Type.h revision bc8d7f9fd4346cfcc285868be32b74e019a40f01
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Basic/ExceptionSpecificationType.h"
19#include "clang/Basic/IdentifierTable.h"
20#include "clang/Basic/Linkage.h"
21#include "clang/Basic/PartialDiagnostic.h"
22#include "clang/Basic/Visibility.h"
23#include "clang/AST/NestedNameSpecifier.h"
24#include "clang/AST/TemplateName.h"
25#include "llvm/Support/Casting.h"
26#include "llvm/Support/type_traits.h"
27#include "llvm/ADT/APSInt.h"
28#include "llvm/ADT/FoldingSet.h"
29#include "llvm/ADT/Optional.h"
30#include "llvm/ADT/PointerIntPair.h"
31#include "llvm/ADT/PointerUnion.h"
32
33using llvm::isa;
34using llvm::cast;
35using llvm::cast_or_null;
36using llvm::dyn_cast;
37using llvm::dyn_cast_or_null;
38namespace clang {
39  enum {
40    TypeAlignmentInBits = 4,
41    TypeAlignment = 1 << TypeAlignmentInBits
42  };
43  class Type;
44  class ExtQuals;
45  class QualType;
46}
47
48namespace llvm {
49  template <typename T>
50  class PointerLikeTypeTraits;
51  template<>
52  class PointerLikeTypeTraits< ::clang::Type*> {
53  public:
54    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
55    static inline ::clang::Type *getFromVoidPointer(void *P) {
56      return static_cast< ::clang::Type*>(P);
57    }
58    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
59  };
60  template<>
61  class PointerLikeTypeTraits< ::clang::ExtQuals*> {
62  public:
63    static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
64    static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
65      return static_cast< ::clang::ExtQuals*>(P);
66    }
67    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
68  };
69
70  template <>
71  struct isPodLike<clang::QualType> { static const bool value = true; };
72}
73
74namespace clang {
75  class ASTContext;
76  class TypedefNameDecl;
77  class TemplateDecl;
78  class TemplateTypeParmDecl;
79  class NonTypeTemplateParmDecl;
80  class TemplateTemplateParmDecl;
81  class TagDecl;
82  class RecordDecl;
83  class CXXRecordDecl;
84  class EnumDecl;
85  class FieldDecl;
86  class ObjCInterfaceDecl;
87  class ObjCProtocolDecl;
88  class ObjCMethodDecl;
89  class UnresolvedUsingTypenameDecl;
90  class Expr;
91  class Stmt;
92  class SourceLocation;
93  class StmtIteratorBase;
94  class TemplateArgument;
95  class TemplateArgumentLoc;
96  class TemplateArgumentListInfo;
97  class ElaboratedType;
98  class ExtQuals;
99  class ExtQualsTypeCommonBase;
100  struct PrintingPolicy;
101
102  template <typename> class CanQual;
103  typedef CanQual<Type> CanQualType;
104
105  // Provide forward declarations for all of the *Type classes
106#define TYPE(Class, Base) class Class##Type;
107#include "clang/AST/TypeNodes.def"
108
109/// Qualifiers - The collection of all-type qualifiers we support.
110/// Clang supports five independent qualifiers:
111/// * C99: const, volatile, and restrict
112/// * Embedded C (TR18037): address spaces
113/// * Objective C: the GC attributes (none, weak, or strong)
114class Qualifiers {
115public:
116  enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
117    Const    = 0x1,
118    Restrict = 0x2,
119    Volatile = 0x4,
120    CVRMask = Const | Volatile | Restrict
121  };
122
123  enum GC {
124    GCNone = 0,
125    Weak,
126    Strong
127  };
128
129  enum ObjCLifetime {
130    /// There is no lifetime qualification on this type.
131    OCL_None,
132
133    /// This object can be modified without requiring retains or
134    /// releases.
135    OCL_ExplicitNone,
136
137    /// Assigning into this object requires the old value to be
138    /// released and the new value to be retained.  The timing of the
139    /// release of the old value is inexact: it may be moved to
140    /// immediately after the last known point where the value is
141    /// live.
142    OCL_Strong,
143
144    /// Reading or writing from this object requires a barrier call.
145    OCL_Weak,
146
147    /// Assigning into this object requires a lifetime extension.
148    OCL_Autoreleasing
149  };
150
151  enum {
152    /// The maximum supported address space number.
153    /// 24 bits should be enough for anyone.
154    MaxAddressSpace = 0xffffffu,
155
156    /// The width of the "fast" qualifier mask.
157    FastWidth = 3,
158
159    /// The fast qualifier mask.
160    FastMask = (1 << FastWidth) - 1
161  };
162
163  Qualifiers() : Mask(0) {}
164
165  static Qualifiers fromFastMask(unsigned Mask) {
166    Qualifiers Qs;
167    Qs.addFastQualifiers(Mask);
168    return Qs;
169  }
170
171  static Qualifiers fromCVRMask(unsigned CVR) {
172    Qualifiers Qs;
173    Qs.addCVRQualifiers(CVR);
174    return Qs;
175  }
176
177  // Deserialize qualifiers from an opaque representation.
178  static Qualifiers fromOpaqueValue(unsigned opaque) {
179    Qualifiers Qs;
180    Qs.Mask = opaque;
181    return Qs;
182  }
183
184  // Serialize these qualifiers into an opaque representation.
185  unsigned getAsOpaqueValue() const {
186    return Mask;
187  }
188
189  bool hasConst() const { return Mask & Const; }
190  void setConst(bool flag) {
191    Mask = (Mask & ~Const) | (flag ? Const : 0);
192  }
193  void removeConst() { Mask &= ~Const; }
194  void addConst() { Mask |= Const; }
195
196  bool hasVolatile() const { return Mask & Volatile; }
197  void setVolatile(bool flag) {
198    Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
199  }
200  void removeVolatile() { Mask &= ~Volatile; }
201  void addVolatile() { Mask |= Volatile; }
202
203  bool hasRestrict() const { return Mask & Restrict; }
204  void setRestrict(bool flag) {
205    Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
206  }
207  void removeRestrict() { Mask &= ~Restrict; }
208  void addRestrict() { Mask |= Restrict; }
209
210  bool hasCVRQualifiers() const { return getCVRQualifiers(); }
211  unsigned getCVRQualifiers() const { return Mask & CVRMask; }
212  void setCVRQualifiers(unsigned mask) {
213    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
214    Mask = (Mask & ~CVRMask) | mask;
215  }
216  void removeCVRQualifiers(unsigned mask) {
217    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
218    Mask &= ~mask;
219  }
220  void removeCVRQualifiers() {
221    removeCVRQualifiers(CVRMask);
222  }
223  void addCVRQualifiers(unsigned mask) {
224    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
225    Mask |= mask;
226  }
227
228  bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
229  GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
230  void setObjCGCAttr(GC type) {
231    Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
232  }
233  void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
234  void addObjCGCAttr(GC type) {
235    assert(type);
236    setObjCGCAttr(type);
237  }
238  Qualifiers withoutObjCGCAttr() const {
239    Qualifiers qs = *this;
240    qs.removeObjCGCAttr();
241    return qs;
242  }
243  Qualifiers withoutObjCGLifetime() const {
244    Qualifiers qs = *this;
245    qs.removeObjCLifetime();
246    return qs;
247  }
248
249  bool hasObjCLifetime() const { return Mask & LifetimeMask; }
250  ObjCLifetime getObjCLifetime() const {
251    return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
252  }
253  void setObjCLifetime(ObjCLifetime type) {
254    Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
255  }
256  void removeObjCLifetime() { setObjCLifetime(OCL_None); }
257  void addObjCLifetime(ObjCLifetime type) {
258    assert(type);
259    setObjCLifetime(type);
260  }
261
262  /// True if the lifetime is neither None or ExplicitNone.
263  bool hasNonTrivialObjCLifetime() const {
264    ObjCLifetime lifetime = getObjCLifetime();
265    return (lifetime > OCL_ExplicitNone);
266  }
267
268  /// True if the lifetime is either strong or weak.
269  bool hasStrongOrWeakObjCLifetime() const {
270    ObjCLifetime lifetime = getObjCLifetime();
271    return (lifetime == OCL_Strong || lifetime == OCL_Weak);
272  }
273
274  bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
275  unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
276  void setAddressSpace(unsigned space) {
277    assert(space <= MaxAddressSpace);
278    Mask = (Mask & ~AddressSpaceMask)
279         | (((uint32_t) space) << AddressSpaceShift);
280  }
281  void removeAddressSpace() { setAddressSpace(0); }
282  void addAddressSpace(unsigned space) {
283    assert(space);
284    setAddressSpace(space);
285  }
286
287  // Fast qualifiers are those that can be allocated directly
288  // on a QualType object.
289  bool hasFastQualifiers() const { return getFastQualifiers(); }
290  unsigned getFastQualifiers() const { return Mask & FastMask; }
291  void setFastQualifiers(unsigned mask) {
292    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
293    Mask = (Mask & ~FastMask) | mask;
294  }
295  void removeFastQualifiers(unsigned mask) {
296    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
297    Mask &= ~mask;
298  }
299  void removeFastQualifiers() {
300    removeFastQualifiers(FastMask);
301  }
302  void addFastQualifiers(unsigned mask) {
303    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
304    Mask |= mask;
305  }
306
307  /// hasNonFastQualifiers - Return true if the set contains any
308  /// qualifiers which require an ExtQuals node to be allocated.
309  bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
310  Qualifiers getNonFastQualifiers() const {
311    Qualifiers Quals = *this;
312    Quals.setFastQualifiers(0);
313    return Quals;
314  }
315
316  /// hasQualifiers - Return true if the set contains any qualifiers.
317  bool hasQualifiers() const { return Mask; }
318  bool empty() const { return !Mask; }
319
320  /// \brief Add the qualifiers from the given set to this set.
321  void addQualifiers(Qualifiers Q) {
322    // If the other set doesn't have any non-boolean qualifiers, just
323    // bit-or it in.
324    if (!(Q.Mask & ~CVRMask))
325      Mask |= Q.Mask;
326    else {
327      Mask |= (Q.Mask & CVRMask);
328      if (Q.hasAddressSpace())
329        addAddressSpace(Q.getAddressSpace());
330      if (Q.hasObjCGCAttr())
331        addObjCGCAttr(Q.getObjCGCAttr());
332      if (Q.hasObjCLifetime())
333        addObjCLifetime(Q.getObjCLifetime());
334    }
335  }
336
337  /// \brief Add the qualifiers from the given set to this set, given that
338  /// they don't conflict.
339  void addConsistentQualifiers(Qualifiers qs) {
340    assert(getAddressSpace() == qs.getAddressSpace() ||
341           !hasAddressSpace() || !qs.hasAddressSpace());
342    assert(getObjCGCAttr() == qs.getObjCGCAttr() ||
343           !hasObjCGCAttr() || !qs.hasObjCGCAttr());
344    assert(getObjCLifetime() == qs.getObjCLifetime() ||
345           !hasObjCLifetime() || !qs.hasObjCLifetime());
346    Mask |= qs.Mask;
347  }
348
349  /// \brief Determines if these qualifiers compatibly include another set.
350  /// Generally this answers the question of whether an object with the other
351  /// qualifiers can be safely used as an object with these qualifiers.
352  bool compatiblyIncludes(Qualifiers other) const {
353    return
354      // Address spaces must match exactly.
355      getAddressSpace() == other.getAddressSpace() &&
356      // ObjC GC qualifiers can match, be added, or be removed, but can't be
357      // changed.
358      (getObjCGCAttr() == other.getObjCGCAttr() ||
359       !hasObjCGCAttr() || !other.hasObjCGCAttr()) &&
360      // ObjC lifetime qualifiers must match exactly.
361      getObjCLifetime() == other.getObjCLifetime() &&
362      // CVR qualifiers may subset.
363      (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask));
364  }
365
366  /// \brief Determines if these qualifiers compatibly include another set of
367  /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
368  ///
369  /// One set of Objective-C lifetime qualifiers compatibly includes the other
370  /// if the lifetime qualifiers match, or if both are non-__weak and the
371  /// including set also contains the 'const' qualifier.
372  bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
373    if (getObjCLifetime() == other.getObjCLifetime())
374      return true;
375
376    if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
377      return false;
378
379    return hasConst();
380  }
381
382  bool isSupersetOf(Qualifiers Other) const;
383
384  /// \brief Determine whether this set of qualifiers is a strict superset of
385  /// another set of qualifiers, not considering qualifier compatibility.
386  bool isStrictSupersetOf(Qualifiers Other) const;
387
388  bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
389  bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
390
391  operator bool() const { return hasQualifiers(); }
392
393  Qualifiers &operator+=(Qualifiers R) {
394    addQualifiers(R);
395    return *this;
396  }
397
398  // Union two qualifier sets.  If an enumerated qualifier appears
399  // in both sets, use the one from the right.
400  friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
401    L += R;
402    return L;
403  }
404
405  Qualifiers &operator-=(Qualifiers R) {
406    Mask = Mask & ~(R.Mask);
407    return *this;
408  }
409
410  /// \brief Compute the difference between two qualifier sets.
411  friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
412    L -= R;
413    return L;
414  }
415
416  std::string getAsString() const;
417  std::string getAsString(const PrintingPolicy &Policy) const {
418    std::string Buffer;
419    getAsStringInternal(Buffer, Policy);
420    return Buffer;
421  }
422  void getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const;
423
424  void Profile(llvm::FoldingSetNodeID &ID) const {
425    ID.AddInteger(Mask);
426  }
427
428private:
429
430  // bits:     |0 1 2|3 .. 4|5  ..  7|8   ...   31|
431  //           |C R V|GCAttr|Lifetime|AddressSpace|
432  uint32_t Mask;
433
434  static const uint32_t GCAttrMask = 0x18;
435  static const uint32_t GCAttrShift = 3;
436  static const uint32_t LifetimeMask = 0xE0;
437  static const uint32_t LifetimeShift = 5;
438  static const uint32_t AddressSpaceMask = ~(CVRMask|GCAttrMask|LifetimeMask);
439  static const uint32_t AddressSpaceShift = 8;
440};
441
442/// CallingConv - Specifies the calling convention that a function uses.
443enum CallingConv {
444  CC_Default,
445  CC_C,           // __attribute__((cdecl))
446  CC_X86StdCall,  // __attribute__((stdcall))
447  CC_X86FastCall, // __attribute__((fastcall))
448  CC_X86ThisCall, // __attribute__((thiscall))
449  CC_X86Pascal,   // __attribute__((pascal))
450  CC_AAPCS,       // __attribute__((pcs("aapcs")))
451  CC_AAPCS_VFP    // __attribute__((pcs("aapcs-vfp")))
452};
453
454typedef std::pair<const Type*, Qualifiers> SplitQualType;
455
456/// QualType - For efficiency, we don't store CV-qualified types as nodes on
457/// their own: instead each reference to a type stores the qualifiers.  This
458/// greatly reduces the number of nodes we need to allocate for types (for
459/// example we only need one for 'int', 'const int', 'volatile int',
460/// 'const volatile int', etc).
461///
462/// As an added efficiency bonus, instead of making this a pair, we
463/// just store the two bits we care about in the low bits of the
464/// pointer.  To handle the packing/unpacking, we make QualType be a
465/// simple wrapper class that acts like a smart pointer.  A third bit
466/// indicates whether there are extended qualifiers present, in which
467/// case the pointer points to a special structure.
468class QualType {
469  // Thankfully, these are efficiently composable.
470  llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
471                       Qualifiers::FastWidth> Value;
472
473  const ExtQuals *getExtQualsUnsafe() const {
474    return Value.getPointer().get<const ExtQuals*>();
475  }
476
477  const Type *getTypePtrUnsafe() const {
478    return Value.getPointer().get<const Type*>();
479  }
480
481  const ExtQualsTypeCommonBase *getCommonPtr() const {
482    assert(!isNull() && "Cannot retrieve a NULL type pointer");
483    uintptr_t CommonPtrVal
484      = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
485    CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
486    return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
487  }
488
489  friend class QualifierCollector;
490public:
491  QualType() {}
492
493  QualType(const Type *Ptr, unsigned Quals)
494    : Value(Ptr, Quals) {}
495  QualType(const ExtQuals *Ptr, unsigned Quals)
496    : Value(Ptr, Quals) {}
497
498  unsigned getLocalFastQualifiers() const { return Value.getInt(); }
499  void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
500
501  /// Retrieves a pointer to the underlying (unqualified) type.
502  /// This should really return a const Type, but it's not worth
503  /// changing all the users right now.
504  ///
505  /// This function requires that the type not be NULL. If the type might be
506  /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
507  const Type *getTypePtr() const;
508
509  const Type *getTypePtrOrNull() const;
510
511  /// Divides a QualType into its unqualified type and a set of local
512  /// qualifiers.
513  SplitQualType split() const;
514
515  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
516  static QualType getFromOpaquePtr(const void *Ptr) {
517    QualType T;
518    T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
519    return T;
520  }
521
522  const Type &operator*() const {
523    return *getTypePtr();
524  }
525
526  const Type *operator->() const {
527    return getTypePtr();
528  }
529
530  bool isCanonical() const;
531  bool isCanonicalAsParam() const;
532
533  /// isNull - Return true if this QualType doesn't point to a type yet.
534  bool isNull() const {
535    return Value.getPointer().isNull();
536  }
537
538  /// \brief Determine whether this particular QualType instance has the
539  /// "const" qualifier set, without looking through typedefs that may have
540  /// added "const" at a different level.
541  bool isLocalConstQualified() const {
542    return (getLocalFastQualifiers() & Qualifiers::Const);
543  }
544
545  /// \brief Determine whether this type is const-qualified.
546  bool isConstQualified() const;
547
548  /// \brief Determine whether this particular QualType instance has the
549  /// "restrict" qualifier set, without looking through typedefs that may have
550  /// added "restrict" at a different level.
551  bool isLocalRestrictQualified() const {
552    return (getLocalFastQualifiers() & Qualifiers::Restrict);
553  }
554
555  /// \brief Determine whether this type is restrict-qualified.
556  bool isRestrictQualified() const;
557
558  /// \brief Determine whether this particular QualType instance has the
559  /// "volatile" qualifier set, without looking through typedefs that may have
560  /// added "volatile" at a different level.
561  bool isLocalVolatileQualified() const {
562    return (getLocalFastQualifiers() & Qualifiers::Volatile);
563  }
564
565  /// \brief Determine whether this type is volatile-qualified.
566  bool isVolatileQualified() const;
567
568  /// \brief Determine whether this particular QualType instance has any
569  /// qualifiers, without looking through any typedefs that might add
570  /// qualifiers at a different level.
571  bool hasLocalQualifiers() const {
572    return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
573  }
574
575  /// \brief Determine whether this type has any qualifiers.
576  bool hasQualifiers() const;
577
578  /// \brief Determine whether this particular QualType instance has any
579  /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
580  /// instance.
581  bool hasLocalNonFastQualifiers() const {
582    return Value.getPointer().is<const ExtQuals*>();
583  }
584
585  /// \brief Retrieve the set of qualifiers local to this particular QualType
586  /// instance, not including any qualifiers acquired through typedefs or
587  /// other sugar.
588  Qualifiers getLocalQualifiers() const;
589
590  /// \brief Retrieve the set of qualifiers applied to this type.
591  Qualifiers getQualifiers() const;
592
593  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
594  /// local to this particular QualType instance, not including any qualifiers
595  /// acquired through typedefs or other sugar.
596  unsigned getLocalCVRQualifiers() const {
597    return getLocalFastQualifiers();
598  }
599
600  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
601  /// applied to this type.
602  unsigned getCVRQualifiers() const;
603
604  bool isConstant(ASTContext& Ctx) const {
605    return QualType::isConstant(*this, Ctx);
606  }
607
608  /// \brief Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
609  bool isPODType(ASTContext &Context) const;
610
611  /// isCXX11PODType() - Return true if this is a POD type according to the
612  /// more relaxed rules of the C++11 standard, regardless of the current
613  /// compilation's language.
614  /// (C++0x [basic.types]p9)
615  bool isCXX11PODType(ASTContext &Context) const;
616
617  /// isTrivialType - Return true if this is a trivial type
618  /// (C++0x [basic.types]p9)
619  bool isTrivialType(ASTContext &Context) const;
620
621  /// isTriviallyCopyableType - Return true if this is a trivially
622  /// copyable type (C++0x [basic.types]p9)
623  bool isTriviallyCopyableType(ASTContext &Context) const;
624
625  // Don't promise in the API that anything besides 'const' can be
626  // easily added.
627
628  /// addConst - add the specified type qualifier to this QualType.
629  void addConst() {
630    addFastQualifiers(Qualifiers::Const);
631  }
632  QualType withConst() const {
633    return withFastQualifiers(Qualifiers::Const);
634  }
635
636  /// addVolatile - add the specified type qualifier to this QualType.
637  void addVolatile() {
638    addFastQualifiers(Qualifiers::Volatile);
639  }
640  QualType withVolatile() const {
641    return withFastQualifiers(Qualifiers::Volatile);
642  }
643
644  QualType withCVRQualifiers(unsigned CVR) const {
645    return withFastQualifiers(CVR);
646  }
647
648  void addFastQualifiers(unsigned TQs) {
649    assert(!(TQs & ~Qualifiers::FastMask)
650           && "non-fast qualifier bits set in mask!");
651    Value.setInt(Value.getInt() | TQs);
652  }
653
654  void removeLocalConst();
655  void removeLocalVolatile();
656  void removeLocalRestrict();
657  void removeLocalCVRQualifiers(unsigned Mask);
658
659  void removeLocalFastQualifiers() { Value.setInt(0); }
660  void removeLocalFastQualifiers(unsigned Mask) {
661    assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
662    Value.setInt(Value.getInt() & ~Mask);
663  }
664
665  // Creates a type with the given qualifiers in addition to any
666  // qualifiers already on this type.
