const;
468
469  const TemplateSpecializationType *
470    getAsTemplateSpecializationType() const;
471
472  /// getAsPointerToObjCInterfaceType - If this is a pointer to an ObjC
473  /// interface, return the interface type, otherwise return null.
474  const ObjCInterfaceType *getAsPointerToObjCInterfaceType() const;
475
476  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
477  /// element type of the array, potentially with type qualifiers missing.
478  /// This method should never be used when type qualifiers are meaningful.
479  const Type *getArrayElementTypeNoTypeQual() const;
480
481  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
482  /// pointer, this returns the respective pointee.
483  QualType getPointeeType() const;
484
485  /// getDesugaredType - Return the specified type with any "sugar" removed from
486  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
487  /// the type is already concrete, it returns it unmodified.  This is similar
488  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
489  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
490  /// concrete.
491  QualType getDesugaredType(bool ForDisplay = false) const;
492
493  /// More type predicates useful for type checking/promotion
494  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
495
496  /// isSignedIntegerType - Return true if this is an integer type that is
497  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
498  /// an enum decl which has a signed representation, or a vector of signed
499  /// integer element type.
500  bool isSignedIntegerType() const;
501
502  /// isUnsignedIntegerType - Return true if this is an integer type that is
503  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
504  /// decl which has an unsigned representation, or a vector of unsigned integer
505  /// element type.
506  bool isUnsignedIntegerType() const;
507
508  /// isConstantSizeType - Return true if this is not a variable sized type,
509  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
510  /// incomplete types.
511  bool isConstantSizeType() const;
512
513  /// isSpecifierType - Returns true if this type can be represented by some
514  /// set of type specifiers.
515  bool isSpecifierType() const;
516
517  QualType getCanonicalTypeInternal() const { return CanonicalType; }
518  void dump() const;
519  virtual void getAsStringInternal(std::string &InnerString,
520                                   const PrintingPolicy &Policy) const = 0;
521  static bool classof(const Type *) { return true; }
522};
523
524/// ExtQualType - TR18037 (C embedded extensions) 6.2.5p26
525/// This supports all kinds of type attributes; including,
526/// address space qualified types, objective-c's __weak and
527/// __strong attributes.
528///
529class ExtQualType : public Type, public llvm::FoldingSetNode {
530  /// BaseType - This is the underlying type that this qualifies.  All CVR
531  /// qualifiers are stored on the QualType that references this type, so we
532  /// can't have any here.
533  Type *BaseType;
534
535  /// Address Space ID - The address space ID this type is qualified with.
536  unsigned AddressSpace;
537  /// GC __weak/__strong attributes
538  QualType::GCAttrTypes GCAttrType;
539
540  ExtQualType(Type *Base, QualType CanonicalPtr, unsigned AddrSpace,
541              QualType::GCAttrTypes gcAttr) :
542      Type(ExtQual, CanonicalPtr, Base->isDependentType()), BaseType(Base),
543      AddressSpace(AddrSpace), GCAttrType(gcAttr) {
544    assert(!isa<ExtQualType>(BaseType) &&
545           "Cannot have ExtQualType of ExtQualType");
546  }
547  friend class ASTContext;  // ASTContext creates these.
548public:
549  Type *getBaseType() const { return BaseType; }
550  QualType::GCAttrTypes getObjCGCAttr() const { return GCAttrType; }
551  unsigned getAddressSpace() const { return AddressSpace; }
552
553  virtual void getAsStringInternal(std::string &InnerString,
554                                   const PrintingPolicy &Policy) const;
555
556  void Profile(llvm::FoldingSetNodeID &ID) {
557    Profile(ID, getBaseType(), AddressSpace, GCAttrType);
558  }
559  static void Profile(llvm::FoldingSetNodeID &ID, Type *Base,
560                      unsigned AddrSpace, QualType::GCAttrTypes gcAttr) {
561    ID.AddPointer(Base);
562    ID.AddInteger(AddrSpace);
563    ID.AddInteger(gcAttr);
564  }
565
566  static bool classof(const Type *T) { return T->getTypeClass() == ExtQual; }
567  static bool classof(const ExtQualType *) { return true; }
568};
569
570
571/// QualifierSet - This class is used to collect qualifiers.
572class QualifierSet {
573public:
574  QualifierSet() :
575    CVRMask(0), AddressSpace(0), GCAttrType(QualType::GCNone) {
576  }
577
578  void removeConst() { removeCVR(QualType::Const); }
579  void removeVolatile() { removeCVR(QualType::Volatile); }
580  void removeRestrict() { removeCVR(QualType::Restrict); }
581  void removeCVR(unsigned mask) { CVRMask &= ~mask; }
582  void removeAddressSpace() { AddressSpace = 0; }
583  void removeGCAttrType() { GCAttrType = QualType::GCNone; }
584
585  void addConst() { addCVR(QualType::Const); }
586  void addVolatile() { addCVR(QualType::Volatile); }
587  void addRestrict() { addCVR(QualType::Restrict); }
588  void addCVR(unsigned mask) { CVRMask |= mask; }
589  void addAddressSpace(unsigned space) {
590    assert(space);
591    AddressSpace = space;
592  }
593  void addGCAttrType(QualType::GCAttrTypes type) {
594    assert(type);
595    GCAttrType = type;
596  }
597
598  bool empty() {
599    return !CVRMask && !AddressSpace && !GCAttrType;
600  }
601
602  /// Collect any qualifiers on the given type and return an
603  /// unqualified type.
604  const Type *strip(QualType QT) {
605    CVRMask |= QT.getCVRQualifiers();
606    return strip(QT.getTypePtr());
607  }
608
609  /// Collect any qualifiers on the given type and return an
610  /// unqualified type.
611  const Type *strip(const Type* T);
612
613  /// Apply the collected qualifiers to the given type.
614  QualType apply(QualType QT, ASTContext& C);
615
616  /// Apply the collected qualifiers to the given type.
617  QualType apply(const Type* T, ASTContext& C) {
618    return apply(QualType(T, 0), C);
619  }
620
621private:
622  unsigned CVRMask;
623  unsigned AddressSpace;
624  QualType::GCAttrTypes GCAttrType;
625};
626
627
628/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
629/// types are always canonical and have a literal name field.
630class BuiltinType : public Type {
631public:
632  enum Kind {
633    Void,
634
635    Bool,     // This is bool and/or _Bool.
636    Char_U,   // This is 'char' for targets where char is unsigned.
637    UChar,    // This is explicitly qualified unsigned char.
638    Char16,   // This is 'char16_t' for C++.
639    Char32,   // This is 'char32_t' for C++.
640    UShort,
641    UInt,
642    ULong,
643    ULongLong,
644    UInt128,  // __uint128_t
645
646    Char_S,   // This is 'char' for targets where char is signed.
647    SChar,    // This is explicitly qualified signed char.
648    WChar,    // This is 'wchar_t' for C++.
649    Short,
650    Int,
651    Long,
652    LongLong,
653    Int128,   // __int128_t
654
655    Float, Double, LongDouble,
656
657    NullPtr,  // This is the type of C++0x 'nullptr'.
658
659    Overload,  // This represents the type of an overloaded function declaration.
660    Dependent, // This represents the type of a type-dependent expression.
661
662    UndeducedAuto, // In C++0x, this represents the type of an auto variable
663                   // that has not been deduced yet.
664    ObjCId,    // This represents the ObjC 'id' type.
665    ObjCClass  // This represents the ObjC 'Class' type.
666  };
667private:
668  Kind TypeKind;
669public:
670  BuiltinType(Kind K)
671    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent)),
672      TypeKind(K) {}
673
674  Kind getKind() const { return TypeKind; }
675  const char *getName(const LangOptions &LO) const;
676
677  virtual void getAsStringInternal(std::string &InnerString,
678                                   const PrintingPolicy &Policy) const;
679
680  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
681  static bool classof(const BuiltinType *) { return true; }
682};
683
684/// FixedWidthIntType - Used for arbitrary width types that we either don't
685/// want to or can't map to named integer types.  These always have a lower
686/// integer rank than builtin types of the same width.
687class FixedWidthIntType : public Type {
688private:
689  unsigned Width;
690  bool Signed;
691public:
692  FixedWidthIntType(unsigned W, bool S) : Type(FixedWidthInt, QualType(), false),
693                                          Width(W), Signed(S) {}
694
695  unsigned getWidth() const { return Width; }
696  bool isSigned() const { return Signed; }
697  const char *getName() const;
698
699  virtual void getAsStringInternal(std::string &InnerString,
700                                   const PrintingPolicy &Policy) const;
701
702  static bool classof(const Type *T) { return T->getTypeClass() == FixedWidthInt; }
703  static bool classof(const FixedWidthIntType *) { return true; }
704};
705
706/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
707/// types (_Complex float etc) as well as the GCC integer complex extensions.
708///
709class ComplexType : public Type, public llvm::FoldingSetNode {
710  QualType ElementType;
711  ComplexType(QualType Element, QualType CanonicalPtr) :
712    Type(Complex, CanonicalPtr, Element->isDependentType()),
713    ElementType(Element) {
714  }
715  friend class ASTContext;  // ASTContext creates these.
