Type.h revision bea522ff43a3f11c7a2bc7949119dbb9fce19e39
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/AST/NestedNameSpecifier.h"
18#include "clang/AST/TemplateName.h"
19#include "clang/Basic/Diagnostic.h"
20#include "clang/Basic/ExceptionSpecificationType.h"
21#include "clang/Basic/IdentifierTable.h"
22#include "clang/Basic/LLVM.h"
23#include "clang/Basic/Linkage.h"
24#include "clang/Basic/PartialDiagnostic.h"
25#include "clang/Basic/Specifiers.h"
26#include "clang/Basic/Visibility.h"
27#include "llvm/ADT/APSInt.h"
28#include "llvm/ADT/FoldingSet.h"
29#include "llvm/ADT/Optional.h"
30#include "llvm/ADT/PointerIntPair.h"
31#include "llvm/ADT/PointerUnion.h"
32#include "llvm/ADT/Twine.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/type_traits.h"
35
36namespace clang {
37  enum {
38    TypeAlignmentInBits = 4,
39    TypeAlignment = 1 << TypeAlignmentInBits
40  };
41  class Type;
42  class ExtQuals;
43  class QualType;
44}
45
46namespace llvm {
47  template <typename T>
48  class PointerLikeTypeTraits;
49  template<>
50  class PointerLikeTypeTraits< ::clang::Type*> {
51  public:
52    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
53    static inline ::clang::Type *getFromVoidPointer(void *P) {
54      return static_cast< ::clang::Type*>(P);
55    }
56    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
57  };
58  template<>
59  class PointerLikeTypeTraits< ::clang::ExtQuals*> {
60  public:
61    static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
62    static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
63      return static_cast< ::clang::ExtQuals*>(P);
64    }
65    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
66  };
67
68  template <>
69  struct isPodLike<clang::QualType> { static const bool value = true; };
70}
71
72namespace clang {
73  class ASTContext;
74  class TypedefNameDecl;
75  class TemplateDecl;
76  class TemplateTypeParmDecl;
77  class NonTypeTemplateParmDecl;
78  class TemplateTemplateParmDecl;
79  class TagDecl;
80  class RecordDecl;
81  class CXXRecordDecl;
82  class EnumDecl;
83  class FieldDecl;
84  class FunctionDecl;
85  class ObjCInterfaceDecl;
86  class ObjCProtocolDecl;
87  class ObjCMethodDecl;
88  class UnresolvedUsingTypenameDecl;
89  class Expr;
90  class Stmt;
91  class SourceLocation;
92  class StmtIteratorBase;
93  class TemplateArgument;
94  class TemplateArgumentLoc;
95  class TemplateArgumentListInfo;
96  class ElaboratedType;
97  class ExtQuals;
98  class ExtQualsTypeCommonBase;
99  struct PrintingPolicy;
100
101  template <typename> class CanQual;
102  typedef CanQual<Type> CanQualType;
103
104  // Provide forward declarations for all of the *Type classes
105#define TYPE(Class, Base) class Class##Type;
106#include "clang/AST/TypeNodes.def"
107
108/// Qualifiers - The collection of all-type qualifiers we support.
109/// Clang supports five independent qualifiers:
110/// * C99: const, volatile, and restrict
111/// * Embedded C (TR18037): address spaces
112/// * Objective C: the GC attributes (none, weak, or strong)
113class Qualifiers {
114public:
115  enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
116    Const    = 0x1,
117    Restrict = 0x2,
118    Volatile = 0x4,
119    CVRMask = Const | Volatile | Restrict
120  };
121
122  enum GC {
123    GCNone = 0,
124    Weak,
125    Strong
126  };
127
128  enum ObjCLifetime {
129    /// There is no lifetime qualification on this type.
130    OCL_None,
131
132    /// This object can be modified without requiring retains or
133    /// releases.
134    OCL_ExplicitNone,
135
136    /// Assigning into this object requires the old value to be
137    /// released and the new value to be retained.  The timing of the
138    /// release of the old value is inexact: it may be moved to
139    /// immediately after the last known point where the value is
140    /// live.
141    OCL_Strong,
142
143    /// Reading or writing from this object requires a barrier call.
144    OCL_Weak,
145
146    /// Assigning into this object requires a lifetime extension.
147    OCL_Autoreleasing
148  };
149
150  enum {
151    /// The maximum supported address space number.
152    /// 24 bits should be enough for anyone.
153    MaxAddressSpace = 0xffffffu,
154
155    /// The width of the "fast" qualifier mask.
156    FastWidth = 3,
157
158    /// The fast qualifier mask.
159    FastMask = (1 << FastWidth) - 1
160  };
161
162  Qualifiers() : Mask(0) {}
163
164  /// \brief Returns the common set of qualifiers while removing them from
165  /// the given sets.
166  static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
167    // If both are only CVR-qualified, bit operations are sufficient.
168    if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
169      Qualifiers Q;
170      Q.Mask = L.Mask & R.Mask;
171      L.Mask &= ~Q.Mask;
172      R.Mask &= ~Q.Mask;
173      return Q;
174    }
175
176    Qualifiers Q;
177    unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
178    Q.addCVRQualifiers(CommonCRV);
179    L.removeCVRQualifiers(CommonCRV);
180    R.removeCVRQualifiers(CommonCRV);
181
182    if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
183      Q.setObjCGCAttr(L.getObjCGCAttr());
184      L.removeObjCGCAttr();
185      R.removeObjCGCAttr();
186    }
187
188    if (L.getObjCLifetime() == R.getObjCLifetime()) {
189      Q.setObjCLifetime(L.getObjCLifetime());
190      L.removeObjCLifetime();
191      R.removeObjCLifetime();
192    }
193
194    if (L.getAddressSpace() == R.getAddressSpace()) {
195      Q.setAddressSpace(L.getAddressSpace());
196      L.removeAddressSpace();
197      R.removeAddressSpace();
198    }
199    return Q;
200  }
201
202  static Qualifiers fromFastMask(unsigned Mask) {
203    Qualifiers Qs;
204    Qs.addFastQualifiers(Mask);
205    return Qs;
206  }
207
208  static Qualifiers fromCVRMask(unsigned CVR) {
209    Qualifiers Qs;
210    Qs.addCVRQualifiers(CVR);
211    return Qs;
212  }
213
214  // Deserialize qualifiers from an opaque representation.
215  static Qualifiers fromOpaqueValue(unsigned opaque) {
216    Qualifiers Qs;
217    Qs.Mask = opaque;
218    return Qs;
219  }
220
221  // Serialize these qualifiers into an opaque representation.
222  unsigned getAsOpaqueValue() const {
223    return Mask;
224  }
225
226  bool hasConst() const { return Mask & Const; }
227  void setConst(bool flag) {
228    Mask = (Mask & ~Const) | (flag ? Const : 0);
229  }
230  void removeConst() { Mask &= ~Const; }
231  void addConst() { Mask |= Const; }
232
233  bool hasVolatile() const { return Mask & Volatile; }
234  void setVolatile(bool flag) {
235    Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
236  }
237  void removeVolatile() { Mask &= ~Volatile; }
238  void addVolatile() { Mask |= Volatile; }
239
240  bool hasRestrict() const { return Mask & Restrict; }
241  void setRestrict(bool flag) {
242    Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
243  }
244  void removeRestrict() { Mask &= ~Restrict; }
245  void addRestrict() { Mask |= Restrict; }
246
247  bool hasCVRQualifiers() const { return getCVRQualifiers(); }
248  unsigned getCVRQualifiers() const { return Mask & CVRMask; }
249  void setCVRQualifiers(unsigned mask) {
250    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
251    Mask = (Mask & ~CVRMask) | mask;
252  }
253  void removeCVRQualifiers(unsigned mask) {
254    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
255    Mask &= ~mask;
256  }
257  void removeCVRQualifiers() {
258    removeCVRQualifiers(CVRMask);
259  }
260  void addCVRQualifiers(unsigned mask) {
261    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
262    Mask |= mask;
263  }
264
265  bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
266  GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
267  void setObjCGCAttr(GC type) {
268    Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
269  }
270  void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
271  void addObjCGCAttr(GC type) {
272    assert(type);
273    setObjCGCAttr(type);
274  }
275  Qualifiers withoutObjCGCAttr() const {
276    Qualifiers qs = *this;
277    qs.removeObjCGCAttr();
278    return qs;
279  }
280  Qualifiers withoutObjCLifetime() const {
281    Qualifiers qs = *this;
282    qs.removeObjCLifetime();
283    return qs;
284  }
285
286  bool hasObjCLifetime() const { return Mask & LifetimeMask; }
287  ObjCLifetime getObjCLifetime() const {
288    return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
289  }
290  void setObjCLifetime(ObjCLifetime type) {
291    Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
292  }
293  void removeObjCLifetime() { setObjCLifetime(OCL_None); }
294  void addObjCLifetime(ObjCLifetime type) {
295    assert(type);
296    assert(!hasObjCLifetime());
297    Mask |= (type << LifetimeShift);
298  }
299
300  /// True if the lifetime is neither None or ExplicitNone.
301  bool hasNonTrivialObjCLifetime() const {
302    ObjCLifetime lifetime = getObjCLifetime();
303    return (lifetime > OCL_ExplicitNone);
304  }
305
306  /// True if the lifetime is either strong or weak.
307  bool hasStrongOrWeakObjCLifetime() const {
308    ObjCLifetime lifetime = getObjCLifetime();
309    return (lifetime == OCL_Strong || lifetime == OCL_Weak);
310  }
311
312  bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
313  unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
314  void setAddressSpace(unsigned space) {
315    assert(space <= MaxAddressSpace);
316    Mask = (Mask & ~AddressSpaceMask)
317         | (((uint32_t) space) << AddressSpaceShift);
318  }
319  void removeAddressSpace() { setAddressSpace(0); }
320  void addAddressSpace(unsigned space) {
321    assert(space);
322    setAddressSpace(space);
323  }
324
325  // Fast qualifiers are those that can be allocated directly
326  // on a QualType object.
327  bool hasFastQualifiers() const { return getFastQualifiers(); }
328  unsigned getFastQualifiers() const { return Mask & FastMask; }
329  void setFastQualifiers(unsigned mask) {
330    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
331    Mask = (Mask & ~FastMask) | mask;
332  }
333  void removeFastQualifiers(unsigned mask) {
334    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
335    Mask &= ~mask;
336  }
337  void removeFastQualifiers() {
338    removeFastQualifiers(FastMask);
339  }
340  void addFastQualifiers(unsigned mask) {
341    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
342    Mask |= mask;
343  }
344
345  /// hasNonFastQualifiers - Return true if the set contains any
346  /// qualifiers which require an ExtQuals node to be allocated.
347  bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
348  Qualifiers getNonFastQualifiers() const {
349    Qualifiers Quals = *this;
350    Quals.setFastQualifiers(0);
351    return Quals;
352  }
353
354  /// hasQualifiers - Return true if the set contains any qualifiers.
355  bool hasQualifiers() const { return Mask; }
356  bool empty() const { return !Mask; }
357
358  /// \brief Add the qualifiers from the given set to this set.
359  void addQualifiers(Qualifiers Q) {
360    // If the other set doesn't have any non-boolean qualifiers, just
361    // bit-or it in.
362    if (!(Q.Mask & ~CVRMask))
363      Mask |= Q.Mask;
364    else {
365      Mask |= (Q.Mask & CVRMask);
366      if (Q.hasAddressSpace())
367        addAddressSpace(Q.getAddressSpace());
368      if (Q.hasObjCGCAttr())
369        addObjCGCAttr(Q.getObjCGCAttr());
370      if (Q.hasObjCLifetime())
371        addObjCLifetime(Q.getObjCLifetime());
372    }
373  }
374
375  /// \brief Remove the qualifiers from the given set from this set.
376  void removeQualifiers(Qualifiers Q) {
377    // If the other set doesn't have any non-boolean qualifiers, just
378    // bit-and the inverse in.
379    if (!(Q.Mask & ~CVRMask))
380      Mask &= ~Q.Mask;
381    else {
382      Mask &= ~(Q.Mask & CVRMask);
383      if (getObjCGCAttr() == Q.getObjCGCAttr())
384        removeObjCGCAttr();
385      if (getObjCLifetime() == Q.getObjCLifetime())
386        removeObjCLifetime();
387      if (getAddressSpace() == Q.getAddressSpace())
388        removeAddressSpace();
389    }
390  }
391
392  /// \brief Add the qualifiers from the given set to this set, given that
393  /// they don't conflict.
394  void addConsistentQualifiers(Qualifiers qs) {
395    assert(getAddressSpace() == qs.getAddressSpace() ||
396           !hasAddressSpace() || !qs.hasAddressSpace());
397    assert(getObjCGCAttr() == qs.getObjCGCAttr() ||
398           !hasObjCGCAttr() || !qs.hasObjCGCAttr());
399    assert(getObjCLifetime() == qs.getObjCLifetime() ||
400           !hasObjCLifetime() || !qs.hasObjCLifetime());
401    Mask |= qs.Mask;
402  }
403
404  /// \brief Determines if these qualifiers compatibly include another set.
405  /// Generally this answers the question of whether an object with the other
406  /// qualifiers can be safely used as an object with these qualifiers.
407  bool compatiblyIncludes(Qualifiers other) const {
408    return
409      // Address spaces must match exactly.
410      getAddressSpace() == other.getAddressSpace() &&
411      // ObjC GC qualifiers can match, be added, or be removed, but can't be
412      // changed.
413      (getObjCGCAttr() == other.getObjCGCAttr() ||
414       !hasObjCGCAttr() || !other.hasObjCGCAttr()) &&
415      // ObjC lifetime qualifiers must match exactly.
416      getObjCLifetime() == other.getObjCLifetime() &&
417      // CVR qualifiers may subset.
418      (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask));
419  }
420
421  /// \brief Determines if these qualifiers compatibly include another set of
422  /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
423  ///
424  /// One set of Objective-C lifetime qualifiers compatibly includes the other
425  /// if the lifetime qualifiers match, or if both are non-__weak and the
426  /// including set also contains the 'const' qualifier.
427  bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
428    if (getObjCLifetime() == other.getObjCLifetime())
429      return true;
430
431    if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
432      return false;
433
434    return hasConst();
435  }
436
437  /// \brief Determine whether this set of qualifiers is a strict superset of
438  /// another set of qualifiers, not considering qualifier compatibility.
439  bool isStrictSupersetOf(Qualifiers Other) const;
440
441  bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
442  bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
443
444  operator bool() const { return hasQualifiers(); }
445
446  Qualifiers &operator+=(Qualifiers R) {
447    addQualifiers(R);
448    return *this;
449  }
450
451  // Union two qualifier sets.  If an enumerated qualifier appears
452  // in both sets, use the one from the right.
453  friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
454    L += R;
455    return L;
456  }
457
458  Qualifiers &operator-=(Qualifiers R) {
459    removeQualifiers(R);
460    return *this;
461  }
462
463  /// \brief Compute the difference between two qualifier sets.
464  friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
465    L -= R;
466    return L;
467  }
468
469  std::string getAsString() const;
470  std::string getAsString(const PrintingPolicy &Policy) const;
471
472  bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
473  void print(raw_ostream &OS, const PrintingPolicy &Policy,
474             bool appendSpaceIfNonEmpty = false) const;
475
476  void Profile(llvm::FoldingSetNodeID &ID) const {
477    ID.AddInteger(Mask);
478  }
479
480private:
481
482  // bits:     |0 1 2|3 .. 4|5  ..  7|8   ...   31|
483  //           |C R V|GCAttr|Lifetime|AddressSpace|
484  uint32_t Mask;
485
486  static const uint32_t GCAttrMask = 0x18;
487  static const uint32_t GCAttrShift = 3;
488  static const uint32_t LifetimeMask = 0xE0;
489  static const uint32_t LifetimeShift = 5;
490  static const uint32_t AddressSpaceMask = ~(CVRMask|GCAttrMask|LifetimeMask);
491  static const uint32_t AddressSpaceShift = 8;
492};
493
494/// A std::pair-like structure for storing a qualified type split
495/// into its local qualifiers and its locally-unqualified type.
496struct SplitQualType {
497  /// The locally-unqualified type.
498  const Type *Ty;
499
500  /// The local qualifiers.
501  Qualifiers Quals;
502
503  SplitQualType() : Ty(0), Quals() {}
504  SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
505
506  SplitQualType getSingleStepDesugaredType() const; // end of this file
507
508  // Make llvm::tie work.
509  operator std::pair<const Type *,Qualifiers>() const {
510    return std::pair<const Type *,Qualifiers>(Ty, Quals);
511  }
512
513  friend bool operator==(SplitQualType a, SplitQualType b) {
514    return a.Ty == b.Ty && a.Quals == b.Quals;
515  }
516  friend bool operator!=(SplitQualType a, SplitQualType b) {
517    return a.Ty != b.Ty || a.Quals != b.Quals;
518  }
519};
520
521/// QualType - For efficiency, we don't store CV-qualified types as nodes on
522/// their own: instead each reference to a type stores the qualifiers.  This
523/// greatly reduces the number of nodes we need to allocate for types (for
524/// example we only need one for 'int', 'const int', 'volatile int',
525/// 'const volatile int', etc).
526///
527/// As an added efficiency bonus, instead of making this a pair, we
528/// just store the two bits we care about in the low bits of the
529/// pointer.  To handle the packing/unpacking, we make QualType be a
530/// simple wrapper class that acts like a smart pointer.  A third bit
531/// indicates whether there are extended qualifiers present, in which
532/// case the pointer points to a special structure.
533class QualType {
534  // Thankfully, these are efficiently composable.
535  llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
536                       Qualifiers::FastWidth> Value;
537
538  const ExtQuals *getExtQualsUnsafe() const {
539    return Value.getPointer().get<const ExtQuals*>();
540  }
541
542  const Type *getTypePtrUnsafe() const {
543    return Value.getPointer().get<const Type*>();
544  }
545
546  const ExtQualsTypeCommonBase *getCommonPtr() const {
547    assert(!isNull() && "Cannot retrieve a NULL type pointer");
548    uintptr_t CommonPtrVal
549      = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
550    CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
551    return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
552  }
553
554  friend class QualifierCollector;
555public:
556  QualType() {}
557
558  QualType(const Type *Ptr, unsigned Quals)
559    : Value(Ptr, Quals) {}
560  QualType(const ExtQuals *Ptr, unsigned Quals)
561    : Value(Ptr, Quals) {}
562
563  unsigned getLocalFastQualifiers() const { return Value.getInt(); }
564  void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
565
566  /// Retrieves a pointer to the underlying (unqualified) type.
567  ///
568  /// This function requires that the type not be NULL. If the type might be
569  /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
570  const Type *getTypePtr() const;
571
572  const Type *getTypePtrOrNull() const;
573
574  /// Retrieves a pointer to the name of the base type.
575  const IdentifierInfo *getBaseTypeIdentifier() const;
576
577  /// Divides a QualType into its unqualified type and a set of local
578  /// qualifiers.
579  SplitQualType split() const;
580
581  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
582  static QualType getFromOpaquePtr(const void *Ptr) {
583    QualType T;
584    T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
585    return T;
586  }
587
588  const Type &operator*() const {
589    return *getTypePtr();
590  }
591
592  const Type *operator->() const {
593    return getTypePtr();
594  }
595
596  bool isCanonical() const;
597  bool isCanonicalAsParam() const;
598
599  /// isNull - Return true if this QualType doesn't point to a type yet.
600  bool isNull() const {
601    return Value.getPointer().isNull();
602  }
603
604  /// \brief Determine whether this particular QualType instance has the
605  /// "const" qualifier set, without looking through typedefs that may have
606  /// added "const" at a different level.
607  bool isLocalConstQualified() const {
608    return (getLocalFastQualifiers() & Qualifiers::Const);
609  }
610
611  /// \brief Determine whether this type is const-qualified.
612  bool isConstQualified() const;
613
614  /// \brief Determine whether this particular QualType instance has the
615  /// "restrict" qualifier set, without looking through typedefs that may have
616  /// added "restrict" at a different level.
617  bool isLocalRestrictQualified() const {
618    return (getLocalFastQualifiers() & Qualifiers::Restrict);
619  }
620
621  /// \brief Determine whether this type is restrict-qualified.
622  bool isRestrictQualified() const;
623
624  /// \brief Determine whether this particular QualType instance has the
625  /// "volatile" qualifier set, without looking through typedefs that may have
626  /// added "volatile" at a different level.
627  bool isLocalVolatileQualified() const {
628    return (getLocalFastQualifiers() & Qualifiers::Volatile);
629  }
630
631  /// \brief Determine whether this type is volatile-qualified.
632  bool isVolatileQualified() const;
633
634  /// \brief Determine whether this particular QualType instance has any
635  /// qualifiers, without looking through any typedefs that might add
636  /// qualifiers at a different level.
637  bool hasLocalQualifiers() const {
638    return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
639  }
640
641  /// \brief Determine whether this type has any qualifiers.
642  bool hasQualifiers() const;
643
644  /// \brief Determine whether this particular QualType instance has any
645  /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
646  /// instance.
647  bool hasLocalNonFastQualifiers() const {
648    return Value.getPointer().is<const ExtQuals*>();
649  }
650
651  /// \brief Retrieve the set of qualifiers local to this particular QualType
652  /// instance, not including any qualifiers acquired through typedefs or
653  /// other sugar.
654  Qualifiers getLocalQualifiers() const;
655
656  /// \brief Retrieve the set of qualifiers applied to this type.
657  Qualifiers getQualifiers() const;
658
659  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
660  /// local to this particular QualType instance, not including any qualifiers
661  /// acquired through typedefs or other sugar.
662  unsigned getLocalCVRQualifiers() const {
663    return getLocalFastQualifiers();
664  }
665
666  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
667  /// applied to this type.
668  unsigned getCVRQualifiers() const;
669
670  bool isConstant(ASTContext& Ctx) const {
671    return QualType::isConstant(*this, Ctx);
672  }
673
674  /// \brief Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
675  bool isPODType(ASTContext &Context) const;
676
677  /// isCXX98PODType() - Return true if this is a POD type according to the
678  /// rules of the C++98 standard, regardless of the current compilation's
679  /// language.
680  bool isCXX98PODType(ASTContext &Context) const;
681
682  /// isCXX11PODType() - Return true if this is a POD type according to the
683  /// more relaxed rules of the C++11 standard, regardless of the current
684  /// compilation's language.
685  /// (C++0x [basic.types]p9)
686  bool isCXX11PODType(ASTContext &Context) const;
687
688  /// isTrivialType - Return true if this is a trivial type
689  /// (C++0x [basic.types]p9)
690  bool isTrivialType(ASTContext &Context) const;
691
692  /// isTriviallyCopyableType - Return true if this is a trivially
693  /// copyable type (C++0x [basic.types]p9)
694  bool isTriviallyCopyableType(ASTContext &Context) const;
695
696  // Don't promise in the API that anything besides 'const' can be
697  // easily added.
698
699  /// addConst - add the specified type qualifier to this QualType.
700  void addConst() {
701    addFastQualifiers(Qualifiers::Const);
702  }
703  QualType withConst() const {
704    return withFastQualifiers(Qualifiers::Const);
705  }
706
707  /// addVolatile - add the specified type qualifier to this QualType.
