Type.h revision d1b3c2dd5bc1f3103bee6137957aa7c5f8f2f0bc
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Basic/IdentifierTable.h"
19#include "clang/AST/NestedNameSpecifier.h"
20#include "clang/AST/TemplateName.h"
21#include "llvm/Support/Casting.h"
22#include "llvm/ADT/APSInt.h"
23#include "llvm/ADT/FoldingSet.h"
24#include "llvm/ADT/PointerIntPair.h"
25#include "llvm/ADT/PointerUnion.h"
26
27using llvm::isa;
28using llvm::cast;
29using llvm::cast_or_null;
30using llvm::dyn_cast;
31using llvm::dyn_cast_or_null;
32namespace clang { class Type; }
33
34namespace llvm {
35  template <typename T>
36  class PointerLikeTypeTraits;
37  template<>
38  class PointerLikeTypeTraits< ::clang::Type*> {
39  public:
40    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
41    static inline ::clang::Type *getFromVoidPointer(void *P) {
42      return static_cast< ::clang::Type*>(P);
43    }
44    enum { NumLowBitsAvailable = 3 };
45  };
46}
47
48namespace clang {
49  class ASTContext;
50  class TypedefDecl;
51  class TemplateDecl;
52  class TemplateTypeParmDecl;
53  class NonTypeTemplateParmDecl;
54  class TemplateTemplateParmDecl;
55  class TagDecl;
56  class RecordDecl;
57  class CXXRecordDecl;
58  class EnumDecl;
59  class FieldDecl;
60  class ObjCInterfaceDecl;
61  class ObjCProtocolDecl;
62  class ObjCMethodDecl;
63  class Expr;
64  class Stmt;
65  class SourceLocation;
66  class StmtIteratorBase;
67  class TemplateArgument;
68  class QualifiedNameType;
69  class PrintingPolicy;
70
71  // Provide forward declarations for all of the *Type classes
72#define TYPE(Class, Base) class Class##Type;
73#include "clang/AST/TypeNodes.def"
74
75/// QualType - For efficiency, we don't store CVR-qualified types as nodes on
76/// their own: instead each reference to a type stores the qualifiers.  This
77/// greatly reduces the number of nodes we need to allocate for types (for
78/// example we only need one for 'int', 'const int', 'volatile int',
79/// 'const volatile int', etc).
80///
81/// As an added efficiency bonus, instead of making this a pair, we just store
82/// the three bits we care about in the low bits of the pointer.  To handle the
83/// packing/unpacking, we make QualType be a simple wrapper class that acts like
84/// a smart pointer.
85class QualType {
86  llvm::PointerIntPair<Type*, 3> Value;
87public:
88  enum TQ {   // NOTE: These flags must be kept in sync with DeclSpec::TQ.
89    Const    = 0x1,
90    Restrict = 0x2,
91    Volatile = 0x4,
92    CVRFlags = Const|Restrict|Volatile
93  };
94
95  enum GCAttrTypes {
96    GCNone = 0,
97    Weak,
98    Strong
99  };
100
101  QualType() {}
102
103  QualType(const Type *Ptr, unsigned Quals)
104    : Value(const_cast<Type*>(Ptr), Quals) {}
105
106  unsigned getCVRQualifiers() const { return Value.getInt(); }
107  void setCVRQualifiers(unsigned Quals) { Value.setInt(Quals); }
108  Type *getTypePtr() const { return Value.getPointer(); }
109
110  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
111  static QualType getFromOpaquePtr(void *Ptr) {
112    QualType T;
113    T.Value.setFromOpaqueValue(Ptr);
114    return T;
115  }
116
117  Type &operator*() const {
118    return *getTypePtr();
119  }
120
121  Type *operator->() const {
122    return getTypePtr();
123  }
124
125  /// isNull - Return true if this QualType doesn't point to a type yet.
126  bool isNull() const {
127    return getTypePtr() == 0;
128  }
129
130  bool isConstQualified() const {
131    return (getCVRQualifiers() & Const) ? true : false;
132  }
133  bool isVolatileQualified() const {
134    return (getCVRQualifiers() & Volatile) ? true : false;
135  }
136  bool isRestrictQualified() const {
137    return (getCVRQualifiers() & Restrict) ? true : false;
138  }
139
140  bool isConstant(ASTContext& Ctx) const;
141
142  /// addConst/addVolatile/addRestrict - add the specified type qual to this
143  /// QualType.
144  void addConst()    { Value.setInt(Value.getInt() | Const); }
145  void addVolatile() { Value.setInt(Value.getInt() | Volatile); }
146  void addRestrict() { Value.setInt(Value.getInt() | Restrict); }
147
148  void removeConst()    { Value.setInt(Value.getInt() & ~Const); }
149  void removeVolatile() { Value.setInt(Value.getInt() & ~Volatile); }
150  void removeRestrict() { Value.setInt(Value.getInt() & ~Restrict); }
151
152  QualType getQualifiedType(unsigned TQs) const {
153    return QualType(getTypePtr(), TQs);
154  }
155  QualType getWithAdditionalQualifiers(unsigned TQs) const {
156    return QualType(getTypePtr(), TQs|getCVRQualifiers());
157  }
158
159  QualType withConst() const { return getWithAdditionalQualifiers(Const); }
160  QualType withVolatile() const { return getWithAdditionalQualifiers(Volatile);}
161  QualType withRestrict() const { return getWithAdditionalQualifiers(Restrict);}
162
163  QualType getUnqualifiedType() const;
164  bool isMoreQualifiedThan(QualType Other) const;
165  bool isAtLeastAsQualifiedAs(QualType Other) const;
166  QualType getNonReferenceType() const;
167
168  /// getDesugaredType - Return the specified type with any "sugar" removed from
169  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
170  /// the type is already concrete, it returns it unmodified.  This is similar
171  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
172  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
173  /// concrete.
174  QualType getDesugaredType(bool ForDisplay = false) const;
175
176  /// operator==/!= - Indicate whether the specified types and qualifiers are
177  /// identical.
