Type.h revision c4875ee41ba35f1d746f4266ce47461247f19f41
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Basic/IdentifierTable.h"
19#include "clang/Basic/Linkage.h"
20#include "clang/AST/NestedNameSpecifier.h"
21#include "clang/AST/TemplateName.h"
22#include "llvm/Support/Casting.h"
23#include "llvm/Support/type_traits.h"
24#include "llvm/ADT/APSInt.h"
25#include "llvm/ADT/FoldingSet.h"
26#include "llvm/ADT/PointerIntPair.h"
27#include "llvm/ADT/PointerUnion.h"
28
29using llvm::isa;
30using llvm::cast;
31using llvm::cast_or_null;
32using llvm::dyn_cast;
33using llvm::dyn_cast_or_null;
34namespace clang {
35  enum {
36    TypeAlignmentInBits = 3,
37    TypeAlignment = 1 << TypeAlignmentInBits
38  };
39  class Type;
40  class ExtQuals;
41  class QualType;
42}
43
44namespace llvm {
45  template <typename T>
46  class PointerLikeTypeTraits;
47  template<>
48  class PointerLikeTypeTraits< ::clang::Type*> {
49  public:
50    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
51    static inline ::clang::Type *getFromVoidPointer(void *P) {
52      return static_cast< ::clang::Type*>(P);
53    }
54    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
55  };
56  template<>
57  class PointerLikeTypeTraits< ::clang::ExtQuals*> {
58  public:
59    static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
60    static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
61      return static_cast< ::clang::ExtQuals*>(P);
62    }
63    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
64  };
65
66  template <>
67  struct isPodLike<clang::QualType> { static const bool value = true; };
68}
69
70namespace clang {
71  class ASTContext;
72  class TypedefDecl;
73  class TemplateDecl;
74  class TemplateTypeParmDecl;
75  class NonTypeTemplateParmDecl;
76  class TemplateTemplateParmDecl;
77  class TagDecl;
78  class RecordDecl;
79  class CXXRecordDecl;
80  class EnumDecl;
81  class FieldDecl;
82  class ObjCInterfaceDecl;
83  class ObjCProtocolDecl;
84  class ObjCMethodDecl;
85  class UnresolvedUsingTypenameDecl;
86  class Expr;
87  class Stmt;
88  class SourceLocation;
89  class StmtIteratorBase;
90  class TemplateArgument;
91  class TemplateArgumentLoc;
92  class TemplateArgumentListInfo;
93  class QualifiedNameType;
94  struct PrintingPolicy;
95
96  // Provide forward declarations for all of the *Type classes
97#define TYPE(Class, Base) class Class##Type;
98#include "clang/AST/TypeNodes.def"
99
100/// Qualifiers - The collection of all-type qualifiers we support.
101/// Clang supports five independent qualifiers:
102/// * C99: const, volatile, and restrict
103/// * Embedded C (TR18037): address spaces
104/// * Objective C: the GC attributes (none, weak, or strong)
105class Qualifiers {
106public:
107  enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
108    Const    = 0x1,
109    Restrict = 0x2,
110    Volatile = 0x4,
111    CVRMask = Const | Volatile | Restrict
112  };
113
114  enum GC {
115    GCNone = 0,
116    Weak,
117    Strong
118  };
119
120  enum {
121    /// The maximum supported address space number.
122    /// 24 bits should be enough for anyone.
123    MaxAddressSpace = 0xffffffu,
124
125    /// The width of the "fast" qualifier mask.
126    FastWidth = 2,
127
128    /// The fast qualifier mask.
129    FastMask = (1 << FastWidth) - 1
130  };
131
132  Qualifiers() : Mask(0) {}
133
134  static Qualifiers fromFastMask(unsigned Mask) {
135    Qualifiers Qs;
136    Qs.addFastQualifiers(Mask);
137    return Qs;
138  }
139
140  static Qualifiers fromCVRMask(unsigned CVR) {
141    Qualifiers Qs;
142    Qs.addCVRQualifiers(CVR);
143    return Qs;
144  }
145
146  // Deserialize qualifiers from an opaque representation.
147  static Qualifiers fromOpaqueValue(unsigned opaque) {
148    Qualifiers Qs;
149    Qs.Mask = opaque;
150    return Qs;
151  }
152
153  // Serialize these qualifiers into an opaque representation.
154  unsigned getAsOpaqueValue() const {
155    return Mask;
156  }
157
158  bool hasConst() const { return Mask & Const; }
159  void setConst(bool flag) {
160    Mask = (Mask & ~Const) | (flag ? Const : 0);
161  }
162  void removeConst() { Mask &= ~Const; }
163  void addConst() { Mask |= Const; }
164
165  bool hasVolatile() const { return Mask & Volatile; }
166  void setVolatile(bool flag) {
167    Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
168  }
169  void removeVolatile() { Mask &= ~Volatile; }
170  void addVolatile() { Mask |= Volatile; }
171
172  bool hasRestrict() const { return Mask & Restrict; }
173  void setRestrict(bool flag) {
174    Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
175  }
176  void removeRestrict() { Mask &= ~Restrict; }
177  void addRestrict() { Mask |= Restrict; }
178
179  bool hasCVRQualifiers() const { return getCVRQualifiers(); }
180  unsigned getCVRQualifiers() const { return Mask & CVRMask; }
181  void setCVRQualifiers(unsigned mask) {
182    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
183    Mask = (Mask & ~CVRMask) | mask;
184  }
185  void removeCVRQualifiers(unsigned mask) {
186    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
187    Mask &= ~mask;
188  }
189  void removeCVRQualifiers() {
190    removeCVRQualifiers(CVRMask);
191  }
192  void addCVRQualifiers(unsigned mask) {
193    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
194    Mask |= mask;
195  }
196
197  bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
198  GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
199  void setObjCGCAttr(GC type) {
200    Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
201  }
202  void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
203  void addObjCGCAttr(GC type) {
204    assert(type);
205    setObjCGCAttr(type);
206  }
207
208  bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
209  unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
210  void setAddressSpace(unsigned space) {
211    assert(space <= MaxAddressSpace);
212    Mask = (Mask & ~AddressSpaceMask)
213         | (((uint32_t) space) << AddressSpaceShift);
214  }
215  void removeAddressSpace() { setAddressSpace(0); }
216  void addAddressSpace(unsigned space) {
217    assert(space);
218    setAddressSpace(space);
219  }
220
221  // Fast qualifiers are those that can be allocated directly
222  // on a QualType object.
223  bool hasFastQualifiers() const { return getFastQualifiers(); }
224  unsigned getFastQualifiers() const { return Mask & FastMask; }
225  void setFastQualifiers(unsigned mask) {
226    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
227    Mask = (Mask & ~FastMask) | mask;
228  }
229  void removeFastQualifiers(unsigned mask) {
230    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
231    Mask &= ~mask;
232  }
233  void removeFastQualifiers() {
234    removeFastQualifiers(FastMask);
235  }
236  void addFastQualifiers(unsigned mask) {
237    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
238    Mask |= mask;
239  }
240
241  /// hasNonFastQualifiers - Return true if the set contains any
242  /// qualifiers which require an ExtQuals node to be allocated.
243  bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
244  Qualifiers getNonFastQualifiers() const {
245    Qualifiers Quals = *this;
246    Quals.setFastQualifiers(0);
247    return Quals;
248  }
249
250  /// hasQualifiers - Return true if the set contains any qualifiers.
251  bool hasQualifiers() const { return Mask; }
252  bool empty() const { return !Mask; }
253
254  /// \brief Add the qualifiers from the given set to this set.
255  void addQualifiers(Qualifiers Q) {
256    // If the other set doesn't have any non-boolean qualifiers, just
257    // bit-or it in.
258    if (!(Q.Mask & ~CVRMask))
259      Mask |= Q.Mask;
260    else {
261      Mask |= (Q.Mask & CVRMask);
262      if (Q.hasAddressSpace())
263        addAddressSpace(Q.getAddressSpace());
264      if (Q.hasObjCGCAttr())
265        addObjCGCAttr(Q.getObjCGCAttr());
266    }
267  }
268
269  bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
270  bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
271
272  operator bool() const { return hasQualifiers(); }
273
274  Qualifiers &operator+=(Qualifiers R) {
275    addQualifiers(R);
276    return *this;
277  }
278
279  // Union two qualifier sets.  If an enumerated qualifier appears
280  // in both sets, use the one from the right.
281  friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
282    L += R;
283    return L;
284  }
285
286  std::string getAsString() const;
287  std::string getAsString(const PrintingPolicy &Policy) const {
288    std::string Buffer;
289    getAsStringInternal(Buffer, Policy);
290    return Buffer;
291  }
292  void getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const;
293
294  void Profile(llvm::FoldingSetNodeID &ID) const {
295    ID.AddInteger(Mask);
296  }
297
298private:
299
300  // bits:     |0 1 2|3 .. 4|5  ..  31|
301  //           |C R V|GCAttr|AddrSpace|
302  uint32_t Mask;
303
304  static const uint32_t GCAttrMask = 0x18;
305  static const uint32_t GCAttrShift = 3;
306  static const uint32_t AddressSpaceMask = ~(CVRMask | GCAttrMask);
307  static const uint32_t AddressSpaceShift = 5;
308};
309
310
311/// ExtQuals - We can encode up to three bits in the low bits of a
312/// type pointer, but there are many more type qualifiers that we want
313/// to be able to apply to an arbitrary type.  Therefore we have this
314/// struct, intended to be heap-allocated and used by QualType to
315/// store qualifiers.
316///
317/// The current design tags the 'const' and 'restrict' qualifiers in
318/// two low bits on the QualType pointer; a third bit records whether
319/// the pointer is an ExtQuals node.  'const' was chosen because it is
320/// orders of magnitude more common than the other two qualifiers, in
321/// both library and user code.  It's relatively rare to see
322/// 'restrict' in user code, but many standard C headers are saturated
323/// with 'restrict' declarations, so that representing them efficiently
324/// is a critical goal of this representation.
325class ExtQuals : public llvm::FoldingSetNode {
326  // NOTE: changing the fast qualifiers should be straightforward as
327  // long as you don't make 'const' non-fast.
328  // 1. Qualifiers:
329  //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
330  //       Fast qualifiers must occupy the low-order bits.
331  //    b) Update Qualifiers::FastWidth and FastMask.
332  // 2. QualType:
333  //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
334  //    b) Update remove{Volatile,Restrict}, defined near the end of
335  //       this header.
336  // 3. ASTContext:
337  //    a) Update get{Volatile,Restrict}Type.
338
339  /// Context - the context to which this set belongs.  We save this
340  /// here so that QualifierCollector can use it to reapply extended
341  /// qualifiers to an arbitrary type without requiring a context to
342  /// be pushed through every single API dealing with qualifiers.
343  ASTContext& Context;
344
345  /// BaseType - the underlying type that this qualifies
346  const Type *BaseType;
347
348  /// Quals - the immutable set of qualifiers applied by this
349  /// node;  always contains extended qualifiers.
350  Qualifiers Quals;
351
352public:
353  ExtQuals(ASTContext& Context, const Type *Base, Qualifiers Quals)
354    : Context(Context), BaseType(Base), Quals(Quals)
355  {
356    assert(Quals.hasNonFastQualifiers()
357           && "ExtQuals created with no fast qualifiers");
358    assert(!Quals.hasFastQualifiers()
359           && "ExtQuals created with fast qualifiers");
360  }
361
362  Qualifiers getQualifiers() const { return Quals; }
363
364  bool hasVolatile() const { return Quals.hasVolatile(); }
365
366  bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
367  Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
368
369  bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
370  unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
371
372  const Type *getBaseType() const { return BaseType; }
373
374  ASTContext &getContext() const { return Context; }
375
376public:
377  void Profile(llvm::FoldingSetNodeID &ID) const {
378    Profile(ID, getBaseType(), Quals);
379  }
380  static void Profile(llvm::FoldingSetNodeID &ID,
381                      const Type *BaseType,
382                      Qualifiers Quals) {
383    assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
384    ID.AddPointer(BaseType);
385    Quals.Profile(ID);
386  }
387};
388
389/// CallingConv - Specifies the calling convention that a function uses.
390enum CallingConv {
391  CC_Default,
392  CC_C,           // __attribute__((cdecl))
393  CC_X86StdCall,  // __attribute__((stdcall))
394  CC_X86FastCall  // __attribute__((fastcall))
395};
396
397
398/// QualType - For efficiency, we don't store CV-qualified types as nodes on
399/// their own: instead each reference to a type stores the qualifiers.  This
400/// greatly reduces the number of nodes we need to allocate for types (for
401/// example we only need one for 'int', 'const int', 'volatile int',
402/// 'const volatile int', etc).
403///
404/// As an added efficiency bonus, instead of making this a pair, we
405/// just store the two bits we care about in the low bits of the
406/// pointer.  To handle the packing/unpacking, we make QualType be a
407/// simple wrapper class that acts like a smart pointer.  A third bit
408/// indicates whether there are extended qualifiers present, in which
409/// case the pointer points to a special structure.
410class QualType {
411  // Thankfully, these are efficiently composable.
412  llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
413                       Qualifiers::FastWidth> Value;
414
415  const ExtQuals *getExtQualsUnsafe() const {
416    return Value.getPointer().get<const ExtQuals*>();
417  }
418
419  const Type *getTypePtrUnsafe() const {
420    return Value.getPointer().get<const Type*>();
421  }
422
423  QualType getUnqualifiedTypeSlow() const;
424
425  friend class QualifierCollector;
426public:
427  QualType() {}
428
429  QualType(const Type *Ptr, unsigned Quals)
430    : Value(Ptr, Quals) {}
431  QualType(const ExtQuals *Ptr, unsigned Quals)
432    : Value(Ptr, Quals) {}
433
434  unsigned getLocalFastQualifiers() const { return Value.getInt(); }
435  void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
436
437  /// Retrieves a pointer to the underlying (unqualified) type.
438  /// This should really return a const Type, but it's not worth
439  /// changing all the users right now.