708  void addVolatile() {
709    addFastQualifiers(Qualifiers::Volatile);
710  }
711  QualType withVolatile() const {
712    return withFastQualifiers(Qualifiers::Volatile);
713  }
714
715  /// Add the restrict qualifier to this QualType.
716  void addRestrict() {
717    addFastQualifiers(Qualifiers::Restrict);
718  }
719  QualType withRestrict() const {
720    return withFastQualifiers(Qualifiers::Restrict);
721  }
722
723  QualType withCVRQualifiers(unsigned CVR) const {
724    return withFastQualifiers(CVR);
725  }
726
727  void addFastQualifiers(unsigned TQs) {
728    assert(!(TQs & ~Qualifiers::FastMask)
729           && "non-fast qualifier bits set in mask!");
730    Value.setInt(Value.getInt() | TQs);
731  }
732
733  void removeLocalConst();
734  void removeLocalVolatile();
735  void removeLocalRestrict();
736  void removeLocalCVRQualifiers(unsigned Mask);
737
738  void removeLocalFastQualifiers() { Value.setInt(0); }
739  void removeLocalFastQualifiers(unsigned Mask) {
740    assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
741    Value.setInt(Value.getInt() & ~Mask);
742  }
743
744  // Creates a type with the given qualifiers in addition to any
745  // qualifiers already on this type.
746  QualType withFastQualifiers(unsigned TQs) const {
747    QualType T = *this;
748    T.addFastQualifiers(TQs);
749    return T;
750  }
751
752  // Creates a type with exactly the given fast qualifiers, removing
753  // any existing fast qualifiers.
754  QualType withExactLocalFastQualifiers(unsigned TQs) const {
755    return withoutLocalFastQualifiers().withFastQualifiers(TQs);
756  }
757
758  // Removes fast qualifiers, but leaves any extended qualifiers in place.
759  QualType withoutLocalFastQualifiers() const {
760    QualType T = *this;
761    T.removeLocalFastQualifiers();
762    return T;
763  }
764
765  QualType getCanonicalType() const;
766
767  /// \brief Return this type with all of the instance-specific qualifiers
768  /// removed, but without removing any qualifiers that may have been applied
769  /// through typedefs.
770  QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
771
772  /// \brief Retrieve the unqualified variant of the given type,
773  /// removing as little sugar as possible.
774  ///
775  /// This routine looks through various kinds of sugar to find the
776  /// least-desugared type that is unqualified. For example, given:
777  ///
778  /// \code
779  /// typedef int Integer;
780  /// typedef const Integer CInteger;
781  /// typedef CInteger DifferenceType;
782  /// \endcode
783  ///
784  /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
785  /// desugar until we hit the type \c Integer, which has no qualifiers on it.
786  ///
787  /// The resulting type might still be qualified if it's sugar for an array
788  /// type.  To strip qualifiers even from within a sugared array type, use
789  /// ASTContext::getUnqualifiedArrayType.
790  inline QualType getUnqualifiedType() const;
791
792  /// getSplitUnqualifiedType - Retrieve the unqualified variant of the
793  /// given type, removing as little sugar as possible.
794  ///
795  /// Like getUnqualifiedType(), but also returns the set of
796  /// qualifiers that were built up.
797  ///
798  /// The resulting type might still be qualified if it's sugar for an array
799  /// type.  To strip qualifiers even from within a sugared array type, use
800  /// ASTContext::getUnqualifiedArrayType.
801  inline SplitQualType getSplitUnqualifiedType() const;
802
803  /// \brief Determine whether this type is more qualified than the other
804  /// given type, requiring exact equality for non-CVR qualifiers.
805  bool isMoreQualifiedThan(QualType Other) const;
806
807  /// \brief Determine whether this type is at least as qualified as the other
808  /// given type, requiring exact equality for non-CVR qualifiers.
809  bool isAtLeastAsQualifiedAs(QualType Other) const;
810
811  QualType getNonReferenceType() const;
812
813  /// \brief Determine the type of a (typically non-lvalue) expression with the
814  /// specified result type.
815  ///
816  /// This routine should be used for expressions for which the return type is
817  /// explicitly specified (e.g., in a cast or call) and isn't necessarily
818  /// an lvalue. It removes a top-level reference (since there are no
819  /// expressions of reference type) and deletes top-level cvr-qualifiers
820  /// from non-class types (in C++) or all types (in C).
821  QualType getNonLValueExprType(ASTContext &Context) const;
822
823  /// getDesugaredType - Return the specified type with any "sugar" removed from
824  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
825  /// the type is already concrete, it returns it unmodified.  This is similar
826  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
827  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
828  /// concrete.
829  ///
830  /// Qualifiers are left in place.
831  QualType getDesugaredType(const ASTContext &Context) const {
832    return getDesugaredType(*this, Context);
833  }
834
835  SplitQualType getSplitDesugaredType() const {
836    return getSplitDesugaredType(*this);
837  }
838
839  /// \brief Return the specified type with one level of "sugar" removed from
840  /// the type.
841  ///
842  /// This routine takes off the first typedef, typeof, etc. If the outer level
843  /// of the type is already concrete, it returns it unmodified.
844  QualType getSingleStepDesugaredType(const ASTContext &Context) const {
845    return getSingleStepDesugaredTypeImpl(*this, Context);
846  }
847
848  /// IgnoreParens - Returns the specified type after dropping any
849  /// outer-level parentheses.
850  QualType IgnoreParens() const {
851    if (isa<ParenType>(*this))
852      return QualType::IgnoreParens(*this);
853    return *this;
854  }
855
856  /// operator==/!= - Indicate whether the specified types and qualifiers are
857  /// identical.
858  friend bool operator==(const QualType &LHS, const QualType &RHS) {
859    return LHS.Value == RHS.Value;
860  }
861  friend bool operator!=(const QualType &LHS, const QualType &RHS) {
862    return LHS.Value != RHS.Value;
863  }
864  std::string getAsString() const {
865    return getAsString(split());
866  }
867  static std::string getAsString(SplitQualType split) {
868    return getAsString(split.Ty, split.Quals);
869  }
870  static std::string getAsString(const Type *ty, Qualifiers qs);
871
872  std::string getAsString(const PrintingPolicy &Policy) const;
873
874  void print(raw_ostream &OS, const PrintingPolicy &Policy,
875             const Twine &PlaceHolder = Twine()) const {
876    print(split(), OS, Policy, PlaceHolder);
877  }
878  static void print(SplitQualType split, raw_ostream &OS,
879                    const PrintingPolicy &policy, const Twine &PlaceHolder) {
880    return print(split.Ty, split.Quals, OS, policy, PlaceHolder);
881  }
882  static void print(const Type *ty, Qualifiers qs,
883                    raw_ostream &OS, const PrintingPolicy &policy,
884                    const Twine &PlaceHolder);
885
886  void getAsStringInternal(std::string &Str,
887                           const PrintingPolicy &Policy) const {
888    return getAsStringInternal(split(), Str, Policy);
889  }
890  static void getAsStringInternal(SplitQualType split, std::string &out,
891                                  const PrintingPolicy &policy) {
892    return getAsStringInternal(split.Ty, split.Quals, out, policy);
893  }
894  static void getAsStringInternal(const Type *ty, Qualifiers qs,
895                                  std::string &out,
896                                  const PrintingPolicy &policy);
897
898  class StreamedQualTypeHelper {
899    const QualType &T;
900    const PrintingPolicy &Policy;
901    const Twine &PlaceHolder;
902  public:
903    StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
904                           const Twine &PlaceHolder)
905      : T(T), Policy(Policy), PlaceHolder(PlaceHolder) { }
906
907    friend raw_ostream &operator<<(raw_ostream &OS,
908                                   const StreamedQualTypeHelper &SQT) {
909      SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder);
910      return OS;
911    }
912  };
913
914  StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
915                                const Twine &PlaceHolder = Twine()) const {
916    return StreamedQualTypeHelper(*this, Policy, PlaceHolder);
917  }
918
919  void dump(const char *s) const;
920  void dump() const;
921
922  void Profile(llvm::FoldingSetNodeID &ID) const {
923    ID.AddPointer(getAsOpaquePtr());
924  }
925
926  /// getAddressSpace - Return the address space of this type.
927  inline unsigned getAddressSpace() const;
928
929  /// getObjCGCAttr - Returns gc attribute of this type.
930  inline Qualifiers::GC getObjCGCAttr() const;
931
932  /// isObjCGCWeak true when Type is objc's weak.
933  bool isObjCGCWeak() const {
934    return getObjCGCAttr() == Qualifiers::Weak;
935  }
936
937  /// isObjCGCStrong true when Type is objc's strong.
938  bool isObjCGCStrong() const {
939    return getObjCGCAttr() == Qualifiers::Strong;
940  }
941
942  /// getObjCLifetime - Returns lifetime attribute of this type.
943  Qualifiers::ObjCLifetime getObjCLifetime() const {
944    return getQualifiers().getObjCLifetime();
945  }
946
947  bool hasNonTrivialObjCLifetime() const {
948    return getQualifiers().hasNonTrivialObjCLifetime();
949  }
950
951  bool hasStrongOrWeakObjCLifetime() const {
952    return getQualifiers().hasStrongOrWeakObjCLifetime();
953  }
954
955  enum DestructionKind {
956    DK_none,
957    DK_cxx_destructor,
958    DK_objc_strong_lifetime,
959    DK_objc_weak_lifetime
960  };
961
962  /// isDestructedType - nonzero if objects of this type require
963  /// non-trivial work to clean up after.  Non-zero because it's
964  /// conceivable that qualifiers (objc_gc(weak)?) could make
965  /// something require destruction.
966  DestructionKind isDestructedType() const {
967    return isDestructedTypeImpl(*this);
968  }
969
970  /// \brief Determine whether expressions of the given type are forbidden
971  /// from being lvalues in C.
972  ///
973  /// The expression types that are forbidden to be lvalues are:
974  ///   - 'void', but not qualified void
975  ///   - function types
976  ///
977  /// The exact rule here is C99 6.3.2.1:
978  ///   An lvalue is an expression with an object type or an incomplete
979  ///   type other than void.
980  bool isCForbiddenLValueType() const;
981
982private:
983  // These methods are implemented in a separate translation unit;
984  // "static"-ize them to avoid creating temporary QualTypes in the
985  // caller.
986  static bool isConstant(QualType T, ASTContext& Ctx);
987  static QualType getDesugaredType(QualType T, const ASTContext &Context);
988  static SplitQualType getSplitDesugaredType(QualType T);
989  static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
990  static QualType getSingleStepDesugaredTypeImpl(QualType type,
991                                                 const ASTContext &C);
992  static QualType IgnoreParens(QualType T);
993  static DestructionKind isDestructedTypeImpl(QualType type);
994};
995
996} // end clang.
997
998namespace llvm {
999/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
1000/// to a specific Type class.
1001template<> struct simplify_type<const ::clang::QualType> {
1002  typedef const ::clang::Type *SimpleType;
1003  static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
1004    return Val.getTypePtr();
1005  }
1006};
1007template<> struct simplify_type< ::clang::QualType>
1008  : public simplify_type<const ::clang::QualType> {};
1009
1010// Teach SmallPtrSet that QualType is "basically a pointer".
1011template<>
1012class PointerLikeTypeTraits<clang::QualType> {
1013public:
1014  static inline void *getAsVoidPointer(clang::QualType P) {
1015    return P.getAsOpaquePtr();
1016  }
1017  static inline clang::QualType getFromVoidPointer(void *P) {
1018    return clang::QualType::getFromOpaquePtr(P);
1019  }
1020  // Various qualifiers go in low bits.
1021  enum { NumLowBitsAvailable = 0 };
1022};
1023
1024} // end namespace llvm
1025
1026namespace clang {
1027
1028/// \brief Base class that is common to both the \c ExtQuals and \c Type
1029/// classes, which allows \c QualType to access the common fields between the
1030/// two.
1031///
1032class ExtQualsTypeCommonBase {
1033  ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
1034    : BaseType(baseType), CanonicalType(canon) {}
1035
1036  /// \brief The "base" type of an extended qualifiers type (\c ExtQuals) or
1037  /// a self-referential pointer (for \c Type).
1038  ///
1039  /// This pointer allows an efficient mapping from a QualType to its
1040  /// underlying type pointer.
1041  const Type *const BaseType;
1042
1043  /// \brief The canonical type of this type.  A QualType.
1044  QualType CanonicalType;
1045
1046  friend class QualType;
1047  friend class Type;
1048  friend class ExtQuals;
1049};
1050
1051/// ExtQuals - We can encode up to four bits in the low bits of a
1052/// type pointer, but there are many more type qualifiers that we want
1053/// to be able to apply to an arbitrary type.  Therefore we have this
1054/// struct, intended to be heap-allocated and used by QualType to
1055/// store qualifiers.
1056///
1057/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
1058/// in three low bits on the QualType pointer; a fourth bit records whether
1059/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
1060/// Objective-C GC attributes) are much more rare.
1061class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
1062  // NOTE: changing the fast qualifiers should be straightforward as
1063  // long as you don't make 'const' non-fast.
1064  // 1. Qualifiers:
1065  //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
1066  //       Fast qualifiers must occupy the low-order bits.
1067  //    b) Update Qualifiers::FastWidth and FastMask.
1068  // 2. QualType:
1069  //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
1070  //    b) Update remove{Volatile,Restrict}, defined near the end of
1071  //       this header.
1072  // 3. ASTContext:
1073  //    a) Update get{Volatile,Restrict}Type.
1074
1075  /// Quals - the immutable set of qualifiers applied by this
1076  /// node;  always contains extended qualifiers.
1077  Qualifiers Quals;
1078
1079  ExtQuals *this_() { return this; }
1080
1081public:
1082  ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
1083    : ExtQualsTypeCommonBase(baseType,
1084                             canon.isNull() ? QualType(this_(), 0) : canon),
1085      Quals(quals)
1086  {
1087    assert(Quals.hasNonFastQualifiers()
1088           && "ExtQuals created with no fast qualifiers");
1089    assert(!Quals.hasFastQualifiers()
1090           && "ExtQuals created with fast qualifiers");
1091  }
1092
1093  Qualifiers getQualifiers() const { return Quals; }
1094
1095  bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
1096  Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
1097
1098  bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
1099  Qualifiers::ObjCLifetime getObjCLifetime() const {
1100    return Quals.getObjCLifetime();
1101  }
1102
1103  bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
1104  unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
1105
1106  const Type *getBaseType() const { return BaseType; }
1107
1108public:
1109  void Profile(llvm::FoldingSetNodeID &ID) const {
1110    Profile(ID, getBaseType(), Quals);
1111  }
1112  static void Profile(llvm::FoldingSetNodeID &ID,
1113                      const Type *BaseType,
1114                      Qualifiers Quals) {
1115    assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
1116    ID.AddPointer(BaseType);
1117    Quals.Profile(ID);
1118  }
1119};
1120
1121/// \brief The kind of C++0x ref-qualifier associated with a function type,
1122/// which determines whether a member function's "this" object can be an
1123/// lvalue, rvalue, or neither.
1124enum RefQualifierKind {
1125  /// \brief No ref-qualifier was provided.
1126  RQ_None = 0,
1127  /// \brief An lvalue ref-qualifier was provided (\c &).
1128  RQ_LValue,
1129  /// \brief An rvalue ref-qualifier was provided (\c &&).
1130  RQ_RValue
1131};
1132
1133/// Type - This is the base class of the type hierarchy.  A central concept
1134/// with types is that each type always has a canonical type.  A canonical type
1135/// is the type with any typedef names stripped out of it or the types it
1136/// references.  For example, consider:
1137///
1138///  typedef int  foo;
1139///  typedef foo* bar;
1140///    'int *'    'foo *'    'bar'
1141///
1142/// There will be a Type object created for 'int'.  Since int is canonical, its
1143/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
1144/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
1145/// there is a PointerType that represents 'int*', which, like 'int', is
1146/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
1147/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
1148/// is also 'int*'.
1149///
1150/// Non-canonical types are useful for emitting diagnostics, without losing
1151/// information about typedefs being used.  Canonical types are useful for type
1152/// comparisons (they allow by-pointer equality tests) and useful for reasoning
1153/// about whether something has a particular form (e.g. is a function type),
1154/// because they implicitly, recursively, strip all typedefs out of a type.
1155///
1156/// Types, once created, are immutable.
1157///
1158class Type : public ExtQualsTypeCommonBase {
1159public:
1160  enum TypeClass {
1161#define TYPE(Class, Base) Class,
1162#define LAST_TYPE(Class) TypeLast = Class,
1163#define ABSTRACT_TYPE(Class, Base)
1164#include "clang/AST/TypeNodes.def"
1165    TagFirst = Record, TagLast = Enum
1166  };
1167
1168private:
1169  Type(const Type &) LLVM_DELETED_FUNCTION;
1170  void operator=(const Type &) LLVM_DELETED_FUNCTION;
1171
1172  /// Bitfields required by the Type class.
1173  class TypeBitfields {
1174    friend class Type;
1175    template <class T> friend class TypePropertyCache;
1176
1177    /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
1178    unsigned TC : 8;
1179
1180    /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
1181    unsigned Dependent : 1;
1182
1183    /// \brief Whether this type somehow involves a template parameter, even
1184    /// if the resolution of the type does not depend on a template parameter.
1185    unsigned InstantiationDependent : 1;
1186
1187    /// \brief Whether this type is a variably-modified type (C99 6.7.5).
1188    unsigned VariablyModified : 1;
1189
1190    /// \brief Whether this type contains an unexpanded parameter pack
1191    /// (for C++0x variadic templates).
1192    unsigned ContainsUnexpandedParameterPack : 1;
1193
1194    /// \brief True if the cache (i.e. the bitfields here starting with
1195    /// 'Cache') is valid.
1196    mutable unsigned CacheValid : 1;
1197
1198    /// \brief Linkage of this type.
1199    mutable unsigned CachedLinkage : 2;
1200
1201    /// \brief Whether this type involves and local or unnamed types.
1202    mutable unsigned CachedLocalOrUnnamed : 1;
1203
1204    /// \brief FromAST - Whether this type comes from an AST file.
1205    mutable unsigned FromAST : 1;
1206
1207    bool isCacheValid() const {
1208      return CacheValid;
1209    }
1210    Linkage getLinkage() const {
1211      assert(isCacheValid() && "getting linkage from invalid cache");
1212      return static_cast<Linkage>(CachedLinkage);
1213    }
1214    bool hasLocalOrUnnamedType() const {
1215      assert(isCacheValid() && "getting linkage from invalid cache");
1216      return CachedLocalOrUnnamed;
1217    }
1218  };
1219  enum { NumTypeBits = 19 };
1220
1221protected:
1222  // These classes allow subclasses to somewhat cleanly pack bitfields
1223  // into Type.
1224
1225  class ArrayTypeBitfields {
1226    friend class ArrayType;
1227
1228    unsigned : NumTypeBits;
1229
1230    /// IndexTypeQuals - CVR qualifiers from declarations like
1231    /// 'int X[static restrict 4]'. For function parameters only.
1232    unsigned IndexTypeQuals : 3;
1233
1234    /// SizeModifier - storage class qualifiers from declarations like
1235    /// 'int X[static restrict 4]'. For function parameters only.
1236    /// Actually an ArrayType::ArraySizeModifier.
1237    unsigned SizeModifier : 3;
1238  };
1239
1240  class BuiltinTypeBitfields {
1241    friend class BuiltinType;
1242
1243    unsigned : NumTypeBits;
1244
1245    /// The kind (BuiltinType::Kind) of builtin type this is.
1246    unsigned Kind : 8;
1247  };
1248
1249  class FunctionTypeBitfields {
1250    friend class FunctionType;
1251
1252    unsigned : NumTypeBits;
1253
1254    /// Extra information which affects how the function is called, like
1255    /// regparm and the calling convention.
1256    unsigned ExtInfo : 9;
1257
1258    /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
1259    /// other bitfields.
1260    /// The qualifiers are part of FunctionProtoType because...
1261    ///
1262    /// C++ 8.3.5p4: The return type, the parameter type list and the
1263    /// cv-qualifier-seq, [...], are part of the function type.
1264    unsigned TypeQuals : 3;
1265  };
1266
1267  class ObjCObjectTypeBitfields {
1268    friend class ObjCObjectType;
1269
1270    unsigned : NumTypeBits;
1271
1272    /// NumProtocols - The number of protocols stored directly on this
1273    /// object type.
1274    unsigned NumProtocols : 32 - NumTypeBits;
1275  };
1276
1277  class ReferenceTypeBitfields {
1278    friend class ReferenceType;
1279
1280    unsigned : NumTypeBits;
1281
1282    /// True if the type was originally spelled with an lvalue sigil.
1283    /// This is never true of rvalue references but can also be false
1284    /// on lvalue references because of C++0x [dcl.typedef]p9,
1285    /// as follows:
1286    ///
1287    ///   typedef int &ref;    // lvalue, spelled lvalue
1288    ///   typedef int &&rvref; // rvalue
1289    ///   ref &a;              // lvalue, inner ref, spelled lvalue
1290    ///   ref &&a;             // lvalue, inner ref
1291    ///   rvref &a;            // lvalue, inner ref, spelled lvalue
1292    ///   rvref &&a;           // rvalue, inner ref
1293    unsigned SpelledAsLValue : 1;
1294
1295    /// True if the inner type is a reference type.  This only happens
1296    /// in non-canonical forms.
1297    unsigned InnerRef : 1;
1298  };
1299
1300  class TypeWithKeywordBitfields {
1301    friend class TypeWithKeyword;
1302
1303    unsigned : NumTypeBits;
1304
1305    /// An ElaboratedTypeKeyword.  8 bits for efficient access.
1306    unsigned Keyword : 8;
1307  };
1308
1309  class VectorTypeBitfields {
1310    friend class VectorType;
1311
1312    unsigned : NumTypeBits;
1313
1314    /// VecKind - The kind of vector, either a generic vector type or some
1315    /// target-specific vector type such as for AltiVec or Neon.
1316    unsigned VecKind : 3;
1317
1318    /// NumElements - The number of elements in the vector.
1319    unsigned NumElements : 29 - NumTypeBits;
1320  };
1321
1322  class AttributedTypeBitfields {
1323    friend class AttributedType;
1324
1325    unsigned : NumTypeBits;
1326
1327    /// AttrKind - an AttributedType::Kind
1328    unsigned AttrKind : 32 - NumTypeBits;
1329  };
1330
1331  union {
1332    TypeBitfields TypeBits;
1333    ArrayTypeBitfields ArrayTypeBits;
1334    AttributedTypeBitfields AttributedTypeBits;
1335    BuiltinTypeBitfields BuiltinTypeBits;
1336    FunctionTypeBitfields FunctionTypeBits;
1337    ObjCObjectTypeBitfields ObjCObjectTypeBits;
1338    ReferenceTypeBitfields ReferenceTypeBits;
1339    TypeWithKeywordBitfields TypeWithKeywordBits;
1340    VectorTypeBitfields VectorTypeBits;
1341  };
1342
1343private:
1344  /// \brief Set whether this type comes from an AST file.