178  bool operator==(const QualType &RHS) const {
179    return Value == RHS.Value;
180  }
181  bool operator!=(const QualType &RHS) const {
182    return Value != RHS.Value;
183  }
184  std::string getAsString() const;
185
186  std::string getAsString(const PrintingPolicy &Policy) const {
187    std::string S;
188    getAsStringInternal(S, Policy);
189    return S;
190  }
191  void getAsStringInternal(std::string &Str, const PrintingPolicy &Policy) const;
192
193  void dump(const char *s) const;
194  void dump() const;
195
196  void Profile(llvm::FoldingSetNodeID &ID) const {
197    ID.AddPointer(getAsOpaquePtr());
198  }
199
200public:
201
202  /// getAddressSpace - Return the address space of this type.
203  inline unsigned getAddressSpace() const;
204
205  /// GCAttrTypesAttr - Returns gc attribute of this type.
206  inline QualType::GCAttrTypes getObjCGCAttr() const;
207
208  /// isObjCGCWeak true when Type is objc's weak.
209  bool isObjCGCWeak() const {
210    return getObjCGCAttr() == Weak;
211  }
212
213  /// isObjCGCStrong true when Type is objc's strong.
214  bool isObjCGCStrong() const {
215    return getObjCGCAttr() == Strong;
216  }
217};
218
219} // end clang.
220
221namespace llvm {
222/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
223/// to a specific Type class.
224template<> struct simplify_type<const ::clang::QualType> {
225  typedef ::clang::Type* SimpleType;
226  static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
227    return Val.getTypePtr();
228  }
229};
230template<> struct simplify_type< ::clang::QualType>
231  : public simplify_type<const ::clang::QualType> {};
232
233// Teach SmallPtrSet that QualType is "basically a pointer".
234template<>
235class PointerLikeTypeTraits<clang::QualType> {
236public:
237  static inline void *getAsVoidPointer(clang::QualType P) {
238    return P.getAsOpaquePtr();
239  }
240  static inline clang::QualType getFromVoidPointer(void *P) {
241    return clang::QualType::getFromOpaquePtr(P);
242  }
243  // CVR qualifiers go in low bits.
244  enum { NumLowBitsAvailable = 0 };
245};
246} // end namespace llvm
247
248namespace clang {
249
250/// Type - This is the base class of the type hierarchy.  A central concept
251/// with types is that each type always has a canonical type.  A canonical type
252/// is the type with any typedef names stripped out of it or the types it
253/// references.  For example, consider:
254///
255///  typedef int  foo;
256///  typedef foo* bar;
257///    'int *'    'foo *'    'bar'
258///
259/// There will be a Type object created for 'int'.  Since int is canonical, its
260/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
261/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
262/// there is a PointerType that represents 'int*', which, like 'int', is
263/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
264/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
265/// is also 'int*'.
266///
267/// Non-canonical types are useful for emitting diagnostics, without losing
268/// information about typedefs being used.  Canonical types are useful for type
269/// comparisons (they allow by-pointer equality tests) and useful for reasoning
270/// about whether something has a particular form (e.g. is a function type),
271/// because they implicitly, recursively, strip all typedefs out of a type.
272///
273/// Types, once created, are immutable.
274///
275class Type {
276public:
277  enum TypeClass {
278#define TYPE(Class, Base) Class,
279#define ABSTRACT_TYPE(Class, Base)
280#include "clang/AST/TypeNodes.def"
281    TagFirst = Record, TagLast = Enum
282  };
283
284private:
285  QualType CanonicalType;
286
287  /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
288  bool Dependent : 1;
289
290  /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
291  /// Note that this should stay at the end of the ivars for Type so that
292  /// subclasses can pack their bitfields into the same word.
293  unsigned TC : 5;
294
295  Type(const Type&);           // DO NOT IMPLEMENT.
296  void operator=(const Type&); // DO NOT IMPLEMENT.
297protected:
298  // silence VC++ warning C4355: 'this' : used in base member initializer list
299  Type *this_() { return this; }
300  Type(TypeClass tc, QualType Canonical, bool dependent)
301    : CanonicalType(Canonical.isNull() ? QualType(this_(), 0) : Canonical),
302      Dependent(dependent), TC(tc) {}
303  virtual ~Type() {}
304  virtual void Destroy(ASTContext& C);
305  friend class ASTContext;
306
307public:
308  TypeClass getTypeClass() const { return static_cast<TypeClass>(TC); }
309
310  bool isCanonical() const { return CanonicalType.getTypePtr() == this; }
311
312  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
313  /// object types, function types, and incomplete types.
314
315  /// \brief Determines whether the type describes an object in memory.
316  ///
317  /// Note that this definition of object type corresponds to the C++
318  /// definition of object type, which includes incomplete types, as
319  /// opposed to the C definition (which does not include incomplete
320  /// types).
321  bool isObjectType() const;
322
323  /// isIncompleteType - Return true if this is an incomplete type.
324  /// A type that can describe objects, but which lacks information needed to
325  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
326  /// routine will need to determine if the size is actually required.
327  bool isIncompleteType() const;
328
329  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
330  /// type, in other words, not a function type.
331  bool isIncompleteOrObjectType() const {
332    return !isFunctionType();
333  }
334
335  /// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10).
336  bool isPODType() const;
337
338  /// isVariablyModifiedType (C99 6.7.5.2p2) - Return true for variable array
339  /// types that have a non-constant expression. This does not include "[]".
340  bool isVariablyModifiedType() const;
341
342  /// Helper methods to distinguish type categories. All type predicates
343  /// operate on the canonical type, ignoring typedefs and qualifiers.
344
345  /// isSpecificBuiltinType - Test for a particular builtin type.
346  bool isSpecificBuiltinType(unsigned K) const;
347
348  /// isIntegerType() does *not* include complex integers (a GCC extension).
349  /// isComplexIntegerType() can be used to test for complex integers.
350  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
351  bool isEnumeralType() const;
352  bool isBooleanType() const;
353  bool isCharType() const;
354  bool isWideCharType() const;
355  bool isIntegralType() const;
356
357  /// Floating point categories.
358  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
359  /// isComplexType() does *not* include complex integers (a GCC extension).
360  /// isComplexIntegerType() can be used to test for complex integers.
361  bool isComplexType() const;      // C99 6.2.5p11 (complex)
362  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
363  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
364  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
365  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
366  bool isVoidType() const;         // C99 6.2.5p19
367  bool isDerivedType() const;      // C99 6.2.5p20
368  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
369  bool isAggregateType() const;
370
371  // Type Predicates: Check to see if this type is structurally the specified
372  // type, ignoring typedefs and qualifiers.