440  Type *getTypePtr() const {
441    if (hasLocalNonFastQualifiers())
442      return const_cast<Type*>(getExtQualsUnsafe()->getBaseType());
443    return const_cast<Type*>(getTypePtrUnsafe());
444  }
445
446  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
447  static QualType getFromOpaquePtr(void *Ptr) {
448    QualType T;
449    T.Value.setFromOpaqueValue(Ptr);
450    return T;
451  }
452
453  Type &operator*() const {
454    return *getTypePtr();
455  }
456
457  Type *operator->() const {
458    return getTypePtr();
459  }
460
461  bool isCanonical() const;
462  bool isCanonicalAsParam() const;
463
464  /// isNull - Return true if this QualType doesn't point to a type yet.
465  bool isNull() const {
466    return Value.getPointer().isNull();
467  }
468
469  /// \brief Determine whether this particular QualType instance has the
470  /// "const" qualifier set, without looking through typedefs that may have
471  /// added "const" at a different level.
472  bool isLocalConstQualified() const {
473    return (getLocalFastQualifiers() & Qualifiers::Const);
474  }
475
476  /// \brief Determine whether this type is const-qualified.
477  bool isConstQualified() const;
478
479  /// \brief Determine whether this particular QualType instance has the
480  /// "restrict" qualifier set, without looking through typedefs that may have
481  /// added "restrict" at a different level.
482  bool isLocalRestrictQualified() const {
483    return (getLocalFastQualifiers() & Qualifiers::Restrict);
484  }
485
486  /// \brief Determine whether this type is restrict-qualified.
487  bool isRestrictQualified() const;
488
489  /// \brief Determine whether this particular QualType instance has the
490  /// "volatile" qualifier set, without looking through typedefs that may have
491  /// added "volatile" at a different level.
492  bool isLocalVolatileQualified() const {
493    return (hasLocalNonFastQualifiers() && getExtQualsUnsafe()->hasVolatile());
494  }
495
496  /// \brief Determine whether this type is volatile-qualified.
497  bool isVolatileQualified() const;
498
499  /// \brief Determine whether this particular QualType instance has any
500  /// qualifiers, without looking through any typedefs that might add
501  /// qualifiers at a different level.
502  bool hasLocalQualifiers() const {
503    return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
504  }
505
506  /// \brief Determine whether this type has any qualifiers.
507  bool hasQualifiers() const;
508
509  /// \brief Determine whether this particular QualType instance has any
510  /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
511  /// instance.
512  bool hasLocalNonFastQualifiers() const {
513    return Value.getPointer().is<const ExtQuals*>();
514  }
515
516  /// \brief Retrieve the set of qualifiers local to this particular QualType
517  /// instance, not including any qualifiers acquired through typedefs or
518  /// other sugar.
519  Qualifiers getLocalQualifiers() const {
520    Qualifiers Quals;
521    if (hasLocalNonFastQualifiers())
522      Quals = getExtQualsUnsafe()->getQualifiers();
523    Quals.addFastQualifiers(getLocalFastQualifiers());
524    return Quals;
525  }
526
527  /// \brief Retrieve the set of qualifiers applied to this type.
528  Qualifiers getQualifiers() const;
529
530  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
531  /// local to this particular QualType instance, not including any qualifiers
532  /// acquired through typedefs or other sugar.
533  unsigned getLocalCVRQualifiers() const {
534    unsigned CVR = getLocalFastQualifiers();
535    if (isLocalVolatileQualified())
536      CVR |= Qualifiers::Volatile;
537    return CVR;
538  }
539
540  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
541  /// applied to this type.
542  unsigned getCVRQualifiers() const;
543
544  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
545  /// applied to this type, looking through any number of unqualified array
546  /// types to their element types' qualifiers.
547  unsigned getCVRQualifiersThroughArrayTypes() const;
548
549  bool isConstant(ASTContext& Ctx) const {
550    return QualType::isConstant(*this, Ctx);
551  }
552
553  // Don't promise in the API that anything besides 'const' can be
554  // easily added.
555
556  /// addConst - add the specified type qualifier to this QualType.
557  void addConst() {
558    addFastQualifiers(Qualifiers::Const);
559  }
560  QualType withConst() const {
561    return withFastQualifiers(Qualifiers::Const);
562  }
563
564  void addFastQualifiers(unsigned TQs) {
565    assert(!(TQs & ~Qualifiers::FastMask)
566           && "non-fast qualifier bits set in mask!");
567    Value.setInt(Value.getInt() | TQs);
568  }
569
570  // FIXME: The remove* functions are semantically broken, because they might
571  // not remove a qualifier stored on a typedef. Most of the with* functions
572  // have the same problem.
573  void removeConst();
574  void removeVolatile();
575  void removeRestrict();
576  void removeCVRQualifiers(unsigned Mask);
577
578  void removeFastQualifiers() { Value.setInt(0); }
579  void removeFastQualifiers(unsigned Mask) {
580    assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
581    Value.setInt(Value.getInt() & ~Mask);
582  }
583
584  // Creates a type with the given qualifiers in addition to any
585  // qualifiers already on this type.
586  QualType withFastQualifiers(unsigned TQs) const {
587    QualType T = *this;
588    T.addFastQualifiers(TQs);
589    return T;
590  }
591
592  // Creates a type with exactly the given fast qualifiers, removing
593  // any existing fast qualifiers.
594  QualType withExactFastQualifiers(unsigned TQs) const {
595    return withoutFastQualifiers().withFastQualifiers(TQs);
596  }
597
598  // Removes fast qualifiers, but leaves any extended qualifiers in place.
599  QualType withoutFastQualifiers() const {
600    QualType T = *this;
601    T.removeFastQualifiers();
602    return T;
603  }
604
605  /// \brief Return this type with all of the instance-specific qualifiers
606  /// removed, but without removing any qualifiers that may have been applied
607  /// through typedefs.
608  QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
609
610  /// \brief Return the unqualified form of the given type, which might be
611  /// desugared to eliminate qualifiers introduced via typedefs.
612  QualType getUnqualifiedType() const {
613    QualType T = getLocalUnqualifiedType();
614    if (!T.hasQualifiers())
615      return T;
616
617    return getUnqualifiedTypeSlow();
618  }
619
620  bool isMoreQualifiedThan(QualType Other) const;
621  bool isAtLeastAsQualifiedAs(QualType Other) const;
622  QualType getNonReferenceType() const;
623
624  /// getDesugaredType - Return the specified type with any "sugar" removed from
625  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
626  /// the type is already concrete, it returns it unmodified.  This is similar
627  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
628  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
629  /// concrete.
630  ///
631  /// Qualifiers are left in place.
632  QualType getDesugaredType() const {
633    return QualType::getDesugaredType(*this);
634  }
635
636  /// operator==/!= - Indicate whether the specified types and qualifiers are
637  /// identical.
638  friend bool operator==(const QualType &LHS, const QualType &RHS) {
639    return LHS.Value == RHS.Value;
640  }
641  friend bool operator!=(const QualType &LHS, const QualType &RHS) {
642    return LHS.Value != RHS.Value;
643  }
644  std::string getAsString() const;
645
646  std::string getAsString(const PrintingPolicy &Policy) const {
647    std::string S;
648    getAsStringInternal(S, Policy);
649    return S;
650  }
651  void getAsStringInternal(std::string &Str,
652                           const PrintingPolicy &Policy) const;
653
654  void dump(const char *s) const;
655  void dump() const;
656
657  void Profile(llvm::FoldingSetNodeID &ID) const {
658    ID.AddPointer(getAsOpaquePtr());
659  }
660
661  /// getAddressSpace - Return the address space of this type.
662  inline unsigned getAddressSpace() const;
663
664  /// GCAttrTypesAttr - Returns gc attribute of this type.
665  inline Qualifiers::GC getObjCGCAttr() const;
666
667  /// isObjCGCWeak true when Type is objc's weak.
668  bool isObjCGCWeak() const {
669    return getObjCGCAttr() == Qualifiers::Weak;
670  }
671
672  /// isObjCGCStrong true when Type is objc's strong.
673  bool isObjCGCStrong() const {
674    return getObjCGCAttr() == Qualifiers::Strong;
675  }
676
677  /// getNoReturnAttr - Returns true if the type has the noreturn attribute,
678  /// false otherwise.
679  bool getNoReturnAttr() const;
680
681  /// getCallConv - Returns the calling convention of the type if the type
682  /// is a function type, CC_Default otherwise.
683  CallingConv getCallConv() const;
684
685private:
686  // These methods are implemented in a separate translation unit;
687  // "static"-ize them to avoid creating temporary QualTypes in the
688  // caller.
689  static bool isConstant(QualType T, ASTContext& Ctx);
690  static QualType getDesugaredType(QualType T);
691};
692
693} // end clang.
694
695namespace llvm {
696/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
697/// to a specific Type class.
698template<> struct simplify_type<const ::clang::QualType> {
699  typedef ::clang::Type* SimpleType;
700  static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
701    return Val.getTypePtr();
702  }
703};
704template<> struct simplify_type< ::clang::QualType>
705  : public simplify_type<const ::clang::QualType> {};
706
707// Teach SmallPtrSet that QualType is "basically a pointer".
708template<>
709class PointerLikeTypeTraits<clang::QualType> {
710public:
711  static inline void *getAsVoidPointer(clang::QualType P) {
712    return P.getAsOpaquePtr();
713  }
714  static inline clang::QualType getFromVoidPointer(void *P) {
715    return clang::QualType::getFromOpaquePtr(P);
716  }
717  // Various qualifiers go in low bits.
718  enum { NumLowBitsAvailable = 0 };
719};
720
721} // end namespace llvm
722
723namespace clang {
724
725/// Type - This is the base class of the type hierarchy.  A central concept
726/// with types is that each type always has a canonical type.  A canonical type
727/// is the type with any typedef names stripped out of it or the types it
728/// references.  For example, consider:
729///
730///  typedef int  foo;
731///  typedef foo* bar;
732///    'int *'    'foo *'    'bar'
733///
734/// There will be a Type object created for 'int'.  Since int is canonical, its
735/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
736/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
737/// there is a PointerType that represents 'int*', which, like 'int', is
738/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
739/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
740/// is also 'int*'.
741///
742/// Non-canonical types are useful for emitting diagnostics, without losing
743/// information about typedefs being used.  Canonical types are useful for type
744/// comparisons (they allow by-pointer equality tests) and useful for reasoning
745/// about whether something has a particular form (e.g. is a function type),
746/// because they implicitly, recursively, strip all typedefs out of a type.
747///
748/// Types, once created, are immutable.
749///
750class Type {
751public:
752  enum TypeClass {
753#define TYPE(Class, Base) Class,
754#define LAST_TYPE(Class) TypeLast = Class,
755#define ABSTRACT_TYPE(Class, Base)
756#include "clang/AST/TypeNodes.def"
757    TagFirst = Record, TagLast = Enum
758  };
759
760private:
761  QualType CanonicalType;
762
763  /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
764  unsigned TC : 8;
765
766  /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
767  /// Note that this should stay at the end of the ivars for Type so that
768  /// subclasses can pack their bitfields into the same word.
769  bool Dependent : 1;
770
771  Type(const Type&);           // DO NOT IMPLEMENT.
772  void operator=(const Type&); // DO NOT IMPLEMENT.
773protected:
774  // silence VC++ warning C4355: 'this' : used in base member initializer list
775  Type *this_() { return this; }
776  Type(TypeClass tc, QualType Canonical, bool dependent)
777    : CanonicalType(Canonical.isNull() ? QualType(this_(), 0) : Canonical),
778      TC(tc), Dependent(dependent) {}
779  virtual ~Type() {}
780  virtual void Destroy(ASTContext& C);
781  friend class ASTContext;
782
783public:
784  TypeClass getTypeClass() const { return static_cast<TypeClass>(TC); }
785
786  bool isCanonicalUnqualified() const {
787    return CanonicalType.getTypePtr() == this;
788  }
789
790  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
791  /// object types, function types, and incomplete types.
792
793  /// \brief Determines whether the type describes an object in memory.
794  ///
795  /// Note that this definition of object type corresponds to the C++
796  /// definition of object type, which includes incomplete types, as
797  /// opposed to the C definition (which does not include incomplete
798  /// types).
799  bool isObjectType() const;
800
801  /// isIncompleteType - Return true if this is an incomplete type.
802  /// A type that can describe objects, but which lacks information needed to
803  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
804  /// routine will need to determine if the size is actually required.
805  bool isIncompleteType() const;
806
807  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
808  /// type, in other words, not a function type.
809  bool isIncompleteOrObjectType() const {
810    return !isFunctionType();
811  }
812
813  /// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10).
814  bool isPODType() const;
815
816  /// isLiteralType - Return true if this is a literal type
817  /// (C++0x [basic.types]p10)
818  bool isLiteralType() const;
819
820  /// isVariablyModifiedType (C99 6.7.5.2p2) - Return true for variable array
821  /// types that have a non-constant expression. This does not include "[]".
822  bool isVariablyModifiedType() const;
823
824  /// Helper methods to distinguish type categories. All type predicates
825  /// operate on the canonical type, ignoring typedefs and qualifiers.
826
827  /// isSpecificBuiltinType - Test for a particular builtin type.
828  bool isSpecificBuiltinType(unsigned K) const;
829
830  /// isIntegerType() does *not* include complex integers (a GCC extension).
831  /// isComplexIntegerType() can be used to test for complex integers.
832  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
833  bool isEnumeralType() const;
834  bool isBooleanType() const;
835  bool isCharType() const;
836  bool isWideCharType() const;
837  bool isAnyCharacterType() const;
838  bool isIntegralType() const;
839
840  /// Floating point categories.
841  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
842  /// isComplexType() does *not* include complex integers (a GCC extension).
843  /// isComplexIntegerType() can be used to test for complex integers.
844  bool isComplexType() const;      // C99 6.2.5p11 (complex)
845  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
846  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
847  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
848  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
849  bool isVoidType() const;         // C99 6.2.5p19
850  bool isDerivedType() const;      // C99 6.2.5p20
851  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
852  bool isAggregateType() const;
853
854  // Type Predicates: Check to see if this type is structurally the specified
855  // type, ignoring typedefs and qualifiers.
