Type.h revision b7e9589bce9852b4db9575f55ac9137572147eb5
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Basic/ExceptionSpecificationType.h"
19#include "clang/Basic/IdentifierTable.h"
20#include "clang/Basic/Linkage.h"
21#include "clang/Basic/PartialDiagnostic.h"
22#include "clang/Basic/Visibility.h"
23#include "clang/AST/NestedNameSpecifier.h"
24#include "clang/AST/TemplateName.h"
25#include "llvm/Support/Casting.h"
26#include "llvm/Support/type_traits.h"
27#include "llvm/ADT/APSInt.h"
28#include "llvm/ADT/FoldingSet.h"
29#include "llvm/ADT/Optional.h"
30#include "llvm/ADT/PointerIntPair.h"
31#include "llvm/ADT/PointerUnion.h"
32
33using llvm::isa;
34using llvm::cast;
35using llvm::cast_or_null;
36using llvm::dyn_cast;
37using llvm::dyn_cast_or_null;
38namespace clang {
39  enum {
40    TypeAlignmentInBits = 4,
41    TypeAlignment = 1 << TypeAlignmentInBits
42  };
43  class Type;
44  class ExtQuals;
45  class QualType;
46}
47
48namespace llvm {
49  template <typename T>
50  class PointerLikeTypeTraits;
51  template<>
52  class PointerLikeTypeTraits< ::clang::Type*> {
53  public:
54    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
55    static inline ::clang::Type *getFromVoidPointer(void *P) {
56      return static_cast< ::clang::Type*>(P);
57    }
58    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
59  };
60  template<>
61  class PointerLikeTypeTraits< ::clang::ExtQuals*> {
62  public:
63    static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
64    static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
65      return static_cast< ::clang::ExtQuals*>(P);
66    }
67    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
68  };
69
70  template <>
71  struct isPodLike<clang::QualType> { static const bool value = true; };
72}
73
74namespace clang {
75  class ASTContext;
76  class TypedefNameDecl;
77  class TemplateDecl;
78  class TemplateTypeParmDecl;
79  class NonTypeTemplateParmDecl;
80  class TemplateTemplateParmDecl;
81  class TagDecl;
82  class RecordDecl;
83  class CXXRecordDecl;
84  class EnumDecl;
85  class FieldDecl;
86  class ObjCInterfaceDecl;
87  class ObjCProtocolDecl;
88  class ObjCMethodDecl;
89  class UnresolvedUsingTypenameDecl;
90  class Expr;
91  class Stmt;
92  class SourceLocation;
93  class StmtIteratorBase;
94  class TemplateArgument;
95  class TemplateArgumentLoc;
96  class TemplateArgumentListInfo;
97  class ElaboratedType;
98  class ExtQuals;
99  class ExtQualsTypeCommonBase;
100  struct PrintingPolicy;
101
102  template <typename> class CanQual;
103  typedef CanQual<Type> CanQualType;
104
105  // Provide forward declarations for all of the *Type classes
106#define TYPE(Class, Base) class Class##Type;
107#include "clang/AST/TypeNodes.def"
108
109/// Qualifiers - The collection of all-type qualifiers we support.
110/// Clang supports five independent qualifiers:
111/// * C99: const, volatile, and restrict
112/// * Embedded C (TR18037): address spaces
113/// * Objective C: the GC attributes (none, weak, or strong)
114class Qualifiers {
115public:
116  enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
117    Const    = 0x1,
118    Restrict = 0x2,
119    Volatile = 0x4,
120    CVRMask = Const | Volatile | Restrict
121  };
122
123  enum GC {
124    GCNone = 0,
125    Weak,
126    Strong
127  };
128
129  enum {
130    /// The maximum supported address space number.
131    /// 24 bits should be enough for anyone.
132    MaxAddressSpace = 0xffffffu,
133
134    /// The width of the "fast" qualifier mask.
135    FastWidth = 3,
136
137    /// The fast qualifier mask.
138    FastMask = (1 << FastWidth) - 1
139  };
140
141  Qualifiers() : Mask(0) {}
142
143  static Qualifiers fromFastMask(unsigned Mask) {
144    Qualifiers Qs;
145    Qs.addFastQualifiers(Mask);
146    return Qs;
147  }
148
149  static Qualifiers fromCVRMask(unsigned CVR) {
150    Qualifiers Qs;
151    Qs.addCVRQualifiers(CVR);
152    return Qs;
153  }
154
155  // Deserialize qualifiers from an opaque representation.
156  static Qualifiers fromOpaqueValue(unsigned opaque) {
157    Qualifiers Qs;
158    Qs.Mask = opaque;
159    return Qs;
160  }
161
162  // Serialize these qualifiers into an opaque representation.
163  unsigned getAsOpaqueValue() const {
164    return Mask;
165  }
166
167  bool hasConst() const { return Mask & Const; }
168  void setConst(bool flag) {
169    Mask = (Mask & ~Const) | (flag ? Const : 0);
170  }
171  void removeConst() { Mask &= ~Const; }
172  void addConst() { Mask |= Const; }
173
174  bool hasVolatile() const { return Mask & Volatile; }
175  void setVolatile(bool flag) {
176    Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
177  }
178  void removeVolatile() { Mask &= ~Volatile; }
179  void addVolatile() { Mask |= Volatile; }
180
181  bool hasRestrict() const { return Mask & Restrict; }
182  void setRestrict(bool flag) {
183    Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
184  }
185  void removeRestrict() { Mask &= ~Restrict; }
186  void addRestrict() { Mask |= Restrict; }
187
188  bool hasCVRQualifiers() const { return getCVRQualifiers(); }
189  unsigned getCVRQualifiers() const { return Mask & CVRMask; }
190  void setCVRQualifiers(unsigned mask) {
191    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
192    Mask = (Mask & ~CVRMask) | mask;
193  }
194  void removeCVRQualifiers(unsigned mask) {
195    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
196    Mask &= ~mask;
197  }
198  void removeCVRQualifiers() {
199    removeCVRQualifiers(CVRMask);
200  }
201  void addCVRQualifiers(unsigned mask) {
202    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
203    Mask |= mask;
204  }
205
206  bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
207  GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
208  void setObjCGCAttr(GC type) {
209    Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
210  }
211  void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
212  void addObjCGCAttr(GC type) {
213    assert(type);
214    setObjCGCAttr(type);
215  }
216  Qualifiers withoutObjCGCAttr() const {
217    Qualifiers qs = *this;
218    qs.removeObjCGCAttr();
219    return qs;
220  }
221
222  bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
223  unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
224  void setAddressSpace(unsigned space) {
225    assert(space <= MaxAddressSpace);
226    Mask = (Mask & ~AddressSpaceMask)
227         | (((uint32_t) space) << AddressSpaceShift);
228  }
229  void removeAddressSpace() { setAddressSpace(0); }
230  void addAddressSpace(unsigned space) {
231    assert(space);
232    setAddressSpace(space);
233  }
234
235  // Fast qualifiers are those that can be allocated directly
236  // on a QualType object.
237  bool hasFastQualifiers() const { return getFastQualifiers(); }
238  unsigned getFastQualifiers() const { return Mask & FastMask; }
239  void setFastQualifiers(unsigned mask) {
240    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
241    Mask = (Mask & ~FastMask) | mask;
242  }
243  void removeFastQualifiers(unsigned mask) {
244    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
245    Mask &= ~mask;
246  }
247  void removeFastQualifiers() {
248    removeFastQualifiers(FastMask);
249  }
250  void addFastQualifiers(unsigned mask) {
251    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
252    Mask |= mask;
253  }
254
255  /// hasNonFastQualifiers - Return true if the set contains any
256  /// qualifiers which require an ExtQuals node to be allocated.
257  bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
258  Qualifiers getNonFastQualifiers() const {
259    Qualifiers Quals = *this;
260    Quals.setFastQualifiers(0);
261    return Quals;
262  }
263
264  /// hasQualifiers - Return true if the set contains any qualifiers.
265  bool hasQualifiers() const { return Mask; }
266  bool empty() const { return !Mask; }
267
268  /// \brief Add the qualifiers from the given set to this set.
269  void addQualifiers(Qualifiers Q) {
270    // If the other set doesn't have any non-boolean qualifiers, just
271    // bit-or it in.
272    if (!(Q.Mask & ~CVRMask))
273      Mask |= Q.Mask;
274    else {
275      Mask |= (Q.Mask & CVRMask);
276      if (Q.hasAddressSpace())
277        addAddressSpace(Q.getAddressSpace());
278      if (Q.hasObjCGCAttr())
279        addObjCGCAttr(Q.getObjCGCAttr());
280    }
281  }
282
283  /// \brief Add the qualifiers from the given set to this set, given that
284  /// they don't conflict.
285  void addConsistentQualifiers(Qualifiers qs) {
286    assert(getAddressSpace() == qs.getAddressSpace() ||
287           !hasAddressSpace() || !qs.hasAddressSpace());
288    assert(getObjCGCAttr() == qs.getObjCGCAttr() ||
289           !hasObjCGCAttr() || !qs.hasObjCGCAttr());
290    Mask |= qs.Mask;
291  }
292
293  /// \brief Determines if these qualifiers compatibly include another set.
294  /// Generally this answers the question of whether an object with the other
295  /// qualifiers can be safely used as an object with these qualifiers.
296  bool compatiblyIncludes(Qualifiers other) const {
297    // Non-CVR qualifiers must match exactly.  CVR qualifiers may subset.
298    return ((Mask & ~CVRMask) == (other.Mask & ~CVRMask)) &&
299           (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask));
300  }
301
302  bool isSupersetOf(Qualifiers Other) const;
303
304  bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
305  bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
306
307  operator bool() const { return hasQualifiers(); }
308
309  Qualifiers &operator+=(Qualifiers R) {
310    addQualifiers(R);
311    return *this;
312  }
313
314  // Union two qualifier sets.  If an enumerated qualifier appears
315  // in both sets, use the one from the right.
316  friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
317    L += R;
318    return L;
319  }
320
321  Qualifiers &operator-=(Qualifiers R) {
322    Mask = Mask & ~(R.Mask);
323    return *this;
324  }
325
326  /// \brief Compute the difference between two qualifier sets.
327  friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
328    L -= R;
329    return L;
330  }
331
332  std::string getAsString() const;
333  std::string getAsString(const PrintingPolicy &Policy) const {
334    std::string Buffer;
335    getAsStringInternal(Buffer, Policy);
336    return Buffer;
337  }
338  void getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const;
339
340  void Profile(llvm::FoldingSetNodeID &ID) const {
341    ID.AddInteger(Mask);
342  }
343
344private:
345
346  // bits:     |0 1 2|3 .. 4|5  ..  31|
347  //           |C R V|GCAttr|AddrSpace|
348  uint32_t Mask;
349
350  static const uint32_t GCAttrMask = 0x18;
351  static const uint32_t GCAttrShift = 3;
352  static const uint32_t AddressSpaceMask = ~(CVRMask | GCAttrMask);
353  static const uint32_t AddressSpaceShift = 5;
354};
355
356/// CallingConv - Specifies the calling convention that a function uses.
357enum CallingConv {
358  CC_Default,
359  CC_C,           // __attribute__((cdecl))
360  CC_X86StdCall,  // __attribute__((stdcall))
361  CC_X86FastCall, // __attribute__((fastcall))
362  CC_X86ThisCall, // __attribute__((thiscall))
363  CC_X86Pascal,   // __attribute__((pascal))
364  CC_AAPCS,       // __attribute__((pcs("aapcs")))
365  CC_AAPCS_VFP    // __attribute__((pcs("aapcs-vfp")))
366};
367
368typedef std::pair<const Type*, Qualifiers> SplitQualType;
369
370/// QualType - For efficiency, we don't store CV-qualified types as nodes on
371/// their own: instead each reference to a type stores the qualifiers.  This
372/// greatly reduces the number of nodes we need to allocate for types (for
373/// example we only need one for 'int', 'const int', 'volatile int',
374/// 'const volatile int', etc).
375///
376/// As an added efficiency bonus, instead of making this a pair, we
377/// just store the two bits we care about in the low bits of the
378/// pointer.  To handle the packing/unpacking, we make QualType be a
379/// simple wrapper class that acts like a smart pointer.  A third bit
380/// indicates whether there are extended qualifiers present, in which
381/// case the pointer points to a special structure.
382class QualType {
383  // Thankfully, these are efficiently composable.
384  llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
385                       Qualifiers::FastWidth> Value;
386
387  const ExtQuals *getExtQualsUnsafe() const {
388    return Value.getPointer().get<const ExtQuals*>();
389  }
390
391  const Type *getTypePtrUnsafe() const {
392    return Value.getPointer().get<const Type*>();
393  }
394
395  const ExtQualsTypeCommonBase *getCommonPtr() const {
396    assert(!isNull() && "Cannot retrieve a NULL type pointer");
397    uintptr_t CommonPtrVal
398      = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
399    CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
400    return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
401  }
402
403  friend class QualifierCollector;
404public:
405  QualType() {}
406
407  QualType(const Type *Ptr, unsigned Quals)
408    : Value(Ptr, Quals) {}
409  QualType(const ExtQuals *Ptr, unsigned Quals)
410    : Value(Ptr, Quals) {}
411
412  unsigned getLocalFastQualifiers() const { return Value.getInt(); }
413  void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
414
415  /// Retrieves a pointer to the underlying (unqualified) type.
416  /// This should really return a const Type, but it's not worth
417  /// changing all the users right now.
418  ///
419  /// This function requires that the type not be NULL. If the type might be
420  /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
421  const Type *getTypePtr() const;
422
423  const Type *getTypePtrOrNull() const;
424
425  /// Divides a QualType into its unqualified type and a set of local
426  /// qualifiers.
427  SplitQualType split() const;
428
429  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
430  static QualType getFromOpaquePtr(const void *Ptr) {
431    QualType T;
432    T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
433    return T;
434  }
435
436  const Type &operator*() const {
437    return *getTypePtr();
438  }
439
440  const Type *operator->() const {
441    return getTypePtr();
442  }
443
444  bool isCanonical() const;
445  bool isCanonicalAsParam() const;
446
447  /// isNull - Return true if this QualType doesn't point to a type yet.
448  bool isNull() const {
449    return Value.getPointer().isNull();
450  }
451
452  /// \brief Determine whether this particular QualType instance has the
453  /// "const" qualifier set, without looking through typedefs that may have
454  /// added "const" at a different level.
455  bool isLocalConstQualified() const {
456    return (getLocalFastQualifiers() & Qualifiers::Const);
457  }
458
459  /// \brief Determine whether this type is const-qualified.
460  bool isConstQualified() const;
461
462  /// \brief Determine whether this particular QualType instance has the
463  /// "restrict" qualifier set, without looking through typedefs that may have
464  /// added "restrict" at a different level.
465  bool isLocalRestrictQualified() const {
466    return (getLocalFastQualifiers() & Qualifiers::Restrict);
467  }
468
469  /// \brief Determine whether this type is restrict-qualified.
470  bool isRestrictQualified() const;
471
472  /// \brief Determine whether this particular QualType instance has the
473  /// "volatile" qualifier set, without looking through typedefs that may have
474  /// added "volatile" at a different level.
475  bool isLocalVolatileQualified() const {
476    return (getLocalFastQualifiers() & Qualifiers::Volatile);
477  }
478
479  /// \brief Determine whether this type is volatile-qualified.
480  bool isVolatileQualified() const;
481
482  /// \brief Determine whether this particular QualType instance has any
483  /// qualifiers, without looking through any typedefs that might add
484  /// qualifiers at a different level.
485  bool hasLocalQualifiers() const {
486    return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
487  }
488
489  /// \brief Determine whether this type has any qualifiers.
490  bool hasQualifiers() const;
491
492  /// \brief Determine whether this particular QualType instance has any
493  /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
494  /// instance.
495  bool hasLocalNonFastQualifiers() const {
496    return Value.getPointer().is<const ExtQuals*>();
497  }
498
499  /// \brief Retrieve the set of qualifiers local to this particular QualType
500  /// instance, not including any qualifiers acquired through typedefs or
501  /// other sugar.
502  Qualifiers getLocalQualifiers() const;
503
504  /// \brief Retrieve the set of qualifiers applied to this type.
505  Qualifiers getQualifiers() const;
506
507  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
508  /// local to this particular QualType instance, not including any qualifiers
509  /// acquired through typedefs or other sugar.
510  unsigned getLocalCVRQualifiers() const {
511    return getLocalFastQualifiers();
512  }
513
514  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
515  /// applied to this type.
516  unsigned getCVRQualifiers() const;
517
518  bool isConstant(ASTContext& Ctx) const {
519    return QualType::isConstant(*this, Ctx);
520  }
521
522  // Don't promise in the API that anything besides 'const' can be
523  // easily added.
524
525  /// addConst - add the specified type qualifier to this QualType.
526  void addConst() {
527    addFastQualifiers(Qualifiers::Const);
528  }
529  QualType withConst() const {
530    return withFastQualifiers(Qualifiers::Const);
531  }
532
533  void addFastQualifiers(unsigned TQs) {
534    assert(!(TQs & ~Qualifiers::FastMask)
535           && "non-fast qualifier bits set in mask!");
536    Value.setInt(Value.getInt() | TQs);
537  }
538
539  void removeLocalConst();
540  void removeLocalVolatile();
541  void removeLocalRestrict();
542  void removeLocalCVRQualifiers(unsigned Mask);
543
544  void removeLocalFastQualifiers() { Value.setInt(0); }
545  void removeLocalFastQualifiers(unsigned Mask) {
546    assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
547    Value.setInt(Value.getInt() & ~Mask);
548  }
549
550  // Creates a type with the given qualifiers in addition to any
551  // qualifiers already on this type.
552  QualType withFastQualifiers(unsigned TQs) const {
553    QualType T = *this;
554    T.addFastQualifiers(TQs);
555    return T;
556  }
557
558  // Creates a type with exactly the given fast qualifiers, removing
559  // any existing fast qualifiers.
560  QualType withExactLocalFastQualifiers(unsigned TQs) const {
561    return withoutLocalFastQualifiers().withFastQualifiers(TQs);
562  }
563
564  // Removes fast qualifiers, but leaves any extended qualifiers in place.
565  QualType withoutLocalFastQualifiers() const {
566    QualType T = *this;
567    T.removeLocalFastQualifiers();
568    return T;
569  }
570
571  QualType getCanonicalType() const;
572
573  /// \brief Return this type with all of the instance-specific qualifiers
574  /// removed, but without removing any qualifiers that may have been applied
575  /// through typedefs.
576  QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
577
578  /// \brief Retrieve the unqualified variant of the given type,
579  /// removing as little sugar as possible.
580  ///
581  /// This routine looks through various kinds of sugar to find the
582  /// least-desugared type that is unqualified. For example, given:
583  ///
584  /// \code
585  /// typedef int Integer;
586  /// typedef const Integer CInteger;
587  /// typedef CInteger DifferenceType;
588  /// \endcode
589  ///
590  /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
591  /// desugar until we hit the type \c Integer, which has no qualifiers on it.
592  ///
593  /// The resulting type might still be qualified if it's an array
594  /// type.  To strip qualifiers even from within an array type, use
595  /// ASTContext::getUnqualifiedArrayType.
596  inline QualType getUnqualifiedType() const;
597
598  /// getSplitUnqualifiedType - Retrieve the unqualified variant of the
599  /// given type, removing as little sugar as possible.
600  ///
601  /// Like getUnqualifiedType(), but also returns the set of
602  /// qualifiers that were built up.
603  ///
604  /// The resulting type might still be qualified if it's an array
605  /// type.  To strip qualifiers even from within an array type, use
606  /// ASTContext::getUnqualifiedArrayType.
607  inline SplitQualType getSplitUnqualifiedType() const;
608
609  bool isMoreQualifiedThan(QualType Other) const;
610  bool isAtLeastAsQualifiedAs(QualType Other) const;
611  QualType getNonReferenceType() const;
612
613  /// \brief Determine the type of a (typically non-lvalue) expression with the
614  /// specified result type.