667  QualType withFastQualifiers(unsigned TQs) const {
668    QualType T = *this;
669    T.addFastQualifiers(TQs);
670    return T;
671  }
672
673  // Creates a type with exactly the given fast qualifiers, removing
674  // any existing fast qualifiers.
675  QualType withExactLocalFastQualifiers(unsigned TQs) const {
676    return withoutLocalFastQualifiers().withFastQualifiers(TQs);
677  }
678
679  // Removes fast qualifiers, but leaves any extended qualifiers in place.
680  QualType withoutLocalFastQualifiers() const {
681    QualType T = *this;
682    T.removeLocalFastQualifiers();
683    return T;
684  }
685
686  QualType getCanonicalType() const;
687
688  /// \brief Return this type with all of the instance-specific qualifiers
689  /// removed, but without removing any qualifiers that may have been applied
690  /// through typedefs.
691  QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
692
693  /// \brief Retrieve the unqualified variant of the given type,
694  /// removing as little sugar as possible.
695  ///
696  /// This routine looks through various kinds of sugar to find the
697  /// least-desugared type that is unqualified. For example, given:
698  ///
699  /// \code
700  /// typedef int Integer;
701  /// typedef const Integer CInteger;
702  /// typedef CInteger DifferenceType;
703  /// \endcode
704  ///
705  /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
706  /// desugar until we hit the type \c Integer, which has no qualifiers on it.
707  ///
708  /// The resulting type might still be qualified if it's an array
709  /// type.  To strip qualifiers even from within an array type, use
710  /// ASTContext::getUnqualifiedArrayType.
711  inline QualType getUnqualifiedType() const;
712
713  /// getSplitUnqualifiedType - Retrieve the unqualified variant of the
714  /// given type, removing as little sugar as possible.
715  ///
716  /// Like getUnqualifiedType(), but also returns the set of
717  /// qualifiers that were built up.
718  ///
719  /// The resulting type might still be qualified if it's an array
720  /// type.  To strip qualifiers even from within an array type, use
721  /// ASTContext::getUnqualifiedArrayType.
722  inline SplitQualType getSplitUnqualifiedType() const;
723
724  /// \brief Determine whether this type is more qualified than the other
725  /// given type, requiring exact equality for non-CVR qualifiers.
726  bool isMoreQualifiedThan(QualType Other) const;
727
728  /// \brief Determine whether this type is at least as qualified as the other
729  /// given type, requiring exact equality for non-CVR qualifiers.
730  bool isAtLeastAsQualifiedAs(QualType Other) const;
731
732  QualType getNonReferenceType() const;
733
734  /// \brief Determine the type of a (typically non-lvalue) expression with the
735  /// specified result type.
736  ///
737  /// This routine should be used for expressions for which the return type is
738  /// explicitly specified (e.g., in a cast or call) and isn't necessarily
739  /// an lvalue. It removes a top-level reference (since there are no
740  /// expressions of reference type) and deletes top-level cvr-qualifiers
741  /// from non-class types (in C++) or all types (in C).
742  QualType getNonLValueExprType(ASTContext &Context) const;
743
744  /// getDesugaredType - Return the specified type with any "sugar" removed from
745  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
746  /// the type is already concrete, it returns it unmodified.  This is similar
747  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
748  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
749  /// concrete.
750  ///
751  /// Qualifiers are left in place.
752  QualType getDesugaredType(const ASTContext &Context) const {
753    return getDesugaredType(*this, Context);
754  }
755
756  SplitQualType getSplitDesugaredType() const {
757    return getSplitDesugaredType(*this);
758  }
759
760  /// IgnoreParens - Returns the specified type after dropping any
761  /// outer-level parentheses.
762  QualType IgnoreParens() const {
763    if (isa<ParenType>(*this))
764      return QualType::IgnoreParens(*this);
765    return *this;
766  }
767
768  /// operator==/!= - Indicate whether the specified types and qualifiers are
769  /// identical.
770  friend bool operator==(const QualType &LHS, const QualType &RHS) {
771    return LHS.Value == RHS.Value;
772  }
773  friend bool operator!=(const QualType &LHS, const QualType &RHS) {
774    return LHS.Value != RHS.Value;
775  }
776  std::string getAsString() const {
777    return getAsString(split());
778  }
779  static std::string getAsString(SplitQualType split) {
780    return getAsString(split.first, split.second);
781  }
782  static std::string getAsString(const Type *ty, Qualifiers qs);
783
784  std::string getAsString(const PrintingPolicy &Policy) const {
785    std::string S;
786    getAsStringInternal(S, Policy);
787    return S;
788  }
789  void getAsStringInternal(std::string &Str,
790                           const PrintingPolicy &Policy) const {
791    return getAsStringInternal(split(), Str, Policy);
792  }
793  static void getAsStringInternal(SplitQualType split, std::string &out,
794                                  const PrintingPolicy &policy) {
795    return getAsStringInternal(split.first, split.second, out, policy);
796  }
797  static void getAsStringInternal(const Type *ty, Qualifiers qs,
798                                  std::string &out,
799                                  const PrintingPolicy &policy);
800
801  void dump(const char *s) const;
802  void dump() const;
803
804  void Profile(llvm::FoldingSetNodeID &ID) const {
805    ID.AddPointer(getAsOpaquePtr());
806  }
807
808  /// getAddressSpace - Return the address space of this type.
809  inline unsigned getAddressSpace() const;
810
811  /// getObjCGCAttr - Returns gc attribute of this type.
812  inline Qualifiers::GC getObjCGCAttr() const;
813
814  /// isObjCGCWeak true when Type is objc's weak.
815  bool isObjCGCWeak() const {
816    return getObjCGCAttr() == Qualifiers::Weak;
817  }
818
819  /// isObjCGCStrong true when Type is objc's strong.
820  bool isObjCGCStrong() const {
821    return getObjCGCAttr() == Qualifiers::Strong;
822  }
823
824  /// getObjCLifetime - Returns lifetime attribute of this type.
825  Qualifiers::ObjCLifetime getObjCLifetime() const {
826    return getQualifiers().getObjCLifetime();
827  }
828
829  bool hasNonTrivialObjCLifetime() const {
830    return getQualifiers().hasNonTrivialObjCLifetime();
831  }
832
833  bool hasStrongOrWeakObjCLifetime() const {
834    return getQualifiers().hasStrongOrWeakObjCLifetime();
835  }
836
837  enum DestructionKind {
838    DK_none,
839    DK_cxx_destructor,
840    DK_objc_strong_lifetime,
841    DK_objc_weak_lifetime
842  };
843
844  /// isDestructedType - nonzero if objects of this type require
845  /// non-trivial work to clean up after.  Non-zero because it's
846  /// conceivable that qualifiers (objc_gc(weak)?) could make
847  /// something require destruction.
848  DestructionKind isDestructedType() const {
849    return isDestructedTypeImpl(*this);
850  }
851
852  /// \brief Determine whether this type has trivial copy-assignment semantics.
853  bool hasTrivialCopyAssignment(ASTContext &Context) const;
854
855private:
856  // These methods are implemented in a separate translation unit;
857  // "static"-ize them to avoid creating temporary QualTypes in the
858  // caller.
859  static bool isConstant(QualType T, ASTContext& Ctx);
860  static QualType getDesugaredType(QualType T, const ASTContext &Context);
861  static SplitQualType getSplitDesugaredType(QualType T);
862  static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
863  static QualType IgnoreParens(QualType T);
864  static DestructionKind isDestructedTypeImpl(QualType type);
865};
866
867} // end clang.
868
869namespace llvm {
870/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
871/// to a specific Type class.
872template<> struct simplify_type<const ::clang::QualType> {
873  typedef const ::clang::Type *SimpleType;
874  static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
875    return Val.getTypePtr();
876  }
877};
878template<> struct simplify_type< ::clang::QualType>
879  : public simplify_type<const ::clang::QualType> {};
880
881// Teach SmallPtrSet that QualType is "basically a pointer".
882template<>
883class PointerLikeTypeTraits<clang::QualType> {
884public:
885  static inline void *getAsVoidPointer(clang::QualType P) {
886    return P.getAsOpaquePtr();
887  }
888  static inline clang::QualType getFromVoidPointer(void *P) {
889    return clang::QualType::getFromOpaquePtr(P);
890  }
891  // Various qualifiers go in low bits.
892  enum { NumLowBitsAvailable = 0 };
893};
894
895} // end namespace llvm
896
897namespace clang {
898
899/// \brief Base class that is common to both the \c ExtQuals and \c Type
900/// classes, which allows \c QualType to access the common fields between the
901/// two.
902///
903class ExtQualsTypeCommonBase {
904  ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
905    : BaseType(baseType), CanonicalType(canon) {}
906
907  /// \brief The "base" type of an extended qualifiers type (\c ExtQuals) or
908  /// a self-referential pointer (for \c Type).
909  ///
910  /// This pointer allows an efficient mapping from a QualType to its
911  /// underlying type pointer.
912  const Type *const BaseType;
913
914  /// \brief The canonical type of this type.  A QualType.
915  QualType CanonicalType;
916
917  friend class QualType;
918  friend class Type;
919  friend class ExtQuals;
920};
921
922/// ExtQuals - We can encode up to four bits in the low bits of a
923/// type pointer, but there are many more type qualifiers that we want
924/// to be able to apply to an arbitrary type.  Therefore we have this
925/// struct, intended to be heap-allocated and used by QualType to
926/// store qualifiers.
927///
928/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
929/// in three low bits on the QualType pointer; a fourth bit records whether
930/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
931/// Objective-C GC attributes) are much more rare.
932class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
933  // NOTE: changing the fast qualifiers should be straightforward as
934  // long as you don't make 'const' non-fast.
935  // 1. Qualifiers:
936  //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
937  //       Fast qualifiers must occupy the low-order bits.
938  //    b) Update Qualifiers::FastWidth and FastMask.
939  // 2. QualType:
940  //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
941  //    b) Update remove{Volatile,Restrict}, defined near the end of
942  //       this header.
943  // 3. ASTContext:
944  //    a) Update get{Volatile,Restrict}Type.
945
946  /// Quals - the immutable set of qualifiers applied by this
947  /// node;  always contains extended qualifiers.
948  Qualifiers Quals;
949
950  ExtQuals *this_() { return this; }
951
952public:
953  ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
954    : ExtQualsTypeCommonBase(baseType,
955                             canon.isNull() ? QualType(this_(), 0) : canon),
956      Quals(quals)
957  {
958    assert(Quals.hasNonFastQualifiers()
959           && "ExtQuals created with no fast qualifiers");
960    assert(!Quals.hasFastQualifiers()
961           && "ExtQuals created with fast qualifiers");
962  }
963
964  Qualifiers getQualifiers() const { return Quals; }
965
966  bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
967  Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
968
969  bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
970  Qualifiers::ObjCLifetime getObjCLifetime() const {
971    return Quals.getObjCLifetime();
972  }
973
974  bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
975  unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
976
977  const Type *getBaseType() const { return BaseType; }
978
979public:
980  void Profile(llvm::FoldingSetNodeID &ID) const {
981    Profile(ID, getBaseType(), Quals);
982  }
983  static void Profile(llvm::FoldingSetNodeID &ID,
984                      const Type *BaseType,
985                      Qualifiers Quals) {
986    assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
987    ID.AddPointer(BaseType);
988    Quals.Profile(ID);
989  }
990};
991
992/// \brief The kind of C++0x ref-qualifier associated with a function type,
993/// which determines whether a member function's "this" object can be an
994/// lvalue, rvalue, or neither.
995enum RefQualifierKind {
996  /// \brief No ref-qualifier was provided.
997  RQ_None = 0,
998  /// \brief An lvalue ref-qualifier was provided (\c &).
999  RQ_LValue,
1000  /// \brief An rvalue ref-qualifier was provided (\c &&).
1001  RQ_RValue
1002};
1003
1004/// Type - This is the base class of the type hierarchy.  A central concept
1005/// with types is that each type always has a canonical type.  A canonical type
1006/// is the type with any typedef names stripped out of it or the types it
1007/// references.  For example, consider:
1008///
1009///  typedef int  foo;
1010///  typedef foo* bar;
1011///    'int *'    'foo *'    'bar'
1012///
1013/// There will be a Type object created for 'int'.  Since int is canonical, its
1014/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
1015/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
1016/// there is a PointerType that represents 'int*', which, like 'int', is
1017/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
1018/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
1019/// is also 'int*'.
1020///
1021/// Non-canonical types are useful for emitting diagnostics, without losing
1022/// information about typedefs being used.  Canonical types are useful for type
1023/// comparisons (they allow by-pointer equality tests) and useful for reasoning
1024/// about whether something has a particular form (e.g. is a function type),
1025/// because they implicitly, recursively, strip all typedefs out of a type.
1026///
1027/// Types, once created, are immutable.
1028///
1029class Type : public ExtQualsTypeCommonBase {
1030public:
1031  enum TypeClass {
1032#define TYPE(Class, Base) Class,
1033#define LAST_TYPE(Class) TypeLast = Class,
1034#define ABSTRACT_TYPE(Class, Base)
1035#include "clang/AST/TypeNodes.def"
1036    TagFirst = Record, TagLast = Enum
1037  };
1038
1039private:
1040  Type(const Type&);           // DO NOT IMPLEMENT.
1041  void operator=(const Type&); // DO NOT IMPLEMENT.
1042
1043  /// Bitfields required by the Type class.
1044  class TypeBitfields {
1045    friend class Type;
1046    template <class T> friend class TypePropertyCache;
1047
1048    /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
1049    unsigned TC : 8;
1050
1051    /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
1052    /// Note that this should stay at the end of the ivars for Type so that
1053    /// subclasses can pack their bitfields into the same word.
1054    unsigned Dependent : 1;
1055
1056    /// \brief Whether this type is a variably-modified type (C99 6.7.5).
1057    unsigned VariablyModified : 1;
1058
1059    /// \brief Whether this type contains an unexpanded parameter pack
1060    /// (for C++0x variadic templates).
1061    unsigned ContainsUnexpandedParameterPack : 1;
1062
1063    /// \brief Nonzero if the cache (i.e. the bitfields here starting
1064    /// with 'Cache') is valid.  If so, then this is a
1065    /// LangOptions::VisibilityMode+1.
1066    mutable unsigned CacheValidAndVisibility : 2;
1067
1068    /// \brief Linkage of this type.
1069    mutable unsigned CachedLinkage : 2;
1070
1071    /// \brief Whether this type involves and local or unnamed types.
1072    mutable unsigned CachedLocalOrUnnamed : 1;
1073
1074    /// \brief FromAST - Whether this type comes from an AST file.
1075    mutable unsigned FromAST : 1;
1076
1077    bool isCacheValid() const {
1078      return (CacheValidAndVisibility != 0);
1079    }
1080    Visibility getVisibility() const {
1081      assert(isCacheValid() && "getting linkage from invalid cache");
1082      return static_cast<Visibility>(CacheValidAndVisibility-1);
1083    }
1084    Linkage getLinkage() const {
1085      assert(isCacheValid() && "getting linkage from invalid cache");
1086      return static_cast<Linkage>(CachedLinkage);
1087    }
1088    bool hasLocalOrUnnamedType() const {
1089      assert(isCacheValid() && "getting linkage from invalid cache");
1090      return CachedLocalOrUnnamed;
1091    }
1092  };
1093  enum { NumTypeBits = 17 };
1094
1095protected:
1096  // These classes allow subclasses to somewhat cleanly pack bitfields
1097  // into Type.
1098
1099  class ArrayTypeBitfields {
1100    friend class ArrayType;
1101
1102    unsigned : NumTypeBits;
1103
1104    /// IndexTypeQuals - CVR qualifiers from declarations like
1105    /// 'int X[static restrict 4]'. For function parameters only.
1106    unsigned IndexTypeQuals : 3;
1107
1108    /// SizeModifier - storage class qualifiers from declarations like
1109    /// 'int X[static restrict 4]'. For function parameters only.
1110    /// Actually an ArrayType::ArraySizeModifier.
1111    unsigned SizeModifier : 3;
1112  };
1113
1114  class BuiltinTypeBitfields {
1115    friend class BuiltinType;
1116
1117    unsigned : NumTypeBits;
1118
1119    /// The kind (BuiltinType::Kind) of builtin type this is.
1120    unsigned Kind : 8;
1121  };
1122
1123  class FunctionTypeBitfields {
1124    friend class FunctionType;
1125
1126    unsigned : NumTypeBits;
1127
1128    /// Extra information which affects how the function is called, like
1129    /// regparm and the calling convention.
1130    unsigned ExtInfo : 9;
1131
1132    /// Whether the function is variadic.  Only used by FunctionProtoType.
1133    unsigned Variadic : 1;
1134
1135    /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
1136    /// other bitfields.
1137    /// The qualifiers are part of FunctionProtoType because...
1138    ///
1139    /// C++ 8.3.5p4: The return type, the parameter type list and the
1140    /// cv-qualifier-seq, [...], are part of the function type.
1141    unsigned TypeQuals : 3;
1142
1143    /// \brief The ref-qualifier associated with a \c FunctionProtoType.
1144    ///
1145    /// This is a value of type \c RefQualifierKind.
1146    unsigned RefQualifier : 2;
1147  };
1148
1149  class ObjCObjectTypeBitfields {
1150    friend class ObjCObjectType;
1151
1152    unsigned : NumTypeBits;
1153
1154    /// NumProtocols - The number of protocols stored directly on this
1155    /// object type.
1156    unsigned NumProtocols : 32 - NumTypeBits;
1157  };
1158
1159  class ReferenceTypeBitfields {
1160    friend class ReferenceType;
1161
1162    unsigned : NumTypeBits;
1163
1164    /// True if the type was originally spelled with an lvalue sigil.
1165    /// This is never true of rvalue references but can also be false
1166    /// on lvalue references because of C++0x [dcl.typedef]p9,
1167    /// as follows:
1168    ///
1169    ///   typedef int &ref;    // lvalue, spelled lvalue
1170    ///   typedef int &&rvref; // rvalue
1171    ///   ref &a;              // lvalue, inner ref, spelled lvalue
1172    ///   ref &&a;             // lvalue, inner ref
1173    ///   rvref &a;            // lvalue, inner ref, spelled lvalue
1174    ///   rvref &&a;           // rvalue, inner ref
1175    unsigned SpelledAsLValue : 1;
1176
1177    /// True if the inner type is a reference type.  This only happens
1178    /// in non-canonical forms.
1179    unsigned InnerRef : 1;
1180  };
1181
1182  class TypeWithKeywordBitfields {
1183    friend class TypeWithKeyword;
1184
1185    unsigned : NumTypeBits;
1186
1187    /// An ElaboratedTypeKeyword.  8 bits for efficient access.
1188    unsigned Keyword : 8;
1189  };
1190
1191  class VectorTypeBitfields {
1192    friend class VectorType;
1193
1194    unsigned : NumTypeBits;
1195
1196    /// VecKind - The kind of vector, either a generic vector type or some
1197    /// target-specific vector type such as for AltiVec or Neon.
1198    unsigned VecKind : 3;
1199
1200    /// NumElements - The number of elements in the vector.
1201    unsigned NumElements : 29 - NumTypeBits;
1202  };
1203
1204  class AttributedTypeBitfields {
1205    friend class AttributedType;
1206
1207    unsigned : NumTypeBits;
1208
1209    /// AttrKind - an AttributedType::Kind
1210    unsigned AttrKind : 32 - NumTypeBits;
1211  };
1212
1213  union {
1214    TypeBitfields TypeBits;
1215    ArrayTypeBitfields ArrayTypeBits;
1216    AttributedTypeBitfields AttributedTypeBits;
1217    BuiltinTypeBitfields BuiltinTypeBits;
1218    FunctionTypeBitfields FunctionTypeBits;
1219    ObjCObjectTypeBitfields ObjCObjectTypeBits;
1220    ReferenceTypeBitfields ReferenceTypeBits;
1221    TypeWithKeywordBitfields TypeWithKeywordBits;
1222    VectorTypeBitfields VectorTypeBits;
1223  };
1224
1225private:
1226  /// \brief Set whether this type comes from an AST file.
1227  void setFromAST(bool V = true) const {
1228    TypeBits.FromAST = V;
1229  }
1230
1231  template <class T> friend class TypePropertyCache;
1232
1233protected:
1234  // silence VC++ warning C4355: 'this' : used in base member initializer list
1235  Type *this_() { return this; }
1236  Type(TypeClass tc, QualType canon, bool Dependent, bool VariablyModified,
1237       bool ContainsUnexpandedParameterPack)
1238    : ExtQualsTypeCommonBase(this,
1239                             canon.isNull() ? QualType(this_(), 0) : canon) {
1240    TypeBits.TC = tc;
1241    TypeBits.Dependent = Dependent;
1242    TypeBits.VariablyModified = VariablyModified;
1243    TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
1244    TypeBits.CacheValidAndVisibility = 0;
1245    TypeBits.CachedLocalOrUnnamed = false;
1246    TypeBits.CachedLinkage = NoLinkage;
1247    TypeBits.FromAST = false;
1248  }
1249  friend class ASTContext;
1250
1251  void setDependent(bool D = true) { TypeBits.Dependent = D; }
1252  void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM; }
1253  void setContainsUnexpandedParameterPack(bool PP = true) {
1254    TypeBits.ContainsUnexpandedParameterPack = PP;
1255  }
1256
1257public:
1258  TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1259
1260  /// \brief Whether this type comes from an AST file.