856  bool isFunctionType() const;
857  bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
858  bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
859  bool isPointerType() const;
860  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
861  bool isBlockPointerType() const;
862  bool isVoidPointerType() const;
863  bool isReferenceType() const;
864  bool isLValueReferenceType() const;
865  bool isRValueReferenceType() const;
866  bool isFunctionPointerType() const;
867  bool isMemberPointerType() const;
868  bool isMemberFunctionPointerType() const;
869  bool isArrayType() const;
870  bool isConstantArrayType() const;
871  bool isIncompleteArrayType() const;
872  bool isVariableArrayType() const;
873  bool isDependentSizedArrayType() const;
874  bool isRecordType() const;
875  bool isClassType() const;
876  bool isStructureType() const;
877  bool isUnionType() const;
878  bool isComplexIntegerType() const;            // GCC _Complex integer type.
879  bool isVectorType() const;                    // GCC vector type.
880  bool isExtVectorType() const;                 // Extended vector type.
881  bool isObjCObjectPointerType() const;         // Pointer to *any* ObjC object.
882  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
883  // for the common case.
884  bool isObjCInterfaceType() const;             // NSString or NSString<foo>
885  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
886  bool isObjCQualifiedIdType() const;           // id<foo>
887  bool isObjCQualifiedClassType() const;        // Class<foo>
888  bool isObjCIdType() const;                    // id
889  bool isObjCClassType() const;                 // Class
890  bool isObjCSelType() const;                 // Class
891  bool isObjCBuiltinType() const;               // 'id' or 'Class'
892  bool isTemplateTypeParmType() const;          // C++ template type parameter
893  bool isNullPtrType() const;                   // C++0x nullptr_t
894
895  /// isDependentType - Whether this type is a dependent type, meaning
896  /// that its definition somehow depends on a template parameter
897  /// (C++ [temp.dep.type]).
898  bool isDependentType() const { return Dependent; }
899  bool isOverloadableType() const;
900
901  /// hasPointerRepresentation - Whether this type is represented
902  /// natively as a pointer; this includes pointers, references, block
903  /// pointers, and Objective-C interface, qualified id, and qualified
904  /// interface types, as well as nullptr_t.
905  bool hasPointerRepresentation() const;
906
907  /// hasObjCPointerRepresentation - Whether this type can represent
908  /// an objective pointer type for the purpose of GC'ability
909  bool hasObjCPointerRepresentation() const;
910
911  // Type Checking Functions: Check to see if this type is structurally the
912  // specified type, ignoring typedefs and qualifiers, and return a pointer to
913  // the best type we can.
914  const RecordType *getAsStructureType() const;
915  /// NOTE: getAs*ArrayType are methods on ASTContext.
916  const RecordType *getAsUnionType() const;
917  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
918  // The following is a convenience method that returns an ObjCObjectPointerType
919  // for object declared using an interface.
920  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
921  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
922  const ObjCInterfaceType *getAsObjCQualifiedInterfaceType() const;
923  const CXXRecordDecl *getCXXRecordDeclForPointerType() const;
924
925  // Member-template getAs<specific type>'.  This scheme will eventually
926  // replace the specific getAsXXXX methods above.
927  //
928  // There are some specializations of this member template listed
929  // immediately following this class.
930  template <typename T> const T *getAs() const;
931
932  /// getAsPointerToObjCInterfaceType - If this is a pointer to an ObjC
933  /// interface, return the interface type, otherwise return null.
934  const ObjCInterfaceType *getAsPointerToObjCInterfaceType() const;
935
936  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
937  /// element type of the array, potentially with type qualifiers missing.
938  /// This method should never be used when type qualifiers are meaningful.
939  const Type *getArrayElementTypeNoTypeQual() const;
940
941  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
942  /// pointer, this returns the respective pointee.
943  QualType getPointeeType() const;
944
945  /// getUnqualifiedDesugaredType() - Return the specified type with
946  /// any "sugar" removed from the type, removing any typedefs,
947  /// typeofs, etc., as well as any qualifiers.
948  const Type *getUnqualifiedDesugaredType() const;
949
950  /// More type predicates useful for type checking/promotion
951  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
952
953  /// isSignedIntegerType - Return true if this is an integer type that is
954  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
955  /// an enum decl which has a signed representation, or a vector of signed
956  /// integer element type.
957  bool isSignedIntegerType() const;
958
959  /// isUnsignedIntegerType - Return true if this is an integer type that is
960  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
961  /// decl which has an unsigned representation, or a vector of unsigned integer
962  /// element type.
963  bool isUnsignedIntegerType() const;
964
965  /// isConstantSizeType - Return true if this is not a variable sized type,
966  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
967  /// incomplete types.
968  bool isConstantSizeType() const;
969
970  /// isSpecifierType - Returns true if this type can be represented by some
971  /// set of type specifiers.
972  bool isSpecifierType() const;
973
974  const char *getTypeClassName() const;
975
976  /// \brief Determine the linkage of this type.
977  virtual Linkage getLinkage() const;
978
979  QualType getCanonicalTypeInternal() const { return CanonicalType; }
980  void dump() const;
981  static bool classof(const Type *) { return true; }
982};
983
984template <> inline const TypedefType *Type::getAs() const {
985  return dyn_cast<TypedefType>(this);
986}
987
988// We can do canonical leaf types faster, because we don't have to
989// worry about preserving child type decoration.
990#define TYPE(Class, Base)
991#define LEAF_TYPE(Class) \
992template <> inline const Class##Type *Type::getAs() const { \
993  return dyn_cast<Class##Type>(CanonicalType); \
994}
995#include "clang/AST/TypeNodes.def"
996
997
998/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
999/// types are always canonical and have a literal name field.
1000class BuiltinType : public Type {
1001public:
1002  enum Kind {
1003    Void,
1004
1005    Bool,     // This is bool and/or _Bool.
1006    Char_U,   // This is 'char' for targets where char is unsigned.
1007    UChar,    // This is explicitly qualified unsigned char.
1008    Char16,   // This is 'char16_t' for C++.
1009    Char32,   // This is 'char32_t' for C++.
1010    UShort,
1011    UInt,
1012    ULong,
1013    ULongLong,
1014    UInt128,  // __uint128_t
1015
1016    Char_S,   // This is 'char' for targets where char is signed.
1017    SChar,    // This is explicitly qualified signed char.
1018    WChar,    // This is 'wchar_t' for C++.
1019    Short,
1020    Int,
1021    Long,
1022    LongLong,
1023    Int128,   // __int128_t
1024
1025    Float, Double, LongDouble,
1026
1027    NullPtr,  // This is the type of C++0x 'nullptr'.
1028
1029    Overload,  // This represents the type of an overloaded function declaration.
1030    Dependent, // This represents the type of a type-dependent expression.
1031
1032    UndeducedAuto, // In C++0x, this represents the type of an auto variable
1033                   // that has not been deduced yet.
1034    ObjCId,    // This represents the ObjC 'id' type.
1035    ObjCClass, // This represents the ObjC 'Class' type.
1036    ObjCSel    // This represents the ObjC 'SEL' type.
1037  };
1038private:
1039  Kind TypeKind;
1040public:
1041  BuiltinType(Kind K)
1042    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent)),
1043      TypeKind(K) {}
1044
1045  Kind getKind() const { return TypeKind; }
1046  const char *getName(const LangOptions &LO) const;
1047
1048  bool isSugared() const { return false; }
1049  QualType desugar() const { return QualType(this, 0); }
1050
1051  bool isInteger() const {
1052    return TypeKind >= Bool && TypeKind <= Int128;
1053  }
1054
1055  bool isSignedInteger() const {
1056    return TypeKind >= Char_S && TypeKind <= Int128;
1057  }
1058
1059  bool isUnsignedInteger() const {
1060    return TypeKind >= Bool && TypeKind <= UInt128;
1061  }
1062
1063  bool isFloatingPoint() const {
1064    return TypeKind >= Float && TypeKind <= LongDouble;
1065  }
1066
1067  virtual Linkage getLinkage() const;
1068
1069  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
1070  static bool classof(const BuiltinType *) { return true; }
1071};
1072
1073/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
1074/// types (_Complex float etc) as well as the GCC integer complex extensions.
1075///
1076class ComplexType : public Type, public llvm::FoldingSetNode {
1077  QualType ElementType;
1078  ComplexType(QualType Element, QualType CanonicalPtr) :
1079    Type(Complex, CanonicalPtr, Element->isDependentType()),
1080    ElementType(Element) {
1081  }
1082  friend class ASTContext;  // ASTContext creates these.
1083public:
1084  QualType getElementType() const { return ElementType; }
1085
1086  bool isSugared() const { return false; }
1087  QualType desugar() const { return QualType(this, 0); }
1088
1089  void Profile(llvm::FoldingSetNodeID &ID) {
1090    Profile(ID, getElementType());
1091  }
1092  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
1093    ID.AddPointer(Element.getAsOpaquePtr());
1094  }
1095
1096  virtual Linkage getLinkage() const;
1097
1098  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
1099  static bool classof(const ComplexType *) { return true; }
1100};
1101
1102/// PointerType - C99 6.7.5.1 - Pointer Declarators.
1103///
1104class PointerType : public Type, public llvm::FoldingSetNode {
1105  QualType PointeeType;
1106
1107  PointerType(QualType Pointee, QualType CanonicalPtr) :
1108    Type(Pointer, CanonicalPtr, Pointee->isDependentType()), PointeeType(Pointee) {
1109  }
1110  friend class ASTContext;  // ASTContext creates these.
1111public:
1112
1113  QualType getPointeeType() const { return PointeeType; }
1114
1115  bool isSugared() const { return false; }
1116  QualType desugar() const { return QualType(this, 0); }
1117
1118  void Profile(llvm::FoldingSetNodeID &ID) {
1119    Profile(ID, getPointeeType());
1120  }
1121  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1122    ID.AddPointer(Pointee.getAsOpaquePtr());
1123  }
1124
1125  virtual Linkage getLinkage() const;
1126
1127  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
1128  static bool classof(const PointerType *) { return true; }
1129};
1130
1131/// BlockPointerType - pointer to a block type.
1132/// This type is to represent types syntactically represented as
1133/// "void (^)(int)", etc. Pointee is required to always be a function type.
1134///
1135class BlockPointerType : public Type, public llvm::FoldingSetNode {
1136  QualType PointeeType;  // Block is some kind of pointer type
1137  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
1138    Type(BlockPointer, CanonicalCls, Pointee->isDependentType()),
1139    PointeeType(Pointee) {
1140  }
1141  friend class ASTContext;  // ASTContext creates these.
1142public:
1143
1144  // Get the pointee type. Pointee is required to always be a function type.
1145  QualType getPointeeType() const { return PointeeType; }
1146
1147  bool isSugared() const { return false; }
1148  QualType desugar() const { return QualType(this, 0); }
1149
1150  void Profile(llvm::FoldingSetNodeID &ID) {
1151      Profile(ID, getPointeeType());
1152  }
1153  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1154      ID.AddPointer(Pointee.getAsOpaquePtr());
1155  }
1156
1157  virtual Linkage getLinkage() const;
1158
1159  static bool classof(const Type *T) {
1160    return T->getTypeClass() == BlockPointer;
1161  }
1162  static bool classof(const BlockPointerType *) { return true; }
1163};
1164
1165/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
1166///
1167class ReferenceType : public Type, public llvm::FoldingSetNode {
1168  QualType PointeeType;
1169
1170  /// True if the type was originally spelled with an lvalue sigil.
1171  /// This is never true of rvalue references but can also be false
1172  /// on lvalue references because of C++0x [dcl.typedef]p9,
1173  /// as follows:
1174  ///
1175  ///   typedef int &ref;    // lvalue, spelled lvalue
1176  ///   typedef int &&rvref; // rvalue
1177  ///   ref &a;              // lvalue, inner ref, spelled lvalue
1178  ///   ref &&a;             // lvalue, inner ref
1179  ///   rvref &a;            // lvalue, inner ref, spelled lvalue
1180  ///   rvref &&a;           // rvalue, inner ref
1181  bool SpelledAsLValue;
1182
1183  /// True if the inner type is a reference type.  This only happens
1184  /// in non-canonical forms.
1185  bool InnerRef;
1186
1187protected:
1188  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
1189                bool SpelledAsLValue) :
1190    Type(tc, CanonicalRef, Referencee->isDependentType()),
1191    PointeeType(Referencee), SpelledAsLValue(SpelledAsLValue),
1192    InnerRef(Referencee->isReferenceType()) {
1193  }
1194public:
1195  bool isSpelledAsLValue() const { return SpelledAsLValue; }
1196
1197  QualType getPointeeTypeAsWritten() const { return PointeeType; }
1198  QualType getPointeeType() const {
1199    // FIXME: this might strip inner qualifiers; okay?
1200    const ReferenceType *T = this;
1201    while (T->InnerRef)
1202      T = T->PointeeType->getAs<ReferenceType>();
1203    return T->PointeeType;
1204  }
1205
1206  void Profile(llvm::FoldingSetNodeID &ID) {
1207    Profile(ID, PointeeType, SpelledAsLValue);
1208  }
1209  static void Profile(llvm::FoldingSetNodeID &ID,
1210                      QualType Referencee,
1211                      bool SpelledAsLValue) {
1212    ID.AddPointer(Referencee.getAsOpaquePtr());
1213    ID.AddBoolean(SpelledAsLValue);
1214  }
1215
1216  virtual Linkage getLinkage() const;
1217
1218  static bool classof(const Type *T) {
1219    return T->getTypeClass() == LValueReference ||
1220           T->getTypeClass() == RValueReference;
1221  }
1222  static bool classof(const ReferenceType *) { return true; }
1223};
1224
1225/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
1226///
1227class LValueReferenceType : public ReferenceType {
1228  LValueReferenceType(QualType Referencee, QualType CanonicalRef,
1229                      bool SpelledAsLValue) :
1230    ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
1231  {}
1232  friend class ASTContext; // ASTContext creates these
1233public:
1234  bool isSugared() const { return false; }
1235  QualType desugar() const { return QualType(this, 0); }
1236
1237  static bool classof(const Type *T) {
1238    return T->getTypeClass() == LValueReference;
1239  }
1240  static bool classof(const LValueReferenceType *) { return true; }
1241};
1242
1243/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
1244///
1245class RValueReferenceType : public ReferenceType {
1246  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
1247    ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
1248  }
1249  friend class ASTContext; // ASTContext creates these
1250public:
1251  bool isSugared() const { return false; }
1252  QualType desugar() const { return QualType(this, 0); }
1253
1254  static bool classof(const Type *T) {
1255    return T->getTypeClass() == RValueReference;
1256  }
1257  static bool classof(const RValueReferenceType *) { return true; }
1258};
1259
1260/// MemberPointerType - C++ 8.3.3 - Pointers to members
1261///
1262class MemberPointerType : public Type, public llvm::FoldingSetNode {
1263  QualType PointeeType;
1264  /// The class of which the pointee is a member. Must ultimately be a
1265  /// RecordType, but could be a typedef or a template parameter too.