615  ///
616  /// This routine should be used for expressions for which the return type is
617  /// explicitly specified (e.g., in a cast or call) and isn't necessarily
618  /// an lvalue. It removes a top-level reference (since there are no
619  /// expressions of reference type) and deletes top-level cvr-qualifiers
620  /// from non-class types (in C++) or all types (in C).
621  QualType getNonLValueExprType(ASTContext &Context) const;
622
623  /// getDesugaredType - Return the specified type with any "sugar" removed from
624  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
625  /// the type is already concrete, it returns it unmodified.  This is similar
626  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
627  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
628  /// concrete.
629  ///
630  /// Qualifiers are left in place.
631  QualType getDesugaredType(const ASTContext &Context) const {
632    return getDesugaredType(*this, Context);
633  }
634
635  SplitQualType getSplitDesugaredType() const {
636    return getSplitDesugaredType(*this);
637  }
638
639  /// IgnoreParens - Returns the specified type after dropping any
640  /// outer-level parentheses.
641  QualType IgnoreParens() const {
642    if (isa<ParenType>(*this))
643      return QualType::IgnoreParens(*this);
644    return *this;
645  }
646
647  /// operator==/!= - Indicate whether the specified types and qualifiers are
648  /// identical.
649  friend bool operator==(const QualType &LHS, const QualType &RHS) {
650    return LHS.Value == RHS.Value;
651  }
652  friend bool operator!=(const QualType &LHS, const QualType &RHS) {
653    return LHS.Value != RHS.Value;
654  }
655  std::string getAsString() const {
656    return getAsString(split());
657  }
658  static std::string getAsString(SplitQualType split) {
659    return getAsString(split.first, split.second);
660  }
661  static std::string getAsString(const Type *ty, Qualifiers qs);
662
663  std::string getAsString(const PrintingPolicy &Policy) const {
664    std::string S;
665    getAsStringInternal(S, Policy);
666    return S;
667  }
668  void getAsStringInternal(std::string &Str,
669                           const PrintingPolicy &Policy) const {
670    return getAsStringInternal(split(), Str, Policy);
671  }
672  static void getAsStringInternal(SplitQualType split, std::string &out,
673                                  const PrintingPolicy &policy) {
674    return getAsStringInternal(split.first, split.second, out, policy);
675  }
676  static void getAsStringInternal(const Type *ty, Qualifiers qs,
677                                  std::string &out,
678                                  const PrintingPolicy &policy);
679
680  void dump(const char *s) const;
681  void dump() const;
682
683  void Profile(llvm::FoldingSetNodeID &ID) const {
684    ID.AddPointer(getAsOpaquePtr());
685  }
686
687  /// getAddressSpace - Return the address space of this type.
688  inline unsigned getAddressSpace() const;
689
690  /// GCAttrTypesAttr - Returns gc attribute of this type.
691  inline Qualifiers::GC getObjCGCAttr() const;
692
693  /// isObjCGCWeak true when Type is objc's weak.
694  bool isObjCGCWeak() const {
695    return getObjCGCAttr() == Qualifiers::Weak;
696  }
697
698  /// isObjCGCStrong true when Type is objc's strong.
699  bool isObjCGCStrong() const {
700    return getObjCGCAttr() == Qualifiers::Strong;
701  }
702
703  enum DestructionKind {
704    DK_none,
705    DK_cxx_destructor
706  };
707
708  /// isDestructedType - nonzero if objects of this type require
709  /// non-trivial work to clean up after.  Non-zero because it's
710  /// conceivable that qualifiers (objc_gc(weak)?) could make
711  /// something require destruction.
712  DestructionKind isDestructedType() const {
713    return isDestructedTypeImpl(*this);
714  }
715
716private:
717  // These methods are implemented in a separate translation unit;
718  // "static"-ize them to avoid creating temporary QualTypes in the
719  // caller.
720  static bool isConstant(QualType T, ASTContext& Ctx);
721  static QualType getDesugaredType(QualType T, const ASTContext &Context);
722  static SplitQualType getSplitDesugaredType(QualType T);
723  static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
724  static QualType IgnoreParens(QualType T);
725  static DestructionKind isDestructedTypeImpl(QualType type);
726};
727
728} // end clang.
729
730namespace llvm {
731/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
732/// to a specific Type class.
733template<> struct simplify_type<const ::clang::QualType> {
734  typedef const ::clang::Type *SimpleType;
735  static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
736    return Val.getTypePtr();
737  }
738};
739template<> struct simplify_type< ::clang::QualType>
740  : public simplify_type<const ::clang::QualType> {};
741
742// Teach SmallPtrSet that QualType is "basically a pointer".
743template<>
744class PointerLikeTypeTraits<clang::QualType> {
745public:
746  static inline void *getAsVoidPointer(clang::QualType P) {
747    return P.getAsOpaquePtr();
748  }
749  static inline clang::QualType getFromVoidPointer(void *P) {
750    return clang::QualType::getFromOpaquePtr(P);
751  }
752  // Various qualifiers go in low bits.
753  enum { NumLowBitsAvailable = 0 };
754};
755
756} // end namespace llvm
757
758namespace clang {
759
760/// \brief Base class that is common to both the \c ExtQuals and \c Type
761/// classes, which allows \c QualType to access the common fields between the
762/// two.
763///
764class ExtQualsTypeCommonBase {
765  ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
766    : BaseType(baseType), CanonicalType(canon) {}
767
768  /// \brief The "base" type of an extended qualifiers type (\c ExtQuals) or
769  /// a self-referential pointer (for \c Type).
770  ///
771  /// This pointer allows an efficient mapping from a QualType to its
772  /// underlying type pointer.
773  const Type *const BaseType;
774
775  /// \brief The canonical type of this type.  A QualType.
776  QualType CanonicalType;
777
778  friend class QualType;
779  friend class Type;
780  friend class ExtQuals;
781};
782
783/// ExtQuals - We can encode up to four bits in the low bits of a
784/// type pointer, but there are many more type qualifiers that we want
785/// to be able to apply to an arbitrary type.  Therefore we have this
786/// struct, intended to be heap-allocated and used by QualType to
787/// store qualifiers.
788///
789/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
790/// in three low bits on the QualType pointer; a fourth bit records whether
791/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
792/// Objective-C GC attributes) are much more rare.
793class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
794  // NOTE: changing the fast qualifiers should be straightforward as
795  // long as you don't make 'const' non-fast.
796  // 1. Qualifiers:
797  //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
798  //       Fast qualifiers must occupy the low-order bits.
799  //    b) Update Qualifiers::FastWidth and FastMask.
800  // 2. QualType:
801  //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
802  //    b) Update remove{Volatile,Restrict}, defined near the end of
803  //       this header.
804  // 3. ASTContext:
805  //    a) Update get{Volatile,Restrict}Type.
806
807  /// Quals - the immutable set of qualifiers applied by this
808  /// node;  always contains extended qualifiers.
809  Qualifiers Quals;
810
811  ExtQuals *this_() { return this; }
812
813public:
814  ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
815    : ExtQualsTypeCommonBase(baseType,
816                             canon.isNull() ? QualType(this_(), 0) : canon),
817      Quals(quals)
818  {
819    assert(Quals.hasNonFastQualifiers()
820           && "ExtQuals created with no fast qualifiers");
821    assert(!Quals.hasFastQualifiers()
822           && "ExtQuals created with fast qualifiers");
823  }
824
825  Qualifiers getQualifiers() const { return Quals; }
826
827  bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
828  Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
829
830  bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
831  unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
832
833  const Type *getBaseType() const { return BaseType; }
834
835public:
836  void Profile(llvm::FoldingSetNodeID &ID) const {
837    Profile(ID, getBaseType(), Quals);
838  }
839  static void Profile(llvm::FoldingSetNodeID &ID,
840                      const Type *BaseType,
841                      Qualifiers Quals) {
842    assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
843    ID.AddPointer(BaseType);
844    Quals.Profile(ID);
845  }
846};
847
848/// \brief The kind of C++0x ref-qualifier associated with a function type,
849/// which determines whether a member function's "this" object can be an
850/// lvalue, rvalue, or neither.
851enum RefQualifierKind {
852  /// \brief No ref-qualifier was provided.
853  RQ_None = 0,
854  /// \brief An lvalue ref-qualifier was provided (\c &).
855  RQ_LValue,
856  /// \brief An rvalue ref-qualifier was provided (\c &&).
857  RQ_RValue
858};
859
860/// Type - This is the base class of the type hierarchy.  A central concept
861/// with types is that each type always has a canonical type.  A canonical type
862/// is the type with any typedef names stripped out of it or the types it
863/// references.  For example, consider:
864///
865///  typedef int  foo;
866///  typedef foo* bar;
867///    'int *'    'foo *'    'bar'
868///
869/// There will be a Type object created for 'int'.  Since int is canonical, its
870/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
871/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
872/// there is a PointerType that represents 'int*', which, like 'int', is
873/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
874/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
875/// is also 'int*'.
876///
877/// Non-canonical types are useful for emitting diagnostics, without losing
878/// information about typedefs being used.  Canonical types are useful for type
879/// comparisons (they allow by-pointer equality tests) and useful for reasoning
880/// about whether something has a particular form (e.g. is a function type),
881/// because they implicitly, recursively, strip all typedefs out of a type.
882///
883/// Types, once created, are immutable.
884///
885class Type : public ExtQualsTypeCommonBase {
886public:
887  enum TypeClass {
888#define TYPE(Class, Base) Class,
889#define LAST_TYPE(Class) TypeLast = Class,
890#define ABSTRACT_TYPE(Class, Base)
891#include "clang/AST/TypeNodes.def"
892    TagFirst = Record, TagLast = Enum
893  };
894
895private:
896  Type(const Type&);           // DO NOT IMPLEMENT.
897  void operator=(const Type&); // DO NOT IMPLEMENT.
898
899  /// Bitfields required by the Type class.
900  class TypeBitfields {
901    friend class Type;
902    template <class T> friend class TypePropertyCache;
903
904    /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
905    unsigned TC : 8;
906
907    /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
908    /// Note that this should stay at the end of the ivars for Type so that
909    /// subclasses can pack their bitfields into the same word.
910    unsigned Dependent : 1;
911
912    /// \brief Whether this type is a variably-modified type (C99 6.7.5).
913    unsigned VariablyModified : 1;
914
915    /// \brief Whether this type contains an unexpanded parameter pack
916    /// (for C++0x variadic templates).
917    unsigned ContainsUnexpandedParameterPack : 1;
918
919    /// \brief Nonzero if the cache (i.e. the bitfields here starting
920    /// with 'Cache') is valid.  If so, then this is a
921    /// LangOptions::VisibilityMode+1.
922    mutable unsigned CacheValidAndVisibility : 2;
923
924    /// \brief Linkage of this type.
925    mutable unsigned CachedLinkage : 2;
926
927    /// \brief Whether this type involves and local or unnamed types.
928    mutable unsigned CachedLocalOrUnnamed : 1;
929
930    /// \brief FromAST - Whether this type comes from an AST file.
931    mutable unsigned FromAST : 1;
932
933    bool isCacheValid() const {
934      return (CacheValidAndVisibility != 0);
935    }
936    Visibility getVisibility() const {
937      assert(isCacheValid() && "getting linkage from invalid cache");
938      return static_cast<Visibility>(CacheValidAndVisibility-1);
939    }
940    Linkage getLinkage() const {
941      assert(isCacheValid() && "getting linkage from invalid cache");
942      return static_cast<Linkage>(CachedLinkage);
943    }
944    bool hasLocalOrUnnamedType() const {
945      assert(isCacheValid() && "getting linkage from invalid cache");
946      return CachedLocalOrUnnamed;
947    }
948  };
949  enum { NumTypeBits = 17 };
950
951protected:
952  // These classes allow subclasses to somewhat cleanly pack bitfields
953  // into Type.
954
955  class ArrayTypeBitfields {
956    friend class ArrayType;
957
958    unsigned : NumTypeBits;
959
960    /// IndexTypeQuals - CVR qualifiers from declarations like
961    /// 'int X[static restrict 4]'. For function parameters only.
962    unsigned IndexTypeQuals : 3;
963
964    /// SizeModifier - storage class qualifiers from declarations like
965    /// 'int X[static restrict 4]'. For function parameters only.
966    /// Actually an ArrayType::ArraySizeModifier.
967    unsigned SizeModifier : 3;
968  };
969
970  class BuiltinTypeBitfields {
971    friend class BuiltinType;
972
973    unsigned : NumTypeBits;
974
975    /// The kind (BuiltinType::Kind) of builtin type this is.
976    unsigned Kind : 8;
977  };
978
979  class FunctionTypeBitfields {
980    friend class FunctionType;
981
982    unsigned : NumTypeBits;
983
984    /// Extra information which affects how the function is called, like
985    /// regparm and the calling convention.
986    unsigned ExtInfo : 8;
987
988    /// Whether the function is variadic.  Only used by FunctionProtoType.
989    unsigned Variadic : 1;
990
991    /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
992    /// other bitfields.
993    /// The qualifiers are part of FunctionProtoType because...
994    ///
995    /// C++ 8.3.5p4: The return type, the parameter type list and the
996    /// cv-qualifier-seq, [...], are part of the function type.
997    unsigned TypeQuals : 3;
998
999    /// \brief The ref-qualifier associated with a \c FunctionProtoType.
1000    ///
1001    /// This is a value of type \c RefQualifierKind.
1002    unsigned RefQualifier : 2;
1003  };
1004
1005  class ObjCObjectTypeBitfields {
1006    friend class ObjCObjectType;
1007
1008    unsigned : NumTypeBits;
1009
1010    /// NumProtocols - The number of protocols stored directly on this
1011    /// object type.
1012    unsigned NumProtocols : 32 - NumTypeBits;
1013  };
1014
1015  class ReferenceTypeBitfields {
1016    friend class ReferenceType;
1017
1018    unsigned : NumTypeBits;
1019
1020    /// True if the type was originally spelled with an lvalue sigil.
1021    /// This is never true of rvalue references but can also be false
1022    /// on lvalue references because of C++0x [dcl.typedef]p9,
1023    /// as follows:
1024    ///
1025    ///   typedef int &ref;    // lvalue, spelled lvalue
1026    ///   typedef int &&rvref; // rvalue
1027    ///   ref &a;              // lvalue, inner ref, spelled lvalue
1028    ///   ref &&a;             // lvalue, inner ref
1029    ///   rvref &a;            // lvalue, inner ref, spelled lvalue
1030    ///   rvref &&a;           // rvalue, inner ref
1031    unsigned SpelledAsLValue : 1;
1032
1033    /// True if the inner type is a reference type.  This only happens
1034    /// in non-canonical forms.
1035    unsigned InnerRef : 1;
1036  };
1037
1038  class TypeWithKeywordBitfields {
1039    friend class TypeWithKeyword;
1040
1041    unsigned : NumTypeBits;
1042
1043    /// An ElaboratedTypeKeyword.  8 bits for efficient access.
1044    unsigned Keyword : 8;
1045  };
1046
1047  class VectorTypeBitfields {
1048    friend class VectorType;
1049
1050    unsigned : NumTypeBits;
1051
1052    /// VecKind - The kind of vector, either a generic vector type or some
1053    /// target-specific vector type such as for AltiVec or Neon.
1054    unsigned VecKind : 3;
1055
1056    /// NumElements - The number of elements in the vector.
1057    unsigned NumElements : 29 - NumTypeBits;
1058  };
1059
1060  class AttributedTypeBitfields {
1061    friend class AttributedType;
1062
1063    unsigned : NumTypeBits;
1064
1065    /// AttrKind - an AttributedType::Kind
1066    unsigned AttrKind : 32 - NumTypeBits;
1067  };
1068
1069  union {
1070    TypeBitfields TypeBits;
1071    ArrayTypeBitfields ArrayTypeBits;
1072    AttributedTypeBitfields AttributedTypeBits;
1073    BuiltinTypeBitfields BuiltinTypeBits;
1074    FunctionTypeBitfields FunctionTypeBits;
1075    ObjCObjectTypeBitfields ObjCObjectTypeBits;
1076    ReferenceTypeBitfields ReferenceTypeBits;
1077    TypeWithKeywordBitfields TypeWithKeywordBits;
1078    VectorTypeBitfields VectorTypeBits;
1079  };
1080
1081private:
1082  /// \brief Set whether this type comes from an AST file.
1083  void setFromAST(bool V = true) const {
1084    TypeBits.FromAST = V;
1085  }
1086
1087  template <class T> friend class TypePropertyCache;
1088
1089protected:
1090  // silence VC++ warning C4355: 'this' : used in base member initializer list
1091  Type *this_() { return this; }
1092  Type(TypeClass tc, QualType canon, bool Dependent, bool VariablyModified,
1093       bool ContainsUnexpandedParameterPack)
1094    : ExtQualsTypeCommonBase(this,
1095                             canon.isNull() ? QualType(this_(), 0) : canon) {
1096    TypeBits.TC = tc;
1097    TypeBits.Dependent = Dependent;
1098    TypeBits.VariablyModified = VariablyModified;
1099    TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
1100    TypeBits.CacheValidAndVisibility = 0;
1101    TypeBits.CachedLocalOrUnnamed = false;
1102    TypeBits.CachedLinkage = NoLinkage;
1103    TypeBits.FromAST = false;
1104  }
1105  friend class ASTContext;
1106
1107  void setDependent(bool D = true) { TypeBits.Dependent = D; }
1108  void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM; }
1109  void setContainsUnexpandedParameterPack(bool PP = true) {
1110    TypeBits.ContainsUnexpandedParameterPack = PP;
1111  }
1112
1113public:
1114  TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1115
1116  /// \brief Whether this type comes from an AST file.
1117  bool isFromAST() const { return TypeBits.FromAST; }
1118
1119  /// \brief Whether this type is or contains an unexpanded parameter
1120  /// pack, used to support C++0x variadic templates.
1121  ///
1122  /// A type that contains a parameter pack shall be expanded by the
1123  /// ellipsis operator at some point. For example, the typedef in the
1124  /// following example contains an unexpanded parameter pack 'T':
1125  ///
1126  /// \code
1127  /// template<typename ...T>
1128  /// struct X {
1129  ///   typedef T* pointer_types; // ill-formed; T is a parameter pack.
1130  /// };
1131  /// \endcode
1132  ///
1133  /// Note that this routine does not specify which
1134  bool containsUnexpandedParameterPack() const {
1135    return TypeBits.ContainsUnexpandedParameterPack;
1136  }
1137
1138  /// Determines if this type would be canonical if it had no further
1139  /// qualification.
1140  bool isCanonicalUnqualified() const {
1141    return CanonicalType == QualType(this, 0);
1142  }
1143
1144  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
1145  /// object types, function types, and incomplete types.
1146
1147  /// isIncompleteType - Return true if this is an incomplete type.
1148  /// A type that can describe objects, but which lacks information needed to
1149  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
1150  /// routine will need to determine if the size is actually required.
1151  bool isIncompleteType() const;
1152
1153  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
1154  /// type, in other words, not a function type.
1155  bool isIncompleteOrObjectType() const {
1156    return !isFunctionType();
1157  }
1158
1159  /// \brief Determine whether this type is an object type.
1160  bool isObjectType() const {
1161    // C++ [basic.types]p8:
1162    //   An object type is a (possibly cv-qualified) type that is not a
1163    //   function type, not a reference type, and not a void type.
1164    return !isReferenceType() && !isFunctionType() && !isVoidType();
1165  }
1166
1167  /// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10).
1168  bool isPODType() const;
1169
1170  /// isLiteralType - Return true if this is a literal type
1171  /// (C++0x [basic.types]p10)
1172  bool isLiteralType() const;
1173
1174  /// isTrivialType - Return true if this is a literal type
1175  /// (C++0x [basic.types]p9)
1176  bool isTrivialType() const;
1177
1178  /// Helper methods to distinguish type categories. All type predicates
1179  /// operate on the canonical type, ignoring typedefs and qualifiers.