1345  void setFromAST(bool V = true) const {
1346    TypeBits.FromAST = V;
1347  }
1348
1349  template <class T> friend class TypePropertyCache;
1350
1351protected:
1352  // silence VC++ warning C4355: 'this' : used in base member initializer list
1353  Type *this_() { return this; }
1354  Type(TypeClass tc, QualType canon, bool Dependent,
1355       bool InstantiationDependent, bool VariablyModified,
1356       bool ContainsUnexpandedParameterPack)
1357    : ExtQualsTypeCommonBase(this,
1358                             canon.isNull() ? QualType(this_(), 0) : canon) {
1359    TypeBits.TC = tc;
1360    TypeBits.Dependent = Dependent;
1361    TypeBits.InstantiationDependent = Dependent || InstantiationDependent;
1362    TypeBits.VariablyModified = VariablyModified;
1363    TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
1364    TypeBits.CacheValid = false;
1365    TypeBits.CachedLocalOrUnnamed = false;
1366    TypeBits.CachedLinkage = NoLinkage;
1367    TypeBits.FromAST = false;
1368  }
1369  friend class ASTContext;
1370
1371  void setDependent(bool D = true) {
1372    TypeBits.Dependent = D;
1373    if (D)
1374      TypeBits.InstantiationDependent = true;
1375  }
1376  void setInstantiationDependent(bool D = true) {
1377    TypeBits.InstantiationDependent = D; }
1378  void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM;
1379  }
1380  void setContainsUnexpandedParameterPack(bool PP = true) {
1381    TypeBits.ContainsUnexpandedParameterPack = PP;
1382  }
1383
1384public:
1385  TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1386
1387  /// \brief Whether this type comes from an AST file.
1388  bool isFromAST() const { return TypeBits.FromAST; }
1389
1390  /// \brief Whether this type is or contains an unexpanded parameter
1391  /// pack, used to support C++0x variadic templates.
1392  ///
1393  /// A type that contains a parameter pack shall be expanded by the
1394  /// ellipsis operator at some point. For example, the typedef in the
1395  /// following example contains an unexpanded parameter pack 'T':
1396  ///
1397  /// \code
1398  /// template<typename ...T>
1399  /// struct X {
1400  ///   typedef T* pointer_types; // ill-formed; T is a parameter pack.
1401  /// };
1402  /// \endcode
1403  ///
1404  /// Note that this routine does not specify which
1405  bool containsUnexpandedParameterPack() const {
1406    return TypeBits.ContainsUnexpandedParameterPack;
1407  }
1408
1409  /// Determines if this type would be canonical if it had no further
1410  /// qualification.
1411  bool isCanonicalUnqualified() const {
1412    return CanonicalType == QualType(this, 0);
1413  }
1414
1415  /// Pull a single level of sugar off of this locally-unqualified type.
1416  /// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
1417  /// or QualType::getSingleStepDesugaredType(const ASTContext&).
1418  QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
1419
1420  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
1421  /// object types, function types, and incomplete types.
1422
1423  /// isIncompleteType - Return true if this is an incomplete type.
1424  /// A type that can describe objects, but which lacks information needed to
1425  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
1426  /// routine will need to determine if the size is actually required.
1427  ///
1428  /// \brief Def If non-NULL, and the type refers to some kind of declaration
1429  /// that can be completed (such as a C struct, C++ class, or Objective-C
1430  /// class), will be set to the declaration.
1431  bool isIncompleteType(NamedDecl **Def = 0) const;
1432
1433  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
1434  /// type, in other words, not a function type.
1435  bool isIncompleteOrObjectType() const {
1436    return !isFunctionType();
1437  }
1438
1439  /// \brief Determine whether this type is an object type.
1440  bool isObjectType() const {
1441    // C++ [basic.types]p8:
1442    //   An object type is a (possibly cv-qualified) type that is not a
1443    //   function type, not a reference type, and not a void type.
1444    return !isReferenceType() && !isFunctionType() && !isVoidType();
1445  }
1446
1447  /// isLiteralType - Return true if this is a literal type
1448  /// (C++0x [basic.types]p10)
1449  bool isLiteralType() const;
1450
1451  /// \brief Test if this type is a standard-layout type.
1452  /// (C++0x [basic.type]p9)
1453  bool isStandardLayoutType() const;
1454
1455  /// Helper methods to distinguish type categories. All type predicates
1456  /// operate on the canonical type, ignoring typedefs and qualifiers.
1457
1458  /// isBuiltinType - returns true if the type is a builtin type.
1459  bool isBuiltinType() const;
1460
1461  /// isSpecificBuiltinType - Test for a particular builtin type.
1462  bool isSpecificBuiltinType(unsigned K) const;
1463
1464  /// isPlaceholderType - Test for a type which does not represent an
1465  /// actual type-system type but is instead used as a placeholder for
1466  /// various convenient purposes within Clang.  All such types are
1467  /// BuiltinTypes.
1468  bool isPlaceholderType() const;
1469  const BuiltinType *getAsPlaceholderType() const;
1470
1471  /// isSpecificPlaceholderType - Test for a specific placeholder type.
1472  bool isSpecificPlaceholderType(unsigned K) const;
1473
1474  /// isNonOverloadPlaceholderType - Test for a placeholder type
1475  /// other than Overload;  see BuiltinType::isNonOverloadPlaceholderType.
1476  bool isNonOverloadPlaceholderType() const;
1477
1478  /// isIntegerType() does *not* include complex integers (a GCC extension).
1479  /// isComplexIntegerType() can be used to test for complex integers.
1480  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
1481  bool isEnumeralType() const;
1482  bool isBooleanType() const;
1483  bool isCharType() const;
1484  bool isWideCharType() const;
1485  bool isChar16Type() const;
1486  bool isChar32Type() const;
1487  bool isAnyCharacterType() const;
1488  bool isIntegralType(ASTContext &Ctx) const;
1489
1490  /// \brief Determine whether this type is an integral or enumeration type.
1491  bool isIntegralOrEnumerationType() const;
1492  /// \brief Determine whether this type is an integral or unscoped enumeration
1493  /// type.
1494  bool isIntegralOrUnscopedEnumerationType() const;
1495
1496  /// Floating point categories.
1497  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
1498  /// isComplexType() does *not* include complex integers (a GCC extension).
1499  /// isComplexIntegerType() can be used to test for complex integers.
1500  bool isComplexType() const;      // C99 6.2.5p11 (complex)
1501  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
1502  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
1503  bool isHalfType() const;         // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
1504  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
1505  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
1506  bool isVoidType() const;         // C99 6.2.5p19
1507  bool isDerivedType() const;      // C99 6.2.5p20
1508  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
1509  bool isAggregateType() const;
1510  bool isFundamentalType() const;
1511  bool isCompoundType() const;
1512
1513  // Type Predicates: Check to see if this type is structurally the specified
1514  // type, ignoring typedefs and qualifiers.
1515  bool isFunctionType() const;
1516  bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
1517  bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
1518  bool isPointerType() const;
1519  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
1520  bool isBlockPointerType() const;
1521  bool isVoidPointerType() const;
1522  bool isReferenceType() const;
1523  bool isLValueReferenceType() const;
1524  bool isRValueReferenceType() const;
1525  bool isFunctionPointerType() const;
1526  bool isMemberPointerType() const;
1527  bool isMemberFunctionPointerType() const;
1528  bool isMemberDataPointerType() const;
1529  bool isArrayType() const;
1530  bool isConstantArrayType() const;
1531  bool isIncompleteArrayType() const;
1532  bool isVariableArrayType() const;
1533  bool isDependentSizedArrayType() const;
1534  bool isRecordType() const;
1535  bool isClassType() const;
1536  bool isStructureType() const;
1537  bool isInterfaceType() const;
1538  bool isStructureOrClassType() const;
1539  bool isUnionType() const;
1540  bool isComplexIntegerType() const;            // GCC _Complex integer type.
1541  bool isVectorType() const;                    // GCC vector type.
1542  bool isExtVectorType() const;                 // Extended vector type.
1543  bool isObjCObjectPointerType() const;         // pointer to ObjC object
1544  bool isObjCRetainableType() const;            // ObjC object or block pointer
1545  bool isObjCLifetimeType() const;              // (array of)* retainable type
1546  bool isObjCIndirectLifetimeType() const;      // (pointer to)* lifetime type
1547  bool isObjCNSObjectType() const;              // __attribute__((NSObject))
1548  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
1549  // for the common case.
1550  bool isObjCObjectType() const;                // NSString or typeof(*(id)0)
1551  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
1552  bool isObjCQualifiedIdType() const;           // id<foo>
1553  bool isObjCQualifiedClassType() const;        // Class<foo>
1554  bool isObjCObjectOrInterfaceType() const;
1555  bool isObjCIdType() const;                    // id
1556  bool isObjCClassType() const;                 // Class
1557  bool isObjCSelType() const;                 // Class
1558  bool isObjCBuiltinType() const;               // 'id' or 'Class'
1559  bool isObjCARCBridgableType() const;
1560  bool isCARCBridgableType() const;
1561  bool isTemplateTypeParmType() const;          // C++ template type parameter
1562  bool isNullPtrType() const;                   // C++0x nullptr_t
1563  bool isAtomicType() const;                    // C11 _Atomic()
1564
1565  bool isImage1dT() const;                      // OpenCL image1d_t
1566  bool isImage1dArrayT() const;                 // OpenCL image1d_array_t
1567  bool isImage1dBufferT() const;                // OpenCL image1d_buffer_t
1568  bool isImage2dT() const;                      // OpenCL image2d_t
1569  bool isImage2dArrayT() const;                 // OpenCL image2d_array_t
1570  bool isImage3dT() const;                      // OpenCL image3d_t
1571
1572  bool isImageType() const;                     // Any OpenCL image type
1573
1574  bool isSamplerT() const;                      // OpenCL sampler_t
1575  bool isEventT() const;                        // OpenCL event_t
1576
1577  bool isOpenCLSpecificType() const;            // Any OpenCL specific type
1578
1579  /// Determines if this type, which must satisfy
1580  /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
1581  /// than implicitly __strong.
1582  bool isObjCARCImplicitlyUnretainedType() const;
1583
1584  /// Return the implicit lifetime for this type, which must not be dependent.
1585  Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
1586
1587  enum ScalarTypeKind {
1588    STK_CPointer,
1589    STK_BlockPointer,
1590    STK_ObjCObjectPointer,
1591    STK_MemberPointer,
1592    STK_Bool,
1593    STK_Integral,
1594    STK_Floating,
1595    STK_IntegralComplex,
1596    STK_FloatingComplex
1597  };
1598  /// getScalarTypeKind - Given that this is a scalar type, classify it.
1599  ScalarTypeKind getScalarTypeKind() const;
1600
1601  /// isDependentType - Whether this type is a dependent type, meaning
1602  /// that its definition somehow depends on a template parameter
1603  /// (C++ [temp.dep.type]).
1604  bool isDependentType() const { return TypeBits.Dependent; }
1605
1606  /// \brief Determine whether this type is an instantiation-dependent type,
1607  /// meaning that the type involves a template parameter (even if the
1608  /// definition does not actually depend on the type substituted for that
1609  /// template parameter).
1610  bool isInstantiationDependentType() const {
1611    return TypeBits.InstantiationDependent;
1612  }
1613
1614  /// \brief Whether this type is a variably-modified type (C99 6.7.5).
1615  bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
1616
1617  /// \brief Whether this type involves a variable-length array type
1618  /// with a definite size.
1619  bool hasSizedVLAType() const;
1620
1621  /// \brief Whether this type is or contains a local or unnamed type.
1622  bool hasUnnamedOrLocalType() const;
1623
1624  bool isOverloadableType() const;
1625
1626  /// \brief Determine wither this type is a C++ elaborated-type-specifier.
1627  bool isElaboratedTypeSpecifier() const;
1628
1629  bool canDecayToPointerType() const;
1630
1631  /// hasPointerRepresentation - Whether this type is represented
1632  /// natively as a pointer; this includes pointers, references, block
1633  /// pointers, and Objective-C interface, qualified id, and qualified
1634  /// interface types, as well as nullptr_t.
1635  bool hasPointerRepresentation() const;
1636
1637  /// hasObjCPointerRepresentation - Whether this type can represent
1638  /// an objective pointer type for the purpose of GC'ability
1639  bool hasObjCPointerRepresentation() const;
1640
1641  /// \brief Determine whether this type has an integer representation
1642  /// of some sort, e.g., it is an integer type or a vector.
1643  bool hasIntegerRepresentation() const;
1644
1645  /// \brief Determine whether this type has an signed integer representation
1646  /// of some sort, e.g., it is an signed integer type or a vector.
1647  bool hasSignedIntegerRepresentation() const;
1648
1649  /// \brief Determine whether this type has an unsigned integer representation
1650  /// of some sort, e.g., it is an unsigned integer type or a vector.
1651  bool hasUnsignedIntegerRepresentation() const;
1652
1653  /// \brief Determine whether this type has a floating-point representation
1654  /// of some sort, e.g., it is a floating-point type or a vector thereof.
1655  bool hasFloatingRepresentation() const;
1656
1657  // Type Checking Functions: Check to see if this type is structurally the
1658  // specified type, ignoring typedefs and qualifiers, and return a pointer to
1659  // the best type we can.
1660  const RecordType *getAsStructureType() const;
1661  /// NOTE: getAs*ArrayType are methods on ASTContext.
1662  const RecordType *getAsUnionType() const;
1663  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
1664  // The following is a convenience method that returns an ObjCObjectPointerType
1665  // for object declared using an interface.
1666  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
1667  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
1668  const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
1669  const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
1670
1671  /// \brief Retrieves the CXXRecordDecl that this type refers to, either
1672  /// because the type is a RecordType or because it is the injected-class-name
1673  /// type of a class template or class template partial specialization.
1674  CXXRecordDecl *getAsCXXRecordDecl() const;
1675
1676  /// If this is a pointer or reference to a RecordType, return the
1677  /// CXXRecordDecl that that type refers to.
1678  ///
1679  /// If this is not a pointer or reference, or the type being pointed to does
1680  /// not refer to a CXXRecordDecl, returns NULL.
1681  const CXXRecordDecl *getPointeeCXXRecordDecl() const;
1682
1683  /// \brief Get the AutoType whose type will be deduced for a variable with
1684  /// an initializer of this type. This looks through declarators like pointer
1685  /// types, but not through decltype or typedefs.
1686  AutoType *getContainedAutoType() const;
1687
1688  /// Member-template getAs<specific type>'.  Look through sugar for
1689  /// an instance of \<specific type>.   This scheme will eventually
1690  /// replace the specific getAsXXXX methods above.
1691  ///
1692  /// There are some specializations of this member template listed
1693  /// immediately following this class.
1694  template <typename T> const T *getAs() const;
1695
1696  /// A variant of getAs<> for array types which silently discards
1697  /// qualifiers from the outermost type.
1698  const ArrayType *getAsArrayTypeUnsafe() const;
1699
1700  /// Member-template castAs<specific type>.  Look through sugar for
1701  /// the underlying instance of \<specific type>.
1702  ///
1703  /// This method has the same relationship to getAs<T> as cast<T> has
1704  /// to dyn_cast<T>; which is to say, the underlying type *must*
1705  /// have the intended type, and this method will never return null.
1706  template <typename T> const T *castAs() const;
1707
1708  /// A variant of castAs<> for array type which silently discards
1709  /// qualifiers from the outermost type.
1710  const ArrayType *castAsArrayTypeUnsafe() const;
1711
1712  /// getBaseElementTypeUnsafe - Get the base element type of this
1713  /// type, potentially discarding type qualifiers.  This method
1714  /// should never be used when type qualifiers are meaningful.
1715  const Type *getBaseElementTypeUnsafe() const;
1716
1717  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
1718  /// element type of the array, potentially with type qualifiers missing.
1719  /// This method should never be used when type qualifiers are meaningful.
1720  const Type *getArrayElementTypeNoTypeQual() const;
1721
1722  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
1723  /// pointer, this returns the respective pointee.
1724  QualType getPointeeType() const;
1725
1726  /// getUnqualifiedDesugaredType() - Return the specified type with
1727  /// any "sugar" removed from the type, removing any typedefs,
1728  /// typeofs, etc., as well as any qualifiers.
1729  const Type *getUnqualifiedDesugaredType() const;
1730
1731  /// More type predicates useful for type checking/promotion
1732  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
1733
1734  /// isSignedIntegerType - Return true if this is an integer type that is
1735  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
1736  /// or an enum decl which has a signed representation.
1737  bool isSignedIntegerType() const;
1738
1739  /// isUnsignedIntegerType - Return true if this is an integer type that is
1740  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
1741  /// or an enum decl which has an unsigned representation.
1742  bool isUnsignedIntegerType() const;
1743
1744  /// Determines whether this is an integer type that is signed or an
1745  /// enumeration types whose underlying type is a signed integer type.
1746  bool isSignedIntegerOrEnumerationType() const;
1747
1748  /// Determines whether this is an integer type that is unsigned or an
1749  /// enumeration types whose underlying type is a unsigned integer type.
1750  bool isUnsignedIntegerOrEnumerationType() const;
1751
1752  /// isConstantSizeType - Return true if this is not a variable sized type,
1753  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
1754  /// incomplete types.
1755  bool isConstantSizeType() const;
1756
1757  /// isSpecifierType - Returns true if this type can be represented by some
1758  /// set of type specifiers.
1759  bool isSpecifierType() const;
1760
1761  /// \brief Determine the linkage of this type.
1762  Linkage getLinkage() const;
1763
1764  /// \brief Determine the visibility of this type.
1765  Visibility getVisibility() const {
1766    return getLinkageAndVisibility().getVisibility();
1767  }
1768
1769  /// \brief Return true if the visibility was explicitly set is the code.
1770  bool isVisibilityExplicit() const {
1771    return getLinkageAndVisibility().isVisibilityExplicit();
1772  }
1773
1774  /// \brief Determine the linkage and visibility of this type.
1775  LinkageInfo getLinkageAndVisibility() const;
1776
1777  /// \brief Note that the linkage is no longer known.
1778  void ClearLinkageCache();
1779
1780  const char *getTypeClassName() const;
1781
1782  QualType getCanonicalTypeInternal() const {
1783    return CanonicalType;
1784  }
1785  CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
1786  LLVM_ATTRIBUTE_USED void dump() const;
1787
1788  friend class ASTReader;
1789  friend class ASTWriter;
1790};
1791
1792/// \brief This will check for a TypedefType by removing any existing sugar
1793/// until it reaches a TypedefType or a non-sugared type.
1794template <> const TypedefType *Type::getAs() const;
1795
1796/// \brief This will check for a TemplateSpecializationType by removing any
1797/// existing sugar until it reaches a TemplateSpecializationType or a
1798/// non-sugared type.
1799template <> const TemplateSpecializationType *Type::getAs() const;
1800
1801// We can do canonical leaf types faster, because we don't have to
1802// worry about preserving child type decoration.
1803#define TYPE(Class, Base)
1804#define LEAF_TYPE(Class) \
1805template <> inline const Class##Type *Type::getAs() const { \
1806  return dyn_cast<Class##Type>(CanonicalType); \
1807} \
1808template <> inline const Class##Type *Type::castAs() const { \
1809  return cast<Class##Type>(CanonicalType); \
1810}
1811#include "clang/AST/TypeNodes.def"
1812
1813
1814/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
1815/// types are always canonical and have a literal name field.
1816class BuiltinType : public Type {
1817public:
1818  enum Kind {
1819#define BUILTIN_TYPE(Id, SingletonId) Id,
1820#define LAST_BUILTIN_TYPE(Id) LastKind = Id
1821#include "clang/AST/BuiltinTypes.def"
1822  };
1823
1824public:
1825  BuiltinType(Kind K)
1826    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
1827           /*InstantiationDependent=*/(K == Dependent),
1828           /*VariablyModified=*/false,
1829           /*Unexpanded paramter pack=*/false) {
1830    BuiltinTypeBits.Kind = K;
1831  }
1832
1833  Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
1834  StringRef getName(const PrintingPolicy &Policy) const;
1835  const char *getNameAsCString(const PrintingPolicy &Policy) const {
1836    // The StringRef is null-terminated.
1837    StringRef str = getName(Policy);
1838    assert(!str.empty() && str.data()[str.size()] == '\0');
1839    return str.data();
1840  }
1841
1842  bool isSugared() const { return false; }
1843  QualType desugar() const { return QualType(this, 0); }
1844
1845  bool isInteger() const {
1846    return getKind() >= Bool && getKind() <= Int128;
1847  }
1848
1849  bool isSignedInteger() const {
1850    return getKind() >= Char_S && getKind() <= Int128;
1851  }
1852
1853  bool isUnsignedInteger() const {
1854    return getKind() >= Bool && getKind() <= UInt128;
1855  }
1856
1857  bool isFloatingPoint() const {
1858    return getKind() >= Half && getKind() <= LongDouble;
1859  }
1860
1861  /// Determines whether the given kind corresponds to a placeholder type.
1862  static bool isPlaceholderTypeKind(Kind K) {
1863    return K >= Overload;
1864  }
1865
1866  /// Determines whether this type is a placeholder type, i.e. a type
1867  /// which cannot appear in arbitrary positions in a fully-formed
1868  /// expression.
1869  bool isPlaceholderType() const {
1870    return isPlaceholderTypeKind(getKind());
1871  }
1872
1873  /// Determines whether this type is a placeholder type other than
1874  /// Overload.  Most placeholder types require only syntactic
1875  /// information about their context in order to be resolved (e.g.
1876  /// whether it is a call expression), which means they can (and
1877  /// should) be resolved in an earlier "phase" of analysis.
1878  /// Overload expressions sometimes pick up further information
1879  /// from their context, like whether the context expects a
1880  /// specific function-pointer type, and so frequently need
1881  /// special treatment.
1882  bool isNonOverloadPlaceholderType() const {
1883    return getKind() > Overload;
1884  }
1885
1886  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
1887};
1888
1889/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
1890/// types (_Complex float etc) as well as the GCC integer complex extensions.
1891///
1892class ComplexType : public Type, public llvm::FoldingSetNode {
1893  QualType ElementType;
1894  ComplexType(QualType Element, QualType CanonicalPtr) :
1895    Type(Complex, CanonicalPtr, Element->isDependentType(),
1896         Element->isInstantiationDependentType(),
1897         Element->isVariablyModifiedType(),
1898         Element->containsUnexpandedParameterPack()),
1899    ElementType(Element) {
1900  }
1901  friend class ASTContext;  // ASTContext creates these.
1902
1903public:
1904  QualType getElementType() const { return ElementType; }
1905
1906  bool isSugared() const { return false; }
1907  QualType desugar() const { return QualType(this, 0); }
1908
1909  void Profile(llvm::FoldingSetNodeID &ID) {
1910    Profile(ID, getElementType());
1911  }
1912  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
1913    ID.AddPointer(Element.getAsOpaquePtr());
1914  }
1915
1916  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
1917};
1918
1919/// ParenType - Sugar for parentheses used when specifying types.
1920///
1921class ParenType : public Type, public llvm::FoldingSetNode {
1922  QualType Inner;
1923
1924  ParenType(QualType InnerType, QualType CanonType) :
1925    Type(Paren, CanonType, InnerType->isDependentType(),
1926         InnerType->isInstantiationDependentType(),
1927         InnerType->isVariablyModifiedType(),
1928         InnerType->containsUnexpandedParameterPack()),
1929    Inner(InnerType) {
1930  }
1931  friend class ASTContext;  // ASTContext creates these.