716public:
717  QualType getElementType() const { return ElementType; }
718
719  virtual void getAsStringInternal(std::string &InnerString,
720                                   const PrintingPolicy &Policy) const;
721
722  void Profile(llvm::FoldingSetNodeID &ID) {
723    Profile(ID, getElementType());
724  }
725  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
726    ID.AddPointer(Element.getAsOpaquePtr());
727  }
728
729  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
730  static bool classof(const ComplexType *) { return true; }
731};
732
733/// PointerType - C99 6.7.5.1 - Pointer Declarators.
734///
735class PointerType : public Type, public llvm::FoldingSetNode {
736  QualType PointeeType;
737
738  PointerType(QualType Pointee, QualType CanonicalPtr) :
739    Type(Pointer, CanonicalPtr, Pointee->isDependentType()), PointeeType(Pointee) {
740  }
741  friend class ASTContext;  // ASTContext creates these.
742public:
743
744  virtual void getAsStringInternal(std::string &InnerString,
745                                   const PrintingPolicy &Policy) const;
746
747  QualType getPointeeType() const { return PointeeType; }
748
749  void Profile(llvm::FoldingSetNodeID &ID) {
750    Profile(ID, getPointeeType());
751  }
752  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
753    ID.AddPointer(Pointee.getAsOpaquePtr());
754  }
755
756  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
757  static bool classof(const PointerType *) { return true; }
758};
759
760/// BlockPointerType - pointer to a block type.
761/// This type is to represent types syntactically represented as
762/// "void (^)(int)", etc. Pointee is required to always be a function type.
763///
764class BlockPointerType : public Type, public llvm::FoldingSetNode {
765  QualType PointeeType;  // Block is some kind of pointer type
766  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
767    Type(BlockPointer, CanonicalCls, Pointee->isDependentType()),
768    PointeeType(Pointee) {
769  }
770  friend class ASTContext;  // ASTContext creates these.
771public:
772
773  // Get the pointee type. Pointee is required to always be a function type.
774  QualType getPointeeType() const { return PointeeType; }
775
776  virtual void getAsStringInternal(std::string &InnerString,
777                                   const PrintingPolicy &Policy) const;
778
779  void Profile(llvm::FoldingSetNodeID &ID) {
780      Profile(ID, getPointeeType());
781  }
782  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
783      ID.AddPointer(Pointee.getAsOpaquePtr());
784  }
785
786  static bool classof(const Type *T) {
787    return T->getTypeClass() == BlockPointer;
788  }
789  static bool classof(const BlockPointerType *) { return true; }
790};
791
792/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
793///
794class ReferenceType : public Type, public llvm::FoldingSetNode {
795  QualType PointeeType;
796
797protected:
798  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef) :
799    Type(tc, CanonicalRef, Referencee->isDependentType()),
800    PointeeType(Referencee) {
801  }
802public:
803  QualType getPointeeType() const { return PointeeType; }
804
805  void Profile(llvm::FoldingSetNodeID &ID) {
806    Profile(ID, getPointeeType());
807  }
808  static void Profile(llvm::FoldingSetNodeID &ID, QualType Referencee) {
809    ID.AddPointer(Referencee.getAsOpaquePtr());
810  }
811
812  static bool classof(const Type *T) {
813    return T->getTypeClass() == LValueReference ||
814           T->getTypeClass() == RValueReference;
815  }
816  static bool classof(const ReferenceType *) { return true; }
817};
818
819/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
820///
821class LValueReferenceType : public ReferenceType {
822  LValueReferenceType(QualType Referencee, QualType CanonicalRef) :
823    ReferenceType(LValueReference, Referencee, CanonicalRef) {
824  }
825  friend class ASTContext; // ASTContext creates these
826public:
827  virtual void getAsStringInternal(std::string &InnerString,
828                                   const PrintingPolicy &Policy) const;
829
830  static bool classof(const Type *T) {
831    return T->getTypeClass() == LValueReference;
832  }
833  static bool classof(const LValueReferenceType *) { return true; }
834};
835
836/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
837///
838class RValueReferenceType : public ReferenceType {
839  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
840    ReferenceType(RValueReference, Referencee, CanonicalRef) {
841  }
842  friend class ASTContext; // ASTContext creates these
843public:
844  virtual void getAsStringInternal(std::string &InnerString,
845                                   const PrintingPolicy &Policy) const;
846
847  static bool classof(const Type *T) {
848    return T->getTypeClass() == RValueReference;
849  }
850  static bool classof(const RValueReferenceType *) { return true; }
851};
852
853/// MemberPointerType - C++ 8.3.3 - Pointers to members
854///
855class MemberPointerType : public Type, public llvm::FoldingSetNode {
856  QualType PointeeType;
857  /// The class of which the pointee is a member. Must ultimately be a
858  /// RecordType, but could be a typedef or a template parameter too.
859  const Type *Class;
860
861  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
862    Type(MemberPointer, CanonicalPtr,
863         Cls->isDependentType() || Pointee->isDependentType()),
864    PointeeType(Pointee), Class(Cls) {
865  }
866  friend class ASTContext; // ASTContext creates these.
867public:
868
869  QualType getPointeeType() const { return PointeeType; }
870
871  const Type *getClass() const { return Class; }
872
873  virtual void getAsStringInternal(std::string &InnerString,
874                                   const PrintingPolicy &Policy) const;
875
876  void Profile(llvm::FoldingSetNodeID &ID) {
877    Profile(ID, getPointeeType(), getClass());
878  }
879  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
880                      const Type *Class) {
881    ID.AddPointer(Pointee.getAsOpaquePtr());
882    ID.AddPointer(Class);
883  }
884
885  static bool classof(const Type *T) {
886    return T->getTypeClass() == MemberPointer;
887  }
888  static bool classof(const MemberPointerType *) { return true; }
889};
890
891/// ArrayType - C99 6.7.5.2 - Array Declarators.
892///
893class ArrayType : public Type, public llvm::FoldingSetNode {
894public:
895  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
896  /// an array with a static size (e.g. int X[static 4]), or an array
897  /// with a star size (e.g. int X[*]).
898  /// 'static' is only allowed on function parameters.
899  enum ArraySizeModifier {
900    Normal, Static, Star
901  };
902private:
903  /// ElementType - The element type of the array.
904  QualType ElementType;
905
906  // NOTE: VC++ treats enums as signed, avoid using the ArraySizeModifier enum
907  /// NOTE: These fields are packed into the bitfields space in the Type class.
908  unsigned SizeModifier : 2;
909
910  /// IndexTypeQuals - Capture qualifiers in declarations like:
911  /// 'int X[static restrict 4]'. For function parameters only.
912  unsigned IndexTypeQuals : 3;
913
914protected:
915  // C++ [temp.dep.type]p1:
916  //   A type is dependent if it is...
917  //     - an array type constructed from any dependent type or whose
918  //       size is specified by a constant expression that is
919  //       value-dependent,
920  ArrayType(TypeClass tc, QualType et, QualType can,
921            ArraySizeModifier sm, unsigned tq)
922    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray),
923      ElementType(et), SizeModifier(sm), IndexTypeQuals(tq) {}
924
925  friend class ASTContext;  // ASTContext creates these.
926public:
927  QualType getElementType() const { return ElementType; }
928  ArraySizeModifier getSizeModifier() const {
929    return ArraySizeModifier(SizeModifier);
930  }
931  unsigned getIndexTypeQualifier() const { return IndexTypeQuals; }
932
933  static bool classof(const Type *T) {
934    return T->getTypeClass() == ConstantArray ||
935           T->getTypeClass() == ConstantArrayWithExpr ||
936           T->getTypeClass() == ConstantArrayWithoutExpr ||
937           T->getTypeClass() == VariableArray ||
938           T->getTypeClass() == IncompleteArray ||
939           T->getTypeClass() == DependentSizedArray;
940  }
941  static bool classof(const ArrayType *) { return true; }
942};
943
944/// ConstantArrayType - This class represents the canonical version of
945/// C arrays with a specified constant size.  For example, the canonical
946/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
947/// type is 'int' and the size is 404.
948class ConstantArrayType : public ArrayType {
949  llvm::APInt Size; // Allows us to unique the type.
950
951  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
952                    ArraySizeModifier sm, unsigned tq)
953    : ArrayType(ConstantArray, et, can, sm, tq),
954      Size(size) {}
955protected:
956  ConstantArrayType(TypeClass tc, QualType et, QualType can,
957                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
958    : ArrayType(tc, et, can, sm, tq), Size(size) {}
959  friend class ASTContext;  // ASTContext creates these.