1180
1181  /// isBuiltinType - returns true if the type is a builtin type.
1182  bool isBuiltinType() const;
1183
1184  /// isSpecificBuiltinType - Test for a particular builtin type.
1185  bool isSpecificBuiltinType(unsigned K) const;
1186
1187  /// isPlaceholderType - Test for a type which does not represent an
1188  /// actual type-system type but is instead used as a placeholder for
1189  /// various convenient purposes within Clang.  All such types are
1190  /// BuiltinTypes.
1191  bool isPlaceholderType() const;
1192
1193  /// isIntegerType() does *not* include complex integers (a GCC extension).
1194  /// isComplexIntegerType() can be used to test for complex integers.
1195  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
1196  bool isEnumeralType() const;
1197  bool isBooleanType() const;
1198  bool isCharType() const;
1199  bool isWideCharType() const;
1200  bool isAnyCharacterType() const;
1201  bool isIntegralType(ASTContext &Ctx) const;
1202
1203  /// \brief Determine whether this type is an integral or enumeration type.
1204  bool isIntegralOrEnumerationType() const;
1205  /// \brief Determine whether this type is an integral or unscoped enumeration
1206  /// type.
1207  bool isIntegralOrUnscopedEnumerationType() const;
1208
1209  /// Floating point categories.
1210  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
1211  /// isComplexType() does *not* include complex integers (a GCC extension).
1212  /// isComplexIntegerType() can be used to test for complex integers.
1213  bool isComplexType() const;      // C99 6.2.5p11 (complex)
1214  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
1215  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
1216  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
1217  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
1218  bool isVoidType() const;         // C99 6.2.5p19
1219  bool isDerivedType() const;      // C99 6.2.5p20
1220  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
1221  bool isAggregateType() const;
1222
1223  // Type Predicates: Check to see if this type is structurally the specified
1224  // type, ignoring typedefs and qualifiers.
1225  bool isFunctionType() const;
1226  bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
1227  bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
1228  bool isPointerType() const;
1229  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
1230  bool isBlockPointerType() const;
1231  bool isVoidPointerType() const;
1232  bool isReferenceType() const;
1233  bool isLValueReferenceType() const;
1234  bool isRValueReferenceType() const;
1235  bool isFunctionPointerType() const;
1236  bool isMemberPointerType() const;
1237  bool isMemberFunctionPointerType() const;
1238  bool isMemberDataPointerType() const;
1239  bool isArrayType() const;
1240  bool isConstantArrayType() const;
1241  bool isIncompleteArrayType() const;
1242  bool isVariableArrayType() const;
1243  bool isDependentSizedArrayType() const;
1244  bool isRecordType() const;
1245  bool isClassType() const;
1246  bool isStructureType() const;
1247  bool isStructureOrClassType() const;
1248  bool isUnionType() const;
1249  bool isComplexIntegerType() const;            // GCC _Complex integer type.
1250  bool isVectorType() const;                    // GCC vector type.
1251  bool isExtVectorType() const;                 // Extended vector type.
1252  bool isObjCObjectPointerType() const;         // Pointer to *any* ObjC object.
1253  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
1254  // for the common case.
1255  bool isObjCObjectType() const;                // NSString or typeof(*(id)0)
1256  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
1257  bool isObjCQualifiedIdType() const;           // id<foo>
1258  bool isObjCQualifiedClassType() const;        // Class<foo>
1259  bool isObjCObjectOrInterfaceType() const;
1260  bool isObjCIdType() const;                    // id
1261  bool isObjCClassType() const;                 // Class
1262  bool isObjCSelType() const;                 // Class
1263  bool isObjCBuiltinType() const;               // 'id' or 'Class'
1264  bool isTemplateTypeParmType() const;          // C++ template type parameter
1265  bool isNullPtrType() const;                   // C++0x nullptr_t
1266
1267  enum ScalarTypeKind {
1268    STK_Pointer,
1269    STK_MemberPointer,
1270    STK_Bool,
1271    STK_Integral,
1272    STK_Floating,
1273    STK_IntegralComplex,
1274    STK_FloatingComplex
1275  };
1276  /// getScalarTypeKind - Given that this is a scalar type, classify it.
1277  ScalarTypeKind getScalarTypeKind() const;
1278
1279  /// isDependentType - Whether this type is a dependent type, meaning
1280  /// that its definition somehow depends on a template parameter
1281  /// (C++ [temp.dep.type]).
1282  bool isDependentType() const { return TypeBits.Dependent; }
1283
1284  /// \brief Whether this type is a variably-modified type (C99 6.7.5).
1285  bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
1286
1287  /// \brief Whether this type involves a variable-length array type
1288  /// with a definite size.
1289  bool hasSizedVLAType() const;
1290
1291  /// \brief Whether this type is or contains a local or unnamed type.
1292  bool hasUnnamedOrLocalType() const;
1293
1294  bool isOverloadableType() const;
1295
1296  /// \brief Determine wither this type is a C++ elaborated-type-specifier.
1297  bool isElaboratedTypeSpecifier() const;
1298
1299  /// hasPointerRepresentation - Whether this type is represented
1300  /// natively as a pointer; this includes pointers, references, block
1301  /// pointers, and Objective-C interface, qualified id, and qualified
1302  /// interface types, as well as nullptr_t.
1303  bool hasPointerRepresentation() const;
1304
1305  /// hasObjCPointerRepresentation - Whether this type can represent
1306  /// an objective pointer type for the purpose of GC'ability
1307  bool hasObjCPointerRepresentation() const;
1308
1309  /// \brief Determine whether this type has an integer representation
1310  /// of some sort, e.g., it is an integer type or a vector.
1311  bool hasIntegerRepresentation() const;
1312
1313  /// \brief Determine whether this type has an signed integer representation
1314  /// of some sort, e.g., it is an signed integer type or a vector.
1315  bool hasSignedIntegerRepresentation() const;
1316
1317  /// \brief Determine whether this type has an unsigned integer representation
1318  /// of some sort, e.g., it is an unsigned integer type or a vector.
1319  bool hasUnsignedIntegerRepresentation() const;
1320
1321  /// \brief Determine whether this type has a floating-point representation
1322  /// of some sort, e.g., it is a floating-point type or a vector thereof.
1323  bool hasFloatingRepresentation() const;
1324
1325  // Type Checking Functions: Check to see if this type is structurally the
1326  // specified type, ignoring typedefs and qualifiers, and return a pointer to
1327  // the best type we can.
1328  const RecordType *getAsStructureType() const;
1329  /// NOTE: getAs*ArrayType are methods on ASTContext.
1330  const RecordType *getAsUnionType() const;
1331  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
1332  // The following is a convenience method that returns an ObjCObjectPointerType
1333  // for object declared using an interface.
1334  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
1335  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
1336  const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
1337  const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
1338  const CXXRecordDecl *getCXXRecordDeclForPointerType() const;
1339
1340  /// \brief Retrieves the CXXRecordDecl that this type refers to, either
1341  /// because the type is a RecordType or because it is the injected-class-name
1342  /// type of a class template or class template partial specialization.
1343  CXXRecordDecl *getAsCXXRecordDecl() const;
1344
1345  /// \brief Get the AutoType whose type will be deduced for a variable with
1346  /// an initializer of this type. This looks through declarators like pointer
1347  /// types, but not through decltype or typedefs.
1348  AutoType *getContainedAutoType() const;
1349
1350  /// Member-template getAs<specific type>'.  Look through sugar for
1351  /// an instance of <specific type>.   This scheme will eventually
1352  /// replace the specific getAsXXXX methods above.
1353  ///
1354  /// There are some specializations of this member template listed
1355  /// immediately following this class.
1356  template <typename T> const T *getAs() const;
1357
1358  /// A variant of getAs<> for array types which silently discards
1359  /// qualifiers from the outermost type.
1360  const ArrayType *getAsArrayTypeUnsafe() const;
1361
1362  /// Member-template castAs<specific type>.  Look through sugar for
1363  /// the underlying instance of <specific type>.
1364  ///
1365  /// This method has the same relationship to getAs<T> as cast<T> has
1366  /// to dyn_cast<T>; which is to say, the underlying type *must*
1367  /// have the intended type, and this method will never return null.
1368  template <typename T> const T *castAs() const;
1369
1370  /// A variant of castAs<> for array type which silently discards
1371  /// qualifiers from the outermost type.
1372  const ArrayType *castAsArrayTypeUnsafe() const;
1373
1374  /// getBaseElementTypeUnsafe - Get the base element type of this
1375  /// type, potentially discarding type qualifiers.  This method
1376  /// should never be used when type qualifiers are meaningful.
1377  const Type *getBaseElementTypeUnsafe() const;
1378
1379  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
1380  /// element type of the array, potentially with type qualifiers missing.
1381  /// This method should never be used when type qualifiers are meaningful.
1382  const Type *getArrayElementTypeNoTypeQual() const;
1383
1384  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
1385  /// pointer, this returns the respective pointee.
1386  QualType getPointeeType() const;
1387
1388  /// getUnqualifiedDesugaredType() - Return the specified type with
1389  /// any "sugar" removed from the type, removing any typedefs,
1390  /// typeofs, etc., as well as any qualifiers.
1391  const Type *getUnqualifiedDesugaredType() const;
1392
1393  /// More type predicates useful for type checking/promotion
1394  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
1395
1396  /// isSignedIntegerType - Return true if this is an integer type that is
1397  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
1398  /// an enum decl which has a signed representation, or a vector of signed
1399  /// integer element type.
1400  bool isSignedIntegerType() const;
1401
1402  /// isUnsignedIntegerType - Return true if this is an integer type that is
1403  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
1404  /// decl which has an unsigned representation, or a vector of unsigned integer
1405  /// element type.
1406  bool isUnsignedIntegerType() const;
1407
1408  /// isConstantSizeType - Return true if this is not a variable sized type,
1409  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
1410  /// incomplete types.
1411  bool isConstantSizeType() const;
1412
1413  /// isSpecifierType - Returns true if this type can be represented by some
1414  /// set of type specifiers.
1415  bool isSpecifierType() const;
1416
1417  /// \brief Determine the linkage of this type.
1418  Linkage getLinkage() const;
1419
1420  /// \brief Determine the visibility of this type.
1421  Visibility getVisibility() const;
1422
1423  /// \brief Determine the linkage and visibility of this type.
1424  std::pair<Linkage,Visibility> getLinkageAndVisibility() const;
1425
1426  /// \brief Note that the linkage is no longer known.
1427  void ClearLinkageCache();
1428
1429  const char *getTypeClassName() const;
1430
1431  QualType getCanonicalTypeInternal() const {
1432    return CanonicalType;
1433  }
1434  CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
1435  void dump() const;
1436  static bool classof(const Type *) { return true; }
1437
1438  friend class ASTReader;
1439  friend class ASTWriter;
1440};
1441
1442template <> inline const TypedefType *Type::getAs() const {
1443  return dyn_cast<TypedefType>(this);
1444}
1445
1446// We can do canonical leaf types faster, because we don't have to
1447// worry about preserving child type decoration.
1448#define TYPE(Class, Base)
1449#define LEAF_TYPE(Class) \
1450template <> inline const Class##Type *Type::getAs() const { \
1451  return dyn_cast<Class##Type>(CanonicalType); \
1452} \
1453template <> inline const Class##Type *Type::castAs() const { \
1454  return cast<Class##Type>(CanonicalType); \
1455}
1456#include "clang/AST/TypeNodes.def"
1457
1458
1459/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
1460/// types are always canonical and have a literal name field.
1461class BuiltinType : public Type {
1462public:
1463  enum Kind {
1464    Void,
1465
1466    Bool,     // This is bool and/or _Bool.
1467    Char_U,   // This is 'char' for targets where char is unsigned.
1468    UChar,    // This is explicitly qualified unsigned char.
1469    WChar_U,  // This is 'wchar_t' for C++, when unsigned.
1470    Char16,   // This is 'char16_t' for C++.
1471    Char32,   // This is 'char32_t' for C++.
1472    UShort,
1473    UInt,
1474    ULong,
1475    ULongLong,
1476    UInt128,  // __uint128_t
1477
1478    Char_S,   // This is 'char' for targets where char is signed.
1479    SChar,    // This is explicitly qualified signed char.
1480    WChar_S,  // This is 'wchar_t' for C++, when signed.
1481    Short,
1482    Int,
1483    Long,
1484    LongLong,
1485    Int128,   // __int128_t
1486
1487    Float, Double, LongDouble,
1488
1489    NullPtr,  // This is the type of C++0x 'nullptr'.
1490
1491    /// This represents the type of an expression whose type is
1492    /// totally unknown, e.g. 'T::foo'.  It is permitted for this to
1493    /// appear in situations where the structure of the type is
1494    /// theoretically deducible.
1495    Dependent,
1496
1497    /// The type of an unresolved overload set.
1498    Overload,
1499
1500    /// __builtin_any_type.  Useful for clients like debuggers
1501    /// that don't know what type to give something.  Only a small
1502    /// number of operations are valid on expressions of unknown type;
1503    /// notable among them, calls and explicit casts.
1504    UnknownAny,
1505
1506    /// The primitive Objective C 'id' type.  The type pointed to by the
1507    /// user-visible 'id' type.  Only ever shows up in an AST as the base
1508    /// type of an ObjCObjectType.
1509    ObjCId,
1510
1511    /// The primitive Objective C 'Class' type.  The type pointed to by the
1512    /// user-visible 'Class' type.  Only ever shows up in an AST as the
1513    /// base type of an ObjCObjectType.
1514    ObjCClass,
1515
1516    ObjCSel    // This represents the ObjC 'SEL' type.
1517  };
1518
1519public:
1520  BuiltinType(Kind K)
1521    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
1522           /*VariablyModified=*/false,
1523           /*Unexpanded paramter pack=*/false) {
1524    BuiltinTypeBits.Kind = K;
1525  }
1526
1527  Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
1528  const char *getName(const LangOptions &LO) const;
1529
1530  bool isSugared() const { return false; }
1531  QualType desugar() const { return QualType(this, 0); }
1532
1533  bool isInteger() const {
1534    return getKind() >= Bool && getKind() <= Int128;
1535  }
1536
1537  bool isSignedInteger() const {
1538    return getKind() >= Char_S && getKind() <= Int128;
1539  }
1540
1541  bool isUnsignedInteger() const {
1542    return getKind() >= Bool && getKind() <= UInt128;
1543  }
1544
1545  bool isFloatingPoint() const {
1546    return getKind() >= Float && getKind() <= LongDouble;
1547  }
1548
1549  /// Determines whether this type is a "forbidden" placeholder type,
1550  /// i.e. a type which cannot appear in arbitrary positions in a
1551  /// fully-formed expression.
1552  bool isPlaceholderType() const {
1553    return getKind() == Overload || getKind() == UnknownAny;
1554  }
1555
1556  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
1557  static bool classof(const BuiltinType *) { return true; }
1558};
1559
1560/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
1561/// types (_Complex float etc) as well as the GCC integer complex extensions.
1562///
1563class ComplexType : public Type, public llvm::FoldingSetNode {
1564  QualType ElementType;
1565  ComplexType(QualType Element, QualType CanonicalPtr) :
1566    Type(Complex, CanonicalPtr, Element->isDependentType(),
1567         Element->isVariablyModifiedType(),
1568         Element->containsUnexpandedParameterPack()),
1569    ElementType(Element) {
1570  }
1571  friend class ASTContext;  // ASTContext creates these.
1572
1573public:
1574  QualType getElementType() const { return ElementType; }
1575
1576  bool isSugared() const { return false; }
1577  QualType desugar() const { return QualType(this, 0); }
1578
1579  void Profile(llvm::FoldingSetNodeID &ID) {
1580    Profile(ID, getElementType());
1581  }
1582  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
1583    ID.AddPointer(Element.getAsOpaquePtr());
1584  }
1585
1586  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
1587  static bool classof(const ComplexType *) { return true; }
1588};
1589
1590/// ParenType - Sugar for parentheses used when specifying types.
1591///
1592class ParenType : public Type, public llvm::FoldingSetNode {
1593  QualType Inner;
1594
1595  ParenType(QualType InnerType, QualType CanonType) :
1596    Type(Paren, CanonType, InnerType->isDependentType(),
1597         InnerType->isVariablyModifiedType(),
1598         InnerType->containsUnexpandedParameterPack()),
1599    Inner(InnerType) {
1600  }
1601  friend class ASTContext;  // ASTContext creates these.
1602
1603public:
1604
1605  QualType getInnerType() const { return Inner; }
1606
1607  bool isSugared() const { return true; }
1608  QualType desugar() const { return getInnerType(); }
1609
1610  void Profile(llvm::FoldingSetNodeID &ID) {
1611    Profile(ID, getInnerType());
1612  }
1613  static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
1614    Inner.Profile(ID);
1615  }
1616
1617  static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
1618  static bool classof(const ParenType *) { return true; }
1619};
1620
1621/// PointerType - C99 6.7.5.1 - Pointer Declarators.
1622///
1623class PointerType : public Type, public llvm::FoldingSetNode {
1624  QualType PointeeType;
1625
1626  PointerType(QualType Pointee, QualType CanonicalPtr) :
1627    Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
1628         Pointee->isVariablyModifiedType(),
1629         Pointee->containsUnexpandedParameterPack()),
1630    PointeeType(Pointee) {
1631  }
1632  friend class ASTContext;  // ASTContext creates these.
1633
1634public:
1635
1636  QualType getPointeeType() const { return PointeeType; }
1637
1638  bool isSugared() const { return false; }
1639  QualType desugar() const { return QualType(this, 0); }
1640
1641  void Profile(llvm::FoldingSetNodeID &ID) {
1642    Profile(ID, getPointeeType());
1643  }
1644  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1645    ID.AddPointer(Pointee.getAsOpaquePtr());
1646  }
1647
1648  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
1649  static bool classof(const PointerType *) { return true; }
1650};
1651
1652/// BlockPointerType - pointer to a block type.
1653/// This type is to represent types syntactically represented as
1654/// "void (^)(int)", etc. Pointee is required to always be a function type.
1655///
1656class BlockPointerType : public Type, public llvm::FoldingSetNode {
1657  QualType PointeeType;  // Block is some kind of pointer type
1658  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
1659    Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
1660         Pointee->isVariablyModifiedType(),
1661         Pointee->containsUnexpandedParameterPack()),
1662    PointeeType(Pointee) {
1663  }
1664  friend class ASTContext;  // ASTContext creates these.
1665
1666public:
1667
1668  // Get the pointee type. Pointee is required to always be a function type.
1669  QualType getPointeeType() const { return PointeeType; }
1670
1671  bool isSugared() const { return false; }
1672  QualType desugar() const { return QualType(this, 0); }
1673
1674  void Profile(llvm::FoldingSetNodeID &ID) {
1675      Profile(ID, getPointeeType());
1676  }
1677  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1678      ID.AddPointer(Pointee.getAsOpaquePtr());
1679  }
1680
1681  static bool classof(const Type *T) {
1682    return T->getTypeClass() == BlockPointer;
1683  }
1684  static bool classof(const BlockPointerType *) { return true; }
1685};
1686
1687/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
1688///
1689class ReferenceType : public Type, public llvm::FoldingSetNode {
1690  QualType PointeeType;
1691
1692protected:
1693  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
1694                bool SpelledAsLValue) :
1695    Type(tc, CanonicalRef, Referencee->isDependentType(),
1696         Referencee->isVariablyModifiedType(),
1697         Referencee->containsUnexpandedParameterPack()),
1698    PointeeType(Referencee)
1699  {
1700    ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
1701    ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
1702  }
1703
1704public:
1705  bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
1706  bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
1707
1708  QualType getPointeeTypeAsWritten() const { return PointeeType; }
1709  QualType getPointeeType() const {
1710    // FIXME: this might strip inner qualifiers; okay?