1932
1933public:
1934
1935  QualType getInnerType() const { return Inner; }
1936
1937  bool isSugared() const { return true; }
1938  QualType desugar() const { return getInnerType(); }
1939
1940  void Profile(llvm::FoldingSetNodeID &ID) {
1941    Profile(ID, getInnerType());
1942  }
1943  static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
1944    Inner.Profile(ID);
1945  }
1946
1947  static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
1948};
1949
1950/// PointerType - C99 6.7.5.1 - Pointer Declarators.
1951///
1952class PointerType : public Type, public llvm::FoldingSetNode {
1953  QualType PointeeType;
1954
1955  PointerType(QualType Pointee, QualType CanonicalPtr) :
1956    Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
1957         Pointee->isInstantiationDependentType(),
1958         Pointee->isVariablyModifiedType(),
1959         Pointee->containsUnexpandedParameterPack()),
1960    PointeeType(Pointee) {
1961  }
1962  friend class ASTContext;  // ASTContext creates these.
1963
1964public:
1965
1966  QualType getPointeeType() const { return PointeeType; }
1967
1968  bool isSugared() const { return false; }
1969  QualType desugar() const { return QualType(this, 0); }
1970
1971  void Profile(llvm::FoldingSetNodeID &ID) {
1972    Profile(ID, getPointeeType());
1973  }
1974  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1975    ID.AddPointer(Pointee.getAsOpaquePtr());
1976  }
1977
1978  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
1979};
1980
1981/// BlockPointerType - pointer to a block type.
1982/// This type is to represent types syntactically represented as
1983/// "void (^)(int)", etc. Pointee is required to always be a function type.
1984///
1985class BlockPointerType : public Type, public llvm::FoldingSetNode {
1986  QualType PointeeType;  // Block is some kind of pointer type
1987  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
1988    Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
1989         Pointee->isInstantiationDependentType(),
1990         Pointee->isVariablyModifiedType(),
1991         Pointee->containsUnexpandedParameterPack()),
1992    PointeeType(Pointee) {
1993  }
1994  friend class ASTContext;  // ASTContext creates these.
1995
1996public:
1997
1998  // Get the pointee type. Pointee is required to always be a function type.
1999  QualType getPointeeType() const { return PointeeType; }
2000
2001  bool isSugared() const { return false; }
2002  QualType desugar() const { return QualType(this, 0); }
2003
2004  void Profile(llvm::FoldingSetNodeID &ID) {
2005      Profile(ID, getPointeeType());
2006  }
2007  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2008      ID.AddPointer(Pointee.getAsOpaquePtr());
2009  }
2010
2011  static bool classof(const Type *T) {
2012    return T->getTypeClass() == BlockPointer;
2013  }
2014};
2015
2016/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
2017///
2018class ReferenceType : public Type, public llvm::FoldingSetNode {
2019  QualType PointeeType;
2020
2021protected:
2022  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
2023                bool SpelledAsLValue) :
2024    Type(tc, CanonicalRef, Referencee->isDependentType(),
2025         Referencee->isInstantiationDependentType(),
2026         Referencee->isVariablyModifiedType(),
2027         Referencee->containsUnexpandedParameterPack()),
2028    PointeeType(Referencee)
2029  {
2030    ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
2031    ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
2032  }
2033
2034public:
2035  bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
2036  bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
2037
2038  QualType getPointeeTypeAsWritten() const { return PointeeType; }
2039  QualType getPointeeType() const {
2040    // FIXME: this might strip inner qualifiers; okay?
2041    const ReferenceType *T = this;
2042    while (T->isInnerRef())
2043      T = T->PointeeType->castAs<ReferenceType>();
2044    return T->PointeeType;
2045  }
2046
2047  void Profile(llvm::FoldingSetNodeID &ID) {
2048    Profile(ID, PointeeType, isSpelledAsLValue());
2049  }
2050  static void Profile(llvm::FoldingSetNodeID &ID,
2051                      QualType Referencee,
2052                      bool SpelledAsLValue) {
2053    ID.AddPointer(Referencee.getAsOpaquePtr());
2054    ID.AddBoolean(SpelledAsLValue);
2055  }
2056
2057  static bool classof(const Type *T) {
2058    return T->getTypeClass() == LValueReference ||
2059           T->getTypeClass() == RValueReference;
2060  }
2061};
2062
2063/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
2064///
2065class LValueReferenceType : public ReferenceType {
2066  LValueReferenceType(QualType Referencee, QualType CanonicalRef,
2067                      bool SpelledAsLValue) :
2068    ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
2069  {}
2070  friend class ASTContext; // ASTContext creates these
2071public:
2072  bool isSugared() const { return false; }
2073  QualType desugar() const { return QualType(this, 0); }
2074
2075  static bool classof(const Type *T) {
2076    return T->getTypeClass() == LValueReference;
2077  }
2078};
2079
2080/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
2081///
2082class RValueReferenceType : public ReferenceType {
2083  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
2084    ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
2085  }
2086  friend class ASTContext; // ASTContext creates these
2087public:
2088  bool isSugared() const { return false; }
2089  QualType desugar() const { return QualType(this, 0); }
2090
2091  static bool classof(const Type *T) {
2092    return T->getTypeClass() == RValueReference;
2093  }
2094};
2095
2096/// MemberPointerType - C++ 8.3.3 - Pointers to members
2097///
2098class MemberPointerType : public Type, public llvm::FoldingSetNode {
2099  QualType PointeeType;
2100  /// The class of which the pointee is a member. Must ultimately be a
2101  /// RecordType, but could be a typedef or a template parameter too.
2102  const Type *Class;
2103
2104  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
2105    Type(MemberPointer, CanonicalPtr,
2106         Cls->isDependentType() || Pointee->isDependentType(),
2107         (Cls->isInstantiationDependentType() ||
2108          Pointee->isInstantiationDependentType()),
2109         Pointee->isVariablyModifiedType(),
2110         (Cls->containsUnexpandedParameterPack() ||
2111          Pointee->containsUnexpandedParameterPack())),
2112    PointeeType(Pointee), Class(Cls) {
2113  }
2114  friend class ASTContext; // ASTContext creates these.
2115
2116public:
2117  QualType getPointeeType() const { return PointeeType; }
2118
2119  /// Returns true if the member type (i.e. the pointee type) is a
2120  /// function type rather than a data-member type.
2121  bool isMemberFunctionPointer() const {
2122    return PointeeType->isFunctionProtoType();
2123  }
2124
2125  /// Returns true if the member type (i.e. the pointee type) is a
2126  /// data type rather than a function type.
2127  bool isMemberDataPointer() const {
2128    return !PointeeType->isFunctionProtoType();
2129  }
2130
2131  const Type *getClass() const { return Class; }
2132
2133  bool isSugared() const { return false; }
2134  QualType desugar() const { return QualType(this, 0); }
2135
2136  void Profile(llvm::FoldingSetNodeID &ID) {
2137    Profile(ID, getPointeeType(), getClass());
2138  }
2139  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
2140                      const Type *Class) {
2141    ID.AddPointer(Pointee.getAsOpaquePtr());
2142    ID.AddPointer(Class);
2143  }
2144
2145  static bool classof(const Type *T) {
2146    return T->getTypeClass() == MemberPointer;
2147  }
2148};
2149
2150/// ArrayType - C99 6.7.5.2 - Array Declarators.
2151///
2152class ArrayType : public Type, public llvm::FoldingSetNode {
2153public:
2154  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
2155  /// an array with a static size (e.g. int X[static 4]), or an array
2156  /// with a star size (e.g. int X[*]).
2157  /// 'static' is only allowed on function parameters.
2158  enum ArraySizeModifier {
2159    Normal, Static, Star
2160  };
2161private:
2162  /// ElementType - The element type of the array.
2163  QualType ElementType;
2164
2165protected:
2166  // C++ [temp.dep.type]p1:
2167  //   A type is dependent if it is...
2168  //     - an array type constructed from any dependent type or whose
2169  //       size is specified by a constant expression that is
2170  //       value-dependent,
2171  ArrayType(TypeClass tc, QualType et, QualType can,
2172            ArraySizeModifier sm, unsigned tq,
2173            bool ContainsUnexpandedParameterPack)
2174    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray,
2175           et->isInstantiationDependentType() || tc == DependentSizedArray,
2176           (tc == VariableArray || et->isVariablyModifiedType()),
2177           ContainsUnexpandedParameterPack),
2178      ElementType(et) {
2179    ArrayTypeBits.IndexTypeQuals = tq;
2180    ArrayTypeBits.SizeModifier = sm;
2181  }
2182
2183  friend class ASTContext;  // ASTContext creates these.
2184
2185public:
2186  QualType getElementType() const { return ElementType; }
2187  ArraySizeModifier getSizeModifier() const {
2188    return ArraySizeModifier(ArrayTypeBits.SizeModifier);
2189  }
2190  Qualifiers getIndexTypeQualifiers() const {
2191    return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
2192  }
2193  unsigned getIndexTypeCVRQualifiers() const {
2194    return ArrayTypeBits.IndexTypeQuals;
2195  }
2196
2197  static bool classof(const Type *T) {
2198    return T->getTypeClass() == ConstantArray ||
2199           T->getTypeClass() == VariableArray ||
2200           T->getTypeClass() == IncompleteArray ||
2201           T->getTypeClass() == DependentSizedArray;
2202  }
2203};
2204
2205/// ConstantArrayType - This class represents the canonical version of
2206/// C arrays with a specified constant size.  For example, the canonical
2207/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
2208/// type is 'int' and the size is 404.
2209class ConstantArrayType : public ArrayType {
2210  llvm::APInt Size; // Allows us to unique the type.
2211
2212  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
2213                    ArraySizeModifier sm, unsigned tq)
2214    : ArrayType(ConstantArray, et, can, sm, tq,
2215                et->containsUnexpandedParameterPack()),
2216      Size(size) {}
2217protected:
2218  ConstantArrayType(TypeClass tc, QualType et, QualType can,
2219                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
2220    : ArrayType(tc, et, can, sm, tq, et->containsUnexpandedParameterPack()),
2221      Size(size) {}
2222  friend class ASTContext;  // ASTContext creates these.
2223public:
2224  const llvm::APInt &getSize() const { return Size; }
2225  bool isSugared() const { return false; }
2226  QualType desugar() const { return QualType(this, 0); }
2227
2228
2229  /// \brief Determine the number of bits required to address a member of
2230  // an array with the given element type and number of elements.
2231  static unsigned getNumAddressingBits(ASTContext &Context,
2232                                       QualType ElementType,
2233                                       const llvm::APInt &NumElements);
2234
2235  /// \brief Determine the maximum number of active bits that an array's size
2236  /// can require, which limits the maximum size of the array.
2237  static unsigned getMaxSizeBits(ASTContext &Context);
2238
2239  void Profile(llvm::FoldingSetNodeID &ID) {
2240    Profile(ID, getElementType(), getSize(),
2241            getSizeModifier(), getIndexTypeCVRQualifiers());
2242  }
2243  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2244                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
2245                      unsigned TypeQuals) {
2246    ID.AddPointer(ET.getAsOpaquePtr());
2247    ID.AddInteger(ArraySize.getZExtValue());
2248    ID.AddInteger(SizeMod);
2249    ID.AddInteger(TypeQuals);
2250  }
2251  static bool classof(const Type *T) {
2252    return T->getTypeClass() == ConstantArray;
2253  }
2254};
2255
2256/// IncompleteArrayType - This class represents C arrays with an unspecified
2257/// size.  For example 'int A[]' has an IncompleteArrayType where the element
2258/// type is 'int' and the size is unspecified.
2259class IncompleteArrayType : public ArrayType {
2260
2261  IncompleteArrayType(QualType et, QualType can,
2262                      ArraySizeModifier sm, unsigned tq)
2263    : ArrayType(IncompleteArray, et, can, sm, tq,
2264                et->containsUnexpandedParameterPack()) {}
2265  friend class ASTContext;  // ASTContext creates these.
2266public:
2267  bool isSugared() const { return false; }
2268  QualType desugar() const { return QualType(this, 0); }
2269
2270  static bool classof(const Type *T) {
2271    return T->getTypeClass() == IncompleteArray;
2272  }
2273
2274  friend class StmtIteratorBase;
2275
2276  void Profile(llvm::FoldingSetNodeID &ID) {
2277    Profile(ID, getElementType(), getSizeModifier(),
2278            getIndexTypeCVRQualifiers());
2279  }
2280
2281  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2282                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
2283    ID.AddPointer(ET.getAsOpaquePtr());
2284    ID.AddInteger(SizeMod);
2285    ID.AddInteger(TypeQuals);
2286  }
2287};
2288
2289/// VariableArrayType - This class represents C arrays with a specified size
2290/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
2291/// Since the size expression is an arbitrary expression, we store it as such.
2292///
2293/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
2294/// should not be: two lexically equivalent variable array types could mean
2295/// different things, for example, these variables do not have the same type
2296/// dynamically:
2297///
2298/// void foo(int x) {
2299///   int Y[x];
2300///   ++x;
2301///   int Z[x];
2302/// }
2303///
2304class VariableArrayType : public ArrayType {
2305  /// SizeExpr - An assignment expression. VLA's are only permitted within
2306  /// a function block.
2307  Stmt *SizeExpr;
2308  /// Brackets - The left and right array brackets.
2309  SourceRange Brackets;
2310
2311  VariableArrayType(QualType et, QualType can, Expr *e,
2312                    ArraySizeModifier sm, unsigned tq,
2313                    SourceRange brackets)
2314    : ArrayType(VariableArray, et, can, sm, tq,
2315                et->containsUnexpandedParameterPack()),
2316      SizeExpr((Stmt*) e), Brackets(brackets) {}
2317  friend class ASTContext;  // ASTContext creates these.
2318
2319public:
2320  Expr *getSizeExpr() const {
2321    // We use C-style casts instead of cast<> here because we do not wish
2322    // to have a dependency of Type.h on Stmt.h/Expr.h.
2323    return (Expr*) SizeExpr;
2324  }
2325  SourceRange getBracketsRange() const { return Brackets; }
2326  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
2327  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
2328
2329  bool isSugared() const { return false; }
2330  QualType desugar() const { return QualType(this, 0); }
2331
2332  static bool classof(const Type *T) {
2333    return T->getTypeClass() == VariableArray;
2334  }
2335
2336  friend class StmtIteratorBase;
2337
2338  void Profile(llvm::FoldingSetNodeID &ID) {
2339    llvm_unreachable("Cannot unique VariableArrayTypes.");
2340  }
2341};
2342
2343/// DependentSizedArrayType - This type represents an array type in
2344/// C++ whose size is a value-dependent expression. For example:
2345///
2346/// \code
2347/// template<typename T, int Size>
2348/// class array {
2349///   T data[Size];
2350/// };
2351/// \endcode
2352///
2353/// For these types, we won't actually know what the array bound is
2354/// until template instantiation occurs, at which point this will
2355/// become either a ConstantArrayType or a VariableArrayType.
2356class DependentSizedArrayType : public ArrayType {
2357  const ASTContext &Context;
2358
2359  /// \brief An assignment expression that will instantiate to the
2360  /// size of the array.
2361  ///
2362  /// The expression itself might be NULL, in which case the array
2363  /// type will have its size deduced from an initializer.
2364  Stmt *SizeExpr;
2365
2366  /// Brackets - The left and right array brackets.
2367  SourceRange Brackets;
2368
2369  DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
2370                          Expr *e, ArraySizeModifier sm, unsigned tq,
2371                          SourceRange brackets);
2372
2373  friend class ASTContext;  // ASTContext creates these.
2374
2375public:
2376  Expr *getSizeExpr() const {
2377    // We use C-style casts instead of cast<> here because we do not wish
2378    // to have a dependency of Type.h on Stmt.h/Expr.h.
2379    return (Expr*) SizeExpr;
2380  }
2381  SourceRange getBracketsRange() const { return Brackets; }
2382  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
2383  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
2384
2385  bool isSugared() const { return false; }
2386  QualType desugar() const { return QualType(this, 0); }
2387
2388  static bool classof(const Type *T) {
2389    return T->getTypeClass() == DependentSizedArray;
2390  }
2391
2392  friend class StmtIteratorBase;
2393
2394
2395  void Profile(llvm::FoldingSetNodeID &ID) {
2396    Profile(ID, Context, getElementType(),
2397            getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
2398  }
2399
2400  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2401                      QualType ET, ArraySizeModifier SizeMod,
2402                      unsigned TypeQuals, Expr *E);
2403};
2404
2405/// DependentSizedExtVectorType - This type represent an extended vector type
2406/// where either the type or size is dependent. For example:
2407/// @code
2408/// template<typename T, int Size>
2409/// class vector {
2410///   typedef T __attribute__((ext_vector_type(Size))) type;
2411/// }
2412/// @endcode
2413class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
2414  const ASTContext &Context;
2415  Expr *SizeExpr;
2416  /// ElementType - The element type of the array.
2417  QualType ElementType;
2418  SourceLocation loc;
2419
2420  DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
2421                              QualType can, Expr *SizeExpr, SourceLocation loc);
2422
2423  friend class ASTContext;
2424
2425public:
2426  Expr *getSizeExpr() const { return SizeExpr; }
2427  QualType getElementType() const { return ElementType; }
2428  SourceLocation getAttributeLoc() const { return loc; }
2429
2430  bool isSugared() const { return false; }
2431  QualType desugar() const { return QualType(this, 0); }
2432
2433  static bool classof(const Type *T) {
2434    return T->getTypeClass() == DependentSizedExtVector;
2435  }
2436
2437  void Profile(llvm::FoldingSetNodeID &ID) {
2438    Profile(ID, Context, getElementType(), getSizeExpr());
2439  }
2440
2441  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2442                      QualType ElementType, Expr *SizeExpr);
2443};
2444
2445
2446/// VectorType - GCC generic vector type. This type is created using
2447/// __attribute__((vector_size(n)), where "n" specifies the vector size in
2448/// bytes; or from an Altivec __vector or vector declaration.
2449/// Since the constructor takes the number of vector elements, the
2450/// client is responsible for converting the size into the number of elements.
2451class VectorType : public Type, public llvm::FoldingSetNode {
2452public:
2453  enum VectorKind {
2454    GenericVector,  // not a target-specific vector type
2455    AltiVecVector,  // is AltiVec vector
2456    AltiVecPixel,   // is AltiVec 'vector Pixel'
2457    AltiVecBool,    // is AltiVec 'vector bool ...'
2458    NeonVector,     // is ARM Neon vector
2459    NeonPolyVector  // is ARM Neon polynomial vector
2460  };
2461protected:
2462  /// ElementType - The element type of the vector.
2463  QualType ElementType;
2464
2465  VectorType(QualType vecType, unsigned nElements, QualType canonType,
2466             VectorKind vecKind);
2467
2468  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
2469             QualType canonType, VectorKind vecKind);
2470
2471  friend class ASTContext;  // ASTContext creates these.
2472
2473public:
2474
2475  QualType getElementType() const { return ElementType; }
2476  unsigned getNumElements() const { return VectorTypeBits.NumElements; }
2477
2478  bool isSugared() const { return false; }
2479  QualType desugar() const { return QualType(this, 0); }
2480
2481  VectorKind getVectorKind() const {
2482    return VectorKind(VectorTypeBits.VecKind);
2483  }
2484
2485  void Profile(llvm::FoldingSetNodeID &ID) {
2486    Profile(ID, getElementType(), getNumElements(),
2487            getTypeClass(), getVectorKind());
2488  }
2489  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
2490                      unsigned NumElements, TypeClass TypeClass,
2491                      VectorKind VecKind) {
2492    ID.AddPointer(ElementType.getAsOpaquePtr());
2493    ID.AddInteger(NumElements);
2494    ID.AddInteger(TypeClass);
2495    ID.AddInteger(VecKind);
2496  }
2497
2498  static bool classof(const Type *T) {
2499    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
2500  }
2501};
2502
2503/// ExtVectorType - Extended vector type. This type is created using
2504/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
2505/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
2506/// class enables syntactic extensions, like Vector Components for accessing
2507/// points, colors, and textures (modeled after OpenGL Shading Language).
2508class ExtVectorType : public VectorType {
2509  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
2510    VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
2511  friend class ASTContext;  // ASTContext creates these.
2512public:
2513  static int getPointAccessorIdx(char c) {
2514    switch (c) {
2515    default: return -1;
2516    case 'x': return 0;
2517    case 'y': return 1;
2518    case 'z': return 2;
2519    case 'w': return 3;
2520    }
2521  }
2522  static int getNumericAccessorIdx(char c) {
2523    switch (c) {
2524      default: return -1;
2525      case '0': return 0;
2526      case '1': return 1;
2527      case '2': return 2;
2528      case '3': return 3;
2529      case '4': return 4;
2530      case '5': return 5;
2531      case '6': return 6;
2532      case '7': return 7;
2533      case '8': return 8;
2534      case '9': return 9;
2535      case 'A':
2536      case 'a': return 10;
2537      case 'B':
2538      case 'b': return 11;
2539      case 'C':
2540      case 'c': return 12;
2541      case 'D':
2542      case 'd': return 13;
2543      case 'E':
2544      case 'e': return 14;
2545      case 'F':
2546      case 'f': return 15;
2547    }
2548  }
2549
2550  static int getAccessorIdx(char c) {
2551    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
2552    return getNumericAccessorIdx(c);
2553  }
2554
2555  bool isAccessorWithinNumElements(char c) const {
2556    if (int idx = getAccessorIdx(c)+1)
2557      return unsigned(idx-1) < getNumElements();
2558    return false;
2559  }
2560  bool isSugared() const { return false; }
2561  QualType desugar() const { return QualType(this, 0); }
2562
2563  static bool classof(const Type *T) {
2564    return T->getTypeClass() == ExtVector;
2565  }
2566};
2567
2568/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
2569/// class of FunctionNoProtoType and FunctionProtoType.
2570///
2571class FunctionType : public Type {
2572  // The type returned by the function.
2573  QualType ResultType;
2574
2575 public:
2576  /// ExtInfo - A class which abstracts out some details necessary for
2577  /// making a call.
2578  ///
2579  /// It is not actually used directly for storing this information in
2580  /// a FunctionType, although FunctionType does currently use the
2581  /// same bit-pattern.
2582  ///
2583  // If you add a field (say Foo), other than the obvious places (both,
2584  // constructors, compile failures), what you need to update is
2585  // * Operator==
2586  // * getFoo
2587  // * withFoo
2588  // * functionType. Add Foo, getFoo.
2589  // * ASTContext::getFooType
2590  // * ASTContext::mergeFunctionTypes
2591  // * FunctionNoProtoType::Profile
2592  // * FunctionProtoType::Profile
2593  // * TypePrinter::PrintFunctionProto
2594  // * AST read and write
2595  // * Codegen
2596  class ExtInfo {
2597    // Feel free to rearrange or add bits, but if you go over 9,
2598    // you'll need to adjust both the Bits field below and
2599    // Type::FunctionTypeBitfields.
2600
2601    //   |  CC  |noreturn|produces|regparm|
2602    //   |0 .. 3|   4    |    5   | 6 .. 8|
2603    //
2604    // regparm is either 0 (no regparm attribute) or the regparm value+1.