960public:
961  const llvm::APInt &getSize() const { return Size; }
962  virtual void getAsStringInternal(std::string &InnerString,
963                                   const PrintingPolicy &Policy) const;
964
965  void Profile(llvm::FoldingSetNodeID &ID) {
966    Profile(ID, getElementType(), getSize(),
967            getSizeModifier(), getIndexTypeQualifier());
968  }
969  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
970                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
971                      unsigned TypeQuals) {
972    ID.AddPointer(ET.getAsOpaquePtr());
973    ID.AddInteger(ArraySize.getZExtValue());
974    ID.AddInteger(SizeMod);
975    ID.AddInteger(TypeQuals);
976  }
977  static bool classof(const Type *T) {
978    return T->getTypeClass() == ConstantArray ||
979           T->getTypeClass() == ConstantArrayWithExpr ||
980           T->getTypeClass() == ConstantArrayWithoutExpr;
981  }
982  static bool classof(const ConstantArrayType *) { return true; }
983};
984
985/// ConstantArrayWithExprType - This class represents C arrays with a
986/// constant size specified by means of an integer constant expression.
987/// For example 'int A[sizeof(int)]' has ConstantArrayWithExprType where
988/// the element type is 'int' and the size expression is 'sizeof(int)'.
989/// These types are non-canonical.
990class ConstantArrayWithExprType : public ConstantArrayType {
991  /// SizeExpr - The ICE occurring in the concrete syntax.
992  Expr *SizeExpr;
993  /// Brackets - The left and right array brackets.
994  SourceRange Brackets;
995
996  ConstantArrayWithExprType(QualType et, QualType can,
997                            const llvm::APInt &size, Expr *e,
998                            ArraySizeModifier sm, unsigned tq,
999                            SourceRange brackets)
1000    : ConstantArrayType(ConstantArrayWithExpr, et, can, size, sm, tq),
1001      SizeExpr(e), Brackets(brackets) {}
1002  friend class ASTContext;  // ASTContext creates these.
1003  virtual void Destroy(ASTContext& C);
1004
1005public:
1006  Expr *getSizeExpr() const { return SizeExpr; }
1007  SourceRange getBracketsRange() const { return Brackets; }
1008  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1009  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1010
1011  virtual void getAsStringInternal(std::string &InnerString,
1012                                   const PrintingPolicy &Policy) const;
1013
1014  static bool classof(const Type *T) {
1015    return T->getTypeClass() == ConstantArrayWithExpr;
1016  }
1017  static bool classof(const ConstantArrayWithExprType *) { return true; }
1018
1019  void Profile(llvm::FoldingSetNodeID &ID) {
1020    assert(0 && "Cannot unique ConstantArrayWithExprTypes.");
1021  }
1022};
1023
1024/// ConstantArrayWithoutExprType - This class represents C arrays with a
1025/// constant size that was not specified by an integer constant expression,
1026/// but inferred by static semantics.
1027/// For example 'int A[] = { 0, 1, 2 }' has ConstantArrayWithoutExprType.
1028/// These types are non-canonical: the corresponding canonical type,
1029/// having the size specified in an APInt object, is a ConstantArrayType.
1030class ConstantArrayWithoutExprType : public ConstantArrayType {
1031
1032  ConstantArrayWithoutExprType(QualType et, QualType can,
1033                               const llvm::APInt &size,
1034                               ArraySizeModifier sm, unsigned tq)
1035    : ConstantArrayType(ConstantArrayWithoutExpr, et, can, size, sm, tq) {}
1036  friend class ASTContext;  // ASTContext creates these.
1037
1038public:
1039  virtual void getAsStringInternal(std::string &InnerString,
1040                                   const PrintingPolicy &Policy) const;
1041
1042  static bool classof(const Type *T) {
1043    return T->getTypeClass() == ConstantArrayWithoutExpr;
1044  }
1045  static bool classof(const ConstantArrayWithoutExprType *) { return true; }
1046
1047  void Profile(llvm::FoldingSetNodeID &ID) {
1048    assert(0 && "Cannot unique ConstantArrayWithoutExprTypes.");
1049  }
1050};
1051
1052/// IncompleteArrayType - This class represents C arrays with an unspecified
1053/// size.  For example 'int A[]' has an IncompleteArrayType where the element
1054/// type is 'int' and the size is unspecified.
1055class IncompleteArrayType : public ArrayType {
1056
1057  IncompleteArrayType(QualType et, QualType can,
1058                      ArraySizeModifier sm, unsigned tq)
1059    : ArrayType(IncompleteArray, et, can, sm, tq) {}
1060  friend class ASTContext;  // ASTContext creates these.
1061public:
1062  virtual void getAsStringInternal(std::string &InnerString,
1063                                   const PrintingPolicy &Policy) const;
1064
1065  static bool classof(const Type *T) {
1066    return T->getTypeClass() == IncompleteArray;
1067  }
1068  static bool classof(const IncompleteArrayType *) { return true; }
1069
1070  friend class StmtIteratorBase;
1071
1072  void Profile(llvm::FoldingSetNodeID &ID) {
1073    Profile(ID, getElementType(), getSizeModifier(), getIndexTypeQualifier());
1074  }
1075
1076  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1077                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
1078    ID.AddPointer(ET.getAsOpaquePtr());
1079    ID.AddInteger(SizeMod);
1080    ID.AddInteger(TypeQuals);
1081  }
1082};
1083
1084/// VariableArrayType - This class represents C arrays with a specified size
1085/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
1086/// Since the size expression is an arbitrary expression, we store it as such.
1087///
1088/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
1089/// should not be: two lexically equivalent variable array types could mean
1090/// different things, for example, these variables do not have the same type
1091/// dynamically:
1092///
1093/// void foo(int x) {
1094///   int Y[x];
1095///   ++x;
1096///   int Z[x];
1097/// }
1098///
1099class VariableArrayType : public ArrayType {
1100  /// SizeExpr - An assignment expression. VLA's are only permitted within
1101  /// a function block.
1102  Stmt *SizeExpr;
1103  /// Brackets - The left and right array brackets.
1104  SourceRange Brackets;
1105
1106  VariableArrayType(QualType et, QualType can, Expr *e,
1107                    ArraySizeModifier sm, unsigned tq,
1108                    SourceRange brackets)
1109    : ArrayType(VariableArray, et, can, sm, tq),
1110      SizeExpr((Stmt*) e), Brackets(brackets) {}
1111  friend class ASTContext;  // ASTContext creates these.
1112  virtual void Destroy(ASTContext& C);
1113
1114public:
1115  Expr *getSizeExpr() const {
1116    // We use C-style casts instead of cast<> here because we do not wish
1117    // to have a dependency of Type.h on Stmt.h/Expr.h.
1118    return (Expr*) SizeExpr;
1119  }
1120  SourceRange getBracketsRange() const { return Brackets; }
1121  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1122  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1123
1124  virtual void getAsStringInternal(std::string &InnerString,
1125                                   const PrintingPolicy &Policy) const;
1126
1127  static bool classof(const Type *T) {
1128    return T->getTypeClass() == VariableArray;
1129  }
1130  static bool classof(const VariableArrayType *) { return true; }
1131
1132  friend class StmtIteratorBase;
1133
1134  void Profile(llvm::FoldingSetNodeID &ID) {
1135    assert(0 && "Cannnot unique VariableArrayTypes.");
1136  }
1137};
1138
1139/// DependentSizedArrayType - This type represents an array type in
1140/// C++ whose size is a value-dependent expression. For example:
1141/// @code
1142/// template<typename T, int Size>
1143/// class array {
1144///   T data[Size];
1145/// };
1146/// @endcode
1147/// For these types, we won't actually know what the array bound is
1148/// until template instantiation occurs, at which point this will
1149/// become either a ConstantArrayType or a VariableArrayType.
1150class DependentSizedArrayType : public ArrayType {
1151  /// SizeExpr - An assignment expression that will instantiate to the
1152  /// size of the array.
1153  Stmt *SizeExpr;
1154  /// Brackets - The left and right array brackets.
1155  SourceRange Brackets;
1156
1157  DependentSizedArrayType(QualType et, QualType can, Expr *e,
1158			  ArraySizeModifier sm, unsigned tq,
1159                          SourceRange brackets)
1160    : ArrayType(DependentSizedArray, et, can, sm, tq),
1161      SizeExpr((Stmt*) e), Brackets(brackets) {}
1162  friend class ASTContext;  // ASTContext creates these.
1163  virtual void Destroy(ASTContext& C);
1164
1165public:
1166  Expr *getSizeExpr() const {
1167    // We use C-style casts instead of cast<> here because we do not wish
1168    // to have a dependency of Type.h on Stmt.h/Expr.h.
1169    return (Expr*) SizeExpr;
1170  }
1171  SourceRange getBracketsRange() const { return Brackets; }
1172  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1173  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1174
1175  virtual void getAsStringInternal(std::string &InnerString,
1176                                   const PrintingPolicy &Policy) const;
1177
1178  static bool classof(const Type *T) {
1179    return T->getTypeClass() == DependentSizedArray;
1180  }
1181  static bool classof(const DependentSizedArrayType *) { return true; }
1182
1183  friend class StmtIteratorBase;
1184
1185  void Profile(llvm::FoldingSetNodeID &ID) {
1186    assert(0 && "Cannnot unique DependentSizedArrayTypes.");
1187  }
1188};
1189
1190/// DependentSizedExtVectorType - This type represent an extended vector type
1191/// where either the type or size is dependent. For example:
1192/// @code
1193/// template<typename T, int Size>
1194/// class vector {
1195///   typedef T __attribute__((ext_vector_type(Size))) type;
1196/// }
1197/// @endcode
1198class DependentSizedExtVectorType : public Type {
1199  Expr *SizeExpr;
1200  /// ElementType - The element type of the array.
