Type.h revision b93a009003f19418ef0ef0d8a42a3895562c7391
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Basic/IdentifierTable.h"
19#include "clang/Basic/Linkage.h"
20#include "clang/AST/NestedNameSpecifier.h"
21#include "clang/AST/TemplateName.h"
22#include "llvm/Support/Casting.h"
23#include "llvm/Support/type_traits.h"
24#include "llvm/ADT/APSInt.h"
25#include "llvm/ADT/FoldingSet.h"
26#include "llvm/ADT/PointerIntPair.h"
27#include "llvm/ADT/PointerUnion.h"
28
29using llvm::isa;
30using llvm::cast;
31using llvm::cast_or_null;
32using llvm::dyn_cast;
33using llvm::dyn_cast_or_null;
34namespace clang {
35  enum {
36    TypeAlignmentInBits = 3,
37    TypeAlignment = 1 << TypeAlignmentInBits
38  };
39  class Type;
40  class ExtQuals;
41  class QualType;
42}
43
44namespace llvm {
45  template <typename T>
46  class PointerLikeTypeTraits;
47  template<>
48  class PointerLikeTypeTraits< ::clang::Type*> {
49  public:
50    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
51    static inline ::clang::Type *getFromVoidPointer(void *P) {
52      return static_cast< ::clang::Type*>(P);
53    }
54    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
55  };
56  template<>
57  class PointerLikeTypeTraits< ::clang::ExtQuals*> {
58  public:
59    static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
60    static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
61      return static_cast< ::clang::ExtQuals*>(P);
62    }
63    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
64  };
65
66  template <>
67  struct isPodLike<clang::QualType> { static const bool value = true; };
68}
69
70namespace clang {
71  class ASTContext;
72  class TypedefDecl;
73  class TemplateDecl;
74  class TemplateTypeParmDecl;
75  class NonTypeTemplateParmDecl;
76  class TemplateTemplateParmDecl;
77  class TagDecl;
78  class RecordDecl;
79  class CXXRecordDecl;
80  class EnumDecl;
81  class FieldDecl;
82  class ObjCInterfaceDecl;
83  class ObjCProtocolDecl;
84  class ObjCMethodDecl;
85  class UnresolvedUsingTypenameDecl;
86  class Expr;
87  class Stmt;
88  class SourceLocation;
89  class StmtIteratorBase;
90  class TemplateArgument;
91  class TemplateArgumentLoc;
92  class TemplateArgumentListInfo;
93  class QualifiedNameType;
94  struct PrintingPolicy;
95
96  // Provide forward declarations for all of the *Type classes
97#define TYPE(Class, Base) class Class##Type;
98#include "clang/AST/TypeNodes.def"
99
100/// Qualifiers - The collection of all-type qualifiers we support.
101/// Clang supports five independent qualifiers:
102/// * C99: const, volatile, and restrict
103/// * Embedded C (TR18037): address spaces
104/// * Objective C: the GC attributes (none, weak, or strong)
105class Qualifiers {
106public:
107  enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
108    Const    = 0x1,
109    Restrict = 0x2,
110    Volatile = 0x4,
111    CVRMask = Const | Volatile | Restrict
112  };
113
114  enum GC {
115    GCNone = 0,
116    Weak,
117    Strong
118  };
119
120  enum {
121    /// The maximum supported address space number.
122    /// 24 bits should be enough for anyone.
123    MaxAddressSpace = 0xffffffu,
124
125    /// The width of the "fast" qualifier mask.
126    FastWidth = 2,
127
128    /// The fast qualifier mask.
129    FastMask = (1 << FastWidth) - 1
130  };
131
132  Qualifiers() : Mask(0) {}
133
134  static Qualifiers fromFastMask(unsigned Mask) {
135    Qualifiers Qs;
136    Qs.addFastQualifiers(Mask);
137    return Qs;
138  }
139
140  static Qualifiers fromCVRMask(unsigned CVR) {
141    Qualifiers Qs;
142    Qs.addCVRQualifiers(CVR);
143    return Qs;
144  }
145
146  // Deserialize qualifiers from an opaque representation.
147  static Qualifiers fromOpaqueValue(unsigned opaque) {
148    Qualifiers Qs;
149    Qs.Mask = opaque;
150    return Qs;
151  }
152
153  // Serialize these qualifiers into an opaque representation.
154  unsigned getAsOpaqueValue() const {
155    return Mask;
156  }
157
158  bool hasConst() const { return Mask & Const; }
159  void setConst(bool flag) {
160    Mask = (Mask & ~Const) | (flag ? Const : 0);
161  }
162  void removeConst() { Mask &= ~Const; }
163  void addConst() { Mask |= Const; }
164
165  bool hasVolatile() const { return Mask & Volatile; }
166  void setVolatile(bool flag) {
167    Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
168  }
169  void removeVolatile() { Mask &= ~Volatile; }
170  void addVolatile() { Mask |= Volatile; }
171
172  bool hasRestrict() const { return Mask & Restrict; }
173  void setRestrict(bool flag) {
174    Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
175  }
176  void removeRestrict() { Mask &= ~Restrict; }
177  void addRestrict() { Mask |= Restrict; }
178
179  bool hasCVRQualifiers() const { return getCVRQualifiers(); }
180  unsigned getCVRQualifiers() const { return Mask & CVRMask; }
181  void setCVRQualifiers(unsigned mask) {
182    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
183    Mask = (Mask & ~CVRMask) | mask;
184  }
185  void removeCVRQualifiers(unsigned mask) {
186    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
187    Mask &= ~mask;
188  }
189  void removeCVRQualifiers() {
190    removeCVRQualifiers(CVRMask);
191  }
192  void addCVRQualifiers(unsigned mask) {
193    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
194    Mask |= mask;
195  }
196
197  bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
198  GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
199  void setObjCGCAttr(GC type) {
200    Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
201  }
202  void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
203  void addObjCGCAttr(GC type) {
204    assert(type);
205    setObjCGCAttr(type);
206  }
207
208  bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
209  unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
210  void setAddressSpace(unsigned space) {
211    assert(space <= MaxAddressSpace);
212    Mask = (Mask & ~AddressSpaceMask)
213         | (((uint32_t) space) << AddressSpaceShift);
214  }
215  void removeAddressSpace() { setAddressSpace(0); }
216  void addAddressSpace(unsigned space) {
217    assert(space);
218    setAddressSpace(space);
219  }
220
221  // Fast qualifiers are those that can be allocated directly
222  // on a QualType object.
223  bool hasFastQualifiers() const { return getFastQualifiers(); }
224  unsigned getFastQualifiers() const { return Mask & FastMask; }
225  void setFastQualifiers(unsigned mask) {
226    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
227    Mask = (Mask & ~FastMask) | mask;
228  }
229  void removeFastQualifiers(unsigned mask) {
230    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
231    Mask &= ~mask;
232  }
233  void removeFastQualifiers() {
234    removeFastQualifiers(FastMask);
235  }
236  void addFastQualifiers(unsigned mask) {
237    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
238    Mask |= mask;
239  }
240
241  /// hasNonFastQualifiers - Return true if the set contains any
242  /// qualifiers which require an ExtQuals node to be allocated.
243  bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
244  Qualifiers getNonFastQualifiers() const {
245    Qualifiers Quals = *this;
246    Quals.setFastQualifiers(0);
247    return Quals;
248  }
249
250  /// hasQualifiers - Return true if the set contains any qualifiers.
251  bool hasQualifiers() const { return Mask; }
252  bool empty() const { return !Mask; }
253
254  /// \brief Add the qualifiers from the given set to this set.
255  void addQualifiers(Qualifiers Q) {
256    // If the other set doesn't have any non-boolean qualifiers, just
257    // bit-or it in.
258    if (!(Q.Mask & ~CVRMask))
259      Mask |= Q.Mask;
260    else {
261      Mask |= (Q.Mask & CVRMask);
262      if (Q.hasAddressSpace())
263        addAddressSpace(Q.getAddressSpace());
264      if (Q.hasObjCGCAttr())
265        addObjCGCAttr(Q.getObjCGCAttr());
266    }
267  }
268
269  bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
270  bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
271
272  operator bool() const { return hasQualifiers(); }
273
274  Qualifiers &operator+=(Qualifiers R) {
275    addQualifiers(R);
276    return *this;
277  }
278
279  // Union two qualifier sets.  If an enumerated qualifier appears
280  // in both sets, use the one from the right.
281  friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
282    L += R;
283    return L;
284  }
285
286  std::string getAsString() const;
287  std::string getAsString(const PrintingPolicy &Policy) const {
288    std::string Buffer;
289    getAsStringInternal(Buffer, Policy);
290    return Buffer;
291  }
292  void getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const;
293
294  void Profile(llvm::FoldingSetNodeID &ID) const {
295    ID.AddInteger(Mask);
296  }
297
298private:
299
300  // bits:     |0 1 2|3 .. 4|5  ..  31|
301  //           |C R V|GCAttr|AddrSpace|
302  uint32_t Mask;
303
304  static const uint32_t GCAttrMask = 0x18;
305  static const uint32_t GCAttrShift = 3;
306  static const uint32_t AddressSpaceMask = ~(CVRMask | GCAttrMask);
307  static const uint32_t AddressSpaceShift = 5;
308};
309
310
311/// ExtQuals - We can encode up to three bits in the low bits of a
312/// type pointer, but there are many more type qualifiers that we want
313/// to be able to apply to an arbitrary type.  Therefore we have this
314/// struct, intended to be heap-allocated and used by QualType to
315/// store qualifiers.
316///
317/// The current design tags the 'const' and 'restrict' qualifiers in
318/// two low bits on the QualType pointer; a third bit records whether
319/// the pointer is an ExtQuals node.  'const' was chosen because it is
320/// orders of magnitude more common than the other two qualifiers, in
321/// both library and user code.  It's relatively rare to see
322/// 'restrict' in user code, but many standard C headers are saturated
323/// with 'restrict' declarations, so that representing them efficiently
324/// is a critical goal of this representation.
325class ExtQuals : public llvm::FoldingSetNode {
326  // NOTE: changing the fast qualifiers should be straightforward as
327  // long as you don't make 'const' non-fast.
328  // 1. Qualifiers:
329  //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
330  //       Fast qualifiers must occupy the low-order bits.
331  //    b) Update Qualifiers::FastWidth and FastMask.
332  // 2. QualType:
333  //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
334  //    b) Update remove{Volatile,Restrict}, defined near the end of
335  //       this header.
336  // 3. ASTContext:
337  //    a) Update get{Volatile,Restrict}Type.
338
339  /// Context - the context to which this set belongs.  We save this
340  /// here so that QualifierCollector can use it to reapply extended
341  /// qualifiers to an arbitrary type without requiring a context to
342  /// be pushed through every single API dealing with qualifiers.
343  ASTContext& Context;
344
345  /// BaseType - the underlying type that this qualifies
346  const Type *BaseType;
347
348  /// Quals - the immutable set of qualifiers applied by this
349  /// node;  always contains extended qualifiers.
350  Qualifiers Quals;
351
352public:
353  ExtQuals(ASTContext& Context, const Type *Base, Qualifiers Quals)
354    : Context(Context), BaseType(Base), Quals(Quals)
355  {
356    assert(Quals.hasNonFastQualifiers()
357           && "ExtQuals created with no fast qualifiers");
358    assert(!Quals.hasFastQualifiers()
359           && "ExtQuals created with fast qualifiers");
360  }
361
362  Qualifiers getQualifiers() const { return Quals; }
363
364  bool hasVolatile() const { return Quals.hasVolatile(); }
365
366  bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
367  Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
368
369  bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
370  unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
371
372  const Type *getBaseType() const { return BaseType; }
373
374  ASTContext &getContext() const { return Context; }
375
376public:
377  void Profile(llvm::FoldingSetNodeID &ID) const {
378    Profile(ID, getBaseType(), Quals);
379  }
380  static void Profile(llvm::FoldingSetNodeID &ID,
381                      const Type *BaseType,
382                      Qualifiers Quals) {
383    assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
384    ID.AddPointer(BaseType);
385    Quals.Profile(ID);
386  }
387};
388
389/// CallingConv - Specifies the calling convention that a function uses.
390enum CallingConv {
391  CC_Default,
392  CC_C,           // __attribute__((cdecl))
393  CC_X86StdCall,  // __attribute__((stdcall))
394  CC_X86FastCall  // __attribute__((fastcall))
395};
396
397
398/// QualType - For efficiency, we don't store CV-qualified types as nodes on
399/// their own: instead each reference to a type stores the qualifiers.  This
400/// greatly reduces the number of nodes we need to allocate for types (for
401/// example we only need one for 'int', 'const int', 'volatile int',
402/// 'const volatile int', etc).
403///
404/// As an added efficiency bonus, instead of making this a pair, we
405/// just store the two bits we care about in the low bits of the
406/// pointer.  To handle the packing/unpacking, we make QualType be a
407/// simple wrapper class that acts like a smart pointer.  A third bit
408/// indicates whether there are extended qualifiers present, in which
409/// case the pointer points to a special structure.
410class QualType {
411  // Thankfully, these are efficiently composable.
412  llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
413                       Qualifiers::FastWidth> Value;
414
415  const ExtQuals *getExtQualsUnsafe() const {
416    return Value.getPointer().get<const ExtQuals*>();
417  }
418
419  const Type *getTypePtrUnsafe() const {
420    return Value.getPointer().get<const Type*>();
421  }
422
423  QualType getUnqualifiedTypeSlow() const;
424
425  friend class QualifierCollector;
426public:
427  QualType() {}
428
429  QualType(const Type *Ptr, unsigned Quals)
430    : Value(Ptr, Quals) {}
431  QualType(const ExtQuals *Ptr, unsigned Quals)
432    : Value(Ptr, Quals) {}
433
434  unsigned getLocalFastQualifiers() const { return Value.getInt(); }
435  void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
436
437  /// Retrieves a pointer to the underlying (unqualified) type.
438  /// This should really return a const Type, but it's not worth
439  /// changing all the users right now.
