Type.h revision aed1df80bf64228e1429c1edc408397f9174847c
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Basic/IdentifierTable.h"
19#include "clang/AST/NestedNameSpecifier.h"
20#include "clang/AST/TemplateName.h"
21#include "llvm/Support/Casting.h"
22#include "llvm/Support/type_traits.h"
23#include "llvm/ADT/APSInt.h"
24#include "llvm/ADT/FoldingSet.h"
25#include "llvm/ADT/PointerIntPair.h"
26#include "llvm/ADT/PointerUnion.h"
27
28using llvm::isa;
29using llvm::cast;
30using llvm::cast_or_null;
31using llvm::dyn_cast;
32using llvm::dyn_cast_or_null;
33namespace clang {
34  enum {
35    TypeAlignmentInBits = 3,
36    TypeAlignment = 1 << TypeAlignmentInBits
37  };
38  class Type;
39  class ExtQuals;
40  class QualType;
41}
42
43namespace llvm {
44  template <typename T>
45  class PointerLikeTypeTraits;
46  template<>
47  class PointerLikeTypeTraits< ::clang::Type*> {
48  public:
49    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
50    static inline ::clang::Type *getFromVoidPointer(void *P) {
51      return static_cast< ::clang::Type*>(P);
52    }
53    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
54  };
55  template<>
56  class PointerLikeTypeTraits< ::clang::ExtQuals*> {
57  public:
58    static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
59    static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
60      return static_cast< ::clang::ExtQuals*>(P);
61    }
62    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
63  };
64
65  template <>
66  struct isPodLike<clang::QualType> { static const bool value = true; };
67}
68
69namespace clang {
70  class ASTContext;
71  class TypedefDecl;
72  class TemplateDecl;
73  class TemplateTypeParmDecl;
74  class NonTypeTemplateParmDecl;
75  class TemplateTemplateParmDecl;
76  class TagDecl;
77  class RecordDecl;
78  class CXXRecordDecl;
79  class EnumDecl;
80  class FieldDecl;
81  class ObjCInterfaceDecl;
82  class ObjCProtocolDecl;
83  class ObjCMethodDecl;
84  class UnresolvedUsingTypenameDecl;
85  class Expr;
86  class Stmt;
87  class SourceLocation;
88  class StmtIteratorBase;
89  class TemplateArgument;
90  class TemplateArgumentLoc;
91  class TemplateArgumentListInfo;
92  class QualifiedNameType;
93  struct PrintingPolicy;
94
95  // Provide forward declarations for all of the *Type classes
96#define TYPE(Class, Base) class Class##Type;
97#include "clang/AST/TypeNodes.def"
98
99/// Qualifiers - The collection of all-type qualifiers we support.
100/// Clang supports five independent qualifiers:
101/// * C99: const, volatile, and restrict
102/// * Embedded C (TR18037): address spaces
103/// * Objective C: the GC attributes (none, weak, or strong)
104class Qualifiers {
105public:
106  enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
107    Const    = 0x1,
108    Restrict = 0x2,
109    Volatile = 0x4,
110    CVRMask = Const | Volatile | Restrict
111  };
112
113  enum GC {
114    GCNone = 0,
115    Weak,
116    Strong
117  };
118
119  enum {
120    /// The maximum supported address space number.
121    /// 24 bits should be enough for anyone.
122    MaxAddressSpace = 0xffffffu,
123
124    /// The width of the "fast" qualifier mask.
125    FastWidth = 2,
126
127    /// The fast qualifier mask.
128    FastMask = (1 << FastWidth) - 1
129  };
130
131  Qualifiers() : Mask(0) {}
132
133  static Qualifiers fromFastMask(unsigned Mask) {
134    Qualifiers Qs;
135    Qs.addFastQualifiers(Mask);
136    return Qs;
137  }
138
139  static Qualifiers fromCVRMask(unsigned CVR) {
140    Qualifiers Qs;
141    Qs.addCVRQualifiers(CVR);
142    return Qs;
143  }
144
145  // Deserialize qualifiers from an opaque representation.
146  static Qualifiers fromOpaqueValue(unsigned opaque) {
147    Qualifiers Qs;
148    Qs.Mask = opaque;
149    return Qs;
150  }
151
152  // Serialize these qualifiers into an opaque representation.
153  unsigned getAsOpaqueValue() const {
154    return Mask;
155  }
156
157  bool hasConst() const { return Mask & Const; }
158  void setConst(bool flag) {
159    Mask = (Mask & ~Const) | (flag ? Const : 0);
160  }
161  void removeConst() { Mask &= ~Const; }
162  void addConst() { Mask |= Const; }
163
164  bool hasVolatile() const { return Mask & Volatile; }
165  void setVolatile(bool flag) {
166    Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
167  }
168  void removeVolatile() { Mask &= ~Volatile; }
169  void addVolatile() { Mask |= Volatile; }
170
171  bool hasRestrict() const { return Mask & Restrict; }
172  void setRestrict(bool flag) {
173    Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
174  }
175  void removeRestrict() { Mask &= ~Restrict; }
176  void addRestrict() { Mask |= Restrict; }
177
178  bool hasCVRQualifiers() const { return getCVRQualifiers(); }
179  unsigned getCVRQualifiers() const { return Mask & CVRMask; }
180  void setCVRQualifiers(unsigned mask) {
181    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
182    Mask = (Mask & ~CVRMask) | mask;
183  }
184  void removeCVRQualifiers(unsigned mask) {
185    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
186    Mask &= ~mask;
187  }
188  void removeCVRQualifiers() {
189    removeCVRQualifiers(CVRMask);
190  }
191  void addCVRQualifiers(unsigned mask) {
192    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
193    Mask |= mask;
194  }
195
196  bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
197  GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
198  void setObjCGCAttr(GC type) {
199    Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
200  }
201  void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
202  void addObjCGCAttr(GC type) {
203    assert(type);
204    setObjCGCAttr(type);
205  }
206
207  bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
208  unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
209  void setAddressSpace(unsigned space) {
210    assert(space <= MaxAddressSpace);
211    Mask = (Mask & ~AddressSpaceMask)
212         | (((uint32_t) space) << AddressSpaceShift);
213  }
214  void removeAddressSpace() { setAddressSpace(0); }
215  void addAddressSpace(unsigned space) {
216    assert(space);
217    setAddressSpace(space);
218  }
219
220  // Fast qualifiers are those that can be allocated directly
221  // on a QualType object.
222  bool hasFastQualifiers() const { return getFastQualifiers(); }
223  unsigned getFastQualifiers() const { return Mask & FastMask; }
224  void setFastQualifiers(unsigned mask) {
225    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
226    Mask = (Mask & ~FastMask) | mask;
227  }
228  void removeFastQualifiers(unsigned mask) {
229    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
230    Mask &= ~mask;
231  }
232  void removeFastQualifiers() {
233    removeFastQualifiers(FastMask);
234  }
235  void addFastQualifiers(unsigned mask) {
236    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
237    Mask |= mask;
238  }
239
240  /// hasNonFastQualifiers - Return true if the set contains any
241  /// qualifiers which require an ExtQuals node to be allocated.
242  bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
243  Qualifiers getNonFastQualifiers() const {
244    Qualifiers Quals = *this;
245    Quals.setFastQualifiers(0);
246    return Quals;
247  }
248
249  /// hasQualifiers - Return true if the set contains any qualifiers.
250  bool hasQualifiers() const { return Mask; }
251  bool empty() const { return !Mask; }
252
253  /// \brief Add the qualifiers from the given set to this set.
254  void addQualifiers(Qualifiers Q) {
255    // If the other set doesn't have any non-boolean qualifiers, just
256    // bit-or it in.
257    if (!(Q.Mask & ~CVRMask))
258      Mask |= Q.Mask;
259    else {
260      Mask |= (Q.Mask & CVRMask);
261      if (Q.hasAddressSpace())
262        addAddressSpace(Q.getAddressSpace());
263      if (Q.hasObjCGCAttr())
264        addObjCGCAttr(Q.getObjCGCAttr());
265    }
266  }
267
268  bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
269  bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
270
271  operator bool() const { return hasQualifiers(); }
272
273  Qualifiers &operator+=(Qualifiers R) {
274    addQualifiers(R);
275    return *this;
276  }
277
278  // Union two qualifier sets.  If an enumerated qualifier appears
279  // in both sets, use the one from the right.
280  friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
281    L += R;
282    return L;
283  }
284
285  std::string getAsString() const;
286  std::string getAsString(const PrintingPolicy &Policy) const {
287    std::string Buffer;
288    getAsStringInternal(Buffer, Policy);
289    return Buffer;
290  }
291  void getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const;
292
293  void Profile(llvm::FoldingSetNodeID &ID) const {
294    ID.AddInteger(Mask);
295  }
296
297private:
298
299  // bits:     |0 1 2|3 .. 4|5  ..  31|
300  //           |C R V|GCAttr|AddrSpace|
301  uint32_t Mask;
302
303  static const uint32_t GCAttrMask = 0x18;
304  static const uint32_t GCAttrShift = 3;
305  static const uint32_t AddressSpaceMask = ~(CVRMask | GCAttrMask);
306  static const uint32_t AddressSpaceShift = 5;
307};
308
309
310/// ExtQuals - We can encode up to three bits in the low bits of a
311/// type pointer, but there are many more type qualifiers that we want
312/// to be able to apply to an arbitrary type.  Therefore we have this
313/// struct, intended to be heap-allocated and used by QualType to
314/// store qualifiers.
315///
316/// The current design tags the 'const' and 'restrict' qualifiers in
317/// two low bits on the QualType pointer; a third bit records whether
318/// the pointer is an ExtQuals node.  'const' was chosen because it is
319/// orders of magnitude more common than the other two qualifiers, in
320/// both library and user code.  It's relatively rare to see
321/// 'restrict' in user code, but many standard C headers are saturated
322/// with 'restrict' declarations, so that representing them efficiently
323/// is a critical goal of this representation.
324class ExtQuals : public llvm::FoldingSetNode {
325  // NOTE: changing the fast qualifiers should be straightforward as
326  // long as you don't make 'const' non-fast.
327  // 1. Qualifiers:
328  //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
329  //       Fast qualifiers must occupy the low-order bits.
330  //    b) Update Qualifiers::FastWidth and FastMask.
331  // 2. QualType:
332  //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
333  //    b) Update remove{Volatile,Restrict}, defined near the end of
334  //       this header.
335  // 3. ASTContext:
336  //    a) Update get{Volatile,Restrict}Type.
337
338  /// Context - the context to which this set belongs.  We save this
339  /// here so that QualifierCollector can use it to reapply extended
340  /// qualifiers to an arbitrary type without requiring a context to
341  /// be pushed through every single API dealing with qualifiers.
342  ASTContext& Context;
343
344  /// BaseType - the underlying type that this qualifies
345  const Type *BaseType;
346
347  /// Quals - the immutable set of qualifiers applied by this
348  /// node;  always contains extended qualifiers.
349  Qualifiers Quals;
350
351public:
352  ExtQuals(ASTContext& Context, const Type *Base, Qualifiers Quals)
353    : Context(Context), BaseType(Base), Quals(Quals)
354  {
355    assert(Quals.hasNonFastQualifiers()
356           && "ExtQuals created with no fast qualifiers");
357    assert(!Quals.hasFastQualifiers()
358           && "ExtQuals created with fast qualifiers");
359  }
360
361  Qualifiers getQualifiers() const { return Quals; }
362
363  bool hasVolatile() const { return Quals.hasVolatile(); }
364
365  bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
366  Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
367
368  bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
369  unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
370
371  const Type *getBaseType() const { return BaseType; }
372
373  ASTContext &getContext() const { return Context; }
374
375public:
376  void Profile(llvm::FoldingSetNodeID &ID) const {
377    Profile(ID, getBaseType(), Quals);
378  }
379  static void Profile(llvm::FoldingSetNodeID &ID,
380                      const Type *BaseType,
381                      Qualifiers Quals) {
382    assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
383    ID.AddPointer(BaseType);
384    Quals.Profile(ID);
385  }
386};
387
388
389/// QualType - For efficiency, we don't store CV-qualified types as nodes on
390/// their own: instead each reference to a type stores the qualifiers.  This
391/// greatly reduces the number of nodes we need to allocate for types (for
392/// example we only need one for 'int', 'const int', 'volatile int',
393/// 'const volatile int', etc).
394///
395/// As an added efficiency bonus, instead of making this a pair, we
396/// just store the two bits we care about in the low bits of the
397/// pointer.  To handle the packing/unpacking, we make QualType be a
398/// simple wrapper class that acts like a smart pointer.  A third bit
399/// indicates whether there are extended qualifiers present, in which
400/// case the pointer points to a special structure.
401class QualType {
402  // Thankfully, these are efficiently composable.
403  llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
404                       Qualifiers::FastWidth> Value;
405
406  const ExtQuals *getExtQualsUnsafe() const {
407    return Value.getPointer().get<const ExtQuals*>();
408  }
409
410  const Type *getTypePtrUnsafe() const {
411    return Value.getPointer().get<const Type*>();
412  }
413
414  QualType getUnqualifiedTypeSlow() const;
415
416  friend class QualifierCollector;
417public:
418  QualType() {}
419
420  QualType(const Type *Ptr, unsigned Quals)
421    : Value(Ptr, Quals) {}
422  QualType(const ExtQuals *Ptr, unsigned Quals)
423    : Value(Ptr, Quals) {}
424
425  unsigned getLocalFastQualifiers() const { return Value.getInt(); }
426  void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
427
428  /// Retrieves a pointer to the underlying (unqualified) type.
429  /// This should really return a const Type, but it's not worth
430  /// changing all the users right now.