1201  QualType ElementType;
1202  SourceLocation loc;
1203
1204  DependentSizedExtVectorType(QualType ElementType, QualType can,
1205                              Expr *SizeExpr, SourceLocation loc)
1206    : Type (DependentSizedExtVector, can, true),
1207    SizeExpr(SizeExpr), ElementType(ElementType), loc(loc) {}
1208  friend class ASTContext;
1209  virtual void Destroy(ASTContext& C);
1210
1211public:
1212  const Expr *getSizeExpr() const { return SizeExpr; }
1213  QualType getElementType() const { return ElementType; }
1214  SourceLocation getAttributeLoc() const { return loc; }
1215
1216  virtual void getAsStringInternal(std::string &InnerString,
1217                                   const PrintingPolicy &Policy) const;
1218
1219  static bool classof(const Type *T) {
1220    return T->getTypeClass() == DependentSizedExtVector;
1221  }
1222  static bool classof(const DependentSizedExtVectorType *) { return true; }
1223};
1224
1225
1226/// VectorType - GCC generic vector type. This type is created using
1227/// __attribute__((vector_size(n)), where "n" specifies the vector size in
1228/// bytes. Since the constructor takes the number of vector elements, the
1229/// client is responsible for converting the size into the number of elements.
1230class VectorType : public Type, public llvm::FoldingSetNode {
1231protected:
1232  /// ElementType - The element type of the vector.
1233  QualType ElementType;
1234
1235  /// NumElements - The number of elements in the vector.
1236  unsigned NumElements;
1237
1238  VectorType(QualType vecType, unsigned nElements, QualType canonType) :
1239    Type(Vector, canonType, vecType->isDependentType()),
1240    ElementType(vecType), NumElements(nElements) {}
1241  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
1242             QualType canonType)
1243    : Type(tc, canonType, vecType->isDependentType()), ElementType(vecType),
1244      NumElements(nElements) {}
1245  friend class ASTContext;  // ASTContext creates these.
1246public:
1247
1248  QualType getElementType() const { return ElementType; }
1249  unsigned getNumElements() const { return NumElements; }
1250
1251  virtual void getAsStringInternal(std::string &InnerString,
1252                                   const PrintingPolicy &Policy) const;
1253
1254  void Profile(llvm::FoldingSetNodeID &ID) {
1255    Profile(ID, getElementType(), getNumElements(), getTypeClass());
1256  }
1257  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
1258                      unsigned NumElements, TypeClass TypeClass) {
1259    ID.AddPointer(ElementType.getAsOpaquePtr());
1260    ID.AddInteger(NumElements);
1261    ID.AddInteger(TypeClass);
1262  }
1263  static bool classof(const Type *T) {
1264    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
1265  }
1266  static bool classof(const VectorType *) { return true; }
1267};
1268
1269/// ExtVectorType - Extended vector type. This type is created using
1270/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
1271/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
1272/// class enables syntactic extensions, like Vector Components for accessing
1273/// points, colors, and textures (modeled after OpenGL Shading Language).
1274class ExtVectorType : public VectorType {
1275  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
1276    VectorType(ExtVector, vecType, nElements, canonType) {}
1277  friend class ASTContext;  // ASTContext creates these.
1278public:
1279  static int getPointAccessorIdx(char c) {
1280    switch (c) {
1281    default: return -1;
1282    case 'x': return 0;
1283    case 'y': return 1;
1284    case 'z': return 2;
1285    case 'w': return 3;
1286    }
1287  }
1288  static int getNumericAccessorIdx(char c) {
1289    switch (c) {
1290      default: return -1;
1291      case '0': return 0;
1292      case '1': return 1;
1293      case '2': return 2;
1294      case '3': return 3;
1295      case '4': return 4;
1296      case '5': return 5;
1297      case '6': return 6;
1298      case '7': return 7;
1299      case '8': return 8;
1300      case '9': return 9;
1301      case 'A':
1302      case 'a': return 10;
1303      case 'B':
1304      case 'b': return 11;
1305      case 'C':
1306      case 'c': return 12;
1307      case 'D':
1308      case 'd': return 13;
1309      case 'E':
1310      case 'e': return 14;
1311      case 'F':
1312      case 'f': return 15;
1313    }
1314  }
1315
1316  static int getAccessorIdx(char c) {
1317    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
1318    return getNumericAccessorIdx(c);
1319  }
1320
1321  bool isAccessorWithinNumElements(char c) const {
1322    if (int idx = getAccessorIdx(c)+1)
1323      return unsigned(idx-1) < NumElements;
1324    return false;
1325  }
1326  virtual void getAsStringInternal(std::string &InnerString,
1327                                   const PrintingPolicy &Policy) const;
1328
1329  static bool classof(const Type *T) {
1330    return T->getTypeClass() == ExtVector;
1331  }
1332  static bool classof(const ExtVectorType *) { return true; }
1333};
1334
1335/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
1336/// class of FunctionNoProtoType and FunctionProtoType.
1337///
1338class FunctionType : public Type {
1339  /// SubClassData - This field is owned by the subclass, put here to pack
1340  /// tightly with the ivars in Type.
1341  bool SubClassData : 1;
1342
1343  /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
1344  /// other bitfields.
1345  /// The qualifiers are part of FunctionProtoType because...
1346  ///
1347  /// C++ 8.3.5p4: The return type, the parameter type list and the
1348  /// cv-qualifier-seq, [...], are part of the function type.
1349  ///
1350  unsigned TypeQuals : 3;
1351
1352  /// NoReturn - Indicates if the function type is attribute noreturn.
1353  unsigned NoReturn : 1;
1354
1355  // The type returned by the function.
1356  QualType ResultType;
1357protected:
1358  FunctionType(TypeClass tc, QualType res, bool SubclassInfo,
1359               unsigned typeQuals, QualType Canonical, bool Dependent,
1360               bool noReturn = false)
1361    : Type(tc, Canonical, Dependent),
1362      SubClassData(SubclassInfo), TypeQuals(typeQuals), NoReturn(noReturn),
1363      ResultType(res) {}
1364  bool getSubClassData() const { return SubClassData; }
1365  unsigned getTypeQuals() const { return TypeQuals; }
1366public:
1367
1368  QualType getResultType() const { return ResultType; }
1369  bool getNoReturnAttr() const { return NoReturn; }
1370
1371
1372  static bool classof(const Type *T) {
1373    return T->getTypeClass() == FunctionNoProto ||
1374           T->getTypeClass() == FunctionProto;
1375  }
1376  static bool classof(const FunctionType *) { return true; }
1377};
1378
1379/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
1380/// no information available about its arguments.
1381class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
1382  FunctionNoProtoType(QualType Result, QualType Canonical,
1383                      bool NoReturn = false)
1384    : FunctionType(FunctionNoProto, Result, false, 0, Canonical,
1385                   /*Dependent=*/false, NoReturn) {}
1386  friend class ASTContext;  // ASTContext creates these.
1387public:
1388  // No additional state past what FunctionType provides.
1389
1390  virtual void getAsStringInternal(std::string &InnerString,
1391                                   const PrintingPolicy &Policy) const;
1392
1393  void Profile(llvm::FoldingSetNodeID &ID) {
1394    Profile(ID, getResultType(), getNoReturnAttr());
1395  }
1396  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
1397                      bool NoReturn) {
1398    ID.AddInteger(NoReturn);
1399    ID.AddPointer(ResultType.getAsOpaquePtr());
1400  }
1401
1402  static bool classof(const Type *T) {
1403    return T->getTypeClass() == FunctionNoProto;
1404  }
1405  static bool classof(const FunctionNoProtoType *) { return true; }
1406};
1407
1408/// FunctionProtoType - Represents a prototype with argument type info, e.g.
1409/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
1410/// arguments, not as having a single void argument. Such a type can have an
1411/// exception specification, but this specification is not part of the canonical
1412/// type.
1413class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
1414  /// hasAnyDependentType - Determine whether there are any dependent
1415  /// types within the arguments passed in.
1416  static bool hasAnyDependentType(const QualType *ArgArray, unsigned numArgs) {
1417    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
1418      if (ArgArray[Idx]->isDependentType())
1419    return true;
1420
1421    return false;
1422  }
1423
1424  FunctionProtoType(QualType Result, const QualType *ArgArray, unsigned numArgs,
1425                    bool isVariadic, unsigned typeQuals, bool hasExs,
1426                    bool hasAnyExs, const QualType *ExArray,
1427                    unsigned numExs, QualType Canonical, bool NoReturn)
1428    : FunctionType(FunctionProto, Result, isVariadic, typeQuals, Canonical,
1429                   (Result->isDependentType() ||
1430                    hasAnyDependentType(ArgArray, numArgs)), NoReturn),
1431      NumArgs(numArgs), NumExceptions(numExs), HasExceptionSpec(hasExs),
1432      AnyExceptionSpec(hasAnyExs) {
1433    // Fill in the trailing argument array.