1261  bool isFromAST() const { return TypeBits.FromAST; }
1262
1263  /// \brief Whether this type is or contains an unexpanded parameter
1264  /// pack, used to support C++0x variadic templates.
1265  ///
1266  /// A type that contains a parameter pack shall be expanded by the
1267  /// ellipsis operator at some point. For example, the typedef in the
1268  /// following example contains an unexpanded parameter pack 'T':
1269  ///
1270  /// \code
1271  /// template<typename ...T>
1272  /// struct X {
1273  ///   typedef T* pointer_types; // ill-formed; T is a parameter pack.
1274  /// };
1275  /// \endcode
1276  ///
1277  /// Note that this routine does not specify which
1278  bool containsUnexpandedParameterPack() const {
1279    return TypeBits.ContainsUnexpandedParameterPack;
1280  }
1281
1282  /// Determines if this type would be canonical if it had no further
1283  /// qualification.
1284  bool isCanonicalUnqualified() const {
1285    return CanonicalType == QualType(this, 0);
1286  }
1287
1288  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
1289  /// object types, function types, and incomplete types.
1290
1291  /// isIncompleteType - Return true if this is an incomplete type.
1292  /// A type that can describe objects, but which lacks information needed to
1293  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
1294  /// routine will need to determine if the size is actually required.
1295  bool isIncompleteType() const;
1296
1297  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
1298  /// type, in other words, not a function type.
1299  bool isIncompleteOrObjectType() const {
1300    return !isFunctionType();
1301  }
1302
1303  /// \brief Determine whether this type is an object type.
1304  bool isObjectType() const {
1305    // C++ [basic.types]p8:
1306    //   An object type is a (possibly cv-qualified) type that is not a
1307    //   function type, not a reference type, and not a void type.
1308    return !isReferenceType() && !isFunctionType() && !isVoidType();
1309  }
1310
1311  /// isLiteralType - Return true if this is a literal type
1312  /// (C++0x [basic.types]p10)
1313  bool isLiteralType() const;
1314
1315  /// \brief Test if this type is a standard-layout type.
1316  /// (C++0x [basic.type]p9)
1317  bool isStandardLayoutType() const;
1318
1319  /// Helper methods to distinguish type categories. All type predicates
1320  /// operate on the canonical type, ignoring typedefs and qualifiers.
1321
1322  /// isBuiltinType - returns true if the type is a builtin type.
1323  bool isBuiltinType() const;
1324
1325  /// isSpecificBuiltinType - Test for a particular builtin type.
1326  bool isSpecificBuiltinType(unsigned K) const;
1327
1328  /// isPlaceholderType - Test for a type which does not represent an
1329  /// actual type-system type but is instead used as a placeholder for
1330  /// various convenient purposes within Clang.  All such types are
1331  /// BuiltinTypes.
1332  bool isPlaceholderType() const;
1333
1334  /// isSpecificPlaceholderType - Test for a specific placeholder type.
1335  bool isSpecificPlaceholderType(unsigned K) const;
1336
1337  /// isIntegerType() does *not* include complex integers (a GCC extension).
1338  /// isComplexIntegerType() can be used to test for complex integers.
1339  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
1340  bool isEnumeralType() const;
1341  bool isBooleanType() const;
1342  bool isCharType() const;
1343  bool isWideCharType() const;
1344  bool isAnyCharacterType() const;
1345  bool isIntegralType(ASTContext &Ctx) const;
1346
1347  /// \brief Determine whether this type is an integral or enumeration type.
1348  bool isIntegralOrEnumerationType() const;
1349  /// \brief Determine whether this type is an integral or unscoped enumeration
1350  /// type.
1351  bool isIntegralOrUnscopedEnumerationType() const;
1352
1353  /// Floating point categories.
1354  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
1355  /// isComplexType() does *not* include complex integers (a GCC extension).
1356  /// isComplexIntegerType() can be used to test for complex integers.
1357  bool isComplexType() const;      // C99 6.2.5p11 (complex)
1358  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
1359  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
1360  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
1361  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
1362  bool isVoidType() const;         // C99 6.2.5p19
1363  bool isDerivedType() const;      // C99 6.2.5p20
1364  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
1365  bool isAggregateType() const;
1366  bool isFundamentalType() const;
1367  bool isCompoundType() const;
1368
1369  // Type Predicates: Check to see if this type is structurally the specified
1370  // type, ignoring typedefs and qualifiers.
1371  bool isFunctionType() const;
1372  bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
1373  bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
1374  bool isPointerType() const;
1375  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
1376  bool isPointerLikeType() const;
1377  bool isBlockPointerType() const;
1378  bool isVoidPointerType() const;
1379  bool isReferenceType() const;
1380  bool isLValueReferenceType() const;
1381  bool isRValueReferenceType() const;
1382  bool isFunctionPointerType() const;
1383  bool isMemberPointerType() const;
1384  bool isMemberFunctionPointerType() const;
1385  bool isMemberDataPointerType() const;
1386  bool isArrayType() const;
1387  bool isConstantArrayType() const;
1388  bool isIncompleteArrayType() const;
1389  bool isVariableArrayType() const;
1390  bool isDependentSizedArrayType() const;
1391  bool isRecordType() const;
1392  bool isClassType() const;
1393  bool isStructureType() const;
1394  bool isStructureOrClassType() const;
1395  bool isUnionType() const;
1396  bool isComplexIntegerType() const;            // GCC _Complex integer type.
1397  bool isVectorType() const;                    // GCC vector type.
1398  bool isExtVectorType() const;                 // Extended vector type.
1399  bool isObjCObjectPointerType() const;         // pointer to ObjC object
1400  bool isObjCRetainableType() const;            // ObjC object or block pointer
1401  bool isObjCLifetimeType() const;              // (array of)* retainable type
1402  bool isObjCIndirectLifetimeType() const;      // (pointer to)* lifetime type
1403  bool isObjCNSObjectType() const;              // __attribute__((NSObject))
1404  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
1405  // for the common case.
1406  bool isObjCObjectType() const;                // NSString or typeof(*(id)0)
1407  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
1408  bool isObjCQualifiedIdType() const;           // id<foo>
1409  bool isObjCQualifiedClassType() const;        // Class<foo>
1410  bool isObjCObjectOrInterfaceType() const;
1411  bool isObjCIdType() const;                    // id
1412  bool isObjCClassType() const;                 // Class
1413  bool isObjCSelType() const;                 // Class
1414  bool isObjCBuiltinType() const;               // 'id' or 'Class'
1415  bool isObjCARCBridgableType() const;
1416  bool isCARCBridgableType() const;
1417  bool isTemplateTypeParmType() const;          // C++ template type parameter
1418  bool isNullPtrType() const;                   // C++0x nullptr_t
1419
1420  /// Determines if this type, which must satisfy
1421  /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
1422  /// than implicitly __strong.
1423  bool isObjCARCImplicitlyUnretainedType() const;
1424
1425  /// Return the implicit lifetime for this type, which must not be dependent.
1426  Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
1427
1428  enum ScalarTypeKind {
1429    STK_Pointer,
1430    STK_MemberPointer,
1431    STK_Bool,
1432    STK_Integral,
1433    STK_Floating,
1434    STK_IntegralComplex,
1435    STK_FloatingComplex
1436  };
1437  /// getScalarTypeKind - Given that this is a scalar type, classify it.
1438  ScalarTypeKind getScalarTypeKind() const;
1439
1440  /// isDependentType - Whether this type is a dependent type, meaning
1441  /// that its definition somehow depends on a template parameter
1442  /// (C++ [temp.dep.type]).
1443  bool isDependentType() const { return TypeBits.Dependent; }
1444
1445  /// \brief Whether this type is a variably-modified type (C99 6.7.5).
1446  bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
1447
1448  /// \brief Whether this type involves a variable-length array type
1449  /// with a definite size.
1450  bool hasSizedVLAType() const;
1451
1452  /// \brief Whether this type is or contains a local or unnamed type.
1453  bool hasUnnamedOrLocalType() const;
1454
1455  bool isOverloadableType() const;
1456
1457  /// \brief Determine wither this type is a C++ elaborated-type-specifier.
1458  bool isElaboratedTypeSpecifier() const;
1459
1460  bool canDecayToPointerType() const;
1461
1462  /// hasPointerRepresentation - Whether this type is represented
1463  /// natively as a pointer; this includes pointers, references, block
1464  /// pointers, and Objective-C interface, qualified id, and qualified
1465  /// interface types, as well as nullptr_t.
1466  bool hasPointerRepresentation() const;
1467
1468  /// hasObjCPointerRepresentation - Whether this type can represent
1469  /// an objective pointer type for the purpose of GC'ability
1470  bool hasObjCPointerRepresentation() const;
1471
1472  /// \brief Determine whether this type has an integer representation
1473  /// of some sort, e.g., it is an integer type or a vector.
1474  bool hasIntegerRepresentation() const;
1475
1476  /// \brief Determine whether this type has an signed integer representation
1477  /// of some sort, e.g., it is an signed integer type or a vector.
1478  bool hasSignedIntegerRepresentation() const;
1479
1480  /// \brief Determine whether this type has an unsigned integer representation
1481  /// of some sort, e.g., it is an unsigned integer type or a vector.
1482  bool hasUnsignedIntegerRepresentation() const;
1483
1484  /// \brief Determine whether this type has a floating-point representation
1485  /// of some sort, e.g., it is a floating-point type or a vector thereof.
1486  bool hasFloatingRepresentation() const;
1487
1488  // Type Checking Functions: Check to see if this type is structurally the
1489  // specified type, ignoring typedefs and qualifiers, and return a pointer to
1490  // the best type we can.
1491  const RecordType *getAsStructureType() const;
1492  /// NOTE: getAs*ArrayType are methods on ASTContext.
1493  const RecordType *getAsUnionType() const;
1494  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
1495  // The following is a convenience method that returns an ObjCObjectPointerType
1496  // for object declared using an interface.
1497  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
1498  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
1499  const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
1500  const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
1501  const CXXRecordDecl *getCXXRecordDeclForPointerType() const;
1502
1503  /// \brief Retrieves the CXXRecordDecl that this type refers to, either
1504  /// because the type is a RecordType or because it is the injected-class-name
1505  /// type of a class template or class template partial specialization.
1506  CXXRecordDecl *getAsCXXRecordDecl() const;
1507
1508  /// \brief Get the AutoType whose type will be deduced for a variable with
1509  /// an initializer of this type. This looks through declarators like pointer
1510  /// types, but not through decltype or typedefs.
1511  AutoType *getContainedAutoType() const;
1512
1513  /// Member-template getAs<specific type>'.  Look through sugar for
1514  /// an instance of <specific type>.   This scheme will eventually
1515  /// replace the specific getAsXXXX methods above.
1516  ///
1517  /// There are some specializations of this member template listed
1518  /// immediately following this class.
1519  template <typename T> const T *getAs() const;
1520
1521  /// A variant of getAs<> for array types which silently discards
1522  /// qualifiers from the outermost type.
1523  const ArrayType *getAsArrayTypeUnsafe() const;
1524
1525  /// Member-template castAs<specific type>.  Look through sugar for
1526  /// the underlying instance of <specific type>.
1527  ///
1528  /// This method has the same relationship to getAs<T> as cast<T> has
1529  /// to dyn_cast<T>; which is to say, the underlying type *must*
1530  /// have the intended type, and this method will never return null.
1531  template <typename T> const T *castAs() const;
1532
1533  /// A variant of castAs<> for array type which silently discards
1534  /// qualifiers from the outermost type.
1535  const ArrayType *castAsArrayTypeUnsafe() const;
1536
1537  /// getBaseElementTypeUnsafe - Get the base element type of this
1538  /// type, potentially discarding type qualifiers.  This method
1539  /// should never be used when type qualifiers are meaningful.
1540  const Type *getBaseElementTypeUnsafe() const;
1541
1542  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
1543  /// element type of the array, potentially with type qualifiers missing.
1544  /// This method should never be used when type qualifiers are meaningful.
1545  const Type *getArrayElementTypeNoTypeQual() const;
1546
1547  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
1548  /// pointer, this returns the respective pointee.
1549  QualType getPointeeType() const;
1550
1551  /// getUnqualifiedDesugaredType() - Return the specified type with
1552  /// any "sugar" removed from the type, removing any typedefs,
1553  /// typeofs, etc., as well as any qualifiers.
1554  const Type *getUnqualifiedDesugaredType() const;
1555
1556  /// More type predicates useful for type checking/promotion
1557  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
1558
1559  /// isSignedIntegerType - Return true if this is an integer type that is
1560  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
1561  /// or an enum decl which has a signed representation.
1562  bool isSignedIntegerType() const;
1563
1564  /// isUnsignedIntegerType - Return true if this is an integer type that is
1565  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
1566  /// or an enum decl which has an unsigned representation.
1567  bool isUnsignedIntegerType() const;
1568
1569  /// Determines whether this is an integer type that is signed or an
1570  /// enumeration types whose underlying type is a signed integer type.
1571  bool isSignedIntegerOrEnumerationType() const;
1572
1573  /// Determines whether this is an integer type that is unsigned or an
1574  /// enumeration types whose underlying type is a unsigned integer type.
1575  bool isUnsignedIntegerOrEnumerationType() const;
1576
1577  /// isConstantSizeType - Return true if this is not a variable sized type,
1578  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
1579  /// incomplete types.
1580  bool isConstantSizeType() const;
1581
1582  /// isSpecifierType - Returns true if this type can be represented by some
1583  /// set of type specifiers.
1584  bool isSpecifierType() const;
1585
1586  /// \brief Determine the linkage of this type.
1587  Linkage getLinkage() const;
1588
1589  /// \brief Determine the visibility of this type.
1590  Visibility getVisibility() const;
1591
1592  /// \brief Determine the linkage and visibility of this type.
1593  std::pair<Linkage,Visibility> getLinkageAndVisibility() const;
1594
1595  /// \brief Note that the linkage is no longer known.
1596  void ClearLinkageCache();
1597
1598  const char *getTypeClassName() const;
1599
1600  QualType getCanonicalTypeInternal() const {
1601    return CanonicalType;
1602  }
1603  CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
1604  void dump() const;
1605
1606  static bool classof(const Type *) { return true; }
1607
1608  friend class ASTReader;
1609  friend class ASTWriter;
1610};
1611
1612template <> inline const TypedefType *Type::getAs() const {
1613  return dyn_cast<TypedefType>(this);
1614}
1615
1616// We can do canonical leaf types faster, because we don't have to
1617// worry about preserving child type decoration.
1618#define TYPE(Class, Base)
1619#define LEAF_TYPE(Class) \
1620template <> inline const Class##Type *Type::getAs() const { \
1621  return dyn_cast<Class##Type>(CanonicalType); \
1622} \
1623template <> inline const Class##Type *Type::castAs() const { \
1624  return cast<Class##Type>(CanonicalType); \
1625}
1626#include "clang/AST/TypeNodes.def"
1627
1628
1629/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
1630/// types are always canonical and have a literal name field.
1631class BuiltinType : public Type {
1632public:
1633  enum Kind {
1634    Void,
1635
1636    Bool,     // This is bool and/or _Bool.
1637    Char_U,   // This is 'char' for targets where char is unsigned.
1638    UChar,    // This is explicitly qualified unsigned char.
1639    WChar_U,  // This is 'wchar_t' for C++, when unsigned.
1640    Char16,   // This is 'char16_t' for C++.
1641    Char32,   // This is 'char32_t' for C++.
1642    UShort,
1643    UInt,
1644    ULong,
1645    ULongLong,
1646    UInt128,  // __uint128_t
1647
1648    Char_S,   // This is 'char' for targets where char is signed.
1649    SChar,    // This is explicitly qualified signed char.
1650    WChar_S,  // This is 'wchar_t' for C++, when signed.
1651    Short,
1652    Int,
1653    Long,
1654    LongLong,
1655    Int128,   // __int128_t
1656
1657    Float, Double, LongDouble,
1658
1659    NullPtr,  // This is the type of C++0x 'nullptr'.
1660
1661    /// The primitive Objective C 'id' type.  The user-visible 'id'
1662    /// type is a typedef of an ObjCObjectPointerType to an
1663    /// ObjCObjectType with this as its base.  In fact, this only ever
1664    /// shows up in an AST as the base type of an ObjCObjectType.
1665    ObjCId,
1666
1667    /// The primitive Objective C 'Class' type.  The user-visible
1668    /// 'Class' type is a typedef of an ObjCObjectPointerType to an
1669    /// ObjCObjectType with this as its base.  In fact, this only ever
1670    /// shows up in an AST as the base type of an ObjCObjectType.
1671    ObjCClass,
1672
1673    /// The primitive Objective C 'SEL' type.  The user-visible 'SEL'
1674    /// type is a typedef of a PointerType to this.
1675    ObjCSel,
1676
1677    /// This represents the type of an expression whose type is
1678    /// totally unknown, e.g. 'T::foo'.  It is permitted for this to
1679    /// appear in situations where the structure of the type is
1680    /// theoretically deducible.
1681    Dependent,
1682
1683    /// The type of an unresolved overload set.  A placeholder type.
1684    /// Expressions with this type have one of the following basic
1685    /// forms, with parentheses generally permitted:
1686    ///   foo          # possibly qualified, not if an implicit access
1687    ///   foo          # possibly qualified, not if an implicit access
1688    ///   &foo         # possibly qualified, not if an implicit access
1689    ///   x->foo       # only if might be a static member function
1690    ///   &x->foo      # only if might be a static member function
1691    ///   &Class::foo  # when a pointer-to-member; sub-expr also has this type
1692    /// OverloadExpr::find can be used to analyze the expression.
1693    Overload,
1694
1695    /// The type of a bound C++ non-static member function.
1696    /// A placeholder type.  Expressions with this type have one of the
1697    /// following basic forms:
1698    ///   foo          # if an implicit access
1699    ///   x->foo       # if only contains non-static members
1700    BoundMember,
1701
1702    /// __builtin_any_type.  A placeholder type.  Useful for clients
1703    /// like debuggers that don't know what type to give something.
1704    /// Only a small number of operations are valid on expressions of
1705    /// unknown type, most notably explicit casts.
1706    UnknownAny
1707  };
1708
1709public:
1710  BuiltinType(Kind K)
1711    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
1712           /*VariablyModified=*/false,
1713           /*Unexpanded paramter pack=*/false) {
1714    BuiltinTypeBits.Kind = K;
1715  }
1716
1717  Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
1718  const char *getName(const LangOptions &LO) const;
1719
1720  bool isSugared() const { return false; }
1721  QualType desugar() const { return QualType(this, 0); }
1722
1723  bool isInteger() const {
1724    return getKind() >= Bool && getKind() <= Int128;
1725  }
1726
1727  bool isSignedInteger() const {
1728    return getKind() >= Char_S && getKind() <= Int128;
1729  }
1730
1731  bool isUnsignedInteger() const {
1732    return getKind() >= Bool && getKind() <= UInt128;
1733  }
1734
1735  bool isFloatingPoint() const {
1736    return getKind() >= Float && getKind() <= LongDouble;
1737  }
1738
1739  /// Determines whether this type is a placeholder type, i.e. a type
1740  /// which cannot appear in arbitrary positions in a fully-formed
1741  /// expression.
1742  bool isPlaceholderType() const {
1743    return getKind() >= Overload;
1744  }
1745
1746  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
1747  static bool classof(const BuiltinType *) { return true; }
1748};
1749
1750/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
1751/// types (_Complex float etc) as well as the GCC integer complex extensions.
1752///
1753class ComplexType : public Type, public llvm::FoldingSetNode {
1754  QualType ElementType;
1755  ComplexType(QualType Element, QualType CanonicalPtr) :
1756    Type(Complex, CanonicalPtr, Element->isDependentType(),
1757         Element->isVariablyModifiedType(),
1758         Element->containsUnexpandedParameterPack()),
1759    ElementType(Element) {
1760  }
1761  friend class ASTContext;  // ASTContext creates these.
1762
1763public:
1764  QualType getElementType() const { return ElementType; }
1765
1766  bool isSugared() const { return false; }
1767  QualType desugar() const { return QualType(this, 0); }
1768
1769  void Profile(llvm::FoldingSetNodeID &ID) {
1770    Profile(ID, getElementType());
1771  }
1772  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
1773    ID.AddPointer(Element.getAsOpaquePtr());
1774  }
1775
1776  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
1777  static bool classof(const ComplexType *) { return true; }
1778};
1779
1780/// ParenType - Sugar for parentheses used when specifying types.
1781///
1782class ParenType : public Type, public llvm::FoldingSetNode {
1783  QualType Inner;
1784
1785  ParenType(QualType InnerType, QualType CanonType) :
1786    Type(Paren, CanonType, InnerType->isDependentType(),
1787         InnerType->isVariablyModifiedType(),
1788         InnerType->containsUnexpandedParameterPack()),
1789    Inner(InnerType) {
1790  }
1791  friend class ASTContext;  // ASTContext creates these.
1792
1793public:
1794
1795  QualType getInnerType() const { return Inner; }
1796
1797  bool isSugared() const { return true; }
1798  QualType desugar() const { return getInnerType(); }
1799
1800  void Profile(llvm::FoldingSetNodeID &ID) {
1801    Profile(ID, getInnerType());
1802  }
1803  static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
1804    Inner.Profile(ID);
1805  }
1806
1807  static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
1808  static bool classof(const ParenType *) { return true; }
1809};
1810
1811/// PointerType - C99 6.7.5.1 - Pointer Declarators.