2605    enum { CallConvMask = 0xF };
2606    enum { NoReturnMask = 0x10 };
2607    enum { ProducesResultMask = 0x20 };
2608    enum { RegParmMask = ~(CallConvMask | NoReturnMask | ProducesResultMask),
2609           RegParmOffset = 6 }; // Assumed to be the last field
2610
2611    uint16_t Bits;
2612
2613    ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
2614
2615    friend class FunctionType;
2616
2617   public:
2618    // Constructor with no defaults. Use this when you know that you
2619    // have all the elements (when reading an AST file for example).
2620    ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
2621            bool producesResult) {
2622      assert((!hasRegParm || regParm < 7) && "Invalid regparm value");
2623      Bits = ((unsigned) cc) |
2624             (noReturn ? NoReturnMask : 0) |
2625             (producesResult ? ProducesResultMask : 0) |
2626             (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0);
2627    }
2628
2629    // Constructor with all defaults. Use when for example creating a
2630    // function know to use defaults.
2631    ExtInfo() : Bits(0) {}
2632
2633    bool getNoReturn() const { return Bits & NoReturnMask; }
2634    bool getProducesResult() const { return Bits & ProducesResultMask; }
2635    bool getHasRegParm() const { return (Bits >> RegParmOffset) != 0; }
2636    unsigned getRegParm() const {
2637      unsigned RegParm = Bits >> RegParmOffset;
2638      if (RegParm > 0)
2639        --RegParm;
2640      return RegParm;
2641    }
2642    CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
2643
2644    bool operator==(ExtInfo Other) const {
2645      return Bits == Other.Bits;
2646    }
2647    bool operator!=(ExtInfo Other) const {
2648      return Bits != Other.Bits;
2649    }
2650
2651    // Note that we don't have setters. That is by design, use
2652    // the following with methods instead of mutating these objects.
2653
2654    ExtInfo withNoReturn(bool noReturn) const {
2655      if (noReturn)
2656        return ExtInfo(Bits | NoReturnMask);
2657      else
2658        return ExtInfo(Bits & ~NoReturnMask);
2659    }
2660
2661    ExtInfo withProducesResult(bool producesResult) const {
2662      if (producesResult)
2663        return ExtInfo(Bits | ProducesResultMask);
2664      else
2665        return ExtInfo(Bits & ~ProducesResultMask);
2666    }
2667
2668    ExtInfo withRegParm(unsigned RegParm) const {
2669      assert(RegParm < 7 && "Invalid regparm value");
2670      return ExtInfo((Bits & ~RegParmMask) |
2671                     ((RegParm + 1) << RegParmOffset));
2672    }
2673
2674    ExtInfo withCallingConv(CallingConv cc) const {
2675      return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
2676    }
2677
2678    void Profile(llvm::FoldingSetNodeID &ID) const {
2679      ID.AddInteger(Bits);
2680    }
2681  };
2682
2683protected:
2684  FunctionType(TypeClass tc, QualType res,
2685               unsigned typeQuals, QualType Canonical, bool Dependent,
2686               bool InstantiationDependent,
2687               bool VariablyModified, bool ContainsUnexpandedParameterPack,
2688               ExtInfo Info)
2689    : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
2690           ContainsUnexpandedParameterPack),
2691      ResultType(res) {
2692    FunctionTypeBits.ExtInfo = Info.Bits;
2693    FunctionTypeBits.TypeQuals = typeQuals;
2694  }
2695  unsigned getTypeQuals() const { return FunctionTypeBits.TypeQuals; }
2696
2697public:
2698
2699  QualType getResultType() const { return ResultType; }
2700
2701  bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
2702  unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
2703  /// \brief Determine whether this function type includes the GNU noreturn
2704  /// attribute. The C++11 [[noreturn]] attribute does not affect the function
2705  /// type.
2706  bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
2707  CallingConv getCallConv() const { return getExtInfo().getCC(); }
2708  ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
2709  bool isConst() const { return getTypeQuals() & Qualifiers::Const; }
2710  bool isVolatile() const { return getTypeQuals() & Qualifiers::Volatile; }
2711  bool isRestrict() const { return getTypeQuals() & Qualifiers::Restrict; }
2712
2713  /// \brief Determine the type of an expression that calls a function of
2714  /// this type.
2715  QualType getCallResultType(ASTContext &Context) const {
2716    return getResultType().getNonLValueExprType(Context);
2717  }
2718
2719  static StringRef getNameForCallConv(CallingConv CC);
2720
2721  static bool classof(const Type *T) {
2722    return T->getTypeClass() == FunctionNoProto ||
2723           T->getTypeClass() == FunctionProto;
2724  }
2725};
2726
2727/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
2728/// no information available about its arguments.
2729class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
2730  FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
2731    : FunctionType(FunctionNoProto, Result, 0, Canonical,
2732                   /*Dependent=*/false, /*InstantiationDependent=*/false,
2733                   Result->isVariablyModifiedType(),
2734                   /*ContainsUnexpandedParameterPack=*/false, Info) {}
2735
2736  friend class ASTContext;  // ASTContext creates these.
2737
2738public:
2739  // No additional state past what FunctionType provides.
2740
2741  bool isSugared() const { return false; }
2742  QualType desugar() const { return QualType(this, 0); }
2743
2744  void Profile(llvm::FoldingSetNodeID &ID) {
2745    Profile(ID, getResultType(), getExtInfo());
2746  }
2747  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
2748                      ExtInfo Info) {
2749    Info.Profile(ID);
2750    ID.AddPointer(ResultType.getAsOpaquePtr());
2751  }
2752
2753  static bool classof(const Type *T) {
2754    return T->getTypeClass() == FunctionNoProto;
2755  }
2756};
2757
2758/// FunctionProtoType - Represents a prototype with argument type info, e.g.
2759/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
2760/// arguments, not as having a single void argument. Such a type can have an
2761/// exception specification, but this specification is not part of the canonical
2762/// type.
2763class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
2764public:
2765  /// ExtProtoInfo - Extra information about a function prototype.
2766  struct ExtProtoInfo {
2767    ExtProtoInfo() :
2768      Variadic(false), HasTrailingReturn(false), TypeQuals(0),
2769      ExceptionSpecType(EST_None), RefQualifier(RQ_None),
2770      NumExceptions(0), Exceptions(0), NoexceptExpr(0),
2771      ExceptionSpecDecl(0), ExceptionSpecTemplate(0),
2772      ConsumedArguments(0) {}
2773
2774    FunctionType::ExtInfo ExtInfo;
2775    bool Variadic : 1;
2776    bool HasTrailingReturn : 1;
2777    unsigned char TypeQuals;
2778    ExceptionSpecificationType ExceptionSpecType;
2779    RefQualifierKind RefQualifier;
2780    unsigned NumExceptions;
2781    const QualType *Exceptions;
2782    Expr *NoexceptExpr;
2783    FunctionDecl *ExceptionSpecDecl;
2784    FunctionDecl *ExceptionSpecTemplate;
2785    const bool *ConsumedArguments;
2786  };
2787
2788private:
2789  /// \brief Determine whether there are any argument types that
2790  /// contain an unexpanded parameter pack.
2791  static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
2792                                                 unsigned numArgs) {
2793    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
2794      if (ArgArray[Idx]->containsUnexpandedParameterPack())
2795        return true;
2796
2797    return false;
2798  }
2799
2800  FunctionProtoType(QualType result, ArrayRef<QualType> args,
2801                    QualType canonical, const ExtProtoInfo &epi);
2802
2803  /// NumArgs - The number of arguments this function has, not counting '...'.
2804  unsigned NumArgs : 15;
2805
2806  /// NumExceptions - The number of types in the exception spec, if any.
2807  unsigned NumExceptions : 9;
2808
2809  /// ExceptionSpecType - The type of exception specification this function has.
2810  unsigned ExceptionSpecType : 3;
2811
2812  /// HasAnyConsumedArgs - Whether this function has any consumed arguments.
2813  unsigned HasAnyConsumedArgs : 1;
2814
2815  /// Variadic - Whether the function is variadic.
2816  unsigned Variadic : 1;
2817
2818  /// HasTrailingReturn - Whether this function has a trailing return type.
2819  unsigned HasTrailingReturn : 1;
2820
2821  /// \brief The ref-qualifier associated with a \c FunctionProtoType.
2822  ///
2823  /// This is a value of type \c RefQualifierKind.
2824  unsigned RefQualifier : 2;
2825
2826  // ArgInfo - There is an variable size array after the class in memory that
2827  // holds the argument types.
2828
2829  // Exceptions - There is another variable size array after ArgInfo that
2830  // holds the exception types.
2831
2832  // NoexceptExpr - Instead of Exceptions, there may be a single Expr* pointing
2833  // to the expression in the noexcept() specifier.
2834
2835  // ExceptionSpecDecl, ExceptionSpecTemplate - Instead of Exceptions, there may
2836  // be a pair of FunctionDecl* pointing to the function which should be used to
2837  // instantiate this function type's exception specification, and the function
2838  // from which it should be instantiated.
2839
2840  // ConsumedArgs - A variable size array, following Exceptions
2841  // and of length NumArgs, holding flags indicating which arguments
2842  // are consumed.  This only appears if HasAnyConsumedArgs is true.
2843
2844  friend class ASTContext;  // ASTContext creates these.
2845
2846  const bool *getConsumedArgsBuffer() const {
2847    assert(hasAnyConsumedArgs());
2848
2849    // Find the end of the exceptions.
2850    Expr * const *eh_end = reinterpret_cast<Expr * const *>(arg_type_end());
2851    if (getExceptionSpecType() != EST_ComputedNoexcept)
2852      eh_end += NumExceptions;
2853    else
2854      eh_end += 1; // NoexceptExpr
2855
2856    return reinterpret_cast<const bool*>(eh_end);
2857  }
2858
2859public:
2860  unsigned getNumArgs() const { return NumArgs; }
2861  QualType getArgType(unsigned i) const {
2862    assert(i < NumArgs && "Invalid argument number!");
2863    return arg_type_begin()[i];
2864  }
2865
2866  ExtProtoInfo getExtProtoInfo() const {
2867    ExtProtoInfo EPI;
2868    EPI.ExtInfo = getExtInfo();
2869    EPI.Variadic = isVariadic();
2870    EPI.HasTrailingReturn = hasTrailingReturn();
2871    EPI.ExceptionSpecType = getExceptionSpecType();
2872    EPI.TypeQuals = static_cast<unsigned char>(getTypeQuals());
2873    EPI.RefQualifier = getRefQualifier();
2874    if (EPI.ExceptionSpecType == EST_Dynamic) {
2875      EPI.NumExceptions = NumExceptions;
2876      EPI.Exceptions = exception_begin();
2877    } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2878      EPI.NoexceptExpr = getNoexceptExpr();
2879    } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
2880      EPI.ExceptionSpecDecl = getExceptionSpecDecl();
2881      EPI.ExceptionSpecTemplate = getExceptionSpecTemplate();
2882    } else if (EPI.ExceptionSpecType == EST_Unevaluated) {
2883      EPI.ExceptionSpecDecl = getExceptionSpecDecl();
2884    }
2885    if (hasAnyConsumedArgs())
2886      EPI.ConsumedArguments = getConsumedArgsBuffer();
2887    return EPI;
2888  }
2889
2890  /// \brief Get the kind of exception specification on this function.
2891  ExceptionSpecificationType getExceptionSpecType() const {
2892    return static_cast<ExceptionSpecificationType>(ExceptionSpecType);
2893  }
2894  /// \brief Return whether this function has any kind of exception spec.
2895  bool hasExceptionSpec() const {
2896    return getExceptionSpecType() != EST_None;
2897  }
2898  /// \brief Return whether this function has a dynamic (throw) exception spec.
2899  bool hasDynamicExceptionSpec() const {
2900    return isDynamicExceptionSpec(getExceptionSpecType());
2901  }
2902  /// \brief Return whether this function has a noexcept exception spec.
2903  bool hasNoexceptExceptionSpec() const {
2904    return isNoexceptExceptionSpec(getExceptionSpecType());
2905  }
2906  /// \brief Result type of getNoexceptSpec().
2907  enum NoexceptResult {
2908    NR_NoNoexcept,  ///< There is no noexcept specifier.
2909    NR_BadNoexcept, ///< The noexcept specifier has a bad expression.
2910    NR_Dependent,   ///< The noexcept specifier is dependent.
2911    NR_Throw,       ///< The noexcept specifier evaluates to false.
2912    NR_Nothrow      ///< The noexcept specifier evaluates to true.
2913  };
2914  /// \brief Get the meaning of the noexcept spec on this function, if any.
2915  NoexceptResult getNoexceptSpec(ASTContext &Ctx) const;
2916  unsigned getNumExceptions() const { return NumExceptions; }
2917  QualType getExceptionType(unsigned i) const {
2918    assert(i < NumExceptions && "Invalid exception number!");
2919    return exception_begin()[i];
2920  }
2921  Expr *getNoexceptExpr() const {
2922    if (getExceptionSpecType() != EST_ComputedNoexcept)
2923      return 0;
2924    // NoexceptExpr sits where the arguments end.
2925    return *reinterpret_cast<Expr *const *>(arg_type_end());
2926  }
2927  /// \brief If this function type has an exception specification which hasn't
2928  /// been determined yet (either because it has not been evaluated or because
2929  /// it has not been instantiated), this is the function whose exception
2930  /// specification is represented by this type.
2931  FunctionDecl *getExceptionSpecDecl() const {
2932    if (getExceptionSpecType() != EST_Uninstantiated &&
2933        getExceptionSpecType() != EST_Unevaluated)
2934      return 0;
2935    return reinterpret_cast<FunctionDecl * const *>(arg_type_end())[0];
2936  }
2937  /// \brief If this function type has an uninstantiated exception
2938  /// specification, this is the function whose exception specification
2939  /// should be instantiated to find the exception specification for
2940  /// this type.
2941  FunctionDecl *getExceptionSpecTemplate() const {
2942    if (getExceptionSpecType() != EST_Uninstantiated)
2943      return 0;
2944    return reinterpret_cast<FunctionDecl * const *>(arg_type_end())[1];
2945  }
2946  bool isNothrow(ASTContext &Ctx) const {
2947    ExceptionSpecificationType EST = getExceptionSpecType();
2948    assert(EST != EST_Unevaluated && EST != EST_Uninstantiated);
2949    if (EST == EST_DynamicNone || EST == EST_BasicNoexcept)
2950      return true;
2951    if (EST != EST_ComputedNoexcept)
2952      return false;
2953    return getNoexceptSpec(Ctx) == NR_Nothrow;
2954  }
2955
2956  bool isVariadic() const { return Variadic; }
2957
2958  /// \brief Determines whether this function prototype contains a
2959  /// parameter pack at the end.
2960  ///
2961  /// A function template whose last parameter is a parameter pack can be
2962  /// called with an arbitrary number of arguments, much like a variadic
2963  /// function.
2964  bool isTemplateVariadic() const;
2965
2966  bool hasTrailingReturn() const { return HasTrailingReturn; }
2967
2968  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
2969
2970
2971  /// \brief Retrieve the ref-qualifier associated with this function type.
2972  RefQualifierKind getRefQualifier() const {
2973    return static_cast<RefQualifierKind>(RefQualifier);
2974  }
2975
2976  typedef const QualType *arg_type_iterator;
2977  arg_type_iterator arg_type_begin() const {
2978    return reinterpret_cast<const QualType *>(this+1);
2979  }
2980  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
2981
2982  typedef const QualType *exception_iterator;
2983  exception_iterator exception_begin() const {
2984    // exceptions begin where arguments end
2985    return arg_type_end();
2986  }
2987  exception_iterator exception_end() const {
2988    if (getExceptionSpecType() != EST_Dynamic)
2989      return exception_begin();
2990    return exception_begin() + NumExceptions;
2991  }
2992
2993  bool hasAnyConsumedArgs() const {
2994    return HasAnyConsumedArgs;
2995  }
2996  bool isArgConsumed(unsigned I) const {
2997    assert(I < getNumArgs() && "argument index out of range!");
2998    if (hasAnyConsumedArgs())
2999      return getConsumedArgsBuffer()[I];
3000    return false;
3001  }
3002
3003  bool isSugared() const { return false; }
3004  QualType desugar() const { return QualType(this, 0); }
3005
3006  void printExceptionSpecification(raw_ostream &OS,
3007                                   const PrintingPolicy &Policy) const;
3008
3009  static bool classof(const Type *T) {
3010    return T->getTypeClass() == FunctionProto;
3011  }
3012
3013  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
3014  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
3015                      arg_type_iterator ArgTys, unsigned NumArgs,
3016                      const ExtProtoInfo &EPI, const ASTContext &Context);
3017};
3018
3019
3020/// \brief Represents the dependent type named by a dependently-scoped
3021/// typename using declaration, e.g.
3022///   using typename Base<T>::foo;
3023/// Template instantiation turns these into the underlying type.
3024class UnresolvedUsingType : public Type {
3025  UnresolvedUsingTypenameDecl *Decl;
3026
3027  UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
3028    : Type(UnresolvedUsing, QualType(), true, true, false,
3029           /*ContainsUnexpandedParameterPack=*/false),
3030      Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
3031  friend class ASTContext; // ASTContext creates these.
3032public:
3033
3034  UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
3035
3036  bool isSugared() const { return false; }
3037  QualType desugar() const { return QualType(this, 0); }
3038
3039  static bool classof(const Type *T) {
3040    return T->getTypeClass() == UnresolvedUsing;
3041  }
3042
3043  void Profile(llvm::FoldingSetNodeID &ID) {
3044    return Profile(ID, Decl);
3045  }
3046  static void Profile(llvm::FoldingSetNodeID &ID,
3047                      UnresolvedUsingTypenameDecl *D) {
3048    ID.AddPointer(D);
3049  }
3050};
3051
3052
3053class TypedefType : public Type {
3054  TypedefNameDecl *Decl;
3055protected:
3056  TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType can)
3057    : Type(tc, can, can->isDependentType(),
3058           can->isInstantiationDependentType(),
3059           can->isVariablyModifiedType(),
3060           /*ContainsUnexpandedParameterPack=*/false),
3061      Decl(const_cast<TypedefNameDecl*>(D)) {
3062    assert(!isa<TypedefType>(can) && "Invalid canonical type");
3063  }
3064  friend class ASTContext;  // ASTContext creates these.
3065public:
3066
3067  TypedefNameDecl *getDecl() const { return Decl; }
3068
3069  bool isSugared() const { return true; }
3070  QualType desugar() const;
3071
3072  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
3073};
3074
3075/// TypeOfExprType (GCC extension).
3076class TypeOfExprType : public Type {
3077  Expr *TOExpr;
3078
3079protected:
3080  TypeOfExprType(Expr *E, QualType can = QualType());
3081  friend class ASTContext;  // ASTContext creates these.
3082public:
3083  Expr *getUnderlyingExpr() const { return TOExpr; }
3084
3085  /// \brief Remove a single level of sugar.
3086  QualType desugar() const;
3087
3088  /// \brief Returns whether this type directly provides sugar.
3089  bool isSugared() const;
3090
3091  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
3092};
3093
3094/// \brief Internal representation of canonical, dependent
3095/// typeof(expr) types.
3096///
3097/// This class is used internally by the ASTContext to manage
3098/// canonical, dependent types, only. Clients will only see instances
3099/// of this class via TypeOfExprType nodes.
3100class DependentTypeOfExprType
3101  : public TypeOfExprType, public llvm::FoldingSetNode {
3102  const ASTContext &Context;
3103
3104public:
3105  DependentTypeOfExprType(const ASTContext &Context, Expr *E)
3106    : TypeOfExprType(E), Context(Context) { }
3107
3108  void Profile(llvm::FoldingSetNodeID &ID) {
3109    Profile(ID, Context, getUnderlyingExpr());
3110  }
3111
3112  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3113                      Expr *E);
3114};
3115
3116/// TypeOfType (GCC extension).
3117class TypeOfType : public Type {
3118  QualType TOType;
3119  TypeOfType(QualType T, QualType can)
3120    : Type(TypeOf, can, T->isDependentType(),
3121           T->isInstantiationDependentType(),
3122           T->isVariablyModifiedType(),
3123           T->containsUnexpandedParameterPack()),
3124      TOType(T) {
3125    assert(!isa<TypedefType>(can) && "Invalid canonical type");
3126  }
3127  friend class ASTContext;  // ASTContext creates these.
3128public:
3129  QualType getUnderlyingType() const { return TOType; }
3130
3131  /// \brief Remove a single level of sugar.
3132  QualType desugar() const { return getUnderlyingType(); }
3133
3134  /// \brief Returns whether this type directly provides sugar.
3135  bool isSugared() const { return true; }
3136
3137  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
3138};
3139
3140/// DecltypeType (C++0x)
3141class DecltypeType : public Type {
3142  Expr *E;
3143  QualType UnderlyingType;
3144
3145protected:
3146  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
3147  friend class ASTContext;  // ASTContext creates these.
3148public:
3149  Expr *getUnderlyingExpr() const { return E; }
3150  QualType getUnderlyingType() const { return UnderlyingType; }
3151
3152  /// \brief Remove a single level of sugar.
3153  QualType desugar() const;
3154
3155  /// \brief Returns whether this type directly provides sugar.
3156  bool isSugared() const;
3157
3158  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
3159};
3160
3161/// \brief Internal representation of canonical, dependent
3162/// decltype(expr) types.
3163///
3164/// This class is used internally by the ASTContext to manage
3165/// canonical, dependent types, only. Clients will only see instances
3166/// of this class via DecltypeType nodes.
3167class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
3168  const ASTContext &Context;
3169
3170public:
3171  DependentDecltypeType(const ASTContext &Context, Expr *E);
3172
3173  void Profile(llvm::FoldingSetNodeID &ID) {
3174    Profile(ID, Context, getUnderlyingExpr());
3175  }
3176
3177  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3178                      Expr *E);
3179};
3180
3181/// \brief A unary type transform, which is a type constructed from another
3182class UnaryTransformType : public Type {
3183public:
3184  enum UTTKind {
3185    EnumUnderlyingType
3186  };
3187
3188private:
3189  /// The untransformed type.
3190  QualType BaseType;
3191  /// The transformed type if not dependent, otherwise the same as BaseType.
3192  QualType UnderlyingType;
3193
3194  UTTKind UKind;
3195protected:
3196  UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
3197                     QualType CanonicalTy);
3198  friend class ASTContext;
3199public:
3200  bool isSugared() const { return !isDependentType(); }
3201  QualType desugar() const { return UnderlyingType; }
3202
3203  QualType getUnderlyingType() const { return UnderlyingType; }
3204  QualType getBaseType() const { return BaseType; }
3205
3206  UTTKind getUTTKind() const { return UKind; }
3207
3208  static bool classof(const Type *T) {
3209    return T->getTypeClass() == UnaryTransform;
3210  }
3211};
3212
3213class TagType : public Type {
3214  /// Stores the TagDecl associated with this type. The decl may point to any
3215  /// TagDecl that declares the entity.
3216  TagDecl * decl;
3217
3218  friend class ASTReader;
3219
3220protected:
3221  TagType(TypeClass TC, const TagDecl *D, QualType can);
3222
3223public:
3224  TagDecl *getDecl() const;
3225
3226  /// @brief Determines whether this type is in the process of being
3227  /// defined.
3228  bool isBeingDefined() const;
3229
3230  static bool classof(const Type *T) {
3231    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
3232  }
3233};
3234
3235/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
3236/// to detect TagType objects of structs/unions/classes.