1434    QualType *ArgInfo = reinterpret_cast<QualType*>(this+1);
1435    for (unsigned i = 0; i != numArgs; ++i)
1436      ArgInfo[i] = ArgArray[i];
1437    // Fill in the exception array.
1438    QualType *Ex = ArgInfo + numArgs;
1439    for (unsigned i = 0; i != numExs; ++i)
1440      Ex[i] = ExArray[i];
1441  }
1442
1443  /// NumArgs - The number of arguments this function has, not counting '...'.
1444  unsigned NumArgs : 20;
1445
1446  /// NumExceptions - The number of types in the exception spec, if any.
1447  unsigned NumExceptions : 10;
1448
1449  /// HasExceptionSpec - Whether this function has an exception spec at all.
1450  bool HasExceptionSpec : 1;
1451
1452  /// AnyExceptionSpec - Whether this function has a throw(...) spec.
1453  bool AnyExceptionSpec : 1;
1454
1455  /// ArgInfo - There is an variable size array after the class in memory that
1456  /// holds the argument types.
1457
1458  /// Exceptions - There is another variable size array after ArgInfo that
1459  /// holds the exception types.
1460
1461  friend class ASTContext;  // ASTContext creates these.
1462
1463public:
1464  unsigned getNumArgs() const { return NumArgs; }
1465  QualType getArgType(unsigned i) const {
1466    assert(i < NumArgs && "Invalid argument number!");
1467    return arg_type_begin()[i];
1468  }
1469
1470  bool hasExceptionSpec() const { return HasExceptionSpec; }
1471  bool hasAnyExceptionSpec() const { return AnyExceptionSpec; }
1472  unsigned getNumExceptions() const { return NumExceptions; }
1473  QualType getExceptionType(unsigned i) const {
1474    assert(i < NumExceptions && "Invalid exception number!");
1475    return exception_begin()[i];
1476  }
1477  bool hasEmptyExceptionSpec() const {
1478    return hasExceptionSpec() && !hasAnyExceptionSpec() &&
1479      getNumExceptions() == 0;
1480  }
1481
1482  bool isVariadic() const { return getSubClassData(); }
1483  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
1484
1485  typedef const QualType *arg_type_iterator;
1486  arg_type_iterator arg_type_begin() const {
1487    return reinterpret_cast<const QualType *>(this+1);
1488  }
1489  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
1490
1491  typedef const QualType *exception_iterator;
1492  exception_iterator exception_begin() const {
1493    // exceptions begin where arguments end
1494    return arg_type_end();
1495  }
1496  exception_iterator exception_end() const {
1497    return exception_begin() + NumExceptions;
1498  }
1499
1500  virtual void getAsStringInternal(std::string &InnerString,
1501                                   const PrintingPolicy &Policy) const;
1502
1503  static bool classof(const Type *T) {
1504    return T->getTypeClass() == FunctionProto;
1505  }
1506  static bool classof(const FunctionProtoType *) { return true; }
1507
1508  void Profile(llvm::FoldingSetNodeID &ID);
1509  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
1510                      arg_type_iterator ArgTys, unsigned NumArgs,
1511                      bool isVariadic, unsigned TypeQuals,
1512                      bool hasExceptionSpec, bool anyExceptionSpec,
1513                      unsigned NumExceptions, exception_iterator Exs,
1514                      bool NoReturn);
1515};
1516
1517
1518class TypedefType : public Type {
1519  TypedefDecl *Decl;
1520protected:
1521  TypedefType(TypeClass tc, TypedefDecl *D, QualType can)
1522    : Type(tc, can, can->isDependentType()), Decl(D) {
1523    assert(!isa<TypedefType>(can) && "Invalid canonical type");
1524  }
1525  friend class ASTContext;  // ASTContext creates these.
1526public:
1527
1528  TypedefDecl *getDecl() const { return Decl; }
1529
1530  /// LookThroughTypedefs - Return the ultimate type this typedef corresponds to
1531  /// potentially looking through *all* consecutive typedefs.  This returns the
1532  /// sum of the type qualifiers, so if you have:
1533  ///   typedef const int A;
1534  ///   typedef volatile A B;
1535  /// looking through the typedefs for B will give you "const volatile A".
1536  QualType LookThroughTypedefs() const;
1537
1538  virtual void getAsStringInternal(std::string &InnerString,
1539                                   const PrintingPolicy &Policy) const;
1540
1541  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
1542  static bool classof(const TypedefType *) { return true; }
1543};
1544
1545/// TypeOfExprType (GCC extension).
1546class TypeOfExprType : public Type {
1547  Expr *TOExpr;
1548  TypeOfExprType(Expr *E, QualType can = QualType());
1549  friend class ASTContext;  // ASTContext creates these.
1550public:
1551  Expr *getUnderlyingExpr() const { return TOExpr; }
1552
1553  virtual void getAsStringInternal(std::string &InnerString,
1554                                   const PrintingPolicy &Policy) const;
1555
1556  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
1557  static bool classof(const TypeOfExprType *) { return true; }
1558};
1559
1560/// TypeOfType (GCC extension).
1561class TypeOfType : public Type {
1562  QualType TOType;
1563  TypeOfType(QualType T, QualType can)
1564    : Type(TypeOf, can, T->isDependentType()), TOType(T) {
1565    assert(!isa<TypedefType>(can) && "Invalid canonical type");
1566  }
1567  friend class ASTContext;  // ASTContext creates these.
1568public:
1569  QualType getUnderlyingType() const { return TOType; }
1570
1571  virtual void getAsStringInternal(std::string &InnerString,
1572                                   const PrintingPolicy &Policy) const;
1573
1574  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
1575  static bool classof(const TypeOfType *) { return true; }
1576};
1577
1578/// DecltypeType (C++0x)
1579class DecltypeType : public Type {
1580  Expr *E;
1581
1582  // FIXME: We could get rid of UnderlyingType if we wanted to: We would have to
1583  // Move getDesugaredType to ASTContext so that it can call getDecltypeForExpr
1584  // from it.
1585  QualType UnderlyingType;
1586
1587  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
1588  friend class ASTContext;  // ASTContext creates these.
1589public:
1590  Expr *getUnderlyingExpr() const { return E; }
1591  QualType getUnderlyingType() const { return UnderlyingType; }
1592
1593  virtual void getAsStringInternal(std::string &InnerString,
1594                                   const PrintingPolicy &Policy) const;
1595
1596  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
1597  static bool classof(const DecltypeType *) { return true; }
1598};
1599
1600class TagType : public Type {
1601  /// Stores the TagDecl associated with this type. The decl will
1602  /// point to the TagDecl that actually defines the entity (or is a
1603  /// definition in progress), if there is such a definition. The
1604  /// single-bit value will be non-zero when this tag is in the
1605  /// process of being defined.
1606  mutable llvm::PointerIntPair<TagDecl *, 1> decl;
1607  friend class ASTContext;
1608  friend class TagDecl;
1609
1610protected:
1611  TagType(TypeClass TC, TagDecl *D, QualType can);
1612
1613public:
1614  TagDecl *getDecl() const { return decl.getPointer(); }
1615
1616  /// @brief Determines whether this type is in the process of being
1617  /// defined.
1618  bool isBeingDefined() const { return decl.getInt(); }
1619  void setBeingDefined(bool Def) { decl.setInt(Def? 1 : 0); }
1620
1621  virtual void getAsStringInternal(std::string &InnerString,
1622                                   const PrintingPolicy &Policy) const;
1623
1624  static bool classof(const Type *T) {
1625    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
1626  }
1627  static bool classof(const TagType *) { return true; }
1628  static bool classof(const RecordType *) { return true; }
1629  static bool classof(const EnumType *) { return true; }
1630};
1631
1632/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
1633/// to detect TagType objects of structs/unions/classes.
1634class RecordType : public TagType {
1635protected:
1636  explicit RecordType(RecordDecl *D)
1637    : TagType(Record, reinterpret_cast<TagDecl*>(D), QualType()) { }
1638  explicit RecordType(TypeClass TC, RecordDecl *D)
1639    : TagType(TC, reinterpret_cast<TagDecl*>(D), QualType()) { }
1640  friend class ASTContext;   // ASTContext creates these.
1641public:
1642
1643  RecordDecl *getDecl() const {
1644    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
1645  }
1646
1647  // FIXME: This predicate is a helper to QualType/Type. It needs to
1648  // recursively check all fields for const-ness. If any field is declared
1649  // const, it needs to return false.
1650  bool hasConstFields() const { return false; }
1651
1652  // FIXME: RecordType needs to check when it is created that all fields are in
1653  // the same address space, and return that.