1812///
1813class PointerType : public Type, public llvm::FoldingSetNode {
1814  QualType PointeeType;
1815
1816  PointerType(QualType Pointee, QualType CanonicalPtr) :
1817    Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
1818         Pointee->isVariablyModifiedType(),
1819         Pointee->containsUnexpandedParameterPack()),
1820    PointeeType(Pointee) {
1821  }
1822  friend class ASTContext;  // ASTContext creates these.
1823
1824public:
1825
1826  QualType getPointeeType() const { return PointeeType; }
1827
1828  bool isSugared() const { return false; }
1829  QualType desugar() const { return QualType(this, 0); }
1830
1831  void Profile(llvm::FoldingSetNodeID &ID) {
1832    Profile(ID, getPointeeType());
1833  }
1834  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1835    ID.AddPointer(Pointee.getAsOpaquePtr());
1836  }
1837
1838  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
1839  static bool classof(const PointerType *) { return true; }
1840};
1841
1842/// BlockPointerType - pointer to a block type.
1843/// This type is to represent types syntactically represented as
1844/// "void (^)(int)", etc. Pointee is required to always be a function type.
1845///
1846class BlockPointerType : public Type, public llvm::FoldingSetNode {
1847  QualType PointeeType;  // Block is some kind of pointer type
1848  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
1849    Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
1850         Pointee->isVariablyModifiedType(),
1851         Pointee->containsUnexpandedParameterPack()),
1852    PointeeType(Pointee) {
1853  }
1854  friend class ASTContext;  // ASTContext creates these.
1855
1856public:
1857
1858  // Get the pointee type. Pointee is required to always be a function type.
1859  QualType getPointeeType() const { return PointeeType; }
1860
1861  bool isSugared() const { return false; }
1862  QualType desugar() const { return QualType(this, 0); }
1863
1864  void Profile(llvm::FoldingSetNodeID &ID) {
1865      Profile(ID, getPointeeType());
1866  }
1867  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1868      ID.AddPointer(Pointee.getAsOpaquePtr());
1869  }
1870
1871  static bool classof(const Type *T) {
1872    return T->getTypeClass() == BlockPointer;
1873  }
1874  static bool classof(const BlockPointerType *) { return true; }
1875};
1876
1877/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
1878///
1879class ReferenceType : public Type, public llvm::FoldingSetNode {
1880  QualType PointeeType;
1881
1882protected:
1883  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
1884                bool SpelledAsLValue) :
1885    Type(tc, CanonicalRef, Referencee->isDependentType(),
1886         Referencee->isVariablyModifiedType(),
1887         Referencee->containsUnexpandedParameterPack()),
1888    PointeeType(Referencee)
1889  {
1890    ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
1891    ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
1892  }
1893
1894public:
1895  bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
1896  bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
1897
1898  QualType getPointeeTypeAsWritten() const { return PointeeType; }
1899  QualType getPointeeType() const {
1900    // FIXME: this might strip inner qualifiers; okay?
1901    const ReferenceType *T = this;
1902    while (T->isInnerRef())
1903      T = T->PointeeType->castAs<ReferenceType>();
1904    return T->PointeeType;
1905  }
1906
1907  void Profile(llvm::FoldingSetNodeID &ID) {
1908    Profile(ID, PointeeType, isSpelledAsLValue());
1909  }
1910  static void Profile(llvm::FoldingSetNodeID &ID,
1911                      QualType Referencee,
1912                      bool SpelledAsLValue) {
1913    ID.AddPointer(Referencee.getAsOpaquePtr());
1914    ID.AddBoolean(SpelledAsLValue);
1915  }
1916
1917  static bool classof(const Type *T) {
1918    return T->getTypeClass() == LValueReference ||
1919           T->getTypeClass() == RValueReference;
1920  }
1921  static bool classof(const ReferenceType *) { return true; }
1922};
1923
1924/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
1925///
1926class LValueReferenceType : public ReferenceType {
1927  LValueReferenceType(QualType Referencee, QualType CanonicalRef,
1928                      bool SpelledAsLValue) :
1929    ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
1930  {}
1931  friend class ASTContext; // ASTContext creates these
1932public:
1933  bool isSugared() const { return false; }
1934  QualType desugar() const { return QualType(this, 0); }
1935
1936  static bool classof(const Type *T) {
1937    return T->getTypeClass() == LValueReference;
1938  }
1939  static bool classof(const LValueReferenceType *) { return true; }
1940};
1941
1942/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
1943///
1944class RValueReferenceType : public ReferenceType {
1945  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
1946    ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
1947  }
1948  friend class ASTContext; // ASTContext creates these
1949public:
1950  bool isSugared() const { return false; }
1951  QualType desugar() const { return QualType(this, 0); }
1952
1953  static bool classof(const Type *T) {
1954    return T->getTypeClass() == RValueReference;
1955  }
1956  static bool classof(const RValueReferenceType *) { return true; }
1957};
1958
1959/// MemberPointerType - C++ 8.3.3 - Pointers to members
1960///
1961class MemberPointerType : public Type, public llvm::FoldingSetNode {
1962  QualType PointeeType;
1963  /// The class of which the pointee is a member. Must ultimately be a
1964  /// RecordType, but could be a typedef or a template parameter too.
1965  const Type *Class;
1966
1967  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
1968    Type(MemberPointer, CanonicalPtr,
1969         Cls->isDependentType() || Pointee->isDependentType(),
1970         Pointee->isVariablyModifiedType(),
1971         (Cls->containsUnexpandedParameterPack() ||
1972          Pointee->containsUnexpandedParameterPack())),
1973    PointeeType(Pointee), Class(Cls) {
1974  }
1975  friend class ASTContext; // ASTContext creates these.
1976
1977public:
1978  QualType getPointeeType() const { return PointeeType; }
1979
1980  /// Returns true if the member type (i.e. the pointee type) is a
1981  /// function type rather than a data-member type.
1982  bool isMemberFunctionPointer() const {
1983    return PointeeType->isFunctionProtoType();
1984  }
1985
1986  /// Returns true if the member type (i.e. the pointee type) is a
1987  /// data type rather than a function type.
1988  bool isMemberDataPointer() const {
1989    return !PointeeType->isFunctionProtoType();
1990  }
1991
1992  const Type *getClass() const { return Class; }
1993
1994  bool isSugared() const { return false; }
1995  QualType desugar() const { return QualType(this, 0); }
1996
1997  void Profile(llvm::FoldingSetNodeID &ID) {
1998    Profile(ID, getPointeeType(), getClass());
1999  }
2000  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
2001                      const Type *Class) {
2002    ID.AddPointer(Pointee.getAsOpaquePtr());
2003    ID.AddPointer(Class);
2004  }
2005
2006  static bool classof(const Type *T) {
2007    return T->getTypeClass() == MemberPointer;
2008  }
2009  static bool classof(const MemberPointerType *) { return true; }
2010};
2011
2012/// ArrayType - C99 6.7.5.2 - Array Declarators.
2013///
2014class ArrayType : public Type, public llvm::FoldingSetNode {
2015public:
2016  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
2017  /// an array with a static size (e.g. int X[static 4]), or an array
2018  /// with a star size (e.g. int X[*]).
2019  /// 'static' is only allowed on function parameters.
2020  enum ArraySizeModifier {
2021    Normal, Static, Star
2022  };
2023private:
2024  /// ElementType - The element type of the array.
2025  QualType ElementType;
2026
2027protected:
2028  // C++ [temp.dep.type]p1:
2029  //   A type is dependent if it is...
2030  //     - an array type constructed from any dependent type or whose
2031  //       size is specified by a constant expression that is
2032  //       value-dependent,
2033  ArrayType(TypeClass tc, QualType et, QualType can,
2034            ArraySizeModifier sm, unsigned tq,
2035            bool ContainsUnexpandedParameterPack)
2036    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray,
2037           (tc == VariableArray || et->isVariablyModifiedType()),
2038           ContainsUnexpandedParameterPack),
2039      ElementType(et) {
2040    ArrayTypeBits.IndexTypeQuals = tq;
2041    ArrayTypeBits.SizeModifier = sm;
2042  }
2043
2044  friend class ASTContext;  // ASTContext creates these.
2045
2046public:
2047  QualType getElementType() const { return ElementType; }
2048  ArraySizeModifier getSizeModifier() const {
2049    return ArraySizeModifier(ArrayTypeBits.SizeModifier);
2050  }
2051  Qualifiers getIndexTypeQualifiers() const {
2052    return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
2053  }
2054  unsigned getIndexTypeCVRQualifiers() const {
2055    return ArrayTypeBits.IndexTypeQuals;
2056  }
2057
2058  static bool classof(const Type *T) {
2059    return T->getTypeClass() == ConstantArray ||
2060           T->getTypeClass() == VariableArray ||
2061           T->getTypeClass() == IncompleteArray ||
2062           T->getTypeClass() == DependentSizedArray;
2063  }
2064  static bool classof(const ArrayType *) { return true; }
2065};
2066
2067/// ConstantArrayType - This class represents the canonical version of
2068/// C arrays with a specified constant size.  For example, the canonical
2069/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
2070/// type is 'int' and the size is 404.
2071class ConstantArrayType : public ArrayType {
2072  llvm::APInt Size; // Allows us to unique the type.
2073
2074  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
2075                    ArraySizeModifier sm, unsigned tq)
2076    : ArrayType(ConstantArray, et, can, sm, tq,
2077                et->containsUnexpandedParameterPack()),
2078      Size(size) {}
2079protected:
2080  ConstantArrayType(TypeClass tc, QualType et, QualType can,
2081                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
2082    : ArrayType(tc, et, can, sm, tq, et->containsUnexpandedParameterPack()),
2083      Size(size) {}
2084  friend class ASTContext;  // ASTContext creates these.
2085public:
2086  const llvm::APInt &getSize() const { return Size; }
2087  bool isSugared() const { return false; }
2088  QualType desugar() const { return QualType(this, 0); }
2089
2090
2091  /// \brief Determine the number of bits required to address a member of
2092  // an array with the given element type and number of elements.
2093  static unsigned getNumAddressingBits(ASTContext &Context,
2094                                       QualType ElementType,
2095                                       const llvm::APInt &NumElements);
2096
2097  /// \brief Determine the maximum number of active bits that an array's size
2098  /// can require, which limits the maximum size of the array.
2099  static unsigned getMaxSizeBits(ASTContext &Context);
2100
2101  void Profile(llvm::FoldingSetNodeID &ID) {
2102    Profile(ID, getElementType(), getSize(),
2103            getSizeModifier(), getIndexTypeCVRQualifiers());
2104  }
2105  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2106                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
2107                      unsigned TypeQuals) {
2108    ID.AddPointer(ET.getAsOpaquePtr());
2109    ID.AddInteger(ArraySize.getZExtValue());
2110    ID.AddInteger(SizeMod);
2111    ID.AddInteger(TypeQuals);
2112  }
2113  static bool classof(const Type *T) {
2114    return T->getTypeClass() == ConstantArray;
2115  }
2116  static bool classof(const ConstantArrayType *) { return true; }
2117};
2118
2119/// IncompleteArrayType - This class represents C arrays with an unspecified
2120/// size.  For example 'int A[]' has an IncompleteArrayType where the element
2121/// type is 'int' and the size is unspecified.
2122class IncompleteArrayType : public ArrayType {
2123
2124  IncompleteArrayType(QualType et, QualType can,
2125                      ArraySizeModifier sm, unsigned tq)
2126    : ArrayType(IncompleteArray, et, can, sm, tq,
2127                et->containsUnexpandedParameterPack()) {}
2128  friend class ASTContext;  // ASTContext creates these.
2129public:
2130  bool isSugared() const { return false; }
2131  QualType desugar() const { return QualType(this, 0); }
2132
2133  static bool classof(const Type *T) {
2134    return T->getTypeClass() == IncompleteArray;
2135  }
2136  static bool classof(const IncompleteArrayType *) { return true; }
2137
2138  friend class StmtIteratorBase;
2139
2140  void Profile(llvm::FoldingSetNodeID &ID) {
2141    Profile(ID, getElementType(), getSizeModifier(),
2142            getIndexTypeCVRQualifiers());
2143  }
2144
2145  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2146                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
2147    ID.AddPointer(ET.getAsOpaquePtr());
2148    ID.AddInteger(SizeMod);
2149    ID.AddInteger(TypeQuals);
2150  }
2151};
2152
2153/// VariableArrayType - This class represents C arrays with a specified size
2154/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
2155/// Since the size expression is an arbitrary expression, we store it as such.
2156///
2157/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
2158/// should not be: two lexically equivalent variable array types could mean
2159/// different things, for example, these variables do not have the same type
2160/// dynamically:
2161///
2162/// void foo(int x) {
2163///   int Y[x];
2164///   ++x;
2165///   int Z[x];
2166/// }
2167///
2168class VariableArrayType : public ArrayType {
2169  /// SizeExpr - An assignment expression. VLA's are only permitted within
2170  /// a function block.
2171  Stmt *SizeExpr;
2172  /// Brackets - The left and right array brackets.
2173  SourceRange Brackets;
2174
2175  VariableArrayType(QualType et, QualType can, Expr *e,
2176                    ArraySizeModifier sm, unsigned tq,
2177                    SourceRange brackets)
2178    : ArrayType(VariableArray, et, can, sm, tq,
2179                et->containsUnexpandedParameterPack()),
2180      SizeExpr((Stmt*) e), Brackets(brackets) {}
2181  friend class ASTContext;  // ASTContext creates these.
2182
2183public:
2184  Expr *getSizeExpr() const {
2185    // We use C-style casts instead of cast<> here because we do not wish
2186    // to have a dependency of Type.h on Stmt.h/Expr.h.
2187    return (Expr*) SizeExpr;
2188  }
2189  SourceRange getBracketsRange() const { return Brackets; }
2190  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
2191  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
2192
2193  bool isSugared() const { return false; }
2194  QualType desugar() const { return QualType(this, 0); }
2195
2196  static bool classof(const Type *T) {
2197    return T->getTypeClass() == VariableArray;
2198  }
2199  static bool classof(const VariableArrayType *) { return true; }
2200
2201  friend class StmtIteratorBase;
2202
2203  void Profile(llvm::FoldingSetNodeID &ID) {
2204    assert(0 && "Cannot unique VariableArrayTypes.");
2205  }
2206};
2207
2208/// DependentSizedArrayType - This type represents an array type in
2209/// C++ whose size is a value-dependent expression. For example:
2210///
2211/// \code
2212/// template<typename T, int Size>
2213/// class array {
2214///   T data[Size];
2215/// };
2216/// \endcode
2217///
2218/// For these types, we won't actually know what the array bound is
2219/// until template instantiation occurs, at which point this will
2220/// become either a ConstantArrayType or a VariableArrayType.
2221class DependentSizedArrayType : public ArrayType {
2222  const ASTContext &Context;
2223
2224  /// \brief An assignment expression that will instantiate to the
2225  /// size of the array.
2226  ///
2227  /// The expression itself might be NULL, in which case the array
2228  /// type will have its size deduced from an initializer.
2229  Stmt *SizeExpr;
2230
2231  /// Brackets - The left and right array brackets.
2232  SourceRange Brackets;
2233
2234  DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
2235                          Expr *e, ArraySizeModifier sm, unsigned tq,
2236                          SourceRange brackets);
2237
2238  friend class ASTContext;  // ASTContext creates these.
2239
2240public:
2241  Expr *getSizeExpr() const {
2242    // We use C-style casts instead of cast<> here because we do not wish
2243    // to have a dependency of Type.h on Stmt.h/Expr.h.
2244    return (Expr*) SizeExpr;
2245  }
2246  SourceRange getBracketsRange() const { return Brackets; }
2247  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
2248  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
2249
2250  bool isSugared() const { return false; }
2251  QualType desugar() const { return QualType(this, 0); }
2252
2253  static bool classof(const Type *T) {
2254    return T->getTypeClass() == DependentSizedArray;
2255  }
2256  static bool classof(const DependentSizedArrayType *) { return true; }
2257
2258  friend class StmtIteratorBase;
2259
2260
2261  void Profile(llvm::FoldingSetNodeID &ID) {
2262    Profile(ID, Context, getElementType(),
2263            getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
2264  }
2265
2266  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2267                      QualType ET, ArraySizeModifier SizeMod,
2268                      unsigned TypeQuals, Expr *E);
2269};
2270
2271/// DependentSizedExtVectorType - This type represent an extended vector type
2272/// where either the type or size is dependent. For example:
2273/// @code
2274/// template<typename T, int Size>
2275/// class vector {
2276///   typedef T __attribute__((ext_vector_type(Size))) type;
2277/// }
2278/// @endcode
2279class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
2280  const ASTContext &Context;
2281  Expr *SizeExpr;
2282  /// ElementType - The element type of the array.
2283  QualType ElementType;
2284  SourceLocation loc;
2285
2286  DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
2287                              QualType can, Expr *SizeExpr, SourceLocation loc);
2288
2289  friend class ASTContext;
2290
2291public:
2292  Expr *getSizeExpr() const { return SizeExpr; }
2293  QualType getElementType() const { return ElementType; }
2294  SourceLocation getAttributeLoc() const { return loc; }
2295
2296  bool isSugared() const { return false; }
2297  QualType desugar() const { return QualType(this, 0); }
2298
2299  static bool classof(const Type *T) {
2300    return T->getTypeClass() == DependentSizedExtVector;
2301  }
2302  static bool classof(const DependentSizedExtVectorType *) { return true; }
2303
2304  void Profile(llvm::FoldingSetNodeID &ID) {
2305    Profile(ID, Context, getElementType(), getSizeExpr());
2306  }
2307
2308  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2309                      QualType ElementType, Expr *SizeExpr);
2310};
2311
2312
2313/// VectorType - GCC generic vector type. This type is created using
2314/// __attribute__((vector_size(n)), where "n" specifies the vector size in
2315/// bytes; or from an Altivec __vector or vector declaration.
2316/// Since the constructor takes the number of vector elements, the
2317/// client is responsible for converting the size into the number of elements.
2318class VectorType : public Type, public llvm::FoldingSetNode {
2319public:
2320  enum VectorKind {
2321    GenericVector,  // not a target-specific vector type
2322    AltiVecVector,  // is AltiVec vector
2323    AltiVecPixel,   // is AltiVec 'vector Pixel'
2324    AltiVecBool,    // is AltiVec 'vector bool ...'
2325    NeonVector,     // is ARM Neon vector
2326    NeonPolyVector  // is ARM Neon polynomial vector
2327  };
2328protected:
2329  /// ElementType - The element type of the vector.
2330  QualType ElementType;
2331
2332  VectorType(QualType vecType, unsigned nElements, QualType canonType,
2333             VectorKind vecKind);
2334
2335  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
2336             QualType canonType, VectorKind vecKind);
2337
2338  friend class ASTContext;  // ASTContext creates these.
2339
2340public:
2341
2342  QualType getElementType() const { return ElementType; }
2343  unsigned getNumElements() const { return VectorTypeBits.NumElements; }
2344
2345  bool isSugared() const { return false; }
2346  QualType desugar() const { return QualType(this, 0); }
2347
2348  VectorKind getVectorKind() const {
2349    return VectorKind(VectorTypeBits.VecKind);
2350  }
2351
2352  void Profile(llvm::FoldingSetNodeID &ID) {
2353    Profile(ID, getElementType(), getNumElements(),
2354            getTypeClass(), getVectorKind());
2355  }
2356  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
2357                      unsigned NumElements, TypeClass TypeClass,
2358                      VectorKind VecKind) {
2359    ID.AddPointer(ElementType.getAsOpaquePtr());
2360    ID.AddInteger(NumElements);
2361    ID.AddInteger(TypeClass);
2362    ID.AddInteger(VecKind);
2363  }
2364
2365  static bool classof(const Type *T) {
2366    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
2367  }
2368  static bool classof(const VectorType *) { return true; }
2369};
2370
2371/// ExtVectorType - Extended vector type. This type is created using
2372/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
2373/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
2374/// class enables syntactic extensions, like Vector Components for accessing
2375/// points, colors, and textures (modeled after OpenGL Shading Language).
2376class ExtVectorType : public VectorType {
2377  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
2378    VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
2379  friend class ASTContext;  // ASTContext creates these.
2380public:
2381  static int getPointAccessorIdx(char c) {
2382    switch (c) {
2383    default: return -1;
2384    case 'x': return 0;
2385    case 'y': return 1;
2386    case 'z': return 2;
2387    case 'w': return 3;
2388    }
2389  }
2390  static int getNumericAccessorIdx(char c) {
2391    switch (c) {
2392      default: return -1;
2393      case '0': return 0;
2394      case '1': return 1;
2395      case '2': return 2;
2396      case '3': return 3;
2397      case '4': return 4;
2398      case '5': return 5;
2399      case '6': return 6;
2400      case '7': return 7;
2401      case '8': return 8;
2402      case '9': return 9;
2403      case 'A':
2404      case 'a': return 10;
2405      case 'B':
2406      case 'b': return 11;
2407      case 'C':
2408      case 'c': return 12;
2409      case 'D':
2410      case 'd': return 13;
2411      case 'E':
2412      case 'e': return 14;
2413      case 'F':
2414      case 'f': return 15;
2415    }
2416  }
2417
2418  static int getAccessorIdx(char c) {
2419    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
2420    return getNumericAccessorIdx(c);
2421  }
2422
2423  bool isAccessorWithinNumElements(char c) const {
2424    if (int idx = getAccessorIdx(c)+1)
2425      return unsigned(idx-1) < getNumElements();
2426    return false;
2427  }
2428  bool isSugared() const { return false; }
2429  QualType desugar() const { return QualType(this, 0); }
2430
2431  static bool classof(const Type *T) {
2432    return T->getTypeClass() == ExtVector;
2433  }
2434  static bool classof(const ExtVectorType *) { return true; }
2435};
2436
2437/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
2438/// class of FunctionNoProtoType and FunctionProtoType.