431  Type *getTypePtr() const {
432    if (hasLocalNonFastQualifiers())
433      return const_cast<Type*>(getExtQualsUnsafe()->getBaseType());
434    return const_cast<Type*>(getTypePtrUnsafe());
435  }
436
437  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
438  static QualType getFromOpaquePtr(void *Ptr) {
439    QualType T;
440    T.Value.setFromOpaqueValue(Ptr);
441    return T;
442  }
443
444  Type &operator*() const {
445    return *getTypePtr();
446  }
447
448  Type *operator->() const {
449    return getTypePtr();
450  }
451
452  bool isCanonical() const;
453  bool isCanonicalAsParam() const;
454
455  /// isNull - Return true if this QualType doesn't point to a type yet.
456  bool isNull() const {
457    return Value.getPointer().isNull();
458  }
459
460  /// \brief Determine whether this particular QualType instance has the
461  /// "const" qualifier set, without looking through typedefs that may have
462  /// added "const" at a different level.
463  bool isLocalConstQualified() const {
464    return (getLocalFastQualifiers() & Qualifiers::Const);
465  }
466
467  /// \brief Determine whether this type is const-qualified.
468  bool isConstQualified() const;
469
470  /// \brief Determine whether this particular QualType instance has the
471  /// "restrict" qualifier set, without looking through typedefs that may have
472  /// added "restrict" at a different level.
473  bool isLocalRestrictQualified() const {
474    return (getLocalFastQualifiers() & Qualifiers::Restrict);
475  }
476
477  /// \brief Determine whether this type is restrict-qualified.
478  bool isRestrictQualified() const;
479
480  /// \brief Determine whether this particular QualType instance has the
481  /// "volatile" qualifier set, without looking through typedefs that may have
482  /// added "volatile" at a different level.
483  bool isLocalVolatileQualified() const {
484    return (hasLocalNonFastQualifiers() && getExtQualsUnsafe()->hasVolatile());
485  }
486
487  /// \brief Determine whether this type is volatile-qualified.
488  bool isVolatileQualified() const;
489
490  /// \brief Determine whether this particular QualType instance has any
491  /// qualifiers, without looking through any typedefs that might add
492  /// qualifiers at a different level.
493  bool hasLocalQualifiers() const {
494    return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
495  }
496
497  /// \brief Determine whether this type has any qualifiers.
498  bool hasQualifiers() const;
499
500  /// \brief Determine whether this particular QualType instance has any
501  /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
502  /// instance.
503  bool hasLocalNonFastQualifiers() const {
504    return Value.getPointer().is<const ExtQuals*>();
505  }
506
507  /// \brief Retrieve the set of qualifiers local to this particular QualType
508  /// instance, not including any qualifiers acquired through typedefs or
509  /// other sugar.
510  Qualifiers getLocalQualifiers() const {
511    Qualifiers Quals;
512    if (hasLocalNonFastQualifiers())
513      Quals = getExtQualsUnsafe()->getQualifiers();
514    Quals.addFastQualifiers(getLocalFastQualifiers());
515    return Quals;
516  }
517
518  /// \brief Retrieve the set of qualifiers applied to this type.
519  Qualifiers getQualifiers() const;
520
521  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
522  /// local to this particular QualType instance, not including any qualifiers
523  /// acquired through typedefs or other sugar.
524  unsigned getLocalCVRQualifiers() const {
525    unsigned CVR = getLocalFastQualifiers();
526    if (isLocalVolatileQualified())
527      CVR |= Qualifiers::Volatile;
528    return CVR;
529  }
530
531  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
532  /// applied to this type.
533  unsigned getCVRQualifiers() const;
534
535  bool isConstant(ASTContext& Ctx) const {
536    return QualType::isConstant(*this, Ctx);
537  }
538
539  // Don't promise in the API that anything besides 'const' can be
540  // easily added.
541
542  /// addConst - add the specified type qualifier to this QualType.
543  void addConst() {
544    addFastQualifiers(Qualifiers::Const);
545  }
546  QualType withConst() const {
547    return withFastQualifiers(Qualifiers::Const);
548  }
549
550  void addFastQualifiers(unsigned TQs) {
551    assert(!(TQs & ~Qualifiers::FastMask)
552           && "non-fast qualifier bits set in mask!");
553    Value.setInt(Value.getInt() | TQs);
554  }
555
556  // FIXME: The remove* functions are semantically broken, because they might
557  // not remove a qualifier stored on a typedef. Most of the with* functions
558  // have the same problem.
559  void removeConst();
560  void removeVolatile();
561  void removeRestrict();
562  void removeCVRQualifiers(unsigned Mask);
563
564  void removeFastQualifiers() { Value.setInt(0); }
565  void removeFastQualifiers(unsigned Mask) {
566    assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
567    Value.setInt(Value.getInt() & ~Mask);
568  }
569
570  // Creates a type with the given qualifiers in addition to any
571  // qualifiers already on this type.
572  QualType withFastQualifiers(unsigned TQs) const {
573    QualType T = *this;
574    T.addFastQualifiers(TQs);
575    return T;
576  }
577
578  // Creates a type with exactly the given fast qualifiers, removing
579  // any existing fast qualifiers.
580  QualType withExactFastQualifiers(unsigned TQs) const {
581    return withoutFastQualifiers().withFastQualifiers(TQs);
582  }
583
584  // Removes fast qualifiers, but leaves any extended qualifiers in place.
585  QualType withoutFastQualifiers() const {
586    QualType T = *this;
587    T.removeFastQualifiers();
588    return T;
589  }
590
591  /// \brief Return this type with all of the instance-specific qualifiers
592  /// removed, but without removing any qualifiers that may have been applied
593  /// through typedefs.
594  QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
595
596  /// \brief Return the unqualified form of the given type, which might be
597  /// desugared to eliminate qualifiers introduced via typedefs.
598  QualType getUnqualifiedType() const {
599    QualType T = getLocalUnqualifiedType();
600    if (!T.hasQualifiers())
601      return T;
602
603    return getUnqualifiedTypeSlow();
604  }
605
606  bool isMoreQualifiedThan(QualType Other) const;
607  bool isAtLeastAsQualifiedAs(QualType Other) const;
608  QualType getNonReferenceType() const;
609
610  /// getDesugaredType - Return the specified type with any "sugar" removed from
611  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
612  /// the type is already concrete, it returns it unmodified.  This is similar
613  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
614  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
615  /// concrete.
616  ///
617  /// Qualifiers are left in place.
618  QualType getDesugaredType() const {
619    return QualType::getDesugaredType(*this);
620  }
621
622  /// operator==/!= - Indicate whether the specified types and qualifiers are
623  /// identical.
624  friend bool operator==(const QualType &LHS, const QualType &RHS) {
625    return LHS.Value == RHS.Value;
626  }
627  friend bool operator!=(const QualType &LHS, const QualType &RHS) {
628    return LHS.Value != RHS.Value;
629  }
630  std::string getAsString() const;
631
632  std::string getAsString(const PrintingPolicy &Policy) const {
633    std::string S;
634    getAsStringInternal(S, Policy);
635    return S;
636  }
637  void getAsStringInternal(std::string &Str,
638                           const PrintingPolicy &Policy) const;
639
640  void dump(const char *s) const;
641  void dump() const;
642
643  void Profile(llvm::FoldingSetNodeID &ID) const {
644    ID.AddPointer(getAsOpaquePtr());
645  }
646
647  /// getAddressSpace - Return the address space of this type.
648  inline unsigned getAddressSpace() const;
649
650  /// GCAttrTypesAttr - Returns gc attribute of this type.
651  inline Qualifiers::GC getObjCGCAttr() const;
652
653  /// isObjCGCWeak true when Type is objc's weak.
654  bool isObjCGCWeak() const {
655    return getObjCGCAttr() == Qualifiers::Weak;
656  }
657
658  /// isObjCGCStrong true when Type is objc's strong.
659  bool isObjCGCStrong() const {
660    return getObjCGCAttr() == Qualifiers::Strong;
661  }
662
663  /// getNoReturnAttr - Returns true if the type has the noreturn attribute,
664  /// false otherwise.
665  bool getNoReturnAttr() const;
666
667private:
668  // These methods are implemented in a separate translation unit;
669  // "static"-ize them to avoid creating temporary QualTypes in the
670  // caller.
671  static bool isConstant(QualType T, ASTContext& Ctx);
672  static QualType getDesugaredType(QualType T);
673};
674
675} // end clang.
676
677namespace llvm {
678/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
679/// to a specific Type class.
680template<> struct simplify_type<const ::clang::QualType> {
681  typedef ::clang::Type* SimpleType;
682  static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
683    return Val.getTypePtr();
684  }
685};
686template<> struct simplify_type< ::clang::QualType>
687  : public simplify_type<const ::clang::QualType> {};
688
689// Teach SmallPtrSet that QualType is "basically a pointer".
690template<>
691class PointerLikeTypeTraits<clang::QualType> {
692public:
693  static inline void *getAsVoidPointer(clang::QualType P) {
694    return P.getAsOpaquePtr();
695  }
696  static inline clang::QualType getFromVoidPointer(void *P) {
697    return clang::QualType::getFromOpaquePtr(P);
698  }
699  // Various qualifiers go in low bits.
700  enum { NumLowBitsAvailable = 0 };
701};
702
703} // end namespace llvm
704
705namespace clang {
706
707/// Type - This is the base class of the type hierarchy.  A central concept
708/// with types is that each type always has a canonical type.  A canonical type
709/// is the type with any typedef names stripped out of it or the types it
710/// references.  For example, consider:
711///
712///  typedef int  foo;
713///  typedef foo* bar;
714///    'int *'    'foo *'    'bar'
715///
716/// There will be a Type object created for 'int'.  Since int is canonical, its
717/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
718/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
719/// there is a PointerType that represents 'int*', which, like 'int', is
720/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
721/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
722/// is also 'int*'.
723///
724/// Non-canonical types are useful for emitting diagnostics, without losing
725/// information about typedefs being used.  Canonical types are useful for type
726/// comparisons (they allow by-pointer equality tests) and useful for reasoning
727/// about whether something has a particular form (e.g. is a function type),
728/// because they implicitly, recursively, strip all typedefs out of a type.
729///
730/// Types, once created, are immutable.
731///
732class Type {
733public:
734  enum TypeClass {
735#define TYPE(Class, Base) Class,
736#define ABSTRACT_TYPE(Class, Base)
737#include "clang/AST/TypeNodes.def"
738    TagFirst = Record, TagLast = Enum
739  };
740
741protected:
742  enum { TypeClassBitSize = 6 };
743
744private:
745  QualType CanonicalType;
746
747  /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
748  bool Dependent : 1;
749
750  /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
751  /// Note that this should stay at the end of the ivars for Type so that
752  /// subclasses can pack their bitfields into the same word.
753  unsigned TC : TypeClassBitSize;
754
755  Type(const Type&);           // DO NOT IMPLEMENT.
756  void operator=(const Type&); // DO NOT IMPLEMENT.
757protected:
758  // silence VC++ warning C4355: 'this' : used in base member initializer list
759  Type *this_() { return this; }
760  Type(TypeClass tc, QualType Canonical, bool dependent)
761    : CanonicalType(Canonical.isNull() ? QualType(this_(), 0) : Canonical),
762      Dependent(dependent), TC(tc) {}
763  virtual ~Type() {}
764  virtual void Destroy(ASTContext& C);
765  friend class ASTContext;
766
767public:
768  TypeClass getTypeClass() const { return static_cast<TypeClass>(TC); }
769
770  bool isCanonicalUnqualified() const {
771    return CanonicalType.getTypePtr() == this;
772  }
773
774  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
775  /// object types, function types, and incomplete types.
776
777  /// \brief Determines whether the type describes an object in memory.
778  ///
779  /// Note that this definition of object type corresponds to the C++
780  /// definition of object type, which includes incomplete types, as
781  /// opposed to the C definition (which does not include incomplete
782  /// types).
783  bool isObjectType() const;
784
785  /// isIncompleteType - Return true if this is an incomplete type.
786  /// A type that can describe objects, but which lacks information needed to
787  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
788  /// routine will need to determine if the size is actually required.
789  bool isIncompleteType() const;
790
791  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
792  /// type, in other words, not a function type.
793  bool isIncompleteOrObjectType() const {
794    return !isFunctionType();
795  }
796
797  /// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10).
798  bool isPODType() const;
799
800  /// isLiteralType - Return true if this is a literal type
801  /// (C++0x [basic.types]p10)
802  bool isLiteralType() const;
803
804  /// isVariablyModifiedType (C99 6.7.5.2p2) - Return true for variable array
805  /// types that have a non-constant expression. This does not include "[]".
806  bool isVariablyModifiedType() const;
807
808  /// Helper methods to distinguish type categories. All type predicates
809  /// operate on the canonical type, ignoring typedefs and qualifiers.
810
811  /// isSpecificBuiltinType - Test for a particular builtin type.
812  bool isSpecificBuiltinType(unsigned K) const;
813
814  /// isIntegerType() does *not* include complex integers (a GCC extension).
815  /// isComplexIntegerType() can be used to test for complex integers.
816  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
817  bool isEnumeralType() const;
818  bool isBooleanType() const;
819  bool isCharType() const;
820  bool isWideCharType() const;
821  bool isAnyCharacterType() const;
822  bool isIntegralType() const;
823
824  /// Floating point categories.
825  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
826  /// isComplexType() does *not* include complex integers (a GCC extension).
827  /// isComplexIntegerType() can be used to test for complex integers.
828  bool isComplexType() const;      // C99 6.2.5p11 (complex)
829  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
830  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
831  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
832  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
833  bool isVoidType() const;         // C99 6.2.5p19
834  bool isDerivedType() const;      // C99 6.2.5p20
835  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
836  bool isAggregateType() const;
837
838  // Type Predicates: Check to see if this type is structurally the specified
839  // type, ignoring typedefs and qualifiers.