373  bool isFunctionType() const;
374  bool isFunctionNoProtoType() const { return getAsFunctionNoProtoType() != 0; }
375  bool isFunctionProtoType() const { return getAsFunctionProtoType() != 0; }
376  bool isPointerType() const;
377  bool isBlockPointerType() const;
378  bool isReferenceType() const;
379  bool isLValueReferenceType() const;
380  bool isRValueReferenceType() const;
381  bool isFunctionPointerType() const;
382  bool isMemberPointerType() const;
383  bool isMemberFunctionPointerType() const;
384  bool isArrayType() const;
385  bool isConstantArrayType() const;
386  bool isIncompleteArrayType() const;
387  bool isVariableArrayType() const;
388  bool isDependentSizedArrayType() const;
389  bool isRecordType() const;
390  bool isClassType() const;
391  bool isStructureType() const;
392  bool isUnionType() const;
393  bool isComplexIntegerType() const;            // GCC _Complex integer type.
394  bool isVectorType() const;                    // GCC vector type.
395  bool isExtVectorType() const;                 // Extended vector type.
396  bool isObjCObjectPointerType() const;         // Pointer to *any* ObjC object.
397  bool isObjCInterfaceType() const;             // NSString or NSString<foo>
398  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
399  bool isObjCQualifiedIdType() const;           // id<foo>
400  bool isTemplateTypeParmType() const;          // C++ template type parameter
401  bool isNullPtrType() const;                   // C++0x nullptr_t
402
403  /// isDependentType - Whether this type is a dependent type, meaning
404  /// that its definition somehow depends on a template parameter
405  /// (C++ [temp.dep.type]).
406  bool isDependentType() const { return Dependent; }
407  bool isOverloadableType() const;
408
409  /// hasPointerRepresentation - Whether this type is represented
410  /// natively as a pointer; this includes pointers, references, block
411  /// pointers, and Objective-C interface, qualified id, and qualified
412  /// interface types, as well as nullptr_t.
413  bool hasPointerRepresentation() const;
414
415  /// hasObjCPointerRepresentation - Whether this type can represent
416  /// an objective pointer type for the purpose of GC'ability
417  bool hasObjCPointerRepresentation() const;
418
419  // Type Checking Functions: Check to see if this type is structurally the
420  // specified type, ignoring typedefs and qualifiers, and return a pointer to
421  // the best type we can.
422  const BuiltinType *getAsBuiltinType() const;
423  const FunctionType *getAsFunctionType() const;
424  const FunctionNoProtoType *getAsFunctionNoProtoType() const;
425  const FunctionProtoType *getAsFunctionProtoType() const;
426  const PointerType *getAsPointerType() const;
427  const BlockPointerType *getAsBlockPointerType() const;
428  const ReferenceType *getAsReferenceType() const;
429  const LValueReferenceType *getAsLValueReferenceType() const;
430  const RValueReferenceType *getAsRValueReferenceType() const;
431  const MemberPointerType *getAsMemberPointerType() const;
432  const TagType *getAsTagType() const;
433  const RecordType *getAsRecordType() const;
434  const RecordType *getAsStructureType() const;
435  /// NOTE: getAs*ArrayType are methods on ASTContext.
436  const TypedefType *getAsTypedefType() const;
437  const RecordType *getAsUnionType() const;
438  const EnumType *getAsEnumType() const;
439  const VectorType *getAsVectorType() const; // GCC vector type.
440  const ComplexType *getAsComplexType() const;
441  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
442  const ExtVectorType *getAsExtVectorType() const; // Extended vector type.
443  const ObjCObjectPointerType *getAsObjCObjectPointerType() const;
444  const ObjCInterfaceType *getAsObjCInterfaceType() const;
445  const ObjCQualifiedInterfaceType *getAsObjCQualifiedInterfaceType() const;
446  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
447  const TemplateTypeParmType *getAsTemplateTypeParmType() const;
448
449  const TemplateSpecializationType *
450    getAsTemplateSpecializationType() const;
451
452  /// getAsPointerToObjCInterfaceType - If this is a pointer to an ObjC
453  /// interface, return the interface type, otherwise return null.
454  const ObjCInterfaceType *getAsPointerToObjCInterfaceType() const;
455
456  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
457  /// element type of the array, potentially with type qualifiers missing.
458  /// This method should never be used when type qualifiers are meaningful.
459  const Type *getArrayElementTypeNoTypeQual() const;
460
461  /// getDesugaredType - Return the specified type with any "sugar" removed from
462  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
463  /// the type is already concrete, it returns it unmodified.  This is similar
464  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
465  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
466  /// concrete.
467  QualType getDesugaredType(bool ForDisplay = false) const;
468
469  /// More type predicates useful for type checking/promotion
470  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
471
472  /// isSignedIntegerType - Return true if this is an integer type that is
473  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
474  /// an enum decl which has a signed representation, or a vector of signed
475  /// integer element type.
476  bool isSignedIntegerType() const;
477
478  /// isUnsignedIntegerType - Return true if this is an integer type that is
479  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
480  /// decl which has an unsigned representation, or a vector of unsigned integer
481  /// element type.
482  bool isUnsignedIntegerType() const;
483
484  /// isConstantSizeType - Return true if this is not a variable sized type,
485  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
486  /// incomplete types.
487  bool isConstantSizeType() const;
488
489  /// isSpecifierType - Returns true if this type can be represented by some
490  /// set of type specifiers.
491  bool isSpecifierType() const;
492
493  QualType getCanonicalTypeInternal() const { return CanonicalType; }
494  void dump() const;
495  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const = 0;
496  static bool classof(const Type *) { return true; }
497};
498
499/// ExtQualType - TR18037 (C embedded extensions) 6.2.5p26
500/// This supports all kinds of type attributes; including,
501/// address space qualified types, objective-c's __weak and
502/// __strong attributes.
503///
504class ExtQualType : public Type, public llvm::FoldingSetNode {
505  /// BaseType - This is the underlying type that this qualifies.  All CVR
506  /// qualifiers are stored on the QualType that references this type, so we
507  /// can't have any here.
508  Type *BaseType;
509
510  /// Address Space ID - The address space ID this type is qualified with.