1266  const Type *Class;
1267
1268  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
1269    Type(MemberPointer, CanonicalPtr,
1270         Cls->isDependentType() || Pointee->isDependentType()),
1271    PointeeType(Pointee), Class(Cls) {
1272  }
1273  friend class ASTContext; // ASTContext creates these.
1274public:
1275
1276  QualType getPointeeType() const { return PointeeType; }
1277
1278  const Type *getClass() const { return Class; }
1279
1280  bool isSugared() const { return false; }
1281  QualType desugar() const { return QualType(this, 0); }
1282
1283  void Profile(llvm::FoldingSetNodeID &ID) {
1284    Profile(ID, getPointeeType(), getClass());
1285  }
1286  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
1287                      const Type *Class) {
1288    ID.AddPointer(Pointee.getAsOpaquePtr());
1289    ID.AddPointer(Class);
1290  }
1291
1292  virtual Linkage getLinkage() const;
1293
1294  static bool classof(const Type *T) {
1295    return T->getTypeClass() == MemberPointer;
1296  }
1297  static bool classof(const MemberPointerType *) { return true; }
1298};
1299
1300/// ArrayType - C99 6.7.5.2 - Array Declarators.
1301///
1302class ArrayType : public Type, public llvm::FoldingSetNode {
1303public:
1304  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
1305  /// an array with a static size (e.g. int X[static 4]), or an array
1306  /// with a star size (e.g. int X[*]).
1307  /// 'static' is only allowed on function parameters.
1308  enum ArraySizeModifier {
1309    Normal, Static, Star
1310  };
1311private:
1312  /// ElementType - The element type of the array.
1313  QualType ElementType;
1314
1315  // NOTE: VC++ treats enums as signed, avoid using the ArraySizeModifier enum
1316  /// NOTE: These fields are packed into the bitfields space in the Type class.
1317  unsigned SizeModifier : 2;
1318
1319  /// IndexTypeQuals - Capture qualifiers in declarations like:
1320  /// 'int X[static restrict 4]'. For function parameters only.
1321  unsigned IndexTypeQuals : 3;
1322
1323protected:
1324  // C++ [temp.dep.type]p1:
1325  //   A type is dependent if it is...
1326  //     - an array type constructed from any dependent type or whose
1327  //       size is specified by a constant expression that is
1328  //       value-dependent,
1329  ArrayType(TypeClass tc, QualType et, QualType can,
1330            ArraySizeModifier sm, unsigned tq)
1331    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray),
1332      ElementType(et), SizeModifier(sm), IndexTypeQuals(tq) {}
1333
1334  friend class ASTContext;  // ASTContext creates these.
1335public:
1336  QualType getElementType() const { return ElementType; }
1337  ArraySizeModifier getSizeModifier() const {
1338    return ArraySizeModifier(SizeModifier);
1339  }
1340  Qualifiers getIndexTypeQualifiers() const {
1341    return Qualifiers::fromCVRMask(IndexTypeQuals);
1342  }
1343  unsigned getIndexTypeCVRQualifiers() const { return IndexTypeQuals; }
1344
1345  virtual Linkage getLinkage() const;
1346
1347  static bool classof(const Type *T) {
1348    return T->getTypeClass() == ConstantArray ||
1349           T->getTypeClass() == VariableArray ||
1350           T->getTypeClass() == IncompleteArray ||
1351           T->getTypeClass() == DependentSizedArray;
1352  }
1353  static bool classof(const ArrayType *) { return true; }
1354};
1355
1356/// ConstantArrayType - This class represents the canonical version of
1357/// C arrays with a specified constant size.  For example, the canonical
1358/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
1359/// type is 'int' and the size is 404.
1360class ConstantArrayType : public ArrayType {
1361  llvm::APInt Size; // Allows us to unique the type.
1362
1363  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
1364                    ArraySizeModifier sm, unsigned tq)
1365    : ArrayType(ConstantArray, et, can, sm, tq),
1366      Size(size) {}
1367protected:
1368  ConstantArrayType(TypeClass tc, QualType et, QualType can,
1369                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
1370    : ArrayType(tc, et, can, sm, tq), Size(size) {}
1371  friend class ASTContext;  // ASTContext creates these.
1372public:
1373  const llvm::APInt &getSize() const { return Size; }
1374  bool isSugared() const { return false; }
1375  QualType desugar() const { return QualType(this, 0); }
1376
1377  void Profile(llvm::FoldingSetNodeID &ID) {
1378    Profile(ID, getElementType(), getSize(),
1379            getSizeModifier(), getIndexTypeCVRQualifiers());
1380  }
1381  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1382                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
1383                      unsigned TypeQuals) {
1384    ID.AddPointer(ET.getAsOpaquePtr());
1385    ID.AddInteger(ArraySize.getZExtValue());
1386    ID.AddInteger(SizeMod);
1387    ID.AddInteger(TypeQuals);
1388  }
1389  static bool classof(const Type *T) {
1390    return T->getTypeClass() == ConstantArray;
1391  }
1392  static bool classof(const ConstantArrayType *) { return true; }
1393};
1394
1395/// IncompleteArrayType - This class represents C arrays with an unspecified
1396/// size.  For example 'int A[]' has an IncompleteArrayType where the element
1397/// type is 'int' and the size is unspecified.
1398class IncompleteArrayType : public ArrayType {
1399
1400  IncompleteArrayType(QualType et, QualType can,
1401                      ArraySizeModifier sm, unsigned tq)
1402    : ArrayType(IncompleteArray, et, can, sm, tq) {}
1403  friend class ASTContext;  // ASTContext creates these.
1404public:
1405  bool isSugared() const { return false; }
1406  QualType desugar() const { return QualType(this, 0); }
1407
1408  static bool classof(const Type *T) {
1409    return T->getTypeClass() == IncompleteArray;
1410  }
1411  static bool classof(const IncompleteArrayType *) { return true; }
1412
1413  friend class StmtIteratorBase;
1414
1415  void Profile(llvm::FoldingSetNodeID &ID) {
1416    Profile(ID, getElementType(), getSizeModifier(),
1417            getIndexTypeCVRQualifiers());
1418  }
1419
1420  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1421                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
1422    ID.AddPointer(ET.getAsOpaquePtr());
1423    ID.AddInteger(SizeMod);
1424    ID.AddInteger(TypeQuals);
1425  }
1426};
1427
1428/// VariableArrayType - This class represents C arrays with a specified size
1429/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
1430/// Since the size expression is an arbitrary expression, we store it as such.
1431///
1432/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
1433/// should not be: two lexically equivalent variable array types could mean
1434/// different things, for example, these variables do not have the same type
1435/// dynamically:
1436///
1437/// void foo(int x) {
1438///   int Y[x];
1439///   ++x;
1440///   int Z[x];
1441/// }
1442///
1443class VariableArrayType : public ArrayType {
1444  /// SizeExpr - An assignment expression. VLA's are only permitted within
1445  /// a function block.
1446  Stmt *SizeExpr;
1447  /// Brackets - The left and right array brackets.
1448  SourceRange Brackets;
1449
1450  VariableArrayType(QualType et, QualType can, Expr *e,
1451                    ArraySizeModifier sm, unsigned tq,
1452                    SourceRange brackets)
1453    : ArrayType(VariableArray, et, can, sm, tq),
1454      SizeExpr((Stmt*) e), Brackets(brackets) {}
1455  friend class ASTContext;  // ASTContext creates these.
1456  virtual void Destroy(ASTContext& C);
1457
1458public:
1459  Expr *getSizeExpr() const {
1460    // We use C-style casts instead of cast<> here because we do not wish
1461    // to have a dependency of Type.h on Stmt.h/Expr.h.
1462    return (Expr*) SizeExpr;
1463  }
1464  SourceRange getBracketsRange() const { return Brackets; }
1465  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1466  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1467
1468  bool isSugared() const { return false; }
1469  QualType desugar() const { return QualType(this, 0); }
1470
1471  static bool classof(const Type *T) {
1472    return T->getTypeClass() == VariableArray;
1473  }
1474  static bool classof(const VariableArrayType *) { return true; }
1475
1476  friend class StmtIteratorBase;
1477
1478  void Profile(llvm::FoldingSetNodeID &ID) {
1479    assert(0 && "Cannnot unique VariableArrayTypes.");
1480  }
1481};
1482
1483/// DependentSizedArrayType - This type represents an array type in
1484/// C++ whose size is a value-dependent expression. For example:
1485///
1486/// \code
1487/// template<typename T, int Size>
1488/// class array {
1489///   T data[Size];
1490/// };
1491/// \endcode
1492///
1493/// For these types, we won't actually know what the array bound is
1494/// until template instantiation occurs, at which point this will
1495/// become either a ConstantArrayType or a VariableArrayType.
1496class DependentSizedArrayType : public ArrayType {
1497  ASTContext &Context;
1498
1499  /// \brief An assignment expression that will instantiate to the
1500  /// size of the array.
1501  ///
1502  /// The expression itself might be NULL, in which case the array
1503  /// type will have its size deduced from an initializer.
1504  Stmt *SizeExpr;
1505
1506  /// Brackets - The left and right array brackets.
1507  SourceRange Brackets;
1508
1509  DependentSizedArrayType(ASTContext &Context, QualType et, QualType can,
1510                          Expr *e, ArraySizeModifier sm, unsigned tq,
1511                          SourceRange brackets)
1512    : ArrayType(DependentSizedArray, et, can, sm, tq),
1513      Context(Context), SizeExpr((Stmt*) e), Brackets(brackets) {}
1514  friend class ASTContext;  // ASTContext creates these.
1515  virtual void Destroy(ASTContext& C);
1516
1517public:
1518  Expr *getSizeExpr() const {
1519    // We use C-style casts instead of cast<> here because we do not wish
1520    // to have a dependency of Type.h on Stmt.h/Expr.h.
1521    return (Expr*) SizeExpr;
1522  }
1523  SourceRange getBracketsRange() const { return Brackets; }
1524  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1525  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1526
1527  bool isSugared() const { return false; }
1528  QualType desugar() const { return QualType(this, 0); }
1529
1530  static bool classof(const Type *T) {
1531    return T->getTypeClass() == DependentSizedArray;
1532  }
1533  static bool classof(const DependentSizedArrayType *) { return true; }
1534
1535  friend class StmtIteratorBase;
1536
1537
1538  void Profile(llvm::FoldingSetNodeID &ID) {
1539    Profile(ID, Context, getElementType(),
1540            getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
1541  }
1542
1543  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1544                      QualType ET, ArraySizeModifier SizeMod,
1545                      unsigned TypeQuals, Expr *E);
1546};
1547
1548/// DependentSizedExtVectorType - This type represent an extended vector type
1549/// where either the type or size is dependent. For example:
1550/// @code
1551/// template<typename T, int Size>
1552/// class vector {
1553///   typedef T __attribute__((ext_vector_type(Size))) type;
1554/// }
1555/// @endcode
1556class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
1557  ASTContext &Context;
1558  Expr *SizeExpr;
1559  /// ElementType - The element type of the array.
1560  QualType ElementType;
1561  SourceLocation loc;
1562
1563  DependentSizedExtVectorType(ASTContext &Context, QualType ElementType,
1564                              QualType can, Expr *SizeExpr, SourceLocation loc)
1565    : Type (DependentSizedExtVector, can, true),
1566      Context(Context), SizeExpr(SizeExpr), ElementType(ElementType),
1567      loc(loc) {}
1568  friend class ASTContext;
1569  virtual void Destroy(ASTContext& C);
1570
1571public:
1572  Expr *getSizeExpr() const { return SizeExpr; }
1573  QualType getElementType() const { return ElementType; }
1574  SourceLocation getAttributeLoc() const { return loc; }
1575
1576  bool isSugared() const { return false; }
1577  QualType desugar() const { return QualType(this, 0); }
1578
1579  static bool classof(const Type *T) {
1580    return T->getTypeClass() == DependentSizedExtVector;
1581  }
1582  static bool classof(const DependentSizedExtVectorType *) { return true; }
1583
1584  void Profile(llvm::FoldingSetNodeID &ID) {
1585    Profile(ID, Context, getElementType(), getSizeExpr());
1586  }
1587
1588  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1589                      QualType ElementType, Expr *SizeExpr);
1590};
1591
1592
1593/// VectorType - GCC generic vector type. This type is created using
1594/// __attribute__((vector_size(n)), where "n" specifies the vector size in
1595/// bytes; or from an Altivec __vector or vector declaration.
1596/// Since the constructor takes the number of vector elements, the
1597/// client is responsible for converting the size into the number of elements.
1598class VectorType : public Type, public llvm::FoldingSetNode {
1599protected:
1600  /// ElementType - The element type of the vector.
1601  QualType ElementType;
1602
1603  /// NumElements - The number of elements in the vector.
1604  unsigned NumElements;
1605
1606  /// AltiVec - True if this is for an Altivec vector.
1607  bool AltiVec;
1608
1609  /// Pixel - True if this is for an Altivec vector pixel.
1610  bool Pixel;
1611
1612  VectorType(QualType vecType, unsigned nElements, QualType canonType,
1613      bool isAltiVec, bool isPixel) :
1614    Type(Vector, canonType, vecType->isDependentType()),
1615    ElementType(vecType), NumElements(nElements),
1616    AltiVec(isAltiVec), Pixel(isPixel) {}
1617  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
1618             QualType canonType, bool isAltiVec, bool isPixel)
1619    : Type(tc, canonType, vecType->isDependentType()), ElementType(vecType),
1620      NumElements(nElements), AltiVec(isAltiVec), Pixel(isPixel) {}
1621  friend class ASTContext;  // ASTContext creates these.