1711    const ReferenceType *T = this;
1712    while (T->isInnerRef())
1713      T = T->PointeeType->castAs<ReferenceType>();
1714    return T->PointeeType;
1715  }
1716
1717  void Profile(llvm::FoldingSetNodeID &ID) {
1718    Profile(ID, PointeeType, isSpelledAsLValue());
1719  }
1720  static void Profile(llvm::FoldingSetNodeID &ID,
1721                      QualType Referencee,
1722                      bool SpelledAsLValue) {
1723    ID.AddPointer(Referencee.getAsOpaquePtr());
1724    ID.AddBoolean(SpelledAsLValue);
1725  }
1726
1727  static bool classof(const Type *T) {
1728    return T->getTypeClass() == LValueReference ||
1729           T->getTypeClass() == RValueReference;
1730  }
1731  static bool classof(const ReferenceType *) { return true; }
1732};
1733
1734/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
1735///
1736class LValueReferenceType : public ReferenceType {
1737  LValueReferenceType(QualType Referencee, QualType CanonicalRef,
1738                      bool SpelledAsLValue) :
1739    ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
1740  {}
1741  friend class ASTContext; // ASTContext creates these
1742public:
1743  bool isSugared() const { return false; }
1744  QualType desugar() const { return QualType(this, 0); }
1745
1746  static bool classof(const Type *T) {
1747    return T->getTypeClass() == LValueReference;
1748  }
1749  static bool classof(const LValueReferenceType *) { return true; }
1750};
1751
1752/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
1753///
1754class RValueReferenceType : public ReferenceType {
1755  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
1756    ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
1757  }
1758  friend class ASTContext; // ASTContext creates these
1759public:
1760  bool isSugared() const { return false; }
1761  QualType desugar() const { return QualType(this, 0); }
1762
1763  static bool classof(const Type *T) {
1764    return T->getTypeClass() == RValueReference;
1765  }
1766  static bool classof(const RValueReferenceType *) { return true; }
1767};
1768
1769/// MemberPointerType - C++ 8.3.3 - Pointers to members
1770///
1771class MemberPointerType : public Type, public llvm::FoldingSetNode {
1772  QualType PointeeType;
1773  /// The class of which the pointee is a member. Must ultimately be a
1774  /// RecordType, but could be a typedef or a template parameter too.
1775  const Type *Class;
1776
1777  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
1778    Type(MemberPointer, CanonicalPtr,
1779         Cls->isDependentType() || Pointee->isDependentType(),
1780         Pointee->isVariablyModifiedType(),
1781         (Cls->containsUnexpandedParameterPack() ||
1782          Pointee->containsUnexpandedParameterPack())),
1783    PointeeType(Pointee), Class(Cls) {
1784  }
1785  friend class ASTContext; // ASTContext creates these.
1786
1787public:
1788  QualType getPointeeType() const { return PointeeType; }
1789
1790  /// Returns true if the member type (i.e. the pointee type) is a
1791  /// function type rather than a data-member type.
1792  bool isMemberFunctionPointer() const {
1793    return PointeeType->isFunctionProtoType();
1794  }
1795
1796  /// Returns true if the member type (i.e. the pointee type) is a
1797  /// data type rather than a function type.
1798  bool isMemberDataPointer() const {
1799    return !PointeeType->isFunctionProtoType();
1800  }
1801
1802  const Type *getClass() const { return Class; }
1803
1804  bool isSugared() const { return false; }
1805  QualType desugar() const { return QualType(this, 0); }
1806
1807  void Profile(llvm::FoldingSetNodeID &ID) {
1808    Profile(ID, getPointeeType(), getClass());
1809  }
1810  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
1811                      const Type *Class) {
1812    ID.AddPointer(Pointee.getAsOpaquePtr());
1813    ID.AddPointer(Class);
1814  }
1815
1816  static bool classof(const Type *T) {
1817    return T->getTypeClass() == MemberPointer;
1818  }
1819  static bool classof(const MemberPointerType *) { return true; }
1820};
1821
1822/// ArrayType - C99 6.7.5.2 - Array Declarators.
1823///
1824class ArrayType : public Type, public llvm::FoldingSetNode {
1825public:
1826  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
1827  /// an array with a static size (e.g. int X[static 4]), or an array
1828  /// with a star size (e.g. int X[*]).
1829  /// 'static' is only allowed on function parameters.
1830  enum ArraySizeModifier {
1831    Normal, Static, Star
1832  };
1833private:
1834  /// ElementType - The element type of the array.
1835  QualType ElementType;
1836
1837protected:
1838  // C++ [temp.dep.type]p1:
1839  //   A type is dependent if it is...
1840  //     - an array type constructed from any dependent type or whose
1841  //       size is specified by a constant expression that is
1842  //       value-dependent,
1843  ArrayType(TypeClass tc, QualType et, QualType can,
1844            ArraySizeModifier sm, unsigned tq,
1845            bool ContainsUnexpandedParameterPack)
1846    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray,
1847           (tc == VariableArray || et->isVariablyModifiedType()),
1848           ContainsUnexpandedParameterPack),
1849      ElementType(et) {
1850    ArrayTypeBits.IndexTypeQuals = tq;
1851    ArrayTypeBits.SizeModifier = sm;
1852  }
1853
1854  friend class ASTContext;  // ASTContext creates these.
1855
1856public:
1857  QualType getElementType() const { return ElementType; }
1858  ArraySizeModifier getSizeModifier() const {
1859    return ArraySizeModifier(ArrayTypeBits.SizeModifier);
1860  }
1861  Qualifiers getIndexTypeQualifiers() const {
1862    return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
1863  }
1864  unsigned getIndexTypeCVRQualifiers() const {
1865    return ArrayTypeBits.IndexTypeQuals;
1866  }
1867
1868  static bool classof(const Type *T) {
1869    return T->getTypeClass() == ConstantArray ||
1870           T->getTypeClass() == VariableArray ||
1871           T->getTypeClass() == IncompleteArray ||
1872           T->getTypeClass() == DependentSizedArray;
1873  }
1874  static bool classof(const ArrayType *) { return true; }
1875};
1876
1877/// ConstantArrayType - This class represents the canonical version of
1878/// C arrays with a specified constant size.  For example, the canonical
1879/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
1880/// type is 'int' and the size is 404.
1881class ConstantArrayType : public ArrayType {
1882  llvm::APInt Size; // Allows us to unique the type.
1883
1884  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
1885                    ArraySizeModifier sm, unsigned tq)
1886    : ArrayType(ConstantArray, et, can, sm, tq,
1887                et->containsUnexpandedParameterPack()),
1888      Size(size) {}
1889protected:
1890  ConstantArrayType(TypeClass tc, QualType et, QualType can,
1891                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
1892    : ArrayType(tc, et, can, sm, tq, et->containsUnexpandedParameterPack()),
1893      Size(size) {}
1894  friend class ASTContext;  // ASTContext creates these.
1895public:
1896  const llvm::APInt &getSize() const { return Size; }
1897  bool isSugared() const { return false; }
1898  QualType desugar() const { return QualType(this, 0); }
1899
1900
1901  /// \brief Determine the number of bits required to address a member of
1902  // an array with the given element type and number of elements.
1903  static unsigned getNumAddressingBits(ASTContext &Context,
1904                                       QualType ElementType,
1905                                       const llvm::APInt &NumElements);
1906
1907  /// \brief Determine the maximum number of active bits that an array's size
1908  /// can require, which limits the maximum size of the array.
1909  static unsigned getMaxSizeBits(ASTContext &Context);
1910
1911  void Profile(llvm::FoldingSetNodeID &ID) {
1912    Profile(ID, getElementType(), getSize(),
1913            getSizeModifier(), getIndexTypeCVRQualifiers());
1914  }
1915  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1916                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
1917                      unsigned TypeQuals) {
1918    ID.AddPointer(ET.getAsOpaquePtr());
1919    ID.AddInteger(ArraySize.getZExtValue());
1920    ID.AddInteger(SizeMod);
1921    ID.AddInteger(TypeQuals);
1922  }
1923  static bool classof(const Type *T) {
1924    return T->getTypeClass() == ConstantArray;
1925  }
1926  static bool classof(const ConstantArrayType *) { return true; }
1927};
1928
1929/// IncompleteArrayType - This class represents C arrays with an unspecified
1930/// size.  For example 'int A[]' has an IncompleteArrayType where the element
1931/// type is 'int' and the size is unspecified.
1932class IncompleteArrayType : public ArrayType {
1933
1934  IncompleteArrayType(QualType et, QualType can,
1935                      ArraySizeModifier sm, unsigned tq)
1936    : ArrayType(IncompleteArray, et, can, sm, tq,
1937                et->containsUnexpandedParameterPack()) {}
1938  friend class ASTContext;  // ASTContext creates these.
1939public:
1940  bool isSugared() const { return false; }
1941  QualType desugar() const { return QualType(this, 0); }
1942
1943  static bool classof(const Type *T) {
1944    return T->getTypeClass() == IncompleteArray;
1945  }
1946  static bool classof(const IncompleteArrayType *) { return true; }
1947
1948  friend class StmtIteratorBase;
1949
1950  void Profile(llvm::FoldingSetNodeID &ID) {
1951    Profile(ID, getElementType(), getSizeModifier(),
1952            getIndexTypeCVRQualifiers());
1953  }
1954
1955  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1956                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
1957    ID.AddPointer(ET.getAsOpaquePtr());
1958    ID.AddInteger(SizeMod);
1959    ID.AddInteger(TypeQuals);
1960  }
1961};
1962
1963/// VariableArrayType - This class represents C arrays with a specified size
1964/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
1965/// Since the size expression is an arbitrary expression, we store it as such.
1966///
1967/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
1968/// should not be: two lexically equivalent variable array types could mean
1969/// different things, for example, these variables do not have the same type
1970/// dynamically:
1971///
1972/// void foo(int x) {
1973///   int Y[x];
1974///   ++x;
1975///   int Z[x];
1976/// }
1977///
1978class VariableArrayType : public ArrayType {
1979  /// SizeExpr - An assignment expression. VLA's are only permitted within
1980  /// a function block.
1981  Stmt *SizeExpr;
1982  /// Brackets - The left and right array brackets.
1983  SourceRange Brackets;
1984
1985  VariableArrayType(QualType et, QualType can, Expr *e,
1986                    ArraySizeModifier sm, unsigned tq,
1987                    SourceRange brackets)
1988    : ArrayType(VariableArray, et, can, sm, tq,
1989                et->containsUnexpandedParameterPack()),
1990      SizeExpr((Stmt*) e), Brackets(brackets) {}
1991  friend class ASTContext;  // ASTContext creates these.
1992
1993public:
1994  Expr *getSizeExpr() const {
1995    // We use C-style casts instead of cast<> here because we do not wish
1996    // to have a dependency of Type.h on Stmt.h/Expr.h.
1997    return (Expr*) SizeExpr;
1998  }
1999  SourceRange getBracketsRange() const { return Brackets; }
2000  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
2001  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
2002
2003  bool isSugared() const { return false; }
2004  QualType desugar() const { return QualType(this, 0); }
2005
2006  static bool classof(const Type *T) {
2007    return T->getTypeClass() == VariableArray;
2008  }
2009  static bool classof(const VariableArrayType *) { return true; }
2010
2011  friend class StmtIteratorBase;
2012
2013  void Profile(llvm::FoldingSetNodeID &ID) {
2014    assert(0 && "Cannot unique VariableArrayTypes.");
2015  }
2016};
2017
2018/// DependentSizedArrayType - This type represents an array type in
2019/// C++ whose size is a value-dependent expression. For example:
2020///
2021/// \code
2022/// template<typename T, int Size>
2023/// class array {
2024///   T data[Size];
2025/// };
2026/// \endcode
2027///
2028/// For these types, we won't actually know what the array bound is
2029/// until template instantiation occurs, at which point this will
2030/// become either a ConstantArrayType or a VariableArrayType.
2031class DependentSizedArrayType : public ArrayType {
2032  const ASTContext &Context;
2033
2034  /// \brief An assignment expression that will instantiate to the
2035  /// size of the array.
2036  ///
2037  /// The expression itself might be NULL, in which case the array
2038  /// type will have its size deduced from an initializer.
2039  Stmt *SizeExpr;
2040
2041  /// Brackets - The left and right array brackets.
2042  SourceRange Brackets;
2043
2044  DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
2045                          Expr *e, ArraySizeModifier sm, unsigned tq,
2046                          SourceRange brackets);
2047
2048  friend class ASTContext;  // ASTContext creates these.
2049
2050public:
2051  Expr *getSizeExpr() const {
2052    // We use C-style casts instead of cast<> here because we do not wish
2053    // to have a dependency of Type.h on Stmt.h/Expr.h.
2054    return (Expr*) SizeExpr;
2055  }
2056  SourceRange getBracketsRange() const { return Brackets; }
2057  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
2058  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
2059
2060  bool isSugared() const { return false; }
2061  QualType desugar() const { return QualType(this, 0); }
2062
2063  static bool classof(const Type *T) {
2064    return T->getTypeClass() == DependentSizedArray;
2065  }
2066  static bool classof(const DependentSizedArrayType *) { return true; }
2067
2068  friend class StmtIteratorBase;
2069
2070
2071  void Profile(llvm::FoldingSetNodeID &ID) {
2072    Profile(ID, Context, getElementType(),
2073            getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
2074  }
2075
2076  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2077                      QualType ET, ArraySizeModifier SizeMod,
2078                      unsigned TypeQuals, Expr *E);
2079};
2080
2081/// DependentSizedExtVectorType - This type represent an extended vector type
2082/// where either the type or size is dependent. For example:
2083/// @code
2084/// template<typename T, int Size>
2085/// class vector {
2086///   typedef T __attribute__((ext_vector_type(Size))) type;
2087/// }
2088/// @endcode
2089class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
2090  const ASTContext &Context;
2091  Expr *SizeExpr;
2092  /// ElementType - The element type of the array.
2093  QualType ElementType;
2094  SourceLocation loc;
2095
2096  DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
2097                              QualType can, Expr *SizeExpr, SourceLocation loc);
2098
2099  friend class ASTContext;
2100
2101public:
2102  Expr *getSizeExpr() const { return SizeExpr; }
2103  QualType getElementType() const { return ElementType; }
2104  SourceLocation getAttributeLoc() const { return loc; }
2105
2106  bool isSugared() const { return false; }
2107  QualType desugar() const { return QualType(this, 0); }
2108
2109  static bool classof(const Type *T) {
2110    return T->getTypeClass() == DependentSizedExtVector;
2111  }
2112  static bool classof(const DependentSizedExtVectorType *) { return true; }
2113
2114  void Profile(llvm::FoldingSetNodeID &ID) {
2115    Profile(ID, Context, getElementType(), getSizeExpr());
2116  }
2117
2118  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2119                      QualType ElementType, Expr *SizeExpr);
2120};
2121
2122
2123/// VectorType - GCC generic vector type. This type is created using
2124/// __attribute__((vector_size(n)), where "n" specifies the vector size in
2125/// bytes; or from an Altivec __vector or vector declaration.
2126/// Since the constructor takes the number of vector elements, the
2127/// client is responsible for converting the size into the number of elements.
2128class VectorType : public Type, public llvm::FoldingSetNode {
2129public:
2130  enum VectorKind {
2131    GenericVector,  // not a target-specific vector type
2132    AltiVecVector,  // is AltiVec vector
2133    AltiVecPixel,   // is AltiVec 'vector Pixel'
2134    AltiVecBool,    // is AltiVec 'vector bool ...'
2135    NeonVector,     // is ARM Neon vector
2136    NeonPolyVector  // is ARM Neon polynomial vector
2137  };
2138protected:
2139  /// ElementType - The element type of the vector.
2140  QualType ElementType;
2141
2142  VectorType(QualType vecType, unsigned nElements, QualType canonType,
2143             VectorKind vecKind);
2144
2145  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
2146             QualType canonType, VectorKind vecKind);
2147
2148  friend class ASTContext;  // ASTContext creates these.
2149
2150public:
2151
2152  QualType getElementType() const { return ElementType; }
2153  unsigned getNumElements() const { return VectorTypeBits.NumElements; }
2154
2155  bool isSugared() const { return false; }
2156  QualType desugar() const { return QualType(this, 0); }
2157
2158  VectorKind getVectorKind() const {
2159    return VectorKind(VectorTypeBits.VecKind);
2160  }
2161
2162  void Profile(llvm::FoldingSetNodeID &ID) {
2163    Profile(ID, getElementType(), getNumElements(),
2164            getTypeClass(), getVectorKind());
2165  }
2166  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
2167                      unsigned NumElements, TypeClass TypeClass,
2168                      VectorKind VecKind) {
2169    ID.AddPointer(ElementType.getAsOpaquePtr());
2170    ID.AddInteger(NumElements);
2171    ID.AddInteger(TypeClass);
2172    ID.AddInteger(VecKind);
2173  }
2174
2175  static bool classof(const Type *T) {
2176    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
2177  }
2178  static bool classof(const VectorType *) { return true; }
2179};
2180
2181/// ExtVectorType - Extended vector type. This type is created using
2182/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
2183/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
2184/// class enables syntactic extensions, like Vector Components for accessing
2185/// points, colors, and textures (modeled after OpenGL Shading Language).
2186class ExtVectorType : public VectorType {
2187  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
2188    VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
2189  friend class ASTContext;  // ASTContext creates these.
2190public:
2191  static int getPointAccessorIdx(char c) {
2192    switch (c) {
2193    default: return -1;
2194    case 'x': return 0;
2195    case 'y': return 1;
2196    case 'z': return 2;
2197    case 'w': return 3;
2198    }
2199  }
2200  static int getNumericAccessorIdx(char c) {
2201    switch (c) {
2202      default: return -1;
2203      case '0': return 0;
2204      case '1': return 1;
2205      case '2': return 2;
2206      case '3': return 3;
2207      case '4': return 4;
2208      case '5': return 5;
2209      case '6': return 6;
2210      case '7': return 7;
2211      case '8': return 8;
2212      case '9': return 9;
2213      case 'A':
2214      case 'a': return 10;
2215      case 'B':
2216      case 'b': return 11;
2217      case 'C':
2218      case 'c': return 12;
2219      case 'D':
2220      case 'd': return 13;
2221      case 'E':
2222      case 'e': return 14;
2223      case 'F':
2224      case 'f': return 15;
2225    }
2226  }
2227
2228  static int getAccessorIdx(char c) {
2229    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
2230    return getNumericAccessorIdx(c);
2231  }
2232
2233  bool isAccessorWithinNumElements(char c) const {
2234    if (int idx = getAccessorIdx(c)+1)
2235      return unsigned(idx-1) < getNumElements();
2236    return false;
2237  }
2238  bool isSugared() const { return false; }
2239  QualType desugar() const { return QualType(this, 0); }
2240
2241  static bool classof(const Type *T) {
2242    return T->getTypeClass() == ExtVector;
2243  }
2244  static bool classof(const ExtVectorType *) { return true; }
2245};
2246
2247/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
2248/// class of FunctionNoProtoType and FunctionProtoType.
2249///
2250class FunctionType : public Type {
2251  // The type returned by the function.
2252  QualType ResultType;
2253
2254 public:
2255  /// ExtInfo - A class which abstracts out some details necessary for
2256  /// making a call.
2257  ///
2258  /// It is not actually used directly for storing this information in
2259  /// a FunctionType, although FunctionType does currently use the
2260  /// same bit-pattern.
2261  ///
2262  // If you add a field (say Foo), other than the obvious places (both,
2263  // constructors, compile failures), what you need to update is
2264  // * Operator==
2265  // * getFoo
2266  // * withFoo
2267  // * functionType. Add Foo, getFoo.