511  unsigned AddressSpace;
512  /// GC __weak/__strong attributes
513  QualType::GCAttrTypes GCAttrType;
514
515  ExtQualType(Type *Base, QualType CanonicalPtr, unsigned AddrSpace,
516              QualType::GCAttrTypes gcAttr) :
517      Type(ExtQual, CanonicalPtr, Base->isDependentType()), BaseType(Base),
518      AddressSpace(AddrSpace), GCAttrType(gcAttr) {
519    assert(!isa<ExtQualType>(BaseType) &&
520           "Cannot have ExtQualType of ExtQualType");
521  }
522  friend class ASTContext;  // ASTContext creates these.
523public:
524  Type *getBaseType() const { return BaseType; }
525  QualType::GCAttrTypes getObjCGCAttr() const { return GCAttrType; }
526  unsigned getAddressSpace() const { return AddressSpace; }
527
528  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
529
530  void Profile(llvm::FoldingSetNodeID &ID) {
531    Profile(ID, getBaseType(), AddressSpace, GCAttrType);
532  }
533  static void Profile(llvm::FoldingSetNodeID &ID, Type *Base,
534                      unsigned AddrSpace, QualType::GCAttrTypes gcAttr) {
535    ID.AddPointer(Base);
536    ID.AddInteger(AddrSpace);
537    ID.AddInteger(gcAttr);
538  }
539
540  static bool classof(const Type *T) { return T->getTypeClass() == ExtQual; }
541  static bool classof(const ExtQualType *) { return true; }
542};
543
544
545/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
546/// types are always canonical and have a literal name field.
547class BuiltinType : public Type {
548public:
549  enum Kind {
550    Void,
551
552    Bool,     // This is bool and/or _Bool.
553    Char_U,   // This is 'char' for targets where char is unsigned.
554    UChar,    // This is explicitly qualified unsigned char.
555    UShort,
556    UInt,
557    ULong,
558    ULongLong,
559    UInt128,  // __uint128_t
560
561    Char_S,   // This is 'char' for targets where char is signed.
562    SChar,    // This is explicitly qualified signed char.
563    WChar,    // This is 'wchar_t' for C++.
564    Short,
565    Int,
566    Long,
567    LongLong,
568    Int128,   // __int128_t
569
570    Float, Double, LongDouble,
571
572    NullPtr,  // This is the type of C++0x 'nullptr'.
573
574    Overload,  // This represents the type of an overloaded function declaration.
575    Dependent  // This represents the type of a type-dependent expression.
576  };
577private:
578  Kind TypeKind;
579public:
580  BuiltinType(Kind K)
581    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent)),
582      TypeKind(K) {}
583
584  Kind getKind() const { return TypeKind; }
585  const char *getName(bool CPlusPlus) const;
586
587  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
588
589  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
590  static bool classof(const BuiltinType *) { return true; }
591};
592
593/// FixedWidthIntType - Used for arbitrary width types that we either don't
594/// want to or can't map to named integer types.  These always have a lower
595/// integer rank than builtin types of the same width.
596class FixedWidthIntType : public Type {
597private:
598  unsigned Width;
599  bool Signed;
600public:
601  FixedWidthIntType(unsigned W, bool S) : Type(FixedWidthInt, QualType(), false),
602                                          Width(W), Signed(S) {}
603
604  unsigned getWidth() const { return Width; }
605  bool isSigned() const { return Signed; }
606  const char *getName() const;
607
608  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
609
610  static bool classof(const Type *T) { return T->getTypeClass() == FixedWidthInt; }
611  static bool classof(const FixedWidthIntType *) { return true; }
612};
613
614/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
615/// types (_Complex float etc) as well as the GCC integer complex extensions.
616///
617class ComplexType : public Type, public llvm::FoldingSetNode {
618  QualType ElementType;
619  ComplexType(QualType Element, QualType CanonicalPtr) :
620    Type(Complex, CanonicalPtr, Element->isDependentType()),
621    ElementType(Element) {
622  }
623  friend class ASTContext;  // ASTContext creates these.
624public:
625  QualType getElementType() const { return ElementType; }
626
627  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
628
629  void Profile(llvm::FoldingSetNodeID &ID) {
630    Profile(ID, getElementType());
631  }
632  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
633    ID.AddPointer(Element.getAsOpaquePtr());
634  }
635
636  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
637  static bool classof(const ComplexType *) { return true; }
638};
639
640/// PointerType - C99 6.7.5.1 - Pointer Declarators.
641///
642class PointerType : public Type, public llvm::FoldingSetNode {
643  QualType PointeeType;
644
645  PointerType(QualType Pointee, QualType CanonicalPtr) :
646    Type(Pointer, CanonicalPtr, Pointee->isDependentType()), PointeeType(Pointee) {
647  }
648  friend class ASTContext;  // ASTContext creates these.
649public:
650
651  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
652
653  QualType getPointeeType() const { return PointeeType; }
654
655  void Profile(llvm::FoldingSetNodeID &ID) {
656    Profile(ID, getPointeeType());
657  }
658  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
659    ID.AddPointer(Pointee.getAsOpaquePtr());
660  }
661
662  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
663  static bool classof(const PointerType *) { return true; }
664};
665
666/// BlockPointerType - pointer to a block type.
667/// This type is to represent types syntactically represented as
668/// "void (^)(int)", etc. Pointee is required to always be a function type.
669///
670class BlockPointerType : public Type, public llvm::FoldingSetNode {
671  QualType PointeeType;  // Block is some kind of pointer type
672  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
673    Type(BlockPointer, CanonicalCls, Pointee->isDependentType()),
674    PointeeType(Pointee) {
675  }
676  friend class ASTContext;  // ASTContext creates these.
677public:
678
679  // Get the pointee type. Pointee is required to always be a function type.