440  Type *getTypePtr() const {
441    if (hasLocalNonFastQualifiers())
442      return const_cast<Type*>(getExtQualsUnsafe()->getBaseType());
443    return const_cast<Type*>(getTypePtrUnsafe());
444  }
445
446  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
447  static QualType getFromOpaquePtr(void *Ptr) {
448    QualType T;
449    T.Value.setFromOpaqueValue(Ptr);
450    return T;
451  }
452
453  Type &operator*() const {
454    return *getTypePtr();
455  }
456
457  Type *operator->() const {
458    return getTypePtr();
459  }
460
461  bool isCanonical() const;
462  bool isCanonicalAsParam() const;
463
464  /// isNull - Return true if this QualType doesn't point to a type yet.
465  bool isNull() const {
466    return Value.getPointer().isNull();
467  }
468
469  /// \brief Determine whether this particular QualType instance has the
470  /// "const" qualifier set, without looking through typedefs that may have
471  /// added "const" at a different level.
472  bool isLocalConstQualified() const {
473    return (getLocalFastQualifiers() & Qualifiers::Const);
474  }
475
476  /// \brief Determine whether this type is const-qualified.
477  bool isConstQualified() const;
478
479  /// \brief Determine whether this particular QualType instance has the
480  /// "restrict" qualifier set, without looking through typedefs that may have
481  /// added "restrict" at a different level.
482  bool isLocalRestrictQualified() const {
483    return (getLocalFastQualifiers() & Qualifiers::Restrict);
484  }
485
486  /// \brief Determine whether this type is restrict-qualified.
487  bool isRestrictQualified() const;
488
489  /// \brief Determine whether this particular QualType instance has the
490  /// "volatile" qualifier set, without looking through typedefs that may have
491  /// added "volatile" at a different level.
492  bool isLocalVolatileQualified() const {
493    return (hasLocalNonFastQualifiers() && getExtQualsUnsafe()->hasVolatile());
494  }
495
496  /// \brief Determine whether this type is volatile-qualified.
497  bool isVolatileQualified() const;
498
499  /// \brief Determine whether this particular QualType instance has any
500  /// qualifiers, without looking through any typedefs that might add
501  /// qualifiers at a different level.
502  bool hasLocalQualifiers() const {
503    return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
504  }
505
506  /// \brief Determine whether this type has any qualifiers.
507  bool hasQualifiers() const;
508
509  /// \brief Determine whether this particular QualType instance has any
510  /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
511  /// instance.
512  bool hasLocalNonFastQualifiers() const {
513    return Value.getPointer().is<const ExtQuals*>();
514  }
515
516  /// \brief Retrieve the set of qualifiers local to this particular QualType
517  /// instance, not including any qualifiers acquired through typedefs or
518  /// other sugar.
519  Qualifiers getLocalQualifiers() const {
520    Qualifiers Quals;
521    if (hasLocalNonFastQualifiers())
522      Quals = getExtQualsUnsafe()->getQualifiers();
523    Quals.addFastQualifiers(getLocalFastQualifiers());
524    return Quals;
525  }
526
527  /// \brief Retrieve the set of qualifiers applied to this type.
528  Qualifiers getQualifiers() const;
529
530  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
531  /// local to this particular QualType instance, not including any qualifiers
532  /// acquired through typedefs or other sugar.
533  unsigned getLocalCVRQualifiers() const {
534    unsigned CVR = getLocalFastQualifiers();
535    if (isLocalVolatileQualified())
536      CVR |= Qualifiers::Volatile;
537    return CVR;
538  }
539
540  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
541  /// applied to this type.
542  unsigned getCVRQualifiers() const;
543
544  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
545  /// applied to this type, looking through any number of unqualified array
546  /// types to their element types' qualifiers.
547  unsigned getCVRQualifiersThroughArrayTypes() const;
548
549  bool isConstant(ASTContext& Ctx) const {
550    return QualType::isConstant(*this, Ctx);
551  }
552
553  // Don't promise in the API that anything besides 'const' can be
554  // easily added.
555
556  /// addConst - add the specified type qualifier to this QualType.
557  void addConst() {
558    addFastQualifiers(Qualifiers::Const);
559  }
560  QualType withConst() const {
561    return withFastQualifiers(Qualifiers::Const);
562  }
563
564  void addFastQualifiers(unsigned TQs) {
565    assert(!(TQs & ~Qualifiers::FastMask)
566           && "non-fast qualifier bits set in mask!");
567    Value.setInt(Value.getInt() | TQs);
568  }
569
570  // FIXME: The remove* functions are semantically broken, because they might
571  // not remove a qualifier stored on a typedef. Most of the with* functions
572  // have the same problem.
573  void removeConst();
574  void removeVolatile();
575  void removeRestrict();
576  void removeCVRQualifiers(unsigned Mask);
577
578  void removeFastQualifiers() { Value.setInt(0); }
579  void removeFastQualifiers(unsigned Mask) {
580    assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
581    Value.setInt(Value.getInt() & ~Mask);
582  }
583
584  // Creates a type with the given qualifiers in addition to any
585  // qualifiers already on this type.
586  QualType withFastQualifiers(unsigned TQs) const {
587    QualType T = *this;
588    T.addFastQualifiers(TQs);
589    return T;
590  }
591
592  // Creates a type with exactly the given fast qualifiers, removing
593  // any existing fast qualifiers.
594  QualType withExactFastQualifiers(unsigned TQs) const {
595    return withoutFastQualifiers().withFastQualifiers(TQs);
596  }
597
598  // Removes fast qualifiers, but leaves any extended qualifiers in place.
599  QualType withoutFastQualifiers() const {
600    QualType T = *this;
601    T.removeFastQualifiers();
602    return T;
603  }
604
605  /// \brief Return this type with all of the instance-specific qualifiers
606  /// removed, but without removing any qualifiers that may have been applied
607  /// through typedefs.
608  QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
609
610  /// \brief Return the unqualified form of the given type, which might be
611  /// desugared to eliminate qualifiers introduced via typedefs.
612  QualType getUnqualifiedType() const {
613    QualType T = getLocalUnqualifiedType();
614    if (!T.hasQualifiers())
615      return T;
616
617    return getUnqualifiedTypeSlow();
618  }
619
620  bool isMoreQualifiedThan(QualType Other) const;
621  bool isAtLeastAsQualifiedAs(QualType Other) const;
622  QualType getNonReferenceType() const;
623
624  /// getDesugaredType - Return the specified type with any "sugar" removed from
625  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
626  /// the type is already concrete, it returns it unmodified.  This is similar
627  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
628  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
629  /// concrete.
630  ///
631  /// Qualifiers are left in place.
632  QualType getDesugaredType() const {
633    return QualType::getDesugaredType(*this);
634  }
635
636  /// operator==/!= - Indicate whether the specified types and qualifiers are
637  /// identical.
638  friend bool operator==(const QualType &LHS, const QualType &RHS) {
639    return LHS.Value == RHS.Value;
640  }
641  friend bool operator!=(const QualType &LHS, const QualType &RHS) {
642    return LHS.Value != RHS.Value;
643  }
644  std::string getAsString() const;
645
646  std::string getAsString(const PrintingPolicy &Policy) const {
647    std::string S;
648    getAsStringInternal(S, Policy);
649    return S;
650  }
651  void getAsStringInternal(std::string &Str,
652                           const PrintingPolicy &Policy) const;
653
654  void dump(const char *s) const;
655  void dump() const;
656
657  void Profile(llvm::FoldingSetNodeID &ID) const {
658    ID.AddPointer(getAsOpaquePtr());
659  }
660
661  /// getAddressSpace - Return the address space of this type.
662  inline unsigned getAddressSpace() const;
663
664  /// GCAttrTypesAttr - Returns gc attribute of this type.
665  inline Qualifiers::GC getObjCGCAttr() const;
666
667  /// isObjCGCWeak true when Type is objc's weak.
668  bool isObjCGCWeak() const {
669    return getObjCGCAttr() == Qualifiers::Weak;
670  }
671
672  /// isObjCGCStrong true when Type is objc's strong.
673  bool isObjCGCStrong() const {
674    return getObjCGCAttr() == Qualifiers::Strong;
675  }
676
677  /// getNoReturnAttr - Returns true if the type has the noreturn attribute,
678  /// false otherwise.
679  bool getNoReturnAttr() const;
680
681  /// getCallConv - Returns the calling convention of the type if the type
682  /// is a function type, CC_Default otherwise.
683  CallingConv getCallConv() const;
684
685private:
686  // These methods are implemented in a separate translation unit;
687  // "static"-ize them to avoid creating temporary QualTypes in the
688  // caller.
689  static bool isConstant(QualType T, ASTContext& Ctx);
690  static QualType getDesugaredType(QualType T);
691};
692
693} // end clang.
694
695namespace llvm {
696/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
697/// to a specific Type class.
698template<> struct simplify_type<const ::clang::QualType> {
699  typedef ::clang::Type* SimpleType;
700  static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
701    return Val.getTypePtr();
702  }
703};
704template<> struct simplify_type< ::clang::QualType>
705  : public simplify_type<const ::clang::QualType> {};
706
707// Teach SmallPtrSet that QualType is "basically a pointer".
708template<>
709class PointerLikeTypeTraits<clang::QualType> {
710public:
711  static inline void *getAsVoidPointer(clang::QualType P) {
712    return P.getAsOpaquePtr();
713  }
714  static inline clang::QualType getFromVoidPointer(void *P) {
715    return clang::QualType::getFromOpaquePtr(P);
716  }
717  // Various qualifiers go in low bits.
718  enum { NumLowBitsAvailable = 0 };
719};
720
721} // end namespace llvm
722
723namespace clang {
724
725/// Type - This is the base class of the type hierarchy.  A central concept
726/// with types is that each type always has a canonical type.  A canonical type
727/// is the type with any typedef names stripped out of it or the types it
728/// references.  For example, consider:
729///
730///  typedef int  foo;
731///  typedef foo* bar;
732///    'int *'    'foo *'    'bar'
733///
734/// There will be a Type object created for 'int'.  Since int is canonical, its
735/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
736/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
737/// there is a PointerType that represents 'int*', which, like 'int', is
738/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
739/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
740/// is also 'int*'.
741///
742/// Non-canonical types are useful for emitting diagnostics, without losing
743/// information about typedefs being used.  Canonical types are useful for type
744/// comparisons (they allow by-pointer equality tests) and useful for reasoning
745/// about whether something has a particular form (e.g. is a function type),
746/// because they implicitly, recursively, strip all typedefs out of a type.
747///
748/// Types, once created, are immutable.
749///
750class Type {
751public:
752  enum TypeClass {
753#define TYPE(Class, Base) Class,
754#define ABSTRACT_TYPE(Class, Base)
755#include "clang/AST/TypeNodes.def"
756    TagFirst = Record, TagLast = Enum
757  };
758
759protected:
760  enum { TypeClassBitSize = 6 };
761
762private:
763  QualType CanonicalType;
764
765  /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
766  bool Dependent : 1;
767
768  /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
769  /// Note that this should stay at the end of the ivars for Type so that
770  /// subclasses can pack their bitfields into the same word.
771  unsigned TC : TypeClassBitSize;
772
773  Type(const Type&);           // DO NOT IMPLEMENT.
774  void operator=(const Type&); // DO NOT IMPLEMENT.
775protected:
776  // silence VC++ warning C4355: 'this' : used in base member initializer list
777  Type *this_() { return this; }
778  Type(TypeClass tc, QualType Canonical, bool dependent)
779    : CanonicalType(Canonical.isNull() ? QualType(this_(), 0) : Canonical),
780      Dependent(dependent), TC(tc) {}
781  virtual ~Type() {}
782  virtual void Destroy(ASTContext& C);
783  friend class ASTContext;
784
785public:
786  TypeClass getTypeClass() const { return static_cast<TypeClass>(TC); }
787
788  bool isCanonicalUnqualified() const {
789    return CanonicalType.getTypePtr() == this;
790  }
791
792  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
793  /// object types, function types, and incomplete types.
794
795  /// \brief Determines whether the type describes an object in memory.
796  ///
797  /// Note that this definition of object type corresponds to the C++
798  /// definition of object type, which includes incomplete types, as
799  /// opposed to the C definition (which does not include incomplete
800  /// types).
801  bool isObjectType() const;
802
803  /// isIncompleteType - Return true if this is an incomplete type.
804  /// A type that can describe objects, but which lacks information needed to
805  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
806  /// routine will need to determine if the size is actually required.
807  bool isIncompleteType() const;
808
809  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
810  /// type, in other words, not a function type.
811  bool isIncompleteOrObjectType() const {
812    return !isFunctionType();
813  }
814
815  /// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10).
816  bool isPODType() const;
817
818  /// isLiteralType - Return true if this is a literal type
819  /// (C++0x [basic.types]p10)
820  bool isLiteralType() const;
821
822  /// isVariablyModifiedType (C99 6.7.5.2p2) - Return true for variable array
823  /// types that have a non-constant expression. This does not include "[]".
824  bool isVariablyModifiedType() const;
825
826  /// Helper methods to distinguish type categories. All type predicates
827  /// operate on the canonical type, ignoring typedefs and qualifiers.
828
829  /// isSpecificBuiltinType - Test for a particular builtin type.
830  bool isSpecificBuiltinType(unsigned K) const;
831
832  /// isIntegerType() does *not* include complex integers (a GCC extension).
833  /// isComplexIntegerType() can be used to test for complex integers.
834  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
835  bool isEnumeralType() const;
836  bool isBooleanType() const;
837  bool isCharType() const;
838  bool isWideCharType() const;
839  bool isAnyCharacterType() const;
840  bool isIntegralType() const;
841
842  /// Floating point categories.
843  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
844  /// isComplexType() does *not* include complex integers (a GCC extension).
845  /// isComplexIntegerType() can be used to test for complex integers.
846  bool isComplexType() const;      // C99 6.2.5p11 (complex)
847  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
848  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
849  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
850  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
851  bool isVoidType() const;         // C99 6.2.5p19
852  bool isDerivedType() const;      // C99 6.2.5p20
853  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
854  bool isAggregateType() const;
855
856  // Type Predicates: Check to see if this type is structurally the specified
857  // type, ignoring typedefs and qualifiers.