840  bool isFunctionType() const;
841  bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
842  bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
843  bool isPointerType() const;
844  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
845  bool isBlockPointerType() const;
846  bool isVoidPointerType() const;
847  bool isReferenceType() const;
848  bool isLValueReferenceType() const;
849  bool isRValueReferenceType() const;
850  bool isFunctionPointerType() const;
851  bool isMemberPointerType() const;
852  bool isMemberFunctionPointerType() const;
853  bool isArrayType() const;
854  bool isConstantArrayType() const;
855  bool isIncompleteArrayType() const;
856  bool isVariableArrayType() const;
857  bool isDependentSizedArrayType() const;
858  bool isRecordType() const;
859  bool isClassType() const;
860  bool isStructureType() const;
861  bool isUnionType() const;
862  bool isComplexIntegerType() const;            // GCC _Complex integer type.
863  bool isVectorType() const;                    // GCC vector type.
864  bool isExtVectorType() const;                 // Extended vector type.
865  bool isObjCObjectPointerType() const;         // Pointer to *any* ObjC object.
866  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
867  // for the common case.
868  bool isObjCInterfaceType() const;             // NSString or NSString<foo>
869  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
870  bool isObjCQualifiedIdType() const;           // id<foo>
871  bool isObjCQualifiedClassType() const;        // Class<foo>
872  bool isObjCIdType() const;                    // id
873  bool isObjCClassType() const;                 // Class
874  bool isObjCSelType() const;                 // Class
875  bool isObjCBuiltinType() const;               // 'id' or 'Class'
876  bool isTemplateTypeParmType() const;          // C++ template type parameter
877  bool isNullPtrType() const;                   // C++0x nullptr_t
878
879  /// isDependentType - Whether this type is a dependent type, meaning
880  /// that its definition somehow depends on a template parameter
881  /// (C++ [temp.dep.type]).
882  bool isDependentType() const { return Dependent; }
883  bool isOverloadableType() const;
884
885  /// hasPointerRepresentation - Whether this type is represented
886  /// natively as a pointer; this includes pointers, references, block
887  /// pointers, and Objective-C interface, qualified id, and qualified
888  /// interface types, as well as nullptr_t.
889  bool hasPointerRepresentation() const;
890
891  /// hasObjCPointerRepresentation - Whether this type can represent
892  /// an objective pointer type for the purpose of GC'ability
893  bool hasObjCPointerRepresentation() const;
894
895  // Type Checking Functions: Check to see if this type is structurally the
896  // specified type, ignoring typedefs and qualifiers, and return a pointer to
897  // the best type we can.
898  const RecordType *getAsStructureType() const;
899  /// NOTE: getAs*ArrayType are methods on ASTContext.
900  const RecordType *getAsUnionType() const;
901  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
902  // The following is a convenience method that returns an ObjCObjectPointerType
903  // for object declared using an interface.
904  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
905  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
906  const ObjCInterfaceType *getAsObjCQualifiedInterfaceType() const;
907  const CXXRecordDecl *getCXXRecordDeclForPointerType() const;
908
909  // Member-template getAs<specific type>'.  This scheme will eventually
910  // replace the specific getAsXXXX methods above.
911  //
912  // There are some specializations of this member template listed
913  // immediately following this class.
914  template <typename T> const T *getAs() const;
915
916  /// getAsPointerToObjCInterfaceType - If this is a pointer to an ObjC
917  /// interface, return the interface type, otherwise return null.
918  const ObjCInterfaceType *getAsPointerToObjCInterfaceType() const;
919
920  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
921  /// element type of the array, potentially with type qualifiers missing.
922  /// This method should never be used when type qualifiers are meaningful.
923  const Type *getArrayElementTypeNoTypeQual() const;
924
925  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
926  /// pointer, this returns the respective pointee.
927  QualType getPointeeType() const;
928
929  /// getUnqualifiedDesugaredType() - Return the specified type with
930  /// any "sugar" removed from the type, removing any typedefs,
931  /// typeofs, etc., as well as any qualifiers.
932  const Type *getUnqualifiedDesugaredType() const;
933
934  /// More type predicates useful for type checking/promotion
935  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
936
937  /// isSignedIntegerType - Return true if this is an integer type that is
938  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
939  /// an enum decl which has a signed representation, or a vector of signed
940  /// integer element type.
941  bool isSignedIntegerType() const;
942
943  /// isUnsignedIntegerType - Return true if this is an integer type that is
944  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
945  /// decl which has an unsigned representation, or a vector of unsigned integer
946  /// element type.
947  bool isUnsignedIntegerType() const;
948
949  /// isConstantSizeType - Return true if this is not a variable sized type,
950  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
951  /// incomplete types.
952  bool isConstantSizeType() const;
953
954  /// isSpecifierType - Returns true if this type can be represented by some
955  /// set of type specifiers.
956  bool isSpecifierType() const;
957
958  const char *getTypeClassName() const;
959
960  QualType getCanonicalTypeInternal() const { return CanonicalType; }
961  void dump() const;
962  static bool classof(const Type *) { return true; }
963};
964
965template <> inline const TypedefType *Type::getAs() const {
966  return dyn_cast<TypedefType>(this);
967}
968
969// We can do canonical leaf types faster, because we don't have to
970// worry about preserving child type decoration.
971#define TYPE(Class, Base)
972#define LEAF_TYPE(Class) \
973template <> inline const Class##Type *Type::getAs() const { \
974  return dyn_cast<Class##Type>(CanonicalType); \
975}
976#include "clang/AST/TypeNodes.def"
977
978
979/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
980/// types are always canonical and have a literal name field.
981class BuiltinType : public Type {
982public:
983  enum Kind {
984    Void,
985
986    Bool,     // This is bool and/or _Bool.
987    Char_U,   // This is 'char' for targets where char is unsigned.
988    UChar,    // This is explicitly qualified unsigned char.
989    Char16,   // This is 'char16_t' for C++.
990    Char32,   // This is 'char32_t' for C++.
991    UShort,
992    UInt,
993    ULong,
994    ULongLong,
995    UInt128,  // __uint128_t
996
997    Char_S,   // This is 'char' for targets where char is signed.
998    SChar,    // This is explicitly qualified signed char.
999    WChar,    // This is 'wchar_t' for C++.
1000    Short,
1001    Int,
1002    Long,
1003    LongLong,
1004    Int128,   // __int128_t
1005
1006    Float, Double, LongDouble,
1007
1008    NullPtr,  // This is the type of C++0x 'nullptr'.
1009
1010    Overload,  // This represents the type of an overloaded function declaration.
1011    Dependent, // This represents the type of a type-dependent expression.
1012
1013    UndeducedAuto, // In C++0x, this represents the type of an auto variable
1014                   // that has not been deduced yet.
1015    ObjCId,    // This represents the ObjC 'id' type.
1016    ObjCClass, // This represents the ObjC 'Class' type.
1017    ObjCSel    // This represents the ObjC 'SEL' type.
1018  };
1019private:
1020  Kind TypeKind;
1021public:
1022  BuiltinType(Kind K)
1023    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent)),
1024      TypeKind(K) {}
1025
1026  Kind getKind() const { return TypeKind; }
1027  const char *getName(const LangOptions &LO) const;
1028
1029  bool isSugared() const { return false; }
1030  QualType desugar() const { return QualType(this, 0); }
1031
1032  bool isInteger() const {
1033    return TypeKind >= Bool && TypeKind <= Int128;
1034  }
1035
1036  bool isSignedInteger() const {
1037    return TypeKind >= Char_S && TypeKind <= Int128;
1038  }
1039
1040  bool isUnsignedInteger() const {
1041    return TypeKind >= Bool && TypeKind <= UInt128;
1042  }
1043
1044  bool isFloatingPoint() const {
1045    return TypeKind >= Float && TypeKind <= LongDouble;
1046  }
1047
1048  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
1049  static bool classof(const BuiltinType *) { return true; }
1050};
1051
1052/// FixedWidthIntType - Used for arbitrary width types that we either don't
1053/// want to or can't map to named integer types.  These always have a lower
1054/// integer rank than builtin types of the same width.
1055class FixedWidthIntType : public Type {
1056private:
1057  unsigned Width;
1058  bool Signed;
1059public:
1060  FixedWidthIntType(unsigned W, bool S) : Type(FixedWidthInt, QualType(), false),
1061                                          Width(W), Signed(S) {}
1062
1063  unsigned getWidth() const { return Width; }
1064  bool isSigned() const { return Signed; }
1065  const char *getName() const;
1066
1067  bool isSugared() const { return false; }
1068  QualType desugar() const { return QualType(this, 0); }
1069
1070  static bool classof(const Type *T) { return T->getTypeClass() == FixedWidthInt; }
1071  static bool classof(const FixedWidthIntType *) { return true; }
1072};
1073
1074/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
1075/// types (_Complex float etc) as well as the GCC integer complex extensions.
1076///
1077class ComplexType : public Type, public llvm::FoldingSetNode {
1078  QualType ElementType;
1079  ComplexType(QualType Element, QualType CanonicalPtr) :
1080    Type(Complex, CanonicalPtr, Element->isDependentType()),
1081    ElementType(Element) {
1082  }
1083  friend class ASTContext;  // ASTContext creates these.
1084public:
1085  QualType getElementType() const { return ElementType; }
1086
1087  bool isSugared() const { return false; }
1088  QualType desugar() const { return QualType(this, 0); }
1089
1090  void Profile(llvm::FoldingSetNodeID &ID) {
1091    Profile(ID, getElementType());
1092  }
1093  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
1094    ID.AddPointer(Element.getAsOpaquePtr());
1095  }
1096
1097  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
1098  static bool classof(const ComplexType *) { return true; }
1099};
1100
1101/// PointerType - C99 6.7.5.1 - Pointer Declarators.
1102///
1103class PointerType : public Type, public llvm::FoldingSetNode {
1104  QualType PointeeType;
1105
1106  PointerType(QualType Pointee, QualType CanonicalPtr) :
1107    Type(Pointer, CanonicalPtr, Pointee->isDependentType()), PointeeType(Pointee) {
1108  }
1109  friend class ASTContext;  // ASTContext creates these.
1110public:
1111
1112  QualType getPointeeType() const { return PointeeType; }
1113
1114  bool isSugared() const { return false; }
1115  QualType desugar() const { return QualType(this, 0); }
1116
1117  void Profile(llvm::FoldingSetNodeID &ID) {
1118    Profile(ID, getPointeeType());
1119  }
1120  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1121    ID.AddPointer(Pointee.getAsOpaquePtr());
1122  }
1123
1124  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
1125  static bool classof(const PointerType *) { return true; }
1126};
1127
1128/// BlockPointerType - pointer to a block type.
1129/// This type is to represent types syntactically represented as
1130/// "void (^)(int)", etc. Pointee is required to always be a function type.
1131///
1132class BlockPointerType : public Type, public llvm::FoldingSetNode {
1133  QualType PointeeType;  // Block is some kind of pointer type
1134  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
1135    Type(BlockPointer, CanonicalCls, Pointee->isDependentType()),
1136    PointeeType(Pointee) {
1137  }
1138  friend class ASTContext;  // ASTContext creates these.
1139public:
1140
1141  // Get the pointee type. Pointee is required to always be a function type.
1142  QualType getPointeeType() const { return PointeeType; }
1143
1144  bool isSugared() const { return false; }
1145  QualType desugar() const { return QualType(this, 0); }
1146
1147  void Profile(llvm::FoldingSetNodeID &ID) {
1148      Profile(ID, getPointeeType());
1149  }
1150  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1151      ID.AddPointer(Pointee.getAsOpaquePtr());
1152  }
1153
1154  static bool classof(const Type *T) {
1155    return T->getTypeClass() == BlockPointer;
1156  }
1157  static bool classof(const BlockPointerType *) { return true; }
1158};
1159
1160/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
1161///
1162class ReferenceType : public Type, public llvm::FoldingSetNode {
1163  QualType PointeeType;
1164
1165  /// True if the type was originally spelled with an lvalue sigil.
1166  /// This is never true of rvalue references but can also be false
1167  /// on lvalue references because of C++0x [dcl.typedef]p9,
1168  /// as follows:
1169  ///
1170  ///   typedef int &ref;    // lvalue, spelled lvalue
1171  ///   typedef int &&rvref; // rvalue
1172  ///   ref &a;              // lvalue, inner ref, spelled lvalue
1173  ///   ref &&a;             // lvalue, inner ref
1174  ///   rvref &a;            // lvalue, inner ref, spelled lvalue
1175  ///   rvref &&a;           // rvalue, inner ref
1176  bool SpelledAsLValue;
1177
1178  /// True if the inner type is a reference type.  This only happens
1179  /// in non-canonical forms.
1180  bool InnerRef;
1181
1182protected:
1183  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
1184                bool SpelledAsLValue) :
1185    Type(tc, CanonicalRef, Referencee->isDependentType()),
1186    PointeeType(Referencee), SpelledAsLValue(SpelledAsLValue),
1187    InnerRef(Referencee->isReferenceType()) {
1188  }
1189public:
1190  bool isSpelledAsLValue() const { return SpelledAsLValue; }
1191
1192  QualType getPointeeTypeAsWritten() const { return PointeeType; }
1193  QualType getPointeeType() const {
1194    // FIXME: this might strip inner qualifiers; okay?