680  QualType getPointeeType() const { return PointeeType; }
681
682  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
683
684  void Profile(llvm::FoldingSetNodeID &ID) {
685      Profile(ID, getPointeeType());
686  }
687  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
688      ID.AddPointer(Pointee.getAsOpaquePtr());
689  }
690
691  static bool classof(const Type *T) {
692    return T->getTypeClass() == BlockPointer;
693  }
694  static bool classof(const BlockPointerType *) { return true; }
695};
696
697/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
698///
699class ReferenceType : public Type, public llvm::FoldingSetNode {
700  QualType PointeeType;
701
702protected:
703  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef) :
704    Type(tc, CanonicalRef, Referencee->isDependentType()),
705    PointeeType(Referencee) {
706  }
707public:
708  QualType getPointeeType() const { return PointeeType; }
709
710  void Profile(llvm::FoldingSetNodeID &ID) {
711    Profile(ID, getPointeeType());
712  }
713  static void Profile(llvm::FoldingSetNodeID &ID, QualType Referencee) {
714    ID.AddPointer(Referencee.getAsOpaquePtr());
715  }
716
717  static bool classof(const Type *T) {
718    return T->getTypeClass() == LValueReference ||
719           T->getTypeClass() == RValueReference;
720  }
721  static bool classof(const ReferenceType *) { return true; }
722};
723
724/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
725///
726class LValueReferenceType : public ReferenceType {
727  LValueReferenceType(QualType Referencee, QualType CanonicalRef) :
728    ReferenceType(LValueReference, Referencee, CanonicalRef) {
729  }
730  friend class ASTContext; // ASTContext creates these
731public:
732  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
733
734  static bool classof(const Type *T) {
735    return T->getTypeClass() == LValueReference;
736  }
737  static bool classof(const LValueReferenceType *) { return true; }
738};
739
740/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
741///
742class RValueReferenceType : public ReferenceType {
743  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
744    ReferenceType(RValueReference, Referencee, CanonicalRef) {
745  }
746  friend class ASTContext; // ASTContext creates these
747public:
748  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
749
750  static bool classof(const Type *T) {
751    return T->getTypeClass() == RValueReference;
752  }
753  static bool classof(const RValueReferenceType *) { return true; }
754};
755
756/// MemberPointerType - C++ 8.3.3 - Pointers to members
757///
758class MemberPointerType : public Type, public llvm::FoldingSetNode {
759  QualType PointeeType;
760  /// The class of which the pointee is a member. Must ultimately be a
761  /// RecordType, but could be a typedef or a template parameter too.
762  const Type *Class;
763
764  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
765    Type(MemberPointer, CanonicalPtr,
766         Cls->isDependentType() || Pointee->isDependentType()),
767    PointeeType(Pointee), Class(Cls) {
768  }
769  friend class ASTContext; // ASTContext creates these.
770public:
771
772  QualType getPointeeType() const { return PointeeType; }
773
774  const Type *getClass() const { return Class; }
775
776  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
777
778  void Profile(llvm::FoldingSetNodeID &ID) {
779    Profile(ID, getPointeeType(), getClass());
780  }
781  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
782                      const Type *Class) {
783    ID.AddPointer(Pointee.getAsOpaquePtr());
784    ID.AddPointer(Class);
785  }
786
787  static bool classof(const Type *T) {
788    return T->getTypeClass() == MemberPointer;
789  }
790  static bool classof(const MemberPointerType *) { return true; }
791};
792
793/// ArrayType - C99 6.7.5.2 - Array Declarators.
794///
795class ArrayType : public Type, public llvm::FoldingSetNode {
796public:
797  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
798  /// an array with a static size (e.g. int X[static 4]), or an array
799  /// with a star size (e.g. int X[*]).
800  /// 'static' is only allowed on function parameters.
801  enum ArraySizeModifier {
802    Normal, Static, Star
803  };
804private:
805  /// ElementType - The element type of the array.
806  QualType ElementType;
807
808  // NOTE: VC++ treats enums as signed, avoid using the ArraySizeModifier enum
809  /// NOTE: These fields are packed into the bitfields space in the Type class.
810  unsigned SizeModifier : 2;
811
812  /// IndexTypeQuals - Capture qualifiers in declarations like:
813  /// 'int X[static restrict 4]'. For function parameters only.
814  unsigned IndexTypeQuals : 3;
815
816protected:
817  // C++ [temp.dep.type]p1:
818  //   A type is dependent if it is...
819  //     - an array type constructed from any dependent type or whose
820  //       size is specified by a constant expression that is
821  //       value-dependent,
822  ArrayType(TypeClass tc, QualType et, QualType can,
823            ArraySizeModifier sm, unsigned tq)
824    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray),
825      ElementType(et), SizeModifier(sm), IndexTypeQuals(tq) {}
826
827  friend class ASTContext;  // ASTContext creates these.
828public:
829  QualType getElementType() const { return ElementType; }
830  ArraySizeModifier getSizeModifier() const {
831    return ArraySizeModifier(SizeModifier);
832  }
833  unsigned getIndexTypeQualifier() const { return IndexTypeQuals; }
834
835  static bool classof(const Type *T) {
836    return T->getTypeClass() == ConstantArray ||
837           T->getTypeClass() == VariableArray ||
838           T->getTypeClass() == IncompleteArray ||
839           T->getTypeClass() == DependentSizedArray;
840  }
841  static bool classof(const ArrayType *) { return true; }
842};
843
844/// ConstantArrayType - This class represents C arrays with a specified constant
845/// size.  For example 'int A[100]' has ConstantArrayType where the element type
846/// is 'int' and the size is 100.
847class ConstantArrayType : public ArrayType {
848  llvm::APInt Size; // Allows us to unique the type.
849
850  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
851                    ArraySizeModifier sm, unsigned tq)
852    : ArrayType(ConstantArray, et, can, sm, tq), Size(size) {}
853  friend class ASTContext;  // ASTContext creates these.
854public:
855  const llvm::APInt &getSize() const { return Size; }
856  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
857
858  void Profile(llvm::FoldingSetNodeID &ID) {
859    Profile(ID, getElementType(), getSize(),
860            getSizeModifier(), getIndexTypeQualifier());
861  }
862  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
863                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
864                      unsigned TypeQuals) {
865    ID.AddPointer(ET.getAsOpaquePtr());
866    ID.AddInteger(ArraySize.getZExtValue());
867    ID.AddInteger(SizeMod);
868    ID.AddInteger(TypeQuals);
869  }
870  static bool classof(const Type *T) {
871    return T->getTypeClass() == ConstantArray;
872  }
873  static bool classof(const ConstantArrayType *) { return true; }
874};
875
876/// IncompleteArrayType - This class represents C arrays with an unspecified
877/// size.  For example 'int A[]' has an IncompleteArrayType where the element
878/// type is 'int' and the size is unspecified.
879class IncompleteArrayType : public ArrayType {
880  IncompleteArrayType(QualType et, QualType can,
881                    ArraySizeModifier sm, unsigned tq)
882    : ArrayType(IncompleteArray, et, can, sm, tq) {}
883  friend class ASTContext;  // ASTContext creates these.