858  bool isFunctionType() const;
859  bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
860  bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
861  bool isPointerType() const;
862  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
863  bool isBlockPointerType() const;
864  bool isVoidPointerType() const;
865  bool isReferenceType() const;
866  bool isLValueReferenceType() const;
867  bool isRValueReferenceType() const;
868  bool isFunctionPointerType() const;
869  bool isMemberPointerType() const;
870  bool isMemberFunctionPointerType() const;
871  bool isArrayType() const;
872  bool isConstantArrayType() const;
873  bool isIncompleteArrayType() const;
874  bool isVariableArrayType() const;
875  bool isDependentSizedArrayType() const;
876  bool isRecordType() const;
877  bool isClassType() const;
878  bool isStructureType() const;
879  bool isUnionType() const;
880  bool isComplexIntegerType() const;            // GCC _Complex integer type.
881  bool isVectorType() const;                    // GCC vector type.
882  bool isExtVectorType() const;                 // Extended vector type.
883  bool isObjCObjectPointerType() const;         // Pointer to *any* ObjC object.
884  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
885  // for the common case.
886  bool isObjCInterfaceType() const;             // NSString or NSString<foo>
887  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
888  bool isObjCQualifiedIdType() const;           // id<foo>
889  bool isObjCQualifiedClassType() const;        // Class<foo>
890  bool isObjCIdType() const;                    // id
891  bool isObjCClassType() const;                 // Class
892  bool isObjCSelType() const;                 // Class
893  bool isObjCBuiltinType() const;               // 'id' or 'Class'
894  bool isTemplateTypeParmType() const;          // C++ template type parameter
895  bool isNullPtrType() const;                   // C++0x nullptr_t
896
897  /// isDependentType - Whether this type is a dependent type, meaning
898  /// that its definition somehow depends on a template parameter
899  /// (C++ [temp.dep.type]).
900  bool isDependentType() const { return Dependent; }
901  bool isOverloadableType() const;
902
903  /// hasPointerRepresentation - Whether this type is represented
904  /// natively as a pointer; this includes pointers, references, block
905  /// pointers, and Objective-C interface, qualified id, and qualified
906  /// interface types, as well as nullptr_t.
907  bool hasPointerRepresentation() const;
908
909  /// hasObjCPointerRepresentation - Whether this type can represent
910  /// an objective pointer type for the purpose of GC'ability
911  bool hasObjCPointerRepresentation() const;
912
913  // Type Checking Functions: Check to see if this type is structurally the
914  // specified type, ignoring typedefs and qualifiers, and return a pointer to
915  // the best type we can.
916  const RecordType *getAsStructureType() const;
917  /// NOTE: getAs*ArrayType are methods on ASTContext.
918  const RecordType *getAsUnionType() const;
919  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
920  // The following is a convenience method that returns an ObjCObjectPointerType
921  // for object declared using an interface.
922  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
923  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
924  const ObjCInterfaceType *getAsObjCQualifiedInterfaceType() const;
925  const CXXRecordDecl *getCXXRecordDeclForPointerType() const;
926
927  // Member-template getAs<specific type>'.  This scheme will eventually
928  // replace the specific getAsXXXX methods above.
929  //
930  // There are some specializations of this member template listed
931  // immediately following this class.
932  template <typename T> const T *getAs() const;
933
934  /// getAsPointerToObjCInterfaceType - If this is a pointer to an ObjC
935  /// interface, return the interface type, otherwise return null.
936  const ObjCInterfaceType *getAsPointerToObjCInterfaceType() const;
937
938  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
939  /// element type of the array, potentially with type qualifiers missing.
940  /// This method should never be used when type qualifiers are meaningful.
941  const Type *getArrayElementTypeNoTypeQual() const;
942
943  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
944  /// pointer, this returns the respective pointee.
945  QualType getPointeeType() const;
946
947  /// getUnqualifiedDesugaredType() - Return the specified type with
948  /// any "sugar" removed from the type, removing any typedefs,
949  /// typeofs, etc., as well as any qualifiers.
950  const Type *getUnqualifiedDesugaredType() const;
951
952  /// More type predicates useful for type checking/promotion
953  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
954
955  /// isSignedIntegerType - Return true if this is an integer type that is
956  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
957  /// an enum decl which has a signed representation, or a vector of signed
958  /// integer element type.
959  bool isSignedIntegerType() const;
960
961  /// isUnsignedIntegerType - Return true if this is an integer type that is
962  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
963  /// decl which has an unsigned representation, or a vector of unsigned integer
964  /// element type.
965  bool isUnsignedIntegerType() const;
966
967  /// isConstantSizeType - Return true if this is not a variable sized type,
968  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
969  /// incomplete types.
970  bool isConstantSizeType() const;
971
972  /// isSpecifierType - Returns true if this type can be represented by some
973  /// set of type specifiers.
974  bool isSpecifierType() const;
975
976  const char *getTypeClassName() const;
977
978  /// \brief Determine the linkage of this type.
979  virtual Linkage getLinkage() const;
980
981  QualType getCanonicalTypeInternal() const { return CanonicalType; }
982  void dump() const;
983  static bool classof(const Type *) { return true; }
984};
985
986template <> inline const TypedefType *Type::getAs() const {
987  return dyn_cast<TypedefType>(this);
988}
989
990// We can do canonical leaf types faster, because we don't have to
991// worry about preserving child type decoration.
992#define TYPE(Class, Base)
993#define LEAF_TYPE(Class) \
994template <> inline const Class##Type *Type::getAs() const { \
995  return dyn_cast<Class##Type>(CanonicalType); \
996}
997#include "clang/AST/TypeNodes.def"
998
999
1000/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
1001/// types are always canonical and have a literal name field.
1002class BuiltinType : public Type {
1003public:
1004  enum Kind {
1005    Void,
1006
1007    Bool,     // This is bool and/or _Bool.
1008    Char_U,   // This is 'char' for targets where char is unsigned.
1009    UChar,    // This is explicitly qualified unsigned char.
1010    Char16,   // This is 'char16_t' for C++.
1011    Char32,   // This is 'char32_t' for C++.
1012    UShort,
1013    UInt,
1014    ULong,
1015    ULongLong,
1016    UInt128,  // __uint128_t
1017
1018    Char_S,   // This is 'char' for targets where char is signed.
1019    SChar,    // This is explicitly qualified signed char.
1020    WChar,    // This is 'wchar_t' for C++.
1021    Short,
1022    Int,
1023    Long,
1024    LongLong,
1025    Int128,   // __int128_t
1026
1027    Float, Double, LongDouble,
1028
1029    NullPtr,  // This is the type of C++0x 'nullptr'.
1030
1031    Overload,  // This represents the type of an overloaded function declaration.
1032    Dependent, // This represents the type of a type-dependent expression.
1033
1034    UndeducedAuto, // In C++0x, this represents the type of an auto variable
1035                   // that has not been deduced yet.
1036    ObjCId,    // This represents the ObjC 'id' type.
1037    ObjCClass, // This represents the ObjC 'Class' type.
1038    ObjCSel    // This represents the ObjC 'SEL' type.
1039  };
1040private:
1041  Kind TypeKind;
1042public:
1043  BuiltinType(Kind K)
1044    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent)),
1045      TypeKind(K) {}
1046
1047  Kind getKind() const { return TypeKind; }
1048  const char *getName(const LangOptions &LO) const;
1049
1050  bool isSugared() const { return false; }
1051  QualType desugar() const { return QualType(this, 0); }
1052
1053  bool isInteger() const {
1054    return TypeKind >= Bool && TypeKind <= Int128;
1055  }
1056
1057  bool isSignedInteger() const {
1058    return TypeKind >= Char_S && TypeKind <= Int128;
1059  }
1060
1061  bool isUnsignedInteger() const {
1062    return TypeKind >= Bool && TypeKind <= UInt128;
1063  }
1064
1065  bool isFloatingPoint() const {
1066    return TypeKind >= Float && TypeKind <= LongDouble;
1067  }
1068
1069  virtual Linkage getLinkage() const;
1070
1071  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
1072  static bool classof(const BuiltinType *) { return true; }
1073};
1074
1075/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
1076/// types (_Complex float etc) as well as the GCC integer complex extensions.
1077///
1078class ComplexType : public Type, public llvm::FoldingSetNode {
1079  QualType ElementType;
1080  ComplexType(QualType Element, QualType CanonicalPtr) :
1081    Type(Complex, CanonicalPtr, Element->isDependentType()),
1082    ElementType(Element) {
1083  }
1084  friend class ASTContext;  // ASTContext creates these.
1085public:
1086  QualType getElementType() const { return ElementType; }
1087
1088  bool isSugared() const { return false; }
1089  QualType desugar() const { return QualType(this, 0); }
1090
1091  void Profile(llvm::FoldingSetNodeID &ID) {
1092    Profile(ID, getElementType());
1093  }
1094  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
1095    ID.AddPointer(Element.getAsOpaquePtr());
1096  }
1097
1098  virtual Linkage getLinkage() const;
1099
1100  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
1101  static bool classof(const ComplexType *) { return true; }
1102};
1103
1104/// PointerType - C99 6.7.5.1 - Pointer Declarators.
1105///
1106class PointerType : public Type, public llvm::FoldingSetNode {
1107  QualType PointeeType;
1108
1109  PointerType(QualType Pointee, QualType CanonicalPtr) :
1110    Type(Pointer, CanonicalPtr, Pointee->isDependentType()), PointeeType(Pointee) {
1111  }
1112  friend class ASTContext;  // ASTContext creates these.
1113public:
1114
1115  QualType getPointeeType() const { return PointeeType; }
1116
1117  bool isSugared() const { return false; }
1118  QualType desugar() const { return QualType(this, 0); }
1119
1120  void Profile(llvm::FoldingSetNodeID &ID) {
1121    Profile(ID, getPointeeType());
1122  }
1123  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1124    ID.AddPointer(Pointee.getAsOpaquePtr());
1125  }
1126
1127  virtual Linkage getLinkage() const;
1128
1129  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
1130  static bool classof(const PointerType *) { return true; }
1131};
1132
1133/// BlockPointerType - pointer to a block type.
1134/// This type is to represent types syntactically represented as
1135/// "void (^)(int)", etc. Pointee is required to always be a function type.
1136///
1137class BlockPointerType : public Type, public llvm::FoldingSetNode {
1138  QualType PointeeType;  // Block is some kind of pointer type
1139  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
1140    Type(BlockPointer, CanonicalCls, Pointee->isDependentType()),
1141    PointeeType(Pointee) {
1142  }
1143  friend class ASTContext;  // ASTContext creates these.
1144public:
1145
1146  // Get the pointee type. Pointee is required to always be a function type.
1147  QualType getPointeeType() const { return PointeeType; }
1148
1149  bool isSugared() const { return false; }
1150  QualType desugar() const { return QualType(this, 0); }
1151
1152  void Profile(llvm::FoldingSetNodeID &ID) {
1153      Profile(ID, getPointeeType());
1154  }
1155  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1156      ID.AddPointer(Pointee.getAsOpaquePtr());
1157  }
1158
1159  virtual Linkage getLinkage() const;
1160
1161  static bool classof(const Type *T) {
1162    return T->getTypeClass() == BlockPointer;
1163  }
1164  static bool classof(const BlockPointerType *) { return true; }
1165};
1166
1167/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
1168///
1169class ReferenceType : public Type, public llvm::FoldingSetNode {
1170  QualType PointeeType;
1171
1172  /// True if the type was originally spelled with an lvalue sigil.
1173  /// This is never true of rvalue references but can also be false
1174  /// on lvalue references because of C++0x [dcl.typedef]p9,
1175  /// as follows:
1176  ///
1177  ///   typedef int &ref;    // lvalue, spelled lvalue
1178  ///   typedef int &&rvref; // rvalue
1179  ///   ref &a;              // lvalue, inner ref, spelled lvalue
1180  ///   ref &&a;             // lvalue, inner ref
1181  ///   rvref &a;            // lvalue, inner ref, spelled lvalue
1182  ///   rvref &&a;           // rvalue, inner ref
1183  bool SpelledAsLValue;
1184
1185  /// True if the inner type is a reference type.  This only happens
1186  /// in non-canonical forms.
1187  bool InnerRef;
1188
1189protected:
1190  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
1191                bool SpelledAsLValue) :
1192    Type(tc, CanonicalRef, Referencee->isDependentType()),
1193    PointeeType(Referencee), SpelledAsLValue(SpelledAsLValue),
1194    InnerRef(Referencee->isReferenceType()) {
1195  }
1196public:
1197  bool isSpelledAsLValue() const { return SpelledAsLValue; }
1198
1199  QualType getPointeeTypeAsWritten() const { return PointeeType; }
1200  QualType getPointeeType() const {
1201    // FIXME: this might strip inner qualifiers; okay?
1202    const ReferenceType *T = this;
1203    while (T->InnerRef)
1204      T = T->PointeeType->getAs<ReferenceType>();
1205    return T->PointeeType;
1206  }
1207
1208  void Profile(llvm::FoldingSetNodeID &ID) {
1209    Profile(ID, PointeeType, SpelledAsLValue);
1210  }
1211  static void Profile(llvm::FoldingSetNodeID &ID,
1212                      QualType Referencee,
1213                      bool SpelledAsLValue) {
1214    ID.AddPointer(Referencee.getAsOpaquePtr());
1215    ID.AddBoolean(SpelledAsLValue);
1216  }
1217
1218  virtual Linkage getLinkage() const;
1219
1220  static bool classof(const Type *T) {
1221    return T->getTypeClass() == LValueReference ||
1222           T->getTypeClass() == RValueReference;
1223  }
1224  static bool classof(const ReferenceType *) { return true; }
1225};
1226
1227/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
1228///
1229class LValueReferenceType : public ReferenceType {
1230  LValueReferenceType(QualType Referencee, QualType CanonicalRef,
1231                      bool SpelledAsLValue) :
1232    ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
1233  {}
1234  friend class ASTContext; // ASTContext creates these
1235public:
1236  bool isSugared() const { return false; }
1237  QualType desugar() const { return QualType(this, 0); }
1238
1239  static bool classof(const Type *T) {
1240    return T->getTypeClass() == LValueReference;
1241  }
1242  static bool classof(const LValueReferenceType *) { return true; }
1243};
1244
1245/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
1246///
1247class RValueReferenceType : public ReferenceType {
1248  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
1249    ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
1250  }
1251  friend class ASTContext; // ASTContext creates these
1252public:
1253  bool isSugared() const { return false; }
1254  QualType desugar() const { return QualType(this, 0); }
1255
1256  static bool classof(const Type *T) {
1257    return T->getTypeClass() == RValueReference;
1258  }
1259  static bool classof(const RValueReferenceType *) { return true; }
1260};
1261
1262/// MemberPointerType - C++ 8.3.3 - Pointers to members
1263///
1264class MemberPointerType : public Type, public llvm::FoldingSetNode {
1265  QualType PointeeType;
1266  /// The class of which the pointee is a member. Must ultimately be a
1267  /// RecordType, but could be a typedef or a template parameter too.