1195    const ReferenceType *T = this;
1196    while (T->InnerRef)
1197      T = T->PointeeType->getAs<ReferenceType>();
1198    return T->PointeeType;
1199  }
1200
1201  void Profile(llvm::FoldingSetNodeID &ID) {
1202    Profile(ID, PointeeType, SpelledAsLValue);
1203  }
1204  static void Profile(llvm::FoldingSetNodeID &ID,
1205                      QualType Referencee,
1206                      bool SpelledAsLValue) {
1207    ID.AddPointer(Referencee.getAsOpaquePtr());
1208    ID.AddBoolean(SpelledAsLValue);
1209  }
1210
1211  static bool classof(const Type *T) {
1212    return T->getTypeClass() == LValueReference ||
1213           T->getTypeClass() == RValueReference;
1214  }
1215  static bool classof(const ReferenceType *) { return true; }
1216};
1217
1218/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
1219///
1220class LValueReferenceType : public ReferenceType {
1221  LValueReferenceType(QualType Referencee, QualType CanonicalRef,
1222                      bool SpelledAsLValue) :
1223    ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
1224  {}
1225  friend class ASTContext; // ASTContext creates these
1226public:
1227  bool isSugared() const { return false; }
1228  QualType desugar() const { return QualType(this, 0); }
1229
1230  static bool classof(const Type *T) {
1231    return T->getTypeClass() == LValueReference;
1232  }
1233  static bool classof(const LValueReferenceType *) { return true; }
1234};
1235
1236/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
1237///
1238class RValueReferenceType : public ReferenceType {
1239  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
1240    ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
1241  }
1242  friend class ASTContext; // ASTContext creates these
1243public:
1244  bool isSugared() const { return false; }
1245  QualType desugar() const { return QualType(this, 0); }
1246
1247  static bool classof(const Type *T) {
1248    return T->getTypeClass() == RValueReference;
1249  }
1250  static bool classof(const RValueReferenceType *) { return true; }
1251};
1252
1253/// MemberPointerType - C++ 8.3.3 - Pointers to members
1254///
1255class MemberPointerType : public Type, public llvm::FoldingSetNode {
1256  QualType PointeeType;
1257  /// The class of which the pointee is a member. Must ultimately be a
1258  /// RecordType, but could be a typedef or a template parameter too.
1259  const Type *Class;
1260
1261  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
1262    Type(MemberPointer, CanonicalPtr,
1263         Cls->isDependentType() || Pointee->isDependentType()),
1264    PointeeType(Pointee), Class(Cls) {
1265  }
1266  friend class ASTContext; // ASTContext creates these.
1267public:
1268
1269  QualType getPointeeType() const { return PointeeType; }
1270
1271  const Type *getClass() const { return Class; }
1272
1273  bool isSugared() const { return false; }
1274  QualType desugar() const { return QualType(this, 0); }
1275
1276  void Profile(llvm::FoldingSetNodeID &ID) {
1277    Profile(ID, getPointeeType(), getClass());
1278  }
1279  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
1280                      const Type *Class) {
1281    ID.AddPointer(Pointee.getAsOpaquePtr());
1282    ID.AddPointer(Class);
1283  }
1284
1285  static bool classof(const Type *T) {
1286    return T->getTypeClass() == MemberPointer;
1287  }
1288  static bool classof(const MemberPointerType *) { return true; }
1289};
1290
1291/// ArrayType - C99 6.7.5.2 - Array Declarators.
1292///
1293class ArrayType : public Type, public llvm::FoldingSetNode {
1294public:
1295  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
1296  /// an array with a static size (e.g. int X[static 4]), or an array
1297  /// with a star size (e.g. int X[*]).
1298  /// 'static' is only allowed on function parameters.
1299  enum ArraySizeModifier {
1300    Normal, Static, Star
1301  };
1302private:
1303  /// ElementType - The element type of the array.
1304  QualType ElementType;
1305
1306  // NOTE: VC++ treats enums as signed, avoid using the ArraySizeModifier enum
1307  /// NOTE: These fields are packed into the bitfields space in the Type class.
1308  unsigned SizeModifier : 2;
1309
1310  /// IndexTypeQuals - Capture qualifiers in declarations like:
1311  /// 'int X[static restrict 4]'. For function parameters only.
1312  unsigned IndexTypeQuals : 3;
1313
1314protected:
1315  // C++ [temp.dep.type]p1:
1316  //   A type is dependent if it is...
1317  //     - an array type constructed from any dependent type or whose
1318  //       size is specified by a constant expression that is
1319  //       value-dependent,
1320  ArrayType(TypeClass tc, QualType et, QualType can,
1321            ArraySizeModifier sm, unsigned tq)
1322    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray),
1323      ElementType(et), SizeModifier(sm), IndexTypeQuals(tq) {}
1324
1325  friend class ASTContext;  // ASTContext creates these.
1326public:
1327  QualType getElementType() const { return ElementType; }
1328  ArraySizeModifier getSizeModifier() const {
1329    return ArraySizeModifier(SizeModifier);
1330  }
1331  Qualifiers getIndexTypeQualifiers() const {
1332    return Qualifiers::fromCVRMask(IndexTypeQuals);
1333  }
1334  unsigned getIndexTypeCVRQualifiers() const { return IndexTypeQuals; }
1335
1336  static bool classof(const Type *T) {
1337    return T->getTypeClass() == ConstantArray ||
1338           T->getTypeClass() == VariableArray ||
1339           T->getTypeClass() == IncompleteArray ||
1340           T->getTypeClass() == DependentSizedArray;
1341  }
1342  static bool classof(const ArrayType *) { return true; }
1343};
1344
1345/// ConstantArrayType - This class represents the canonical version of
1346/// C arrays with a specified constant size.  For example, the canonical
1347/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
1348/// type is 'int' and the size is 404.
1349class ConstantArrayType : public ArrayType {
1350  llvm::APInt Size; // Allows us to unique the type.
1351
1352  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
1353                    ArraySizeModifier sm, unsigned tq)
1354    : ArrayType(ConstantArray, et, can, sm, tq),
1355      Size(size) {}
1356protected:
1357  ConstantArrayType(TypeClass tc, QualType et, QualType can,
1358                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
1359    : ArrayType(tc, et, can, sm, tq), Size(size) {}
1360  friend class ASTContext;  // ASTContext creates these.
1361public:
1362  const llvm::APInt &getSize() const { return Size; }
1363  bool isSugared() const { return false; }
1364  QualType desugar() const { return QualType(this, 0); }
1365
1366  void Profile(llvm::FoldingSetNodeID &ID) {
1367    Profile(ID, getElementType(), getSize(),
1368            getSizeModifier(), getIndexTypeCVRQualifiers());
1369  }
1370  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1371                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
1372                      unsigned TypeQuals) {
1373    ID.AddPointer(ET.getAsOpaquePtr());
1374    ID.AddInteger(ArraySize.getZExtValue());
1375    ID.AddInteger(SizeMod);
1376    ID.AddInteger(TypeQuals);
1377  }
1378  static bool classof(const Type *T) {
1379    return T->getTypeClass() == ConstantArray;
1380  }
1381  static bool classof(const ConstantArrayType *) { return true; }
1382};
1383
1384/// IncompleteArrayType - This class represents C arrays with an unspecified
1385/// size.  For example 'int A[]' has an IncompleteArrayType where the element
1386/// type is 'int' and the size is unspecified.
1387class IncompleteArrayType : public ArrayType {
1388
1389  IncompleteArrayType(QualType et, QualType can,
1390                      ArraySizeModifier sm, unsigned tq)
1391    : ArrayType(IncompleteArray, et, can, sm, tq) {}
1392  friend class ASTContext;  // ASTContext creates these.
1393public:
1394  bool isSugared() const { return false; }
1395  QualType desugar() const { return QualType(this, 0); }
1396
1397  static bool classof(const Type *T) {
1398    return T->getTypeClass() == IncompleteArray;
1399  }
1400  static bool classof(const IncompleteArrayType *) { return true; }
1401
1402  friend class StmtIteratorBase;
1403
1404  void Profile(llvm::FoldingSetNodeID &ID) {
1405    Profile(ID, getElementType(), getSizeModifier(),
1406            getIndexTypeCVRQualifiers());
1407  }
1408
1409  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1410                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
1411    ID.AddPointer(ET.getAsOpaquePtr());
1412    ID.AddInteger(SizeMod);
1413    ID.AddInteger(TypeQuals);
1414  }
1415};
1416
1417/// VariableArrayType - This class represents C arrays with a specified size
1418/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
1419/// Since the size expression is an arbitrary expression, we store it as such.
1420///
1421/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
1422/// should not be: two lexically equivalent variable array types could mean
1423/// different things, for example, these variables do not have the same type
1424/// dynamically:
1425///
1426/// void foo(int x) {
1427///   int Y[x];
1428///   ++x;
1429///   int Z[x];
1430/// }
1431///
1432class VariableArrayType : public ArrayType {
1433  /// SizeExpr - An assignment expression. VLA's are only permitted within
1434  /// a function block.
1435  Stmt *SizeExpr;
1436  /// Brackets - The left and right array brackets.
1437  SourceRange Brackets;
1438
1439  VariableArrayType(QualType et, QualType can, Expr *e,
1440                    ArraySizeModifier sm, unsigned tq,
1441                    SourceRange brackets)
1442    : ArrayType(VariableArray, et, can, sm, tq),
1443      SizeExpr((Stmt*) e), Brackets(brackets) {}
1444  friend class ASTContext;  // ASTContext creates these.
1445  virtual void Destroy(ASTContext& C);
1446
1447public:
1448  Expr *getSizeExpr() const {
1449    // We use C-style casts instead of cast<> here because we do not wish
1450    // to have a dependency of Type.h on Stmt.h/Expr.h.
1451    return (Expr*) SizeExpr;
1452  }
1453  SourceRange getBracketsRange() const { return Brackets; }
1454  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1455  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1456
1457  bool isSugared() const { return false; }
1458  QualType desugar() const { return QualType(this, 0); }
1459
1460  static bool classof(const Type *T) {
1461    return T->getTypeClass() == VariableArray;
1462  }
1463  static bool classof(const VariableArrayType *) { return true; }
1464
1465  friend class StmtIteratorBase;
1466
1467  void Profile(llvm::FoldingSetNodeID &ID) {
1468    assert(0 && "Cannnot unique VariableArrayTypes.");
1469  }
1470};
1471
1472/// DependentSizedArrayType - This type represents an array type in
1473/// C++ whose size is a value-dependent expression. For example:
1474///
1475/// \code
1476/// template<typename T, int Size>
1477/// class array {
1478///   T data[Size];
1479/// };
1480/// \endcode
1481///
1482/// For these types, we won't actually know what the array bound is
1483/// until template instantiation occurs, at which point this will
1484/// become either a ConstantArrayType or a VariableArrayType.
1485class DependentSizedArrayType : public ArrayType {
1486  ASTContext &Context;
1487
1488  /// \brief An assignment expression that will instantiate to the
1489  /// size of the array.
1490  ///
1491  /// The expression itself might be NULL, in which case the array
1492  /// type will have its size deduced from an initializer.
1493  Stmt *SizeExpr;
1494
1495  /// Brackets - The left and right array brackets.
1496  SourceRange Brackets;
1497
1498  DependentSizedArrayType(ASTContext &Context, QualType et, QualType can,
1499                          Expr *e, ArraySizeModifier sm, unsigned tq,
1500                          SourceRange brackets)
1501    : ArrayType(DependentSizedArray, et, can, sm, tq),
1502      Context(Context), SizeExpr((Stmt*) e), Brackets(brackets) {}
1503  friend class ASTContext;  // ASTContext creates these.
1504  virtual void Destroy(ASTContext& C);
1505
1506public:
1507  Expr *getSizeExpr() const {
1508    // We use C-style casts instead of cast<> here because we do not wish
1509    // to have a dependency of Type.h on Stmt.h/Expr.h.
1510    return (Expr*) SizeExpr;
1511  }
1512  SourceRange getBracketsRange() const { return Brackets; }
1513  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1514  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1515
1516  bool isSugared() const { return false; }
1517  QualType desugar() const { return QualType(this, 0); }
1518
1519  static bool classof(const Type *T) {
1520    return T->getTypeClass() == DependentSizedArray;
1521  }
1522  static bool classof(const DependentSizedArrayType *) { return true; }
1523
1524  friend class StmtIteratorBase;
1525
1526
1527  void Profile(llvm::FoldingSetNodeID &ID) {
1528    Profile(ID, Context, getElementType(),
1529            getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
1530  }
1531
1532  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1533                      QualType ET, ArraySizeModifier SizeMod,
1534                      unsigned TypeQuals, Expr *E);
1535};
1536
1537/// DependentSizedExtVectorType - This type represent an extended vector type
1538/// where either the type or size is dependent. For example:
1539/// @code
1540/// template<typename T, int Size>
1541/// class vector {
1542///   typedef T __attribute__((ext_vector_type(Size))) type;
1543/// }
1544/// @endcode
1545class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
1546  ASTContext &Context;
1547  Expr *SizeExpr;
1548  /// ElementType - The element type of the array.
1549  QualType ElementType;
1550  SourceLocation loc;
1551
1552  DependentSizedExtVectorType(ASTContext &Context, QualType ElementType,
1553                              QualType can, Expr *SizeExpr, SourceLocation loc)
1554    : Type (DependentSizedExtVector, can, true),
1555      Context(Context), SizeExpr(SizeExpr), ElementType(ElementType),
1556      loc(loc) {}
1557  friend class ASTContext;
1558  virtual void Destroy(ASTContext& C);
1559
1560public:
1561  Expr *getSizeExpr() const { return SizeExpr; }
1562  QualType getElementType() const { return ElementType; }
1563  SourceLocation getAttributeLoc() const { return loc; }
1564
1565  bool isSugared() const { return false; }
1566  QualType desugar() const { return QualType(this, 0); }
1567
1568  static bool classof(const Type *T) {
1569    return T->getTypeClass() == DependentSizedExtVector;
1570  }
1571  static bool classof(const DependentSizedExtVectorType *) { return true; }
1572
1573  void Profile(llvm::FoldingSetNodeID &ID) {
1574    Profile(ID, Context, getElementType(), getSizeExpr());
1575  }
1576
1577  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1578                      QualType ElementType, Expr *SizeExpr);
1579};
1580
1581
1582/// VectorType - GCC generic vector type. This type is created using
1583/// __attribute__((vector_size(n)), where "n" specifies the vector size in
1584/// bytes. Since the constructor takes the number of vector elements, the
1585/// client is responsible for converting the size into the number of elements.