884public:
885
886  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
887
888  static bool classof(const Type *T) {
889    return T->getTypeClass() == IncompleteArray;
890  }
891  static bool classof(const IncompleteArrayType *) { return true; }
892
893  friend class StmtIteratorBase;
894
895  void Profile(llvm::FoldingSetNodeID &ID) {
896    Profile(ID, getElementType(), getSizeModifier(), getIndexTypeQualifier());
897  }
898
899  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
900                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
901    ID.AddPointer(ET.getAsOpaquePtr());
902    ID.AddInteger(SizeMod);
903    ID.AddInteger(TypeQuals);
904  }
905};
906
907/// VariableArrayType - This class represents C arrays with a specified size
908/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
909/// Since the size expression is an arbitrary expression, we store it as such.
910///
911/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
912/// should not be: two lexically equivalent variable array types could mean
913/// different things, for example, these variables do not have the same type
914/// dynamically:
915///
916/// void foo(int x) {
917///   int Y[x];
918///   ++x;
919///   int Z[x];
920/// }
921///
922class VariableArrayType : public ArrayType {
923  /// SizeExpr - An assignment expression. VLA's are only permitted within
924  /// a function block.
925  Stmt *SizeExpr;
926
927  VariableArrayType(QualType et, QualType can, Expr *e,
928                    ArraySizeModifier sm, unsigned tq)
929    : ArrayType(VariableArray, et, can, sm, tq), SizeExpr((Stmt*) e) {}
930  friend class ASTContext;  // ASTContext creates these.
931  virtual void Destroy(ASTContext& C);
932
933public:
934  Expr *getSizeExpr() const {
935    // We use C-style casts instead of cast<> here because we do not wish
936    // to have a dependency of Type.h on Stmt.h/Expr.h.
937    return (Expr*) SizeExpr;
938  }
939
940  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
941
942  static bool classof(const Type *T) {
943    return T->getTypeClass() == VariableArray;
944  }
945  static bool classof(const VariableArrayType *) { return true; }
946
947  friend class StmtIteratorBase;
948
949  void Profile(llvm::FoldingSetNodeID &ID) {
950    assert(0 && "Cannnot unique VariableArrayTypes.");
951  }
952};
953
954/// DependentSizedArrayType - This type represents an array type in
955/// C++ whose size is a value-dependent expression. For example:
956/// @code
957/// template<typename T, int Size>
958/// class array {
959///   T data[Size];
960/// };
961/// @endcode
962/// For these types, we won't actually know what the array bound is
963/// until template instantiation occurs, at which point this will
964/// become either a ConstantArrayType or a VariableArrayType.
965class DependentSizedArrayType : public ArrayType {
966  /// SizeExpr - An assignment expression that will instantiate to the
967  /// size of the array.
968  Stmt *SizeExpr;
969
970  DependentSizedArrayType(QualType et, QualType can, Expr *e,
971			  ArraySizeModifier sm, unsigned tq)
972    : ArrayType(DependentSizedArray, et, can, sm, tq), SizeExpr((Stmt*) e) {}
973  friend class ASTContext;  // ASTContext creates these.
974  virtual void Destroy(ASTContext& C);
975
976public:
977  Expr *getSizeExpr() const {
978    // We use C-style casts instead of cast<> here because we do not wish
979    // to have a dependency of Type.h on Stmt.h/Expr.h.
980    return (Expr*) SizeExpr;
981  }
982
983  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
984
985  static bool classof(const Type *T) {
986    return T->getTypeClass() == DependentSizedArray;
987  }
988  static bool classof(const DependentSizedArrayType *) { return true; }
989
990  friend class StmtIteratorBase;
991
992  void Profile(llvm::FoldingSetNodeID &ID) {
993    assert(0 && "Cannnot unique DependentSizedArrayTypes.");
994  }
995};
996
997/// DependentSizedExtVectorType - This type represent an ext vectory type
998/// where either the type or size is dependent. For example:
999/// @code
1000/// template<typename T, int Size>
1001/// class vector {
1002///   typedef T __attribute__((ext_vector_type(Size))) type;
1003/// }
1004/// @endcode
1005class DependentSizedExtVectorType : public Type {
1006  Expr *SizeExpr;
1007  /// ElementType - The element type of the array.
1008  QualType ElementType;
1009  SourceLocation loc;
1010
1011  DependentSizedExtVectorType(QualType ElementType, QualType can,
1012                              Expr *SizeExpr, SourceLocation loc)
1013    : Type (DependentSizedExtVector, can, true),
1014    SizeExpr(SizeExpr), ElementType(ElementType), loc(loc) {}
1015  friend class ASTContext;
1016  virtual void Destroy(ASTContext& C);
1017
1018public:
1019  Expr *getSizeExpr() const { return SizeExpr; }
1020  QualType getElementType() const { return ElementType; }
1021  SourceLocation getAttributeLoc() const { return loc; }
1022
1023  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
1024
1025  static bool classof(const Type *T) {
1026    return T->getTypeClass() == DependentSizedExtVector;
1027  }
1028  static bool classof(const DependentSizedExtVectorType *) { return true; }
1029};
1030
1031
1032/// VectorType - GCC generic vector type. This type is created using
1033/// __attribute__((vector_size(n)), where "n" specifies the vector size in
1034/// bytes. Since the constructor takes the number of vector elements, the
1035/// client is responsible for converting the size into the number of elements.
1036class VectorType : public Type, public llvm::FoldingSetNode {
1037protected:
1038  /// ElementType - The element type of the vector.
1039  QualType ElementType;
1040
1041  /// NumElements - The number of elements in the vector.
1042  unsigned NumElements;
1043
1044  VectorType(QualType vecType, unsigned nElements, QualType canonType) :
1045    Type(Vector, canonType, vecType->isDependentType()),
1046    ElementType(vecType), NumElements(nElements) {}
1047  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
1048             QualType canonType)
1049    : Type(tc, canonType, vecType->isDependentType()), ElementType(vecType),
1050      NumElements(nElements) {}
1051  friend class ASTContext;  // ASTContext creates these.