1622public:
1623
1624  QualType getElementType() const { return ElementType; }
1625  unsigned getNumElements() const { return NumElements; }
1626
1627  bool isSugared() const { return false; }
1628  QualType desugar() const { return QualType(this, 0); }
1629
1630  bool isAltiVec() const { return AltiVec; }
1631
1632  bool isPixel() const { return Pixel; }
1633
1634  void Profile(llvm::FoldingSetNodeID &ID) {
1635    Profile(ID, getElementType(), getNumElements(), getTypeClass(),
1636      AltiVec, Pixel);
1637  }
1638  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
1639                      unsigned NumElements, TypeClass TypeClass,
1640                      bool isAltiVec, bool isPixel) {
1641    ID.AddPointer(ElementType.getAsOpaquePtr());
1642    ID.AddInteger(NumElements);
1643    ID.AddInteger(TypeClass);
1644    ID.AddBoolean(isAltiVec);
1645    ID.AddBoolean(isPixel);
1646  }
1647
1648  virtual Linkage getLinkage() const;
1649
1650  static bool classof(const Type *T) {
1651    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
1652  }
1653  static bool classof(const VectorType *) { return true; }
1654};
1655
1656/// ExtVectorType - Extended vector type. This type is created using
1657/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
1658/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
1659/// class enables syntactic extensions, like Vector Components for accessing
1660/// points, colors, and textures (modeled after OpenGL Shading Language).
1661class ExtVectorType : public VectorType {
1662  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
1663    VectorType(ExtVector, vecType, nElements, canonType, false, false) {}
1664  friend class ASTContext;  // ASTContext creates these.
1665public:
1666  static int getPointAccessorIdx(char c) {
1667    switch (c) {
1668    default: return -1;
1669    case 'x': return 0;
1670    case 'y': return 1;
1671    case 'z': return 2;
1672    case 'w': return 3;
1673    }
1674  }
1675  static int getNumericAccessorIdx(char c) {
1676    switch (c) {
1677      default: return -1;
1678      case '0': return 0;
1679      case '1': return 1;
1680      case '2': return 2;
1681      case '3': return 3;
1682      case '4': return 4;
1683      case '5': return 5;
1684      case '6': return 6;
1685      case '7': return 7;
1686      case '8': return 8;
1687      case '9': return 9;
1688      case 'A':
1689      case 'a': return 10;
1690      case 'B':
1691      case 'b': return 11;
1692      case 'C':
1693      case 'c': return 12;
1694      case 'D':
1695      case 'd': return 13;
1696      case 'E':
1697      case 'e': return 14;
1698      case 'F':
1699      case 'f': return 15;
1700    }
1701  }
1702
1703  static int getAccessorIdx(char c) {
1704    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
1705    return getNumericAccessorIdx(c);
1706  }
1707
1708  bool isAccessorWithinNumElements(char c) const {
1709    if (int idx = getAccessorIdx(c)+1)
1710      return unsigned(idx-1) < NumElements;
1711    return false;
1712  }
1713  bool isSugared() const { return false; }
1714  QualType desugar() const { return QualType(this, 0); }
1715
1716  static bool classof(const Type *T) {
1717    return T->getTypeClass() == ExtVector;
1718  }
1719  static bool classof(const ExtVectorType *) { return true; }
1720};
1721
1722/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
1723/// class of FunctionNoProtoType and FunctionProtoType.
1724///
1725class FunctionType : public Type {
1726  /// SubClassData - This field is owned by the subclass, put here to pack
1727  /// tightly with the ivars in Type.
1728  bool SubClassData : 1;
1729
1730  /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
1731  /// other bitfields.
1732  /// The qualifiers are part of FunctionProtoType because...
1733  ///
1734  /// C++ 8.3.5p4: The return type, the parameter type list and the
1735  /// cv-qualifier-seq, [...], are part of the function type.
1736  ///
1737  unsigned TypeQuals : 3;
1738
1739  /// NoReturn - Indicates if the function type is attribute noreturn.
1740  unsigned NoReturn : 1;
1741
1742  /// CallConv - The calling convention used by the function.
1743  unsigned CallConv : 2;
1744
1745  // The type returned by the function.
1746  QualType ResultType;
1747protected:
1748  FunctionType(TypeClass tc, QualType res, bool SubclassInfo,
1749               unsigned typeQuals, QualType Canonical, bool Dependent,
1750               bool noReturn = false, CallingConv callConv = CC_Default)
1751    : Type(tc, Canonical, Dependent),
1752      SubClassData(SubclassInfo), TypeQuals(typeQuals), NoReturn(noReturn),
1753      CallConv(callConv), ResultType(res) {}
1754  bool getSubClassData() const { return SubClassData; }
1755  unsigned getTypeQuals() const { return TypeQuals; }
1756public:
1757
1758  QualType getResultType() const { return ResultType; }
1759  bool getNoReturnAttr() const { return NoReturn; }
1760  CallingConv getCallConv() const { return (CallingConv)CallConv; }
1761
1762  static llvm::StringRef getNameForCallConv(CallingConv CC);
1763
1764  static bool classof(const Type *T) {
1765    return T->getTypeClass() == FunctionNoProto ||
1766           T->getTypeClass() == FunctionProto;
1767  }
1768  static bool classof(const FunctionType *) { return true; }
1769};
1770
1771/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
1772/// no information available about its arguments.
1773class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
1774  FunctionNoProtoType(QualType Result, QualType Canonical,
1775                      bool NoReturn = false, CallingConv CallConv = CC_Default)
1776    : FunctionType(FunctionNoProto, Result, false, 0, Canonical,
1777                   /*Dependent=*/false, NoReturn, CallConv) {}
1778  friend class ASTContext;  // ASTContext creates these.
1779public:
1780  // No additional state past what FunctionType provides.
1781
1782  bool isSugared() const { return false; }
1783  QualType desugar() const { return QualType(this, 0); }
1784
1785  void Profile(llvm::FoldingSetNodeID &ID) {
1786    Profile(ID, getResultType(), getNoReturnAttr(), getCallConv());
1787  }
1788  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
1789                      bool NoReturn, CallingConv CallConv) {
1790    ID.AddInteger(CallConv);
1791    ID.AddInteger(NoReturn);
1792    ID.AddPointer(ResultType.getAsOpaquePtr());
1793  }
1794
1795  virtual Linkage getLinkage() const;
1796
1797  static bool classof(const Type *T) {
1798    return T->getTypeClass() == FunctionNoProto;
1799  }
1800  static bool classof(const FunctionNoProtoType *) { return true; }
1801};
1802
1803/// FunctionProtoType - Represents a prototype with argument type info, e.g.
1804/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
1805/// arguments, not as having a single void argument. Such a type can have an
1806/// exception specification, but this specification is not part of the canonical
1807/// type.
1808class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
1809  /// hasAnyDependentType - Determine whether there are any dependent
1810  /// types within the arguments passed in.
1811  static bool hasAnyDependentType(const QualType *ArgArray, unsigned numArgs) {
1812    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
1813      if (ArgArray[Idx]->isDependentType())
1814    return true;
1815
1816    return false;
1817  }
1818
1819  FunctionProtoType(QualType Result, const QualType *ArgArray, unsigned numArgs,
1820                    bool isVariadic, unsigned typeQuals, bool hasExs,
1821                    bool hasAnyExs, const QualType *ExArray,
1822                    unsigned numExs, QualType Canonical, bool NoReturn,
1823                    CallingConv CallConv)
1824    : FunctionType(FunctionProto, Result, isVariadic, typeQuals, Canonical,
1825                   (Result->isDependentType() ||
1826                    hasAnyDependentType(ArgArray, numArgs)), NoReturn,
1827                   CallConv),
1828      NumArgs(numArgs), NumExceptions(numExs), HasExceptionSpec(hasExs),
1829      AnyExceptionSpec(hasAnyExs) {
1830    // Fill in the trailing argument array.
1831    QualType *ArgInfo = reinterpret_cast<QualType*>(this+1);
1832    for (unsigned i = 0; i != numArgs; ++i)
1833      ArgInfo[i] = ArgArray[i];
1834    // Fill in the exception array.
1835    QualType *Ex = ArgInfo + numArgs;
1836    for (unsigned i = 0; i != numExs; ++i)
1837      Ex[i] = ExArray[i];
1838  }
1839
1840  /// NumArgs - The number of arguments this function has, not counting '...'.
1841  unsigned NumArgs : 20;
1842
1843  /// NumExceptions - The number of types in the exception spec, if any.
1844  unsigned NumExceptions : 10;
1845
1846  /// HasExceptionSpec - Whether this function has an exception spec at all.
1847  bool HasExceptionSpec : 1;
1848
1849  /// AnyExceptionSpec - Whether this function has a throw(...) spec.
1850  bool AnyExceptionSpec : 1;
1851
1852  /// ArgInfo - There is an variable size array after the class in memory that
1853  /// holds the argument types.
1854
1855  /// Exceptions - There is another variable size array after ArgInfo that
1856  /// holds the exception types.
1857
1858  friend class ASTContext;  // ASTContext creates these.
1859
1860public:
1861  unsigned getNumArgs() const { return NumArgs; }
1862  QualType getArgType(unsigned i) const {
1863    assert(i < NumArgs && "Invalid argument number!");
1864    return arg_type_begin()[i];
1865  }
1866
1867  bool hasExceptionSpec() const { return HasExceptionSpec; }
1868  bool hasAnyExceptionSpec() const { return AnyExceptionSpec; }
1869  unsigned getNumExceptions() const { return NumExceptions; }
1870  QualType getExceptionType(unsigned i) const {
1871    assert(i < NumExceptions && "Invalid exception number!");
1872    return exception_begin()[i];
1873  }
1874  bool hasEmptyExceptionSpec() const {
1875    return hasExceptionSpec() && !hasAnyExceptionSpec() &&
1876      getNumExceptions() == 0;
1877  }
1878
1879  bool isVariadic() const { return getSubClassData(); }
1880  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
1881
1882  typedef const QualType *arg_type_iterator;
1883  arg_type_iterator arg_type_begin() const {
1884    return reinterpret_cast<const QualType *>(this+1);
1885  }
1886  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
1887
1888  typedef const QualType *exception_iterator;
1889  exception_iterator exception_begin() const {
1890    // exceptions begin where arguments end
1891    return arg_type_end();
1892  }
1893  exception_iterator exception_end() const {
1894    return exception_begin() + NumExceptions;
1895  }
1896
1897  bool isSugared() const { return false; }
1898  QualType desugar() const { return QualType(this, 0); }
1899
1900  virtual Linkage getLinkage() const;
1901
1902  static bool classof(const Type *T) {
1903    return T->getTypeClass() == FunctionProto;
1904  }
1905  static bool classof(const FunctionProtoType *) { return true; }
1906
1907  void Profile(llvm::FoldingSetNodeID &ID);
1908  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
1909                      arg_type_iterator ArgTys, unsigned NumArgs,
1910                      bool isVariadic, unsigned TypeQuals,
1911                      bool hasExceptionSpec, bool anyExceptionSpec,
1912                      unsigned NumExceptions, exception_iterator Exs,
1913                      bool NoReturn, CallingConv CallConv);
1914};
1915
1916
1917/// \brief Represents the dependent type named by a dependently-scoped
1918/// typename using declaration, e.g.
1919///   using typename Base<T>::foo;
1920/// Template instantiation turns these into the underlying type.
1921class UnresolvedUsingType : public Type {
1922  UnresolvedUsingTypenameDecl *Decl;
1923
1924  UnresolvedUsingType(UnresolvedUsingTypenameDecl *D)
1925    : Type(UnresolvedUsing, QualType(), true), Decl(D) {}
1926  friend class ASTContext; // ASTContext creates these.
1927public:
1928
1929  UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
1930
1931  bool isSugared() const { return false; }
1932  QualType desugar() const { return QualType(this, 0); }
1933
1934  static bool classof(const Type *T) {
1935    return T->getTypeClass() == UnresolvedUsing;
1936  }
1937  static bool classof(const UnresolvedUsingType *) { return true; }
1938
1939  void Profile(llvm::FoldingSetNodeID &ID) {
1940    return Profile(ID, Decl);
1941  }
1942  static void Profile(llvm::FoldingSetNodeID &ID,
1943                      UnresolvedUsingTypenameDecl *D) {
1944    ID.AddPointer(D);
1945  }
1946};
1947
1948
1949class TypedefType : public Type {
1950  TypedefDecl *Decl;
1951protected:
1952  TypedefType(TypeClass tc, TypedefDecl *D, QualType can)
1953    : Type(tc, can, can->isDependentType()), Decl(D) {
1954    assert(!isa<TypedefType>(can) && "Invalid canonical type");
1955  }
1956  friend class ASTContext;  // ASTContext creates these.
1957public:
1958
1959  TypedefDecl *getDecl() const { return Decl; }
1960
1961  /// LookThroughTypedefs - Return the ultimate type this typedef corresponds to
1962  /// potentially looking through *all* consecutive typedefs.  This returns the
1963  /// sum of the type qualifiers, so if you have:
1964  ///   typedef const int A;
1965  ///   typedef volatile A B;
1966  /// looking through the typedefs for B will give you "const volatile A".
1967  QualType LookThroughTypedefs() const;
1968
1969  bool isSugared() const { return true; }
1970  QualType desugar() const;
1971
1972  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
1973  static bool classof(const TypedefType *) { return true; }
1974};
1975
1976/// TypeOfExprType (GCC extension).
1977class TypeOfExprType : public Type {
1978  Expr *TOExpr;
1979
1980protected:
1981  TypeOfExprType(Expr *E, QualType can = QualType());
1982  friend class ASTContext;  // ASTContext creates these.
1983public:
1984  Expr *getUnderlyingExpr() const { return TOExpr; }
1985
1986  /// \brief Remove a single level of sugar.
1987  QualType desugar() const;
1988
1989  /// \brief Returns whether this type directly provides sugar.
1990  bool isSugared() const { return true; }
1991
1992  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
1993  static bool classof(const TypeOfExprType *) { return true; }
1994};
1995
1996/// \brief Internal representation of canonical, dependent
1997/// typeof(expr) types.
1998///
1999/// This class is used internally by the ASTContext to manage
2000/// canonical, dependent types, only. Clients will only see instances
2001/// of this class via TypeOfExprType nodes.