3237class RecordType : public TagType {
3238protected:
3239  explicit RecordType(const RecordDecl *D)
3240    : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3241  explicit RecordType(TypeClass TC, RecordDecl *D)
3242    : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3243  friend class ASTContext;   // ASTContext creates these.
3244public:
3245
3246  RecordDecl *getDecl() const {
3247    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
3248  }
3249
3250  // FIXME: This predicate is a helper to QualType/Type. It needs to
3251  // recursively check all fields for const-ness. If any field is declared
3252  // const, it needs to return false.
3253  bool hasConstFields() const { return false; }
3254
3255  bool isSugared() const { return false; }
3256  QualType desugar() const { return QualType(this, 0); }
3257
3258  static bool classof(const Type *T) { return T->getTypeClass() == Record; }
3259};
3260
3261/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
3262/// to detect TagType objects of enums.
3263class EnumType : public TagType {
3264  explicit EnumType(const EnumDecl *D)
3265    : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3266  friend class ASTContext;   // ASTContext creates these.
3267public:
3268
3269  EnumDecl *getDecl() const {
3270    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
3271  }
3272
3273  bool isSugared() const { return false; }
3274  QualType desugar() const { return QualType(this, 0); }
3275
3276  static bool classof(const Type *T) { return T->getTypeClass() == Enum; }
3277};
3278
3279/// AttributedType - An attributed type is a type to which a type
3280/// attribute has been applied.  The "modified type" is the
3281/// fully-sugared type to which the attributed type was applied;
3282/// generally it is not canonically equivalent to the attributed type.
3283/// The "equivalent type" is the minimally-desugared type which the
3284/// type is canonically equivalent to.
3285///
3286/// For example, in the following attributed type:
3287///     int32_t __attribute__((vector_size(16)))
3288///   - the modified type is the TypedefType for int32_t
3289///   - the equivalent type is VectorType(16, int32_t)
3290///   - the canonical type is VectorType(16, int)
3291class AttributedType : public Type, public llvm::FoldingSetNode {
3292public:
3293  // It is really silly to have yet another attribute-kind enum, but
3294  // clang::attr::Kind doesn't currently cover the pure type attrs.
3295  enum Kind {
3296    // Expression operand.
3297    attr_address_space,
3298    attr_regparm,
3299    attr_vector_size,
3300    attr_neon_vector_type,
3301    attr_neon_polyvector_type,
3302
3303    FirstExprOperandKind = attr_address_space,
3304    LastExprOperandKind = attr_neon_polyvector_type,
3305
3306    // Enumerated operand (string or keyword).
3307    attr_objc_gc,
3308    attr_objc_ownership,
3309    attr_pcs,
3310
3311    FirstEnumOperandKind = attr_objc_gc,
3312    LastEnumOperandKind = attr_pcs,
3313
3314    // No operand.
3315    attr_noreturn,
3316    attr_cdecl,
3317    attr_fastcall,
3318    attr_stdcall,
3319    attr_thiscall,
3320    attr_pascal,
3321    attr_pnaclcall,
3322    attr_inteloclbicc
3323  };
3324
3325private:
3326  QualType ModifiedType;
3327  QualType EquivalentType;
3328
3329  friend class ASTContext; // creates these
3330
3331  AttributedType(QualType canon, Kind attrKind,
3332                 QualType modified, QualType equivalent)
3333    : Type(Attributed, canon, canon->isDependentType(),
3334           canon->isInstantiationDependentType(),
3335           canon->isVariablyModifiedType(),
3336           canon->containsUnexpandedParameterPack()),
3337      ModifiedType(modified), EquivalentType(equivalent) {
3338    AttributedTypeBits.AttrKind = attrKind;
3339  }
3340
3341public:
3342  Kind getAttrKind() const {
3343    return static_cast<Kind>(AttributedTypeBits.AttrKind);
3344  }
3345
3346  QualType getModifiedType() const { return ModifiedType; }
3347  QualType getEquivalentType() const { return EquivalentType; }
3348
3349  bool isSugared() const { return true; }
3350  QualType desugar() const { return getEquivalentType(); }
3351
3352  void Profile(llvm::FoldingSetNodeID &ID) {
3353    Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
3354  }
3355
3356  static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
3357                      QualType modified, QualType equivalent) {
3358    ID.AddInteger(attrKind);
3359    ID.AddPointer(modified.getAsOpaquePtr());
3360    ID.AddPointer(equivalent.getAsOpaquePtr());
3361  }
3362
3363  static bool classof(const Type *T) {
3364    return T->getTypeClass() == Attributed;
3365  }
3366};
3367
3368class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
3369  // Helper data collector for canonical types.
3370  struct CanonicalTTPTInfo {
3371    unsigned Depth : 15;
3372    unsigned ParameterPack : 1;
3373    unsigned Index : 16;
3374  };
3375
3376  union {
3377    // Info for the canonical type.
3378    CanonicalTTPTInfo CanTTPTInfo;
3379    // Info for the non-canonical type.
3380    TemplateTypeParmDecl *TTPDecl;
3381  };
3382
3383  /// Build a non-canonical type.
3384  TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
3385    : Type(TemplateTypeParm, Canon, /*Dependent=*/true,
3386           /*InstantiationDependent=*/true,
3387           /*VariablyModified=*/false,
3388           Canon->containsUnexpandedParameterPack()),
3389      TTPDecl(TTPDecl) { }
3390
3391  /// Build the canonical type.
3392  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
3393    : Type(TemplateTypeParm, QualType(this, 0),
3394           /*Dependent=*/true,
3395           /*InstantiationDependent=*/true,
3396           /*VariablyModified=*/false, PP) {
3397    CanTTPTInfo.Depth = D;
3398    CanTTPTInfo.Index = I;
3399    CanTTPTInfo.ParameterPack = PP;
3400  }
3401
3402  friend class ASTContext;  // ASTContext creates these
3403
3404  const CanonicalTTPTInfo& getCanTTPTInfo() const {
3405    QualType Can = getCanonicalTypeInternal();
3406    return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
3407  }
3408
3409public:
3410  unsigned getDepth() const { return getCanTTPTInfo().Depth; }
3411  unsigned getIndex() const { return getCanTTPTInfo().Index; }
3412  bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
3413
3414  TemplateTypeParmDecl *getDecl() const {
3415    return isCanonicalUnqualified() ? 0 : TTPDecl;
3416  }
3417
3418  IdentifierInfo *getIdentifier() const;
3419
3420  bool isSugared() const { return false; }
3421  QualType desugar() const { return QualType(this, 0); }
3422
3423  void Profile(llvm::FoldingSetNodeID &ID) {
3424    Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
3425  }
3426
3427  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
3428                      unsigned Index, bool ParameterPack,
3429                      TemplateTypeParmDecl *TTPDecl) {
3430    ID.AddInteger(Depth);
3431    ID.AddInteger(Index);
3432    ID.AddBoolean(ParameterPack);
3433    ID.AddPointer(TTPDecl);
3434  }
3435
3436  static bool classof(const Type *T) {
3437    return T->getTypeClass() == TemplateTypeParm;
3438  }
3439};
3440
3441/// \brief Represents the result of substituting a type for a template
3442/// type parameter.
3443///
3444/// Within an instantiated template, all template type parameters have
3445/// been replaced with these.  They are used solely to record that a
3446/// type was originally written as a template type parameter;
3447/// therefore they are never canonical.
3448class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
3449  // The original type parameter.
3450  const TemplateTypeParmType *Replaced;
3451
3452  SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
3453    : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(),
3454           Canon->isInstantiationDependentType(),
3455           Canon->isVariablyModifiedType(),
3456           Canon->containsUnexpandedParameterPack()),
3457      Replaced(Param) { }
3458
3459  friend class ASTContext;
3460
3461public:
3462  /// Gets the template parameter that was substituted for.
3463  const TemplateTypeParmType *getReplacedParameter() const {
3464    return Replaced;
3465  }
3466
3467  /// Gets the type that was substituted for the template
3468  /// parameter.
3469  QualType getReplacementType() const {
3470    return getCanonicalTypeInternal();
3471  }
3472
3473  bool isSugared() const { return true; }
3474  QualType desugar() const { return getReplacementType(); }
3475
3476  void Profile(llvm::FoldingSetNodeID &ID) {
3477    Profile(ID, getReplacedParameter(), getReplacementType());
3478  }
3479  static void Profile(llvm::FoldingSetNodeID &ID,
3480                      const TemplateTypeParmType *Replaced,
3481                      QualType Replacement) {
3482    ID.AddPointer(Replaced);
3483    ID.AddPointer(Replacement.getAsOpaquePtr());
3484  }
3485
3486  static bool classof(const Type *T) {
3487    return T->getTypeClass() == SubstTemplateTypeParm;
3488  }
3489};
3490
3491/// \brief Represents the result of substituting a set of types for a template
3492/// type parameter pack.
3493///
3494/// When a pack expansion in the source code contains multiple parameter packs
3495/// and those parameter packs correspond to different levels of template
3496/// parameter lists, this type node is used to represent a template type
3497/// parameter pack from an outer level, which has already had its argument pack
3498/// substituted but that still lives within a pack expansion that itself
3499/// could not be instantiated. When actually performing a substitution into
3500/// that pack expansion (e.g., when all template parameters have corresponding
3501/// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
3502/// at the current pack substitution index.
3503class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
3504  /// \brief The original type parameter.
3505  const TemplateTypeParmType *Replaced;
3506
3507  /// \brief A pointer to the set of template arguments that this
3508  /// parameter pack is instantiated with.
3509  const TemplateArgument *Arguments;
3510
3511  /// \brief The number of template arguments in \c Arguments.
3512  unsigned NumArguments;
3513
3514  SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
3515                                QualType Canon,
3516                                const TemplateArgument &ArgPack);
3517
3518  friend class ASTContext;
3519
3520public:
3521  IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }
3522
3523  /// Gets the template parameter that was substituted for.
3524  const TemplateTypeParmType *getReplacedParameter() const {
3525    return Replaced;
3526  }
3527
3528  bool isSugared() const { return false; }
3529  QualType desugar() const { return QualType(this, 0); }
3530
3531  TemplateArgument getArgumentPack() const;
3532
3533  void Profile(llvm::FoldingSetNodeID &ID);
3534  static void Profile(llvm::FoldingSetNodeID &ID,
3535                      const TemplateTypeParmType *Replaced,
3536                      const TemplateArgument &ArgPack);
3537
3538  static bool classof(const Type *T) {
3539    return T->getTypeClass() == SubstTemplateTypeParmPack;
3540  }
3541};
3542
3543/// \brief Represents a C++0x auto type.
3544///
3545/// These types are usually a placeholder for a deduced type. However, within
3546/// templates and before the initializer is attached, there is no deduced type
3547/// and an auto type is type-dependent and canonical.
3548class AutoType : public Type, public llvm::FoldingSetNode {
3549  AutoType(QualType DeducedType)
3550    : Type(Auto, DeducedType.isNull() ? QualType(this, 0) : DeducedType,
3551           /*Dependent=*/DeducedType.isNull(),
3552           /*InstantiationDependent=*/DeducedType.isNull(),
3553           /*VariablyModified=*/false, /*ContainsParameterPack=*/false) {
3554    assert((DeducedType.isNull() || !DeducedType->isDependentType()) &&
3555           "deduced a dependent type for auto");
3556  }
3557
3558  friend class ASTContext;  // ASTContext creates these
3559
3560public:
3561  bool isSugared() const { return isDeduced(); }
3562  QualType desugar() const { return getCanonicalTypeInternal(); }
3563
3564  QualType getDeducedType() const {
3565    return isDeduced() ? getCanonicalTypeInternal() : QualType();
3566  }
3567  bool isDeduced() const {
3568    return !isDependentType();
3569  }
3570
3571  void Profile(llvm::FoldingSetNodeID &ID) {
3572    Profile(ID, getDeducedType());
3573  }
3574
3575  static void Profile(llvm::FoldingSetNodeID &ID,
3576                      QualType Deduced) {
3577    ID.AddPointer(Deduced.getAsOpaquePtr());
3578  }
3579
3580  static bool classof(const Type *T) {
3581    return T->getTypeClass() == Auto;
3582  }
3583};
3584
3585/// \brief Represents a type template specialization; the template
3586/// must be a class template, a type alias template, or a template
3587/// template parameter.  A template which cannot be resolved to one of
3588/// these, e.g. because it is written with a dependent scope
3589/// specifier, is instead represented as a
3590/// @c DependentTemplateSpecializationType.
3591///
3592/// A non-dependent template specialization type is always "sugar",
3593/// typically for a @c RecordType.  For example, a class template
3594/// specialization type of @c vector<int> will refer to a tag type for
3595/// the instantiation @c std::vector<int, std::allocator<int>>
3596///
3597/// Template specializations are dependent if either the template or
3598/// any of the template arguments are dependent, in which case the
3599/// type may also be canonical.
3600///
3601/// Instances of this type are allocated with a trailing array of
3602/// TemplateArguments, followed by a QualType representing the
3603/// non-canonical aliased type when the template is a type alias
3604/// template.
3605class TemplateSpecializationType
3606  : public Type, public llvm::FoldingSetNode {
3607  /// \brief The name of the template being specialized.  This is
3608  /// either a TemplateName::Template (in which case it is a
3609  /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
3610  /// TypeAliasTemplateDecl*), a
3611  /// TemplateName::SubstTemplateTemplateParmPack, or a
3612  /// TemplateName::SubstTemplateTemplateParm (in which case the
3613  /// replacement must, recursively, be one of these).
3614  TemplateName Template;
3615
3616  /// \brief - The number of template arguments named in this class
3617  /// template specialization.
3618  unsigned NumArgs : 31;
3619
3620  /// \brief Whether this template specialization type is a substituted
3621  /// type alias.
3622  bool TypeAlias : 1;
3623
3624  TemplateSpecializationType(TemplateName T,
3625                             const TemplateArgument *Args,
3626                             unsigned NumArgs, QualType Canon,
3627                             QualType Aliased);
3628
3629  friend class ASTContext;  // ASTContext creates these
3630
3631public:
3632  /// \brief Determine whether any of the given template arguments are
3633  /// dependent.
3634  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
3635                                            unsigned NumArgs,
3636                                            bool &InstantiationDependent);
3637
3638  static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
3639                                            unsigned NumArgs,
3640                                            bool &InstantiationDependent);
3641
3642  static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &,
3643                                            bool &InstantiationDependent);
3644
3645  /// \brief Print a template argument list, including the '<' and '>'
3646  /// enclosing the template arguments.
3647  static void PrintTemplateArgumentList(raw_ostream &OS,
3648                                        const TemplateArgument *Args,
3649                                        unsigned NumArgs,
3650                                        const PrintingPolicy &Policy,
3651                                        bool SkipBrackets = false);
3652
3653  static void PrintTemplateArgumentList(raw_ostream &OS,
3654                                        const TemplateArgumentLoc *Args,
3655                                        unsigned NumArgs,
3656                                        const PrintingPolicy &Policy);
3657
3658  static void PrintTemplateArgumentList(raw_ostream &OS,
3659                                        const TemplateArgumentListInfo &,
3660                                        const PrintingPolicy &Policy);
3661
3662  /// True if this template specialization type matches a current
3663  /// instantiation in the context in which it is found.
3664  bool isCurrentInstantiation() const {
3665    return isa<InjectedClassNameType>(getCanonicalTypeInternal());
3666  }
3667
3668  /// \brief Determine if this template specialization type is for a type alias
3669  /// template that has been substituted.
3670  ///
3671  /// Nearly every template specialization type whose template is an alias
3672  /// template will be substituted. However, this is not the case when
3673  /// the specialization contains a pack expansion but the template alias
3674  /// does not have a corresponding parameter pack, e.g.,
3675  ///
3676  /// \code
3677  /// template<typename T, typename U, typename V> struct S;
3678  /// template<typename T, typename U> using A = S<T, int, U>;
3679  /// template<typename... Ts> struct X {
3680  ///   typedef A<Ts...> type; // not a type alias
3681  /// };
3682  /// \endcode
3683  bool isTypeAlias() const { return TypeAlias; }
3684
3685  /// Get the aliased type, if this is a specialization of a type alias
3686  /// template.
3687  QualType getAliasedType() const {
3688    assert(isTypeAlias() && "not a type alias template specialization");
3689    return *reinterpret_cast<const QualType*>(end());
3690  }
3691
3692  typedef const TemplateArgument * iterator;
3693
3694  iterator begin() const { return getArgs(); }
3695  iterator end() const; // defined inline in TemplateBase.h
3696
3697  /// \brief Retrieve the name of the template that we are specializing.
3698  TemplateName getTemplateName() const { return Template; }
3699
3700  /// \brief Retrieve the template arguments.
3701  const TemplateArgument *getArgs() const {
3702    return reinterpret_cast<const TemplateArgument *>(this + 1);
3703  }
3704
3705  /// \brief Retrieve the number of template arguments.
3706  unsigned getNumArgs() const { return NumArgs; }
3707
3708  /// \brief Retrieve a specific template argument as a type.
3709  /// \pre @c isArgType(Arg)
3710  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
3711
3712  bool isSugared() const {
3713    return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
3714  }
3715  QualType desugar() const { return getCanonicalTypeInternal(); }
3716
3717  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
3718    Profile(ID, Template, getArgs(), NumArgs, Ctx);
3719    if (isTypeAlias())
3720      getAliasedType().Profile(ID);
3721  }
3722
3723  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
3724                      const TemplateArgument *Args,
3725                      unsigned NumArgs,
3726                      const ASTContext &Context);
3727
3728  static bool classof(const Type *T) {
3729    return T->getTypeClass() == TemplateSpecialization;
3730  }
3731};
3732
3733/// \brief The injected class name of a C++ class template or class
3734/// template partial specialization.  Used to record that a type was
3735/// spelled with a bare identifier rather than as a template-id; the
3736/// equivalent for non-templated classes is just RecordType.
3737///
3738/// Injected class name types are always dependent.  Template
3739/// instantiation turns these into RecordTypes.
3740///
3741/// Injected class name types are always canonical.  This works
3742/// because it is impossible to compare an injected class name type
3743/// with the corresponding non-injected template type, for the same
3744/// reason that it is impossible to directly compare template
3745/// parameters from different dependent contexts: injected class name
3746/// types can only occur within the scope of a particular templated
3747/// declaration, and within that scope every template specialization
3748/// will canonicalize to the injected class name (when appropriate
3749/// according to the rules of the language).
3750class InjectedClassNameType : public Type {
3751  CXXRecordDecl *Decl;
3752
3753  /// The template specialization which this type represents.
3754  /// For example, in
3755  ///   template <class T> class A { ... };
3756  /// this is A<T>, whereas in
3757  ///   template <class X, class Y> class A<B<X,Y> > { ... };
3758  /// this is A<B<X,Y> >.
3759  ///
3760  /// It is always unqualified, always a template specialization type,
3761  /// and always dependent.
3762  QualType InjectedType;
3763
3764  friend class ASTContext; // ASTContext creates these.
3765  friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
3766                          // currently suitable for AST reading, too much
3767                          // interdependencies.
3768  InjectedClassNameType(CXXRecordDecl *D, QualType TST)
3769    : Type(InjectedClassName, QualType(), /*Dependent=*/true,
3770           /*InstantiationDependent=*/true,
3771           /*VariablyModified=*/false,
3772           /*ContainsUnexpandedParameterPack=*/false),
3773      Decl(D), InjectedType(TST) {
3774    assert(isa<TemplateSpecializationType>(TST));
3775    assert(!TST.hasQualifiers());
3776    assert(TST->isDependentType());
3777  }
3778
3779public:
3780  QualType getInjectedSpecializationType() const { return InjectedType; }
3781  const TemplateSpecializationType *getInjectedTST() const {
3782    return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
3783  }
3784
3785  CXXRecordDecl *getDecl() const;
3786
3787  bool isSugared() const { return false; }
3788  QualType desugar() const { return QualType(this, 0); }
3789
3790  static bool classof(const Type *T) {
3791    return T->getTypeClass() == InjectedClassName;
3792  }
3793};
3794
3795/// \brief The kind of a tag type.
3796enum TagTypeKind {
3797  /// \brief The "struct" keyword.
3798  TTK_Struct,
3799  /// \brief The "__interface" keyword.
3800  TTK_Interface,
3801  /// \brief The "union" keyword.
3802  TTK_Union,
3803  /// \brief The "class" keyword.
3804  TTK_Class,
3805  /// \brief The "enum" keyword.
3806  TTK_Enum
3807};
3808
3809/// \brief The elaboration keyword that precedes a qualified type name or
3810/// introduces an elaborated-type-specifier.
3811enum ElaboratedTypeKeyword {
3812  /// \brief The "struct" keyword introduces the elaborated-type-specifier.
3813  ETK_Struct,
3814  /// \brief The "__interface" keyword introduces the elaborated-type-specifier.
3815  ETK_Interface,
3816  /// \brief The "union" keyword introduces the elaborated-type-specifier.
3817  ETK_Union,
3818  /// \brief The "class" keyword introduces the elaborated-type-specifier.
3819  ETK_Class,
3820  /// \brief The "enum" keyword introduces the elaborated-type-specifier.
3821  ETK_Enum,
3822  /// \brief The "typename" keyword precedes the qualified type name, e.g.,
3823  /// \c typename T::type.
3824  ETK_Typename,
3825  /// \brief No keyword precedes the qualified type name.
3826  ETK_None
3827};
3828
3829/// A helper class for Type nodes having an ElaboratedTypeKeyword.
3830/// The keyword in stored in the free bits of the base class.
3831/// Also provides a few static helpers for converting and printing
3832/// elaborated type keyword and tag type kind enumerations.
3833class TypeWithKeyword : public Type {
3834protected:
3835  TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
3836                  QualType Canonical, bool Dependent,
3837                  bool InstantiationDependent, bool VariablyModified,
3838                  bool ContainsUnexpandedParameterPack)
3839  : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
3840         ContainsUnexpandedParameterPack) {
3841    TypeWithKeywordBits.Keyword = Keyword;
3842  }
3843
3844public:
3845  ElaboratedTypeKeyword getKeyword() const {
3846    return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
3847  }
3848
3849  /// getKeywordForTypeSpec - Converts a type specifier (DeclSpec::TST)
3850  /// into an elaborated type keyword.
3851  static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
3852
3853  /// getTagTypeKindForTypeSpec - Converts a type specifier (DeclSpec::TST)
3854  /// into a tag type kind.  It is an error to provide a type specifier
3855  /// which *isn't* a tag kind here.
3856  static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
3857
3858  /// getKeywordForTagDeclKind - Converts a TagTypeKind into an
3859  /// elaborated type keyword.
3860  static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
3861
3862  /// getTagTypeKindForKeyword - Converts an elaborated type keyword into
3863  // a TagTypeKind. It is an error to provide an elaborated type keyword
3864  /// which *isn't* a tag kind here.
3865  static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
3866
3867  static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
3868
3869  static const char *getKeywordName(ElaboratedTypeKeyword Keyword);
3870
3871  static const char *getTagTypeKindName(TagTypeKind Kind) {
3872    return getKeywordName(getKeywordForTagTypeKind(Kind));
3873  }
3874
3875  class CannotCastToThisType {};
3876  static CannotCastToThisType classof(const Type *);
3877};
3878
3879/// \brief Represents a type that was referred to using an elaborated type
3880/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
3881/// or both.