2268  // * ASTContext::getFooType
2269  // * ASTContext::mergeFunctionTypes
2270  // * FunctionNoProtoType::Profile
2271  // * FunctionProtoType::Profile
2272  // * TypePrinter::PrintFunctionProto
2273  // * AST read and write
2274  // * Codegen
2275  class ExtInfo {
2276    // Feel free to rearrange or add bits, but if you go over 8,
2277    // you'll need to adjust both the Bits field below and
2278    // Type::FunctionTypeBitfields.
2279
2280    //   |  CC  |noreturn|hasregparm|regparm
2281    //   |0 .. 2|   3    |    4     |5 ..  7
2282    enum { CallConvMask = 0x7 };
2283    enum { NoReturnMask = 0x8 };
2284    enum { HasRegParmMask = 0x10 };
2285    enum { RegParmMask = ~(CallConvMask | NoReturnMask),
2286           RegParmOffset = 5 };
2287
2288    unsigned char Bits;
2289
2290    ExtInfo(unsigned Bits) : Bits(static_cast<unsigned char>(Bits)) {}
2291
2292    friend class FunctionType;
2293
2294   public:
2295    // Constructor with no defaults. Use this when you know that you
2296    // have all the elements (when reading an AST file for example).
2297    ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc) {
2298      Bits = ((unsigned) cc) |
2299             (noReturn ? NoReturnMask : 0) |
2300             (hasRegParm ? HasRegParmMask : 0) |
2301             (regParm << RegParmOffset);
2302    }
2303
2304    // Constructor with all defaults. Use when for example creating a
2305    // function know to use defaults.
2306    ExtInfo() : Bits(0) {}
2307
2308    bool getNoReturn() const { return Bits & NoReturnMask; }
2309    bool getHasRegParm() const { return Bits & HasRegParmMask; }
2310    unsigned getRegParm() const { return Bits >> RegParmOffset; }
2311    CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
2312
2313    bool operator==(ExtInfo Other) const {
2314      return Bits == Other.Bits;
2315    }
2316    bool operator!=(ExtInfo Other) const {
2317      return Bits != Other.Bits;
2318    }
2319
2320    // Note that we don't have setters. That is by design, use
2321    // the following with methods instead of mutating these objects.
2322
2323    ExtInfo withNoReturn(bool noReturn) const {
2324      if (noReturn)
2325        return ExtInfo(Bits | NoReturnMask);
2326      else
2327        return ExtInfo(Bits & ~NoReturnMask);
2328    }
2329
2330    ExtInfo withRegParm(unsigned RegParm) const {
2331      return ExtInfo(HasRegParmMask | (Bits & ~RegParmMask) | (RegParm << RegParmOffset));
2332    }
2333
2334    ExtInfo withCallingConv(CallingConv cc) const {
2335      return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
2336    }
2337
2338    void Profile(llvm::FoldingSetNodeID &ID) const {
2339      ID.AddInteger(Bits);
2340    }
2341  };
2342
2343protected:
2344  FunctionType(TypeClass tc, QualType res, bool variadic,
2345               unsigned typeQuals, RefQualifierKind RefQualifier,
2346               QualType Canonical, bool Dependent,
2347               bool VariablyModified, bool ContainsUnexpandedParameterPack,
2348               ExtInfo Info)
2349    : Type(tc, Canonical, Dependent, VariablyModified,
2350           ContainsUnexpandedParameterPack),
2351      ResultType(res) {
2352    FunctionTypeBits.ExtInfo = Info.Bits;
2353    FunctionTypeBits.Variadic = variadic;
2354    FunctionTypeBits.TypeQuals = typeQuals;
2355    FunctionTypeBits.RefQualifier = static_cast<unsigned>(RefQualifier);
2356  }
2357  bool isVariadic() const { return FunctionTypeBits.Variadic; }
2358  unsigned getTypeQuals() const { return FunctionTypeBits.TypeQuals; }
2359
2360  RefQualifierKind getRefQualifier() const {
2361    return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier);
2362  }
2363
2364public:
2365
2366  QualType getResultType() const { return ResultType; }
2367
2368  bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
2369  unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
2370  bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
2371  CallingConv getCallConv() const { return getExtInfo().getCC(); }
2372  ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
2373
2374  /// \brief Determine the type of an expression that calls a function of
2375  /// this type.
2376  QualType getCallResultType(ASTContext &Context) const {
2377    return getResultType().getNonLValueExprType(Context);
2378  }
2379
2380  static llvm::StringRef getNameForCallConv(CallingConv CC);
2381
2382  static bool classof(const Type *T) {
2383    return T->getTypeClass() == FunctionNoProto ||
2384           T->getTypeClass() == FunctionProto;
2385  }
2386  static bool classof(const FunctionType *) { return true; }
2387};
2388
2389/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
2390/// no information available about its arguments.
2391class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
2392  FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
2393    : FunctionType(FunctionNoProto, Result, false, 0, RQ_None, Canonical,
2394                   /*Dependent=*/false, Result->isVariablyModifiedType(),
2395                   /*ContainsUnexpandedParameterPack=*/false, Info) {}
2396
2397  friend class ASTContext;  // ASTContext creates these.
2398
2399public:
2400  // No additional state past what FunctionType provides.
2401
2402  bool isSugared() const { return false; }
2403  QualType desugar() const { return QualType(this, 0); }
2404
2405  void Profile(llvm::FoldingSetNodeID &ID) {
2406    Profile(ID, getResultType(), getExtInfo());
2407  }
2408  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
2409                      ExtInfo Info) {
2410    Info.Profile(ID);
2411    ID.AddPointer(ResultType.getAsOpaquePtr());
2412  }
2413
2414  static bool classof(const Type *T) {
2415    return T->getTypeClass() == FunctionNoProto;
2416  }
2417  static bool classof(const FunctionNoProtoType *) { return true; }
2418};
2419
2420/// FunctionProtoType - Represents a prototype with argument type info, e.g.
2421/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
2422/// arguments, not as having a single void argument. Such a type can have an
2423/// exception specification, but this specification is not part of the canonical
2424/// type.
2425class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
2426public:
2427  /// ExtProtoInfo - Extra information about a function prototype.
2428  struct ExtProtoInfo {
2429    ExtProtoInfo() :
2430      Variadic(false), ExceptionSpecType(EST_None), TypeQuals(0),
2431      RefQualifier(RQ_None), NumExceptions(0), Exceptions(0), NoexceptExpr(0) {}
2432
2433    FunctionType::ExtInfo ExtInfo;
2434    bool Variadic;
2435    ExceptionSpecificationType ExceptionSpecType;
2436    unsigned char TypeQuals;
2437    RefQualifierKind RefQualifier;
2438    unsigned NumExceptions;
2439    const QualType *Exceptions;
2440    Expr *NoexceptExpr;
2441  };
2442
2443private:
2444  /// \brief Determine whether there are any argument types that
2445  /// contain an unexpanded parameter pack.
2446  static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
2447                                                 unsigned numArgs) {
2448    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
2449      if (ArgArray[Idx]->containsUnexpandedParameterPack())
2450        return true;
2451
2452    return false;
2453  }
2454
2455  FunctionProtoType(QualType result, const QualType *args, unsigned numArgs,
2456                    QualType canonical, const ExtProtoInfo &epi);
2457
2458  /// NumArgs - The number of arguments this function has, not counting '...'.
2459  unsigned NumArgs : 20;
2460
2461  /// NumExceptions - The number of types in the exception spec, if any.
2462  unsigned NumExceptions : 9;
2463
2464  /// ExceptionSpecType - The type of exception specification this function has.
2465  unsigned ExceptionSpecType : 3;
2466
2467  /// ArgInfo - There is an variable size array after the class in memory that
2468  /// holds the argument types.
2469
2470  /// Exceptions - There is another variable size array after ArgInfo that
2471  /// holds the exception types.
2472
2473  /// NoexceptExpr - Instead of Exceptions, there may be a single Expr* pointing
2474  /// to the expression in the noexcept() specifier.
2475
2476  friend class ASTContext;  // ASTContext creates these.
2477
2478public:
2479  unsigned getNumArgs() const { return NumArgs; }
2480  QualType getArgType(unsigned i) const {
2481    assert(i < NumArgs && "Invalid argument number!");
2482    return arg_type_begin()[i];
2483  }
2484
2485  ExtProtoInfo getExtProtoInfo() const {
2486    ExtProtoInfo EPI;
2487    EPI.ExtInfo = getExtInfo();
2488    EPI.Variadic = isVariadic();
2489    EPI.ExceptionSpecType = getExceptionSpecType();
2490    EPI.TypeQuals = static_cast<unsigned char>(getTypeQuals());
2491    EPI.RefQualifier = getRefQualifier();
2492    if (EPI.ExceptionSpecType == EST_Dynamic) {
2493      EPI.NumExceptions = NumExceptions;
2494      EPI.Exceptions = exception_begin();
2495    } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2496      EPI.NoexceptExpr = getNoexceptExpr();
2497    }
2498    return EPI;
2499  }
2500
2501  /// \brief Get the kind of exception specification on this function.
2502  ExceptionSpecificationType getExceptionSpecType() const {
2503    return static_cast<ExceptionSpecificationType>(ExceptionSpecType);
2504  }
2505  /// \brief Return whether this function has any kind of exception spec.
2506  bool hasExceptionSpec() const {
2507    return getExceptionSpecType() != EST_None;
2508  }
2509  /// \brief Return whether this function has a dynamic (throw) exception spec.
2510  bool hasDynamicExceptionSpec() const {
2511    return isDynamicExceptionSpec(getExceptionSpecType());
2512  }
2513  /// \brief Return whether this function has a noexcept exception spec.
2514  bool hasNoexceptExceptionSpec() const {
2515    return isNoexceptExceptionSpec(getExceptionSpecType());
2516  }
2517  /// \brief Result type of getNoexceptSpec().
2518  enum NoexceptResult {
2519    NR_NoNoexcept,  ///< There is no noexcept specifier.
2520    NR_BadNoexcept, ///< The noexcept specifier has a bad expression.
2521    NR_Dependent,   ///< The noexcept specifier is dependent.
2522    NR_Throw,       ///< The noexcept specifier evaluates to false.
2523    NR_Nothrow      ///< The noexcept specifier evaluates to true.
2524  };
2525  /// \brief Get the meaning of the noexcept spec on this function, if any.
2526  NoexceptResult getNoexceptSpec(ASTContext &Ctx) const;
2527  unsigned getNumExceptions() const { return NumExceptions; }
2528  QualType getExceptionType(unsigned i) const {
2529    assert(i < NumExceptions && "Invalid exception number!");
2530    return exception_begin()[i];
2531  }
2532  Expr *getNoexceptExpr() const {
2533    if (getExceptionSpecType() != EST_ComputedNoexcept)
2534      return 0;
2535    // NoexceptExpr sits where the arguments end.
2536    return *reinterpret_cast<Expr *const *>(arg_type_end());
2537  }
2538  bool isNothrow(ASTContext &Ctx) const {
2539    ExceptionSpecificationType EST = getExceptionSpecType();
2540    if (EST == EST_DynamicNone || EST == EST_BasicNoexcept)
2541      return true;
2542    if (EST != EST_ComputedNoexcept)
2543      return false;
2544    return getNoexceptSpec(Ctx) == NR_Nothrow;
2545  }
2546
2547  using FunctionType::isVariadic;
2548
2549  /// \brief Determines whether this function prototype contains a
2550  /// parameter pack at the end.
2551  ///
2552  /// A function template whose last parameter is a parameter pack can be
2553  /// called with an arbitrary number of arguments, much like a variadic
2554  /// function. However,
2555  bool isTemplateVariadic() const;
2556
2557  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
2558
2559
2560  /// \brief Retrieve the ref-qualifier associated with this function type.
2561  RefQualifierKind getRefQualifier() const {
2562    return FunctionType::getRefQualifier();
2563  }
2564
2565  typedef const QualType *arg_type_iterator;
2566  arg_type_iterator arg_type_begin() const {
2567    return reinterpret_cast<const QualType *>(this+1);
2568  }
2569  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
2570
2571  typedef const QualType *exception_iterator;
2572  exception_iterator exception_begin() const {
2573    // exceptions begin where arguments end
2574    return arg_type_end();
2575  }
2576  exception_iterator exception_end() const {
2577    if (getExceptionSpecType() != EST_Dynamic)
2578      return exception_begin();
2579    return exception_begin() + NumExceptions;
2580  }
2581
2582  bool isSugared() const { return false; }
2583  QualType desugar() const { return QualType(this, 0); }
2584
2585  static bool classof(const Type *T) {
2586    return T->getTypeClass() == FunctionProto;
2587  }
2588  static bool classof(const FunctionProtoType *) { return true; }
2589
2590  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
2591  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
2592                      arg_type_iterator ArgTys, unsigned NumArgs,
2593                      const ExtProtoInfo &EPI, const ASTContext &Context);
2594};
2595
2596
2597/// \brief Represents the dependent type named by a dependently-scoped
2598/// typename using declaration, e.g.
2599///   using typename Base<T>::foo;
2600/// Template instantiation turns these into the underlying type.
2601class UnresolvedUsingType : public Type {
2602  UnresolvedUsingTypenameDecl *Decl;
2603
2604  UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
2605    : Type(UnresolvedUsing, QualType(), true, false,
2606           /*ContainsUnexpandedParameterPack=*/false),
2607      Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
2608  friend class ASTContext; // ASTContext creates these.
2609public:
2610
2611  UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
2612
2613  bool isSugared() const { return false; }
2614  QualType desugar() const { return QualType(this, 0); }
2615
2616  static bool classof(const Type *T) {
2617    return T->getTypeClass() == UnresolvedUsing;
2618  }
2619  static bool classof(const UnresolvedUsingType *) { return true; }
2620
2621  void Profile(llvm::FoldingSetNodeID &ID) {
2622    return Profile(ID, Decl);
2623  }
2624  static void Profile(llvm::FoldingSetNodeID &ID,
2625                      UnresolvedUsingTypenameDecl *D) {
2626    ID.AddPointer(D);
2627  }
2628};
2629
2630
2631class TypedefType : public Type {
2632  TypedefNameDecl *Decl;
2633protected:
2634  TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType can)
2635    : Type(tc, can, can->isDependentType(), can->isVariablyModifiedType(),
2636           /*ContainsUnexpandedParameterPack=*/false),
2637      Decl(const_cast<TypedefNameDecl*>(D)) {
2638    assert(!isa<TypedefType>(can) && "Invalid canonical type");
2639  }
2640  friend class ASTContext;  // ASTContext creates these.
2641public:
2642
2643  TypedefNameDecl *getDecl() const { return Decl; }
2644
2645  bool isSugared() const { return true; }
2646  QualType desugar() const;
2647
2648  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
2649  static bool classof(const TypedefType *) { return true; }
2650};
2651
2652/// TypeOfExprType (GCC extension).
2653class TypeOfExprType : public Type {
2654  Expr *TOExpr;
2655
2656protected:
2657  TypeOfExprType(Expr *E, QualType can = QualType());
2658  friend class ASTContext;  // ASTContext creates these.
2659public:
2660  Expr *getUnderlyingExpr() const { return TOExpr; }
2661
2662  /// \brief Remove a single level of sugar.
2663  QualType desugar() const;
2664
2665  /// \brief Returns whether this type directly provides sugar.
2666  bool isSugared() const { return true; }
2667
2668  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
2669  static bool classof(const TypeOfExprType *) { return true; }
2670};
2671
2672/// \brief Internal representation of canonical, dependent
2673/// typeof(expr) types.
2674///
2675/// This class is used internally by the ASTContext to manage
2676/// canonical, dependent types, only. Clients will only see instances
2677/// of this class via TypeOfExprType nodes.
2678class DependentTypeOfExprType
2679  : public TypeOfExprType, public llvm::FoldingSetNode {
2680  const ASTContext &Context;
2681
2682public:
2683  DependentTypeOfExprType(const ASTContext &Context, Expr *E)
2684    : TypeOfExprType(E), Context(Context) { }
2685
2686  bool isSugared() const { return false; }
2687  QualType desugar() const { return QualType(this, 0); }
2688
2689  void Profile(llvm::FoldingSetNodeID &ID) {
2690    Profile(ID, Context, getUnderlyingExpr());
2691  }
2692
2693  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2694                      Expr *E);
2695};
2696
2697/// TypeOfType (GCC extension).
2698class TypeOfType : public Type {
2699  QualType TOType;
2700  TypeOfType(QualType T, QualType can)
2701    : Type(TypeOf, can, T->isDependentType(), T->isVariablyModifiedType(),
2702           T->containsUnexpandedParameterPack()),
2703      TOType(T) {
2704    assert(!isa<TypedefType>(can) && "Invalid canonical type");
2705  }
2706  friend class ASTContext;  // ASTContext creates these.
2707public:
2708  QualType getUnderlyingType() const { return TOType; }
2709
2710  /// \brief Remove a single level of sugar.
2711  QualType desugar() const { return getUnderlyingType(); }
2712
2713  /// \brief Returns whether this type directly provides sugar.
2714  bool isSugared() const { return true; }
2715
2716  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
2717  static bool classof(const TypeOfType *) { return true; }
2718};
2719
2720/// DecltypeType (C++0x)
2721class DecltypeType : public Type {
2722  Expr *E;
2723
2724  // FIXME: We could get rid of UnderlyingType if we wanted to: We would have to
2725  // Move getDesugaredType to ASTContext so that it can call getDecltypeForExpr
2726  // from it.
2727  QualType UnderlyingType;
2728
2729protected:
2730  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
2731  friend class ASTContext;  // ASTContext creates these.
2732public:
2733  Expr *getUnderlyingExpr() const { return E; }
2734  QualType getUnderlyingType() const { return UnderlyingType; }
2735
2736  /// \brief Remove a single level of sugar.
2737  QualType desugar() const { return getUnderlyingType(); }
2738
2739  /// \brief Returns whether this type directly provides sugar.
2740  bool isSugared() const { return !isDependentType(); }
2741
2742  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
2743  static bool classof(const DecltypeType *) { return true; }
2744};
2745
2746/// \brief Internal representation of canonical, dependent
2747/// decltype(expr) types.
2748///
2749/// This class is used internally by the ASTContext to manage
2750/// canonical, dependent types, only. Clients will only see instances
2751/// of this class via DecltypeType nodes.
2752class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
2753  const ASTContext &Context;
2754
2755public:
2756  DependentDecltypeType(const ASTContext &Context, Expr *E);
2757
2758  bool isSugared() const { return false; }
2759  QualType desugar() const { return QualType(this, 0); }
2760
2761  void Profile(llvm::FoldingSetNodeID &ID) {
2762    Profile(ID, Context, getUnderlyingExpr());
2763  }
2764
2765  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2766                      Expr *E);
2767};
2768
2769class TagType : public Type {
2770  /// Stores the TagDecl associated with this type. The decl may point to any
2771  /// TagDecl that declares the entity.
2772  TagDecl * decl;
2773
2774protected:
2775  TagType(TypeClass TC, const TagDecl *D, QualType can);
2776
2777public:
2778  TagDecl *getDecl() const;
2779
2780  /// @brief Determines whether this type is in the process of being
2781  /// defined.
2782  bool isBeingDefined() const;
2783
2784  static bool classof(const Type *T) {
2785    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
2786  }
2787  static bool classof(const TagType *) { return true; }
2788  static bool classof(const RecordType *) { return true; }
2789  static bool classof(const EnumType *) { return true; }
2790};
2791
2792/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
2793/// to detect TagType objects of structs/unions/classes.
2794class RecordType : public TagType {
2795protected:
2796  explicit RecordType(const RecordDecl *D)
2797    : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2798  explicit RecordType(TypeClass TC, RecordDecl *D)
2799    : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2800  friend class ASTContext;   // ASTContext creates these.
2801public:
2802
2803  RecordDecl *getDecl() const {
2804    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
2805  }
2806
2807  // FIXME: This predicate is a helper to QualType/Type. It needs to
2808  // recursively check all fields for const-ness. If any field is declared
2809  // const, it needs to return false.