2002class DependentTypeOfExprType
2003  : public TypeOfExprType, public llvm::FoldingSetNode {
2004  ASTContext &Context;
2005
2006public:
2007  DependentTypeOfExprType(ASTContext &Context, Expr *E)
2008    : TypeOfExprType(E), Context(Context) { }
2009
2010  bool isSugared() const { return false; }
2011  QualType desugar() const { return QualType(this, 0); }
2012
2013  void Profile(llvm::FoldingSetNodeID &ID) {
2014    Profile(ID, Context, getUnderlyingExpr());
2015  }
2016
2017  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
2018                      Expr *E);
2019};
2020
2021/// TypeOfType (GCC extension).
2022class TypeOfType : public Type {
2023  QualType TOType;
2024  TypeOfType(QualType T, QualType can)
2025    : Type(TypeOf, can, T->isDependentType()), TOType(T) {
2026    assert(!isa<TypedefType>(can) && "Invalid canonical type");
2027  }
2028  friend class ASTContext;  // ASTContext creates these.
2029public:
2030  QualType getUnderlyingType() const { return TOType; }
2031
2032  /// \brief Remove a single level of sugar.
2033  QualType desugar() const { return getUnderlyingType(); }
2034
2035  /// \brief Returns whether this type directly provides sugar.
2036  bool isSugared() const { return true; }
2037
2038  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
2039  static bool classof(const TypeOfType *) { return true; }
2040};
2041
2042/// DecltypeType (C++0x)
2043class DecltypeType : public Type {
2044  Expr *E;
2045
2046  // FIXME: We could get rid of UnderlyingType if we wanted to: We would have to
2047  // Move getDesugaredType to ASTContext so that it can call getDecltypeForExpr
2048  // from it.
2049  QualType UnderlyingType;
2050
2051protected:
2052  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
2053  friend class ASTContext;  // ASTContext creates these.
2054public:
2055  Expr *getUnderlyingExpr() const { return E; }
2056  QualType getUnderlyingType() const { return UnderlyingType; }
2057
2058  /// \brief Remove a single level of sugar.
2059  QualType desugar() const { return getUnderlyingType(); }
2060
2061  /// \brief Returns whether this type directly provides sugar.
2062  bool isSugared() const { return !isDependentType(); }
2063
2064  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
2065  static bool classof(const DecltypeType *) { return true; }
2066};
2067
2068/// \brief Internal representation of canonical, dependent
2069/// decltype(expr) types.
2070///
2071/// This class is used internally by the ASTContext to manage
2072/// canonical, dependent types, only. Clients will only see instances
2073/// of this class via DecltypeType nodes.
2074class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
2075  ASTContext &Context;
2076
2077public:
2078  DependentDecltypeType(ASTContext &Context, Expr *E);
2079
2080  bool isSugared() const { return false; }
2081  QualType desugar() const { return QualType(this, 0); }
2082
2083  void Profile(llvm::FoldingSetNodeID &ID) {
2084    Profile(ID, Context, getUnderlyingExpr());
2085  }
2086
2087  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
2088                      Expr *E);
2089};
2090
2091class TagType : public Type {
2092  /// Stores the TagDecl associated with this type. The decl will
2093  /// point to the TagDecl that actually defines the entity (or is a
2094  /// definition in progress), if there is such a definition. The
2095  /// single-bit value will be non-zero when this tag is in the
2096  /// process of being defined.
2097  mutable llvm::PointerIntPair<TagDecl *, 1> decl;
2098  friend class ASTContext;
2099  friend class TagDecl;
2100
2101protected:
2102  TagType(TypeClass TC, TagDecl *D, QualType can);
2103
2104public:
2105  TagDecl *getDecl() const { return decl.getPointer(); }
2106
2107  /// @brief Determines whether this type is in the process of being
2108  /// defined.
2109  bool isBeingDefined() const { return decl.getInt(); }
2110  void setBeingDefined(bool Def) const { decl.setInt(Def? 1 : 0); }
2111
2112  virtual Linkage getLinkage() const;
2113
2114  static bool classof(const Type *T) {
2115    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
2116  }
2117  static bool classof(const TagType *) { return true; }
2118  static bool classof(const RecordType *) { return true; }
2119  static bool classof(const EnumType *) { return true; }
2120};
2121
2122/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
2123/// to detect TagType objects of structs/unions/classes.
2124class RecordType : public TagType {
2125protected:
2126  explicit RecordType(RecordDecl *D)
2127    : TagType(Record, reinterpret_cast<TagDecl*>(D), QualType()) { }
2128  explicit RecordType(TypeClass TC, RecordDecl *D)
2129    : TagType(TC, reinterpret_cast<TagDecl*>(D), QualType()) { }
2130  friend class ASTContext;   // ASTContext creates these.
2131public:
2132
2133  RecordDecl *getDecl() const {
2134    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
2135  }
2136
2137  // FIXME: This predicate is a helper to QualType/Type. It needs to
2138  // recursively check all fields for const-ness. If any field is declared
2139  // const, it needs to return false.
2140  bool hasConstFields() const { return false; }
2141
2142  // FIXME: RecordType needs to check when it is created that all fields are in
2143  // the same address space, and return that.
2144  unsigned getAddressSpace() const { return 0; }
2145
2146  bool isSugared() const { return false; }
2147  QualType desugar() const { return QualType(this, 0); }
2148
2149  static bool classof(const TagType *T);
2150  static bool classof(const Type *T) {
2151    return isa<TagType>(T) && classof(cast<TagType>(T));
2152  }
2153  static bool classof(const RecordType *) { return true; }
2154};
2155
2156/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
2157/// to detect TagType objects of enums.
2158class EnumType : public TagType {
2159  explicit EnumType(EnumDecl *D)
2160    : TagType(Enum, reinterpret_cast<TagDecl*>(D), QualType()) { }
2161  friend class ASTContext;   // ASTContext creates these.
2162public:
2163
2164  EnumDecl *getDecl() const {
2165    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
2166  }
2167
2168  bool isSugared() const { return false; }
2169  QualType desugar() const { return QualType(this, 0); }
2170
2171  static bool classof(const TagType *T);
2172  static bool classof(const Type *T) {
2173    return isa<TagType>(T) && classof(cast<TagType>(T));
2174  }
2175  static bool classof(const EnumType *) { return true; }
2176};
2177
2178/// ElaboratedType - A non-canonical type used to represents uses of
2179/// elaborated type specifiers in C++.  For example:
2180///
2181///   void foo(union MyUnion);
2182///            ^^^^^^^^^^^^^
2183///
2184/// At the moment, for efficiency we do not create elaborated types in
2185/// C, since outside of typedefs all references to structs would
2186/// necessarily be elaborated.
2187class ElaboratedType : public Type, public llvm::FoldingSetNode {
2188public:
2189  enum TagKind {
2190    TK_struct,
2191    TK_union,
2192    TK_class,
2193    TK_enum
2194  };
2195
2196private:
2197  /// The tag that was used in this elaborated type specifier.
2198  TagKind Tag;
2199
2200  /// The underlying type.
2201  QualType UnderlyingType;
2202
2203  explicit ElaboratedType(QualType Ty, TagKind Tag, QualType Canon)
2204    : Type(Elaborated, Canon, Canon->isDependentType()),
2205      Tag(Tag), UnderlyingType(Ty) { }
2206  friend class ASTContext;   // ASTContext creates these.
2207
2208public:
2209  TagKind getTagKind() const { return Tag; }
2210  QualType getUnderlyingType() const { return UnderlyingType; }
2211
2212  /// \brief Remove a single level of sugar.
2213  QualType desugar() const { return getUnderlyingType(); }
2214
2215  /// \brief Returns whether this type directly provides sugar.
2216  bool isSugared() const { return true; }
2217
2218  static const char *getNameForTagKind(TagKind Kind) {
2219    switch (Kind) {
2220    default: assert(0 && "Unknown TagKind!");
2221    case TK_struct: return "struct";
2222    case TK_union:  return "union";
2223    case TK_class:  return "class";
2224    case TK_enum:   return "enum";
2225    }
2226  }
2227
2228  void Profile(llvm::FoldingSetNodeID &ID) {
2229    Profile(ID, getUnderlyingType(), getTagKind());
2230  }
2231  static void Profile(llvm::FoldingSetNodeID &ID, QualType T, TagKind Tag) {
2232    ID.AddPointer(T.getAsOpaquePtr());
2233    ID.AddInteger(Tag);
2234  }
2235
2236  static bool classof(const ElaboratedType*) { return true; }
2237  static bool classof(const Type *T) { return T->getTypeClass() == Elaborated; }
2238};
2239
2240class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2241  unsigned Depth : 15;
2242  unsigned Index : 16;
2243  unsigned ParameterPack : 1;
2244  IdentifierInfo *Name;
2245
2246  TemplateTypeParmType(unsigned D, unsigned I, bool PP, IdentifierInfo *N,
2247                       QualType Canon)
2248    : Type(TemplateTypeParm, Canon, /*Dependent=*/true),
2249      Depth(D), Index(I), ParameterPack(PP), Name(N) { }
2250
2251  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
2252    : Type(TemplateTypeParm, QualType(this, 0), /*Dependent=*/true),
2253      Depth(D), Index(I), ParameterPack(PP), Name(0) { }
2254
2255  friend class ASTContext;  // ASTContext creates these
2256
2257public:
2258  unsigned getDepth() const { return Depth; }
2259  unsigned getIndex() const { return Index; }
2260  bool isParameterPack() const { return ParameterPack; }
2261  IdentifierInfo *getName() const { return Name; }
2262
2263  bool isSugared() const { return false; }
2264  QualType desugar() const { return QualType(this, 0); }
2265
2266  void Profile(llvm::FoldingSetNodeID &ID) {
2267    Profile(ID, Depth, Index, ParameterPack, Name);
2268  }
2269
2270  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
2271                      unsigned Index, bool ParameterPack,
2272                      IdentifierInfo *Name) {
2273    ID.AddInteger(Depth);
2274    ID.AddInteger(Index);
2275    ID.AddBoolean(ParameterPack);
2276    ID.AddPointer(Name);
2277  }
2278
2279  static bool classof(const Type *T) {
2280    return T->getTypeClass() == TemplateTypeParm;
2281  }
2282  static bool classof(const TemplateTypeParmType *T) { return true; }
2283};
2284
2285/// \brief Represents the result of substituting a type for a template
2286/// type parameter.
2287///
2288/// Within an instantiated template, all template type parameters have
2289/// been replaced with these.  They are used solely to record that a
2290/// type was originally written as a template type parameter;
2291/// therefore they are never canonical.
2292class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2293  // The original type parameter.
2294  const TemplateTypeParmType *Replaced;
2295
2296  SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
2297    : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType()),
2298      Replaced(Param) { }
2299
2300  friend class ASTContext;
2301
2302public:
2303  IdentifierInfo *getName() const { return Replaced->getName(); }
2304
2305  /// Gets the template parameter that was substituted for.
2306  const TemplateTypeParmType *getReplacedParameter() const {
2307    return Replaced;
2308  }
2309
2310  /// Gets the type that was substituted for the template
2311  /// parameter.
2312  QualType getReplacementType() const {
2313    return getCanonicalTypeInternal();
2314  }
2315
2316  bool isSugared() const { return true; }
2317  QualType desugar() const { return getReplacementType(); }
2318
2319  void Profile(llvm::FoldingSetNodeID &ID) {
2320    Profile(ID, getReplacedParameter(), getReplacementType());
2321  }
2322  static void Profile(llvm::FoldingSetNodeID &ID,
2323                      const TemplateTypeParmType *Replaced,
2324                      QualType Replacement) {
2325    ID.AddPointer(Replaced);
2326    ID.AddPointer(Replacement.getAsOpaquePtr());
2327  }
2328
2329  static bool classof(const Type *T) {
2330    return T->getTypeClass() == SubstTemplateTypeParm;
2331  }
2332  static bool classof(const SubstTemplateTypeParmType *T) { return true; }
2333};
2334
2335/// \brief Represents the type of a template specialization as written
2336/// in the source code.
2337///
2338/// Template specialization types represent the syntactic form of a
2339/// template-id that refers to a type, e.g., @c vector<int>. Some
2340/// template specialization types are syntactic sugar, whose canonical
2341/// type will point to some other type node that represents the
2342/// instantiation or class template specialization. For example, a
2343/// class template specialization type of @c vector<int> will refer to
2344/// a tag type for the instantiation
2345/// @c std::vector<int, std::allocator<int>>.
2346///
2347/// Other template specialization types, for which the template name
2348/// is dependent, may be canonical types. These types are always
2349/// dependent.
2350class TemplateSpecializationType
2351  : public Type, public llvm::FoldingSetNode {
2352
2353  // FIXME: Currently needed for profiling expressions; can we avoid this?
2354  ASTContext &Context;
2355
2356    /// \brief The name of the template being specialized.
2357  TemplateName Template;
2358
2359  /// \brief - The number of template arguments named in this class
2360  /// template specialization.
2361  unsigned NumArgs;
2362
2363  TemplateSpecializationType(ASTContext &Context,
2364                             TemplateName T,
2365                             const TemplateArgument *Args,
2366                             unsigned NumArgs, QualType Canon);
2367
2368  virtual void Destroy(ASTContext& C);
2369
2370  friend class ASTContext;  // ASTContext creates these
2371
2372public:
2373  /// \brief Determine whether any of the given template arguments are
2374  /// dependent.
2375  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
2376                                            unsigned NumArgs);
2377
2378  static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
2379                                            unsigned NumArgs);
2380
2381  static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &);
2382
2383  /// \brief Print a template argument list, including the '<' and '>'
2384  /// enclosing the template arguments.
2385  static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
2386                                               unsigned NumArgs,
2387                                               const PrintingPolicy &Policy);
2388
2389  static std::string PrintTemplateArgumentList(const TemplateArgumentLoc *Args,
2390                                               unsigned NumArgs,
2391                                               const PrintingPolicy &Policy);
2392
2393  static std::string PrintTemplateArgumentList(const TemplateArgumentListInfo &,
2394                                               const PrintingPolicy &Policy);
2395
2396  typedef const TemplateArgument * iterator;
2397
2398  iterator begin() const { return getArgs(); }
2399  iterator end() const;
2400
2401  /// \brief Retrieve the name of the template that we are specializing.
2402  TemplateName getTemplateName() const { return Template; }
2403
2404  /// \brief Retrieve the template arguments.