2439///
2440class FunctionType : public Type {
2441  // The type returned by the function.
2442  QualType ResultType;
2443
2444 public:
2445  /// ExtInfo - A class which abstracts out some details necessary for
2446  /// making a call.
2447  ///
2448  /// It is not actually used directly for storing this information in
2449  /// a FunctionType, although FunctionType does currently use the
2450  /// same bit-pattern.
2451  ///
2452  // If you add a field (say Foo), other than the obvious places (both,
2453  // constructors, compile failures), what you need to update is
2454  // * Operator==
2455  // * getFoo
2456  // * withFoo
2457  // * functionType. Add Foo, getFoo.
2458  // * ASTContext::getFooType
2459  // * ASTContext::mergeFunctionTypes
2460  // * FunctionNoProtoType::Profile
2461  // * FunctionProtoType::Profile
2462  // * TypePrinter::PrintFunctionProto
2463  // * AST read and write
2464  // * Codegen
2465  class ExtInfo {
2466    // Feel free to rearrange or add bits, but if you go over 9,
2467    // you'll need to adjust both the Bits field below and
2468    // Type::FunctionTypeBitfields.
2469
2470    //   |  CC  |noreturn|produces|hasregparm|regparm
2471    //   |0 .. 2|   3    |    4   |    5     |6 ..  8
2472    enum { CallConvMask = 0x7 };
2473    enum { NoReturnMask = 0x8 };
2474    enum { ProducesResultMask = 0x10 };
2475    enum { HasRegParmMask = 0x20 };
2476    enum { RegParmMask = ~(CallConvMask | NoReturnMask | ProducesResultMask),
2477           RegParmOffset = 6 }; // Assumed to be the last field
2478
2479    uint16_t Bits;
2480
2481    ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
2482
2483    friend class FunctionType;
2484
2485   public:
2486    // Constructor with no defaults. Use this when you know that you
2487    // have all the elements (when reading an AST file for example).
2488    ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
2489            bool producesResult) {
2490      Bits = ((unsigned) cc) |
2491             (noReturn ? NoReturnMask : 0) |
2492             (producesResult ? ProducesResultMask : 0) |
2493             (hasRegParm ? HasRegParmMask : 0) |
2494             (regParm << RegParmOffset);
2495    }
2496
2497    // Constructor with all defaults. Use when for example creating a
2498    // function know to use defaults.
2499    ExtInfo() : Bits(0) {}
2500
2501    bool getNoReturn() const { return Bits & NoReturnMask; }
2502    bool getProducesResult() const { return Bits & ProducesResultMask; }
2503    bool getHasRegParm() const { return Bits & HasRegParmMask; }
2504    unsigned getRegParm() const { return Bits >> RegParmOffset; }
2505    CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
2506
2507    bool operator==(ExtInfo Other) const {
2508      return Bits == Other.Bits;
2509    }
2510    bool operator!=(ExtInfo Other) const {
2511      return Bits != Other.Bits;
2512    }
2513
2514    // Note that we don't have setters. That is by design, use
2515    // the following with methods instead of mutating these objects.
2516
2517    ExtInfo withNoReturn(bool noReturn) const {
2518      if (noReturn)
2519        return ExtInfo(Bits | NoReturnMask);
2520      else
2521        return ExtInfo(Bits & ~NoReturnMask);
2522    }
2523
2524    ExtInfo withProducesResult(bool producesResult) const {
2525      if (producesResult)
2526        return ExtInfo(Bits | ProducesResultMask);
2527      else
2528        return ExtInfo(Bits & ~ProducesResultMask);
2529    }
2530
2531    ExtInfo withRegParm(unsigned RegParm) const {
2532      return ExtInfo((Bits & ~RegParmMask) |
2533                     (HasRegParmMask) |
2534                     (RegParm << RegParmOffset));
2535    }
2536
2537    ExtInfo withCallingConv(CallingConv cc) const {
2538      return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
2539    }
2540
2541    void Profile(llvm::FoldingSetNodeID &ID) const {
2542      ID.AddInteger(Bits);
2543    }
2544  };
2545
2546protected:
2547  FunctionType(TypeClass tc, QualType res, bool variadic,
2548               unsigned typeQuals, RefQualifierKind RefQualifier,
2549               QualType Canonical, bool Dependent,
2550               bool VariablyModified, bool ContainsUnexpandedParameterPack,
2551               ExtInfo Info)
2552    : Type(tc, Canonical, Dependent, VariablyModified,
2553           ContainsUnexpandedParameterPack),
2554      ResultType(res) {
2555    FunctionTypeBits.ExtInfo = Info.Bits;
2556    FunctionTypeBits.Variadic = variadic;
2557    FunctionTypeBits.TypeQuals = typeQuals;
2558    FunctionTypeBits.RefQualifier = static_cast<unsigned>(RefQualifier);
2559  }
2560  bool isVariadic() const { return FunctionTypeBits.Variadic; }
2561  unsigned getTypeQuals() const { return FunctionTypeBits.TypeQuals; }
2562
2563  RefQualifierKind getRefQualifier() const {
2564    return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier);
2565  }
2566
2567public:
2568
2569  QualType getResultType() const { return ResultType; }
2570
2571  bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
2572  unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
2573  bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
2574  CallingConv getCallConv() const { return getExtInfo().getCC(); }
2575  ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
2576
2577  /// \brief Determine the type of an expression that calls a function of
2578  /// this type.
2579  QualType getCallResultType(ASTContext &Context) const {
2580    return getResultType().getNonLValueExprType(Context);
2581  }
2582
2583  static llvm::StringRef getNameForCallConv(CallingConv CC);
2584
2585  static bool classof(const Type *T) {
2586    return T->getTypeClass() == FunctionNoProto ||
2587           T->getTypeClass() == FunctionProto;
2588  }
2589  static bool classof(const FunctionType *) { return true; }
2590};
2591
2592/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
2593/// no information available about its arguments.
2594class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
2595  FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
2596    : FunctionType(FunctionNoProto, Result, false, 0, RQ_None, Canonical,
2597                   /*Dependent=*/false, Result->isVariablyModifiedType(),
2598                   /*ContainsUnexpandedParameterPack=*/false, Info) {}
2599
2600  friend class ASTContext;  // ASTContext creates these.
2601
2602public:
2603  // No additional state past what FunctionType provides.
2604
2605  bool isSugared() const { return false; }
2606  QualType desugar() const { return QualType(this, 0); }
2607
2608  void Profile(llvm::FoldingSetNodeID &ID) {
2609    Profile(ID, getResultType(), getExtInfo());
2610  }
2611  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
2612                      ExtInfo Info) {
2613    Info.Profile(ID);
2614    ID.AddPointer(ResultType.getAsOpaquePtr());
2615  }
2616
2617  static bool classof(const Type *T) {
2618    return T->getTypeClass() == FunctionNoProto;
2619  }
2620  static bool classof(const FunctionNoProtoType *) { return true; }
2621};
2622
2623/// FunctionProtoType - Represents a prototype with argument type info, e.g.
2624/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
2625/// arguments, not as having a single void argument. Such a type can have an
2626/// exception specification, but this specification is not part of the canonical
2627/// type.
2628class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
2629public:
2630  /// ExtProtoInfo - Extra information about a function prototype.
2631  struct ExtProtoInfo {
2632    ExtProtoInfo() :
2633      Variadic(false), ExceptionSpecType(EST_None), TypeQuals(0),
2634      RefQualifier(RQ_None), NumExceptions(0), Exceptions(0), NoexceptExpr(0),
2635      ConsumedArguments(0) {}
2636
2637    FunctionType::ExtInfo ExtInfo;
2638    bool Variadic;
2639    ExceptionSpecificationType ExceptionSpecType;
2640    unsigned char TypeQuals;
2641    RefQualifierKind RefQualifier;
2642    unsigned NumExceptions;
2643    const QualType *Exceptions;
2644    Expr *NoexceptExpr;
2645    const bool *ConsumedArguments;
2646  };
2647
2648private:
2649  /// \brief Determine whether there are any argument types that
2650  /// contain an unexpanded parameter pack.
2651  static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
2652                                                 unsigned numArgs) {
2653    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
2654      if (ArgArray[Idx]->containsUnexpandedParameterPack())
2655        return true;
2656
2657    return false;
2658  }
2659
2660  FunctionProtoType(QualType result, const QualType *args, unsigned numArgs,
2661                    QualType canonical, const ExtProtoInfo &epi);
2662
2663  /// NumArgs - The number of arguments this function has, not counting '...'.
2664  unsigned NumArgs : 19;
2665
2666  /// NumExceptions - The number of types in the exception spec, if any.
2667  unsigned NumExceptions : 9;
2668
2669  /// ExceptionSpecType - The type of exception specification this function has.
2670  unsigned ExceptionSpecType : 3;
2671
2672  /// HasAnyConsumedArgs - Whether this function has any consumed arguments.
2673  unsigned HasAnyConsumedArgs : 1;
2674
2675  /// ArgInfo - There is an variable size array after the class in memory that
2676  /// holds the argument types.
2677
2678  /// Exceptions - There is another variable size array after ArgInfo that
2679  /// holds the exception types.
2680
2681  /// NoexceptExpr - Instead of Exceptions, there may be a single Expr* pointing
2682  /// to the expression in the noexcept() specifier.
2683
2684  /// ConsumedArgs - A variable size array, following Exceptions
2685  /// and of length NumArgs, holding flags indicating which arguments
2686  /// are consumed.  This only appears if HasAnyConsumedArgs is true.
2687
2688  friend class ASTContext;  // ASTContext creates these.
2689
2690  const bool *getConsumedArgsBuffer() const {
2691    assert(hasAnyConsumedArgs());
2692
2693    // Find the end of the exceptions.
2694    Expr * const *eh_end = reinterpret_cast<Expr * const *>(arg_type_end());
2695    if (getExceptionSpecType() != EST_ComputedNoexcept)
2696      eh_end += NumExceptions;
2697    else
2698      eh_end += 1; // NoexceptExpr
2699
2700    return reinterpret_cast<const bool*>(eh_end);
2701  }
2702
2703public:
2704  unsigned getNumArgs() const { return NumArgs; }
2705  QualType getArgType(unsigned i) const {
2706    assert(i < NumArgs && "Invalid argument number!");
2707    return arg_type_begin()[i];
2708  }
2709
2710  ExtProtoInfo getExtProtoInfo() const {
2711    ExtProtoInfo EPI;
2712    EPI.ExtInfo = getExtInfo();
2713    EPI.Variadic = isVariadic();
2714    EPI.ExceptionSpecType = getExceptionSpecType();
2715    EPI.TypeQuals = static_cast<unsigned char>(getTypeQuals());
2716    EPI.RefQualifier = getRefQualifier();
2717    if (EPI.ExceptionSpecType == EST_Dynamic) {
2718      EPI.NumExceptions = NumExceptions;
2719      EPI.Exceptions = exception_begin();
2720    } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2721      EPI.NoexceptExpr = getNoexceptExpr();
2722    }
2723    if (hasAnyConsumedArgs())
2724      EPI.ConsumedArguments = getConsumedArgsBuffer();
2725    return EPI;
2726  }
2727
2728  /// \brief Get the kind of exception specification on this function.
2729  ExceptionSpecificationType getExceptionSpecType() const {
2730    return static_cast<ExceptionSpecificationType>(ExceptionSpecType);
2731  }
2732  /// \brief Return whether this function has any kind of exception spec.
2733  bool hasExceptionSpec() const {
2734    return getExceptionSpecType() != EST_None;
2735  }
2736  /// \brief Return whether this function has a dynamic (throw) exception spec.
2737  bool hasDynamicExceptionSpec() const {
2738    return isDynamicExceptionSpec(getExceptionSpecType());
2739  }
2740  /// \brief Return whether this function has a noexcept exception spec.
2741  bool hasNoexceptExceptionSpec() const {
2742    return isNoexceptExceptionSpec(getExceptionSpecType());
2743  }
2744  /// \brief Result type of getNoexceptSpec().
2745  enum NoexceptResult {
2746    NR_NoNoexcept,  ///< There is no noexcept specifier.
2747    NR_BadNoexcept, ///< The noexcept specifier has a bad expression.
2748    NR_Dependent,   ///< The noexcept specifier is dependent.
2749    NR_Throw,       ///< The noexcept specifier evaluates to false.
2750    NR_Nothrow      ///< The noexcept specifier evaluates to true.
2751  };
2752  /// \brief Get the meaning of the noexcept spec on this function, if any.
2753  NoexceptResult getNoexceptSpec(ASTContext &Ctx) const;
2754  unsigned getNumExceptions() const { return NumExceptions; }
2755  QualType getExceptionType(unsigned i) const {
2756    assert(i < NumExceptions && "Invalid exception number!");
2757    return exception_begin()[i];
2758  }
2759  Expr *getNoexceptExpr() const {
2760    if (getExceptionSpecType() != EST_ComputedNoexcept)
2761      return 0;
2762    // NoexceptExpr sits where the arguments end.
2763    return *reinterpret_cast<Expr *const *>(arg_type_end());
2764  }
2765  bool isNothrow(ASTContext &Ctx) const {
2766    ExceptionSpecificationType EST = getExceptionSpecType();
2767    assert(EST != EST_Delayed);
2768    if (EST == EST_DynamicNone || EST == EST_BasicNoexcept)
2769      return true;
2770    if (EST != EST_ComputedNoexcept)
2771      return false;
2772    return getNoexceptSpec(Ctx) == NR_Nothrow;
2773  }
2774
2775  using FunctionType::isVariadic;
2776
2777  /// \brief Determines whether this function prototype contains a
2778  /// parameter pack at the end.
2779  ///
2780  /// A function template whose last parameter is a parameter pack can be
2781  /// called with an arbitrary number of arguments, much like a variadic
2782  /// function. However,
2783  bool isTemplateVariadic() const;
2784
2785  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
2786
2787
2788  /// \brief Retrieve the ref-qualifier associated with this function type.
2789  RefQualifierKind getRefQualifier() const {
2790    return FunctionType::getRefQualifier();
2791  }
2792
2793  typedef const QualType *arg_type_iterator;
2794  arg_type_iterator arg_type_begin() const {
2795    return reinterpret_cast<const QualType *>(this+1);
2796  }
2797  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
2798
2799  typedef const QualType *exception_iterator;
2800  exception_iterator exception_begin() const {
2801    // exceptions begin where arguments end
2802    return arg_type_end();
2803  }
2804  exception_iterator exception_end() const {
2805    if (getExceptionSpecType() != EST_Dynamic)
2806      return exception_begin();
2807    return exception_begin() + NumExceptions;
2808  }
2809
2810  bool hasAnyConsumedArgs() const {
2811    return HasAnyConsumedArgs;
2812  }
2813  bool isArgConsumed(unsigned I) const {
2814    assert(I < getNumArgs() && "argument index out of range!");
2815    if (hasAnyConsumedArgs())
2816      return getConsumedArgsBuffer()[I];
2817    return false;
2818  }
2819
2820  bool isSugared() const { return false; }
2821  QualType desugar() const { return QualType(this, 0); }
2822
2823  static bool classof(const Type *T) {
2824    return T->getTypeClass() == FunctionProto;
2825  }
2826  static bool classof(const FunctionProtoType *) { return true; }
2827
2828  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
2829  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
2830                      arg_type_iterator ArgTys, unsigned NumArgs,
2831                      const ExtProtoInfo &EPI, const ASTContext &Context);
2832};
2833
2834
2835/// \brief Represents the dependent type named by a dependently-scoped
2836/// typename using declaration, e.g.
2837///   using typename Base<T>::foo;
2838/// Template instantiation turns these into the underlying type.
2839class UnresolvedUsingType : public Type {
2840  UnresolvedUsingTypenameDecl *Decl;
2841
2842  UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
2843    : Type(UnresolvedUsing, QualType(), true, false,
2844           /*ContainsUnexpandedParameterPack=*/false),
2845      Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
2846  friend class ASTContext; // ASTContext creates these.
2847public:
2848
2849  UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
2850
2851  bool isSugared() const { return false; }
2852  QualType desugar() const { return QualType(this, 0); }
2853
2854  static bool classof(const Type *T) {
2855    return T->getTypeClass() == UnresolvedUsing;
2856  }
2857  static bool classof(const UnresolvedUsingType *) { return true; }
2858
2859  void Profile(llvm::FoldingSetNodeID &ID) {
2860    return Profile(ID, Decl);
2861  }
2862  static void Profile(llvm::FoldingSetNodeID &ID,
2863                      UnresolvedUsingTypenameDecl *D) {
2864    ID.AddPointer(D);
2865  }
2866};
2867
2868
2869class TypedefType : public Type {
2870  TypedefNameDecl *Decl;
2871protected:
2872  TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType can)
2873    : Type(tc, can, can->isDependentType(), can->isVariablyModifiedType(),
2874           /*ContainsUnexpandedParameterPack=*/false),
2875      Decl(const_cast<TypedefNameDecl*>(D)) {
2876    assert(!isa<TypedefType>(can) && "Invalid canonical type");
2877  }
2878  friend class ASTContext;  // ASTContext creates these.
2879public:
2880
2881  TypedefNameDecl *getDecl() const { return Decl; }
2882
2883  bool isSugared() const { return true; }
2884  QualType desugar() const;
2885
2886  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
2887  static bool classof(const TypedefType *) { return true; }
2888};
2889
2890/// TypeOfExprType (GCC extension).
2891class TypeOfExprType : public Type {
2892  Expr *TOExpr;
2893
2894protected:
2895  TypeOfExprType(Expr *E, QualType can = QualType());
2896  friend class ASTContext;  // ASTContext creates these.
2897public:
2898  Expr *getUnderlyingExpr() const { return TOExpr; }
2899
2900  /// \brief Remove a single level of sugar.
2901  QualType desugar() const;
2902
2903  /// \brief Returns whether this type directly provides sugar.
2904  bool isSugared() const { return true; }
2905
2906  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
2907  static bool classof(const TypeOfExprType *) { return true; }
2908};
2909
2910/// \brief Internal representation of canonical, dependent
2911/// typeof(expr) types.
2912///
2913/// This class is used internally by the ASTContext to manage
2914/// canonical, dependent types, only. Clients will only see instances
2915/// of this class via TypeOfExprType nodes.
2916class DependentTypeOfExprType
2917  : public TypeOfExprType, public llvm::FoldingSetNode {
2918  const ASTContext &Context;
2919
2920public:
2921  DependentTypeOfExprType(const ASTContext &Context, Expr *E)
2922    : TypeOfExprType(E), Context(Context) { }
2923
2924  bool isSugared() const { return false; }
2925  QualType desugar() const { return QualType(this, 0); }
2926
2927  void Profile(llvm::FoldingSetNodeID &ID) {
2928    Profile(ID, Context, getUnderlyingExpr());
2929  }
2930
2931  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2932                      Expr *E);
2933};
2934
2935/// TypeOfType (GCC extension).
2936class TypeOfType : public Type {
2937  QualType TOType;
2938  TypeOfType(QualType T, QualType can)
2939    : Type(TypeOf, can, T->isDependentType(), T->isVariablyModifiedType(),
2940           T->containsUnexpandedParameterPack()),
2941      TOType(T) {
2942    assert(!isa<TypedefType>(can) && "Invalid canonical type");
2943  }
2944  friend class ASTContext;  // ASTContext creates these.
2945public:
2946  QualType getUnderlyingType() const { return TOType; }
2947
2948  /// \brief Remove a single level of sugar.
2949  QualType desugar() const { return getUnderlyingType(); }
2950
2951  /// \brief Returns whether this type directly provides sugar.
2952  bool isSugared() const { return true; }
2953
2954  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
2955  static bool classof(const TypeOfType *) { return true; }
2956};
2957
2958/// DecltypeType (C++0x)
2959class DecltypeType : public Type {
2960  Expr *E;
2961
2962  // FIXME: We could get rid of UnderlyingType if we wanted to: We would have to
2963  // Move getDesugaredType to ASTContext so that it can call getDecltypeForExpr
2964  // from it.
2965  QualType UnderlyingType;
2966
2967protected:
2968  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
2969  friend class ASTContext;  // ASTContext creates these.
2970public:
2971  Expr *getUnderlyingExpr() const { return E; }
2972  QualType getUnderlyingType() const { return UnderlyingType; }
2973
2974  /// \brief Remove a single level of sugar.
2975  QualType desugar() const { return getUnderlyingType(); }
2976
2977  /// \brief Returns whether this type directly provides sugar.
2978  bool isSugared() const { return !isDependentType(); }
2979
2980  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
2981  static bool classof(const DecltypeType *) { return true; }
2982};
2983
2984/// \brief Internal representation of canonical, dependent
2985/// decltype(expr) types.
2986///
2987/// This class is used internally by the ASTContext to manage
2988/// canonical, dependent types, only. Clients will only see instances
2989/// of this class via DecltypeType nodes.
2990class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
2991  const ASTContext &Context;
2992
2993public:
2994  DependentDecltypeType(const ASTContext &Context, Expr *E);
2995
2996  bool isSugared() const { return false; }
2997  QualType desugar() const { return QualType(this, 0); }
2998
2999  void Profile(llvm::FoldingSetNodeID &ID) {
3000    Profile(ID, Context, getUnderlyingExpr());
3001  }
3002
3003  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3004                      Expr *E);
3005};
3006
3007/// \brief A unary type transform, which is a type constructed from another
3008class UnaryTransformType : public Type {
3009public:
3010  enum UTTKind {
3011    EnumUnderlyingType
3012  };
3013
3014private:
3015  /// The untransformed type.