2810  bool hasConstFields() const { return false; }
2811
2812  bool isSugared() const { return false; }
2813  QualType desugar() const { return QualType(this, 0); }
2814
2815  static bool classof(const TagType *T);
2816  static bool classof(const Type *T) {
2817    return isa<TagType>(T) && classof(cast<TagType>(T));
2818  }
2819  static bool classof(const RecordType *) { return true; }
2820};
2821
2822/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
2823/// to detect TagType objects of enums.
2824class EnumType : public TagType {
2825  explicit EnumType(const EnumDecl *D)
2826    : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2827  friend class ASTContext;   // ASTContext creates these.
2828public:
2829
2830  EnumDecl *getDecl() const {
2831    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
2832  }
2833
2834  bool isSugared() const { return false; }
2835  QualType desugar() const { return QualType(this, 0); }
2836
2837  static bool classof(const TagType *T);
2838  static bool classof(const Type *T) {
2839    return isa<TagType>(T) && classof(cast<TagType>(T));
2840  }
2841  static bool classof(const EnumType *) { return true; }
2842};
2843
2844/// AttributedType - An attributed type is a type to which a type
2845/// attribute has been applied.  The "modified type" is the
2846/// fully-sugared type to which the attributed type was applied;
2847/// generally it is not canonically equivalent to the attributed type.
2848/// The "equivalent type" is the minimally-desugared type which the
2849/// type is canonically equivalent to.
2850///
2851/// For example, in the following attributed type:
2852///     int32_t __attribute__((vector_size(16)))
2853///   - the modified type is the TypedefType for int32_t
2854///   - the equivalent type is VectorType(16, int32_t)
2855///   - the canonical type is VectorType(16, int)
2856class AttributedType : public Type, public llvm::FoldingSetNode {
2857public:
2858  // It is really silly to have yet another attribute-kind enum, but
2859  // clang::attr::Kind doesn't currently cover the pure type attrs.
2860  enum Kind {
2861    // Expression operand.
2862    attr_address_space,
2863    attr_regparm,
2864    attr_vector_size,
2865    attr_neon_vector_type,
2866    attr_neon_polyvector_type,
2867
2868    FirstExprOperandKind = attr_address_space,
2869    LastExprOperandKind = attr_neon_polyvector_type,
2870
2871    // Enumerated operand (string or keyword).
2872    attr_objc_gc,
2873    attr_pcs,
2874
2875    FirstEnumOperandKind = attr_objc_gc,
2876    LastEnumOperandKind = attr_pcs,
2877
2878    // No operand.
2879    attr_noreturn,
2880    attr_cdecl,
2881    attr_fastcall,
2882    attr_stdcall,
2883    attr_thiscall,
2884    attr_pascal
2885  };
2886
2887private:
2888  QualType ModifiedType;
2889  QualType EquivalentType;
2890
2891  friend class ASTContext; // creates these
2892
2893  AttributedType(QualType canon, Kind attrKind,
2894                 QualType modified, QualType equivalent)
2895    : Type(Attributed, canon, canon->isDependentType(),
2896           canon->isVariablyModifiedType(),
2897           canon->containsUnexpandedParameterPack()),
2898      ModifiedType(modified), EquivalentType(equivalent) {
2899    AttributedTypeBits.AttrKind = attrKind;
2900  }
2901
2902public:
2903  Kind getAttrKind() const {
2904    return static_cast<Kind>(AttributedTypeBits.AttrKind);
2905  }
2906
2907  QualType getModifiedType() const { return ModifiedType; }
2908  QualType getEquivalentType() const { return EquivalentType; }
2909
2910  bool isSugared() const { return true; }
2911  QualType desugar() const { return getEquivalentType(); }
2912
2913  void Profile(llvm::FoldingSetNodeID &ID) {
2914    Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
2915  }
2916
2917  static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
2918                      QualType modified, QualType equivalent) {
2919    ID.AddInteger(attrKind);
2920    ID.AddPointer(modified.getAsOpaquePtr());
2921    ID.AddPointer(equivalent.getAsOpaquePtr());
2922  }
2923
2924  static bool classof(const Type *T) {
2925    return T->getTypeClass() == Attributed;
2926  }
2927  static bool classof(const AttributedType *T) { return true; }
2928};
2929
2930class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2931  unsigned Depth : 15;
2932  unsigned ParameterPack : 1;
2933  unsigned Index : 16;
2934  IdentifierInfo *Name;
2935
2936  TemplateTypeParmType(unsigned D, unsigned I, bool PP, IdentifierInfo *N,
2937                       QualType Canon)
2938    : Type(TemplateTypeParm, Canon, /*Dependent=*/true,
2939           /*VariablyModified=*/false, PP),
2940      Depth(D), ParameterPack(PP), Index(I), Name(N) { }
2941
2942  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
2943    : Type(TemplateTypeParm, QualType(this, 0), /*Dependent=*/true,
2944           /*VariablyModified=*/false, PP),
2945      Depth(D), ParameterPack(PP), Index(I), Name(0) { }
2946
2947  friend class ASTContext;  // ASTContext creates these
2948
2949public:
2950  unsigned getDepth() const { return Depth; }
2951  unsigned getIndex() const { return Index; }
2952  bool isParameterPack() const { return ParameterPack; }
2953  IdentifierInfo *getName() const { return Name; }
2954
2955  bool isSugared() const { return false; }
2956  QualType desugar() const { return QualType(this, 0); }
2957
2958  void Profile(llvm::FoldingSetNodeID &ID) {
2959    Profile(ID, Depth, Index, ParameterPack, Name);
2960  }
2961
2962  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
2963                      unsigned Index, bool ParameterPack,
2964                      IdentifierInfo *Name) {
2965    ID.AddInteger(Depth);
2966    ID.AddInteger(Index);
2967    ID.AddBoolean(ParameterPack);
2968    ID.AddPointer(Name);
2969  }
2970
2971  static bool classof(const Type *T) {
2972    return T->getTypeClass() == TemplateTypeParm;
2973  }
2974  static bool classof(const TemplateTypeParmType *T) { return true; }
2975};
2976
2977/// \brief Represents the result of substituting a type for a template
2978/// type parameter.
2979///
2980/// Within an instantiated template, all template type parameters have
2981/// been replaced with these.  They are used solely to record that a
2982/// type was originally written as a template type parameter;
2983/// therefore they are never canonical.
2984class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2985  // The original type parameter.
2986  const TemplateTypeParmType *Replaced;
2987
2988  SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
2989    : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(),
2990           Canon->isVariablyModifiedType(),
2991           Canon->containsUnexpandedParameterPack()),
2992      Replaced(Param) { }
2993
2994  friend class ASTContext;
2995
2996public:
2997  IdentifierInfo *getName() const { return Replaced->getName(); }
2998
2999  /// Gets the template parameter that was substituted for.
3000  const TemplateTypeParmType *getReplacedParameter() const {
3001    return Replaced;
3002  }
3003
3004  /// Gets the type that was substituted for the template
3005  /// parameter.
3006  QualType getReplacementType() const {
3007    return getCanonicalTypeInternal();
3008  }
3009
3010  bool isSugared() const { return true; }
3011  QualType desugar() const { return getReplacementType(); }
3012
3013  void Profile(llvm::FoldingSetNodeID &ID) {
3014    Profile(ID, getReplacedParameter(), getReplacementType());
3015  }
3016  static void Profile(llvm::FoldingSetNodeID &ID,
3017                      const TemplateTypeParmType *Replaced,
3018                      QualType Replacement) {
3019    ID.AddPointer(Replaced);
3020    ID.AddPointer(Replacement.getAsOpaquePtr());
3021  }
3022
3023  static bool classof(const Type *T) {
3024    return T->getTypeClass() == SubstTemplateTypeParm;
3025  }
3026  static bool classof(const SubstTemplateTypeParmType *T) { return true; }
3027};
3028
3029/// \brief Represents the result of substituting a set of types for a template
3030/// type parameter pack.
3031///
3032/// When a pack expansion in the source code contains multiple parameter packs
3033/// and those parameter packs correspond to different levels of template
3034/// parameter lists, this type node is used to represent a template type
3035/// parameter pack from an outer level, which has already had its argument pack
3036/// substituted but that still lives within a pack expansion that itself
3037/// could not be instantiated. When actually performing a substitution into
3038/// that pack expansion (e.g., when all template parameters have corresponding
3039/// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
3040/// at the current pack substitution index.
3041class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
3042  /// \brief The original type parameter.
3043  const TemplateTypeParmType *Replaced;
3044
3045  /// \brief A pointer to the set of template arguments that this
3046  /// parameter pack is instantiated with.
3047  const TemplateArgument *Arguments;
3048
3049  /// \brief The number of template arguments in \c Arguments.
3050  unsigned NumArguments;
3051
3052  SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
3053                                QualType Canon,
3054                                const TemplateArgument &ArgPack);
3055
3056  friend class ASTContext;
3057
3058public:
3059  IdentifierInfo *getName() const { return Replaced->getName(); }
3060
3061  /// Gets the template parameter that was substituted for.
3062  const TemplateTypeParmType *getReplacedParameter() const {
3063    return Replaced;
3064  }
3065
3066  bool isSugared() const { return false; }
3067  QualType desugar() const { return QualType(this, 0); }
3068
3069  TemplateArgument getArgumentPack() const;
3070
3071  void Profile(llvm::FoldingSetNodeID &ID);
3072  static void Profile(llvm::FoldingSetNodeID &ID,
3073                      const TemplateTypeParmType *Replaced,
3074                      const TemplateArgument &ArgPack);
3075
3076  static bool classof(const Type *T) {
3077    return T->getTypeClass() == SubstTemplateTypeParmPack;
3078  }
3079  static bool classof(const SubstTemplateTypeParmPackType *T) { return true; }
3080};
3081
3082/// \brief Represents a C++0x auto type.
3083///
3084/// These types are usually a placeholder for a deduced type. However, within
3085/// templates and before the initializer is attached, there is no deduced type
3086/// and an auto type is type-dependent and canonical.
3087class AutoType : public Type, public llvm::FoldingSetNode {
3088  AutoType(QualType DeducedType)
3089    : Type(Auto, DeducedType.isNull() ? QualType(this, 0) : DeducedType,
3090           /*Dependent=*/DeducedType.isNull(),
3091           /*VariablyModified=*/false, /*ContainsParameterPack=*/false) {
3092    assert((DeducedType.isNull() || !DeducedType->isDependentType()) &&
3093           "deduced a dependent type for auto");
3094  }
3095
3096  friend class ASTContext;  // ASTContext creates these
3097
3098public:
3099  bool isSugared() const { return isDeduced(); }
3100  QualType desugar() const { return getCanonicalTypeInternal(); }
3101
3102  QualType getDeducedType() const {
3103    return isDeduced() ? getCanonicalTypeInternal() : QualType();
3104  }
3105  bool isDeduced() const {
3106    return !isDependentType();
3107  }
3108
3109  void Profile(llvm::FoldingSetNodeID &ID) {
3110    Profile(ID, getDeducedType());
3111  }
3112
3113  static void Profile(llvm::FoldingSetNodeID &ID,
3114                      QualType Deduced) {
3115    ID.AddPointer(Deduced.getAsOpaquePtr());
3116  }
3117
3118  static bool classof(const Type *T) {
3119    return T->getTypeClass() == Auto;
3120  }
3121  static bool classof(const AutoType *T) { return true; }
3122};
3123
3124/// \brief Represents the type of a template specialization as written
3125/// in the source code.
3126///
3127/// Template specialization types represent the syntactic form of a
3128/// template-id that refers to a type, e.g., @c vector<int>. Some
3129/// template specialization types are syntactic sugar, whose canonical
3130/// type will point to some other type node that represents the
3131/// instantiation or class template specialization. For example, a
3132/// class template specialization type of @c vector<int> will refer to
3133/// a tag type for the instantiation
3134/// @c std::vector<int, std::allocator<int>>.
3135///
3136/// Other template specialization types, for which the template name
3137/// is dependent, may be canonical types. These types are always
3138/// dependent.
3139class TemplateSpecializationType
3140  : public Type, public llvm::FoldingSetNode {
3141  /// \brief The name of the template being specialized.
3142  TemplateName Template;
3143
3144  /// \brief - The number of template arguments named in this class
3145  /// template specialization.
3146  unsigned NumArgs;
3147
3148  TemplateSpecializationType(TemplateName T,
3149                             const TemplateArgument *Args,
3150                             unsigned NumArgs, QualType Canon);
3151
3152  friend class ASTContext;  // ASTContext creates these
3153
3154public:
3155  /// \brief Determine whether any of the given template arguments are
3156  /// dependent.
3157  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
3158                                            unsigned NumArgs);
3159
3160  static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
3161                                            unsigned NumArgs);
3162
3163  static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &);
3164
3165  /// \brief Print a template argument list, including the '<' and '>'
3166  /// enclosing the template arguments.
3167  static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
3168                                               unsigned NumArgs,
3169                                               const PrintingPolicy &Policy,
3170                                               bool SkipBrackets = false);
3171
3172  static std::string PrintTemplateArgumentList(const TemplateArgumentLoc *Args,
3173                                               unsigned NumArgs,
3174                                               const PrintingPolicy &Policy);
3175
3176  static std::string PrintTemplateArgumentList(const TemplateArgumentListInfo &,
3177                                               const PrintingPolicy &Policy);
3178
3179  /// True if this template specialization type matches a current
3180  /// instantiation in the context in which it is found.
3181  bool isCurrentInstantiation() const {
3182    return isa<InjectedClassNameType>(getCanonicalTypeInternal());
3183  }
3184
3185  typedef const TemplateArgument * iterator;
3186
3187  iterator begin() const { return getArgs(); }
3188  iterator end() const; // defined inline in TemplateBase.h
3189
3190  /// \brief Retrieve the name of the template that we are specializing.
3191  TemplateName getTemplateName() const { return Template; }
3192
3193  /// \brief Retrieve the template arguments.
3194  const TemplateArgument *getArgs() const {
3195    return reinterpret_cast<const TemplateArgument *>(this + 1);
3196  }
3197
3198  /// \brief Retrieve the number of template arguments.
3199  unsigned getNumArgs() const { return NumArgs; }
3200
3201  /// \brief Retrieve a specific template argument as a type.
3202  /// \precondition @c isArgType(Arg)
3203  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
3204
3205  bool isSugared() const {
3206    return !isDependentType() || isCurrentInstantiation();
3207  }
3208  QualType desugar() const { return getCanonicalTypeInternal(); }
3209
3210  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
3211    Profile(ID, Template, getArgs(), NumArgs, Ctx);
3212  }
3213
3214  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
3215                      const TemplateArgument *Args,
3216                      unsigned NumArgs,
3217                      const ASTContext &Context);
3218
3219  static bool classof(const Type *T) {
3220    return T->getTypeClass() == TemplateSpecialization;
3221  }
3222  static bool classof(const TemplateSpecializationType *T) { return true; }
3223};
3224
3225/// \brief The injected class name of a C++ class template or class
3226/// template partial specialization.  Used to record that a type was
3227/// spelled with a bare identifier rather than as a template-id; the
3228/// equivalent for non-templated classes is just RecordType.
3229///
3230/// Injected class name types are always dependent.  Template
3231/// instantiation turns these into RecordTypes.
3232///
3233/// Injected class name types are always canonical.  This works
3234/// because it is impossible to compare an injected class name type
3235/// with the corresponding non-injected template type, for the same
3236/// reason that it is impossible to directly compare template
3237/// parameters from different dependent contexts: injected class name
3238/// types can only occur within the scope of a particular templated
3239/// declaration, and within that scope every template specialization
3240/// will canonicalize to the injected class name (when appropriate
3241/// according to the rules of the language).
3242class InjectedClassNameType : public Type {
3243  CXXRecordDecl *Decl;
3244
3245  /// The template specialization which this type represents.
3246  /// For example, in
3247  ///   template <class T> class A { ... };
3248  /// this is A<T>, whereas in
3249  ///   template <class X, class Y> class A<B<X,Y> > { ... };
3250  /// this is A<B<X,Y> >.
3251  ///
3252  /// It is always unqualified, always a template specialization type,
3253  /// and always dependent.
3254  QualType InjectedType;
3255
3256  friend class ASTContext; // ASTContext creates these.
3257  friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
3258                          // currently suitable for AST reading, too much
3259                          // interdependencies.
3260  InjectedClassNameType(CXXRecordDecl *D, QualType TST)
3261    : Type(InjectedClassName, QualType(), /*Dependent=*/true,
3262           /*VariablyModified=*/false,
3263           /*ContainsUnexpandedParameterPack=*/false),
3264      Decl(D), InjectedType(TST) {
3265    assert(isa<TemplateSpecializationType>(TST));
3266    assert(!TST.hasQualifiers());
3267    assert(TST->isDependentType());
3268  }
3269
3270public:
3271  QualType getInjectedSpecializationType() const { return InjectedType; }
3272  const TemplateSpecializationType *getInjectedTST() const {
3273    return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
3274  }
3275
3276  CXXRecordDecl *getDecl() const;
3277
3278  bool isSugared() const { return false; }
3279  QualType desugar() const { return QualType(this, 0); }
3280
3281  static bool classof(const Type *T) {
3282    return T->getTypeClass() == InjectedClassName;
3283  }
3284  static bool classof(const InjectedClassNameType *T) { return true; }
3285};
3286
3287/// \brief The kind of a tag type.
3288enum TagTypeKind {
3289  /// \brief The "struct" keyword.
3290  TTK_Struct,
3291  /// \brief The "union" keyword.
3292  TTK_Union,
3293  /// \brief The "class" keyword.
3294  TTK_Class,
3295  /// \brief The "enum" keyword.
3296  TTK_Enum
3297};
3298
3299/// \brief The elaboration keyword that precedes a qualified type name or
3300/// introduces an elaborated-type-specifier.
3301enum ElaboratedTypeKeyword {
3302  /// \brief The "struct" keyword introduces the elaborated-type-specifier.
3303  ETK_Struct,
3304  /// \brief The "union" keyword introduces the elaborated-type-specifier.
3305  ETK_Union,
3306  /// \brief The "class" keyword introduces the elaborated-type-specifier.
3307  ETK_Class,
3308  /// \brief The "enum" keyword introduces the elaborated-type-specifier.
3309  ETK_Enum,
3310  /// \brief The "typename" keyword precedes the qualified type name, e.g.,
3311  /// \c typename T::type.
3312  ETK_Typename,
3313  /// \brief No keyword precedes the qualified type name.
3314  ETK_None
3315};
3316
3317/// A helper class for Type nodes having an ElaboratedTypeKeyword.
3318/// The keyword in stored in the free bits of the base class.
3319/// Also provides a few static helpers for converting and printing
3320/// elaborated type keyword and tag type kind enumerations.
3321class TypeWithKeyword : public Type {
3322protected:
3323  TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
3324                  QualType Canonical, bool Dependent, bool VariablyModified,
3325                  bool ContainsUnexpandedParameterPack)
3326  : Type(tc, Canonical, Dependent, VariablyModified,
3327         ContainsUnexpandedParameterPack) {
3328    TypeWithKeywordBits.Keyword = Keyword;
3329  }
3330
3331public:
3332  ElaboratedTypeKeyword getKeyword() const {
3333    return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
3334  }
3335
3336  /// getKeywordForTypeSpec - Converts a type specifier (DeclSpec::TST)
3337  /// into an elaborated type keyword.
3338  static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
3339
3340  /// getTagTypeKindForTypeSpec - Converts a type specifier (DeclSpec::TST)
3341  /// into a tag type kind.  It is an error to provide a type specifier
3342  /// which *isn't* a tag kind here.
3343  static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
3344
3345  /// getKeywordForTagDeclKind - Converts a TagTypeKind into an
3346  /// elaborated type keyword.
3347  static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
3348
3349  /// getTagTypeKindForKeyword - Converts an elaborated type keyword into
3350  // a TagTypeKind. It is an error to provide an elaborated type keyword
3351  /// which *isn't* a tag kind here.