1268  const Type *Class;
1269
1270  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
1271    Type(MemberPointer, CanonicalPtr,
1272         Cls->isDependentType() || Pointee->isDependentType()),
1273    PointeeType(Pointee), Class(Cls) {
1274  }
1275  friend class ASTContext; // ASTContext creates these.
1276public:
1277
1278  QualType getPointeeType() const { return PointeeType; }
1279
1280  const Type *getClass() const { return Class; }
1281
1282  bool isSugared() const { return false; }
1283  QualType desugar() const { return QualType(this, 0); }
1284
1285  void Profile(llvm::FoldingSetNodeID &ID) {
1286    Profile(ID, getPointeeType(), getClass());
1287  }
1288  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
1289                      const Type *Class) {
1290    ID.AddPointer(Pointee.getAsOpaquePtr());
1291    ID.AddPointer(Class);
1292  }
1293
1294  virtual Linkage getLinkage() const;
1295
1296  static bool classof(const Type *T) {
1297    return T->getTypeClass() == MemberPointer;
1298  }
1299  static bool classof(const MemberPointerType *) { return true; }
1300};
1301
1302/// ArrayType - C99 6.7.5.2 - Array Declarators.
1303///
1304class ArrayType : public Type, public llvm::FoldingSetNode {
1305public:
1306  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
1307  /// an array with a static size (e.g. int X[static 4]), or an array
1308  /// with a star size (e.g. int X[*]).
1309  /// 'static' is only allowed on function parameters.
1310  enum ArraySizeModifier {
1311    Normal, Static, Star
1312  };
1313private:
1314  /// ElementType - The element type of the array.
1315  QualType ElementType;
1316
1317  // NOTE: VC++ treats enums as signed, avoid using the ArraySizeModifier enum
1318  /// NOTE: These fields are packed into the bitfields space in the Type class.
1319  unsigned SizeModifier : 2;
1320
1321  /// IndexTypeQuals - Capture qualifiers in declarations like:
1322  /// 'int X[static restrict 4]'. For function parameters only.
1323  unsigned IndexTypeQuals : 3;
1324
1325protected:
1326  // C++ [temp.dep.type]p1:
1327  //   A type is dependent if it is...
1328  //     - an array type constructed from any dependent type or whose
1329  //       size is specified by a constant expression that is
1330  //       value-dependent,
1331  ArrayType(TypeClass tc, QualType et, QualType can,
1332            ArraySizeModifier sm, unsigned tq)
1333    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray),
1334      ElementType(et), SizeModifier(sm), IndexTypeQuals(tq) {}
1335
1336  friend class ASTContext;  // ASTContext creates these.
1337public:
1338  QualType getElementType() const { return ElementType; }
1339  ArraySizeModifier getSizeModifier() const {
1340    return ArraySizeModifier(SizeModifier);
1341  }
1342  Qualifiers getIndexTypeQualifiers() const {
1343    return Qualifiers::fromCVRMask(IndexTypeQuals);
1344  }
1345  unsigned getIndexTypeCVRQualifiers() const { return IndexTypeQuals; }
1346
1347  virtual Linkage getLinkage() const;
1348
1349  static bool classof(const Type *T) {
1350    return T->getTypeClass() == ConstantArray ||
1351           T->getTypeClass() == VariableArray ||
1352           T->getTypeClass() == IncompleteArray ||
1353           T->getTypeClass() == DependentSizedArray;
1354  }
1355  static bool classof(const ArrayType *) { return true; }
1356};
1357
1358/// ConstantArrayType - This class represents the canonical version of
1359/// C arrays with a specified constant size.  For example, the canonical
1360/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
1361/// type is 'int' and the size is 404.
1362class ConstantArrayType : public ArrayType {
1363  llvm::APInt Size; // Allows us to unique the type.
1364
1365  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
1366                    ArraySizeModifier sm, unsigned tq)
1367    : ArrayType(ConstantArray, et, can, sm, tq),
1368      Size(size) {}
1369protected:
1370  ConstantArrayType(TypeClass tc, QualType et, QualType can,
1371                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
1372    : ArrayType(tc, et, can, sm, tq), Size(size) {}
1373  friend class ASTContext;  // ASTContext creates these.
1374public:
1375  const llvm::APInt &getSize() const { return Size; }
1376  bool isSugared() const { return false; }
1377  QualType desugar() const { return QualType(this, 0); }
1378
1379  void Profile(llvm::FoldingSetNodeID &ID) {
1380    Profile(ID, getElementType(), getSize(),
1381            getSizeModifier(), getIndexTypeCVRQualifiers());
1382  }
1383  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1384                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
1385                      unsigned TypeQuals) {
1386    ID.AddPointer(ET.getAsOpaquePtr());
1387    ID.AddInteger(ArraySize.getZExtValue());
1388    ID.AddInteger(SizeMod);
1389    ID.AddInteger(TypeQuals);
1390  }
1391  static bool classof(const Type *T) {
1392    return T->getTypeClass() == ConstantArray;
1393  }
1394  static bool classof(const ConstantArrayType *) { return true; }
1395};
1396
1397/// IncompleteArrayType - This class represents C arrays with an unspecified
1398/// size.  For example 'int A[]' has an IncompleteArrayType where the element
1399/// type is 'int' and the size is unspecified.
1400class IncompleteArrayType : public ArrayType {
1401
1402  IncompleteArrayType(QualType et, QualType can,
1403                      ArraySizeModifier sm, unsigned tq)
1404    : ArrayType(IncompleteArray, et, can, sm, tq) {}
1405  friend class ASTContext;  // ASTContext creates these.
1406public:
1407  bool isSugared() const { return false; }
1408  QualType desugar() const { return QualType(this, 0); }
1409
1410  static bool classof(const Type *T) {
1411    return T->getTypeClass() == IncompleteArray;
1412  }
1413  static bool classof(const IncompleteArrayType *) { return true; }
1414
1415  friend class StmtIteratorBase;
1416
1417  void Profile(llvm::FoldingSetNodeID &ID) {
1418    Profile(ID, getElementType(), getSizeModifier(),
1419            getIndexTypeCVRQualifiers());
1420  }
1421
1422  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1423                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
1424    ID.AddPointer(ET.getAsOpaquePtr());
1425    ID.AddInteger(SizeMod);
1426    ID.AddInteger(TypeQuals);
1427  }
1428};
1429
1430/// VariableArrayType - This class represents C arrays with a specified size
1431/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
1432/// Since the size expression is an arbitrary expression, we store it as such.
1433///
1434/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
1435/// should not be: two lexically equivalent variable array types could mean
1436/// different things, for example, these variables do not have the same type
1437/// dynamically:
1438///
1439/// void foo(int x) {
1440///   int Y[x];
1441///   ++x;
1442///   int Z[x];
1443/// }
1444///
1445class VariableArrayType : public ArrayType {
1446  /// SizeExpr - An assignment expression. VLA's are only permitted within
1447  /// a function block.
1448  Stmt *SizeExpr;
1449  /// Brackets - The left and right array brackets.
1450  SourceRange Brackets;
1451
1452  VariableArrayType(QualType et, QualType can, Expr *e,
1453                    ArraySizeModifier sm, unsigned tq,
1454                    SourceRange brackets)
1455    : ArrayType(VariableArray, et, can, sm, tq),
1456      SizeExpr((Stmt*) e), Brackets(brackets) {}
1457  friend class ASTContext;  // ASTContext creates these.
1458  virtual void Destroy(ASTContext& C);
1459
1460public:
1461  Expr *getSizeExpr() const {
1462    // We use C-style casts instead of cast<> here because we do not wish
1463    // to have a dependency of Type.h on Stmt.h/Expr.h.
1464    return (Expr*) SizeExpr;
1465  }
1466  SourceRange getBracketsRange() const { return Brackets; }
1467  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1468  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1469
1470  bool isSugared() const { return false; }
1471  QualType desugar() const { return QualType(this, 0); }
1472
1473  static bool classof(const Type *T) {
1474    return T->getTypeClass() == VariableArray;
1475  }
1476  static bool classof(const VariableArrayType *) { return true; }
1477
1478  friend class StmtIteratorBase;
1479
1480  void Profile(llvm::FoldingSetNodeID &ID) {
1481    assert(0 && "Cannnot unique VariableArrayTypes.");
1482  }
1483};
1484
1485/// DependentSizedArrayType - This type represents an array type in
1486/// C++ whose size is a value-dependent expression. For example:
1487///
1488/// \code
1489/// template<typename T, int Size>
1490/// class array {
1491///   T data[Size];
1492/// };
1493/// \endcode
1494///
1495/// For these types, we won't actually know what the array bound is
1496/// until template instantiation occurs, at which point this will
1497/// become either a ConstantArrayType or a VariableArrayType.
1498class DependentSizedArrayType : public ArrayType {
1499  ASTContext &Context;
1500
1501  /// \brief An assignment expression that will instantiate to the
1502  /// size of the array.
1503  ///
1504  /// The expression itself might be NULL, in which case the array
1505  /// type will have its size deduced from an initializer.
1506  Stmt *SizeExpr;
1507
1508  /// Brackets - The left and right array brackets.
1509  SourceRange Brackets;
1510
1511  DependentSizedArrayType(ASTContext &Context, QualType et, QualType can,
1512                          Expr *e, ArraySizeModifier sm, unsigned tq,
1513                          SourceRange brackets)
1514    : ArrayType(DependentSizedArray, et, can, sm, tq),
1515      Context(Context), SizeExpr((Stmt*) e), Brackets(brackets) {}
1516  friend class ASTContext;  // ASTContext creates these.
1517  virtual void Destroy(ASTContext& C);
1518
1519public:
1520  Expr *getSizeExpr() const {
1521    // We use C-style casts instead of cast<> here because we do not wish
1522    // to have a dependency of Type.h on Stmt.h/Expr.h.
1523    return (Expr*) SizeExpr;
1524  }
1525  SourceRange getBracketsRange() const { return Brackets; }
1526  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1527  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1528
1529  bool isSugared() const { return false; }
1530  QualType desugar() const { return QualType(this, 0); }
1531
1532  static bool classof(const Type *T) {
1533    return T->getTypeClass() == DependentSizedArray;
1534  }
1535  static bool classof(const DependentSizedArrayType *) { return true; }
1536
1537  friend class StmtIteratorBase;
1538
1539
1540  void Profile(llvm::FoldingSetNodeID &ID) {
1541    Profile(ID, Context, getElementType(),
1542            getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
1543  }
1544
1545  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1546                      QualType ET, ArraySizeModifier SizeMod,
1547                      unsigned TypeQuals, Expr *E);
1548};
1549
1550/// DependentSizedExtVectorType - This type represent an extended vector type
1551/// where either the type or size is dependent. For example:
1552/// @code
1553/// template<typename T, int Size>
1554/// class vector {
1555///   typedef T __attribute__((ext_vector_type(Size))) type;
1556/// }
1557/// @endcode
1558class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
1559  ASTContext &Context;
1560  Expr *SizeExpr;
1561  /// ElementType - The element type of the array.
1562  QualType ElementType;
1563  SourceLocation loc;
1564
1565  DependentSizedExtVectorType(ASTContext &Context, QualType ElementType,
1566                              QualType can, Expr *SizeExpr, SourceLocation loc)
1567    : Type (DependentSizedExtVector, can, true),
1568      Context(Context), SizeExpr(SizeExpr), ElementType(ElementType),
1569      loc(loc) {}
1570  friend class ASTContext;
1571  virtual void Destroy(ASTContext& C);
1572
1573public:
1574  Expr *getSizeExpr() const { return SizeExpr; }
1575  QualType getElementType() const { return ElementType; }
1576  SourceLocation getAttributeLoc() const { return loc; }
1577
1578  bool isSugared() const { return false; }
1579  QualType desugar() const { return QualType(this, 0); }
1580
1581  static bool classof(const Type *T) {
1582    return T->getTypeClass() == DependentSizedExtVector;
1583  }
1584  static bool classof(const DependentSizedExtVectorType *) { return true; }
1585
1586  void Profile(llvm::FoldingSetNodeID &ID) {
1587    Profile(ID, Context, getElementType(), getSizeExpr());
1588  }
1589
1590  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1591                      QualType ElementType, Expr *SizeExpr);
1592};
1593
1594
1595/// VectorType - GCC generic vector type. This type is created using
1596/// __attribute__((vector_size(n)), where "n" specifies the vector size in
1597/// bytes. Since the constructor takes the number of vector elements, the
1598/// client is responsible for converting the size into the number of elements.
1599class VectorType : public Type, public llvm::FoldingSetNode {
1600protected:
1601  /// ElementType - The element type of the vector.
1602  QualType ElementType;
1603
1604  /// NumElements - The number of elements in the vector.
1605  unsigned NumElements;
1606
1607  VectorType(QualType vecType, unsigned nElements, QualType canonType) :
1608    Type(Vector, canonType, vecType->isDependentType()),
1609    ElementType(vecType), NumElements(nElements) {}
1610  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
1611             QualType canonType)
1612    : Type(tc, canonType, vecType->isDependentType()), ElementType(vecType),
1613      NumElements(nElements) {}
1614  friend class ASTContext;  // ASTContext creates these.