3016  QualType BaseType;
3017  /// The transformed type if not dependent, otherwise the same as BaseType.
3018  QualType UnderlyingType;
3019
3020  UTTKind UKind;
3021protected:
3022  UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
3023                     QualType CanonicalTy);
3024  friend class ASTContext;
3025public:
3026  bool isSugared() const { return !isDependentType(); }
3027  QualType desugar() const { return UnderlyingType; }
3028
3029  QualType getUnderlyingType() const { return UnderlyingType; }
3030  QualType getBaseType() const { return BaseType; }
3031
3032  UTTKind getUTTKind() const { return UKind; }
3033
3034  static bool classof(const Type *T) {
3035    return T->getTypeClass() == UnaryTransform;
3036  }
3037  static bool classof(const UnaryTransformType *) { return true; }
3038};
3039
3040class TagType : public Type {
3041  /// Stores the TagDecl associated with this type. The decl may point to any
3042  /// TagDecl that declares the entity.
3043  TagDecl * decl;
3044
3045protected:
3046  TagType(TypeClass TC, const TagDecl *D, QualType can);
3047
3048public:
3049  TagDecl *getDecl() const;
3050
3051  /// @brief Determines whether this type is in the process of being
3052  /// defined.
3053  bool isBeingDefined() const;
3054
3055  static bool classof(const Type *T) {
3056    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
3057  }
3058  static bool classof(const TagType *) { return true; }
3059  static bool classof(const RecordType *) { return true; }
3060  static bool classof(const EnumType *) { return true; }
3061};
3062
3063/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
3064/// to detect TagType objects of structs/unions/classes.
3065class RecordType : public TagType {
3066protected:
3067  explicit RecordType(const RecordDecl *D)
3068    : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3069  explicit RecordType(TypeClass TC, RecordDecl *D)
3070    : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3071  friend class ASTContext;   // ASTContext creates these.
3072public:
3073
3074  RecordDecl *getDecl() const {
3075    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
3076  }
3077
3078  // FIXME: This predicate is a helper to QualType/Type. It needs to
3079  // recursively check all fields for const-ness. If any field is declared
3080  // const, it needs to return false.
3081  bool hasConstFields() const { return false; }
3082
3083  bool isSugared() const { return false; }
3084  QualType desugar() const { return QualType(this, 0); }
3085
3086  static bool classof(const TagType *T);
3087  static bool classof(const Type *T) {
3088    return isa<TagType>(T) && classof(cast<TagType>(T));
3089  }
3090  static bool classof(const RecordType *) { return true; }
3091};
3092
3093/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
3094/// to detect TagType objects of enums.
3095class EnumType : public TagType {
3096  explicit EnumType(const EnumDecl *D)
3097    : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3098  friend class ASTContext;   // ASTContext creates these.
3099public:
3100
3101  EnumDecl *getDecl() const {
3102    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
3103  }
3104
3105  bool isSugared() const { return false; }
3106  QualType desugar() const { return QualType(this, 0); }
3107
3108  static bool classof(const TagType *T);
3109  static bool classof(const Type *T) {
3110    return isa<TagType>(T) && classof(cast<TagType>(T));
3111  }
3112  static bool classof(const EnumType *) { return true; }
3113};
3114
3115/// AttributedType - An attributed type is a type to which a type
3116/// attribute has been applied.  The "modified type" is the
3117/// fully-sugared type to which the attributed type was applied;
3118/// generally it is not canonically equivalent to the attributed type.
3119/// The "equivalent type" is the minimally-desugared type which the
3120/// type is canonically equivalent to.
3121///
3122/// For example, in the following attributed type:
3123///     int32_t __attribute__((vector_size(16)))
3124///   - the modified type is the TypedefType for int32_t
3125///   - the equivalent type is VectorType(16, int32_t)
3126///   - the canonical type is VectorType(16, int)
3127class AttributedType : public Type, public llvm::FoldingSetNode {
3128public:
3129  // It is really silly to have yet another attribute-kind enum, but
3130  // clang::attr::Kind doesn't currently cover the pure type attrs.
3131  enum Kind {
3132    // Expression operand.
3133    attr_address_space,
3134    attr_regparm,
3135    attr_vector_size,
3136    attr_neon_vector_type,
3137    attr_neon_polyvector_type,
3138
3139    FirstExprOperandKind = attr_address_space,
3140    LastExprOperandKind = attr_neon_polyvector_type,
3141
3142    // Enumerated operand (string or keyword).
3143    attr_objc_gc,
3144    attr_objc_lifetime,
3145    attr_pcs,
3146
3147    FirstEnumOperandKind = attr_objc_gc,
3148    LastEnumOperandKind = attr_pcs,
3149
3150    // No operand.
3151    attr_noreturn,
3152    attr_cdecl,
3153    attr_fastcall,
3154    attr_stdcall,
3155    attr_thiscall,
3156    attr_pascal
3157  };
3158
3159private:
3160  QualType ModifiedType;
3161  QualType EquivalentType;
3162
3163  friend class ASTContext; // creates these
3164
3165  AttributedType(QualType canon, Kind attrKind,
3166                 QualType modified, QualType equivalent)
3167    : Type(Attributed, canon, canon->isDependentType(),
3168           canon->isVariablyModifiedType(),
3169           canon->containsUnexpandedParameterPack()),
3170      ModifiedType(modified), EquivalentType(equivalent) {
3171    AttributedTypeBits.AttrKind = attrKind;
3172  }
3173
3174public:
3175  Kind getAttrKind() const {
3176    return static_cast<Kind>(AttributedTypeBits.AttrKind);
3177  }
3178
3179  QualType getModifiedType() const { return ModifiedType; }
3180  QualType getEquivalentType() const { return EquivalentType; }
3181
3182  bool isSugared() const { return true; }
3183  QualType desugar() const { return getEquivalentType(); }
3184
3185  void Profile(llvm::FoldingSetNodeID &ID) {
3186    Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
3187  }
3188
3189  static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
3190                      QualType modified, QualType equivalent) {
3191    ID.AddInteger(attrKind);
3192    ID.AddPointer(modified.getAsOpaquePtr());
3193    ID.AddPointer(equivalent.getAsOpaquePtr());
3194  }
3195
3196  static bool classof(const Type *T) {
3197    return T->getTypeClass() == Attributed;
3198  }
3199  static bool classof(const AttributedType *T) { return true; }
3200};
3201
3202class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
3203  // Helper data collector for canonical types.
3204  struct CanonicalTTPTInfo {
3205    unsigned Depth : 15;
3206    unsigned ParameterPack : 1;
3207    unsigned Index : 16;
3208  };
3209
3210  union {
3211    // Info for the canonical type.
3212    CanonicalTTPTInfo CanTTPTInfo;
3213    // Info for the non-canonical type.
3214    TemplateTypeParmDecl *TTPDecl;
3215  };
3216
3217  /// Build a non-canonical type.
3218  TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
3219    : Type(TemplateTypeParm, Canon, /*Dependent=*/true,
3220           /*VariablyModified=*/false,
3221           Canon->containsUnexpandedParameterPack()),
3222      TTPDecl(TTPDecl) { }
3223
3224  /// Build the canonical type.
3225  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
3226    : Type(TemplateTypeParm, QualType(this, 0), /*Dependent=*/true,
3227           /*VariablyModified=*/false, PP) {
3228    CanTTPTInfo.Depth = D;
3229    CanTTPTInfo.Index = I;
3230    CanTTPTInfo.ParameterPack = PP;
3231  }
3232
3233  friend class ASTContext;  // ASTContext creates these
3234
3235  const CanonicalTTPTInfo& getCanTTPTInfo() const {
3236    QualType Can = getCanonicalTypeInternal();
3237    return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
3238  }
3239
3240public:
3241  unsigned getDepth() const { return getCanTTPTInfo().Depth; }
3242  unsigned getIndex() const { return getCanTTPTInfo().Index; }
3243  bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
3244
3245  TemplateTypeParmDecl *getDecl() const {
3246    return isCanonicalUnqualified() ? 0 : TTPDecl;
3247  }
3248
3249  IdentifierInfo *getIdentifier() const;
3250
3251  bool isSugared() const { return false; }
3252  QualType desugar() const { return QualType(this, 0); }
3253
3254  void Profile(llvm::FoldingSetNodeID &ID) {
3255    Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
3256  }
3257
3258  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
3259                      unsigned Index, bool ParameterPack,
3260                      TemplateTypeParmDecl *TTPDecl) {
3261    ID.AddInteger(Depth);
3262    ID.AddInteger(Index);
3263    ID.AddBoolean(ParameterPack);
3264    ID.AddPointer(TTPDecl);
3265  }
3266
3267  static bool classof(const Type *T) {
3268    return T->getTypeClass() == TemplateTypeParm;
3269  }
3270  static bool classof(const TemplateTypeParmType *T) { return true; }
3271};
3272
3273/// \brief Represents the result of substituting a type for a template
3274/// type parameter.
3275///
3276/// Within an instantiated template, all template type parameters have
3277/// been replaced with these.  They are used solely to record that a
3278/// type was originally written as a template type parameter;
3279/// therefore they are never canonical.
3280class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
3281  // The original type parameter.
3282  const TemplateTypeParmType *Replaced;
3283
3284  SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
3285    : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(),
3286           Canon->isVariablyModifiedType(),
3287           Canon->containsUnexpandedParameterPack()),
3288      Replaced(Param) { }
3289
3290  friend class ASTContext;
3291
3292public:
3293  /// Gets the template parameter that was substituted for.
3294  const TemplateTypeParmType *getReplacedParameter() const {
3295    return Replaced;
3296  }
3297
3298  /// Gets the type that was substituted for the template
3299  /// parameter.
3300  QualType getReplacementType() const {
3301    return getCanonicalTypeInternal();
3302  }
3303
3304  bool isSugared() const { return true; }
3305  QualType desugar() const { return getReplacementType(); }
3306
3307  void Profile(llvm::FoldingSetNodeID &ID) {
3308    Profile(ID, getReplacedParameter(), getReplacementType());
3309  }
3310  static void Profile(llvm::FoldingSetNodeID &ID,
3311                      const TemplateTypeParmType *Replaced,
3312                      QualType Replacement) {
3313    ID.AddPointer(Replaced);
3314    ID.AddPointer(Replacement.getAsOpaquePtr());
3315  }
3316
3317  static bool classof(const Type *T) {
3318    return T->getTypeClass() == SubstTemplateTypeParm;
3319  }
3320  static bool classof(const SubstTemplateTypeParmType *T) { return true; }
3321};
3322
3323/// \brief Represents the result of substituting a set of types for a template
3324/// type parameter pack.
3325///
3326/// When a pack expansion in the source code contains multiple parameter packs
3327/// and those parameter packs correspond to different levels of template
3328/// parameter lists, this type node is used to represent a template type
3329/// parameter pack from an outer level, which has already had its argument pack
3330/// substituted but that still lives within a pack expansion that itself
3331/// could not be instantiated. When actually performing a substitution into
3332/// that pack expansion (e.g., when all template parameters have corresponding
3333/// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
3334/// at the current pack substitution index.
3335class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
3336  /// \brief The original type parameter.
3337  const TemplateTypeParmType *Replaced;
3338
3339  /// \brief A pointer to the set of template arguments that this
3340  /// parameter pack is instantiated with.
3341  const TemplateArgument *Arguments;
3342
3343  /// \brief The number of template arguments in \c Arguments.
3344  unsigned NumArguments;
3345
3346  SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
3347                                QualType Canon,
3348                                const TemplateArgument &ArgPack);
3349
3350  friend class ASTContext;
3351
3352public:
3353  IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }
3354
3355  /// Gets the template parameter that was substituted for.
3356  const TemplateTypeParmType *getReplacedParameter() const {
3357    return Replaced;
3358  }
3359
3360  bool isSugared() const { return false; }
3361  QualType desugar() const { return QualType(this, 0); }
3362
3363  TemplateArgument getArgumentPack() const;
3364
3365  void Profile(llvm::FoldingSetNodeID &ID);
3366  static void Profile(llvm::FoldingSetNodeID &ID,
3367                      const TemplateTypeParmType *Replaced,
3368                      const TemplateArgument &ArgPack);
3369
3370  static bool classof(const Type *T) {
3371    return T->getTypeClass() == SubstTemplateTypeParmPack;
3372  }
3373  static bool classof(const SubstTemplateTypeParmPackType *T) { return true; }
3374};
3375
3376/// \brief Represents a C++0x auto type.
3377///
3378/// These types are usually a placeholder for a deduced type. However, within
3379/// templates and before the initializer is attached, there is no deduced type
3380/// and an auto type is type-dependent and canonical.
3381class AutoType : public Type, public llvm::FoldingSetNode {
3382  AutoType(QualType DeducedType)
3383    : Type(Auto, DeducedType.isNull() ? QualType(this, 0) : DeducedType,
3384           /*Dependent=*/DeducedType.isNull(),
3385           /*VariablyModified=*/false, /*ContainsParameterPack=*/false) {
3386    assert((DeducedType.isNull() || !DeducedType->isDependentType()) &&
3387           "deduced a dependent type for auto");
3388  }
3389
3390  friend class ASTContext;  // ASTContext creates these
3391
3392public:
3393  bool isSugared() const { return isDeduced(); }
3394  QualType desugar() const { return getCanonicalTypeInternal(); }
3395
3396  QualType getDeducedType() const {
3397    return isDeduced() ? getCanonicalTypeInternal() : QualType();
3398  }
3399  bool isDeduced() const {
3400    return !isDependentType();
3401  }
3402
3403  void Profile(llvm::FoldingSetNodeID &ID) {
3404    Profile(ID, getDeducedType());
3405  }
3406
3407  static void Profile(llvm::FoldingSetNodeID &ID,
3408                      QualType Deduced) {
3409    ID.AddPointer(Deduced.getAsOpaquePtr());
3410  }
3411
3412  static bool classof(const Type *T) {
3413    return T->getTypeClass() == Auto;
3414  }
3415  static bool classof(const AutoType *T) { return true; }
3416};
3417
3418/// \brief Represents the type of a template specialization as written
3419/// in the source code.
3420///
3421/// Template specialization types represent the syntactic form of a
3422/// template-id that refers to a type, e.g., @c vector<int>. Some
3423/// template specialization types are syntactic sugar, whose canonical
3424/// type will point to some other type node that represents the
3425/// instantiation or class template specialization. For example, a
3426/// class template specialization type of @c vector<int> will refer to
3427/// a tag type for the instantiation
3428/// @c std::vector<int, std::allocator<int>>.
3429///
3430/// Other template specialization types, for which the template name
3431/// is dependent, may be canonical types. These types are always
3432/// dependent.
3433///
3434/// An instance of this type is followed by an array of TemplateArgument*s,
3435/// then, if the template specialization type is for a type alias template,
3436/// a QualType representing the non-canonical aliased type.
3437class TemplateSpecializationType
3438  : public Type, public llvm::FoldingSetNode {
3439  /// \brief The name of the template being specialized.
3440  TemplateName Template;
3441
3442  /// \brief - The number of template arguments named in this class
3443  /// template specialization.
3444  unsigned NumArgs;
3445
3446  TemplateSpecializationType(TemplateName T,
3447                             const TemplateArgument *Args,
3448                             unsigned NumArgs, QualType Canon,
3449                             QualType Aliased);
3450
3451  friend class ASTContext;  // ASTContext creates these
3452
3453public:
3454  /// \brief Determine whether any of the given template arguments are
3455  /// dependent.
3456  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
3457                                            unsigned NumArgs);
3458
3459  static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
3460                                            unsigned NumArgs);
3461
3462  static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &);
3463
3464  /// \brief Print a template argument list, including the '<' and '>'
3465  /// enclosing the template arguments.
3466  static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
3467                                               unsigned NumArgs,
3468                                               const PrintingPolicy &Policy,
3469                                               bool SkipBrackets = false);
3470
3471  static std::string PrintTemplateArgumentList(const TemplateArgumentLoc *Args,
3472                                               unsigned NumArgs,
3473                                               const PrintingPolicy &Policy);
3474
3475  static std::string PrintTemplateArgumentList(const TemplateArgumentListInfo &,
3476                                               const PrintingPolicy &Policy);
3477
3478  /// True if this template specialization type matches a current
3479  /// instantiation in the context in which it is found.
3480  bool isCurrentInstantiation() const {
3481    return isa<InjectedClassNameType>(getCanonicalTypeInternal());
3482  }
3483
3484  /// True if this template specialization type is for a type alias
3485  /// template.
3486  bool isTypeAlias() const;
3487  /// Get the aliased type, if this is a specialization of a type alias
3488  /// template.
3489  QualType getAliasedType() const {
3490    assert(isTypeAlias() && "not a type alias template specialization");
3491    return *reinterpret_cast<const QualType*>(end());
3492  }
3493
3494  typedef const TemplateArgument * iterator;
3495
3496  iterator begin() const { return getArgs(); }
3497  iterator end() const; // defined inline in TemplateBase.h
3498
3499  /// \brief Retrieve the name of the template that we are specializing.
3500  TemplateName getTemplateName() const { return Template; }
3501
3502  /// \brief Retrieve the template arguments.
3503  const TemplateArgument *getArgs() const {
3504    return reinterpret_cast<const TemplateArgument *>(this + 1);
3505  }
3506
3507  /// \brief Retrieve the number of template arguments.
3508  unsigned getNumArgs() const { return NumArgs; }
3509
3510  /// \brief Retrieve a specific template argument as a type.
3511  /// \precondition @c isArgType(Arg)
3512  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
3513
3514  bool isSugared() const {
3515    return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
3516  }
3517  QualType desugar() const { return getCanonicalTypeInternal(); }
3518
3519  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
3520    Profile(ID, Template, getArgs(), NumArgs, Ctx);
3521    if (isTypeAlias())
3522      getAliasedType().Profile(ID);
3523  }
3524
3525  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
3526                      const TemplateArgument *Args,
3527                      unsigned NumArgs,
3528                      const ASTContext &Context);
3529
3530  static bool classof(const Type *T) {
3531    return T->getTypeClass() == TemplateSpecialization;
3532  }
3533  static bool classof(const TemplateSpecializationType *T) { return true; }
3534};
3535
3536/// \brief The injected class name of a C++ class template or class
3537/// template partial specialization.  Used to record that a type was
3538/// spelled with a bare identifier rather than as a template-id; the
3539/// equivalent for non-templated classes is just RecordType.
3540///
3541/// Injected class name types are always dependent.  Template
3542/// instantiation turns these into RecordTypes.
3543///
3544/// Injected class name types are always canonical.  This works
3545/// because it is impossible to compare an injected class name type
3546/// with the corresponding non-injected template type, for the same
3547/// reason that it is impossible to directly compare template
3548/// parameters from different dependent contexts: injected class name
3549/// types can only occur within the scope of a particular templated
3550/// declaration, and within that scope every template specialization
3551/// will canonicalize to the injected class name (when appropriate
3552/// according to the rules of the language).
3553class InjectedClassNameType : public Type {
3554  CXXRecordDecl *Decl;
3555
3556  /// The template specialization which this type represents.
3557  /// For example, in
3558  ///   template <class T> class A { ... };
3559  /// this is A<T>, whereas in
3560  ///   template <class X, class Y> class A<B<X,Y> > { ... };
3561  /// this is A<B<X,Y> >.
3562  ///
3563  /// It is always unqualified, always a template specialization type,
3564  /// and always dependent.
3565  QualType InjectedType;
3566
3567  friend class ASTContext; // ASTContext creates these.
3568  friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
3569                          // currently suitable for AST reading, too much
3570                          // interdependencies.
3571  InjectedClassNameType(CXXRecordDecl *D, QualType TST)
3572    : Type(InjectedClassName, QualType(), /*Dependent=*/true,
3573           /*VariablyModified=*/false,
3574           /*ContainsUnexpandedParameterPack=*/false),
3575      Decl(D), InjectedType(TST) {
3576    assert(isa<TemplateSpecializationType>(TST));
3577    assert(!TST.hasQualifiers());
3578    assert(TST->isDependentType());
3579  }
3580
3581public:
3582  QualType getInjectedSpecializationType() const { return InjectedType; }
3583  const TemplateSpecializationType *getInjectedTST() const {
3584    return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
3585  }
3586
3587  CXXRecordDecl *getDecl() const;
3588
3589  bool isSugared() const { return false; }
3590  QualType desugar() const { return QualType(this, 0); }
3591
3592  static bool classof(const Type *T) {
3593    return T->getTypeClass() == InjectedClassName;
3594  }
3595  static bool classof(const InjectedClassNameType *T) { return true; }
3596};
3597
3598/// \brief The kind of a tag type.
3599enum TagTypeKind {
3600  /// \brief The "struct" keyword.
3601  TTK_Struct,
3602  /// \brief The "union" keyword.
3603  TTK_Union,
3604  /// \brief The "class" keyword.
3605  TTK_Class,
3606  /// \brief The "enum" keyword.
3607  TTK_Enum
3608};
3609
3610/// \brief The elaboration keyword that precedes a qualified type name or
3611/// introduces an elaborated-type-specifier.
3612enum ElaboratedTypeKeyword {
3613  /// \brief The "struct" keyword introduces the elaborated-type-specifier.
3614  ETK_Struct,
3615  /// \brief The "union" keyword introduces the elaborated-type-specifier.
3616  ETK_Union,
3617  /// \brief The "class" keyword introduces the elaborated-type-specifier.
3618  ETK_Class,
3619  /// \brief The "enum" keyword introduces the elaborated-type-specifier.
3620  ETK_Enum,
3621  /// \brief The "typename" keyword precedes the qualified type name, e.g.,
3622  /// \c typename T::type.