1586class VectorType : public Type, public llvm::FoldingSetNode {
1587protected:
1588  /// ElementType - The element type of the vector.
1589  QualType ElementType;
1590
1591  /// NumElements - The number of elements in the vector.
1592  unsigned NumElements;
1593
1594  VectorType(QualType vecType, unsigned nElements, QualType canonType) :
1595    Type(Vector, canonType, vecType->isDependentType()),
1596    ElementType(vecType), NumElements(nElements) {}
1597  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
1598             QualType canonType)
1599    : Type(tc, canonType, vecType->isDependentType()), ElementType(vecType),
1600      NumElements(nElements) {}
1601  friend class ASTContext;  // ASTContext creates these.
1602public:
1603
1604  QualType getElementType() const { return ElementType; }
1605  unsigned getNumElements() const { return NumElements; }
1606
1607  bool isSugared() const { return false; }
1608  QualType desugar() const { return QualType(this, 0); }
1609
1610  void Profile(llvm::FoldingSetNodeID &ID) {
1611    Profile(ID, getElementType(), getNumElements(), getTypeClass());
1612  }
1613  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
1614                      unsigned NumElements, TypeClass TypeClass) {
1615    ID.AddPointer(ElementType.getAsOpaquePtr());
1616    ID.AddInteger(NumElements);
1617    ID.AddInteger(TypeClass);
1618  }
1619  static bool classof(const Type *T) {
1620    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
1621  }
1622  static bool classof(const VectorType *) { return true; }
1623};
1624
1625/// ExtVectorType - Extended vector type. This type is created using
1626/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
1627/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
1628/// class enables syntactic extensions, like Vector Components for accessing
1629/// points, colors, and textures (modeled after OpenGL Shading Language).
1630class ExtVectorType : public VectorType {
1631  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
1632    VectorType(ExtVector, vecType, nElements, canonType) {}
1633  friend class ASTContext;  // ASTContext creates these.
1634public:
1635  static int getPointAccessorIdx(char c) {
1636    switch (c) {
1637    default: return -1;
1638    case 'x': return 0;
1639    case 'y': return 1;
1640    case 'z': return 2;
1641    case 'w': return 3;
1642    }
1643  }
1644  static int getNumericAccessorIdx(char c) {
1645    switch (c) {
1646      default: return -1;
1647      case '0': return 0;
1648      case '1': return 1;
1649      case '2': return 2;
1650      case '3': return 3;
1651      case '4': return 4;
1652      case '5': return 5;
1653      case '6': return 6;
1654      case '7': return 7;
1655      case '8': return 8;
1656      case '9': return 9;
1657      case 'A':
1658      case 'a': return 10;
1659      case 'B':
1660      case 'b': return 11;
1661      case 'C':
1662      case 'c': return 12;
1663      case 'D':
1664      case 'd': return 13;
1665      case 'E':
1666      case 'e': return 14;
1667      case 'F':
1668      case 'f': return 15;
1669    }
1670  }
1671
1672  static int getAccessorIdx(char c) {
1673    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
1674    return getNumericAccessorIdx(c);
1675  }
1676
1677  bool isAccessorWithinNumElements(char c) const {
1678    if (int idx = getAccessorIdx(c)+1)
1679      return unsigned(idx-1) < NumElements;
1680    return false;
1681  }
1682  bool isSugared() const { return false; }
1683  QualType desugar() const { return QualType(this, 0); }
1684
1685  static bool classof(const Type *T) {
1686    return T->getTypeClass() == ExtVector;
1687  }
1688  static bool classof(const ExtVectorType *) { return true; }
1689};
1690
1691/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
1692/// class of FunctionNoProtoType and FunctionProtoType.
1693///
1694class FunctionType : public Type {
1695  /// SubClassData - This field is owned by the subclass, put here to pack
1696  /// tightly with the ivars in Type.
1697  bool SubClassData : 1;
1698
1699  /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
1700  /// other bitfields.
1701  /// The qualifiers are part of FunctionProtoType because...
1702  ///
1703  /// C++ 8.3.5p4: The return type, the parameter type list and the
1704  /// cv-qualifier-seq, [...], are part of the function type.
1705  ///
1706  unsigned TypeQuals : 3;
1707
1708  /// NoReturn - Indicates if the function type is attribute noreturn.
1709  unsigned NoReturn : 1;
1710
1711  // The type returned by the function.
1712  QualType ResultType;
1713protected:
1714  FunctionType(TypeClass tc, QualType res, bool SubclassInfo,
1715               unsigned typeQuals, QualType Canonical, bool Dependent,
1716               bool noReturn = false)
1717    : Type(tc, Canonical, Dependent),
1718      SubClassData(SubclassInfo), TypeQuals(typeQuals), NoReturn(noReturn),
1719      ResultType(res) {}
1720  bool getSubClassData() const { return SubClassData; }
1721  unsigned getTypeQuals() const { return TypeQuals; }
1722public:
1723
1724  QualType getResultType() const { return ResultType; }
1725  bool getNoReturnAttr() const { return NoReturn; }
1726
1727  static bool classof(const Type *T) {
1728    return T->getTypeClass() == FunctionNoProto ||
1729           T->getTypeClass() == FunctionProto;
1730  }
1731  static bool classof(const FunctionType *) { return true; }
1732};
1733
1734/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
1735/// no information available about its arguments.
1736class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
1737  FunctionNoProtoType(QualType Result, QualType Canonical,
1738                      bool NoReturn = false)
1739    : FunctionType(FunctionNoProto, Result, false, 0, Canonical,
1740                   /*Dependent=*/false, NoReturn) {}
1741  friend class ASTContext;  // ASTContext creates these.
1742public:
1743  // No additional state past what FunctionType provides.
1744
1745  bool isSugared() const { return false; }
1746  QualType desugar() const { return QualType(this, 0); }
1747
1748  void Profile(llvm::FoldingSetNodeID &ID) {
1749    Profile(ID, getResultType(), getNoReturnAttr());
1750  }
1751  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
1752                      bool NoReturn) {
1753    ID.AddInteger(NoReturn);
1754    ID.AddPointer(ResultType.getAsOpaquePtr());
1755  }
1756
1757  static bool classof(const Type *T) {
1758    return T->getTypeClass() == FunctionNoProto;
1759  }
1760  static bool classof(const FunctionNoProtoType *) { return true; }
1761};
1762
1763/// FunctionProtoType - Represents a prototype with argument type info, e.g.
1764/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
1765/// arguments, not as having a single void argument. Such a type can have an
1766/// exception specification, but this specification is not part of the canonical
1767/// type.
1768class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
1769  /// hasAnyDependentType - Determine whether there are any dependent
1770  /// types within the arguments passed in.
1771  static bool hasAnyDependentType(const QualType *ArgArray, unsigned numArgs) {
1772    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
1773      if (ArgArray[Idx]->isDependentType())
1774    return true;
1775
1776    return false;
1777  }
1778
1779  FunctionProtoType(QualType Result, const QualType *ArgArray, unsigned numArgs,
1780                    bool isVariadic, unsigned typeQuals, bool hasExs,
1781                    bool hasAnyExs, const QualType *ExArray,
1782                    unsigned numExs, QualType Canonical, bool NoReturn)
1783    : FunctionType(FunctionProto, Result, isVariadic, typeQuals, Canonical,
1784                   (Result->isDependentType() ||
1785                    hasAnyDependentType(ArgArray, numArgs)), NoReturn),
1786      NumArgs(numArgs), NumExceptions(numExs), HasExceptionSpec(hasExs),
1787      AnyExceptionSpec(hasAnyExs) {
1788    // Fill in the trailing argument array.
1789    QualType *ArgInfo = reinterpret_cast<QualType*>(this+1);
1790    for (unsigned i = 0; i != numArgs; ++i)
1791      ArgInfo[i] = ArgArray[i];
1792    // Fill in the exception array.
1793    QualType *Ex = ArgInfo + numArgs;
1794    for (unsigned i = 0; i != numExs; ++i)
1795      Ex[i] = ExArray[i];
1796  }
1797
1798  /// NumArgs - The number of arguments this function has, not counting '...'.
1799  unsigned NumArgs : 20;
1800
1801  /// NumExceptions - The number of types in the exception spec, if any.
1802  unsigned NumExceptions : 10;
1803
1804  /// HasExceptionSpec - Whether this function has an exception spec at all.
1805  bool HasExceptionSpec : 1;
1806
1807  /// AnyExceptionSpec - Whether this function has a throw(...) spec.
1808  bool AnyExceptionSpec : 1;
1809
1810  /// ArgInfo - There is an variable size array after the class in memory that
1811  /// holds the argument types.
1812
1813  /// Exceptions - There is another variable size array after ArgInfo that
1814  /// holds the exception types.
1815
1816  friend class ASTContext;  // ASTContext creates these.
1817
1818public:
1819  unsigned getNumArgs() const { return NumArgs; }
1820  QualType getArgType(unsigned i) const {
1821    assert(i < NumArgs && "Invalid argument number!");
1822    return arg_type_begin()[i];
1823  }
1824
1825  bool hasExceptionSpec() const { return HasExceptionSpec; }
1826  bool hasAnyExceptionSpec() const { return AnyExceptionSpec; }
1827  unsigned getNumExceptions() const { return NumExceptions; }
1828  QualType getExceptionType(unsigned i) const {
1829    assert(i < NumExceptions && "Invalid exception number!");
1830    return exception_begin()[i];
1831  }
1832  bool hasEmptyExceptionSpec() const {
1833    return hasExceptionSpec() && !hasAnyExceptionSpec() &&
1834      getNumExceptions() == 0;
1835  }
1836
1837  bool isVariadic() const { return getSubClassData(); }
1838  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
1839
1840  typedef const QualType *arg_type_iterator;
1841  arg_type_iterator arg_type_begin() const {
1842    return reinterpret_cast<const QualType *>(this+1);
1843  }
1844  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
1845
1846  typedef const QualType *exception_iterator;
1847  exception_iterator exception_begin() const {
1848    // exceptions begin where arguments end
1849    return arg_type_end();
1850  }
1851  exception_iterator exception_end() const {
1852    return exception_begin() + NumExceptions;
1853  }
1854
1855  bool isSugared() const { return false; }
1856  QualType desugar() const { return QualType(this, 0); }
1857
1858  static bool classof(const Type *T) {
1859    return T->getTypeClass() == FunctionProto;
1860  }
1861  static bool classof(const FunctionProtoType *) { return true; }
1862
1863  void Profile(llvm::FoldingSetNodeID &ID);
1864  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
1865                      arg_type_iterator ArgTys, unsigned NumArgs,
1866                      bool isVariadic, unsigned TypeQuals,
1867                      bool hasExceptionSpec, bool anyExceptionSpec,
1868                      unsigned NumExceptions, exception_iterator Exs,
1869                      bool NoReturn);
1870};
1871
1872
1873/// \brief Represents the dependent type named by a dependently-scoped
1874/// typename using declaration, e.g.
1875///   using typename Base<T>::foo;
1876/// Template instantiation turns these into the underlying type.
1877class UnresolvedUsingType : public Type {
1878  UnresolvedUsingTypenameDecl *Decl;
1879
1880  UnresolvedUsingType(UnresolvedUsingTypenameDecl *D)
1881    : Type(UnresolvedUsing, QualType(), true), Decl(D) {}
1882  friend class ASTContext; // ASTContext creates these.
1883public:
1884
1885  UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
1886
1887  bool isSugared() const { return false; }
1888  QualType desugar() const { return QualType(this, 0); }
1889
1890  static bool classof(const Type *T) {
1891    return T->getTypeClass() == UnresolvedUsing;
1892  }
1893  static bool classof(const UnresolvedUsingType *) { return true; }
1894
1895  void Profile(llvm::FoldingSetNodeID &ID) {
1896    return Profile(ID, Decl);
1897  }
1898  static void Profile(llvm::FoldingSetNodeID &ID,
1899                      UnresolvedUsingTypenameDecl *D) {
1900    ID.AddPointer(D);
1901  }
1902};
1903
1904
1905class TypedefType : public Type {
1906  TypedefDecl *Decl;
1907protected:
1908  TypedefType(TypeClass tc, TypedefDecl *D, QualType can)
1909    : Type(tc, can, can->isDependentType()), Decl(D) {
1910    assert(!isa<TypedefType>(can) && "Invalid canonical type");
1911  }
1912  friend class ASTContext;  // ASTContext creates these.
1913public:
1914
1915  TypedefDecl *getDecl() const { return Decl; }
1916
1917  /// LookThroughTypedefs - Return the ultimate type this typedef corresponds to
1918  /// potentially looking through *all* consecutive typedefs.  This returns the
1919  /// sum of the type qualifiers, so if you have:
1920  ///   typedef const int A;
1921  ///   typedef volatile A B;
1922  /// looking through the typedefs for B will give you "const volatile A".
1923  QualType LookThroughTypedefs() const;
1924
1925  bool isSugared() const { return true; }
1926  QualType desugar() const;
1927
1928  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
1929  static bool classof(const TypedefType *) { return true; }
1930};
1931
1932/// TypeOfExprType (GCC extension).
1933class TypeOfExprType : public Type {
1934  Expr *TOExpr;
1935
1936protected:
1937  TypeOfExprType(Expr *E, QualType can = QualType());
1938  friend class ASTContext;  // ASTContext creates these.
1939public:
1940  Expr *getUnderlyingExpr() const { return TOExpr; }
1941
1942  /// \brief Remove a single level of sugar.
1943  QualType desugar() const;
1944
1945  /// \brief Returns whether this type directly provides sugar.