1615public:
1616
1617  QualType getElementType() const { return ElementType; }
1618  unsigned getNumElements() const { return NumElements; }
1619
1620  bool isSugared() const { return false; }
1621  QualType desugar() const { return QualType(this, 0); }
1622
1623  void Profile(llvm::FoldingSetNodeID &ID) {
1624    Profile(ID, getElementType(), getNumElements(), getTypeClass());
1625  }
1626  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
1627                      unsigned NumElements, TypeClass TypeClass) {
1628    ID.AddPointer(ElementType.getAsOpaquePtr());
1629    ID.AddInteger(NumElements);
1630    ID.AddInteger(TypeClass);
1631  }
1632
1633  virtual Linkage getLinkage() const;
1634
1635  static bool classof(const Type *T) {
1636    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
1637  }
1638  static bool classof(const VectorType *) { return true; }
1639};
1640
1641/// ExtVectorType - Extended vector type. This type is created using
1642/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
1643/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
1644/// class enables syntactic extensions, like Vector Components for accessing
1645/// points, colors, and textures (modeled after OpenGL Shading Language).
1646class ExtVectorType : public VectorType {
1647  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
1648    VectorType(ExtVector, vecType, nElements, canonType) {}
1649  friend class ASTContext;  // ASTContext creates these.
1650public:
1651  static int getPointAccessorIdx(char c) {
1652    switch (c) {
1653    default: return -1;
1654    case 'x': return 0;
1655    case 'y': return 1;
1656    case 'z': return 2;
1657    case 'w': return 3;
1658    }
1659  }
1660  static int getNumericAccessorIdx(char c) {
1661    switch (c) {
1662      default: return -1;
1663      case '0': return 0;
1664      case '1': return 1;
1665      case '2': return 2;
1666      case '3': return 3;
1667      case '4': return 4;
1668      case '5': return 5;
1669      case '6': return 6;
1670      case '7': return 7;
1671      case '8': return 8;
1672      case '9': return 9;
1673      case 'A':
1674      case 'a': return 10;
1675      case 'B':
1676      case 'b': return 11;
1677      case 'C':
1678      case 'c': return 12;
1679      case 'D':
1680      case 'd': return 13;
1681      case 'E':
1682      case 'e': return 14;
1683      case 'F':
1684      case 'f': return 15;
1685    }
1686  }
1687
1688  static int getAccessorIdx(char c) {
1689    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
1690    return getNumericAccessorIdx(c);
1691  }
1692
1693  bool isAccessorWithinNumElements(char c) const {
1694    if (int idx = getAccessorIdx(c)+1)
1695      return unsigned(idx-1) < NumElements;
1696    return false;
1697  }
1698  bool isSugared() const { return false; }
1699  QualType desugar() const { return QualType(this, 0); }
1700
1701  static bool classof(const Type *T) {
1702    return T->getTypeClass() == ExtVector;
1703  }
1704  static bool classof(const ExtVectorType *) { return true; }
1705};
1706
1707/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
1708/// class of FunctionNoProtoType and FunctionProtoType.
1709///
1710class FunctionType : public Type {
1711  /// SubClassData - This field is owned by the subclass, put here to pack
1712  /// tightly with the ivars in Type.
1713  bool SubClassData : 1;
1714
1715  /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
1716  /// other bitfields.
1717  /// The qualifiers are part of FunctionProtoType because...
1718  ///
1719  /// C++ 8.3.5p4: The return type, the parameter type list and the
1720  /// cv-qualifier-seq, [...], are part of the function type.
1721  ///
1722  unsigned TypeQuals : 3;
1723
1724  /// NoReturn - Indicates if the function type is attribute noreturn.
1725  unsigned NoReturn : 1;
1726
1727  /// CallConv - The calling convention used by the function.
1728  unsigned CallConv : 2;
1729
1730  // The type returned by the function.
1731  QualType ResultType;
1732protected:
1733  FunctionType(TypeClass tc, QualType res, bool SubclassInfo,
1734               unsigned typeQuals, QualType Canonical, bool Dependent,
1735               bool noReturn = false, CallingConv callConv = CC_Default)
1736    : Type(tc, Canonical, Dependent),
1737      SubClassData(SubclassInfo), TypeQuals(typeQuals), NoReturn(noReturn),
1738      CallConv(callConv), ResultType(res) {}
1739  bool getSubClassData() const { return SubClassData; }
1740  unsigned getTypeQuals() const { return TypeQuals; }
1741public:
1742
1743  QualType getResultType() const { return ResultType; }
1744  bool getNoReturnAttr() const { return NoReturn; }
1745  CallingConv getCallConv() const { return (CallingConv)CallConv; }
1746
1747  static bool classof(const Type *T) {
1748    return T->getTypeClass() == FunctionNoProto ||
1749           T->getTypeClass() == FunctionProto;
1750  }
1751  static bool classof(const FunctionType *) { return true; }
1752};
1753
1754/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
1755/// no information available about its arguments.
1756class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
1757  FunctionNoProtoType(QualType Result, QualType Canonical,
1758                      bool NoReturn = false, CallingConv CallConv = CC_Default)
1759    : FunctionType(FunctionNoProto, Result, false, 0, Canonical,
1760                   /*Dependent=*/false, NoReturn, CallConv) {}
1761  friend class ASTContext;  // ASTContext creates these.
1762public:
1763  // No additional state past what FunctionType provides.
1764
1765  bool isSugared() const { return false; }
1766  QualType desugar() const { return QualType(this, 0); }
1767
1768  void Profile(llvm::FoldingSetNodeID &ID) {
1769    Profile(ID, getResultType(), getNoReturnAttr());
1770  }
1771  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
1772                      bool NoReturn) {
1773    ID.AddInteger(NoReturn);
1774    ID.AddPointer(ResultType.getAsOpaquePtr());
1775  }
1776
1777  virtual Linkage getLinkage() const;
1778
1779  static bool classof(const Type *T) {
1780    return T->getTypeClass() == FunctionNoProto;
1781  }
1782  static bool classof(const FunctionNoProtoType *) { return true; }
1783};
1784
1785/// FunctionProtoType - Represents a prototype with argument type info, e.g.
1786/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
1787/// arguments, not as having a single void argument. Such a type can have an
1788/// exception specification, but this specification is not part of the canonical
1789/// type.
1790class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
1791  /// hasAnyDependentType - Determine whether there are any dependent
1792  /// types within the arguments passed in.
1793  static bool hasAnyDependentType(const QualType *ArgArray, unsigned numArgs) {
1794    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
1795      if (ArgArray[Idx]->isDependentType())
1796    return true;
1797
1798    return false;
1799  }
1800
1801  FunctionProtoType(QualType Result, const QualType *ArgArray, unsigned numArgs,
1802                    bool isVariadic, unsigned typeQuals, bool hasExs,
1803                    bool hasAnyExs, const QualType *ExArray,
1804                    unsigned numExs, QualType Canonical, bool NoReturn,
1805                    CallingConv CallConv)
1806    : FunctionType(FunctionProto, Result, isVariadic, typeQuals, Canonical,
1807                   (Result->isDependentType() ||
1808                    hasAnyDependentType(ArgArray, numArgs)), NoReturn,
1809                   CallConv),
1810      NumArgs(numArgs), NumExceptions(numExs), HasExceptionSpec(hasExs),
1811      AnyExceptionSpec(hasAnyExs) {
1812    // Fill in the trailing argument array.
1813    QualType *ArgInfo = reinterpret_cast<QualType*>(this+1);
1814    for (unsigned i = 0; i != numArgs; ++i)
1815      ArgInfo[i] = ArgArray[i];
1816    // Fill in the exception array.
1817    QualType *Ex = ArgInfo + numArgs;
1818    for (unsigned i = 0; i != numExs; ++i)
1819      Ex[i] = ExArray[i];
1820  }
1821
1822  /// NumArgs - The number of arguments this function has, not counting '...'.
1823  unsigned NumArgs : 20;
1824
1825  /// NumExceptions - The number of types in the exception spec, if any.
1826  unsigned NumExceptions : 10;
1827
1828  /// HasExceptionSpec - Whether this function has an exception spec at all.
1829  bool HasExceptionSpec : 1;
1830
1831  /// AnyExceptionSpec - Whether this function has a throw(...) spec.
1832  bool AnyExceptionSpec : 1;
1833
1834  /// ArgInfo - There is an variable size array after the class in memory that
1835  /// holds the argument types.
1836
1837  /// Exceptions - There is another variable size array after ArgInfo that
1838  /// holds the exception types.
1839
1840  friend class ASTContext;  // ASTContext creates these.
1841
1842public:
1843  unsigned getNumArgs() const { return NumArgs; }
1844  QualType getArgType(unsigned i) const {
1845    assert(i < NumArgs && "Invalid argument number!");
1846    return arg_type_begin()[i];
1847  }
1848
1849  bool hasExceptionSpec() const { return HasExceptionSpec; }
1850  bool hasAnyExceptionSpec() const { return AnyExceptionSpec; }
1851  unsigned getNumExceptions() const { return NumExceptions; }
1852  QualType getExceptionType(unsigned i) const {
1853    assert(i < NumExceptions && "Invalid exception number!");
1854    return exception_begin()[i];
1855  }
1856  bool hasEmptyExceptionSpec() const {
1857    return hasExceptionSpec() && !hasAnyExceptionSpec() &&
1858      getNumExceptions() == 0;
1859  }
1860
1861  bool isVariadic() const { return getSubClassData(); }
1862  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
1863
1864  typedef const QualType *arg_type_iterator;
1865  arg_type_iterator arg_type_begin() const {
1866    return reinterpret_cast<const QualType *>(this+1);
1867  }
1868  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
1869
1870  typedef const QualType *exception_iterator;
1871  exception_iterator exception_begin() const {
1872    // exceptions begin where arguments end
1873    return arg_type_end();
1874  }
1875  exception_iterator exception_end() const {
1876    return exception_begin() + NumExceptions;
1877  }
1878
1879  bool isSugared() const { return false; }
1880  QualType desugar() const { return QualType(this, 0); }
1881
1882  virtual Linkage getLinkage() const;
1883
1884  static bool classof(const Type *T) {
1885    return T->getTypeClass() == FunctionProto;
1886  }
1887  static bool classof(const FunctionProtoType *) { return true; }
1888
1889  void Profile(llvm::FoldingSetNodeID &ID);
1890  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
1891                      arg_type_iterator ArgTys, unsigned NumArgs,
1892                      bool isVariadic, unsigned TypeQuals,
1893                      bool hasExceptionSpec, bool anyExceptionSpec,
1894                      unsigned NumExceptions, exception_iterator Exs,
1895                      bool NoReturn);
1896};
1897
1898
1899/// \brief Represents the dependent type named by a dependently-scoped
1900/// typename using declaration, e.g.
1901///   using typename Base<T>::foo;
1902/// Template instantiation turns these into the underlying type.
1903class UnresolvedUsingType : public Type {
1904  UnresolvedUsingTypenameDecl *Decl;
1905
1906  UnresolvedUsingType(UnresolvedUsingTypenameDecl *D)
1907    : Type(UnresolvedUsing, QualType(), true), Decl(D) {}
1908  friend class ASTContext; // ASTContext creates these.
1909public:
1910
1911  UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
1912
1913  bool isSugared() const { return false; }
1914  QualType desugar() const { return QualType(this, 0); }
1915
1916  static bool classof(const Type *T) {
1917    return T->getTypeClass() == UnresolvedUsing;
1918  }
1919  static bool classof(const UnresolvedUsingType *) { return true; }
1920
1921  void Profile(llvm::FoldingSetNodeID &ID) {
1922    return Profile(ID, Decl);
1923  }
1924  static void Profile(llvm::FoldingSetNodeID &ID,
1925                      UnresolvedUsingTypenameDecl *D) {
1926    ID.AddPointer(D);
1927  }
1928};
1929
1930
1931class TypedefType : public Type {
1932  TypedefDecl *Decl;
1933protected:
1934  TypedefType(TypeClass tc, TypedefDecl *D, QualType can)
1935    : Type(tc, can, can->isDependentType()), Decl(D) {
1936    assert(!isa<TypedefType>(can) && "Invalid canonical type");
1937  }
1938  friend class ASTContext;  // ASTContext creates these.
1939public:
1940
1941  TypedefDecl *getDecl() const { return Decl; }
1942
1943  /// LookThroughTypedefs - Return the ultimate type this typedef corresponds to
1944  /// potentially looking through *all* consecutive typedefs.  This returns the
1945  /// sum of the type qualifiers, so if you have:
1946  ///   typedef const int A;
1947  ///   typedef volatile A B;
1948  /// looking through the typedefs for B will give you "const volatile A".
1949  QualType LookThroughTypedefs() const;
1950
1951  bool isSugared() const { return true; }
1952  QualType desugar() const;
1953
1954  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
1955  static bool classof(const TypedefType *) { return true; }
1956};
1957
1958/// TypeOfExprType (GCC extension).
1959class TypeOfExprType : public Type {
1960  Expr *TOExpr;
1961
1962protected:
1963  TypeOfExprType(Expr *E, QualType can = QualType());
1964  friend class ASTContext;  // ASTContext creates these.
1965public:
1966  Expr *getUnderlyingExpr() const { return TOExpr; }
1967
1968  /// \brief Remove a single level of sugar.
1969  QualType desugar() const;
1970
1971  /// \brief Returns whether this type directly provides sugar.
1972  bool isSugared() const { return true; }
1973
1974  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
1975  static bool classof(const TypeOfExprType *) { return true; }
1976};
1977
1978/// Subclass of TypeOfExprType that is used for canonical, dependent
1979/// typeof(expr) types.
1980class DependentTypeOfExprType
1981  : public TypeOfExprType, public llvm::FoldingSetNode {
1982  ASTContext &Context;
1983
1984public:
1985  DependentTypeOfExprType(ASTContext &Context, Expr *E)
1986    : TypeOfExprType(E), Context(Context) { }
1987
1988  bool isSugared() const { return false; }
1989  QualType desugar() const { return QualType(this, 0); }
1990
1991  void Profile(llvm::FoldingSetNodeID &ID) {
1992    Profile(ID, Context, getUnderlyingExpr());
1993  }
1994
1995  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1996                      Expr *E);
1997};
1998
1999/// TypeOfType (GCC extension).