3623  ETK_Typename,
3624  /// \brief No keyword precedes the qualified type name.
3625  ETK_None
3626};
3627
3628/// A helper class for Type nodes having an ElaboratedTypeKeyword.
3629/// The keyword in stored in the free bits of the base class.
3630/// Also provides a few static helpers for converting and printing
3631/// elaborated type keyword and tag type kind enumerations.
3632class TypeWithKeyword : public Type {
3633protected:
3634  TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
3635                  QualType Canonical, bool Dependent, bool VariablyModified,
3636                  bool ContainsUnexpandedParameterPack)
3637  : Type(tc, Canonical, Dependent, VariablyModified,
3638         ContainsUnexpandedParameterPack) {
3639    TypeWithKeywordBits.Keyword = Keyword;
3640  }
3641
3642public:
3643  ElaboratedTypeKeyword getKeyword() const {
3644    return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
3645  }
3646
3647  /// getKeywordForTypeSpec - Converts a type specifier (DeclSpec::TST)
3648  /// into an elaborated type keyword.
3649  static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
3650
3651  /// getTagTypeKindForTypeSpec - Converts a type specifier (DeclSpec::TST)
3652  /// into a tag type kind.  It is an error to provide a type specifier
3653  /// which *isn't* a tag kind here.
3654  static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
3655
3656  /// getKeywordForTagDeclKind - Converts a TagTypeKind into an
3657  /// elaborated type keyword.
3658  static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
3659
3660  /// getTagTypeKindForKeyword - Converts an elaborated type keyword into
3661  // a TagTypeKind. It is an error to provide an elaborated type keyword
3662  /// which *isn't* a tag kind here.
3663  static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
3664
3665  static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
3666
3667  static const char *getKeywordName(ElaboratedTypeKeyword Keyword);
3668
3669  static const char *getTagTypeKindName(TagTypeKind Kind) {
3670    return getKeywordName(getKeywordForTagTypeKind(Kind));
3671  }
3672
3673  class CannotCastToThisType {};
3674  static CannotCastToThisType classof(const Type *);
3675};
3676
3677/// \brief Represents a type that was referred to using an elaborated type
3678/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
3679/// or both.
3680///
3681/// This type is used to keep track of a type name as written in the
3682/// source code, including tag keywords and any nested-name-specifiers.
3683/// The type itself is always "sugar", used to express what was written
3684/// in the source code but containing no additional semantic information.
3685class ElaboratedType : public TypeWithKeyword, public llvm::FoldingSetNode {
3686
3687  /// \brief The nested name specifier containing the qualifier.
3688  NestedNameSpecifier *NNS;
3689
3690  /// \brief The type that this qualified name refers to.
3691  QualType NamedType;
3692
3693  ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
3694                 QualType NamedType, QualType CanonType)
3695    : TypeWithKeyword(Keyword, Elaborated, CanonType,
3696                      NamedType->isDependentType(),
3697                      NamedType->isVariablyModifiedType(),
3698                      NamedType->containsUnexpandedParameterPack()),
3699      NNS(NNS), NamedType(NamedType) {
3700    assert(!(Keyword == ETK_None && NNS == 0) &&
3701           "ElaboratedType cannot have elaborated type keyword "
3702           "and name qualifier both null.");
3703  }
3704
3705  friend class ASTContext;  // ASTContext creates these
3706
3707public:
3708  ~ElaboratedType();
3709
3710  /// \brief Retrieve the qualification on this type.
3711  NestedNameSpecifier *getQualifier() const { return NNS; }
3712
3713  /// \brief Retrieve the type named by the qualified-id.
3714  QualType getNamedType() const { return NamedType; }
3715
3716  /// \brief Remove a single level of sugar.
3717  QualType desugar() const { return getNamedType(); }
3718
3719  /// \brief Returns whether this type directly provides sugar.
3720  bool isSugared() const { return true; }
3721
3722  void Profile(llvm::FoldingSetNodeID &ID) {
3723    Profile(ID, getKeyword(), NNS, NamedType);
3724  }
3725
3726  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
3727                      NestedNameSpecifier *NNS, QualType NamedType) {
3728    ID.AddInteger(Keyword);
3729    ID.AddPointer(NNS);
3730    NamedType.Profile(ID);
3731  }
3732
3733  static bool classof(const Type *T) {
3734    return T->getTypeClass() == Elaborated;
3735  }
3736  static bool classof(const ElaboratedType *T) { return true; }
3737};
3738
3739/// \brief Represents a qualified type name for which the type name is
3740/// dependent.
3741///
3742/// DependentNameType represents a class of dependent types that involve a
3743/// dependent nested-name-specifier (e.g., "T::") followed by a (dependent)
3744/// name of a type. The DependentNameType may start with a "typename" (for a
3745/// typename-specifier), "class", "struct", "union", or "enum" (for a
3746/// dependent elaborated-type-specifier), or nothing (in contexts where we
3747/// know that we must be referring to a type, e.g., in a base class specifier).
3748class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
3749
3750  /// \brief The nested name specifier containing the qualifier.
3751  NestedNameSpecifier *NNS;
3752
3753  /// \brief The type that this typename specifier refers to.
3754  const IdentifierInfo *Name;
3755
3756  DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
3757                    const IdentifierInfo *Name, QualType CanonType)
3758    : TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true,
3759                      /*VariablyModified=*/false,
3760                      NNS->containsUnexpandedParameterPack()),
3761      NNS(NNS), Name(Name) {
3762    assert(NNS->isDependent() &&
3763           "DependentNameType requires a dependent nested-name-specifier");
3764  }
3765
3766  friend class ASTContext;  // ASTContext creates these
3767
3768public:
3769  /// \brief Retrieve the qualification on this type.
3770  NestedNameSpecifier *getQualifier() const { return NNS; }
3771
3772  /// \brief Retrieve the type named by the typename specifier as an
3773  /// identifier.
3774  ///
3775  /// This routine will return a non-NULL identifier pointer when the
3776  /// form of the original typename was terminated by an identifier,
3777  /// e.g., "typename T::type".
3778  const IdentifierInfo *getIdentifier() const {
3779    return Name;
3780  }
3781
3782  bool isSugared() const { return false; }
3783  QualType desugar() const { return QualType(this, 0); }
3784
3785  void Profile(llvm::FoldingSetNodeID &ID) {
3786    Profile(ID, getKeyword(), NNS, Name);
3787  }
3788
3789  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
3790                      NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
3791    ID.AddInteger(Keyword);
3792    ID.AddPointer(NNS);
3793    ID.AddPointer(Name);
3794  }
3795
3796  static bool classof(const Type *T) {
3797    return T->getTypeClass() == DependentName;
3798  }
3799  static bool classof(const DependentNameType *T) { return true; }
3800};
3801
3802/// DependentTemplateSpecializationType - Represents a template
3803/// specialization type whose template cannot be resolved, e.g.
3804///   A<T>::template B<T>
3805class DependentTemplateSpecializationType :
3806  public TypeWithKeyword, public llvm::FoldingSetNode {
3807
3808  /// \brief The nested name specifier containing the qualifier.
3809  NestedNameSpecifier *NNS;
3810
3811  /// \brief The identifier of the template.
3812  const IdentifierInfo *Name;
3813
3814  /// \brief - The number of template arguments named in this class
3815  /// template specialization.
3816  unsigned NumArgs;
3817
3818  const TemplateArgument *getArgBuffer() const {
3819    return reinterpret_cast<const TemplateArgument*>(this+1);
3820  }
3821  TemplateArgument *getArgBuffer() {
3822    return reinterpret_cast<TemplateArgument*>(this+1);
3823  }
3824
3825  DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
3826                                      NestedNameSpecifier *NNS,
3827                                      const IdentifierInfo *Name,
3828                                      unsigned NumArgs,
3829                                      const TemplateArgument *Args,
3830                                      QualType Canon);
3831
3832  friend class ASTContext;  // ASTContext creates these
3833
3834public:
3835  NestedNameSpecifier *getQualifier() const { return NNS; }
3836  const IdentifierInfo *getIdentifier() const { return Name; }
3837
3838  /// \brief Retrieve the template arguments.
3839  const TemplateArgument *getArgs() const {
3840    return getArgBuffer();
3841  }
3842
3843  /// \brief Retrieve the number of template arguments.
3844  unsigned getNumArgs() const { return NumArgs; }
3845
3846  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
3847
3848  typedef const TemplateArgument * iterator;
3849  iterator begin() const { return getArgs(); }
3850  iterator end() const; // inline in TemplateBase.h
3851
3852  bool isSugared() const { return false; }
3853  QualType desugar() const { return QualType(this, 0); }
3854
3855  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
3856    Profile(ID, Context, getKeyword(), NNS, Name, NumArgs, getArgs());
3857  }
3858
3859  static void Profile(llvm::FoldingSetNodeID &ID,
3860                      const ASTContext &Context,
3861                      ElaboratedTypeKeyword Keyword,
3862                      NestedNameSpecifier *Qualifier,
3863                      const IdentifierInfo *Name,
3864                      unsigned NumArgs,
3865                      const TemplateArgument *Args);
3866
3867  static bool classof(const Type *T) {
3868    return T->getTypeClass() == DependentTemplateSpecialization;
3869  }
3870  static bool classof(const DependentTemplateSpecializationType *T) {
3871    return true;
3872  }
3873};
3874
3875/// \brief Represents a pack expansion of types.
3876///
3877/// Pack expansions are part of C++0x variadic templates. A pack
3878/// expansion contains a pattern, which itself contains one or more
3879/// "unexpanded" parameter packs. When instantiated, a pack expansion
3880/// produces a series of types, each instantiated from the pattern of
3881/// the expansion, where the Ith instantiation of the pattern uses the
3882/// Ith arguments bound to each of the unexpanded parameter packs. The
3883/// pack expansion is considered to "expand" these unexpanded
3884/// parameter packs.
3885///
3886/// \code
3887/// template<typename ...Types> struct tuple;
3888///
3889/// template<typename ...Types>
3890/// struct tuple_of_references {
3891///   typedef tuple<Types&...> type;
3892/// };
3893/// \endcode
3894///
3895/// Here, the pack expansion \c Types&... is represented via a
3896/// PackExpansionType whose pattern is Types&.
3897class PackExpansionType : public Type, public llvm::FoldingSetNode {
3898  /// \brief The pattern of the pack expansion.
3899  QualType Pattern;
3900
3901  /// \brief The number of expansions that this pack expansion will
3902  /// generate when substituted (+1), or indicates that
3903  ///
3904  /// This field will only have a non-zero value when some of the parameter
3905  /// packs that occur within the pattern have been substituted but others have
3906  /// not.
3907  unsigned NumExpansions;
3908
3909  PackExpansionType(QualType Pattern, QualType Canon,
3910                    llvm::Optional<unsigned> NumExpansions)
3911    : Type(PackExpansion, Canon, /*Dependent=*/true,
3912           /*VariableModified=*/Pattern->isVariablyModifiedType(),
3913           /*ContainsUnexpandedParameterPack=*/false),
3914      Pattern(Pattern),
3915      NumExpansions(NumExpansions? *NumExpansions + 1: 0) { }
3916
3917  friend class ASTContext;  // ASTContext creates these
3918
3919public:
3920  /// \brief Retrieve the pattern of this pack expansion, which is the
3921  /// type that will be repeatedly instantiated when instantiating the
3922  /// pack expansion itself.
3923  QualType getPattern() const { return Pattern; }
3924
3925  /// \brief Retrieve the number of expansions that this pack expansion will
3926  /// generate, if known.
3927  llvm::Optional<unsigned> getNumExpansions() const {
3928    if (NumExpansions)
3929      return NumExpansions - 1;
3930
3931    return llvm::Optional<unsigned>();
3932  }
3933
3934  bool isSugared() const { return false; }
3935  QualType desugar() const { return QualType(this, 0); }
3936
3937  void Profile(llvm::FoldingSetNodeID &ID) {
3938    Profile(ID, getPattern(), getNumExpansions());
3939  }
3940
3941  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
3942                      llvm::Optional<unsigned> NumExpansions) {
3943    ID.AddPointer(Pattern.getAsOpaquePtr());
3944    ID.AddBoolean(NumExpansions);
3945    if (NumExpansions)
3946      ID.AddInteger(*NumExpansions);
3947  }
3948
3949  static bool classof(const Type *T) {
3950    return T->getTypeClass() == PackExpansion;
3951  }
3952  static bool classof(const PackExpansionType *T) {
3953    return true;
3954  }
3955};
3956
3957/// ObjCObjectType - Represents a class type in Objective C.
3958/// Every Objective C type is a combination of a base type and a
3959/// list of protocols.
3960///
3961/// Given the following declarations:
3962///   @class C;
3963///   @protocol P;
3964///
3965/// 'C' is an ObjCInterfaceType C.  It is sugar for an ObjCObjectType
3966/// with base C and no protocols.
3967///
3968/// 'C<P>' is an ObjCObjectType with base C and protocol list [P].
3969///
3970/// 'id' is a TypedefType which is sugar for an ObjCPointerType whose
3971/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
3972/// and no protocols.
3973///
3974/// 'id<P>' is an ObjCPointerType whose pointee is an ObjCObjecType
3975/// with base BuiltinType::ObjCIdType and protocol list [P].  Eventually
3976/// this should get its own sugar class to better represent the source.
3977class ObjCObjectType : public Type {
3978  // ObjCObjectType.NumProtocols - the number of protocols stored
3979  // after the ObjCObjectPointerType node.
3980  //
3981  // These protocols are those written directly on the type.  If
3982  // protocol qualifiers ever become additive, the iterators will need
3983  // to get kindof complicated.
3984  //
3985  // In the canonical object type, these are sorted alphabetically
3986  // and uniqued.
3987
3988  /// Either a BuiltinType or an InterfaceType or sugar for either.
3989  QualType BaseType;
3990
3991  ObjCProtocolDecl * const *getProtocolStorage() const {
3992    return const_cast<ObjCObjectType*>(this)->getProtocolStorage();
3993  }
3994
3995  ObjCProtocolDecl **getProtocolStorage();
3996
3997protected:
3998  ObjCObjectType(QualType Canonical, QualType Base,
3999                 ObjCProtocolDecl * const *Protocols, unsigned NumProtocols);
4000
4001  enum Nonce_ObjCInterface { Nonce_ObjCInterface };
4002  ObjCObjectType(enum Nonce_ObjCInterface)
4003        : Type(ObjCInterface, QualType(), false, false, false),
4004      BaseType(QualType(this_(), 0)) {
4005    ObjCObjectTypeBits.NumProtocols = 0;
4006  }
4007
4008public:
4009  /// getBaseType - Gets the base type of this object type.  This is
4010  /// always (possibly sugar for) one of:
4011  ///  - the 'id' builtin type (as opposed to the 'id' type visible to the
4012  ///    user, which is a typedef for an ObjCPointerType)
4013  ///  - the 'Class' builtin type (same caveat)
4014  ///  - an ObjCObjectType (currently always an ObjCInterfaceType)
4015  QualType getBaseType() const { return BaseType; }
4016
4017  bool isObjCId() const {
4018    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
4019  }
4020  bool isObjCClass() const {
4021    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
4022  }
4023  bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
4024  bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
4025  bool isObjCUnqualifiedIdOrClass() const {
4026    if (!qual_empty()) return false;
4027    if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
4028      return T->getKind() == BuiltinType::ObjCId ||
4029             T->getKind() == BuiltinType::ObjCClass;
4030    return false;
4031  }
4032  bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
4033  bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
4034
4035  /// Gets the interface declaration for this object type, if the base type
4036  /// really is an interface.
4037  ObjCInterfaceDecl *getInterface() const;
4038
4039  typedef ObjCProtocolDecl * const *qual_iterator;
4040
4041  qual_iterator qual_begin() const { return getProtocolStorage(); }
4042  qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
4043
4044  bool qual_empty() const { return getNumProtocols() == 0; }
4045
4046  /// getNumProtocols - Return the number of qualifying protocols in this
4047  /// interface type, or 0 if there are none.
4048  unsigned getNumProtocols() const { return ObjCObjectTypeBits.NumProtocols; }
4049
4050  /// \brief Fetch a protocol by index.
4051  ObjCProtocolDecl *getProtocol(unsigned I) const {
4052    assert(I < getNumProtocols() && "Out-of-range protocol access");
4053    return qual_begin()[I];
4054  }
4055
4056  bool isSugared() const { return false; }
4057  QualType desugar() const { return QualType(this, 0); }
4058
4059  static bool classof(const Type *T) {
4060    return T->getTypeClass() == ObjCObject ||
4061           T->getTypeClass() == ObjCInterface;
4062  }
4063  static bool classof(const ObjCObjectType *) { return true; }
4064};
4065
4066/// ObjCObjectTypeImpl - A class providing a concrete implementation
4067/// of ObjCObjectType, so as to not increase the footprint of
4068/// ObjCInterfaceType.  Code outside of ASTContext and the core type
4069/// system should not reference this type.
4070class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
4071  friend class ASTContext;
4072
4073  // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
4074  // will need to be modified.
4075
4076  ObjCObjectTypeImpl(QualType Canonical, QualType Base,
4077                     ObjCProtocolDecl * const *Protocols,
4078                     unsigned NumProtocols)
4079    : ObjCObjectType(Canonical, Base, Protocols, NumProtocols) {}
4080
4081public:
4082  void Profile(llvm::FoldingSetNodeID &ID);
4083  static void Profile(llvm::FoldingSetNodeID &ID,
4084                      QualType Base,
4085                      ObjCProtocolDecl *const *protocols,
4086                      unsigned NumProtocols);
4087};
4088
4089inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorage() {
4090  return reinterpret_cast<ObjCProtocolDecl**>(
4091            static_cast<ObjCObjectTypeImpl*>(this) + 1);
4092}
4093
4094/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
4095/// object oriented design.  They basically correspond to C++ classes.  There
4096/// are two kinds of interface types, normal interfaces like "NSString" and
4097/// qualified interfaces, which are qualified with a protocol list like
4098/// "NSString<NSCopyable, NSAmazing>".
4099///
4100/// ObjCInterfaceType guarantees the following properties when considered
4101/// as a subtype of its superclass, ObjCObjectType:
4102///   - There are no protocol qualifiers.  To reinforce this, code which
4103///     tries to invoke the protocol methods via an ObjCInterfaceType will
4104///     fail to compile.
4105///   - It is its own base type.  That is, if T is an ObjCInterfaceType*,
4106///     T->getBaseType() == QualType(T, 0).
4107class ObjCInterfaceType : public ObjCObjectType {
4108  ObjCInterfaceDecl *Decl;
4109
4110  ObjCInterfaceType(const ObjCInterfaceDecl *D)
4111    : ObjCObjectType(Nonce_ObjCInterface),
4112      Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
4113  friend class ASTContext;  // ASTContext creates these.
4114
4115public:
4116  /// getDecl - Get the declaration of this interface.
4117  ObjCInterfaceDecl *getDecl() const { return Decl; }
4118
4119  bool isSugared() const { return false; }
4120  QualType desugar() const { return QualType(this, 0); }
4121
4122  static bool classof(const Type *T) {
4123    return T->getTypeClass() == ObjCInterface;
4124  }
4125  static bool classof(const ObjCInterfaceType *) { return true; }
4126
4127  // Nonsense to "hide" certain members of ObjCObjectType within this
4128  // class.  People asking for protocols on an ObjCInterfaceType are
4129  // not going to get what they want: ObjCInterfaceTypes are
4130  // guaranteed to have no protocols.
4131  enum {
4132    qual_iterator,
4133    qual_begin,
4134    qual_end,
4135    getNumProtocols,
4136    getProtocol
4137  };
4138};
4139
4140inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
4141  if (const ObjCInterfaceType *T =
4142        getBaseType()->getAs<ObjCInterfaceType>())
4143    return T->getDecl();
4144  return 0;
4145}
4146
4147/// ObjCObjectPointerType - Used to represent a pointer to an
4148/// Objective C object.  These are constructed from pointer
4149/// declarators when the pointee type is an ObjCObjectType (or sugar
4150/// for one).  In addition, the 'id' and 'Class' types are typedefs
4151/// for these, and the protocol-qualified types 'id<P>' and 'Class<P>'
4152/// are translated into these.
4153///
4154/// Pointers to pointers to Objective C objects are still PointerTypes;
4155/// only the first level of pointer gets it own type implementation.
4156class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
4157  QualType PointeeType;
4158
4159  ObjCObjectPointerType(QualType Canonical, QualType Pointee)
4160    : Type(ObjCObjectPointer, Canonical, false, false, false),
4161      PointeeType(Pointee) {}
4162  friend class ASTContext;  // ASTContext creates these.
4163
4164public:
4165  /// getPointeeType - Gets the type pointed to by this ObjC pointer.
4166  /// The result will always be an ObjCObjectType or sugar thereof.
4167  QualType getPointeeType() const { return PointeeType; }
4168
4169  /// getObjCObjectType - Gets the type pointed to by this ObjC
4170  /// pointer.  This method always returns non-null.
4171  ///
4172  /// This method is equivalent to getPointeeType() except that
4173  /// it discards any typedefs (or other sugar) between this
4174  /// type and the "outermost" object type.  So for:
4175  ///   @class A; @protocol P; @protocol Q;
4176  ///   typedef A<P> AP;
4177  ///   typedef A A1;
4178  ///   typedef A1<P> A1P;
4179  ///   typedef A1P<Q> A1PQ;
4180  /// For 'A*', getObjectType() will return 'A'.
4181  /// For 'A<P>*', getObjectType() will return 'A<P>'.
4182  /// For 'AP*', getObjectType() will return 'A<P>'.