1946  bool isSugared() const { return true; }
1947
1948  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
1949  static bool classof(const TypeOfExprType *) { return true; }
1950};
1951
1952/// Subclass of TypeOfExprType that is used for canonical, dependent
1953/// typeof(expr) types.
1954class DependentTypeOfExprType
1955  : public TypeOfExprType, public llvm::FoldingSetNode {
1956  ASTContext &Context;
1957
1958public:
1959  DependentTypeOfExprType(ASTContext &Context, Expr *E)
1960    : TypeOfExprType(E), Context(Context) { }
1961
1962  bool isSugared() const { return false; }
1963  QualType desugar() const { return QualType(this, 0); }
1964
1965  void Profile(llvm::FoldingSetNodeID &ID) {
1966    Profile(ID, Context, getUnderlyingExpr());
1967  }
1968
1969  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1970                      Expr *E);
1971};
1972
1973/// TypeOfType (GCC extension).
1974class TypeOfType : public Type {
1975  QualType TOType;
1976  TypeOfType(QualType T, QualType can)
1977    : Type(TypeOf, can, T->isDependentType()), TOType(T) {
1978    assert(!isa<TypedefType>(can) && "Invalid canonical type");
1979  }
1980  friend class ASTContext;  // ASTContext creates these.
1981public:
1982  QualType getUnderlyingType() const { return TOType; }
1983
1984  /// \brief Remove a single level of sugar.
1985  QualType desugar() const { return getUnderlyingType(); }
1986
1987  /// \brief Returns whether this type directly provides sugar.
1988  bool isSugared() const { return true; }
1989
1990  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
1991  static bool classof(const TypeOfType *) { return true; }
1992};
1993
1994/// DecltypeType (C++0x)
1995class DecltypeType : public Type {
1996  Expr *E;
1997
1998  // FIXME: We could get rid of UnderlyingType if we wanted to: We would have to
1999  // Move getDesugaredType to ASTContext so that it can call getDecltypeForExpr
2000  // from it.
2001  QualType UnderlyingType;
2002
2003protected:
2004  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
2005  friend class ASTContext;  // ASTContext creates these.
2006public:
2007  Expr *getUnderlyingExpr() const { return E; }
2008  QualType getUnderlyingType() const { return UnderlyingType; }
2009
2010  /// \brief Remove a single level of sugar.
2011  QualType desugar() const { return getUnderlyingType(); }
2012
2013  /// \brief Returns whether this type directly provides sugar.
2014  bool isSugared() const { return !isDependentType(); }
2015
2016  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
2017  static bool classof(const DecltypeType *) { return true; }
2018};
2019
2020/// Subclass of DecltypeType that is used for canonical, dependent
2021/// C++0x decltype types.
2022class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
2023  ASTContext &Context;
2024
2025public:
2026  DependentDecltypeType(ASTContext &Context, Expr *E);
2027
2028  bool isSugared() const { return false; }
2029  QualType desugar() const { return QualType(this, 0); }
2030
2031  void Profile(llvm::FoldingSetNodeID &ID) {
2032    Profile(ID, Context, getUnderlyingExpr());
2033  }
2034
2035  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
2036                      Expr *E);
2037};
2038
2039class TagType : public Type {
2040  /// Stores the TagDecl associated with this type. The decl will
2041  /// point to the TagDecl that actually defines the entity (or is a
2042  /// definition in progress), if there is such a definition. The
2043  /// single-bit value will be non-zero when this tag is in the
2044  /// process of being defined.
2045  mutable llvm::PointerIntPair<TagDecl *, 1> decl;
2046  friend class ASTContext;
2047  friend class TagDecl;
2048
2049protected:
2050  TagType(TypeClass TC, TagDecl *D, QualType can);
2051
2052public:
2053  TagDecl *getDecl() const { return decl.getPointer(); }
2054
2055  /// @brief Determines whether this type is in the process of being
2056  /// defined.
2057  bool isBeingDefined() const { return decl.getInt(); }
2058  void setBeingDefined(bool Def) const { decl.setInt(Def? 1 : 0); }
2059
2060  static bool classof(const Type *T) {
2061    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
2062  }
2063  static bool classof(const TagType *) { return true; }
2064  static bool classof(const RecordType *) { return true; }
2065  static bool classof(const EnumType *) { return true; }
2066};
2067
2068/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
2069/// to detect TagType objects of structs/unions/classes.
2070class RecordType : public TagType {
2071protected:
2072  explicit RecordType(RecordDecl *D)
2073    : TagType(Record, reinterpret_cast<TagDecl*>(D), QualType()) { }
2074  explicit RecordType(TypeClass TC, RecordDecl *D)
2075    : TagType(TC, reinterpret_cast<TagDecl*>(D), QualType()) { }
2076  friend class ASTContext;   // ASTContext creates these.
2077public:
2078
2079  RecordDecl *getDecl() const {
2080    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
2081  }
2082
2083  // FIXME: This predicate is a helper to QualType/Type. It needs to
2084  // recursively check all fields for const-ness. If any field is declared
2085  // const, it needs to return false.
2086  bool hasConstFields() const { return false; }
2087
2088  // FIXME: RecordType needs to check when it is created that all fields are in
2089  // the same address space, and return that.
2090  unsigned getAddressSpace() const { return 0; }
2091
2092  bool isSugared() const { return false; }
2093  QualType desugar() const { return QualType(this, 0); }
2094
2095  static bool classof(const TagType *T);
2096  static bool classof(const Type *T) {
2097    return isa<TagType>(T) && classof(cast<TagType>(T));
2098  }
2099  static bool classof(const RecordType *) { return true; }
2100};
2101
2102/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
2103/// to detect TagType objects of enums.
2104class EnumType : public TagType {
2105  explicit EnumType(EnumDecl *D)
2106    : TagType(Enum, reinterpret_cast<TagDecl*>(D), QualType()) { }
2107  friend class ASTContext;   // ASTContext creates these.
2108public:
2109
2110  EnumDecl *getDecl() const {
2111    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
2112  }
2113
2114  bool isSugared() const { return false; }
2115  QualType desugar() const { return QualType(this, 0); }
2116
2117  static bool classof(const TagType *T);
2118  static bool classof(const Type *T) {
2119    return isa<TagType>(T) && classof(cast<TagType>(T));
2120  }
2121  static bool classof(const EnumType *) { return true; }
2122};
2123
2124/// ElaboratedType - A non-canonical type used to represents uses of
2125/// elaborated type specifiers in C++.  For example:
2126///
2127///   void foo(union MyUnion);
2128///            ^^^^^^^^^^^^^
2129///
2130/// At the moment, for efficiency we do not create elaborated types in
2131/// C, since outside of typedefs all references to structs would
2132/// necessarily be elaborated.
2133class ElaboratedType : public Type, public llvm::FoldingSetNode {
2134public:
2135  enum TagKind {
2136    TK_struct,
2137    TK_union,
2138    TK_class,
2139    TK_enum
2140  };
2141
2142private:
2143  /// The tag that was used in this elaborated type specifier.
2144  TagKind Tag;
2145
2146  /// The underlying type.
2147  QualType UnderlyingType;
2148
2149  explicit ElaboratedType(QualType Ty, TagKind Tag, QualType Canon)
2150    : Type(Elaborated, Canon, Canon->isDependentType()),
2151      Tag(Tag), UnderlyingType(Ty) { }
2152  friend class ASTContext;   // ASTContext creates these.
2153
2154public:
2155  TagKind getTagKind() const { return Tag; }
2156  QualType getUnderlyingType() const { return UnderlyingType; }
2157
2158  /// \brief Remove a single level of sugar.
2159  QualType desugar() const { return getUnderlyingType(); }
2160
2161  /// \brief Returns whether this type directly provides sugar.
2162  bool isSugared() const { return true; }
2163
2164  static const char *getNameForTagKind(TagKind Kind) {
2165    switch (Kind) {
2166    default: assert(0 && "Unknown TagKind!");
2167    case TK_struct: return "struct";
2168    case TK_union:  return "union";
2169    case TK_class:  return "class";
2170    case TK_enum:   return "enum";
2171    }
2172  }
2173
2174  void Profile(llvm::FoldingSetNodeID &ID) {
2175    Profile(ID, getUnderlyingType(), getTagKind());
2176  }
2177  static void Profile(llvm::FoldingSetNodeID &ID, QualType T, TagKind Tag) {
2178    ID.AddPointer(T.getAsOpaquePtr());
2179    ID.AddInteger(Tag);
2180  }
2181
2182  static bool classof(const ElaboratedType*) { return true; }
2183  static bool classof(const Type *T) { return T->getTypeClass() == Elaborated; }
2184};
2185
2186class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2187  unsigned Depth : 15;
2188  unsigned Index : 16;
2189  unsigned ParameterPack : 1;
2190  IdentifierInfo *Name;
2191
2192  TemplateTypeParmType(unsigned D, unsigned I, bool PP, IdentifierInfo *N,
2193                       QualType Canon)
2194    : Type(TemplateTypeParm, Canon, /*Dependent=*/true),
2195      Depth(D), Index(I), ParameterPack(PP), Name(N) { }
2196
2197  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
2198    : Type(TemplateTypeParm, QualType(this, 0), /*Dependent=*/true),
2199      Depth(D), Index(I), ParameterPack(PP), Name(0) { }
2200
2201  friend class ASTContext;  // ASTContext creates these
2202
2203public:
2204  unsigned getDepth() const { return Depth; }
2205  unsigned getIndex() const { return Index; }
2206  bool isParameterPack() const { return ParameterPack; }
2207  IdentifierInfo *getName() const { return Name; }
2208
2209  bool isSugared() const { return false; }
2210  QualType desugar() const { return QualType(this, 0); }
2211
2212  void Profile(llvm::FoldingSetNodeID &ID) {
2213    Profile(ID, Depth, Index, ParameterPack, Name);
2214  }
2215
2216  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
2217                      unsigned Index, bool ParameterPack,
2218                      IdentifierInfo *Name) {
2219    ID.AddInteger(Depth);
2220    ID.AddInteger(Index);
2221    ID.AddBoolean(ParameterPack);
2222    ID.AddPointer(Name);
2223  }
2224
2225  static bool classof(const Type *T) {
2226    return T->getTypeClass() == TemplateTypeParm;
2227  }
2228  static bool classof(const TemplateTypeParmType *T) { return true; }
2229};
2230
2231/// \brief Represents the result of substituting a type for a template
2232/// type parameter.
2233///
2234/// Within an instantiated template, all template type parameters have
2235/// been replaced with these.  They are used solely to record that a
2236/// type was originally written as a template type parameter;
2237/// therefore they are never canonical.
2238class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2239  // The original type parameter.
2240  const TemplateTypeParmType *Replaced;
2241
2242  SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
2243    : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType()),
2244      Replaced(Param) { }
2245
2246  friend class ASTContext;
2247
2248public:
2249  IdentifierInfo *getName() const { return Replaced->getName(); }
2250
2251  /// Gets the template parameter that was substituted for.
2252  const TemplateTypeParmType *getReplacedParameter() const {
2253    return Replaced;
2254  }
2255
2256  /// Gets the type that was substituted for the template
2257  /// parameter.
2258  QualType getReplacementType() const {
2259    return getCanonicalTypeInternal();
2260  }
2261
2262  bool isSugared() const { return true; }
2263  QualType desugar() const { return getReplacementType(); }
2264
2265  void Profile(llvm::FoldingSetNodeID &ID) {
2266    Profile(ID, getReplacedParameter(), getReplacementType());
2267  }
2268  static void Profile(llvm::FoldingSetNodeID &ID,
2269                      const TemplateTypeParmType *Replaced,
2270                      QualType Replacement) {
2271    ID.AddPointer(Replaced);
2272    ID.AddPointer(Replacement.getAsOpaquePtr());
2273  }
2274
2275  static bool classof(const Type *T) {
2276    return T->getTypeClass() == SubstTemplateTypeParm;
2277  }
2278  static bool classof(const SubstTemplateTypeParmType *T) { return true; }
2279};
2280
2281/// \brief Represents the type of a template specialization as written
2282/// in the source code.
2283///
2284/// Template specialization types represent the syntactic form of a
2285/// template-id that refers to a type, e.g., @c vector<int>. Some
2286/// template specialization types are syntactic sugar, whose canonical
2287/// type will point to some other type node that represents the
2288/// instantiation or class template specialization. For example, a
2289/// class template specialization type of @c vector<int> will refer to
2290/// a tag type for the instantiation
2291/// @c std::vector<int, std::allocator<int>>.
2292///
2293/// Other template specialization types, for which the template name
2294/// is dependent, may be canonical types. These types are always
2295/// dependent.
2296class TemplateSpecializationType
2297  : public Type, public llvm::FoldingSetNode {
2298
2299  // FIXME: Currently needed for profiling expressions; can we avoid this?
2300  ASTContext &Context;
2301
2302    /// \brief The name of the template being specialized.
2303  TemplateName Template;
2304
2305  /// \brief - The number of template arguments named in this class
2306  /// template specialization.
2307  unsigned NumArgs;
2308
2309  TemplateSpecializationType(ASTContext &Context,
2310                             TemplateName T,
2311                             const TemplateArgument *Args,
2312                             unsigned NumArgs, QualType Canon);
2313
2314  virtual void Destroy(ASTContext& C);
2315
2316  friend class ASTContext;  // ASTContext creates these
2317
2318public:
2319  /// \brief Determine whether any of the given template arguments are
2320  /// dependent.
2321  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
2322                                            unsigned NumArgs);
2323
2324  static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
2325                                            unsigned NumArgs);
2326
2327  static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &);
2328
2329  /// \brief Print a template argument list, including the '<' and '>'
2330  /// enclosing the template arguments.