2000class TypeOfType : public Type {
2001  QualType TOType;
2002  TypeOfType(QualType T, QualType can)
2003    : Type(TypeOf, can, T->isDependentType()), TOType(T) {
2004    assert(!isa<TypedefType>(can) && "Invalid canonical type");
2005  }
2006  friend class ASTContext;  // ASTContext creates these.
2007public:
2008  QualType getUnderlyingType() const { return TOType; }
2009
2010  /// \brief Remove a single level of sugar.
2011  QualType desugar() const { return getUnderlyingType(); }
2012
2013  /// \brief Returns whether this type directly provides sugar.
2014  bool isSugared() const { return true; }
2015
2016  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
2017  static bool classof(const TypeOfType *) { return true; }
2018};
2019
2020/// DecltypeType (C++0x)
2021class DecltypeType : public Type {
2022  Expr *E;
2023
2024  // FIXME: We could get rid of UnderlyingType if we wanted to: We would have to
2025  // Move getDesugaredType to ASTContext so that it can call getDecltypeForExpr
2026  // from it.
2027  QualType UnderlyingType;
2028
2029protected:
2030  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
2031  friend class ASTContext;  // ASTContext creates these.
2032public:
2033  Expr *getUnderlyingExpr() const { return E; }
2034  QualType getUnderlyingType() const { return UnderlyingType; }
2035
2036  /// \brief Remove a single level of sugar.
2037  QualType desugar() const { return getUnderlyingType(); }
2038
2039  /// \brief Returns whether this type directly provides sugar.
2040  bool isSugared() const { return !isDependentType(); }
2041
2042  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
2043  static bool classof(const DecltypeType *) { return true; }
2044};
2045
2046/// Subclass of DecltypeType that is used for canonical, dependent
2047/// C++0x decltype types.
2048class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
2049  ASTContext &Context;
2050
2051public:
2052  DependentDecltypeType(ASTContext &Context, Expr *E);
2053
2054  bool isSugared() const { return false; }
2055  QualType desugar() const { return QualType(this, 0); }
2056
2057  void Profile(llvm::FoldingSetNodeID &ID) {
2058    Profile(ID, Context, getUnderlyingExpr());
2059  }
2060
2061  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
2062                      Expr *E);
2063};
2064
2065class TagType : public Type {
2066  /// Stores the TagDecl associated with this type. The decl will
2067  /// point to the TagDecl that actually defines the entity (or is a
2068  /// definition in progress), if there is such a definition. The
2069  /// single-bit value will be non-zero when this tag is in the
2070  /// process of being defined.
2071  mutable llvm::PointerIntPair<TagDecl *, 1> decl;
2072  friend class ASTContext;
2073  friend class TagDecl;
2074
2075protected:
2076  TagType(TypeClass TC, TagDecl *D, QualType can);
2077
2078public:
2079  TagDecl *getDecl() const { return decl.getPointer(); }
2080
2081  /// @brief Determines whether this type is in the process of being
2082  /// defined.
2083  bool isBeingDefined() const { return decl.getInt(); }
2084  void setBeingDefined(bool Def) const { decl.setInt(Def? 1 : 0); }
2085
2086  virtual Linkage getLinkage() const;
2087
2088  static bool classof(const Type *T) {
2089    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
2090  }
2091  static bool classof(const TagType *) { return true; }
2092  static bool classof(const RecordType *) { return true; }
2093  static bool classof(const EnumType *) { return true; }
2094};
2095
2096/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
2097/// to detect TagType objects of structs/unions/classes.
2098class RecordType : public TagType {
2099protected:
2100  explicit RecordType(RecordDecl *D)
2101    : TagType(Record, reinterpret_cast<TagDecl*>(D), QualType()) { }
2102  explicit RecordType(TypeClass TC, RecordDecl *D)
2103    : TagType(TC, reinterpret_cast<TagDecl*>(D), QualType()) { }
2104  friend class ASTContext;   // ASTContext creates these.
2105public:
2106
2107  RecordDecl *getDecl() const {
2108    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
2109  }
2110
2111  // FIXME: This predicate is a helper to QualType/Type. It needs to
2112  // recursively check all fields for const-ness. If any field is declared
2113  // const, it needs to return false.
2114  bool hasConstFields() const { return false; }
2115
2116  // FIXME: RecordType needs to check when it is created that all fields are in
2117  // the same address space, and return that.
2118  unsigned getAddressSpace() const { return 0; }
2119
2120  bool isSugared() const { return false; }
2121  QualType desugar() const { return QualType(this, 0); }
2122
2123  static bool classof(const TagType *T);
2124  static bool classof(const Type *T) {
2125    return isa<TagType>(T) && classof(cast<TagType>(T));
2126  }
2127  static bool classof(const RecordType *) { return true; }
2128};
2129
2130/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
2131/// to detect TagType objects of enums.
2132class EnumType : public TagType {
2133  explicit EnumType(EnumDecl *D)
2134    : TagType(Enum, reinterpret_cast<TagDecl*>(D), QualType()) { }
2135  friend class ASTContext;   // ASTContext creates these.
2136public:
2137
2138  EnumDecl *getDecl() const {
2139    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
2140  }
2141
2142  bool isSugared() const { return false; }
2143  QualType desugar() const { return QualType(this, 0); }
2144
2145  static bool classof(const TagType *T);
2146  static bool classof(const Type *T) {
2147    return isa<TagType>(T) && classof(cast<TagType>(T));
2148  }
2149  static bool classof(const EnumType *) { return true; }
2150};
2151
2152/// ElaboratedType - A non-canonical type used to represents uses of
2153/// elaborated type specifiers in C++.  For example:
2154///
2155///   void foo(union MyUnion);
2156///            ^^^^^^^^^^^^^
2157///
2158/// At the moment, for efficiency we do not create elaborated types in
2159/// C, since outside of typedefs all references to structs would
2160/// necessarily be elaborated.
2161class ElaboratedType : public Type, public llvm::FoldingSetNode {
2162public:
2163  enum TagKind {
2164    TK_struct,
2165    TK_union,
2166    TK_class,
2167    TK_enum
2168  };
2169
2170private:
2171  /// The tag that was used in this elaborated type specifier.
2172  TagKind Tag;
2173
2174  /// The underlying type.
2175  QualType UnderlyingType;
2176
2177  explicit ElaboratedType(QualType Ty, TagKind Tag, QualType Canon)
2178    : Type(Elaborated, Canon, Canon->isDependentType()),
2179      Tag(Tag), UnderlyingType(Ty) { }
2180  friend class ASTContext;   // ASTContext creates these.
2181
2182public:
2183  TagKind getTagKind() const { return Tag; }
2184  QualType getUnderlyingType() const { return UnderlyingType; }
2185
2186  /// \brief Remove a single level of sugar.
2187  QualType desugar() const { return getUnderlyingType(); }
2188
2189  /// \brief Returns whether this type directly provides sugar.
2190  bool isSugared() const { return true; }
2191
2192  static const char *getNameForTagKind(TagKind Kind) {
2193    switch (Kind) {
2194    default: assert(0 && "Unknown TagKind!");
2195    case TK_struct: return "struct";
2196    case TK_union:  return "union";
2197    case TK_class:  return "class";
2198    case TK_enum:   return "enum";
2199    }
2200  }
2201
2202  void Profile(llvm::FoldingSetNodeID &ID) {
2203    Profile(ID, getUnderlyingType(), getTagKind());
2204  }
2205  static void Profile(llvm::FoldingSetNodeID &ID, QualType T, TagKind Tag) {
2206    ID.AddPointer(T.getAsOpaquePtr());
2207    ID.AddInteger(Tag);
2208  }
2209
2210  static bool classof(const ElaboratedType*) { return true; }
2211  static bool classof(const Type *T) { return T->getTypeClass() == Elaborated; }
2212};
2213
2214class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2215  unsigned Depth : 15;
2216  unsigned Index : 16;
2217  unsigned ParameterPack : 1;
2218  IdentifierInfo *Name;
2219
2220  TemplateTypeParmType(unsigned D, unsigned I, bool PP, IdentifierInfo *N,
2221                       QualType Canon)
2222    : Type(TemplateTypeParm, Canon, /*Dependent=*/true),
2223      Depth(D), Index(I), ParameterPack(PP), Name(N) { }
2224
2225  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
2226    : Type(TemplateTypeParm, QualType(this, 0), /*Dependent=*/true),
2227      Depth(D), Index(I), ParameterPack(PP), Name(0) { }
2228
2229  friend class ASTContext;  // ASTContext creates these
2230
2231public:
2232  unsigned getDepth() const { return Depth; }
2233  unsigned getIndex() const { return Index; }
2234  bool isParameterPack() const { return ParameterPack; }
2235  IdentifierInfo *getName() const { return Name; }
2236
2237  bool isSugared() const { return false; }
2238  QualType desugar() const { return QualType(this, 0); }
2239
2240  void Profile(llvm::FoldingSetNodeID &ID) {
2241    Profile(ID, Depth, Index, ParameterPack, Name);
2242  }
2243
2244  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
2245                      unsigned Index, bool ParameterPack,
2246                      IdentifierInfo *Name) {
2247    ID.AddInteger(Depth);
2248    ID.AddInteger(Index);
2249    ID.AddBoolean(ParameterPack);
2250    ID.AddPointer(Name);
2251  }
2252
2253  static bool classof(const Type *T) {
2254    return T->getTypeClass() == TemplateTypeParm;
2255  }
2256  static bool classof(const TemplateTypeParmType *T) { return true; }
2257};
2258
2259/// \brief Represents the result of substituting a type for a template
2260/// type parameter.
2261///
2262/// Within an instantiated template, all template type parameters have
2263/// been replaced with these.  They are used solely to record that a
2264/// type was originally written as a template type parameter;
2265/// therefore they are never canonical.
2266class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2267  // The original type parameter.
2268  const TemplateTypeParmType *Replaced;
2269
2270  SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
2271    : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType()),
2272      Replaced(Param) { }
2273
2274  friend class ASTContext;
2275
2276public:
2277  IdentifierInfo *getName() const { return Replaced->getName(); }
2278
2279  /// Gets the template parameter that was substituted for.
2280  const TemplateTypeParmType *getReplacedParameter() const {
2281    return Replaced;
2282  }
2283
2284  /// Gets the type that was substituted for the template
2285  /// parameter.
2286  QualType getReplacementType() const {
2287    return getCanonicalTypeInternal();
2288  }
2289
2290  bool isSugared() const { return true; }
2291  QualType desugar() const { return getReplacementType(); }
2292
2293  void Profile(llvm::FoldingSetNodeID &ID) {
2294    Profile(ID, getReplacedParameter(), getReplacementType());
2295  }
2296  static void Profile(llvm::FoldingSetNodeID &ID,
2297                      const TemplateTypeParmType *Replaced,
2298                      QualType Replacement) {
2299    ID.AddPointer(Replaced);
2300    ID.AddPointer(Replacement.getAsOpaquePtr());
2301  }
2302
2303  static bool classof(const Type *T) {
2304    return T->getTypeClass() == SubstTemplateTypeParm;
2305  }
2306  static bool classof(const SubstTemplateTypeParmType *T) { return true; }
2307};
2308
2309/// \brief Represents the type of a template specialization as written
2310/// in the source code.
2311///
2312/// Template specialization types represent the syntactic form of a
2313/// template-id that refers to a type, e.g., @c vector<int>. Some
2314/// template specialization types are syntactic sugar, whose canonical
2315/// type will point to some other type node that represents the
2316/// instantiation or class template specialization. For example, a
2317/// class template specialization type of @c vector<int> will refer to
2318/// a tag type for the instantiation
2319/// @c std::vector<int, std::allocator<int>>.
2320///
2321/// Other template specialization types, for which the template name
2322/// is dependent, may be canonical types. These types are always
2323/// dependent.
2324class TemplateSpecializationType
2325  : public Type, public llvm::FoldingSetNode {
2326
2327  // FIXME: Currently needed for profiling expressions; can we avoid this?
2328  ASTContext &Context;
2329
2330    /// \brief The name of the template being specialized.
2331  TemplateName Template;
2332
2333  /// \brief - The number of template arguments named in this class
2334  /// template specialization.
2335  unsigned NumArgs;
2336
2337  TemplateSpecializationType(ASTContext &Context,
2338                             TemplateName T,
2339                             const TemplateArgument *Args,
2340                             unsigned NumArgs, QualType Canon);
2341
2342  virtual void Destroy(ASTContext& C);
2343
2344  friend class ASTContext;  // ASTContext creates these
2345
2346public:
2347  /// \brief Determine whether any of the given template arguments are
2348  /// dependent.
2349  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
2350                                            unsigned NumArgs);
2351
2352  static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
2353                                            unsigned NumArgs);
2354
2355  static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &);
2356
2357  /// \brief Print a template argument list, including the '<' and '>'
2358  /// enclosing the template arguments.
2359  static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
2360                                               unsigned NumArgs,
2361                                               const PrintingPolicy &Policy);
2362
2363  static std::string PrintTemplateArgumentList(const TemplateArgumentLoc *Args,
2364                                               unsigned NumArgs,
2365                                               const PrintingPolicy &Policy);
2366
2367  static std::string PrintTemplateArgumentList(const TemplateArgumentListInfo &,
2368                                               const PrintingPolicy &Policy);
2369
2370  typedef const TemplateArgument * iterator;
2371
2372  iterator begin() const { return getArgs(); }
2373  iterator end() const;
2374
2375  /// \brief Retrieve the name of the template that we are specializing.
2376  TemplateName getTemplateName() const { return Template; }
2377
2378  /// \brief Retrieve the template arguments.
2379  const TemplateArgument *getArgs() const {
2380    return reinterpret_cast<const TemplateArgument *>(this + 1);
2381  }
2382
2383  /// \brief Retrieve the number of template arguments.
2384  unsigned getNumArgs() const { return NumArgs; }
2385
2386  /// \brief Retrieve a specific template argument as a type.