1654  unsigned getAddressSpace() const { return 0; }
1655
1656  static bool classof(const TagType *T);
1657  static bool classof(const Type *T) {
1658    return isa<TagType>(T) && classof(cast<TagType>(T));
1659  }
1660  static bool classof(const RecordType *) { return true; }
1661};
1662
1663/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
1664/// to detect TagType objects of enums.
1665class EnumType : public TagType {
1666  explicit EnumType(EnumDecl *D)
1667    : TagType(Enum, reinterpret_cast<TagDecl*>(D), QualType()) { }
1668  friend class ASTContext;   // ASTContext creates these.
1669public:
1670
1671  EnumDecl *getDecl() const {
1672    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
1673  }
1674
1675  static bool classof(const TagType *T);
1676  static bool classof(const Type *T) {
1677    return isa<TagType>(T) && classof(cast<TagType>(T));
1678  }
1679  static bool classof(const EnumType *) { return true; }
1680};
1681
1682class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
1683  unsigned Depth : 15;
1684  unsigned Index : 16;
1685  unsigned ParameterPack : 1;
1686  IdentifierInfo *Name;
1687
1688  TemplateTypeParmType(unsigned D, unsigned I, bool PP, IdentifierInfo *N,
1689                       QualType Canon)
1690    : Type(TemplateTypeParm, Canon, /*Dependent=*/true),
1691      Depth(D), Index(I), ParameterPack(PP), Name(N) { }
1692
1693  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
1694    : Type(TemplateTypeParm, QualType(this, 0), /*Dependent=*/true),
1695      Depth(D), Index(I), ParameterPack(PP), Name(0) { }
1696
1697  friend class ASTContext;  // ASTContext creates these
1698
1699public:
1700  unsigned getDepth() const { return Depth; }
1701  unsigned getIndex() const { return Index; }
1702  bool isParameterPack() const { return ParameterPack; }
1703  IdentifierInfo *getName() const { return Name; }
1704
1705  virtual void getAsStringInternal(std::string &InnerString,
1706                                   const PrintingPolicy &Policy) const;
1707
1708  void Profile(llvm::FoldingSetNodeID &ID) {
1709    Profile(ID, Depth, Index, ParameterPack, Name);
1710  }
1711
1712  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
1713                      unsigned Index, bool ParameterPack,
1714                      IdentifierInfo *Name) {
1715    ID.AddInteger(Depth);
1716    ID.AddInteger(Index);
1717    ID.AddBoolean(ParameterPack);
1718    ID.AddPointer(Name);
1719  }
1720
1721  static bool classof(const Type *T) {
1722    return T->getTypeClass() == TemplateTypeParm;
1723  }
1724  static bool classof(const TemplateTypeParmType *T) { return true; }
1725};
1726
1727/// \brief Represents the type of a template specialization as written
1728/// in the source code.
1729///
1730/// Template specialization types represent the syntactic form of a
1731/// template-id that refers to a type, e.g., @c vector<int>. Some
1732/// template specialization types are syntactic sugar, whose canonical
1733/// type will point to some other type node that represents the
1734/// instantiation or class template specialization. For example, a
1735/// class template specialization type of @c vector<int> will refer to
1736/// a tag type for the instantiation
1737/// @c std::vector<int, std::allocator<int>>.
1738///
1739/// Other template specialization types, for which the template name
1740/// is dependent, may be canonical types. These types are always
1741/// dependent.
1742class TemplateSpecializationType
1743  : public Type, public llvm::FoldingSetNode {
1744
1745  /// \brief The name of the template being specialized.
1746  TemplateName Template;
1747
1748  /// \brief - The number of template arguments named in this class
1749  /// template specialization.
1750  unsigned NumArgs;
1751
1752  TemplateSpecializationType(TemplateName T,
1753                             const TemplateArgument *Args,
1754                             unsigned NumArgs, QualType Canon);
1755
1756  virtual void Destroy(ASTContext& C);
1757
1758  friend class ASTContext;  // ASTContext creates these
1759
1760public:
1761  /// \brief Determine whether any of the given template arguments are
1762  /// dependent.
1763  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
1764                                            unsigned NumArgs);
1765
1766  /// \brief Print a template argument list, including the '<' and '>'
1767  /// enclosing the template arguments.
1768  static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
1769                                               unsigned NumArgs,
1770                                               const PrintingPolicy &Policy);
1771
1772  typedef const TemplateArgument * iterator;
1773
1774  iterator begin() const { return getArgs(); }
1775  iterator end() const;
1776
1777  /// \brief Retrieve the name of the template that we are specializing.
1778  TemplateName getTemplateName() const { return Template; }
1779
1780  /// \brief Retrieve the template arguments.
1781  const TemplateArgument *getArgs() const {
1782    return reinterpret_cast<const TemplateArgument *>(this + 1);
1783  }
1784
1785  /// \brief Retrieve the number of template arguments.
1786  unsigned getNumArgs() const { return NumArgs; }
1787
1788  /// \brief Retrieve a specific template argument as a type.
1789  /// \precondition @c isArgType(Arg)
1790  const TemplateArgument &getArg(unsigned Idx) const;
1791
1792  virtual void getAsStringInternal(std::string &InnerString,
1793                                   const PrintingPolicy &Policy) const;
1794
1795  void Profile(llvm::FoldingSetNodeID &ID) {
1796    Profile(ID, Template, getArgs(), NumArgs);
1797  }
1798
1799  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
1800                      const TemplateArgument *Args, unsigned NumArgs);
1801
1802  static bool classof(const Type *T) {
1803    return T->getTypeClass() == TemplateSpecialization;
1804  }
1805  static bool classof(const TemplateSpecializationType *T) { return true; }
1806};
1807
1808/// \brief Represents a type that was referred to via a qualified
1809/// name, e.g., N::M::type.
1810///
1811/// This type is used to keep track of a type name as written in the
1812/// source code, including any nested-name-specifiers. The type itself
1813/// is always "sugar", used to express what was written in the source
1814/// code but containing no additional semantic information.
1815class QualifiedNameType : public Type, public llvm::FoldingSetNode {
1816  /// \brief The nested name specifier containing the qualifier.
1817  NestedNameSpecifier *NNS;
1818
1819  /// \brief The type that this qualified name refers to.
1820  QualType NamedType;
1821
1822  QualifiedNameType(NestedNameSpecifier *NNS, QualType NamedType,
1823                    QualType CanonType)
1824    : Type(QualifiedName, CanonType, NamedType->isDependentType()),
1825      NNS(NNS), NamedType(NamedType) { }
1826
1827  friend class ASTContext;  // ASTContext creates these
1828
1829public:
1830  /// \brief Retrieve the qualification on this type.
1831  NestedNameSpecifier *getQualifier() const { return NNS; }
1832
1833  /// \brief Retrieve the type named by the qualified-id.
1834  QualType getNamedType() const { return NamedType; }
1835
1836  virtual void getAsStringInternal(std::string &InnerString,
1837                                   const PrintingPolicy &Policy) const;
1838
1839  void Profile(llvm::FoldingSetNodeID &ID) {
1840    Profile(ID, NNS, NamedType);
1841  }
1842
1843  static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
1844                      QualType NamedType) {
1845    ID.AddPointer(NNS);
1846    NamedType.Profile(ID);
1847  }
1848
1849  static bool classof(const Type *T) {
1850    return T->getTypeClass() == QualifiedName;
1851  }
1852  static bool classof(const QualifiedNameType *T) { return true; }
1853};
1854
1855/// \brief Represents a 'typename' specifier that names a type within
1856/// a dependent type, e.g., "typename T::type".
1857///
1858/// TypenameType has a very similar structure to QualifiedNameType,
1859/// which also involves a nested-name-specifier following by a type,
1860/// and (FIXME!) both can even be prefixed by the 'typename'
1861/// keyword. However, the two types serve very different roles:
1862/// QualifiedNameType is a non-semantic type that serves only as sugar
1863/// to show how a particular type was written in the source
1864/// code. TypenameType, on the other hand, only occurs when the
1865/// nested-name-specifier is dependent, such that we cannot resolve
1866/// the actual type until after instantiation.
1867class TypenameType : public Type, public llvm::FoldingSetNode {
1868  /// \brief The nested name specifier containing the qualifier.
1869  NestedNameSpecifier *NNS;
1870
1871  typedef llvm::PointerUnion<const IdentifierInfo *,
1872                             const TemplateSpecializationType *> NameType;
1873
1874  /// \brief The type that this typename specifier refers to.
1875  NameType Name;
1876
1877  TypenameType(NestedNameSpecifier *NNS, const IdentifierInfo *Name,
1878               QualType CanonType)
1879    : Type(Typename, CanonType, true), NNS(NNS), Name(Name) {
1880    assert(NNS->isDependent() &&
1881           "TypenameType requires a dependent nested-name-specifier");
1882  }
1883
1884  TypenameType(NestedNameSpecifier *NNS, const TemplateSpecializationType *Ty,
1885               QualType CanonType)
1886    : Type(Typename, CanonType, true), NNS(NNS), Name(Ty) {
1887    assert(NNS->isDependent() &&
1888           "TypenameType requires a dependent nested-name-specifier");
1889  }
1890
1891  friend class ASTContext;  // ASTContext creates these
1892
1893public:
1894  /// \brief Retrieve the qualification on this type.