1052public:
1053
1054  QualType getElementType() const { return ElementType; }
1055  unsigned getNumElements() const { return NumElements; }
1056
1057  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
1058
1059  void Profile(llvm::FoldingSetNodeID &ID) {
1060    Profile(ID, getElementType(), getNumElements(), getTypeClass());
1061  }
1062  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
1063                      unsigned NumElements, TypeClass TypeClass) {
1064    ID.AddPointer(ElementType.getAsOpaquePtr());
1065    ID.AddInteger(NumElements);
1066    ID.AddInteger(TypeClass);
1067  }
1068  static bool classof(const Type *T) {
1069    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
1070  }
1071  static bool classof(const VectorType *) { return true; }
1072};
1073
1074/// ExtVectorType - Extended vector type. This type is created using
1075/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
1076/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
1077/// class enables syntactic extensions, like Vector Components for accessing
1078/// points, colors, and textures (modeled after OpenGL Shading Language).
1079class ExtVectorType : public VectorType {
1080  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
1081    VectorType(ExtVector, vecType, nElements, canonType) {}
1082  friend class ASTContext;  // ASTContext creates these.
1083public:
1084  static int getPointAccessorIdx(char c) {
1085    switch (c) {
1086    default: return -1;
1087    case 'x': return 0;
1088    case 'y': return 1;
1089    case 'z': return 2;
1090    case 'w': return 3;
1091    }
1092  }
1093  static int getNumericAccessorIdx(char c) {
1094    switch (c) {
1095      default: return -1;
1096      case '0': return 0;
1097      case '1': return 1;
1098      case '2': return 2;
1099      case '3': return 3;
1100      case '4': return 4;
1101      case '5': return 5;
1102      case '6': return 6;
1103      case '7': return 7;
1104      case '8': return 8;
1105      case '9': return 9;
1106      case 'a': return 10;
1107      case 'b': return 11;
1108      case 'c': return 12;
1109      case 'd': return 13;
1110      case 'e': return 14;
1111      case 'f': return 15;
1112    }
1113  }
1114
1115  static int getAccessorIdx(char c) {
1116    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
1117    return getNumericAccessorIdx(c);
1118  }
1119
1120  bool isAccessorWithinNumElements(char c) const {
1121    if (int idx = getAccessorIdx(c)+1)
1122      return unsigned(idx-1) < NumElements;
1123    return false;
1124  }
1125  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
1126
1127  static bool classof(const Type *T) {
1128    return T->getTypeClass() == ExtVector;
1129  }
1130  static bool classof(const ExtVectorType *) { return true; }
1131};
1132
1133/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
1134/// class of FunctionNoProtoType and FunctionProtoType.
1135///
1136class FunctionType : public Type {
1137  /// SubClassData - This field is owned by the subclass, put here to pack
1138  /// tightly with the ivars in Type.
1139  bool SubClassData : 1;
1140
1141  /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
1142  /// other bitfields.
1143  /// The qualifiers are part of FunctionProtoType because...
1144  ///
1145  /// C++ 8.3.5p4: The return type, the parameter type list and the
1146  /// cv-qualifier-seq, [...], are part of the function type.
1147  ///
1148  unsigned TypeQuals : 3;
1149
1150  // The type returned by the function.
1151  QualType ResultType;
1152protected:
1153  FunctionType(TypeClass tc, QualType res, bool SubclassInfo,
1154               unsigned typeQuals, QualType Canonical, bool Dependent)
1155    : Type(tc, Canonical, Dependent),
1156      SubClassData(SubclassInfo), TypeQuals(typeQuals), ResultType(res) {}
1157  bool getSubClassData() const { return SubClassData; }
1158  unsigned getTypeQuals() const { return TypeQuals; }
1159public:
1160
1161  QualType getResultType() const { return ResultType; }
1162
1163
1164  static bool classof(const Type *T) {
1165    return T->getTypeClass() == FunctionNoProto ||
1166           T->getTypeClass() == FunctionProto;
1167  }
1168  static bool classof(const FunctionType *) { return true; }
1169};
1170
1171/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
1172/// no information available about its arguments.
1173class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
1174  FunctionNoProtoType(QualType Result, QualType Canonical)
1175    : FunctionType(FunctionNoProto, Result, false, 0, Canonical,
1176                   /*Dependent=*/false) {}
1177  friend class ASTContext;  // ASTContext creates these.
1178public:
1179  // No additional state past what FunctionType provides.
1180
1181  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
1182
1183  void Profile(llvm::FoldingSetNodeID &ID) {
1184    Profile(ID, getResultType());
1185  }
1186  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType) {
1187    ID.AddPointer(ResultType.getAsOpaquePtr());
1188  }
1189
1190  static bool classof(const Type *T) {
1191    return T->getTypeClass() == FunctionNoProto;
1192  }
1193  static bool classof(const FunctionNoProtoType *) { return true; }
1194};
1195
1196/// FunctionProtoType - Represents a prototype with argument type info, e.g.
1197/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
1198/// arguments, not as having a single void argument. Such a type can have an
1199/// exception specification, but this specification is not part of the canonical
1200/// type.
1201class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
1202  /// hasAnyDependentType - Determine whether there are any dependent
1203  /// types within the arguments passed in.
1204  static bool hasAnyDependentType(const QualType *ArgArray, unsigned numArgs) {
1205    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
1206      if (ArgArray[Idx]->isDependentType())
1207    return true;
1208
1209    return false;
1210  }
1211
1212  FunctionProtoType(QualType Result, const QualType *ArgArray, unsigned numArgs,
1213                    bool isVariadic, unsigned typeQuals, bool hasExs,
1214                    bool hasAnyExs, const QualType *ExArray,
1215                    unsigned numExs, QualType Canonical)
1216    : FunctionType(FunctionProto, Result, isVariadic, typeQuals, Canonical,
1217                   (Result->isDependentType() ||
1218                    hasAnyDependentType(ArgArray, numArgs))),
1219      NumArgs(numArgs), NumExceptions(numExs), HasExceptionSpec(hasExs),
1220      AnyExceptionSpec(hasAnyExs) {
1221    // Fill in the trailing argument array.
1222    QualType *ArgInfo = reinterpret_cast<QualType*>(this+1);
1223    for (unsigned i = 0; i != numArgs; ++i)
1224      ArgInfo[i] = ArgArray[i];
1225    // Fill in the exception array.
1226    QualType *Ex = ArgInfo + numArgs;
1227    for (unsigned i = 0; i != numExs; ++i)
1228      Ex[i] = ExArray[i];
1229  }
1230
1231  /// NumArgs - The number of arguments this function has, not counting '...'.
1232  unsigned NumArgs : 20;
1233
1234  /// NumExceptions - The number of types in the exception spec, if any.