2331  static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
2332                                               unsigned NumArgs,
2333                                               const PrintingPolicy &Policy);
2334
2335  static std::string PrintTemplateArgumentList(const TemplateArgumentLoc *Args,
2336                                               unsigned NumArgs,
2337                                               const PrintingPolicy &Policy);
2338
2339  static std::string PrintTemplateArgumentList(const TemplateArgumentListInfo &,
2340                                               const PrintingPolicy &Policy);
2341
2342  typedef const TemplateArgument * iterator;
2343
2344  iterator begin() const { return getArgs(); }
2345  iterator end() const;
2346
2347  /// \brief Retrieve the name of the template that we are specializing.
2348  TemplateName getTemplateName() const { return Template; }
2349
2350  /// \brief Retrieve the template arguments.
2351  const TemplateArgument *getArgs() const {
2352    return reinterpret_cast<const TemplateArgument *>(this + 1);
2353  }
2354
2355  /// \brief Retrieve the number of template arguments.
2356  unsigned getNumArgs() const { return NumArgs; }
2357
2358  /// \brief Retrieve a specific template argument as a type.
2359  /// \precondition @c isArgType(Arg)
2360  const TemplateArgument &getArg(unsigned Idx) const;
2361
2362  bool isSugared() const { return !isDependentType(); }
2363  QualType desugar() const { return getCanonicalTypeInternal(); }
2364
2365  void Profile(llvm::FoldingSetNodeID &ID) {
2366    Profile(ID, Template, getArgs(), NumArgs, Context);
2367  }
2368
2369  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
2370                      const TemplateArgument *Args, unsigned NumArgs,
2371                      ASTContext &Context);
2372
2373  static bool classof(const Type *T) {
2374    return T->getTypeClass() == TemplateSpecialization;
2375  }
2376  static bool classof(const TemplateSpecializationType *T) { return true; }
2377};
2378
2379/// \brief Represents a type that was referred to via a qualified
2380/// name, e.g., N::M::type.
2381///
2382/// This type is used to keep track of a type name as written in the
2383/// source code, including any nested-name-specifiers. The type itself
2384/// is always "sugar", used to express what was written in the source
2385/// code but containing no additional semantic information.
2386class QualifiedNameType : public Type, public llvm::FoldingSetNode {
2387  /// \brief The nested name specifier containing the qualifier.
2388  NestedNameSpecifier *NNS;
2389
2390  /// \brief The type that this qualified name refers to.
2391  QualType NamedType;
2392
2393  QualifiedNameType(NestedNameSpecifier *NNS, QualType NamedType,
2394                    QualType CanonType)
2395    : Type(QualifiedName, CanonType, NamedType->isDependentType()),
2396      NNS(NNS), NamedType(NamedType) { }
2397
2398  friend class ASTContext;  // ASTContext creates these
2399
2400public:
2401  /// \brief Retrieve the qualification on this type.
2402  NestedNameSpecifier *getQualifier() const { return NNS; }
2403
2404  /// \brief Retrieve the type named by the qualified-id.
2405  QualType getNamedType() const { return NamedType; }
2406
2407  /// \brief Remove a single level of sugar.
2408  QualType desugar() const { return getNamedType(); }
2409
2410  /// \brief Returns whether this type directly provides sugar.
2411  bool isSugared() const { return true; }
2412
2413  void Profile(llvm::FoldingSetNodeID &ID) {
2414    Profile(ID, NNS, NamedType);
2415  }
2416
2417  static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
2418                      QualType NamedType) {
2419    ID.AddPointer(NNS);
2420    NamedType.Profile(ID);
2421  }
2422
2423  static bool classof(const Type *T) {
2424    return T->getTypeClass() == QualifiedName;
2425  }
2426  static bool classof(const QualifiedNameType *T) { return true; }
2427};
2428
2429/// \brief Represents a 'typename' specifier that names a type within
2430/// a dependent type, e.g., "typename T::type".
2431///
2432/// TypenameType has a very similar structure to QualifiedNameType,
2433/// which also involves a nested-name-specifier following by a type,
2434/// and (FIXME!) both can even be prefixed by the 'typename'
2435/// keyword. However, the two types serve very different roles:
2436/// QualifiedNameType is a non-semantic type that serves only as sugar
2437/// to show how a particular type was written in the source
2438/// code. TypenameType, on the other hand, only occurs when the
2439/// nested-name-specifier is dependent, such that we cannot resolve
2440/// the actual type until after instantiation.
2441class TypenameType : public Type, public llvm::FoldingSetNode {
2442  /// \brief The nested name specifier containing the qualifier.
2443  NestedNameSpecifier *NNS;
2444
2445  typedef llvm::PointerUnion<const IdentifierInfo *,
2446                             const TemplateSpecializationType *> NameType;
2447
2448  /// \brief The type that this typename specifier refers to.
2449  NameType Name;
2450
2451  TypenameType(NestedNameSpecifier *NNS, const IdentifierInfo *Name,
2452               QualType CanonType)
2453    : Type(Typename, CanonType, true), NNS(NNS), Name(Name) {
2454    assert(NNS->isDependent() &&
2455           "TypenameType requires a dependent nested-name-specifier");
2456  }
2457
2458  TypenameType(NestedNameSpecifier *NNS, const TemplateSpecializationType *Ty,
2459               QualType CanonType)
2460    : Type(Typename, CanonType, true), NNS(NNS), Name(Ty) {
2461    assert(NNS->isDependent() &&
2462           "TypenameType requires a dependent nested-name-specifier");
2463  }
2464
2465  friend class ASTContext;  // ASTContext creates these
2466
2467public:
2468  /// \brief Retrieve the qualification on this type.
2469  NestedNameSpecifier *getQualifier() const { return NNS; }
2470
2471  /// \brief Retrieve the type named by the typename specifier as an
2472  /// identifier.
2473  ///
2474  /// This routine will return a non-NULL identifier pointer when the
2475  /// form of the original typename was terminated by an identifier,
2476  /// e.g., "typename T::type".
2477  const IdentifierInfo *getIdentifier() const {
2478    return Name.dyn_cast<const IdentifierInfo *>();
2479  }
2480
2481  /// \brief Retrieve the type named by the typename specifier as a
2482  /// type specialization.
2483  const TemplateSpecializationType *getTemplateId() const {
2484    return Name.dyn_cast<const TemplateSpecializationType *>();
2485  }
2486
2487  bool isSugared() const { return false; }
2488  QualType desugar() const { return QualType(this, 0); }
2489
2490  void Profile(llvm::FoldingSetNodeID &ID) {
2491    Profile(ID, NNS, Name);
2492  }
2493
2494  static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
2495                      NameType Name) {
2496    ID.AddPointer(NNS);
2497    ID.AddPointer(Name.getOpaqueValue());
2498  }
2499
2500  static bool classof(const Type *T) {
2501    return T->getTypeClass() == Typename;
2502  }
2503  static bool classof(const TypenameType *T) { return true; }
2504};
2505
2506/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
2507/// object oriented design.  They basically correspond to C++ classes.  There
2508/// are two kinds of interface types, normal interfaces like "NSString" and
2509/// qualified interfaces, which are qualified with a protocol list like
2510/// "NSString<NSCopyable, NSAmazing>".
2511class ObjCInterfaceType : public Type, public llvm::FoldingSetNode {
2512  ObjCInterfaceDecl *Decl;
2513
2514  // List of protocols for this protocol conforming object type
2515  // List is sorted on protocol name. No protocol is enterred more than once.
2516  llvm::SmallVector<ObjCProtocolDecl*, 4> Protocols;
2517
2518  ObjCInterfaceType(QualType Canonical, ObjCInterfaceDecl *D,
2519                    ObjCProtocolDecl **Protos, unsigned NumP) :
2520    Type(ObjCInterface, Canonical, /*Dependent=*/false),
2521    Decl(D), Protocols(Protos, Protos+NumP) { }
2522  friend class ASTContext;  // ASTContext creates these.
2523public:
2524  ObjCInterfaceDecl *getDecl() const { return Decl; }
2525
2526  /// getNumProtocols - Return the number of qualifying protocols in this
2527  /// interface type, or 0 if there are none.
2528  unsigned getNumProtocols() const { return Protocols.size(); }
2529
2530  /// qual_iterator and friends: this provides access to the (potentially empty)
2531  /// list of protocols qualifying this interface.
2532  typedef llvm::SmallVector<ObjCProtocolDecl*, 8>::const_iterator qual_iterator;
2533  qual_iterator qual_begin() const { return Protocols.begin(); }
2534  qual_iterator qual_end() const   { return Protocols.end(); }
2535  bool qual_empty() const { return Protocols.size() == 0; }
2536
2537  bool isSugared() const { return false; }
2538  QualType desugar() const { return QualType(this, 0); }
2539
2540  void Profile(llvm::FoldingSetNodeID &ID);
2541  static void Profile(llvm::FoldingSetNodeID &ID,
2542                      const ObjCInterfaceDecl *Decl,
2543                      ObjCProtocolDecl **protocols, unsigned NumProtocols);
2544
2545  static bool classof(const Type *T) {
2546    return T->getTypeClass() == ObjCInterface;
2547  }
2548  static bool classof(const ObjCInterfaceType *) { return true; }
2549};
2550
2551/// ObjCObjectPointerType - Used to represent 'id', 'Interface *', 'id <p>',
2552/// and 'Interface <p> *'.
2553///
2554/// Duplicate protocols are removed and protocol list is canonicalized to be in
2555/// alphabetical order.
2556class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
2557  QualType PointeeType; // A builtin or interface type.
2558
2559  // List of protocols for this protocol conforming object type
2560  // List is sorted on protocol name. No protocol is entered more than once.
2561  llvm::SmallVector<ObjCProtocolDecl*, 8> Protocols;
2562
2563  ObjCObjectPointerType(QualType Canonical, QualType T,
2564                        ObjCProtocolDecl **Protos, unsigned NumP) :
2565    Type(ObjCObjectPointer, Canonical, /*Dependent=*/false),
2566    PointeeType(T), Protocols(Protos, Protos+NumP) { }
2567  friend class ASTContext;  // ASTContext creates these.
2568
2569public:
2570  // Get the pointee type. Pointee will either be:
2571  // - a built-in type (for 'id' and 'Class').
2572  // - an interface type (for user-defined types).
2573  // - a TypedefType whose canonical type is an interface (as in 'T' below).
2574  //   For example: typedef NSObject T; T *var;
2575  QualType getPointeeType() const { return PointeeType; }
2576
2577  const ObjCInterfaceType *getInterfaceType() const {
2578    return PointeeType->getAs<ObjCInterfaceType>();
2579  }
2580  /// getInterfaceDecl - returns an interface decl for user-defined types.
2581  ObjCInterfaceDecl *getInterfaceDecl() const {
2582    return getInterfaceType() ? getInterfaceType()->getDecl() : 0;
2583  }
2584  /// isObjCIdType - true for "id".
2585  bool isObjCIdType() const {
2586    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCId) &&
2587           !Protocols.size();
2588  }
2589  /// isObjCClassType - true for "Class".
2590  bool isObjCClassType() const {
2591    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCClass) &&
2592           !Protocols.size();
2593  }
2594
2595  /// isObjCQualifiedIdType - true for "id <p>".
2596  bool isObjCQualifiedIdType() const {
2597    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCId) &&
2598           Protocols.size();
2599  }
2600  /// isObjCQualifiedClassType - true for "Class <p>".
2601  bool isObjCQualifiedClassType() const {
2602    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCClass) &&
2603           Protocols.size();
2604  }
2605  /// qual_iterator and friends: this provides access to the (potentially empty)
2606  /// list of protocols qualifying this interface.
2607  typedef llvm::SmallVector<ObjCProtocolDecl*, 8>::const_iterator qual_iterator;
2608
2609  qual_iterator qual_begin() const { return Protocols.begin(); }
2610  qual_iterator qual_end() const   { return Protocols.end(); }
2611  bool qual_empty() const { return Protocols.size() == 0; }
2612
2613  /// getNumProtocols - Return the number of qualifying protocols in this
2614  /// interface type, or 0 if there are none.
2615  unsigned getNumProtocols() const { return Protocols.size(); }
2616
2617  bool isSugared() const { return false; }
2618  QualType desugar() const { return QualType(this, 0); }
2619
2620  void Profile(llvm::FoldingSetNodeID &ID);
2621  static void Profile(llvm::FoldingSetNodeID &ID, QualType T,
2622                      ObjCProtocolDecl **protocols, unsigned NumProtocols);
2623  static bool classof(const Type *T) {
2624    return T->getTypeClass() == ObjCObjectPointer;
2625  }
2626  static bool classof(const ObjCObjectPointerType *) { return true; }
2627};
2628
2629/// A qualifier set is used to build a set of qualifiers.
2630class QualifierCollector : public Qualifiers {
2631  ASTContext *Context;
2632
2633public:
2634  QualifierCollector(Qualifiers Qs = Qualifiers())
2635    : Qualifiers(Qs), Context(0) {}
2636  QualifierCollector(ASTContext &Context, Qualifiers Qs = Qualifiers())
2637    : Qualifiers(Qs), Context(&Context) {}
2638
2639  void setContext(ASTContext &C) { Context = &C; }
2640
2641  /// Collect any qualifiers on the given type and return an
2642  /// unqualified type.
2643  const Type *strip(QualType QT) {
2644    addFastQualifiers(QT.getLocalFastQualifiers());
2645    if (QT.hasLocalNonFastQualifiers()) {
2646      const ExtQuals *EQ = QT.getExtQualsUnsafe();
2647      Context = &EQ->getContext();
2648      addQualifiers(EQ->getQualifiers());
2649      return EQ->getBaseType();
2650    }
2651    return QT.getTypePtrUnsafe();
2652  }
2653
2654  /// Apply the collected qualifiers to the given type.
2655  QualType apply(QualType QT) const;
2656
2657  /// Apply the collected qualifiers to the given type.