2405  const TemplateArgument *getArgs() const {
2406    return reinterpret_cast<const TemplateArgument *>(this + 1);
2407  }
2408
2409  /// \brief Retrieve the number of template arguments.
2410  unsigned getNumArgs() const { return NumArgs; }
2411
2412  /// \brief Retrieve a specific template argument as a type.
2413  /// \precondition @c isArgType(Arg)
2414  const TemplateArgument &getArg(unsigned Idx) const;
2415
2416  bool isSugared() const { return !isDependentType(); }
2417  QualType desugar() const { return getCanonicalTypeInternal(); }
2418
2419  void Profile(llvm::FoldingSetNodeID &ID) {
2420    Profile(ID, Template, getArgs(), NumArgs, Context);
2421  }
2422
2423  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
2424                      const TemplateArgument *Args, unsigned NumArgs,
2425                      ASTContext &Context);
2426
2427  static bool classof(const Type *T) {
2428    return T->getTypeClass() == TemplateSpecialization;
2429  }
2430  static bool classof(const TemplateSpecializationType *T) { return true; }
2431};
2432
2433/// \brief Represents a type that was referred to via a qualified
2434/// name, e.g., N::M::type.
2435///
2436/// This type is used to keep track of a type name as written in the
2437/// source code, including any nested-name-specifiers. The type itself
2438/// is always "sugar", used to express what was written in the source
2439/// code but containing no additional semantic information.
2440class QualifiedNameType : public Type, public llvm::FoldingSetNode {
2441  /// \brief The nested name specifier containing the qualifier.
2442  NestedNameSpecifier *NNS;
2443
2444  /// \brief The type that this qualified name refers to.
2445  QualType NamedType;
2446
2447  QualifiedNameType(NestedNameSpecifier *NNS, QualType NamedType,
2448                    QualType CanonType)
2449    : Type(QualifiedName, CanonType, NamedType->isDependentType()),
2450      NNS(NNS), NamedType(NamedType) { }
2451
2452  friend class ASTContext;  // ASTContext creates these
2453
2454public:
2455  /// \brief Retrieve the qualification on this type.
2456  NestedNameSpecifier *getQualifier() const { return NNS; }
2457
2458  /// \brief Retrieve the type named by the qualified-id.
2459  QualType getNamedType() const { return NamedType; }
2460
2461  /// \brief Remove a single level of sugar.
2462  QualType desugar() const { return getNamedType(); }
2463
2464  /// \brief Returns whether this type directly provides sugar.
2465  bool isSugared() const { return true; }
2466
2467  void Profile(llvm::FoldingSetNodeID &ID) {
2468    Profile(ID, NNS, NamedType);
2469  }
2470
2471  static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
2472                      QualType NamedType) {
2473    ID.AddPointer(NNS);
2474    NamedType.Profile(ID);
2475  }
2476
2477  static bool classof(const Type *T) {
2478    return T->getTypeClass() == QualifiedName;
2479  }
2480  static bool classof(const QualifiedNameType *T) { return true; }
2481};
2482
2483/// \brief Represents a 'typename' specifier that names a type within
2484/// a dependent type, e.g., "typename T::type".
2485///
2486/// TypenameType has a very similar structure to QualifiedNameType,
2487/// which also involves a nested-name-specifier following by a type,
2488/// and (FIXME!) both can even be prefixed by the 'typename'
2489/// keyword. However, the two types serve very different roles:
2490/// QualifiedNameType is a non-semantic type that serves only as sugar
2491/// to show how a particular type was written in the source
2492/// code. TypenameType, on the other hand, only occurs when the
2493/// nested-name-specifier is dependent, such that we cannot resolve
2494/// the actual type until after instantiation.
2495class TypenameType : public Type, public llvm::FoldingSetNode {
2496  /// \brief The nested name specifier containing the qualifier.
2497  NestedNameSpecifier *NNS;
2498
2499  typedef llvm::PointerUnion<const IdentifierInfo *,
2500                             const TemplateSpecializationType *> NameType;
2501
2502  /// \brief The type that this typename specifier refers to.
2503  NameType Name;
2504
2505  TypenameType(NestedNameSpecifier *NNS, const IdentifierInfo *Name,
2506               QualType CanonType)
2507    : Type(Typename, CanonType, true), NNS(NNS), Name(Name) {
2508    assert(NNS->isDependent() &&
2509           "TypenameType requires a dependent nested-name-specifier");
2510  }
2511
2512  TypenameType(NestedNameSpecifier *NNS, const TemplateSpecializationType *Ty,
2513               QualType CanonType)
2514    : Type(Typename, CanonType, true), NNS(NNS), Name(Ty) {
2515    assert(NNS->isDependent() &&
2516           "TypenameType requires a dependent nested-name-specifier");
2517  }
2518
2519  friend class ASTContext;  // ASTContext creates these
2520
2521public:
2522  /// \brief Retrieve the qualification on this type.
2523  NestedNameSpecifier *getQualifier() const { return NNS; }
2524
2525  /// \brief Retrieve the type named by the typename specifier as an
2526  /// identifier.
2527  ///
2528  /// This routine will return a non-NULL identifier pointer when the
2529  /// form of the original typename was terminated by an identifier,
2530  /// e.g., "typename T::type".
2531  const IdentifierInfo *getIdentifier() const {
2532    return Name.dyn_cast<const IdentifierInfo *>();
2533  }
2534
2535  /// \brief Retrieve the type named by the typename specifier as a
2536  /// type specialization.
2537  const TemplateSpecializationType *getTemplateId() const {
2538    return Name.dyn_cast<const TemplateSpecializationType *>();
2539  }
2540
2541  bool isSugared() const { return false; }
2542  QualType desugar() const { return QualType(this, 0); }
2543
2544  void Profile(llvm::FoldingSetNodeID &ID) {
2545    Profile(ID, NNS, Name);
2546  }
2547
2548  static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
2549                      NameType Name) {
2550    ID.AddPointer(NNS);
2551    ID.AddPointer(Name.getOpaqueValue());
2552  }
2553
2554  static bool classof(const Type *T) {
2555    return T->getTypeClass() == Typename;
2556  }
2557  static bool classof(const TypenameType *T) { return true; }
2558};
2559
2560/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
2561/// object oriented design.  They basically correspond to C++ classes.  There
2562/// are two kinds of interface types, normal interfaces like "NSString" and
2563/// qualified interfaces, which are qualified with a protocol list like
2564/// "NSString<NSCopyable, NSAmazing>".
2565class ObjCInterfaceType : public Type, public llvm::FoldingSetNode {
2566  ObjCInterfaceDecl *Decl;
2567
2568  /// \brief The number of protocols stored after the ObjCInterfaceType node.
2569  /// The list of protocols is sorted on protocol name. No protocol is enterred
2570  /// more than once.
2571  unsigned NumProtocols;
2572
2573  ObjCInterfaceType(QualType Canonical, ObjCInterfaceDecl *D,
2574                    ObjCProtocolDecl **Protos, unsigned NumP);
2575  friend class ASTContext;  // ASTContext creates these.
2576public:
2577  void Destroy(ASTContext& C);
2578
2579  ObjCInterfaceDecl *getDecl() const { return Decl; }
2580
2581  /// getNumProtocols - Return the number of qualifying protocols in this
2582  /// interface type, or 0 if there are none.
2583  unsigned getNumProtocols() const { return NumProtocols; }
2584
2585  /// qual_iterator and friends: this provides access to the (potentially empty)
2586  /// list of protocols qualifying this interface.
2587  typedef ObjCProtocolDecl*  const * qual_iterator;
2588  qual_iterator qual_begin() const {
2589    return reinterpret_cast<qual_iterator>(this + 1);
2590  }
2591  qual_iterator qual_end() const   {
2592    return qual_begin() + NumProtocols;
2593  }
2594  bool qual_empty() const { return NumProtocols == 0; }
2595
2596  bool isSugared() const { return false; }
2597  QualType desugar() const { return QualType(this, 0); }
2598
2599  void Profile(llvm::FoldingSetNodeID &ID);
2600  static void Profile(llvm::FoldingSetNodeID &ID,
2601                      const ObjCInterfaceDecl *Decl,
2602                      ObjCProtocolDecl * const *protocols,
2603                      unsigned NumProtocols);
2604
2605  virtual Linkage getLinkage() const;
2606
2607  static bool classof(const Type *T) {
2608    return T->getTypeClass() == ObjCInterface;
2609  }
2610  static bool classof(const ObjCInterfaceType *) { return true; }
2611};
2612
2613/// ObjCObjectPointerType - Used to represent 'id', 'Interface *', 'id <p>',
2614/// and 'Interface <p> *'.
2615///
2616/// Duplicate protocols are removed and protocol list is canonicalized to be in
2617/// alphabetical order.
2618class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
2619  QualType PointeeType; // A builtin or interface type.
2620
2621  /// \brief The number of protocols stored after the ObjCObjectPointerType
2622  /// node.
2623  ///
2624  /// The list of protocols is sorted on protocol name. No protocol is enterred
2625  /// more than once.
2626  unsigned NumProtocols;
2627
2628  ObjCObjectPointerType(QualType Canonical, QualType T,
2629                        ObjCProtocolDecl **Protos, unsigned NumP);
2630  friend class ASTContext;  // ASTContext creates these.
2631
2632public:
2633  void Destroy(ASTContext& C);
2634
2635  // Get the pointee type. Pointee will either be:
2636  // - a built-in type (for 'id' and 'Class').
2637  // - an interface type (for user-defined types).
2638  // - a TypedefType whose canonical type is an interface (as in 'T' below).
2639  //   For example: typedef NSObject T; T *var;
2640  QualType getPointeeType() const { return PointeeType; }
2641
2642  const ObjCInterfaceType *getInterfaceType() const {
2643    return PointeeType->getAs<ObjCInterfaceType>();
2644  }
2645  /// getInterfaceDecl - returns an interface decl for user-defined types.
2646  ObjCInterfaceDecl *getInterfaceDecl() const {
2647    return getInterfaceType() ? getInterfaceType()->getDecl() : 0;
2648  }
2649  /// isObjCIdType - true for "id".
2650  bool isObjCIdType() const {
2651    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCId) &&
2652           !NumProtocols;
2653  }
2654  /// isObjCClassType - true for "Class".
2655  bool isObjCClassType() const {
2656    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCClass) &&
2657           !NumProtocols;
2658  }
2659
2660  /// isObjCQualifiedIdType - true for "id <p>".
2661  bool isObjCQualifiedIdType() const {
2662    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCId) &&
2663           NumProtocols;
2664  }
2665  /// isObjCQualifiedClassType - true for "Class <p>".
2666  bool isObjCQualifiedClassType() const {
2667    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCClass) &&
2668           NumProtocols;
2669  }
2670  /// qual_iterator and friends: this provides access to the (potentially empty)
2671  /// list of protocols qualifying this interface.
2672  typedef ObjCProtocolDecl*  const * qual_iterator;
2673
2674  qual_iterator qual_begin() const {
2675    return reinterpret_cast<qual_iterator> (this + 1);
2676  }
2677  qual_iterator qual_end() const   {
2678    return qual_begin() + NumProtocols;
2679  }
2680  bool qual_empty() const { return NumProtocols == 0; }
2681
2682  /// getNumProtocols - Return the number of qualifying protocols in this
2683  /// interface type, or 0 if there are none.
2684  unsigned getNumProtocols() const { return NumProtocols; }
2685
2686  bool isSugared() const { return false; }
2687  QualType desugar() const { return QualType(this, 0); }
2688
2689  virtual Linkage getLinkage() const;
2690
2691  void Profile(llvm::FoldingSetNodeID &ID);
2692  static void Profile(llvm::FoldingSetNodeID &ID, QualType T,
2693                      ObjCProtocolDecl *const *protocols,
2694                      unsigned NumProtocols);
2695  static bool classof(const Type *T) {
2696    return T->getTypeClass() == ObjCObjectPointer;
2697  }
2698  static bool classof(const ObjCObjectPointerType *) { return true; }
2699};
2700
2701/// A qualifier set is used to build a set of qualifiers.
2702class QualifierCollector : public Qualifiers {
2703  ASTContext *Context;
2704
2705public:
2706  QualifierCollector(Qualifiers Qs = Qualifiers())
2707    : Qualifiers(Qs), Context(0) {}
2708  QualifierCollector(ASTContext &Context, Qualifiers Qs = Qualifiers())
2709    : Qualifiers(Qs), Context(&Context) {}
2710
2711  void setContext(ASTContext &C) { Context = &C; }
2712
2713  /// Collect any qualifiers on the given type and return an
2714  /// unqualified type.
2715  const Type *strip(QualType QT) {
2716    addFastQualifiers(QT.getLocalFastQualifiers());
2717    if (QT.hasLocalNonFastQualifiers()) {
2718      const ExtQuals *EQ = QT.getExtQualsUnsafe();
2719      Context = &EQ->getContext();
2720      addQualifiers(EQ->getQualifiers());
2721      return EQ->getBaseType();
2722    }
2723    return QT.getTypePtrUnsafe();
2724  }
2725
2726  /// Apply the collected qualifiers to the given type.
2727  QualType apply(QualType QT) const;
2728
2729  /// Apply the collected qualifiers to the given type.
2730  QualType apply(const Type* T) const;
2731
2732};
2733
2734
2735// Inline function definitions.