2387  /// \precondition @c isArgType(Arg)
2388  const TemplateArgument &getArg(unsigned Idx) const;
2389
2390  bool isSugared() const { return !isDependentType(); }
2391  QualType desugar() const { return getCanonicalTypeInternal(); }
2392
2393  void Profile(llvm::FoldingSetNodeID &ID) {
2394    Profile(ID, Template, getArgs(), NumArgs, Context);
2395  }
2396
2397  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
2398                      const TemplateArgument *Args, unsigned NumArgs,
2399                      ASTContext &Context);
2400
2401  static bool classof(const Type *T) {
2402    return T->getTypeClass() == TemplateSpecialization;
2403  }
2404  static bool classof(const TemplateSpecializationType *T) { return true; }
2405};
2406
2407/// \brief Represents a type that was referred to via a qualified
2408/// name, e.g., N::M::type.
2409///
2410/// This type is used to keep track of a type name as written in the
2411/// source code, including any nested-name-specifiers. The type itself
2412/// is always "sugar", used to express what was written in the source
2413/// code but containing no additional semantic information.
2414class QualifiedNameType : public Type, public llvm::FoldingSetNode {
2415  /// \brief The nested name specifier containing the qualifier.
2416  NestedNameSpecifier *NNS;
2417
2418  /// \brief The type that this qualified name refers to.
2419  QualType NamedType;
2420
2421  QualifiedNameType(NestedNameSpecifier *NNS, QualType NamedType,
2422                    QualType CanonType)
2423    : Type(QualifiedName, CanonType, NamedType->isDependentType()),
2424      NNS(NNS), NamedType(NamedType) { }
2425
2426  friend class ASTContext;  // ASTContext creates these
2427
2428public:
2429  /// \brief Retrieve the qualification on this type.
2430  NestedNameSpecifier *getQualifier() const { return NNS; }
2431
2432  /// \brief Retrieve the type named by the qualified-id.
2433  QualType getNamedType() const { return NamedType; }
2434
2435  /// \brief Remove a single level of sugar.
2436  QualType desugar() const { return getNamedType(); }
2437
2438  /// \brief Returns whether this type directly provides sugar.
2439  bool isSugared() const { return true; }
2440
2441  void Profile(llvm::FoldingSetNodeID &ID) {
2442    Profile(ID, NNS, NamedType);
2443  }
2444
2445  static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
2446                      QualType NamedType) {
2447    ID.AddPointer(NNS);
2448    NamedType.Profile(ID);
2449  }
2450
2451  static bool classof(const Type *T) {
2452    return T->getTypeClass() == QualifiedName;
2453  }
2454  static bool classof(const QualifiedNameType *T) { return true; }
2455};
2456
2457/// \brief Represents a 'typename' specifier that names a type within
2458/// a dependent type, e.g., "typename T::type".
2459///
2460/// TypenameType has a very similar structure to QualifiedNameType,
2461/// which also involves a nested-name-specifier following by a type,
2462/// and (FIXME!) both can even be prefixed by the 'typename'
2463/// keyword. However, the two types serve very different roles:
2464/// QualifiedNameType is a non-semantic type that serves only as sugar
2465/// to show how a particular type was written in the source
2466/// code. TypenameType, on the other hand, only occurs when the
2467/// nested-name-specifier is dependent, such that we cannot resolve
2468/// the actual type until after instantiation.
2469class TypenameType : public Type, public llvm::FoldingSetNode {
2470  /// \brief The nested name specifier containing the qualifier.
2471  NestedNameSpecifier *NNS;
2472
2473  typedef llvm::PointerUnion<const IdentifierInfo *,
2474                             const TemplateSpecializationType *> NameType;
2475
2476  /// \brief The type that this typename specifier refers to.
2477  NameType Name;
2478
2479  TypenameType(NestedNameSpecifier *NNS, const IdentifierInfo *Name,
2480               QualType CanonType)
2481    : Type(Typename, CanonType, true), NNS(NNS), Name(Name) {
2482    assert(NNS->isDependent() &&
2483           "TypenameType requires a dependent nested-name-specifier");
2484  }
2485
2486  TypenameType(NestedNameSpecifier *NNS, const TemplateSpecializationType *Ty,
2487               QualType CanonType)
2488    : Type(Typename, CanonType, true), NNS(NNS), Name(Ty) {
2489    assert(NNS->isDependent() &&
2490           "TypenameType requires a dependent nested-name-specifier");
2491  }
2492
2493  friend class ASTContext;  // ASTContext creates these
2494
2495public:
2496  /// \brief Retrieve the qualification on this type.
2497  NestedNameSpecifier *getQualifier() const { return NNS; }
2498
2499  /// \brief Retrieve the type named by the typename specifier as an
2500  /// identifier.
2501  ///
2502  /// This routine will return a non-NULL identifier pointer when the
2503  /// form of the original typename was terminated by an identifier,
2504  /// e.g., "typename T::type".
2505  const IdentifierInfo *getIdentifier() const {
2506    return Name.dyn_cast<const IdentifierInfo *>();
2507  }
2508
2509  /// \brief Retrieve the type named by the typename specifier as a
2510  /// type specialization.
2511  const TemplateSpecializationType *getTemplateId() const {
2512    return Name.dyn_cast<const TemplateSpecializationType *>();
2513  }
2514
2515  bool isSugared() const { return false; }
2516  QualType desugar() const { return QualType(this, 0); }
2517
2518  void Profile(llvm::FoldingSetNodeID &ID) {
2519    Profile(ID, NNS, Name);
2520  }
2521
2522  static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
2523                      NameType Name) {
2524    ID.AddPointer(NNS);
2525    ID.AddPointer(Name.getOpaqueValue());
2526  }
2527
2528  static bool classof(const Type *T) {
2529    return T->getTypeClass() == Typename;
2530  }
2531  static bool classof(const TypenameType *T) { return true; }
2532};
2533
2534/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
2535/// object oriented design.  They basically correspond to C++ classes.  There
2536/// are two kinds of interface types, normal interfaces like "NSString" and
2537/// qualified interfaces, which are qualified with a protocol list like
2538/// "NSString<NSCopyable, NSAmazing>".
2539class ObjCInterfaceType : public Type, public llvm::FoldingSetNode {
2540  ObjCInterfaceDecl *Decl;
2541
2542  // List of protocols for this protocol conforming object type
2543  // List is sorted on protocol name. No protocol is enterred more than once.
2544  ObjCProtocolDecl **Protocols;
2545  unsigned NumProtocols;
2546
2547  ObjCInterfaceType(ASTContext &Ctx, QualType Canonical, ObjCInterfaceDecl *D,
2548                    ObjCProtocolDecl **Protos, unsigned NumP);
2549  friend class ASTContext;  // ASTContext creates these.
2550public:
2551  void Destroy(ASTContext& C);
2552
2553  ObjCInterfaceDecl *getDecl() const { return Decl; }
2554
2555  /// getNumProtocols - Return the number of qualifying protocols in this
2556  /// interface type, or 0 if there are none.
2557  unsigned getNumProtocols() const { return NumProtocols; }
2558
2559  /// qual_iterator and friends: this provides access to the (potentially empty)
2560  /// list of protocols qualifying this interface.
2561  typedef ObjCProtocolDecl*  const * qual_iterator;
2562  qual_iterator qual_begin() const {
2563    return Protocols;
2564  }
2565  qual_iterator qual_end() const   {
2566    return Protocols ? Protocols + NumProtocols : 0;
2567  }
2568  bool qual_empty() const { return NumProtocols == 0; }
2569
2570  bool isSugared() const { return false; }
2571  QualType desugar() const { return QualType(this, 0); }
2572
2573  void Profile(llvm::FoldingSetNodeID &ID);
2574  static void Profile(llvm::FoldingSetNodeID &ID,
2575                      const ObjCInterfaceDecl *Decl,
2576                      ObjCProtocolDecl **protocols, unsigned NumProtocols);
2577
2578  virtual Linkage getLinkage() const;
2579
2580  static bool classof(const Type *T) {
2581    return T->getTypeClass() == ObjCInterface;
2582  }
2583  static bool classof(const ObjCInterfaceType *) { return true; }
2584};
2585
2586/// ObjCObjectPointerType - Used to represent 'id', 'Interface *', 'id <p>',
2587/// and 'Interface <p> *'.
2588///
2589/// Duplicate protocols are removed and protocol list is canonicalized to be in
2590/// alphabetical order.
2591class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
2592  QualType PointeeType; // A builtin or interface type.
2593
2594  // List of protocols for this protocol conforming object type
2595  // List is sorted on protocol name. No protocol is entered more than once.
2596  ObjCProtocolDecl **Protocols;
2597  unsigned NumProtocols;
2598
2599  ObjCObjectPointerType(ASTContext &Ctx, QualType Canonical, QualType T,
2600                        ObjCProtocolDecl **Protos, unsigned NumP);
2601  friend class ASTContext;  // ASTContext creates these.
2602
2603public:
2604  void Destroy(ASTContext& C);
2605
2606  // Get the pointee type. Pointee will either be:
2607  // - a built-in type (for 'id' and 'Class').
2608  // - an interface type (for user-defined types).
2609  // - a TypedefType whose canonical type is an interface (as in 'T' below).
2610  //   For example: typedef NSObject T; T *var;
2611  QualType getPointeeType() const { return PointeeType; }
2612
2613  const ObjCInterfaceType *getInterfaceType() const {
2614    return PointeeType->getAs<ObjCInterfaceType>();
2615  }
2616  /// getInterfaceDecl - returns an interface decl for user-defined types.
2617  ObjCInterfaceDecl *getInterfaceDecl() const {
2618    return getInterfaceType() ? getInterfaceType()->getDecl() : 0;
2619  }
2620  /// isObjCIdType - true for "id".
2621  bool isObjCIdType() const {
2622    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCId) &&
2623           !NumProtocols;
2624  }
2625  /// isObjCClassType - true for "Class".
2626  bool isObjCClassType() const {
2627    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCClass) &&
2628           !NumProtocols;
2629  }
2630
2631  /// isObjCQualifiedIdType - true for "id <p>".
2632  bool isObjCQualifiedIdType() const {
2633    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCId) &&
2634           NumProtocols;
2635  }
2636  /// isObjCQualifiedClassType - true for "Class <p>".
2637  bool isObjCQualifiedClassType() const {
2638    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCClass) &&
2639           NumProtocols;
2640  }
2641  /// qual_iterator and friends: this provides access to the (potentially empty)
2642  /// list of protocols qualifying this interface.
2643  typedef ObjCProtocolDecl*  const * qual_iterator;
2644
2645  qual_iterator qual_begin() const {
2646    return Protocols;
2647  }
2648  qual_iterator qual_end() const   {
2649    return Protocols ? Protocols + NumProtocols : NULL;
2650  }
2651  bool qual_empty() const { return NumProtocols == 0; }
2652
2653  /// getNumProtocols - Return the number of qualifying protocols in this
2654  /// interface type, or 0 if there are none.
2655  unsigned getNumProtocols() const { return NumProtocols; }
2656
2657  bool isSugared() const { return false; }
2658  QualType desugar() const { return QualType(this, 0); }
2659
2660  virtual Linkage getLinkage() const;
2661
2662  void Profile(llvm::FoldingSetNodeID &ID);
2663  static void Profile(llvm::FoldingSetNodeID &ID, QualType T,
2664                      ObjCProtocolDecl **protocols, unsigned NumProtocols);
2665  static bool classof(const Type *T) {
2666    return T->getTypeClass() == ObjCObjectPointer;
2667  }
2668  static bool classof(const ObjCObjectPointerType *) { return true; }
2669};
2670
2671/// A qualifier set is used to build a set of qualifiers.
2672class QualifierCollector : public Qualifiers {
2673  ASTContext *Context;
2674
2675public:
2676  QualifierCollector(Qualifiers Qs = Qualifiers())
2677    : Qualifiers(Qs), Context(0) {}
2678  QualifierCollector(ASTContext &Context, Qualifiers Qs = Qualifiers())
2679    : Qualifiers(Qs), Context(&Context) {}
2680
2681  void setContext(ASTContext &C) { Context = &C; }
2682
2683  /// Collect any qualifiers on the given type and return an
2684  /// unqualified type.
2685  const Type *strip(QualType QT) {
2686    addFastQualifiers(QT.getLocalFastQualifiers());
2687    if (QT.hasLocalNonFastQualifiers()) {
2688      const ExtQuals *EQ = QT.getExtQualsUnsafe();
2689      Context = &EQ->getContext();
2690      addQualifiers(EQ->getQualifiers());
2691      return EQ->getBaseType();
2692    }
2693    return QT.getTypePtrUnsafe();
2694  }
2695
2696  /// Apply the collected qualifiers to the given type.
2697  QualType apply(QualType QT) const;
2698
2699  /// Apply the collected qualifiers to the given type.
2700  QualType apply(const Type* T) const;
2701
2702};
2703
2704
2705// Inline function definitions.
2706
2707inline bool QualType::isCanonical() const {
2708  const Type *T = getTypePtr();
2709  if (hasLocalQualifiers())
2710    return T->isCanonicalUnqualified() && !isa<ArrayType>(T);
2711  return T->isCanonicalUnqualified();
2712}
2713
2714inline bool QualType::isCanonicalAsParam() const {
2715  if (hasLocalQualifiers()) return false;
2716  const Type *T = getTypePtr();
2717  return T->isCanonicalUnqualified() &&
2718           !isa<FunctionType>(T) && !isa<ArrayType>(T);
2719}
2720
2721inline bool QualType::isConstQualified() const {
2722  return isLocalConstQualified() ||
2723              getTypePtr()->getCanonicalTypeInternal().isLocalConstQualified();
2724}
2725
2726inline bool QualType::isRestrictQualified() const {
2727  return isLocalRestrictQualified() ||
2728            getTypePtr()->getCanonicalTypeInternal().isLocalRestrictQualified();
2729}
2730
2731
2732inline bool QualType::isVolatileQualified() const {
2733  return isLocalVolatileQualified() ||
2734  getTypePtr()->getCanonicalTypeInternal().isLocalVolatileQualified();
2735}
2736
2737inline bool QualType::hasQualifiers() const {
2738  return hasLocalQualifiers() ||
2739                  getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers();
2740}
2741
2742inline Qualifiers QualType::getQualifiers() const {
2743  Qualifiers Quals = getLocalQualifiers();
2744  Quals.addQualifiers(
2745                 getTypePtr()->getCanonicalTypeInternal().getLocalQualifiers());
2746  return Quals;
2747}
2748
2749inline unsigned QualType::getCVRQualifiers() const {
2750  return getLocalCVRQualifiers() |
2751              getTypePtr()->getCanonicalTypeInternal().getLocalCVRQualifiers();
2752}
2753
2754/// getCVRQualifiersThroughArrayTypes - If there are CVR qualifiers for this
2755/// type, returns them. Otherwise, if this is an array type, recurses
2756/// on the element type until some qualifiers have been found or a non-array
2757/// type reached.