1895  NestedNameSpecifier *getQualifier() const { return NNS; }
1896
1897  /// \brief Retrieve the type named by the typename specifier as an
1898  /// identifier.
1899  ///
1900  /// This routine will return a non-NULL identifier pointer when the
1901  /// form of the original typename was terminated by an identifier,
1902  /// e.g., "typename T::type".
1903  const IdentifierInfo *getIdentifier() const {
1904    return Name.dyn_cast<const IdentifierInfo *>();
1905  }
1906
1907  /// \brief Retrieve the type named by the typename specifier as a
1908  /// type specialization.
1909  const TemplateSpecializationType *getTemplateId() const {
1910    return Name.dyn_cast<const TemplateSpecializationType *>();
1911  }
1912
1913  virtual void getAsStringInternal(std::string &InnerString,
1914                                   const PrintingPolicy &Policy) const;
1915
1916  void Profile(llvm::FoldingSetNodeID &ID) {
1917    Profile(ID, NNS, Name);
1918  }
1919
1920  static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
1921                      NameType Name) {
1922    ID.AddPointer(NNS);
1923    ID.AddPointer(Name.getOpaqueValue());
1924  }
1925
1926  static bool classof(const Type *T) {
1927    return T->getTypeClass() == Typename;
1928  }
1929  static bool classof(const TypenameType *T) { return true; }
1930};
1931
1932/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
1933/// object oriented design.  They basically correspond to C++ classes.  There
1934/// are two kinds of interface types, normal interfaces like "NSString" and
1935/// qualified interfaces, which are qualified with a protocol list like
1936/// "NSString<NSCopyable, NSAmazing>".
1937class ObjCInterfaceType : public Type, public llvm::FoldingSetNode {
1938  ObjCInterfaceDecl *Decl;
1939
1940  // List of protocols for this protocol conforming object type
1941  // List is sorted on protocol name. No protocol is enterred more than once.
1942  llvm::SmallVector<ObjCProtocolDecl*, 4> Protocols;
1943
1944  ObjCInterfaceType(ObjCInterfaceDecl *D,
1945                    ObjCProtocolDecl **Protos, unsigned NumP) :
1946    Type(ObjCInterface, QualType(), /*Dependent=*/false),
1947    Decl(D), Protocols(Protos, Protos+NumP) { }
1948  friend class ASTContext;  // ASTContext creates these.
1949public:
1950  ObjCInterfaceDecl *getDecl() const { return Decl; }
1951
1952  /// getNumProtocols - Return the number of qualifying protocols in this
1953  /// interface type, or 0 if there are none.
1954  unsigned getNumProtocols() const { return Protocols.size(); }
1955
1956  /// qual_iterator and friends: this provides access to the (potentially empty)
1957  /// list of protocols qualifying this interface.
1958  typedef llvm::SmallVector<ObjCProtocolDecl*, 8>::const_iterator qual_iterator;
1959  qual_iterator qual_begin() const { return Protocols.begin(); }
1960  qual_iterator qual_end() const   { return Protocols.end(); }
1961  bool qual_empty() const { return Protocols.size() == 0; }
1962
1963  virtual void getAsStringInternal(std::string &InnerString,
1964                                   const PrintingPolicy &Policy) const;
1965
1966  void Profile(llvm::FoldingSetNodeID &ID);
1967  static void Profile(llvm::FoldingSetNodeID &ID,
1968                      const ObjCInterfaceDecl *Decl,
1969                      ObjCProtocolDecl **protocols, unsigned NumProtocols);
1970
1971  static bool classof(const Type *T) {
1972    return T->getTypeClass() == ObjCInterface;
1973  }
1974  static bool classof(const ObjCInterfaceType *) { return true; }
1975};
1976
1977/// ObjCObjectPointerType - Used to represent 'id', 'Interface *', 'id <p>',
1978/// and 'Interface <p> *'.
1979///
1980/// Duplicate protocols are removed and protocol list is canonicalized to be in
1981/// alphabetical order.
1982class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
1983  QualType PointeeType; // A builtin or interface type.
1984
1985  // List of protocols for this protocol conforming object type
1986  // List is sorted on protocol name. No protocol is entered more than once.
1987  llvm::SmallVector<ObjCProtocolDecl*, 8> Protocols;
1988
1989  ObjCObjectPointerType(QualType T, ObjCProtocolDecl **Protos, unsigned NumP) :
1990    Type(ObjCObjectPointer, QualType(), /*Dependent=*/false),
1991    PointeeType(T), Protocols(Protos, Protos+NumP) { }
1992  friend class ASTContext;  // ASTContext creates these.
1993
1994public:
1995  // Get the pointee type. Pointee will either be:
1996  // - a built-in type (for 'id' and 'Class').
1997  // - an interface type (for user-defined types).
1998  // - a TypedefType whose canonical type is an interface (as in 'T' below).
1999  //   For example: typedef NSObject T; T *var;
2000  QualType getPointeeType() const { return PointeeType; }
2001
2002  const ObjCInterfaceType *getInterfaceType() const {
2003    return PointeeType->getAsObjCInterfaceType();
2004  }
2005  /// getInterfaceDecl - returns an interface decl for user-defined types.
2006  ObjCInterfaceDecl *getInterfaceDecl() const {
2007    return getInterfaceType() ? getInterfaceType()->getDecl() : 0;
2008  }
2009  /// isObjCIdType - true for "id".
2010  bool isObjCIdType() const {
2011    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCId) &&
2012           !Protocols.size();
2013  }
2014  /// isObjCClassType - true for "Class".
2015  bool isObjCClassType() const {
2016    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCClass) &&
2017           !Protocols.size();
2018  }
2019  /// isObjCQualifiedIdType - true for "id <p>".
2020  bool isObjCQualifiedIdType() const {
2021    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCId) &&
2022           Protocols.size();
2023  }
2024  /// isObjCQualifiedClassType - true for "Class <p>".
2025  bool isObjCQualifiedClassType() const {
2026    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCClass) &&
2027           Protocols.size();
2028  }
2029  /// qual_iterator and friends: this provides access to the (potentially empty)
2030  /// list of protocols qualifying this interface.
2031  typedef llvm::SmallVector<ObjCProtocolDecl*, 8>::const_iterator qual_iterator;
2032
2033  qual_iterator qual_begin() const { return Protocols.begin(); }
2034  qual_iterator qual_end() const   { return Protocols.end(); }
2035  bool qual_empty() const { return Protocols.size() == 0; }
2036
2037  /// getNumProtocols - Return the number of qualifying protocols in this
2038  /// interface type, or 0 if there are none.
2039  unsigned getNumProtocols() const { return Protocols.size(); }
2040
2041  void Profile(llvm::FoldingSetNodeID &ID);
2042  static void Profile(llvm::FoldingSetNodeID &ID, QualType T,
2043                      ObjCProtocolDecl **protocols, unsigned NumProtocols);
2044  virtual void getAsStringInternal(std::string &InnerString,
2045                                   const PrintingPolicy &Policy) const;
2046  static bool classof(const Type *T) {
2047    return T->getTypeClass() == ObjCObjectPointer;
2048  }
2049  static bool classof(const ObjCObjectPointerType *) { return true; }
2050};
2051
2052// Inline function definitions.
2053
2054/// getUnqualifiedType - Return the type without any qualifiers.
2055inline QualType QualType::getUnqualifiedType() const {
2056  Type *TP = getTypePtr();
2057  if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(TP))
2058    TP = EXTQT->getBaseType();
2059  return QualType(TP, 0);
2060}
2061
2062/// getAddressSpace - Return the address space of this type.
2063inline unsigned QualType::getAddressSpace() const {
2064  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2065  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
2066    return AT->getElementType().getAddressSpace();
2067  if (const RecordType *RT = dyn_cast<RecordType>(CT))
2068    return RT->getAddressSpace();
2069  if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CT))
2070    return EXTQT->getAddressSpace();
2071  return 0;
2072}
2073
2074/// getObjCGCAttr - Return the gc attribute of this type.
2075inline QualType::GCAttrTypes QualType::getObjCGCAttr() const {
2076  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2077  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
2078      return AT->getElementType().getObjCGCAttr();
2079  if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CT))
2080    return EXTQT->getObjCGCAttr();
2081  if (const ObjCObjectPointerType *PT = CT->getAsObjCObjectPointerType())
2082    return PT->getPointeeType().getObjCGCAttr();
2083  return GCNone;
2084}
2085
2086  /// getNoReturnAttr - Returns true if the type has the noreturn attribute,
2087  /// false otherwise.