3882///
3883/// This type is used to keep track of a type name as written in the
3884/// source code, including tag keywords and any nested-name-specifiers.
3885/// The type itself is always "sugar", used to express what was written
3886/// in the source code but containing no additional semantic information.
3887class ElaboratedType : public TypeWithKeyword, public llvm::FoldingSetNode {
3888
3889  /// \brief The nested name specifier containing the qualifier.
3890  NestedNameSpecifier *NNS;
3891
3892  /// \brief The type that this qualified name refers to.
3893  QualType NamedType;
3894
3895  ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
3896                 QualType NamedType, QualType CanonType)
3897    : TypeWithKeyword(Keyword, Elaborated, CanonType,
3898                      NamedType->isDependentType(),
3899                      NamedType->isInstantiationDependentType(),
3900                      NamedType->isVariablyModifiedType(),
3901                      NamedType->containsUnexpandedParameterPack()),
3902      NNS(NNS), NamedType(NamedType) {
3903    assert(!(Keyword == ETK_None && NNS == 0) &&
3904           "ElaboratedType cannot have elaborated type keyword "
3905           "and name qualifier both null.");
3906  }
3907
3908  friend class ASTContext;  // ASTContext creates these
3909
3910public:
3911  ~ElaboratedType();
3912
3913  /// \brief Retrieve the qualification on this type.
3914  NestedNameSpecifier *getQualifier() const { return NNS; }
3915
3916  /// \brief Retrieve the type named by the qualified-id.
3917  QualType getNamedType() const { return NamedType; }
3918
3919  /// \brief Remove a single level of sugar.
3920  QualType desugar() const { return getNamedType(); }
3921
3922  /// \brief Returns whether this type directly provides sugar.
3923  bool isSugared() const { return true; }
3924
3925  void Profile(llvm::FoldingSetNodeID &ID) {
3926    Profile(ID, getKeyword(), NNS, NamedType);
3927  }
3928
3929  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
3930                      NestedNameSpecifier *NNS, QualType NamedType) {
3931    ID.AddInteger(Keyword);
3932    ID.AddPointer(NNS);
3933    NamedType.Profile(ID);
3934  }
3935
3936  static bool classof(const Type *T) {
3937    return T->getTypeClass() == Elaborated;
3938  }
3939};
3940
3941/// \brief Represents a qualified type name for which the type name is
3942/// dependent.
3943///
3944/// DependentNameType represents a class of dependent types that involve a
3945/// dependent nested-name-specifier (e.g., "T::") followed by a (dependent)
3946/// name of a type. The DependentNameType may start with a "typename" (for a
3947/// typename-specifier), "class", "struct", "union", or "enum" (for a
3948/// dependent elaborated-type-specifier), or nothing (in contexts where we
3949/// know that we must be referring to a type, e.g., in a base class specifier).
3950class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
3951
3952  /// \brief The nested name specifier containing the qualifier.
3953  NestedNameSpecifier *NNS;
3954
3955  /// \brief The type that this typename specifier refers to.
3956  const IdentifierInfo *Name;
3957
3958  DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
3959                    const IdentifierInfo *Name, QualType CanonType)
3960    : TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true,
3961                      /*InstantiationDependent=*/true,
3962                      /*VariablyModified=*/false,
3963                      NNS->containsUnexpandedParameterPack()),
3964      NNS(NNS), Name(Name) {
3965    assert(NNS->isDependent() &&
3966           "DependentNameType requires a dependent nested-name-specifier");
3967  }
3968
3969  friend class ASTContext;  // ASTContext creates these
3970
3971public:
3972  /// \brief Retrieve the qualification on this type.
3973  NestedNameSpecifier *getQualifier() const { return NNS; }
3974
3975  /// \brief Retrieve the type named by the typename specifier as an
3976  /// identifier.
3977  ///
3978  /// This routine will return a non-NULL identifier pointer when the
3979  /// form of the original typename was terminated by an identifier,
3980  /// e.g., "typename T::type".
3981  const IdentifierInfo *getIdentifier() const {
3982    return Name;
3983  }
3984
3985  bool isSugared() const { return false; }
3986  QualType desugar() const { return QualType(this, 0); }
3987
3988  void Profile(llvm::FoldingSetNodeID &ID) {
3989    Profile(ID, getKeyword(), NNS, Name);
3990  }
3991
3992  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
3993                      NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
3994    ID.AddInteger(Keyword);
3995    ID.AddPointer(NNS);
3996    ID.AddPointer(Name);
3997  }
3998
3999  static bool classof(const Type *T) {
4000    return T->getTypeClass() == DependentName;
4001  }
4002};
4003
4004/// DependentTemplateSpecializationType - Represents a template
4005/// specialization type whose template cannot be resolved, e.g.
4006///   A<T>::template B<T>
4007class DependentTemplateSpecializationType :
4008  public TypeWithKeyword, public llvm::FoldingSetNode {
4009
4010  /// \brief The nested name specifier containing the qualifier.
4011  NestedNameSpecifier *NNS;
4012
4013  /// \brief The identifier of the template.
4014  const IdentifierInfo *Name;
4015
4016  /// \brief - The number of template arguments named in this class
4017  /// template specialization.
4018  unsigned NumArgs;
4019
4020  const TemplateArgument *getArgBuffer() const {
4021    return reinterpret_cast<const TemplateArgument*>(this+1);
4022  }
4023  TemplateArgument *getArgBuffer() {
4024    return reinterpret_cast<TemplateArgument*>(this+1);
4025  }
4026
4027  DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
4028                                      NestedNameSpecifier *NNS,
4029                                      const IdentifierInfo *Name,
4030                                      unsigned NumArgs,
4031                                      const TemplateArgument *Args,
4032                                      QualType Canon);
4033
4034  friend class ASTContext;  // ASTContext creates these
4035
4036public:
4037  NestedNameSpecifier *getQualifier() const { return NNS; }
4038  const IdentifierInfo *getIdentifier() const { return Name; }
4039
4040  /// \brief Retrieve the template arguments.
4041  const TemplateArgument *getArgs() const {
4042    return getArgBuffer();
4043  }
4044
4045  /// \brief Retrieve the number of template arguments.
4046  unsigned getNumArgs() const { return NumArgs; }
4047
4048  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
4049
4050  typedef const TemplateArgument * iterator;
4051  iterator begin() const { return getArgs(); }
4052  iterator end() const; // inline in TemplateBase.h
4053
4054  bool isSugared() const { return false; }
4055  QualType desugar() const { return QualType(this, 0); }
4056
4057  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
4058    Profile(ID, Context, getKeyword(), NNS, Name, NumArgs, getArgs());
4059  }
4060
4061  static void Profile(llvm::FoldingSetNodeID &ID,
4062                      const ASTContext &Context,
4063                      ElaboratedTypeKeyword Keyword,
4064                      NestedNameSpecifier *Qualifier,
4065                      const IdentifierInfo *Name,
4066                      unsigned NumArgs,
4067                      const TemplateArgument *Args);
4068
4069  static bool classof(const Type *T) {
4070    return T->getTypeClass() == DependentTemplateSpecialization;
4071  }
4072};
4073
4074/// \brief Represents a pack expansion of types.
4075///
4076/// Pack expansions are part of C++0x variadic templates. A pack
4077/// expansion contains a pattern, which itself contains one or more
4078/// "unexpanded" parameter packs. When instantiated, a pack expansion
4079/// produces a series of types, each instantiated from the pattern of
4080/// the expansion, where the Ith instantiation of the pattern uses the
4081/// Ith arguments bound to each of the unexpanded parameter packs. The
4082/// pack expansion is considered to "expand" these unexpanded
4083/// parameter packs.
4084///
4085/// \code
4086/// template<typename ...Types> struct tuple;
4087///
4088/// template<typename ...Types>
4089/// struct tuple_of_references {
4090///   typedef tuple<Types&...> type;
4091/// };
4092/// \endcode
4093///
4094/// Here, the pack expansion \c Types&... is represented via a
4095/// PackExpansionType whose pattern is Types&.
4096class PackExpansionType : public Type, public llvm::FoldingSetNode {
4097  /// \brief The pattern of the pack expansion.
4098  QualType Pattern;
4099
4100  /// \brief The number of expansions that this pack expansion will
4101  /// generate when substituted (+1), or indicates that
4102  ///
4103  /// This field will only have a non-zero value when some of the parameter
4104  /// packs that occur within the pattern have been substituted but others have
4105  /// not.
4106  unsigned NumExpansions;
4107
4108  PackExpansionType(QualType Pattern, QualType Canon,
4109                    Optional<unsigned> NumExpansions)
4110    : Type(PackExpansion, Canon, /*Dependent=*/Pattern->isDependentType(),
4111           /*InstantiationDependent=*/true,
4112           /*VariableModified=*/Pattern->isVariablyModifiedType(),
4113           /*ContainsUnexpandedParameterPack=*/false),
4114      Pattern(Pattern),
4115      NumExpansions(NumExpansions? *NumExpansions + 1: 0) { }
4116
4117  friend class ASTContext;  // ASTContext creates these
4118
4119public:
4120  /// \brief Retrieve the pattern of this pack expansion, which is the
4121  /// type that will be repeatedly instantiated when instantiating the
4122  /// pack expansion itself.
4123  QualType getPattern() const { return Pattern; }
4124
4125  /// \brief Retrieve the number of expansions that this pack expansion will
4126  /// generate, if known.
4127  Optional<unsigned> getNumExpansions() const {
4128    if (NumExpansions)
4129      return NumExpansions - 1;
4130
4131    return None;
4132  }
4133
4134  bool isSugared() const { return false; }
4135  QualType desugar() const { return QualType(this, 0); }
4136
4137  void Profile(llvm::FoldingSetNodeID &ID) {
4138    Profile(ID, getPattern(), getNumExpansions());
4139  }
4140
4141  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
4142                      Optional<unsigned> NumExpansions) {
4143    ID.AddPointer(Pattern.getAsOpaquePtr());
4144    ID.AddBoolean(NumExpansions.hasValue());
4145    if (NumExpansions)
4146      ID.AddInteger(*NumExpansions);
4147  }
4148
4149  static bool classof(const Type *T) {
4150    return T->getTypeClass() == PackExpansion;
4151  }
4152};
4153
4154/// ObjCObjectType - Represents a class type in Objective C.
4155/// Every Objective C type is a combination of a base type and a
4156/// list of protocols.
4157///
4158/// Given the following declarations:
4159/// \code
4160///   \@class C;
4161///   \@protocol P;
4162/// \endcode
4163///
4164/// 'C' is an ObjCInterfaceType C.  It is sugar for an ObjCObjectType
4165/// with base C and no protocols.
4166///
4167/// 'C<P>' is an ObjCObjectType with base C and protocol list [P].
4168///
4169/// 'id' is a TypedefType which is sugar for an ObjCPointerType whose
4170/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
4171/// and no protocols.
4172///
4173/// 'id<P>' is an ObjCPointerType whose pointee is an ObjCObjecType
4174/// with base BuiltinType::ObjCIdType and protocol list [P].  Eventually
4175/// this should get its own sugar class to better represent the source.
4176class ObjCObjectType : public Type {
4177  // ObjCObjectType.NumProtocols - the number of protocols stored
4178  // after the ObjCObjectPointerType node.
4179  //
4180  // These protocols are those written directly on the type.  If
4181  // protocol qualifiers ever become additive, the iterators will need
4182  // to get kindof complicated.
4183  //
4184  // In the canonical object type, these are sorted alphabetically
4185  // and uniqued.
4186
4187  /// Either a BuiltinType or an InterfaceType or sugar for either.
4188  QualType BaseType;
4189
4190  ObjCProtocolDecl * const *getProtocolStorage() const {
4191    return const_cast<ObjCObjectType*>(this)->getProtocolStorage();
4192  }
4193
4194  ObjCProtocolDecl **getProtocolStorage();
4195
4196protected:
4197  ObjCObjectType(QualType Canonical, QualType Base,
4198                 ObjCProtocolDecl * const *Protocols, unsigned NumProtocols);
4199
4200  enum Nonce_ObjCInterface { Nonce_ObjCInterface };
4201  ObjCObjectType(enum Nonce_ObjCInterface)
4202        : Type(ObjCInterface, QualType(), false, false, false, false),
4203      BaseType(QualType(this_(), 0)) {
4204    ObjCObjectTypeBits.NumProtocols = 0;
4205  }
4206
4207public:
4208  /// getBaseType - Gets the base type of this object type.  This is
4209  /// always (possibly sugar for) one of:
4210  ///  - the 'id' builtin type (as opposed to the 'id' type visible to the
4211  ///    user, which is a typedef for an ObjCPointerType)
4212  ///  - the 'Class' builtin type (same caveat)
4213  ///  - an ObjCObjectType (currently always an ObjCInterfaceType)
4214  QualType getBaseType() const { return BaseType; }
4215
4216  bool isObjCId() const {
4217    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
4218  }
4219  bool isObjCClass() const {
4220    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
4221  }
4222  bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
4223  bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
4224  bool isObjCUnqualifiedIdOrClass() const {
4225    if (!qual_empty()) return false;
4226    if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
4227      return T->getKind() == BuiltinType::ObjCId ||
4228             T->getKind() == BuiltinType::ObjCClass;
4229    return false;
4230  }
4231  bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
4232  bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
4233
4234  /// Gets the interface declaration for this object type, if the base type
4235  /// really is an interface.
4236  ObjCInterfaceDecl *getInterface() const;
4237
4238  typedef ObjCProtocolDecl * const *qual_iterator;
4239
4240  qual_iterator qual_begin() const { return getProtocolStorage(); }
4241  qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
4242
4243  bool qual_empty() const { return getNumProtocols() == 0; }
4244
4245  /// getNumProtocols - Return the number of qualifying protocols in this
4246  /// interface type, or 0 if there are none.
4247  unsigned getNumProtocols() const { return ObjCObjectTypeBits.NumProtocols; }
4248
4249  /// \brief Fetch a protocol by index.
4250  ObjCProtocolDecl *getProtocol(unsigned I) const {
4251    assert(I < getNumProtocols() && "Out-of-range protocol access");
4252    return qual_begin()[I];
4253  }
4254
4255  bool isSugared() const { return false; }
4256  QualType desugar() const { return QualType(this, 0); }
4257
4258  static bool classof(const Type *T) {
4259    return T->getTypeClass() == ObjCObject ||
4260           T->getTypeClass() == ObjCInterface;
4261  }
4262};
4263
4264/// ObjCObjectTypeImpl - A class providing a concrete implementation
4265/// of ObjCObjectType, so as to not increase the footprint of
4266/// ObjCInterfaceType.  Code outside of ASTContext and the core type
4267/// system should not reference this type.
4268class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
4269  friend class ASTContext;
4270
4271  // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
4272  // will need to be modified.
4273
4274  ObjCObjectTypeImpl(QualType Canonical, QualType Base,
4275                     ObjCProtocolDecl * const *Protocols,
4276                     unsigned NumProtocols)
4277    : ObjCObjectType(Canonical, Base, Protocols, NumProtocols) {}
4278
4279public:
4280  void Profile(llvm::FoldingSetNodeID &ID);
4281  static void Profile(llvm::FoldingSetNodeID &ID,
4282                      QualType Base,
4283                      ObjCProtocolDecl *const *protocols,
4284                      unsigned NumProtocols);
4285};
4286
4287inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorage() {
4288  return reinterpret_cast<ObjCProtocolDecl**>(
4289            static_cast<ObjCObjectTypeImpl*>(this) + 1);
4290}
4291
4292/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
4293/// object oriented design.  They basically correspond to C++ classes.  There
4294/// are two kinds of interface types, normal interfaces like "NSString" and
4295/// qualified interfaces, which are qualified with a protocol list like
4296/// "NSString<NSCopyable, NSAmazing>".
4297///
4298/// ObjCInterfaceType guarantees the following properties when considered
4299/// as a subtype of its superclass, ObjCObjectType:
4300///   - There are no protocol qualifiers.  To reinforce this, code which
4301///     tries to invoke the protocol methods via an ObjCInterfaceType will
4302///     fail to compile.
4303///   - It is its own base type.  That is, if T is an ObjCInterfaceType*,
4304///     T->getBaseType() == QualType(T, 0).
4305class ObjCInterfaceType : public ObjCObjectType {
4306  mutable ObjCInterfaceDecl *Decl;
4307
4308  ObjCInterfaceType(const ObjCInterfaceDecl *D)
4309    : ObjCObjectType(Nonce_ObjCInterface),
4310      Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
4311  friend class ASTContext;  // ASTContext creates these.
4312  friend class ASTReader;
4313  friend class ObjCInterfaceDecl;
4314
4315public:
4316  /// getDecl - Get the declaration of this interface.
4317  ObjCInterfaceDecl *getDecl() const { return Decl; }
4318
4319  bool isSugared() const { return false; }
4320  QualType desugar() const { return QualType(this, 0); }
4321
4322  static bool classof(const Type *T) {
4323    return T->getTypeClass() == ObjCInterface;
4324  }
4325
4326  // Nonsense to "hide" certain members of ObjCObjectType within this
4327  // class.  People asking for protocols on an ObjCInterfaceType are
4328  // not going to get what they want: ObjCInterfaceTypes are
4329  // guaranteed to have no protocols.
4330  enum {
4331    qual_iterator,
4332    qual_begin,
4333    qual_end,
4334    getNumProtocols,
4335    getProtocol
4336  };
4337};
4338
4339inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
4340  if (const ObjCInterfaceType *T =
4341        getBaseType()->getAs<ObjCInterfaceType>())
4342    return T->getDecl();
4343  return 0;
4344}
4345
4346/// ObjCObjectPointerType - Used to represent a pointer to an
4347/// Objective C object.  These are constructed from pointer
4348/// declarators when the pointee type is an ObjCObjectType (or sugar
4349/// for one).  In addition, the 'id' and 'Class' types are typedefs
4350/// for these, and the protocol-qualified types 'id<P>' and 'Class<P>'
4351/// are translated into these.
4352///
4353/// Pointers to pointers to Objective C objects are still PointerTypes;
4354/// only the first level of pointer gets it own type implementation.
4355class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
4356  QualType PointeeType;
4357
4358  ObjCObjectPointerType(QualType Canonical, QualType Pointee)
4359    : Type(ObjCObjectPointer, Canonical, false, false, false, false),
4360      PointeeType(Pointee) {}
4361  friend class ASTContext;  // ASTContext creates these.
4362
4363public:
4364  /// getPointeeType - Gets the type pointed to by this ObjC pointer.
4365  /// The result will always be an ObjCObjectType or sugar thereof.
4366  QualType getPointeeType() const { return PointeeType; }
4367
4368  /// getObjCObjectType - Gets the type pointed to by this ObjC
4369  /// pointer.  This method always returns non-null.
4370  ///
4371  /// This method is equivalent to getPointeeType() except that
4372  /// it discards any typedefs (or other sugar) between this
4373  /// type and the "outermost" object type.  So for:
4374  /// \code
4375  ///   \@class A; \@protocol P; \@protocol Q;
4376  ///   typedef A<P> AP;
4377  ///   typedef A A1;
4378  ///   typedef A1<P> A1P;
4379  ///   typedef A1P<Q> A1PQ;
4380  /// \endcode
4381  /// For 'A*', getObjectType() will return 'A'.
4382  /// For 'A<P>*', getObjectType() will return 'A<P>'.
4383  /// For 'AP*', getObjectType() will return 'A<P>'.
4384  /// For 'A1*', getObjectType() will return 'A'.
4385  /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
4386  /// For 'A1P*', getObjectType() will return 'A1<P>'.
4387  /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
4388  ///   adding protocols to a protocol-qualified base discards the
4389  ///   old qualifiers (for now).  But if it didn't, getObjectType()
4390  ///   would return 'A1P<Q>' (and we'd have to make iterating over
4391  ///   qualifiers more complicated).
4392  const ObjCObjectType *getObjectType() const {
4393    return PointeeType->castAs<ObjCObjectType>();
4394  }
4395
4396  /// getInterfaceType - If this pointer points to an Objective C
4397  /// \@interface type, gets the type for that interface.  Any protocol
4398  /// qualifiers on the interface are ignored.
4399  ///
4400  /// \return null if the base type for this pointer is 'id' or 'Class'
4401  const ObjCInterfaceType *getInterfaceType() const {
4402    return getObjectType()->getBaseType()->getAs<ObjCInterfaceType>();
4403  }
4404
4405  /// getInterfaceDecl - If this pointer points to an Objective \@interface
4406  /// type, gets the declaration for that interface.
4407  ///
4408  /// \return null if the base type for this pointer is 'id' or 'Class'
4409  ObjCInterfaceDecl *getInterfaceDecl() const {
4410    return getObjectType()->getInterface();
4411  }
4412
4413  /// isObjCIdType - True if this is equivalent to the 'id' type, i.e. if
4414  /// its object type is the primitive 'id' type with no protocols.
4415  bool isObjCIdType() const {
4416    return getObjectType()->isObjCUnqualifiedId();
4417  }
4418
4419  /// isObjCClassType - True if this is equivalent to the 'Class' type,
4420  /// i.e. if its object tive is the primitive 'Class' type with no protocols.
4421  bool isObjCClassType() const {
4422    return getObjectType()->isObjCUnqualifiedClass();
4423  }
4424
4425  /// isObjCQualifiedIdType - True if this is equivalent to 'id<P>' for some
4426  /// non-empty set of protocols.
4427  bool isObjCQualifiedIdType() const {
4428    return getObjectType()->isObjCQualifiedId();
4429  }
4430
4431  /// isObjCQualifiedClassType - True if this is equivalent to 'Class<P>' for
4432  /// some non-empty set of protocols.
4433  bool isObjCQualifiedClassType() const {
4434    return getObjectType()->isObjCQualifiedClass();
4435  }
4436
4437  /// An iterator over the qualifiers on the object type.  Provided
4438  /// for convenience.  This will always iterate over the full set of
4439  /// protocols on a type, not just those provided directly.
4440  typedef ObjCObjectType::qual_iterator qual_iterator;
4441
4442  qual_iterator qual_begin() const {
4443    return getObjectType()->qual_begin();
4444  }
4445  qual_iterator qual_end() const {
4446    return getObjectType()->qual_end();
4447  }
4448  bool qual_empty() const { return getObjectType()->qual_empty(); }
4449
4450  /// getNumProtocols - Return the number of qualifying protocols on
4451  /// the object type.
4452  unsigned getNumProtocols() const {
4453    return getObjectType()->getNumProtocols();
4454  }
4455
4456  /// \brief Retrieve a qualifying protocol by index on the object
4457  /// type.
4458  ObjCProtocolDecl *getProtocol(unsigned I) const {
4459    return getObjectType()->getProtocol(I);
4460  }
4461
4462  bool isSugared() const { return false; }
4463  QualType desugar() const { return QualType(this, 0); }
4464
4465  void Profile(llvm::FoldingSetNodeID &ID) {
4466    Profile(ID, getPointeeType());
4467  }
4468  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
4469    ID.AddPointer(T.getAsOpaquePtr());
4470  }
4471  static bool classof(const Type *T) {
4472    return T->getTypeClass() == ObjCObjectPointer;
4473  }
4474};
4475
4476class AtomicType : public Type, public llvm::FoldingSetNode {
4477  QualType ValueType;
4478
4479  AtomicType(QualType ValTy, QualType Canonical)
4480    : Type(Atomic, Canonical, ValTy->isDependentType(),
4481           ValTy->isInstantiationDependentType(),
4482           ValTy->isVariablyModifiedType(),
4483           ValTy->containsUnexpandedParameterPack()),
4484      ValueType(ValTy) {}
4485  friend class ASTContext;  // ASTContext creates these.