3352  static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
3353
3354  static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
3355
3356  static const char *getKeywordName(ElaboratedTypeKeyword Keyword);
3357
3358  static const char *getTagTypeKindName(TagTypeKind Kind) {
3359    return getKeywordName(getKeywordForTagTypeKind(Kind));
3360  }
3361
3362  class CannotCastToThisType {};
3363  static CannotCastToThisType classof(const Type *);
3364};
3365
3366/// \brief Represents a type that was referred to using an elaborated type
3367/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
3368/// or both.
3369///
3370/// This type is used to keep track of a type name as written in the
3371/// source code, including tag keywords and any nested-name-specifiers.
3372/// The type itself is always "sugar", used to express what was written
3373/// in the source code but containing no additional semantic information.
3374class ElaboratedType : public TypeWithKeyword, public llvm::FoldingSetNode {
3375
3376  /// \brief The nested name specifier containing the qualifier.
3377  NestedNameSpecifier *NNS;
3378
3379  /// \brief The type that this qualified name refers to.
3380  QualType NamedType;
3381
3382  ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
3383                 QualType NamedType, QualType CanonType)
3384    : TypeWithKeyword(Keyword, Elaborated, CanonType,
3385                      NamedType->isDependentType(),
3386                      NamedType->isVariablyModifiedType(),
3387                      NamedType->containsUnexpandedParameterPack()),
3388      NNS(NNS), NamedType(NamedType) {
3389    assert(!(Keyword == ETK_None && NNS == 0) &&
3390           "ElaboratedType cannot have elaborated type keyword "
3391           "and name qualifier both null.");
3392  }
3393
3394  friend class ASTContext;  // ASTContext creates these
3395
3396public:
3397  ~ElaboratedType();
3398
3399  /// \brief Retrieve the qualification on this type.
3400  NestedNameSpecifier *getQualifier() const { return NNS; }
3401
3402  /// \brief Retrieve the type named by the qualified-id.
3403  QualType getNamedType() const { return NamedType; }
3404
3405  /// \brief Remove a single level of sugar.
3406  QualType desugar() const { return getNamedType(); }
3407
3408  /// \brief Returns whether this type directly provides sugar.
3409  bool isSugared() const { return true; }
3410
3411  void Profile(llvm::FoldingSetNodeID &ID) {
3412    Profile(ID, getKeyword(), NNS, NamedType);
3413  }
3414
3415  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
3416                      NestedNameSpecifier *NNS, QualType NamedType) {
3417    ID.AddInteger(Keyword);
3418    ID.AddPointer(NNS);
3419    NamedType.Profile(ID);
3420  }
3421
3422  static bool classof(const Type *T) {
3423    return T->getTypeClass() == Elaborated;
3424  }
3425  static bool classof(const ElaboratedType *T) { return true; }
3426};
3427
3428/// \brief Represents a qualified type name for which the type name is
3429/// dependent.
3430///
3431/// DependentNameType represents a class of dependent types that involve a
3432/// dependent nested-name-specifier (e.g., "T::") followed by a (dependent)
3433/// name of a type. The DependentNameType may start with a "typename" (for a
3434/// typename-specifier), "class", "struct", "union", or "enum" (for a
3435/// dependent elaborated-type-specifier), or nothing (in contexts where we
3436/// know that we must be referring to a type, e.g., in a base class specifier).
3437class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
3438
3439  /// \brief The nested name specifier containing the qualifier.
3440  NestedNameSpecifier *NNS;
3441
3442  /// \brief The type that this typename specifier refers to.
3443  const IdentifierInfo *Name;
3444
3445  DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
3446                    const IdentifierInfo *Name, QualType CanonType)
3447    : TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true,
3448                      /*VariablyModified=*/false,
3449                      NNS->containsUnexpandedParameterPack()),
3450      NNS(NNS), Name(Name) {
3451    assert(NNS->isDependent() &&
3452           "DependentNameType requires a dependent nested-name-specifier");
3453  }
3454
3455  friend class ASTContext;  // ASTContext creates these
3456
3457public:
3458  /// \brief Retrieve the qualification on this type.
3459  NestedNameSpecifier *getQualifier() const { return NNS; }
3460
3461  /// \brief Retrieve the type named by the typename specifier as an
3462  /// identifier.
3463  ///
3464  /// This routine will return a non-NULL identifier pointer when the
3465  /// form of the original typename was terminated by an identifier,
3466  /// e.g., "typename T::type".
3467  const IdentifierInfo *getIdentifier() const {
3468    return Name;
3469  }
3470
3471  bool isSugared() const { return false; }
3472  QualType desugar() const { return QualType(this, 0); }
3473
3474  void Profile(llvm::FoldingSetNodeID &ID) {
3475    Profile(ID, getKeyword(), NNS, Name);
3476  }
3477
3478  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
3479                      NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
3480    ID.AddInteger(Keyword);
3481    ID.AddPointer(NNS);
3482    ID.AddPointer(Name);
3483  }
3484
3485  static bool classof(const Type *T) {
3486    return T->getTypeClass() == DependentName;
3487  }
3488  static bool classof(const DependentNameType *T) { return true; }
3489};
3490
3491/// DependentTemplateSpecializationType - Represents a template
3492/// specialization type whose template cannot be resolved, e.g.
3493///   A<T>::template B<T>
3494class DependentTemplateSpecializationType :
3495  public TypeWithKeyword, public llvm::FoldingSetNode {
3496
3497  /// \brief The nested name specifier containing the qualifier.
3498  NestedNameSpecifier *NNS;
3499
3500  /// \brief The identifier of the template.
3501  const IdentifierInfo *Name;
3502
3503  /// \brief - The number of template arguments named in this class
3504  /// template specialization.
3505  unsigned NumArgs;
3506
3507  const TemplateArgument *getArgBuffer() const {
3508    return reinterpret_cast<const TemplateArgument*>(this+1);
3509  }
3510  TemplateArgument *getArgBuffer() {
3511    return reinterpret_cast<TemplateArgument*>(this+1);
3512  }
3513
3514  DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
3515                                      NestedNameSpecifier *NNS,
3516                                      const IdentifierInfo *Name,
3517                                      unsigned NumArgs,
3518                                      const TemplateArgument *Args,
3519                                      QualType Canon);
3520
3521  friend class ASTContext;  // ASTContext creates these
3522
3523public:
3524  NestedNameSpecifier *getQualifier() const { return NNS; }
3525  const IdentifierInfo *getIdentifier() const { return Name; }
3526
3527  /// \brief Retrieve the template arguments.
3528  const TemplateArgument *getArgs() const {
3529    return getArgBuffer();
3530  }
3531
3532  /// \brief Retrieve the number of template arguments.
3533  unsigned getNumArgs() const { return NumArgs; }
3534
3535  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
3536
3537  typedef const TemplateArgument * iterator;
3538  iterator begin() const { return getArgs(); }
3539  iterator end() const; // inline in TemplateBase.h
3540
3541  bool isSugared() const { return false; }
3542  QualType desugar() const { return QualType(this, 0); }
3543
3544  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
3545    Profile(ID, Context, getKeyword(), NNS, Name, NumArgs, getArgs());
3546  }
3547
3548  static void Profile(llvm::FoldingSetNodeID &ID,
3549                      const ASTContext &Context,
3550                      ElaboratedTypeKeyword Keyword,
3551                      NestedNameSpecifier *Qualifier,
3552                      const IdentifierInfo *Name,
3553                      unsigned NumArgs,
3554                      const TemplateArgument *Args);
3555
3556  static bool classof(const Type *T) {
3557    return T->getTypeClass() == DependentTemplateSpecialization;
3558  }
3559  static bool classof(const DependentTemplateSpecializationType *T) {
3560    return true;
3561  }
3562};
3563
3564/// \brief Represents a pack expansion of types.
3565///
3566/// Pack expansions are part of C++0x variadic templates. A pack
3567/// expansion contains a pattern, which itself contains one or more
3568/// "unexpanded" parameter packs. When instantiated, a pack expansion
3569/// produces a series of types, each instantiated from the pattern of
3570/// the expansion, where the Ith instantiation of the pattern uses the
3571/// Ith arguments bound to each of the unexpanded parameter packs. The
3572/// pack expansion is considered to "expand" these unexpanded
3573/// parameter packs.
3574///
3575/// \code
3576/// template<typename ...Types> struct tuple;
3577///
3578/// template<typename ...Types>
3579/// struct tuple_of_references {
3580///   typedef tuple<Types&...> type;
3581/// };
3582/// \endcode
3583///
3584/// Here, the pack expansion \c Types&... is represented via a
3585/// PackExpansionType whose pattern is Types&.
3586class PackExpansionType : public Type, public llvm::FoldingSetNode {
3587  /// \brief The pattern of the pack expansion.
3588  QualType Pattern;
3589
3590  /// \brief The number of expansions that this pack expansion will
3591  /// generate when substituted (+1), or indicates that
3592  ///
3593  /// This field will only have a non-zero value when some of the parameter
3594  /// packs that occur within the pattern have been substituted but others have
3595  /// not.
3596  unsigned NumExpansions;
3597
3598  PackExpansionType(QualType Pattern, QualType Canon,
3599                    llvm::Optional<unsigned> NumExpansions)
3600    : Type(PackExpansion, Canon, /*Dependent=*/true,
3601           /*VariableModified=*/Pattern->isVariablyModifiedType(),
3602           /*ContainsUnexpandedParameterPack=*/false),
3603      Pattern(Pattern),
3604      NumExpansions(NumExpansions? *NumExpansions + 1: 0) { }
3605
3606  friend class ASTContext;  // ASTContext creates these
3607
3608public:
3609  /// \brief Retrieve the pattern of this pack expansion, which is the
3610  /// type that will be repeatedly instantiated when instantiating the
3611  /// pack expansion itself.
3612  QualType getPattern() const { return Pattern; }
3613
3614  /// \brief Retrieve the number of expansions that this pack expansion will
3615  /// generate, if known.
3616  llvm::Optional<unsigned> getNumExpansions() const {
3617    if (NumExpansions)
3618      return NumExpansions - 1;
3619
3620    return llvm::Optional<unsigned>();
3621  }
3622
3623  bool isSugared() const { return false; }
3624  QualType desugar() const { return QualType(this, 0); }
3625
3626  void Profile(llvm::FoldingSetNodeID &ID) {
3627    Profile(ID, getPattern(), getNumExpansions());
3628  }
3629
3630  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
3631                      llvm::Optional<unsigned> NumExpansions) {
3632    ID.AddPointer(Pattern.getAsOpaquePtr());
3633    ID.AddBoolean(NumExpansions);
3634    if (NumExpansions)
3635      ID.AddInteger(*NumExpansions);
3636  }
3637
3638  static bool classof(const Type *T) {
3639    return T->getTypeClass() == PackExpansion;
3640  }
3641  static bool classof(const PackExpansionType *T) {
3642    return true;
3643  }
3644};
3645
3646/// ObjCObjectType - Represents a class type in Objective C.
3647/// Every Objective C type is a combination of a base type and a
3648/// list of protocols.
3649///
3650/// Given the following declarations:
3651///   @class C;
3652///   @protocol P;
3653///
3654/// 'C' is an ObjCInterfaceType C.  It is sugar for an ObjCObjectType
3655/// with base C and no protocols.
3656///
3657/// 'C<P>' is an ObjCObjectType with base C and protocol list [P].
3658///
3659/// 'id' is a TypedefType which is sugar for an ObjCPointerType whose
3660/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
3661/// and no protocols.
3662///
3663/// 'id<P>' is an ObjCPointerType whose pointee is an ObjCObjecType
3664/// with base BuiltinType::ObjCIdType and protocol list [P].  Eventually
3665/// this should get its own sugar class to better represent the source.
3666class ObjCObjectType : public Type {
3667  // ObjCObjectType.NumProtocols - the number of protocols stored
3668  // after the ObjCObjectPointerType node.
3669  //
3670  // These protocols are those written directly on the type.  If
3671  // protocol qualifiers ever become additive, the iterators will need
3672  // to get kindof complicated.
3673  //
3674  // In the canonical object type, these are sorted alphabetically
3675  // and uniqued.
3676
3677  /// Either a BuiltinType or an InterfaceType or sugar for either.
3678  QualType BaseType;
3679
3680  ObjCProtocolDecl * const *getProtocolStorage() const {
3681    return const_cast<ObjCObjectType*>(this)->getProtocolStorage();
3682  }
3683
3684  ObjCProtocolDecl **getProtocolStorage();
3685
3686protected:
3687  ObjCObjectType(QualType Canonical, QualType Base,
3688                 ObjCProtocolDecl * const *Protocols, unsigned NumProtocols);
3689
3690  enum Nonce_ObjCInterface { Nonce_ObjCInterface };
3691  ObjCObjectType(enum Nonce_ObjCInterface)
3692        : Type(ObjCInterface, QualType(), false, false, false),
3693      BaseType(QualType(this_(), 0)) {
3694    ObjCObjectTypeBits.NumProtocols = 0;
3695  }
3696
3697public:
3698  /// getBaseType - Gets the base type of this object type.  This is
3699  /// always (possibly sugar for) one of:
3700  ///  - the 'id' builtin type (as opposed to the 'id' type visible to the
3701  ///    user, which is a typedef for an ObjCPointerType)
3702  ///  - the 'Class' builtin type (same caveat)
3703  ///  - an ObjCObjectType (currently always an ObjCInterfaceType)
3704  QualType getBaseType() const { return BaseType; }
3705
3706  bool isObjCId() const {
3707    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
3708  }
3709  bool isObjCClass() const {
3710    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
3711  }
3712  bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
3713  bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
3714  bool isObjCUnqualifiedIdOrClass() const {
3715    if (!qual_empty()) return false;
3716    if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
3717      return T->getKind() == BuiltinType::ObjCId ||
3718             T->getKind() == BuiltinType::ObjCClass;
3719    return false;
3720  }
3721  bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
3722  bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
3723
3724  /// Gets the interface declaration for this object type, if the base type
3725  /// really is an interface.
3726  ObjCInterfaceDecl *getInterface() const;
3727
3728  typedef ObjCProtocolDecl * const *qual_iterator;
3729
3730  qual_iterator qual_begin() const { return getProtocolStorage(); }
3731  qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
3732
3733  bool qual_empty() const { return getNumProtocols() == 0; }
3734
3735  /// getNumProtocols - Return the number of qualifying protocols in this
3736  /// interface type, or 0 if there are none.
3737  unsigned getNumProtocols() const { return ObjCObjectTypeBits.NumProtocols; }
3738
3739  /// \brief Fetch a protocol by index.
3740  ObjCProtocolDecl *getProtocol(unsigned I) const {
3741    assert(I < getNumProtocols() && "Out-of-range protocol access");
3742    return qual_begin()[I];
3743  }
3744
3745  bool isSugared() const { return false; }
3746  QualType desugar() const { return QualType(this, 0); }
3747
3748  static bool classof(const Type *T) {
3749    return T->getTypeClass() == ObjCObject ||
3750           T->getTypeClass() == ObjCInterface;
3751  }
3752  static bool classof(const ObjCObjectType *) { return true; }
3753};
3754
3755/// ObjCObjectTypeImpl - A class providing a concrete implementation
3756/// of ObjCObjectType, so as to not increase the footprint of
3757/// ObjCInterfaceType.  Code outside of ASTContext and the core type
3758/// system should not reference this type.
3759class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
3760  friend class ASTContext;
3761
3762  // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
3763  // will need to be modified.
3764
3765  ObjCObjectTypeImpl(QualType Canonical, QualType Base,
3766                     ObjCProtocolDecl * const *Protocols,
3767                     unsigned NumProtocols)
3768    : ObjCObjectType(Canonical, Base, Protocols, NumProtocols) {}
3769
3770public:
3771  void Profile(llvm::FoldingSetNodeID &ID);
3772  static void Profile(llvm::FoldingSetNodeID &ID,
3773                      QualType Base,
3774                      ObjCProtocolDecl *const *protocols,
3775                      unsigned NumProtocols);
3776};
3777
3778inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorage() {
3779  return reinterpret_cast<ObjCProtocolDecl**>(
3780            static_cast<ObjCObjectTypeImpl*>(this) + 1);
3781}
3782
3783/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
3784/// object oriented design.  They basically correspond to C++ classes.  There
3785/// are two kinds of interface types, normal interfaces like "NSString" and
3786/// qualified interfaces, which are qualified with a protocol list like
3787/// "NSString<NSCopyable, NSAmazing>".
3788///
3789/// ObjCInterfaceType guarantees the following properties when considered
3790/// as a subtype of its superclass, ObjCObjectType:
3791///   - There are no protocol qualifiers.  To reinforce this, code which
3792///     tries to invoke the protocol methods via an ObjCInterfaceType will
3793///     fail to compile.
3794///   - It is its own base type.  That is, if T is an ObjCInterfaceType*,
3795///     T->getBaseType() == QualType(T, 0).
3796class ObjCInterfaceType : public ObjCObjectType {
3797  ObjCInterfaceDecl *Decl;
3798
3799  ObjCInterfaceType(const ObjCInterfaceDecl *D)
3800    : ObjCObjectType(Nonce_ObjCInterface),
3801      Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
3802  friend class ASTContext;  // ASTContext creates these.
3803
3804public:
3805  /// getDecl - Get the declaration of this interface.
3806  ObjCInterfaceDecl *getDecl() const { return Decl; }
3807
3808  bool isSugared() const { return false; }
3809  QualType desugar() const { return QualType(this, 0); }
3810
3811  static bool classof(const Type *T) {
3812    return T->getTypeClass() == ObjCInterface;
3813  }
3814  static bool classof(const ObjCInterfaceType *) { return true; }
3815
3816  // Nonsense to "hide" certain members of ObjCObjectType within this
3817  // class.  People asking for protocols on an ObjCInterfaceType are
3818  // not going to get what they want: ObjCInterfaceTypes are
3819  // guaranteed to have no protocols.
3820  enum {
3821    qual_iterator,
3822    qual_begin,
3823    qual_end,
3824    getNumProtocols,
3825    getProtocol
3826  };
3827};
3828
3829inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
3830  if (const ObjCInterfaceType *T =
3831        getBaseType()->getAs<ObjCInterfaceType>())
3832    return T->getDecl();
3833  return 0;
3834}
3835
3836/// ObjCObjectPointerType - Used to represent a pointer to an
3837/// Objective C object.  These are constructed from pointer
3838/// declarators when the pointee type is an ObjCObjectType (or sugar
3839/// for one).  In addition, the 'id' and 'Class' types are typedefs
3840/// for these, and the protocol-qualified types 'id<P>' and 'Class<P>'
3841/// are translated into these.
3842///
3843/// Pointers to pointers to Objective C objects are still PointerTypes;
3844/// only the first level of pointer gets it own type implementation.
3845class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
3846  QualType PointeeType;
3847
3848  ObjCObjectPointerType(QualType Canonical, QualType Pointee)
3849    : Type(ObjCObjectPointer, Canonical, false, false, false),
3850      PointeeType(Pointee) {}
3851  friend class ASTContext;  // ASTContext creates these.
3852
3853public:
3854  /// getPointeeType - Gets the type pointed to by this ObjC pointer.
3855  /// The result will always be an ObjCObjectType or sugar thereof.
3856  QualType getPointeeType() const { return PointeeType; }
3857
3858  /// getObjCObjectType - Gets the type pointed to by this ObjC
3859  /// pointer.  This method always returns non-null.
3860  ///
3861  /// This method is equivalent to getPointeeType() except that
3862  /// it discards any typedefs (or other sugar) between this
3863  /// type and the "outermost" object type.  So for:
3864  ///   @class A; @protocol P; @protocol Q;
3865  ///   typedef A<P> AP;
3866  ///   typedef A A1;
3867  ///   typedef A1<P> A1P;
3868  ///   typedef A1P<Q> A1PQ;
3869  /// For 'A*', getObjectType() will return 'A'.