4183  /// For 'A1*', getObjectType() will return 'A'.
4184  /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
4185  /// For 'A1P*', getObjectType() will return 'A1<P>'.
4186  /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
4187  ///   adding protocols to a protocol-qualified base discards the
4188  ///   old qualifiers (for now).  But if it didn't, getObjectType()
4189  ///   would return 'A1P<Q>' (and we'd have to make iterating over
4190  ///   qualifiers more complicated).
4191  const ObjCObjectType *getObjectType() const {
4192    return PointeeType->castAs<ObjCObjectType>();
4193  }
4194
4195  /// getInterfaceType - If this pointer points to an Objective C
4196  /// @interface type, gets the type for that interface.  Any protocol
4197  /// qualifiers on the interface are ignored.
4198  ///
4199  /// \return null if the base type for this pointer is 'id' or 'Class'
4200  const ObjCInterfaceType *getInterfaceType() const {
4201    return getObjectType()->getBaseType()->getAs<ObjCInterfaceType>();
4202  }
4203
4204  /// getInterfaceDecl - If this pointer points to an Objective @interface
4205  /// type, gets the declaration for that interface.
4206  ///
4207  /// \return null if the base type for this pointer is 'id' or 'Class'
4208  ObjCInterfaceDecl *getInterfaceDecl() const {
4209    return getObjectType()->getInterface();
4210  }
4211
4212  /// isObjCIdType - True if this is equivalent to the 'id' type, i.e. if
4213  /// its object type is the primitive 'id' type with no protocols.
4214  bool isObjCIdType() const {
4215    return getObjectType()->isObjCUnqualifiedId();
4216  }
4217
4218  /// isObjCClassType - True if this is equivalent to the 'Class' type,
4219  /// i.e. if its object tive is the primitive 'Class' type with no protocols.
4220  bool isObjCClassType() const {
4221    return getObjectType()->isObjCUnqualifiedClass();
4222  }
4223
4224  /// isObjCQualifiedIdType - True if this is equivalent to 'id<P>' for some
4225  /// non-empty set of protocols.
4226  bool isObjCQualifiedIdType() const {
4227    return getObjectType()->isObjCQualifiedId();
4228  }
4229
4230  /// isObjCQualifiedClassType - True if this is equivalent to 'Class<P>' for
4231  /// some non-empty set of protocols.
4232  bool isObjCQualifiedClassType() const {
4233    return getObjectType()->isObjCQualifiedClass();
4234  }
4235
4236  /// An iterator over the qualifiers on the object type.  Provided
4237  /// for convenience.  This will always iterate over the full set of
4238  /// protocols on a type, not just those provided directly.
4239  typedef ObjCObjectType::qual_iterator qual_iterator;
4240
4241  qual_iterator qual_begin() const {
4242    return getObjectType()->qual_begin();
4243  }
4244  qual_iterator qual_end() const {
4245    return getObjectType()->qual_end();
4246  }
4247  bool qual_empty() const { return getObjectType()->qual_empty(); }
4248
4249  /// getNumProtocols - Return the number of qualifying protocols on
4250  /// the object type.
4251  unsigned getNumProtocols() const {
4252    return getObjectType()->getNumProtocols();
4253  }
4254
4255  /// \brief Retrieve a qualifying protocol by index on the object
4256  /// type.
4257  ObjCProtocolDecl *getProtocol(unsigned I) const {
4258    return getObjectType()->getProtocol(I);
4259  }
4260
4261  bool isSugared() const { return false; }
4262  QualType desugar() const { return QualType(this, 0); }
4263
4264  void Profile(llvm::FoldingSetNodeID &ID) {
4265    Profile(ID, getPointeeType());
4266  }
4267  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
4268    ID.AddPointer(T.getAsOpaquePtr());
4269  }
4270  static bool classof(const Type *T) {
4271    return T->getTypeClass() == ObjCObjectPointer;
4272  }
4273  static bool classof(const ObjCObjectPointerType *) { return true; }
4274};
4275
4276/// A qualifier set is used to build a set of qualifiers.
4277class QualifierCollector : public Qualifiers {
4278public:
4279  QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
4280
4281  /// Collect any qualifiers on the given type and return an
4282  /// unqualified type.  The qualifiers are assumed to be consistent
4283  /// with those already in the type.
4284  const Type *strip(QualType type) {
4285    addFastQualifiers(type.getLocalFastQualifiers());
4286    if (!type.hasLocalNonFastQualifiers())
4287      return type.getTypePtrUnsafe();
4288
4289    const ExtQuals *extQuals = type.getExtQualsUnsafe();
4290    addConsistentQualifiers(extQuals->getQualifiers());
4291    return extQuals->getBaseType();
4292  }
4293
4294  /// Apply the collected qualifiers to the given type.
4295  QualType apply(const ASTContext &Context, QualType QT) const;
4296
4297  /// Apply the collected qualifiers to the given type.
4298  QualType apply(const ASTContext &Context, const Type* T) const;
4299};
4300
4301
4302// Inline function definitions.
4303
4304inline const Type *QualType::getTypePtr() const {
4305  return getCommonPtr()->BaseType;
4306}
4307
4308inline const Type *QualType::getTypePtrOrNull() const {
4309  return (isNull() ? 0 : getCommonPtr()->BaseType);
4310}
4311
4312inline SplitQualType QualType::split() const {
4313  if (!hasLocalNonFastQualifiers())
4314    return SplitQualType(getTypePtrUnsafe(),
4315                         Qualifiers::fromFastMask(getLocalFastQualifiers()));
4316
4317  const ExtQuals *eq = getExtQualsUnsafe();
4318  Qualifiers qs = eq->getQualifiers();
4319  qs.addFastQualifiers(getLocalFastQualifiers());
4320  return SplitQualType(eq->getBaseType(), qs);
4321}
4322
4323inline Qualifiers QualType::getLocalQualifiers() const {
4324  Qualifiers Quals;
4325  if (hasLocalNonFastQualifiers())
4326    Quals = getExtQualsUnsafe()->getQualifiers();
4327  Quals.addFastQualifiers(getLocalFastQualifiers());
4328  return Quals;
4329}
4330
4331inline Qualifiers QualType::getQualifiers() const {
4332  Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
4333  quals.addFastQualifiers(getLocalFastQualifiers());
4334  return quals;
4335}
4336
4337inline unsigned QualType::getCVRQualifiers() const {
4338  unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
4339  cvr |= getLocalCVRQualifiers();
4340  return cvr;
4341}
4342
4343inline QualType QualType::getCanonicalType() const {
4344  QualType canon = getCommonPtr()->CanonicalType;
4345  return canon.withFastQualifiers(getLocalFastQualifiers());
4346}
4347
4348inline bool QualType::isCanonical() const {
4349  return getTypePtr()->isCanonicalUnqualified();
4350}
4351
4352inline bool QualType::isCanonicalAsParam() const {
4353  if (!isCanonical()) return false;
4354  if (hasLocalQualifiers()) return false;
4355
4356  const Type *T = getTypePtr();
4357  if (T->isVariablyModifiedType() && T->hasSizedVLAType())
4358    return false;
4359
4360  return !isa<FunctionType>(T) && !isa<ArrayType>(T);
4361}
4362
4363inline bool QualType::isConstQualified() const {
4364  return isLocalConstQualified() ||
4365         getCommonPtr()->CanonicalType.isLocalConstQualified();
4366}
4367
4368inline bool QualType::isRestrictQualified() const {
4369  return isLocalRestrictQualified() ||
4370         getCommonPtr()->CanonicalType.isLocalRestrictQualified();
4371}
4372
4373
4374inline bool QualType::isVolatileQualified() const {
4375  return isLocalVolatileQualified() ||
4376         getCommonPtr()->CanonicalType.isLocalVolatileQualified();
4377}
4378
4379inline bool QualType::hasQualifiers() const {
4380  return hasLocalQualifiers() ||
4381         getCommonPtr()->CanonicalType.hasLocalQualifiers();
4382}
4383
4384inline QualType QualType::getUnqualifiedType() const {
4385  if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
4386    return QualType(getTypePtr(), 0);
4387
4388  return QualType(getSplitUnqualifiedTypeImpl(*this).first, 0);
4389}
4390
4391inline SplitQualType QualType::getSplitUnqualifiedType() const {
4392  if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
4393    return split();
4394
4395  return getSplitUnqualifiedTypeImpl(*this);
4396}
4397
4398inline void QualType::removeLocalConst() {
4399  removeLocalFastQualifiers(Qualifiers::Const);
4400}
4401
4402inline void QualType::removeLocalRestrict() {
4403  removeLocalFastQualifiers(Qualifiers::Restrict);
4404}
4405
4406inline void QualType::removeLocalVolatile() {
4407  removeLocalFastQualifiers(Qualifiers::Volatile);
4408}
4409
4410inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
4411  assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
4412  assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask);
4413
4414  // Fast path: we don't need to touch the slow qualifiers.
4415  removeLocalFastQualifiers(Mask);
4416}
4417
4418/// getAddressSpace - Return the address space of this type.
4419inline unsigned QualType::getAddressSpace() const {
4420  return getQualifiers().getAddressSpace();
4421}
4422
4423/// getObjCGCAttr - Return the gc attribute of this type.
4424inline Qualifiers::GC QualType::getObjCGCAttr() const {
4425  return getQualifiers().getObjCGCAttr();
4426}
4427
4428inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
4429  if (const PointerType *PT = t.getAs<PointerType>()) {
4430    if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
4431      return FT->getExtInfo();
4432  } else if (const FunctionType *FT = t.getAs<FunctionType>())
4433    return FT->getExtInfo();
4434
4435  return FunctionType::ExtInfo();
4436}
4437
4438inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
4439  return getFunctionExtInfo(*t);
4440}
4441
4442/// isMoreQualifiedThan - Determine whether this type is more
4443/// qualified than the Other type. For example, "const volatile int"
4444/// is more qualified than "const int", "volatile int", and
4445/// "int". However, it is not more qualified than "const volatile
4446/// int".
4447inline bool QualType::isMoreQualifiedThan(QualType other) const {
4448  Qualifiers myQuals = getQualifiers();
4449  Qualifiers otherQuals = other.getQualifiers();
4450  return (myQuals != otherQuals && myQuals.compatiblyIncludes(otherQuals));
4451}
4452
4453/// isAtLeastAsQualifiedAs - Determine whether this type is at last
4454/// as qualified as the Other type. For example, "const volatile
4455/// int" is at least as qualified as "const int", "volatile int",
4456/// "int", and "const volatile int".
4457inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
4458  return getQualifiers().compatiblyIncludes(other.getQualifiers());
4459}
4460
4461/// getNonReferenceType - If Type is a reference type (e.g., const
4462/// int&), returns the type that the reference refers to ("const
4463/// int"). Otherwise, returns the type itself. This routine is used
4464/// throughout Sema to implement C++ 5p6:
4465///
4466///   If an expression initially has the type "reference to T" (8.3.2,
4467///   8.5.3), the type is adjusted to "T" prior to any further
4468///   analysis, the expression designates the object or function
4469///   denoted by the reference, and the expression is an lvalue.
4470inline QualType QualType::getNonReferenceType() const {
4471  if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
4472    return RefType->getPointeeType();
4473  else
4474    return *this;
4475}
4476
4477/// \brief Tests whether the type is categorized as a fundamental type.
4478///
4479/// \returns True for types specified in C++0x [basic.fundamental].
4480inline bool Type::isFundamentalType() const {
4481  return isVoidType() ||
4482         // FIXME: It's really annoying that we don't have an
4483         // 'isArithmeticType()' which agrees with the standard definition.
4484         (isArithmeticType() && !isEnumeralType());
4485}
4486
4487/// \brief Tests whether the type is categorized as a compound type.
4488///
4489/// \returns True for types specified in C++0x [basic.compound].
4490inline bool Type::isCompoundType() const {
4491  // C++0x [basic.compound]p1:
4492  //   Compound types can be constructed in the following ways:
4493  //    -- arrays of objects of a given type [...];
4494  return isArrayType() ||
4495  //    -- functions, which have parameters of given types [...];
4496         isFunctionType() ||
4497  //    -- pointers to void or objects or functions [...];
4498         isPointerType() ||
4499  //    -- references to objects or functions of a given type. [...]
4500         isReferenceType() ||
4501  //    -- classes containing a sequence of objects of various types, [...];
4502         isRecordType() ||
4503  //    -- unions, which ar classes capable of containing objects of different types at different times;
4504         isUnionType() ||
4505  //    -- enumerations, which comprise a set of named constant values. [...];
4506         isEnumeralType() ||
4507  //    -- pointers to non-static class members, [...].
4508         isMemberPointerType();
4509}
4510
4511inline bool Type::isFunctionType() const {
4512  return isa<FunctionType>(CanonicalType);
4513}
4514inline bool Type::isPointerType() const {
4515  return isa<PointerType>(CanonicalType);
4516}
4517inline bool Type::isAnyPointerType() const {
4518  return isPointerType() || isObjCObjectPointerType();
4519}
4520
4521/// \brief Tests whether the type behaves like a pointer type.
4522///
4523/// This includes all of the pointer types including block pointers,
4524/// member pointers, and ObjC Object pointers.
4525///
4526/// Note that this is distinct from hasPointerRepresentation.
4527///
4528/// \returns True for types which behave like pointer types.
4529inline bool Type::isPointerLikeType() const {
4530  return isAnyPointerType() || isBlockPointerType() || isMemberPointerType();
4531}
4532
4533inline bool Type::isBlockPointerType() const {
4534  return isa<BlockPointerType>(CanonicalType);
4535}
4536inline bool Type::isReferenceType() const {
4537  return isa<ReferenceType>(CanonicalType);
4538}
4539inline bool Type::isLValueReferenceType() const {
4540  return isa<LValueReferenceType>(CanonicalType);
4541}
4542inline bool Type::isRValueReferenceType() const {
4543  return isa<RValueReferenceType>(CanonicalType);
4544}
4545inline bool Type::isFunctionPointerType() const {
4546  if (const PointerType *T = getAs<PointerType>())
4547    return T->getPointeeType()->isFunctionType();
4548  else
4549    return false;
4550}
4551inline bool Type::isMemberPointerType() const {
4552  return isa<MemberPointerType>(CanonicalType);
4553}
4554inline bool Type::isMemberFunctionPointerType() const {
4555  if (const MemberPointerType* T = getAs<MemberPointerType>())
4556    return T->isMemberFunctionPointer();
4557  else
4558    return false;
4559}
4560inline bool Type::isMemberDataPointerType() const {
4561  if (const MemberPointerType* T = getAs<MemberPointerType>())
4562    return T->isMemberDataPointer();
4563  else
4564    return false;
4565}
4566inline bool Type::isArrayType() const {
4567  return isa<ArrayType>(CanonicalType);
4568}
4569inline bool Type::isConstantArrayType() const {
4570  return isa<ConstantArrayType>(CanonicalType);
4571}
4572inline bool Type::isIncompleteArrayType() const {
4573  return isa<IncompleteArrayType>(CanonicalType);
4574}
4575inline bool Type::isVariableArrayType() const {
4576  return isa<VariableArrayType>(CanonicalType);
4577}
4578inline bool Type::isDependentSizedArrayType() const {
4579  return isa<DependentSizedArrayType>(CanonicalType);
4580}
4581inline bool Type::isBuiltinType() const {
4582  return isa<BuiltinType>(CanonicalType);
4583}
4584inline bool Type::isRecordType() const {
4585  return isa<RecordType>(CanonicalType);
4586}
4587inline bool Type::isEnumeralType() const {
4588  return isa<EnumType>(CanonicalType);
4589}
4590inline bool Type::isAnyComplexType() const {
4591  return isa<ComplexType>(CanonicalType);
4592}
4593inline bool Type::isVectorType() const {
4594  return isa<VectorType>(CanonicalType);
4595}
4596inline bool Type::isExtVectorType() const {
4597  return isa<ExtVectorType>(CanonicalType);
4598}
4599inline bool Type::isObjCObjectPointerType() const {
4600  return isa<ObjCObjectPointerType>(CanonicalType);
4601}
4602inline bool Type::isObjCObjectType() const {
4603  return isa<ObjCObjectType>(CanonicalType);
4604}
4605inline bool Type::isObjCObjectOrInterfaceType() const {
4606  return isa<ObjCInterfaceType>(CanonicalType) ||
4607    isa<ObjCObjectType>(CanonicalType);
4608}
4609
4610inline bool Type::isObjCQualifiedIdType() const {
4611  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4612    return OPT->isObjCQualifiedIdType();
4613  return false;
4614}
4615inline bool Type::isObjCQualifiedClassType() const {
4616  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4617    return OPT->isObjCQualifiedClassType();
4618  return false;
4619}
4620inline bool Type::isObjCIdType() const {
4621  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4622    return OPT->isObjCIdType();
4623  return false;
4624}
4625inline bool Type::isObjCClassType() const {
4626  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4627    return OPT->isObjCClassType();
4628  return false;
4629}
4630inline bool Type::isObjCSelType() const {
4631  if (const PointerType *OPT = getAs<PointerType>())
4632    return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
4633  return false;
4634}
4635inline bool Type::isObjCBuiltinType() const {
4636  return isObjCIdType() || isObjCClassType() || isObjCSelType();
4637}
4638inline bool Type::isTemplateTypeParmType() const {
4639  return isa<TemplateTypeParmType>(CanonicalType);
4640}
4641
4642inline bool Type::isSpecificBuiltinType(unsigned K) const {
4643  if (const BuiltinType *BT = getAs<BuiltinType>())
4644    if (BT->getKind() == (BuiltinType::Kind) K)
4645      return true;
4646  return false;
4647}
4648
4649inline bool Type::isPlaceholderType() const {
4650  if (const BuiltinType *BT = getAs<BuiltinType>())
4651    return BT->isPlaceholderType();
4652  return false;
4653}
4654
4655inline bool Type::isSpecificPlaceholderType(unsigned K) const {
4656  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
4657    return (BT->getKind() == (BuiltinType::Kind) K);
4658  return false;
4659}
4660
4661/// \brief Determines whether this is a type for which one can define
4662/// an overloaded operator.
4663inline bool Type::isOverloadableType() const {
4664  return isDependentType() || isRecordType() || isEnumeralType();
4665}
4666
4667/// \brief Determines whether this type can decay to a pointer type.
4668inline bool Type::canDecayToPointerType() const {
4669  return isFunctionType() || isArrayType();
4670}
4671
4672inline bool Type::hasPointerRepresentation() const {
4673  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
4674          isObjCObjectPointerType() || isNullPtrType());
4675}
4676
4677inline bool Type::hasObjCPointerRepresentation() const {
4678  return isObjCObjectPointerType();
4679}
4680
4681inline const Type *Type::getBaseElementTypeUnsafe() const {
4682  const Type *type = this;
4683  while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
4684    type = arrayType->getElementType().getTypePtr();
4685  return type;
4686}
4687
4688/// Insertion operator for diagnostics.  This allows sending QualType's into a
4689/// diagnostic with <<.
4690inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
4691                                           QualType T) {
4692  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
4693                  Diagnostic::ak_qualtype);
4694  return DB;
4695}
4696
4697/// Insertion operator for partial diagnostics.  This allows sending QualType's
4698/// into a diagnostic with <<.
4699inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
4700                                           QualType T) {
4701  PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
4702                  Diagnostic::ak_qualtype);
4703  return PD;
4704}
4705
4706// Helper class template that is used by Type::getAs to ensure that one does
4707// not try to look through a qualified type to get to an array type.
4708template<typename T,
4709         bool isArrayType = (llvm::is_same<T, ArrayType>::value ||
4710                             llvm::is_base_of<ArrayType, T>::value)>
4711struct ArrayType_cannot_be_used_with_getAs { };
4712
4713template<typename T>
4714struct ArrayType_cannot_be_used_with_getAs<T, true>;
4715
4716/// Member-template getAs<specific type>'.
4717template <typename T> const T *Type::getAs() const {
4718  ArrayType_cannot_be_used_with_getAs<T> at;
4719  (void)at;
4720
4721  // If this is directly a T type, return it.
4722  if (const T *Ty = dyn_cast<T>(this))
4723    return Ty;
4724
4725  // If the canonical form of this type isn't the right kind, reject it.
4726  if (!isa<T>(CanonicalType))
4727    return 0;
4728
4729  // If this is a typedef for the type, strip the typedef off without
4730  // losing all typedef information.
4731  return cast<T>(getUnqualifiedDesugaredType());
4732}
4733
4734inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
4735  // If this is directly an array type, return it.
4736  if (const ArrayType *arr = dyn_cast<ArrayType>(this))
4737    return arr;
4738
4739  // If the canonical form of this type isn't the right kind, reject it.
4740  if (!isa<ArrayType>(CanonicalType))
4741    return 0;
4742
4743  // If this is a typedef for the type, strip the typedef off without
4744  // losing all typedef information.
4745  return cast<ArrayType>(getUnqualifiedDesugaredType());
4746}
4747
4748template <typename T> const T *Type::castAs() const {
4749  ArrayType_cannot_be_used_with_getAs<T> at;
4750  (void) at;
4751
4752  assert(isa<T>(CanonicalType));
4753  if (const T *ty = dyn_cast<T>(this)) return ty;
4754  return cast<T>(getUnqualifiedDesugaredType());
4755}
4756
4757inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
4758  assert(isa<ArrayType>(CanonicalType));
4759  if (const ArrayType *arr = dyn_cast<ArrayType>(this)) return arr;
4760  return cast<ArrayType>(getUnqualifiedDesugaredType());
4761}
4762
4763}  // end namespace clang
4764
4765#endif
4766