2758inline unsigned QualType::getCVRQualifiersThroughArrayTypes() const {
2759  if (unsigned Quals = getCVRQualifiers())
2760    return Quals;
2761  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2762  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
2763    return AT->getElementType().getCVRQualifiersThroughArrayTypes();
2764  return 0;
2765}
2766
2767inline void QualType::removeConst() {
2768  removeFastQualifiers(Qualifiers::Const);
2769}
2770
2771inline void QualType::removeRestrict() {
2772  removeFastQualifiers(Qualifiers::Restrict);
2773}
2774
2775inline void QualType::removeVolatile() {
2776  QualifierCollector Qc;
2777  const Type *Ty = Qc.strip(*this);
2778  if (Qc.hasVolatile()) {
2779    Qc.removeVolatile();
2780    *this = Qc.apply(Ty);
2781  }
2782}
2783
2784inline void QualType::removeCVRQualifiers(unsigned Mask) {
2785  assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
2786
2787  // Fast path: we don't need to touch the slow qualifiers.
2788  if (!(Mask & ~Qualifiers::FastMask)) {
2789    removeFastQualifiers(Mask);
2790    return;
2791  }
2792
2793  QualifierCollector Qc;
2794  const Type *Ty = Qc.strip(*this);
2795  Qc.removeCVRQualifiers(Mask);
2796  *this = Qc.apply(Ty);
2797}
2798
2799/// getAddressSpace - Return the address space of this type.
2800inline unsigned QualType::getAddressSpace() const {
2801  if (hasLocalNonFastQualifiers()) {
2802    const ExtQuals *EQ = getExtQualsUnsafe();
2803    if (EQ->hasAddressSpace())
2804      return EQ->getAddressSpace();
2805  }
2806
2807  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2808  if (CT.hasLocalNonFastQualifiers()) {
2809    const ExtQuals *EQ = CT.getExtQualsUnsafe();
2810    if (EQ->hasAddressSpace())
2811      return EQ->getAddressSpace();
2812  }
2813
2814  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
2815    return AT->getElementType().getAddressSpace();
2816  if (const RecordType *RT = dyn_cast<RecordType>(CT))
2817    return RT->getAddressSpace();
2818  return 0;
2819}
2820
2821/// getObjCGCAttr - Return the gc attribute of this type.
2822inline Qualifiers::GC QualType::getObjCGCAttr() const {
2823  if (hasLocalNonFastQualifiers()) {
2824    const ExtQuals *EQ = getExtQualsUnsafe();
2825    if (EQ->hasObjCGCAttr())
2826      return EQ->getObjCGCAttr();
2827  }
2828
2829  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2830  if (CT.hasLocalNonFastQualifiers()) {
2831    const ExtQuals *EQ = CT.getExtQualsUnsafe();
2832    if (EQ->hasObjCGCAttr())
2833      return EQ->getObjCGCAttr();
2834  }
2835
2836  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
2837      return AT->getElementType().getObjCGCAttr();
2838  if (const ObjCObjectPointerType *PT = CT->getAs<ObjCObjectPointerType>())
2839    return PT->getPointeeType().getObjCGCAttr();
2840  // We most look at all pointer types, not just pointer to interface types.
2841  if (const PointerType *PT = CT->getAs<PointerType>())
2842    return PT->getPointeeType().getObjCGCAttr();
2843  return Qualifiers::GCNone;
2844}
2845
2846  /// getNoReturnAttr - Returns true if the type has the noreturn attribute,
2847  /// false otherwise.
2848inline bool QualType::getNoReturnAttr() const {
2849  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2850  if (const PointerType *PT = getTypePtr()->getAs<PointerType>()) {
2851    if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
2852      return FT->getNoReturnAttr();
2853  } else if (const FunctionType *FT = getTypePtr()->getAs<FunctionType>())
2854    return FT->getNoReturnAttr();
2855
2856  return false;
2857}
2858
2859/// getCallConv - Returns the calling convention of the type if the type
2860/// is a function type, CC_Default otherwise.
2861inline CallingConv QualType::getCallConv() const {
2862  if (const PointerType *PT = getTypePtr()->getAs<PointerType>())
2863    return PT->getPointeeType().getCallConv();
2864  else if (const ReferenceType *RT = getTypePtr()->getAs<ReferenceType>())
2865    return RT->getPointeeType().getCallConv();
2866  else if (const MemberPointerType *MPT =
2867           getTypePtr()->getAs<MemberPointerType>())
2868    return MPT->getPointeeType().getCallConv();
2869  else if (const BlockPointerType *BPT =
2870           getTypePtr()->getAs<BlockPointerType>()) {
2871    if (const FunctionType *FT = BPT->getPointeeType()->getAs<FunctionType>())
2872      return FT->getCallConv();
2873  } else if (const FunctionType *FT = getTypePtr()->getAs<FunctionType>())
2874    return FT->getCallConv();
2875
2876  return CC_Default;
2877}
2878
2879/// isMoreQualifiedThan - Determine whether this type is more
2880/// qualified than the Other type. For example, "const volatile int"
2881/// is more qualified than "const int", "volatile int", and
2882/// "int". However, it is not more qualified than "const volatile
2883/// int".
2884inline bool QualType::isMoreQualifiedThan(QualType Other) const {
2885  // FIXME: work on arbitrary qualifiers
2886  unsigned MyQuals = this->getCVRQualifiersThroughArrayTypes();
2887  unsigned OtherQuals = Other.getCVRQualifiersThroughArrayTypes();
2888  if (getAddressSpace() != Other.getAddressSpace())
2889    return false;
2890  return MyQuals != OtherQuals && (MyQuals | OtherQuals) == MyQuals;
2891}
2892
2893/// isAtLeastAsQualifiedAs - Determine whether this type is at last
2894/// as qualified as the Other type. For example, "const volatile
2895/// int" is at least as qualified as "const int", "volatile int",
2896/// "int", and "const volatile int".
2897inline bool QualType::isAtLeastAsQualifiedAs(QualType Other) const {
2898  // FIXME: work on arbitrary qualifiers
2899  unsigned MyQuals = this->getCVRQualifiersThroughArrayTypes();
2900  unsigned OtherQuals = Other.getCVRQualifiersThroughArrayTypes();
2901  if (getAddressSpace() != Other.getAddressSpace())
2902    return false;
2903  return (MyQuals | OtherQuals) == MyQuals;
2904}
2905
2906/// getNonReferenceType - If Type is a reference type (e.g., const
2907/// int&), returns the type that the reference refers to ("const
2908/// int"). Otherwise, returns the type itself. This routine is used
2909/// throughout Sema to implement C++ 5p6:
2910///
2911///   If an expression initially has the type "reference to T" (8.3.2,
2912///   8.5.3), the type is adjusted to "T" prior to any further
2913///   analysis, the expression designates the object or function
2914///   denoted by the reference, and the expression is an lvalue.
2915inline QualType QualType::getNonReferenceType() const {
2916  if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
2917    return RefType->getPointeeType();
2918  else
2919    return *this;
2920}
2921
2922inline const ObjCInterfaceType *Type::getAsPointerToObjCInterfaceType() const {
2923  if (const PointerType *PT = getAs<PointerType>())
2924    return PT->getPointeeType()->getAs<ObjCInterfaceType>();
2925  return 0;
2926}
2927
2928inline bool Type::isFunctionType() const {
2929  return isa<FunctionType>(CanonicalType);
2930}
2931inline bool Type::isPointerType() const {
2932  return isa<PointerType>(CanonicalType);
2933}
2934inline bool Type::isAnyPointerType() const {
2935  return isPointerType() || isObjCObjectPointerType();
2936}
2937inline bool Type::isBlockPointerType() const {
2938  return isa<BlockPointerType>(CanonicalType);
2939}
2940inline bool Type::isReferenceType() const {
2941  return isa<ReferenceType>(CanonicalType);
2942}
2943inline bool Type::isLValueReferenceType() const {
2944  return isa<LValueReferenceType>(CanonicalType);
2945}
2946inline bool Type::isRValueReferenceType() const {
2947  return isa<RValueReferenceType>(CanonicalType);
2948}
2949inline bool Type::isFunctionPointerType() const {
2950  if (const PointerType* T = getAs<PointerType>())
2951    return T->getPointeeType()->isFunctionType();
2952  else
2953    return false;
2954}
2955inline bool Type::isMemberPointerType() const {
2956  return isa<MemberPointerType>(CanonicalType);
2957}
2958inline bool Type::isMemberFunctionPointerType() const {
2959  if (const MemberPointerType* T = getAs<MemberPointerType>())
2960    return T->getPointeeType()->isFunctionType();
2961  else
2962    return false;
2963}
2964inline bool Type::isArrayType() const {
2965  return isa<ArrayType>(CanonicalType);
2966}
2967inline bool Type::isConstantArrayType() const {
2968  return isa<ConstantArrayType>(CanonicalType);
2969}
2970inline bool Type::isIncompleteArrayType() const {
2971  return isa<IncompleteArrayType>(CanonicalType);
2972}
2973inline bool Type::isVariableArrayType() const {
2974  return isa<VariableArrayType>(CanonicalType);
2975}
2976inline bool Type::isDependentSizedArrayType() const {
2977  return isa<DependentSizedArrayType>(CanonicalType);
2978}
2979inline bool Type::isRecordType() const {
2980  return isa<RecordType>(CanonicalType);
2981}
2982inline bool Type::isAnyComplexType() const {
2983  return isa<ComplexType>(CanonicalType);
2984}
2985inline bool Type::isVectorType() const {
2986  return isa<VectorType>(CanonicalType);
2987}
2988inline bool Type::isExtVectorType() const {
2989  return isa<ExtVectorType>(CanonicalType);
2990}
2991inline bool Type::isObjCObjectPointerType() const {
2992  return isa<ObjCObjectPointerType>(CanonicalType);
2993}
2994inline bool Type::isObjCInterfaceType() const {
2995  return isa<ObjCInterfaceType>(CanonicalType);
2996}
2997inline bool Type::isObjCQualifiedIdType() const {
2998  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
2999    return OPT->isObjCQualifiedIdType();
3000  return false;
3001}
3002inline bool Type::isObjCQualifiedClassType() const {
3003  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3004    return OPT->isObjCQualifiedClassType();
3005  return false;
3006}
3007inline bool Type::isObjCIdType() const {
3008  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3009    return OPT->isObjCIdType();
3010  return false;
3011}
3012inline bool Type::isObjCClassType() const {
3013  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3014    return OPT->isObjCClassType();
3015  return false;
3016}
3017inline bool Type::isObjCSelType() const {
3018  if (const PointerType *OPT = getAs<PointerType>())
3019    return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
3020  return false;
3021}
3022inline bool Type::isObjCBuiltinType() const {
3023  return isObjCIdType() || isObjCClassType() || isObjCSelType();
3024}
3025inline bool Type::isTemplateTypeParmType() const {
3026  return isa<TemplateTypeParmType>(CanonicalType);
3027}
3028
3029inline bool Type::isSpecificBuiltinType(unsigned K) const {
3030  if (const BuiltinType *BT = getAs<BuiltinType>())
3031    if (BT->getKind() == (BuiltinType::Kind) K)
3032      return true;
3033  return false;
3034}
3035
3036/// \brief Determines whether this is a type for which one can define
3037/// an overloaded operator.
3038inline bool Type::isOverloadableType() const {
3039  return isDependentType() || isRecordType() || isEnumeralType();
3040}
3041
3042inline bool Type::hasPointerRepresentation() const {
3043  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
3044          isObjCInterfaceType() || isObjCObjectPointerType() ||
3045          isObjCQualifiedInterfaceType() || isNullPtrType());
3046}
3047
3048inline bool Type::hasObjCPointerRepresentation() const {
3049  return (isObjCInterfaceType() || isObjCObjectPointerType() ||
3050          isObjCQualifiedInterfaceType());
3051}
3052
3053/// Insertion operator for diagnostics.  This allows sending QualType's into a
3054/// diagnostic with <<.
3055inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
3056                                           QualType T) {
3057  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
3058                  Diagnostic::ak_qualtype);
3059  return DB;
3060}
3061
3062// Helper class template that is used by Type::getAs to ensure that one does
3063// not try to look through a qualified type to get to an array type.
3064template<typename T,
3065         bool isArrayType = (llvm::is_same<T, ArrayType>::value ||
3066                             llvm::is_base_of<ArrayType, T>::value)>
3067struct ArrayType_cannot_be_used_with_getAs { };
3068
3069template<typename T>
3070struct ArrayType_cannot_be_used_with_getAs<T, true>;
3071
3072/// Member-template getAs<specific type>'.
3073template <typename T> const T *Type::getAs() const {
3074  ArrayType_cannot_be_used_with_getAs<T> at;
3075  (void)at;
3076
3077  // If this is directly a T type, return it.
3078  if (const T *Ty = dyn_cast<T>(this))
3079    return Ty;
3080
3081  // If the canonical form of this type isn't the right kind, reject it.
3082  if (!isa<T>(CanonicalType))
3083    return 0;
3084
3085  // If this is a typedef for the type, strip the typedef off without
3086  // losing all typedef information.
3087  return cast<T>(getUnqualifiedDesugaredType());
3088}
3089
3090}  // end namespace clang
3091
3092#endif
3093