2088inline bool QualType::getNoReturnAttr() const {
2089  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2090  if (const PointerType *PT = getTypePtr()->getAsPointerType()) {
2091    if (const FunctionType *FT = PT->getPointeeType()->getAsFunctionType())
2092      return FT->getNoReturnAttr();
2093  } else if (const FunctionType *FT = getTypePtr()->getAsFunctionType())
2094    return FT->getNoReturnAttr();
2095
2096  return false;
2097}
2098
2099/// isMoreQualifiedThan - Determine whether this type is more
2100/// qualified than the Other type. For example, "const volatile int"
2101/// is more qualified than "const int", "volatile int", and
2102/// "int". However, it is not more qualified than "const volatile
2103/// int".
2104inline bool QualType::isMoreQualifiedThan(QualType Other) const {
2105  unsigned MyQuals = this->getCVRQualifiers();
2106  unsigned OtherQuals = Other.getCVRQualifiers();
2107  if (getAddressSpace() != Other.getAddressSpace())
2108    return false;
2109  return MyQuals != OtherQuals && (MyQuals | OtherQuals) == MyQuals;
2110}
2111
2112/// isAtLeastAsQualifiedAs - Determine whether this type is at last
2113/// as qualified as the Other type. For example, "const volatile
2114/// int" is at least as qualified as "const int", "volatile int",
2115/// "int", and "const volatile int".
2116inline bool QualType::isAtLeastAsQualifiedAs(QualType Other) const {
2117  unsigned MyQuals = this->getCVRQualifiers();
2118  unsigned OtherQuals = Other.getCVRQualifiers();
2119  if (getAddressSpace() != Other.getAddressSpace())
2120    return false;
2121  return (MyQuals | OtherQuals) == MyQuals;
2122}
2123
2124/// getNonReferenceType - If Type is a reference type (e.g., const
2125/// int&), returns the type that the reference refers to ("const
2126/// int"). Otherwise, returns the type itself. This routine is used
2127/// throughout Sema to implement C++ 5p6:
2128///
2129///   If an expression initially has the type "reference to T" (8.3.2,
2130///   8.5.3), the type is adjusted to "T" prior to any further
2131///   analysis, the expression designates the object or function
2132///   denoted by the reference, and the expression is an lvalue.
2133inline QualType QualType::getNonReferenceType() const {
2134  if (const ReferenceType *RefType = (*this)->getAsReferenceType())
2135    return RefType->getPointeeType();
2136  else
2137    return *this;
2138}
2139
2140inline const TypedefType* Type::getAsTypedefType() const {
2141  return dyn_cast<TypedefType>(this);
2142}
2143inline const ObjCInterfaceType *Type::getAsPointerToObjCInterfaceType() const {
2144  if (const PointerType *PT = getAsPointerType())
2145    return PT->getPointeeType()->getAsObjCInterfaceType();
2146  return 0;
2147}
2148
2149// NOTE: All of these methods use "getUnqualifiedType" to strip off address
2150// space qualifiers if present.
2151inline bool Type::isFunctionType() const {
2152  return isa<FunctionType>(CanonicalType.getUnqualifiedType());
2153}
2154inline bool Type::isPointerType() const {
2155  return isa<PointerType>(CanonicalType.getUnqualifiedType());
2156}
2157inline bool Type::isAnyPointerType() const {
2158  return isPointerType() || isObjCObjectPointerType();
2159}
2160inline bool Type::isBlockPointerType() const {
2161  return isa<BlockPointerType>(CanonicalType.getUnqualifiedType());
2162}
2163inline bool Type::isReferenceType() const {
2164  return isa<ReferenceType>(CanonicalType.getUnqualifiedType());
2165}
2166inline bool Type::isLValueReferenceType() const {
2167  return isa<LValueReferenceType>(CanonicalType.getUnqualifiedType());
2168}
2169inline bool Type::isRValueReferenceType() const {
2170  return isa<RValueReferenceType>(CanonicalType.getUnqualifiedType());
2171}
2172inline bool Type::isFunctionPointerType() const {
2173  if (const PointerType* T = getAsPointerType())
2174    return T->getPointeeType()->isFunctionType();
2175  else
2176    return false;
2177}
2178inline bool Type::isMemberPointerType() const {
2179  return isa<MemberPointerType>(CanonicalType.getUnqualifiedType());
2180}
2181inline bool Type::isMemberFunctionPointerType() const {
2182  if (const MemberPointerType* T = getAsMemberPointerType())
2183    return T->getPointeeType()->isFunctionType();
2184  else
2185    return false;
2186}
2187inline bool Type::isArrayType() const {
2188  return isa<ArrayType>(CanonicalType.getUnqualifiedType());
2189}
2190inline bool Type::isConstantArrayType() const {
2191  return isa<ConstantArrayType>(CanonicalType.getUnqualifiedType());
2192}
2193inline bool Type::isIncompleteArrayType() const {
2194  return isa<IncompleteArrayType>(CanonicalType.getUnqualifiedType());
2195}
2196inline bool Type::isVariableArrayType() const {
2197  return isa<VariableArrayType>(CanonicalType.getUnqualifiedType());
2198}
2199inline bool Type::isDependentSizedArrayType() const {
2200  return isa<DependentSizedArrayType>(CanonicalType.getUnqualifiedType());
2201}
2202inline bool Type::isRecordType() const {
2203  return isa<RecordType>(CanonicalType.getUnqualifiedType());
2204}
2205inline bool Type::isAnyComplexType() const {
2206  return isa<ComplexType>(CanonicalType.getUnqualifiedType());
2207}
2208inline bool Type::isVectorType() const {
2209  return isa<VectorType>(CanonicalType.getUnqualifiedType());
2210}
2211inline bool Type::isExtVectorType() const {
2212  return isa<ExtVectorType>(CanonicalType.getUnqualifiedType());
2213}
2214inline bool Type::isObjCObjectPointerType() const {
2215  return isa<ObjCObjectPointerType>(CanonicalType.getUnqualifiedType());
2216}
2217inline bool Type::isObjCInterfaceType() const {
2218  return isa<ObjCInterfaceType>(CanonicalType.getUnqualifiedType());
2219}
2220inline bool Type::isObjCQualifiedIdType() const {
2221  if (const ObjCObjectPointerType *OPT = getAsObjCObjectPointerType())
2222    return OPT->isObjCQualifiedIdType();
2223  return false;
2224}
2225inline bool Type::isObjCQualifiedClassType() const {
2226  if (const ObjCObjectPointerType *OPT = getAsObjCObjectPointerType())
2227    return OPT->isObjCQualifiedClassType();
2228  return false;
2229}
2230inline bool Type::isObjCIdType() const {
2231  if (const ObjCObjectPointerType *OPT = getAsObjCObjectPointerType())
2232    return OPT->isObjCIdType();
2233  return false;
2234}
2235inline bool Type::isObjCClassType() const {
2236  if (const ObjCObjectPointerType *OPT = getAsObjCObjectPointerType())
2237    return OPT->isObjCClassType();
2238  return false;
2239}
2240inline bool Type::isObjCBuiltinType() const {
2241  return isObjCIdType() || isObjCClassType();
2242}
2243inline bool Type::isTemplateTypeParmType() const {
2244  return isa<TemplateTypeParmType>(CanonicalType.getUnqualifiedType());
2245}
2246
2247inline bool Type::isSpecificBuiltinType(unsigned K) const {
2248  if (const BuiltinType *BT = getAsBuiltinType())
2249    if (BT->getKind() == (BuiltinType::Kind) K)
2250      return true;
2251  return false;
2252}
2253
2254/// \brief Determines whether this is a type for which one can define
2255/// an overloaded operator.
2256inline bool Type::isOverloadableType() const {
2257  return isDependentType() || isRecordType() || isEnumeralType();
2258}
2259
2260inline bool Type::hasPointerRepresentation() const {
2261  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
2262          isObjCInterfaceType() || isObjCObjectPointerType() ||
2263          isObjCQualifiedInterfaceType() || isNullPtrType());
2264}
2265
2266inline bool Type::hasObjCPointerRepresentation() const {
2267  return (isObjCInterfaceType() || isObjCObjectPointerType() ||
2268          isObjCQualifiedInterfaceType());
2269}
2270
2271/// Insertion operator for diagnostics.  This allows sending QualType's into a
2272/// diagnostic with <<.
2273inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
2274                                           QualType T) {
2275  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
2276                  Diagnostic::ak_qualtype);
2277  return DB;
2278}
2279
2280/// Member-template getAs<specific type>'.
2281template <typename T> const T *Type::getAs() const {
2282  // If this is directly a T type, return it.
2283  if (const T *Ty = dyn_cast<T>(this))
2284    return Ty;
2285
2286  // If the canonical form of this type isn't the right kind, reject it.
2287  if (!isa<T>(CanonicalType)) {
2288    // Look through type qualifiers
2289    if (isa<T>(CanonicalType.getUnqualifiedType()))
2290      return CanonicalType.getUnqualifiedType()->getAs<T>();
2291    return 0;
2292  }
2293
2294  // If this is a typedef for a pointer type, strip the typedef off without
2295  // losing all typedef information.
2296  return cast<T>(getDesugaredType());
2297}
2298
2299}  // end namespace clang
2300
2301#endif
2302