3870  /// For 'A<P>*', getObjectType() will return 'A<P>'.
3871  /// For 'AP*', getObjectType() will return 'A<P>'.
3872  /// For 'A1*', getObjectType() will return 'A'.
3873  /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
3874  /// For 'A1P*', getObjectType() will return 'A1<P>'.
3875  /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
3876  ///   adding protocols to a protocol-qualified base discards the
3877  ///   old qualifiers (for now).  But if it didn't, getObjectType()
3878  ///   would return 'A1P<Q>' (and we'd have to make iterating over
3879  ///   qualifiers more complicated).
3880  const ObjCObjectType *getObjectType() const {
3881    return PointeeType->castAs<ObjCObjectType>();
3882  }
3883
3884  /// getInterfaceType - If this pointer points to an Objective C
3885  /// @interface type, gets the type for that interface.  Any protocol
3886  /// qualifiers on the interface are ignored.
3887  ///
3888  /// \return null if the base type for this pointer is 'id' or 'Class'
3889  const ObjCInterfaceType *getInterfaceType() const {
3890    return getObjectType()->getBaseType()->getAs<ObjCInterfaceType>();
3891  }
3892
3893  /// getInterfaceDecl - If this pointer points to an Objective @interface
3894  /// type, gets the declaration for that interface.
3895  ///
3896  /// \return null if the base type for this pointer is 'id' or 'Class'
3897  ObjCInterfaceDecl *getInterfaceDecl() const {
3898    return getObjectType()->getInterface();
3899  }
3900
3901  /// isObjCIdType - True if this is equivalent to the 'id' type, i.e. if
3902  /// its object type is the primitive 'id' type with no protocols.
3903  bool isObjCIdType() const {
3904    return getObjectType()->isObjCUnqualifiedId();
3905  }
3906
3907  /// isObjCClassType - True if this is equivalent to the 'Class' type,
3908  /// i.e. if its object tive is the primitive 'Class' type with no protocols.
3909  bool isObjCClassType() const {
3910    return getObjectType()->isObjCUnqualifiedClass();
3911  }
3912
3913  /// isObjCQualifiedIdType - True if this is equivalent to 'id<P>' for some
3914  /// non-empty set of protocols.
3915  bool isObjCQualifiedIdType() const {
3916    return getObjectType()->isObjCQualifiedId();
3917  }
3918
3919  /// isObjCQualifiedClassType - True if this is equivalent to 'Class<P>' for
3920  /// some non-empty set of protocols.
3921  bool isObjCQualifiedClassType() const {
3922    return getObjectType()->isObjCQualifiedClass();
3923  }
3924
3925  /// An iterator over the qualifiers on the object type.  Provided
3926  /// for convenience.  This will always iterate over the full set of
3927  /// protocols on a type, not just those provided directly.
3928  typedef ObjCObjectType::qual_iterator qual_iterator;
3929
3930  qual_iterator qual_begin() const {
3931    return getObjectType()->qual_begin();
3932  }
3933  qual_iterator qual_end() const {
3934    return getObjectType()->qual_end();
3935  }
3936  bool qual_empty() const { return getObjectType()->qual_empty(); }
3937
3938  /// getNumProtocols - Return the number of qualifying protocols on
3939  /// the object type.
3940  unsigned getNumProtocols() const {
3941    return getObjectType()->getNumProtocols();
3942  }
3943
3944  /// \brief Retrieve a qualifying protocol by index on the object
3945  /// type.
3946  ObjCProtocolDecl *getProtocol(unsigned I) const {
3947    return getObjectType()->getProtocol(I);
3948  }
3949
3950  bool isSugared() const { return false; }
3951  QualType desugar() const { return QualType(this, 0); }
3952
3953  void Profile(llvm::FoldingSetNodeID &ID) {
3954    Profile(ID, getPointeeType());
3955  }
3956  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
3957    ID.AddPointer(T.getAsOpaquePtr());
3958  }
3959  static bool classof(const Type *T) {
3960    return T->getTypeClass() == ObjCObjectPointer;
3961  }
3962  static bool classof(const ObjCObjectPointerType *) { return true; }
3963};
3964
3965/// A qualifier set is used to build a set of qualifiers.
3966class QualifierCollector : public Qualifiers {
3967public:
3968  QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
3969
3970  /// Collect any qualifiers on the given type and return an
3971  /// unqualified type.  The qualifiers are assumed to be consistent
3972  /// with those already in the type.
3973  const Type *strip(QualType type) {
3974    addFastQualifiers(type.getLocalFastQualifiers());
3975    if (!type.hasLocalNonFastQualifiers())
3976      return type.getTypePtrUnsafe();
3977
3978    const ExtQuals *extQuals = type.getExtQualsUnsafe();
3979    addConsistentQualifiers(extQuals->getQualifiers());
3980    return extQuals->getBaseType();
3981  }
3982
3983  /// Apply the collected qualifiers to the given type.
3984  QualType apply(const ASTContext &Context, QualType QT) const;
3985
3986  /// Apply the collected qualifiers to the given type.
3987  QualType apply(const ASTContext &Context, const Type* T) const;
3988};
3989
3990
3991// Inline function definitions.
3992
3993inline const Type *QualType::getTypePtr() const {
3994  return getCommonPtr()->BaseType;
3995}
3996
3997inline const Type *QualType::getTypePtrOrNull() const {
3998  return (isNull() ? 0 : getCommonPtr()->BaseType);
3999}
4000
4001inline SplitQualType QualType::split() const {
4002  if (!hasLocalNonFastQualifiers())
4003    return SplitQualType(getTypePtrUnsafe(),
4004                         Qualifiers::fromFastMask(getLocalFastQualifiers()));
4005
4006  const ExtQuals *eq = getExtQualsUnsafe();
4007  Qualifiers qs = eq->getQualifiers();
4008  qs.addFastQualifiers(getLocalFastQualifiers());
4009  return SplitQualType(eq->getBaseType(), qs);
4010}
4011
4012inline Qualifiers QualType::getLocalQualifiers() const {
4013  Qualifiers Quals;
4014  if (hasLocalNonFastQualifiers())
4015    Quals = getExtQualsUnsafe()->getQualifiers();
4016  Quals.addFastQualifiers(getLocalFastQualifiers());
4017  return Quals;
4018}
4019
4020inline Qualifiers QualType::getQualifiers() const {
4021  Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
4022  quals.addFastQualifiers(getLocalFastQualifiers());
4023  return quals;
4024}
4025
4026inline unsigned QualType::getCVRQualifiers() const {
4027  unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
4028  cvr |= getLocalCVRQualifiers();
4029  return cvr;
4030}
4031
4032inline QualType QualType::getCanonicalType() const {
4033  QualType canon = getCommonPtr()->CanonicalType;
4034  return canon.withFastQualifiers(getLocalFastQualifiers());
4035}
4036
4037inline bool QualType::isCanonical() const {
4038  return getTypePtr()->isCanonicalUnqualified();
4039}
4040
4041inline bool QualType::isCanonicalAsParam() const {
4042  if (!isCanonical()) return false;
4043  if (hasLocalQualifiers()) return false;
4044
4045  const Type *T = getTypePtr();
4046  if (T->isVariablyModifiedType() && T->hasSizedVLAType())
4047    return false;
4048
4049  return !isa<FunctionType>(T) && !isa<ArrayType>(T);
4050}
4051
4052inline bool QualType::isConstQualified() const {
4053  return isLocalConstQualified() ||
4054         getCommonPtr()->CanonicalType.isLocalConstQualified();
4055}
4056
4057inline bool QualType::isRestrictQualified() const {
4058  return isLocalRestrictQualified() ||
4059         getCommonPtr()->CanonicalType.isLocalRestrictQualified();
4060}
4061
4062
4063inline bool QualType::isVolatileQualified() const {
4064  return isLocalVolatileQualified() ||
4065         getCommonPtr()->CanonicalType.isLocalVolatileQualified();
4066}
4067
4068inline bool QualType::hasQualifiers() const {
4069  return hasLocalQualifiers() ||
4070         getCommonPtr()->CanonicalType.hasLocalQualifiers();
4071}
4072
4073inline QualType QualType::getUnqualifiedType() const {
4074  if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
4075    return QualType(getTypePtr(), 0);
4076
4077  return QualType(getSplitUnqualifiedTypeImpl(*this).first, 0);
4078}
4079
4080inline SplitQualType QualType::getSplitUnqualifiedType() const {
4081  if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
4082    return split();
4083
4084  return getSplitUnqualifiedTypeImpl(*this);
4085}
4086
4087inline void QualType::removeLocalConst() {
4088  removeLocalFastQualifiers(Qualifiers::Const);
4089}
4090
4091inline void QualType::removeLocalRestrict() {
4092  removeLocalFastQualifiers(Qualifiers::Restrict);
4093}
4094
4095inline void QualType::removeLocalVolatile() {
4096  removeLocalFastQualifiers(Qualifiers::Volatile);
4097}
4098
4099inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
4100  assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
4101  assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask);
4102
4103  // Fast path: we don't need to touch the slow qualifiers.
4104  removeLocalFastQualifiers(Mask);
4105}
4106
4107/// getAddressSpace - Return the address space of this type.
4108inline unsigned QualType::getAddressSpace() const {
4109  return getQualifiers().getAddressSpace();
4110}
4111
4112/// getObjCGCAttr - Return the gc attribute of this type.
4113inline Qualifiers::GC QualType::getObjCGCAttr() const {
4114  return getQualifiers().getObjCGCAttr();
4115}
4116
4117inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
4118  if (const PointerType *PT = t.getAs<PointerType>()) {
4119    if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
4120      return FT->getExtInfo();
4121  } else if (const FunctionType *FT = t.getAs<FunctionType>())
4122    return FT->getExtInfo();
4123
4124  return FunctionType::ExtInfo();
4125}
4126
4127inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
4128  return getFunctionExtInfo(*t);
4129}
4130
4131/// \brief Determine whether this set of qualifiers is a superset of the given
4132/// set of qualifiers.
4133inline bool Qualifiers::isSupersetOf(Qualifiers Other) const {
4134  return Mask != Other.Mask && (Mask | Other.Mask) == Mask;
4135}
4136
4137/// isMoreQualifiedThan - Determine whether this type is more
4138/// qualified than the Other type. For example, "const volatile int"
4139/// is more qualified than "const int", "volatile int", and
4140/// "int". However, it is not more qualified than "const volatile
4141/// int".
4142inline bool QualType::isMoreQualifiedThan(QualType other) const {
4143  Qualifiers myQuals = getQualifiers();
4144  Qualifiers otherQuals = other.getQualifiers();
4145  return (myQuals != otherQuals && myQuals.compatiblyIncludes(otherQuals));
4146}
4147
4148/// isAtLeastAsQualifiedAs - Determine whether this type is at last
4149/// as qualified as the Other type. For example, "const volatile
4150/// int" is at least as qualified as "const int", "volatile int",
4151/// "int", and "const volatile int".
4152inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
4153  return getQualifiers().compatiblyIncludes(other.getQualifiers());
4154}
4155
4156/// getNonReferenceType - If Type is a reference type (e.g., const
4157/// int&), returns the type that the reference refers to ("const
4158/// int"). Otherwise, returns the type itself. This routine is used
4159/// throughout Sema to implement C++ 5p6:
4160///
4161///   If an expression initially has the type "reference to T" (8.3.2,
4162///   8.5.3), the type is adjusted to "T" prior to any further
4163///   analysis, the expression designates the object or function
4164///   denoted by the reference, and the expression is an lvalue.
4165inline QualType QualType::getNonReferenceType() const {
4166  if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
4167    return RefType->getPointeeType();
4168  else
4169    return *this;
4170}
4171
4172inline bool Type::isFunctionType() const {
4173  return isa<FunctionType>(CanonicalType);
4174}
4175inline bool Type::isPointerType() const {
4176  return isa<PointerType>(CanonicalType);
4177}
4178inline bool Type::isAnyPointerType() const {
4179  return isPointerType() || isObjCObjectPointerType();
4180}
4181inline bool Type::isBlockPointerType() const {
4182  return isa<BlockPointerType>(CanonicalType);
4183}
4184inline bool Type::isReferenceType() const {
4185  return isa<ReferenceType>(CanonicalType);
4186}
4187inline bool Type::isLValueReferenceType() const {
4188  return isa<LValueReferenceType>(CanonicalType);
4189}
4190inline bool Type::isRValueReferenceType() const {
4191  return isa<RValueReferenceType>(CanonicalType);
4192}
4193inline bool Type::isFunctionPointerType() const {
4194  if (const PointerType *T = getAs<PointerType>())
4195    return T->getPointeeType()->isFunctionType();
4196  else
4197    return false;
4198}
4199inline bool Type::isMemberPointerType() const {
4200  return isa<MemberPointerType>(CanonicalType);
4201}
4202inline bool Type::isMemberFunctionPointerType() const {
4203  if (const MemberPointerType* T = getAs<MemberPointerType>())
4204    return T->isMemberFunctionPointer();
4205  else
4206    return false;
4207}
4208inline bool Type::isMemberDataPointerType() const {
4209  if (const MemberPointerType* T = getAs<MemberPointerType>())
4210    return T->isMemberDataPointer();
4211  else
4212    return false;
4213}
4214inline bool Type::isArrayType() const {
4215  return isa<ArrayType>(CanonicalType);
4216}
4217inline bool Type::isConstantArrayType() const {
4218  return isa<ConstantArrayType>(CanonicalType);
4219}
4220inline bool Type::isIncompleteArrayType() const {
4221  return isa<IncompleteArrayType>(CanonicalType);
4222}
4223inline bool Type::isVariableArrayType() const {
4224  return isa<VariableArrayType>(CanonicalType);
4225}
4226inline bool Type::isDependentSizedArrayType() const {
4227  return isa<DependentSizedArrayType>(CanonicalType);
4228}
4229inline bool Type::isBuiltinType() const {
4230  return isa<BuiltinType>(CanonicalType);
4231}
4232inline bool Type::isRecordType() const {
4233  return isa<RecordType>(CanonicalType);
4234}
4235inline bool Type::isEnumeralType() const {
4236  return isa<EnumType>(CanonicalType);
4237}
4238inline bool Type::isAnyComplexType() const {
4239  return isa<ComplexType>(CanonicalType);
4240}
4241inline bool Type::isVectorType() const {
4242  return isa<VectorType>(CanonicalType);
4243}
4244inline bool Type::isExtVectorType() const {
4245  return isa<ExtVectorType>(CanonicalType);
4246}
4247inline bool Type::isObjCObjectPointerType() const {
4248  return isa<ObjCObjectPointerType>(CanonicalType);
4249}
4250inline bool Type::isObjCObjectType() const {
4251  return isa<ObjCObjectType>(CanonicalType);
4252}
4253inline bool Type::isObjCObjectOrInterfaceType() const {
4254  return isa<ObjCInterfaceType>(CanonicalType) ||
4255    isa<ObjCObjectType>(CanonicalType);
4256}
4257
4258inline bool Type::isObjCQualifiedIdType() const {
4259  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4260    return OPT->isObjCQualifiedIdType();
4261  return false;
4262}
4263inline bool Type::isObjCQualifiedClassType() const {
4264  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4265    return OPT->isObjCQualifiedClassType();
4266  return false;
4267}
4268inline bool Type::isObjCIdType() const {
4269  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4270    return OPT->isObjCIdType();
4271  return false;
4272}
4273inline bool Type::isObjCClassType() const {
4274  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4275    return OPT->isObjCClassType();
4276  return false;
4277}
4278inline bool Type::isObjCSelType() const {
4279  if (const PointerType *OPT = getAs<PointerType>())
4280    return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
4281  return false;
4282}
4283inline bool Type::isObjCBuiltinType() const {
4284  return isObjCIdType() || isObjCClassType() || isObjCSelType();
4285}
4286inline bool Type::isTemplateTypeParmType() const {
4287  return isa<TemplateTypeParmType>(CanonicalType);
4288}
4289
4290inline bool Type::isSpecificBuiltinType(unsigned K) const {
4291  if (const BuiltinType *BT = getAs<BuiltinType>())
4292    if (BT->getKind() == (BuiltinType::Kind) K)
4293      return true;
4294  return false;
4295}
4296
4297inline bool Type::isPlaceholderType() const {
4298  if (const BuiltinType *BT = getAs<BuiltinType>())
4299    return BT->isPlaceholderType();
4300  return false;
4301}
4302
4303/// \brief Determines whether this is a type for which one can define
4304/// an overloaded operator.
4305inline bool Type::isOverloadableType() const {
4306  return isDependentType() || isRecordType() || isEnumeralType();
4307}
4308
4309inline bool Type::hasPointerRepresentation() const {
4310  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
4311          isObjCObjectPointerType() || isNullPtrType());
4312}
4313
4314inline bool Type::hasObjCPointerRepresentation() const {
4315  return isObjCObjectPointerType();
4316}
4317
4318inline const Type *Type::getBaseElementTypeUnsafe() const {
4319  const Type *type = this;
4320  while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
4321    type = arrayType->getElementType().getTypePtr();
4322  return type;
4323}
4324
4325/// Insertion operator for diagnostics.  This allows sending QualType's into a
4326/// diagnostic with <<.
4327inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
4328                                           QualType T) {
4329  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
4330                  Diagnostic::ak_qualtype);
4331  return DB;
4332}
4333
4334/// Insertion operator for partial diagnostics.  This allows sending QualType's
4335/// into a diagnostic with <<.
4336inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
4337                                           QualType T) {
4338  PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
4339                  Diagnostic::ak_qualtype);
4340  return PD;
4341}
4342
4343// Helper class template that is used by Type::getAs to ensure that one does
4344// not try to look through a qualified type to get to an array type.
4345template<typename T,
4346         bool isArrayType = (llvm::is_same<T, ArrayType>::value ||
4347                             llvm::is_base_of<ArrayType, T>::value)>
4348struct ArrayType_cannot_be_used_with_getAs { };
4349
4350template<typename T>
4351struct ArrayType_cannot_be_used_with_getAs<T, true>;
4352
4353/// Member-template getAs<specific type>'.
4354template <typename T> const T *Type::getAs() const {
4355  ArrayType_cannot_be_used_with_getAs<T> at;
4356  (void)at;
4357
4358  // If this is directly a T type, return it.
4359  if (const T *Ty = dyn_cast<T>(this))
4360    return Ty;
4361
4362  // If the canonical form of this type isn't the right kind, reject it.
4363  if (!isa<T>(CanonicalType))
4364    return 0;
4365
4366  // If this is a typedef for the type, strip the typedef off without
4367  // losing all typedef information.
4368  return cast<T>(getUnqualifiedDesugaredType());
4369}
4370
4371inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
4372  // If this is directly an array type, return it.
4373  if (const ArrayType *arr = dyn_cast<ArrayType>(this))
4374    return arr;
4375
4376  // If the canonical form of this type isn't the right kind, reject it.
4377  if (!isa<ArrayType>(CanonicalType))
4378    return 0;
4379
4380  // If this is a typedef for the type, strip the typedef off without
4381  // losing all typedef information.
4382  return cast<ArrayType>(getUnqualifiedDesugaredType());
4383}
4384
4385template <typename T> const T *Type::castAs() const {
4386  ArrayType_cannot_be_used_with_getAs<T> at;
4387  (void) at;
4388
4389  assert(isa<T>(CanonicalType));
4390  if (const T *ty = dyn_cast<T>(this)) return ty;
4391  return cast<T>(getUnqualifiedDesugaredType());
4392}
4393
4394inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
4395  assert(isa<ArrayType>(CanonicalType));
4396  if (const ArrayType *arr = dyn_cast<ArrayType>(this)) return arr;
4397  return cast<ArrayType>(getUnqualifiedDesugaredType());
4398}
4399
4400}  // end namespace clang
4401
4402#endif
4403