2658  QualType apply(const Type* T) const;
2659
2660};
2661
2662
2663// Inline function definitions.
2664
2665inline bool QualType::isCanonical() const {
2666  const Type *T = getTypePtr();
2667  if (hasLocalQualifiers())
2668    return T->isCanonicalUnqualified() && !isa<ArrayType>(T);
2669  return T->isCanonicalUnqualified();
2670}
2671
2672inline bool QualType::isCanonicalAsParam() const {
2673  if (hasLocalQualifiers()) return false;
2674  const Type *T = getTypePtr();
2675  return T->isCanonicalUnqualified() &&
2676           !isa<FunctionType>(T) && !isa<ArrayType>(T);
2677}
2678
2679inline bool QualType::isConstQualified() const {
2680  return isLocalConstQualified() ||
2681              getTypePtr()->getCanonicalTypeInternal().isLocalConstQualified();
2682}
2683
2684inline bool QualType::isRestrictQualified() const {
2685  return isLocalRestrictQualified() ||
2686            getTypePtr()->getCanonicalTypeInternal().isLocalRestrictQualified();
2687}
2688
2689
2690inline bool QualType::isVolatileQualified() const {
2691  return isLocalVolatileQualified() ||
2692  getTypePtr()->getCanonicalTypeInternal().isLocalVolatileQualified();
2693}
2694
2695inline bool QualType::hasQualifiers() const {
2696  return hasLocalQualifiers() ||
2697                  getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers();
2698}
2699
2700inline Qualifiers QualType::getQualifiers() const {
2701  Qualifiers Quals = getLocalQualifiers();
2702  Quals.addQualifiers(
2703                 getTypePtr()->getCanonicalTypeInternal().getLocalQualifiers());
2704  return Quals;
2705}
2706
2707inline unsigned QualType::getCVRQualifiers() const {
2708  return getLocalCVRQualifiers() |
2709              getTypePtr()->getCanonicalTypeInternal().getLocalCVRQualifiers();
2710}
2711
2712inline void QualType::removeConst() {
2713  removeFastQualifiers(Qualifiers::Const);
2714}
2715
2716inline void QualType::removeRestrict() {
2717  removeFastQualifiers(Qualifiers::Restrict);
2718}
2719
2720inline void QualType::removeVolatile() {
2721  QualifierCollector Qc;
2722  const Type *Ty = Qc.strip(*this);
2723  if (Qc.hasVolatile()) {
2724    Qc.removeVolatile();
2725    *this = Qc.apply(Ty);
2726  }
2727}
2728
2729inline void QualType::removeCVRQualifiers(unsigned Mask) {
2730  assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
2731
2732  // Fast path: we don't need to touch the slow qualifiers.
2733  if (!(Mask & ~Qualifiers::FastMask)) {
2734    removeFastQualifiers(Mask);
2735    return;
2736  }
2737
2738  QualifierCollector Qc;
2739  const Type *Ty = Qc.strip(*this);
2740  Qc.removeCVRQualifiers(Mask);
2741  *this = Qc.apply(Ty);
2742}
2743
2744/// getAddressSpace - Return the address space of this type.
2745inline unsigned QualType::getAddressSpace() const {
2746  if (hasLocalNonFastQualifiers()) {
2747    const ExtQuals *EQ = getExtQualsUnsafe();
2748    if (EQ->hasAddressSpace())
2749      return EQ->getAddressSpace();
2750  }
2751
2752  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2753  if (CT.hasLocalNonFastQualifiers()) {
2754    const ExtQuals *EQ = CT.getExtQualsUnsafe();
2755    if (EQ->hasAddressSpace())
2756      return EQ->getAddressSpace();
2757  }
2758
2759  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
2760    return AT->getElementType().getAddressSpace();
2761  if (const RecordType *RT = dyn_cast<RecordType>(CT))
2762    return RT->getAddressSpace();
2763  return 0;
2764}
2765
2766/// getObjCGCAttr - Return the gc attribute of this type.
2767inline Qualifiers::GC QualType::getObjCGCAttr() const {
2768  if (hasLocalNonFastQualifiers()) {
2769    const ExtQuals *EQ = getExtQualsUnsafe();
2770    if (EQ->hasObjCGCAttr())
2771      return EQ->getObjCGCAttr();
2772  }
2773
2774  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2775  if (CT.hasLocalNonFastQualifiers()) {
2776    const ExtQuals *EQ = CT.getExtQualsUnsafe();
2777    if (EQ->hasObjCGCAttr())
2778      return EQ->getObjCGCAttr();
2779  }
2780
2781  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
2782      return AT->getElementType().getObjCGCAttr();
2783  if (const ObjCObjectPointerType *PT = CT->getAs<ObjCObjectPointerType>())
2784    return PT->getPointeeType().getObjCGCAttr();
2785  // We most look at all pointer types, not just pointer to interface types.
2786  if (const PointerType *PT = CT->getAs<PointerType>())
2787    return PT->getPointeeType().getObjCGCAttr();
2788  return Qualifiers::GCNone;
2789}
2790
2791  /// getNoReturnAttr - Returns true if the type has the noreturn attribute,
2792  /// false otherwise.
2793inline bool QualType::getNoReturnAttr() const {
2794  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2795  if (const PointerType *PT = getTypePtr()->getAs<PointerType>()) {
2796    if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
2797      return FT->getNoReturnAttr();
2798  } else if (const FunctionType *FT = getTypePtr()->getAs<FunctionType>())
2799    return FT->getNoReturnAttr();
2800
2801  return false;
2802}
2803
2804/// isMoreQualifiedThan - Determine whether this type is more
2805/// qualified than the Other type. For example, "const volatile int"
2806/// is more qualified than "const int", "volatile int", and
2807/// "int". However, it is not more qualified than "const volatile
2808/// int".
2809inline bool QualType::isMoreQualifiedThan(QualType Other) const {
2810  // FIXME: work on arbitrary qualifiers
2811  unsigned MyQuals = this->getCVRQualifiers();
2812  unsigned OtherQuals = Other.getCVRQualifiers();
2813  if (getAddressSpace() != Other.getAddressSpace())
2814    return false;
2815  return MyQuals != OtherQuals && (MyQuals | OtherQuals) == MyQuals;
2816}
2817
2818/// isAtLeastAsQualifiedAs - Determine whether this type is at last
2819/// as qualified as the Other type. For example, "const volatile
2820/// int" is at least as qualified as "const int", "volatile int",
2821/// "int", and "const volatile int".
2822inline bool QualType::isAtLeastAsQualifiedAs(QualType Other) const {
2823  // FIXME: work on arbitrary qualifiers
2824  unsigned MyQuals = this->getCVRQualifiers();
2825  unsigned OtherQuals = Other.getCVRQualifiers();
2826  if (getAddressSpace() != Other.getAddressSpace())
2827    return false;
2828  return (MyQuals | OtherQuals) == MyQuals;
2829}
2830
2831/// getNonReferenceType - If Type is a reference type (e.g., const
2832/// int&), returns the type that the reference refers to ("const
2833/// int"). Otherwise, returns the type itself. This routine is used
2834/// throughout Sema to implement C++ 5p6:
2835///
2836///   If an expression initially has the type "reference to T" (8.3.2,
2837///   8.5.3), the type is adjusted to "T" prior to any further
2838///   analysis, the expression designates the object or function
2839///   denoted by the reference, and the expression is an lvalue.
2840inline QualType QualType::getNonReferenceType() const {
2841  if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
2842    return RefType->getPointeeType();
2843  else
2844    return *this;
2845}
2846
2847inline const ObjCInterfaceType *Type::getAsPointerToObjCInterfaceType() const {
2848  if (const PointerType *PT = getAs<PointerType>())
2849    return PT->getPointeeType()->getAs<ObjCInterfaceType>();
2850  return 0;
2851}
2852
2853inline bool Type::isFunctionType() const {
2854  return isa<FunctionType>(CanonicalType);
2855}
2856inline bool Type::isPointerType() const {
2857  return isa<PointerType>(CanonicalType);
2858}
2859inline bool Type::isAnyPointerType() const {
2860  return isPointerType() || isObjCObjectPointerType();
2861}
2862inline bool Type::isBlockPointerType() const {
2863  return isa<BlockPointerType>(CanonicalType);
2864}
2865inline bool Type::isReferenceType() const {
2866  return isa<ReferenceType>(CanonicalType);
2867}
2868inline bool Type::isLValueReferenceType() const {
2869  return isa<LValueReferenceType>(CanonicalType);
2870}
2871inline bool Type::isRValueReferenceType() const {
2872  return isa<RValueReferenceType>(CanonicalType);
2873}
2874inline bool Type::isFunctionPointerType() const {
2875  if (const PointerType* T = getAs<PointerType>())
2876    return T->getPointeeType()->isFunctionType();
2877  else
2878    return false;
2879}
2880inline bool Type::isMemberPointerType() const {
2881  return isa<MemberPointerType>(CanonicalType);
2882}
2883inline bool Type::isMemberFunctionPointerType() const {
2884  if (const MemberPointerType* T = getAs<MemberPointerType>())
2885    return T->getPointeeType()->isFunctionType();
2886  else
2887    return false;
2888}
2889inline bool Type::isArrayType() const {
2890  return isa<ArrayType>(CanonicalType);
2891}
2892inline bool Type::isConstantArrayType() const {
2893  return isa<ConstantArrayType>(CanonicalType);
2894}
2895inline bool Type::isIncompleteArrayType() const {
2896  return isa<IncompleteArrayType>(CanonicalType);
2897}
2898inline bool Type::isVariableArrayType() const {
2899  return isa<VariableArrayType>(CanonicalType);
2900}
2901inline bool Type::isDependentSizedArrayType() const {
2902  return isa<DependentSizedArrayType>(CanonicalType);
2903}
2904inline bool Type::isRecordType() const {
2905  return isa<RecordType>(CanonicalType);
2906}
2907inline bool Type::isAnyComplexType() const {
2908  return isa<ComplexType>(CanonicalType);
2909}
2910inline bool Type::isVectorType() const {
2911  return isa<VectorType>(CanonicalType);
2912}
2913inline bool Type::isExtVectorType() const {
2914  return isa<ExtVectorType>(CanonicalType);
2915}
2916inline bool Type::isObjCObjectPointerType() const {
2917  return isa<ObjCObjectPointerType>(CanonicalType);
2918}
2919inline bool Type::isObjCInterfaceType() const {
2920  return isa<ObjCInterfaceType>(CanonicalType);
2921}
2922inline bool Type::isObjCQualifiedIdType() const {
2923  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
2924    return OPT->isObjCQualifiedIdType();
2925  return false;
2926}
2927inline bool Type::isObjCQualifiedClassType() const {
2928  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
2929    return OPT->isObjCQualifiedClassType();
2930  return false;
2931}
2932inline bool Type::isObjCIdType() const {
2933  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
2934    return OPT->isObjCIdType();
2935  return false;
2936}
2937inline bool Type::isObjCClassType() const {
2938  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
2939    return OPT->isObjCClassType();
2940  return false;
2941}
2942inline bool Type::isObjCSelType() const {
2943  if (const PointerType *OPT = getAs<PointerType>())
2944    return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
2945  return false;
2946}
2947inline bool Type::isObjCBuiltinType() const {
2948  return isObjCIdType() || isObjCClassType() || isObjCSelType();
2949}
2950inline bool Type::isTemplateTypeParmType() const {
2951  return isa<TemplateTypeParmType>(CanonicalType);
2952}
2953
2954inline bool Type::isSpecificBuiltinType(unsigned K) const {
2955  if (const BuiltinType *BT = getAs<BuiltinType>())
2956    if (BT->getKind() == (BuiltinType::Kind) K)
2957      return true;
2958  return false;
2959}
2960
2961/// \brief Determines whether this is a type for which one can define
2962/// an overloaded operator.
2963inline bool Type::isOverloadableType() const {
2964  return isDependentType() || isRecordType() || isEnumeralType();
2965}
2966
2967inline bool Type::hasPointerRepresentation() const {
2968  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
2969          isObjCInterfaceType() || isObjCObjectPointerType() ||
2970          isObjCQualifiedInterfaceType() || isNullPtrType());
2971}
2972
2973inline bool Type::hasObjCPointerRepresentation() const {
2974  return (isObjCInterfaceType() || isObjCObjectPointerType() ||
2975          isObjCQualifiedInterfaceType());
2976}
2977
2978/// Insertion operator for diagnostics.  This allows sending QualType's into a
2979/// diagnostic with <<.
2980inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
2981                                           QualType T) {
2982  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
2983                  Diagnostic::ak_qualtype);
2984  return DB;
2985}
2986
2987// Helper class template that is used by Type::getAs to ensure that one does
2988// not try to look through a qualified type to get to an array type.
2989template<typename T,
2990         bool isArrayType = (llvm::is_same<T, ArrayType>::value ||
2991                             llvm::is_base_of<ArrayType, T>::value)>
2992struct ArrayType_cannot_be_used_with_getAs { };
2993
2994template<typename T>
2995struct ArrayType_cannot_be_used_with_getAs<T, true>;
2996
2997/// Member-template getAs<specific type>'.
2998template <typename T> const T *Type::getAs() const {
2999  ArrayType_cannot_be_used_with_getAs<T> at;
3000  (void)at;
3001
3002  // If this is directly a T type, return it.
3003  if (const T *Ty = dyn_cast<T>(this))
3004    return Ty;
3005
3006  // If the canonical form of this type isn't the right kind, reject it.
3007  if (!isa<T>(CanonicalType))
3008    return 0;
3009
3010  // If this is a typedef for the type, strip the typedef off without
3011  // losing all typedef information.
3012  return cast<T>(getUnqualifiedDesugaredType());
3013}
3014
3015}  // end namespace clang
3016
3017#endif
3018