2736
2737inline bool QualType::isCanonical() const {
2738  const Type *T = getTypePtr();
2739  if (hasLocalQualifiers())
2740    return T->isCanonicalUnqualified() && !isa<ArrayType>(T);
2741  return T->isCanonicalUnqualified();
2742}
2743
2744inline bool QualType::isCanonicalAsParam() const {
2745  if (hasLocalQualifiers()) return false;
2746  const Type *T = getTypePtr();
2747  return T->isCanonicalUnqualified() &&
2748           !isa<FunctionType>(T) && !isa<ArrayType>(T);
2749}
2750
2751inline bool QualType::isConstQualified() const {
2752  return isLocalConstQualified() ||
2753              getTypePtr()->getCanonicalTypeInternal().isLocalConstQualified();
2754}
2755
2756inline bool QualType::isRestrictQualified() const {
2757  return isLocalRestrictQualified() ||
2758            getTypePtr()->getCanonicalTypeInternal().isLocalRestrictQualified();
2759}
2760
2761
2762inline bool QualType::isVolatileQualified() const {
2763  return isLocalVolatileQualified() ||
2764  getTypePtr()->getCanonicalTypeInternal().isLocalVolatileQualified();
2765}
2766
2767inline bool QualType::hasQualifiers() const {
2768  return hasLocalQualifiers() ||
2769                  getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers();
2770}
2771
2772inline Qualifiers QualType::getQualifiers() const {
2773  Qualifiers Quals = getLocalQualifiers();
2774  Quals.addQualifiers(
2775                 getTypePtr()->getCanonicalTypeInternal().getLocalQualifiers());
2776  return Quals;
2777}
2778
2779inline unsigned QualType::getCVRQualifiers() const {
2780  return getLocalCVRQualifiers() |
2781              getTypePtr()->getCanonicalTypeInternal().getLocalCVRQualifiers();
2782}
2783
2784/// getCVRQualifiersThroughArrayTypes - If there are CVR qualifiers for this
2785/// type, returns them. Otherwise, if this is an array type, recurses
2786/// on the element type until some qualifiers have been found or a non-array
2787/// type reached.
2788inline unsigned QualType::getCVRQualifiersThroughArrayTypes() const {
2789  if (unsigned Quals = getCVRQualifiers())
2790    return Quals;
2791  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2792  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
2793    return AT->getElementType().getCVRQualifiersThroughArrayTypes();
2794  return 0;
2795}
2796
2797inline void QualType::removeConst() {
2798  removeFastQualifiers(Qualifiers::Const);
2799}
2800
2801inline void QualType::removeRestrict() {
2802  removeFastQualifiers(Qualifiers::Restrict);
2803}
2804
2805inline void QualType::removeVolatile() {
2806  QualifierCollector Qc;
2807  const Type *Ty = Qc.strip(*this);
2808  if (Qc.hasVolatile()) {
2809    Qc.removeVolatile();
2810    *this = Qc.apply(Ty);
2811  }
2812}
2813
2814inline void QualType::removeCVRQualifiers(unsigned Mask) {
2815  assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
2816
2817  // Fast path: we don't need to touch the slow qualifiers.
2818  if (!(Mask & ~Qualifiers::FastMask)) {
2819    removeFastQualifiers(Mask);
2820    return;
2821  }
2822
2823  QualifierCollector Qc;
2824  const Type *Ty = Qc.strip(*this);
2825  Qc.removeCVRQualifiers(Mask);
2826  *this = Qc.apply(Ty);
2827}
2828
2829/// getAddressSpace - Return the address space of this type.
2830inline unsigned QualType::getAddressSpace() const {
2831  if (hasLocalNonFastQualifiers()) {
2832    const ExtQuals *EQ = getExtQualsUnsafe();
2833    if (EQ->hasAddressSpace())
2834      return EQ->getAddressSpace();
2835  }
2836
2837  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2838  if (CT.hasLocalNonFastQualifiers()) {
2839    const ExtQuals *EQ = CT.getExtQualsUnsafe();
2840    if (EQ->hasAddressSpace())
2841      return EQ->getAddressSpace();
2842  }
2843
2844  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
2845    return AT->getElementType().getAddressSpace();
2846  if (const RecordType *RT = dyn_cast<RecordType>(CT))
2847    return RT->getAddressSpace();
2848  return 0;
2849}
2850
2851/// getObjCGCAttr - Return the gc attribute of this type.
2852inline Qualifiers::GC QualType::getObjCGCAttr() const {
2853  if (hasLocalNonFastQualifiers()) {
2854    const ExtQuals *EQ = getExtQualsUnsafe();
2855    if (EQ->hasObjCGCAttr())
2856      return EQ->getObjCGCAttr();
2857  }
2858
2859  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2860  if (CT.hasLocalNonFastQualifiers()) {
2861    const ExtQuals *EQ = CT.getExtQualsUnsafe();
2862    if (EQ->hasObjCGCAttr())
2863      return EQ->getObjCGCAttr();
2864  }
2865
2866  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
2867      return AT->getElementType().getObjCGCAttr();
2868  if (const ObjCObjectPointerType *PT = CT->getAs<ObjCObjectPointerType>())
2869    return PT->getPointeeType().getObjCGCAttr();
2870  // We most look at all pointer types, not just pointer to interface types.
2871  if (const PointerType *PT = CT->getAs<PointerType>())
2872    return PT->getPointeeType().getObjCGCAttr();
2873  return Qualifiers::GCNone;
2874}
2875
2876  /// getNoReturnAttr - Returns true if the type has the noreturn attribute,
2877  /// false otherwise.
2878inline bool QualType::getNoReturnAttr() const {
2879  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2880  if (const PointerType *PT = getTypePtr()->getAs<PointerType>()) {
2881    if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
2882      return FT->getNoReturnAttr();
2883  } else if (const FunctionType *FT = getTypePtr()->getAs<FunctionType>())
2884    return FT->getNoReturnAttr();
2885
2886  return false;
2887}
2888
2889/// getCallConv - Returns the calling convention of the type if the type
2890/// is a function type, CC_Default otherwise.
2891inline CallingConv QualType::getCallConv() const {
2892  if (const PointerType *PT = getTypePtr()->getAs<PointerType>())
2893    return PT->getPointeeType().getCallConv();
2894  else if (const ReferenceType *RT = getTypePtr()->getAs<ReferenceType>())
2895    return RT->getPointeeType().getCallConv();
2896  else if (const MemberPointerType *MPT =
2897           getTypePtr()->getAs<MemberPointerType>())
2898    return MPT->getPointeeType().getCallConv();
2899  else if (const BlockPointerType *BPT =
2900           getTypePtr()->getAs<BlockPointerType>()) {
2901    if (const FunctionType *FT = BPT->getPointeeType()->getAs<FunctionType>())
2902      return FT->getCallConv();
2903  } else if (const FunctionType *FT = getTypePtr()->getAs<FunctionType>())
2904    return FT->getCallConv();
2905
2906  return CC_Default;
2907}
2908
2909/// isMoreQualifiedThan - Determine whether this type is more
2910/// qualified than the Other type. For example, "const volatile int"
2911/// is more qualified than "const int", "volatile int", and
2912/// "int". However, it is not more qualified than "const volatile
2913/// int".
2914inline bool QualType::isMoreQualifiedThan(QualType Other) const {
2915  // FIXME: work on arbitrary qualifiers
2916  unsigned MyQuals = this->getCVRQualifiersThroughArrayTypes();
2917  unsigned OtherQuals = Other.getCVRQualifiersThroughArrayTypes();
2918  if (getAddressSpace() != Other.getAddressSpace())
2919    return false;
2920  return MyQuals != OtherQuals && (MyQuals | OtherQuals) == MyQuals;
2921}
2922
2923/// isAtLeastAsQualifiedAs - Determine whether this type is at last
2924/// as qualified as the Other type. For example, "const volatile
2925/// int" is at least as qualified as "const int", "volatile int",
2926/// "int", and "const volatile int".
2927inline bool QualType::isAtLeastAsQualifiedAs(QualType Other) const {
2928  // FIXME: work on arbitrary qualifiers
2929  unsigned MyQuals = this->getCVRQualifiersThroughArrayTypes();
2930  unsigned OtherQuals = Other.getCVRQualifiersThroughArrayTypes();
2931  if (getAddressSpace() != Other.getAddressSpace())
2932    return false;
2933  return (MyQuals | OtherQuals) == MyQuals;
2934}
2935
2936/// getNonReferenceType - If Type is a reference type (e.g., const
2937/// int&), returns the type that the reference refers to ("const
2938/// int"). Otherwise, returns the type itself. This routine is used
2939/// throughout Sema to implement C++ 5p6:
2940///
2941///   If an expression initially has the type "reference to T" (8.3.2,
2942///   8.5.3), the type is adjusted to "T" prior to any further
2943///   analysis, the expression designates the object or function
2944///   denoted by the reference, and the expression is an lvalue.
2945inline QualType QualType::getNonReferenceType() const {
2946  if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
2947    return RefType->getPointeeType();
2948  else
2949    return *this;
2950}
2951
2952inline const ObjCInterfaceType *Type::getAsPointerToObjCInterfaceType() const {
2953  if (const PointerType *PT = getAs<PointerType>())
2954    return PT->getPointeeType()->getAs<ObjCInterfaceType>();
2955  return 0;
2956}
2957
2958inline bool Type::isFunctionType() const {
2959  return isa<FunctionType>(CanonicalType);
2960}
2961inline bool Type::isPointerType() const {
2962  return isa<PointerType>(CanonicalType);
2963}
2964inline bool Type::isAnyPointerType() const {
2965  return isPointerType() || isObjCObjectPointerType();
2966}
2967inline bool Type::isBlockPointerType() const {
2968  return isa<BlockPointerType>(CanonicalType);
2969}
2970inline bool Type::isReferenceType() const {
2971  return isa<ReferenceType>(CanonicalType);
2972}
2973inline bool Type::isLValueReferenceType() const {
2974  return isa<LValueReferenceType>(CanonicalType);
2975}
2976inline bool Type::isRValueReferenceType() const {
2977  return isa<RValueReferenceType>(CanonicalType);
2978}
2979inline bool Type::isFunctionPointerType() const {
2980  if (const PointerType* T = getAs<PointerType>())
2981    return T->getPointeeType()->isFunctionType();
2982  else
2983    return false;
2984}
2985inline bool Type::isMemberPointerType() const {
2986  return isa<MemberPointerType>(CanonicalType);
2987}
2988inline bool Type::isMemberFunctionPointerType() const {
2989  if (const MemberPointerType* T = getAs<MemberPointerType>())
2990    return T->getPointeeType()->isFunctionType();
2991  else
2992    return false;
2993}
2994inline bool Type::isArrayType() const {
2995  return isa<ArrayType>(CanonicalType);
2996}
2997inline bool Type::isConstantArrayType() const {
2998  return isa<ConstantArrayType>(CanonicalType);
2999}
3000inline bool Type::isIncompleteArrayType() const {
3001  return isa<IncompleteArrayType>(CanonicalType);
3002}
3003inline bool Type::isVariableArrayType() const {
3004  return isa<VariableArrayType>(CanonicalType);
3005}
3006inline bool Type::isDependentSizedArrayType() const {
3007  return isa<DependentSizedArrayType>(CanonicalType);
3008}
3009inline bool Type::isRecordType() const {
3010  return isa<RecordType>(CanonicalType);
3011}
3012inline bool Type::isAnyComplexType() const {
3013  return isa<ComplexType>(CanonicalType);
3014}
3015inline bool Type::isVectorType() const {
3016  return isa<VectorType>(CanonicalType);
3017}
3018inline bool Type::isExtVectorType() const {
3019  return isa<ExtVectorType>(CanonicalType);
3020}
3021inline bool Type::isObjCObjectPointerType() const {
3022  return isa<ObjCObjectPointerType>(CanonicalType);
3023}
3024inline bool Type::isObjCInterfaceType() const {
3025  return isa<ObjCInterfaceType>(CanonicalType);
3026}
3027inline bool Type::isObjCQualifiedIdType() const {
3028  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3029    return OPT->isObjCQualifiedIdType();
3030  return false;
3031}
3032inline bool Type::isObjCQualifiedClassType() const {
3033  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3034    return OPT->isObjCQualifiedClassType();
3035  return false;
3036}
3037inline bool Type::isObjCIdType() const {
3038  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3039    return OPT->isObjCIdType();
3040  return false;
3041}
3042inline bool Type::isObjCClassType() const {
3043  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3044    return OPT->isObjCClassType();
3045  return false;
3046}
3047inline bool Type::isObjCSelType() const {
3048  if (const PointerType *OPT = getAs<PointerType>())
3049    return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
3050  return false;
3051}
3052inline bool Type::isObjCBuiltinType() const {
3053  return isObjCIdType() || isObjCClassType() || isObjCSelType();
3054}
3055inline bool Type::isTemplateTypeParmType() const {
3056  return isa<TemplateTypeParmType>(CanonicalType);
3057}
3058
3059inline bool Type::isSpecificBuiltinType(unsigned K) const {
3060  if (const BuiltinType *BT = getAs<BuiltinType>())
3061    if (BT->getKind() == (BuiltinType::Kind) K)
3062      return true;
3063  return false;
3064}
3065
3066/// \brief Determines whether this is a type for which one can define
3067/// an overloaded operator.
3068inline bool Type::isOverloadableType() const {
3069  return isDependentType() || isRecordType() || isEnumeralType();
3070}
3071
3072inline bool Type::hasPointerRepresentation() const {
3073  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
3074          isObjCInterfaceType() || isObjCObjectPointerType() ||
3075          isObjCQualifiedInterfaceType() || isNullPtrType());
3076}
3077
3078inline bool Type::hasObjCPointerRepresentation() const {
3079  return (isObjCInterfaceType() || isObjCObjectPointerType() ||
3080          isObjCQualifiedInterfaceType());
3081}
3082
3083/// Insertion operator for diagnostics.  This allows sending QualType's into a
3084/// diagnostic with <<.
3085inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
3086                                           QualType T) {
3087  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
3088                  Diagnostic::ak_qualtype);
3089  return DB;
3090}
3091
3092// Helper class template that is used by Type::getAs to ensure that one does
3093// not try to look through a qualified type to get to an array type.
3094template<typename T,
3095         bool isArrayType = (llvm::is_same<T, ArrayType>::value ||
3096                             llvm::is_base_of<ArrayType, T>::value)>
3097struct ArrayType_cannot_be_used_with_getAs { };
3098
3099template<typename T>
3100struct ArrayType_cannot_be_used_with_getAs<T, true>;
3101
3102/// Member-template getAs<specific type>'.
3103template <typename T> const T *Type::getAs() const {
3104  ArrayType_cannot_be_used_with_getAs<T> at;
3105  (void)at;
3106
3107  // If this is directly a T type, return it.
3108  if (const T *Ty = dyn_cast<T>(this))
3109    return Ty;
3110
3111  // If the canonical form of this type isn't the right kind, reject it.
3112  if (!isa<T>(CanonicalType))
3113    return 0;
3114
3115  // If this is a typedef for the type, strip the typedef off without
3116  // losing all typedef information.
3117  return cast<T>(getUnqualifiedDesugaredType());
3118}
3119
3120}  // end namespace clang
3121
3122#endif
3123