4486
4487  public:
4488  /// getValueType - Gets the type contained by this atomic type, i.e.
4489  /// the type returned by performing an atomic load of this atomic type.
4490  QualType getValueType() const { return ValueType; }
4491
4492  bool isSugared() const { return false; }
4493  QualType desugar() const { return QualType(this, 0); }
4494
4495  void Profile(llvm::FoldingSetNodeID &ID) {
4496    Profile(ID, getValueType());
4497  }
4498  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
4499    ID.AddPointer(T.getAsOpaquePtr());
4500  }
4501  static bool classof(const Type *T) {
4502    return T->getTypeClass() == Atomic;
4503  }
4504};
4505
4506/// A qualifier set is used to build a set of qualifiers.
4507class QualifierCollector : public Qualifiers {
4508public:
4509  QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
4510
4511  /// Collect any qualifiers on the given type and return an
4512  /// unqualified type.  The qualifiers are assumed to be consistent
4513  /// with those already in the type.
4514  const Type *strip(QualType type) {
4515    addFastQualifiers(type.getLocalFastQualifiers());
4516    if (!type.hasLocalNonFastQualifiers())
4517      return type.getTypePtrUnsafe();
4518
4519    const ExtQuals *extQuals = type.getExtQualsUnsafe();
4520    addConsistentQualifiers(extQuals->getQualifiers());
4521    return extQuals->getBaseType();
4522  }
4523
4524  /// Apply the collected qualifiers to the given type.
4525  QualType apply(const ASTContext &Context, QualType QT) const;
4526
4527  /// Apply the collected qualifiers to the given type.
4528  QualType apply(const ASTContext &Context, const Type* T) const;
4529};
4530
4531
4532// Inline function definitions.
4533
4534inline SplitQualType SplitQualType::getSingleStepDesugaredType() const {
4535  SplitQualType desugar =
4536    Ty->getLocallyUnqualifiedSingleStepDesugaredType().split();
4537  desugar.Quals.addConsistentQualifiers(Quals);
4538  return desugar;
4539}
4540
4541inline const Type *QualType::getTypePtr() const {
4542  return getCommonPtr()->BaseType;
4543}
4544
4545inline const Type *QualType::getTypePtrOrNull() const {
4546  return (isNull() ? 0 : getCommonPtr()->BaseType);
4547}
4548
4549inline SplitQualType QualType::split() const {
4550  if (!hasLocalNonFastQualifiers())
4551    return SplitQualType(getTypePtrUnsafe(),
4552                         Qualifiers::fromFastMask(getLocalFastQualifiers()));
4553
4554  const ExtQuals *eq = getExtQualsUnsafe();
4555  Qualifiers qs = eq->getQualifiers();
4556  qs.addFastQualifiers(getLocalFastQualifiers());
4557  return SplitQualType(eq->getBaseType(), qs);
4558}
4559
4560inline Qualifiers QualType::getLocalQualifiers() const {
4561  Qualifiers Quals;
4562  if (hasLocalNonFastQualifiers())
4563    Quals = getExtQualsUnsafe()->getQualifiers();
4564  Quals.addFastQualifiers(getLocalFastQualifiers());
4565  return Quals;
4566}
4567
4568inline Qualifiers QualType::getQualifiers() const {
4569  Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
4570  quals.addFastQualifiers(getLocalFastQualifiers());
4571  return quals;
4572}
4573
4574inline unsigned QualType::getCVRQualifiers() const {
4575  unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
4576  cvr |= getLocalCVRQualifiers();
4577  return cvr;
4578}
4579
4580inline QualType QualType::getCanonicalType() const {
4581  QualType canon = getCommonPtr()->CanonicalType;
4582  return canon.withFastQualifiers(getLocalFastQualifiers());
4583}
4584
4585inline bool QualType::isCanonical() const {
4586  return getTypePtr()->isCanonicalUnqualified();
4587}
4588
4589inline bool QualType::isCanonicalAsParam() const {
4590  if (!isCanonical()) return false;
4591  if (hasLocalQualifiers()) return false;
4592
4593  const Type *T = getTypePtr();
4594  if (T->isVariablyModifiedType() && T->hasSizedVLAType())
4595    return false;
4596
4597  return !isa<FunctionType>(T) && !isa<ArrayType>(T);
4598}
4599
4600inline bool QualType::isConstQualified() const {
4601  return isLocalConstQualified() ||
4602         getCommonPtr()->CanonicalType.isLocalConstQualified();
4603}
4604
4605inline bool QualType::isRestrictQualified() const {
4606  return isLocalRestrictQualified() ||
4607         getCommonPtr()->CanonicalType.isLocalRestrictQualified();
4608}
4609
4610
4611inline bool QualType::isVolatileQualified() const {
4612  return isLocalVolatileQualified() ||
4613         getCommonPtr()->CanonicalType.isLocalVolatileQualified();
4614}
4615
4616inline bool QualType::hasQualifiers() const {
4617  return hasLocalQualifiers() ||
4618         getCommonPtr()->CanonicalType.hasLocalQualifiers();
4619}
4620
4621inline QualType QualType::getUnqualifiedType() const {
4622  if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
4623    return QualType(getTypePtr(), 0);
4624
4625  return QualType(getSplitUnqualifiedTypeImpl(*this).Ty, 0);
4626}
4627
4628inline SplitQualType QualType::getSplitUnqualifiedType() const {
4629  if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
4630    return split();
4631
4632  return getSplitUnqualifiedTypeImpl(*this);
4633}
4634
4635inline void QualType::removeLocalConst() {
4636  removeLocalFastQualifiers(Qualifiers::Const);
4637}
4638
4639inline void QualType::removeLocalRestrict() {
4640  removeLocalFastQualifiers(Qualifiers::Restrict);
4641}
4642
4643inline void QualType::removeLocalVolatile() {
4644  removeLocalFastQualifiers(Qualifiers::Volatile);
4645}
4646
4647inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
4648  assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
4649  assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask);
4650
4651  // Fast path: we don't need to touch the slow qualifiers.
4652  removeLocalFastQualifiers(Mask);
4653}
4654
4655/// getAddressSpace - Return the address space of this type.
4656inline unsigned QualType::getAddressSpace() const {
4657  return getQualifiers().getAddressSpace();
4658}
4659
4660/// getObjCGCAttr - Return the gc attribute of this type.
4661inline Qualifiers::GC QualType::getObjCGCAttr() const {
4662  return getQualifiers().getObjCGCAttr();
4663}
4664
4665inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
4666  if (const PointerType *PT = t.getAs<PointerType>()) {
4667    if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
4668      return FT->getExtInfo();
4669  } else if (const FunctionType *FT = t.getAs<FunctionType>())
4670    return FT->getExtInfo();
4671
4672  return FunctionType::ExtInfo();
4673}
4674
4675inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
4676  return getFunctionExtInfo(*t);
4677}
4678
4679/// isMoreQualifiedThan - Determine whether this type is more
4680/// qualified than the Other type. For example, "const volatile int"
4681/// is more qualified than "const int", "volatile int", and
4682/// "int". However, it is not more qualified than "const volatile
4683/// int".
4684inline bool QualType::isMoreQualifiedThan(QualType other) const {
4685  Qualifiers myQuals = getQualifiers();
4686  Qualifiers otherQuals = other.getQualifiers();
4687  return (myQuals != otherQuals && myQuals.compatiblyIncludes(otherQuals));
4688}
4689
4690/// isAtLeastAsQualifiedAs - Determine whether this type is at last
4691/// as qualified as the Other type. For example, "const volatile
4692/// int" is at least as qualified as "const int", "volatile int",
4693/// "int", and "const volatile int".
4694inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
4695  return getQualifiers().compatiblyIncludes(other.getQualifiers());
4696}
4697
4698/// getNonReferenceType - If Type is a reference type (e.g., const
4699/// int&), returns the type that the reference refers to ("const
4700/// int"). Otherwise, returns the type itself. This routine is used
4701/// throughout Sema to implement C++ 5p6:
4702///
4703///   If an expression initially has the type "reference to T" (8.3.2,
4704///   8.5.3), the type is adjusted to "T" prior to any further
4705///   analysis, the expression designates the object or function
4706///   denoted by the reference, and the expression is an lvalue.
4707inline QualType QualType::getNonReferenceType() const {
4708  if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
4709    return RefType->getPointeeType();
4710  else
4711    return *this;
4712}
4713
4714inline bool QualType::isCForbiddenLValueType() const {
4715  return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
4716          getTypePtr()->isFunctionType());
4717}
4718
4719/// \brief Tests whether the type is categorized as a fundamental type.
4720///
4721/// \returns True for types specified in C++0x [basic.fundamental].
4722inline bool Type::isFundamentalType() const {
4723  return isVoidType() ||
4724         // FIXME: It's really annoying that we don't have an
4725         // 'isArithmeticType()' which agrees with the standard definition.
4726         (isArithmeticType() && !isEnumeralType());
4727}
4728
4729/// \brief Tests whether the type is categorized as a compound type.
4730///
4731/// \returns True for types specified in C++0x [basic.compound].
4732inline bool Type::isCompoundType() const {
4733  // C++0x [basic.compound]p1:
4734  //   Compound types can be constructed in the following ways:
4735  //    -- arrays of objects of a given type [...];
4736  return isArrayType() ||
4737  //    -- functions, which have parameters of given types [...];
4738         isFunctionType() ||
4739  //    -- pointers to void or objects or functions [...];
4740         isPointerType() ||
4741  //    -- references to objects or functions of a given type. [...]
4742         isReferenceType() ||
4743  //    -- classes containing a sequence of objects of various types, [...];
4744         isRecordType() ||
4745  //    -- unions, which are classes capable of containing objects of different
4746  //               types at different times;
4747         isUnionType() ||
4748  //    -- enumerations, which comprise a set of named constant values. [...];
4749         isEnumeralType() ||
4750  //    -- pointers to non-static class members, [...].
4751         isMemberPointerType();
4752}
4753
4754inline bool Type::isFunctionType() const {
4755  return isa<FunctionType>(CanonicalType);
4756}
4757inline bool Type::isPointerType() const {
4758  return isa<PointerType>(CanonicalType);
4759}
4760inline bool Type::isAnyPointerType() const {
4761  return isPointerType() || isObjCObjectPointerType();
4762}
4763inline bool Type::isBlockPointerType() const {
4764  return isa<BlockPointerType>(CanonicalType);
4765}
4766inline bool Type::isReferenceType() const {
4767  return isa<ReferenceType>(CanonicalType);
4768}
4769inline bool Type::isLValueReferenceType() const {
4770  return isa<LValueReferenceType>(CanonicalType);
4771}
4772inline bool Type::isRValueReferenceType() const {
4773  return isa<RValueReferenceType>(CanonicalType);
4774}
4775inline bool Type::isFunctionPointerType() const {
4776  if (const PointerType *T = getAs<PointerType>())
4777    return T->getPointeeType()->isFunctionType();
4778  else
4779    return false;
4780}
4781inline bool Type::isMemberPointerType() const {
4782  return isa<MemberPointerType>(CanonicalType);
4783}
4784inline bool Type::isMemberFunctionPointerType() const {
4785  if (const MemberPointerType* T = getAs<MemberPointerType>())
4786    return T->isMemberFunctionPointer();
4787  else
4788    return false;
4789}
4790inline bool Type::isMemberDataPointerType() const {
4791  if (const MemberPointerType* T = getAs<MemberPointerType>())
4792    return T->isMemberDataPointer();
4793  else
4794    return false;
4795}
4796inline bool Type::isArrayType() const {
4797  return isa<ArrayType>(CanonicalType);
4798}
4799inline bool Type::isConstantArrayType() const {
4800  return isa<ConstantArrayType>(CanonicalType);
4801}
4802inline bool Type::isIncompleteArrayType() const {
4803  return isa<IncompleteArrayType>(CanonicalType);
4804}
4805inline bool Type::isVariableArrayType() const {
4806  return isa<VariableArrayType>(CanonicalType);
4807}
4808inline bool Type::isDependentSizedArrayType() const {
4809  return isa<DependentSizedArrayType>(CanonicalType);
4810}
4811inline bool Type::isBuiltinType() const {
4812  return isa<BuiltinType>(CanonicalType);
4813}
4814inline bool Type::isRecordType() const {
4815  return isa<RecordType>(CanonicalType);
4816}
4817inline bool Type::isEnumeralType() const {
4818  return isa<EnumType>(CanonicalType);
4819}
4820inline bool Type::isAnyComplexType() const {
4821  return isa<ComplexType>(CanonicalType);
4822}
4823inline bool Type::isVectorType() const {
4824  return isa<VectorType>(CanonicalType);
4825}
4826inline bool Type::isExtVectorType() const {
4827  return isa<ExtVectorType>(CanonicalType);
4828}
4829inline bool Type::isObjCObjectPointerType() const {
4830  return isa<ObjCObjectPointerType>(CanonicalType);
4831}
4832inline bool Type::isObjCObjectType() const {
4833  return isa<ObjCObjectType>(CanonicalType);
4834}
4835inline bool Type::isObjCObjectOrInterfaceType() const {
4836  return isa<ObjCInterfaceType>(CanonicalType) ||
4837    isa<ObjCObjectType>(CanonicalType);
4838}
4839inline bool Type::isAtomicType() const {
4840  return isa<AtomicType>(CanonicalType);
4841}
4842
4843inline bool Type::isObjCQualifiedIdType() const {
4844  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4845    return OPT->isObjCQualifiedIdType();
4846  return false;
4847}
4848inline bool Type::isObjCQualifiedClassType() const {
4849  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4850    return OPT->isObjCQualifiedClassType();
4851  return false;
4852}
4853inline bool Type::isObjCIdType() const {
4854  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4855    return OPT->isObjCIdType();
4856  return false;
4857}
4858inline bool Type::isObjCClassType() const {
4859  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4860    return OPT->isObjCClassType();
4861  return false;
4862}
4863inline bool Type::isObjCSelType() const {
4864  if (const PointerType *OPT = getAs<PointerType>())
4865    return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
4866  return false;
4867}
4868inline bool Type::isObjCBuiltinType() const {
4869  return isObjCIdType() || isObjCClassType() || isObjCSelType();
4870}
4871
4872inline bool Type::isImage1dT() const {
4873  return isSpecificBuiltinType(BuiltinType::OCLImage1d);
4874}
4875
4876inline bool Type::isImage1dArrayT() const {
4877  return isSpecificBuiltinType(BuiltinType::OCLImage1dArray);
4878}
4879
4880inline bool Type::isImage1dBufferT() const {
4881  return isSpecificBuiltinType(BuiltinType::OCLImage1dBuffer);
4882}
4883
4884inline bool Type::isImage2dT() const {
4885  return isSpecificBuiltinType(BuiltinType::OCLImage2d);
4886}
4887
4888inline bool Type::isImage2dArrayT() const {
4889  return isSpecificBuiltinType(BuiltinType::OCLImage2dArray);
4890}
4891
4892inline bool Type::isImage3dT() const {
4893  return isSpecificBuiltinType(BuiltinType::OCLImage3d);
4894}
4895
4896inline bool Type::isSamplerT() const {
4897  return isSpecificBuiltinType(BuiltinType::OCLSampler);
4898}
4899
4900inline bool Type::isEventT() const {
4901  return isSpecificBuiltinType(BuiltinType::OCLEvent);
4902}
4903
4904inline bool Type::isImageType() const {
4905  return isImage3dT() ||
4906         isImage2dT() || isImage2dArrayT() ||
4907         isImage1dT() || isImage1dArrayT() || isImage1dBufferT();
4908}
4909
4910inline bool Type::isOpenCLSpecificType() const {
4911  return isSamplerT() || isEventT() || isImageType();
4912}
4913
4914inline bool Type::isTemplateTypeParmType() const {
4915  return isa<TemplateTypeParmType>(CanonicalType);
4916}
4917
4918inline bool Type::isSpecificBuiltinType(unsigned K) const {
4919  if (const BuiltinType *BT = getAs<BuiltinType>())
4920    if (BT->getKind() == (BuiltinType::Kind) K)
4921      return true;
4922  return false;
4923}
4924
4925inline bool Type::isPlaceholderType() const {
4926  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
4927    return BT->isPlaceholderType();
4928  return false;
4929}
4930
4931inline const BuiltinType *Type::getAsPlaceholderType() const {
4932  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
4933    if (BT->isPlaceholderType())
4934      return BT;
4935  return 0;
4936}
4937
4938inline bool Type::isSpecificPlaceholderType(unsigned K) const {
4939  assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K));
4940  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
4941    return (BT->getKind() == (BuiltinType::Kind) K);
4942  return false;
4943}
4944
4945inline bool Type::isNonOverloadPlaceholderType() const {
4946  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
4947    return BT->isNonOverloadPlaceholderType();
4948  return false;
4949}
4950
4951inline bool Type::isVoidType() const {
4952  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
4953    return BT->getKind() == BuiltinType::Void;
4954  return false;
4955}
4956
4957inline bool Type::isHalfType() const {
4958  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
4959    return BT->getKind() == BuiltinType::Half;
4960  // FIXME: Should we allow complex __fp16? Probably not.
4961  return false;
4962}
4963
4964inline bool Type::isNullPtrType() const {
4965  if (const BuiltinType *BT = getAs<BuiltinType>())
4966    return BT->getKind() == BuiltinType::NullPtr;
4967  return false;
4968}
4969
4970extern bool IsEnumDeclComplete(EnumDecl *);
4971extern bool IsEnumDeclScoped(EnumDecl *);
4972
4973inline bool Type::isIntegerType() const {
4974  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
4975    return BT->getKind() >= BuiltinType::Bool &&
4976           BT->getKind() <= BuiltinType::Int128;
4977  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
4978    // Incomplete enum types are not treated as integer types.
4979    // FIXME: In C++, enum types are never integer types.
4980    return IsEnumDeclComplete(ET->getDecl()) &&
4981      !IsEnumDeclScoped(ET->getDecl());
4982  }
4983  return false;
4984}
4985
4986inline bool Type::isScalarType() const {
4987  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
4988    return BT->getKind() > BuiltinType::Void &&
4989           BT->getKind() <= BuiltinType::NullPtr;
4990  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
4991    // Enums are scalar types, but only if they are defined.  Incomplete enums
4992    // are not treated as scalar types.
4993    return IsEnumDeclComplete(ET->getDecl());
4994  return isa<PointerType>(CanonicalType) ||
4995         isa<BlockPointerType>(CanonicalType) ||
4996         isa<MemberPointerType>(CanonicalType) ||
4997         isa<ComplexType>(CanonicalType) ||
4998         isa<ObjCObjectPointerType>(CanonicalType);
4999}
5000
5001inline bool Type::isIntegralOrEnumerationType() const {
5002  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
5003    return BT->getKind() >= BuiltinType::Bool &&
5004           BT->getKind() <= BuiltinType::Int128;
5005
5006  // Check for a complete enum type; incomplete enum types are not properly an
5007  // enumeration type in the sense required here.
5008  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
5009    return IsEnumDeclComplete(ET->getDecl());
5010
5011  return false;
5012}
5013
5014inline bool Type::isBooleanType() const {
5015  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
5016    return BT->getKind() == BuiltinType::Bool;
5017  return false;
5018}
5019
5020/// \brief Determines whether this is a type for which one can define
5021/// an overloaded operator.
5022inline bool Type::isOverloadableType() const {
5023  return isDependentType() || isRecordType() || isEnumeralType();
5024}
5025
5026/// \brief Determines whether this type can decay to a pointer type.
5027inline bool Type::canDecayToPointerType() const {
5028  return isFunctionType() || isArrayType();
5029}
5030
5031inline bool Type::hasPointerRepresentation() const {
5032  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
5033          isObjCObjectPointerType() || isNullPtrType());
5034}
5035
5036inline bool Type::hasObjCPointerRepresentation() const {
5037  return isObjCObjectPointerType();
5038}
5039
5040inline const Type *Type::getBaseElementTypeUnsafe() const {
5041  const Type *type = this;
5042  while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
5043    type = arrayType->getElementType().getTypePtr();
5044  return type;
5045}
5046
5047/// Insertion operator for diagnostics.  This allows sending QualType's into a
5048/// diagnostic with <<.
5049inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
5050                                           QualType T) {
5051  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
5052                  DiagnosticsEngine::ak_qualtype);
5053  return DB;
5054}
5055
5056/// Insertion operator for partial diagnostics.  This allows sending QualType's
5057/// into a diagnostic with <<.
5058inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
5059                                           QualType T) {
5060  PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
5061                  DiagnosticsEngine::ak_qualtype);
5062  return PD;
5063}
5064
5065// Helper class template that is used by Type::getAs to ensure that one does
5066// not try to look through a qualified type to get to an array type.
5067template<typename T,
5068         bool isArrayType = (llvm::is_same<T, ArrayType>::value ||
5069                             llvm::is_base_of<ArrayType, T>::value)>
5070struct ArrayType_cannot_be_used_with_getAs { };
5071
5072template<typename T>
5073struct ArrayType_cannot_be_used_with_getAs<T, true>;
5074
5075// Member-template getAs<specific type>'.
5076template <typename T> const T *Type::getAs() const {
5077  ArrayType_cannot_be_used_with_getAs<T> at;
5078  (void)at;
5079
5080  // If this is directly a T type, return it.
5081  if (const T *Ty = dyn_cast<T>(this))
5082    return Ty;
5083
5084  // If the canonical form of this type isn't the right kind, reject it.
5085  if (!isa<T>(CanonicalType))
5086    return 0;
5087
5088  // If this is a typedef for the type, strip the typedef off without
5089  // losing all typedef information.
5090  return cast<T>(getUnqualifiedDesugaredType());
5091}
5092
5093inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
5094  // If this is directly an array type, return it.
5095  if (const ArrayType *arr = dyn_cast<ArrayType>(this))
5096    return arr;
5097
5098  // If the canonical form of this type isn't the right kind, reject it.
5099  if (!isa<ArrayType>(CanonicalType))
5100    return 0;
5101
5102  // If this is a typedef for the type, strip the typedef off without
5103  // losing all typedef information.
5104  return cast<ArrayType>(getUnqualifiedDesugaredType());
5105}
5106
5107template <typename T> const T *Type::castAs() const {
5108  ArrayType_cannot_be_used_with_getAs<T> at;
5109  (void) at;
5110
5111  assert(isa<T>(CanonicalType));
5112  if (const T *ty = dyn_cast<T>(this)) return ty;
5113  return cast<T>(getUnqualifiedDesugaredType());
5114}
5115
5116inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
5117  assert(isa<ArrayType>(CanonicalType));
5118  if (const ArrayType *arr = dyn_cast<ArrayType>(this)) return arr;
5119  return cast<ArrayType>(getUnqualifiedDesugaredType());
5120}
5121
5122}  // end namespace clang
5123
5124#endif
5125