1235  unsigned NumExceptions : 10;
1236
1237  /// HasExceptionSpec - Whether this function has an exception spec at all.
1238  bool HasExceptionSpec : 1;
1239
1240  /// AnyExceptionSpec - Whether this function has a throw(...) spec.
1241  bool AnyExceptionSpec : 1;
1242
1243  /// ArgInfo - There is an variable size array after the class in memory that
1244  /// holds the argument types.
1245
1246  /// Exceptions - There is another variable size array after ArgInfo that
1247  /// holds the exception types.
1248
1249  friend class ASTContext;  // ASTContext creates these.
1250
1251public:
1252  unsigned getNumArgs() const { return NumArgs; }
1253  QualType getArgType(unsigned i) const {
1254    assert(i < NumArgs && "Invalid argument number!");
1255    return arg_type_begin()[i];
1256  }
1257
1258  bool hasExceptionSpec() const { return HasExceptionSpec; }
1259  bool hasAnyExceptionSpec() const { return AnyExceptionSpec; }
1260  unsigned getNumExceptions() const { return NumExceptions; }
1261  QualType getExceptionType(unsigned i) const {
1262    assert(i < NumExceptions && "Invalid exception number!");
1263    return exception_begin()[i];
1264  }
1265  bool hasEmptyExceptionSpec() const {
1266    return hasExceptionSpec() && !hasAnyExceptionSpec() &&
1267      getNumExceptions() == 0;
1268  }
1269
1270  bool isVariadic() const { return getSubClassData(); }
1271  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
1272
1273  typedef const QualType *arg_type_iterator;
1274  arg_type_iterator arg_type_begin() const {
1275    return reinterpret_cast<const QualType *>(this+1);
1276  }
1277  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
1278
1279  typedef const QualType *exception_iterator;
1280  exception_iterator exception_begin() const {
1281    // exceptions begin where arguments end
1282    return arg_type_end();
1283  }
1284  exception_iterator exception_end() const {
1285    return exception_begin() + NumExceptions;
1286  }
1287
1288  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
1289
1290  static bool classof(const Type *T) {
1291    return T->getTypeClass() == FunctionProto;
1292  }
1293  static bool classof(const FunctionProtoType *) { return true; }
1294
1295  void Profile(llvm::FoldingSetNodeID &ID);
1296  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
1297                      arg_type_iterator ArgTys, unsigned NumArgs,
1298                      bool isVariadic, unsigned TypeQuals,
1299                      bool hasExceptionSpec, bool anyExceptionSpec,
1300                      unsigned NumExceptions, exception_iterator Exs);
1301};
1302
1303
1304class TypedefType : public Type {
1305  TypedefDecl *Decl;
1306protected:
1307  TypedefType(TypeClass tc, TypedefDecl *D, QualType can)
1308    : Type(tc, can, can->isDependentType()), Decl(D) {
1309    assert(!isa<TypedefType>(can) && "Invalid canonical type");
1310  }
1311  friend class ASTContext;  // ASTContext creates these.
1312public:
1313
1314  TypedefDecl *getDecl() const { return Decl; }
1315
1316  /// LookThroughTypedefs - Return the ultimate type this typedef corresponds to
1317  /// potentially looking through *all* consecutive typedefs.  This returns the
1318  /// sum of the type qualifiers, so if you have:
1319  ///   typedef const int A;
1320  ///   typedef volatile A B;
1321  /// looking through the typedefs for B will give you "const volatile A".
1322  QualType LookThroughTypedefs() const;
1323
1324  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
1325
1326  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
1327  static bool classof(const TypedefType *) { return true; }
1328};
1329
1330/// TypeOfExprType (GCC extension).
1331class TypeOfExprType : public Type {
1332  Expr *TOExpr;
1333  TypeOfExprType(Expr *E, QualType can);
1334  friend class ASTContext;  // ASTContext creates these.
1335public:
1336  Expr *getUnderlyingExpr() const { return TOExpr; }
1337
1338  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
1339
1340  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
1341  static bool classof(const TypeOfExprType *) { return true; }
1342};
1343
1344/// TypeOfType (GCC extension).
1345class TypeOfType : public Type {
1346  QualType TOType;
1347  TypeOfType(QualType T, QualType can)
1348    : Type(TypeOf, can, T->isDependentType()), TOType(T) {
1349    assert(!isa<TypedefType>(can) && "Invalid canonical type");
1350  }
1351  friend class ASTContext;  // ASTContext creates these.
1352public:
1353  QualType getUnderlyingType() const { return TOType; }
1354
1355  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
1356
1357  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
1358  static bool classof(const TypeOfType *) { return true; }
1359};
1360
1361class TagType : public Type {
1362  /// Stores the TagDecl associated with this type. The decl will
1363  /// point to the TagDecl that actually defines the entity (or is a
1364  /// definition in progress), if there is such a definition. The
1365  /// single-bit value will be non-zero when this tag is in the
1366  /// process of being defined.
1367  mutable llvm::PointerIntPair<TagDecl *, 1> decl;
1368  friend class ASTContext;
1369  friend class TagDecl;
1370
1371protected:
1372  TagType(TypeClass TC, TagDecl *D, QualType can);
1373
1374public:
1375  TagDecl *getDecl() const { return decl.getPointer(); }
1376
1377  /// @brief Determines whether this type is in the process of being
1378  /// defined.
1379  bool isBeingDefined() const { return decl.getInt(); }
1380  void setBeingDefined(bool Def) { decl.setInt(Def? 1 : 0); }
1381
1382  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
1383
1384  static bool classof(const Type *T) {
1385    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
1386  }
1387  static bool classof(const TagType *) { return true; }
1388  static bool classof(const RecordType *) { return true; }
1389  static bool classof(const EnumType *) { return true; }
1390};
1391
1392/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
1393/// to detect TagType objects of structs/unions/classes.
1394class RecordType : public TagType {
1395protected:
1396  explicit RecordType(RecordDecl *D)
1397    : TagType(Record, reinterpret_cast<TagDecl*>(D), QualType()) { }
1398  explicit RecordType(TypeClass TC, RecordDecl *D)
1399    : TagType(TC, reinterpret_cast<TagDecl*>(D), QualType()) { }
1400  friend class ASTContext;   // ASTContext creates these.
1401public:
1402
1403  RecordDecl *getDecl() const {
1404    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
1405  }
1406
1407  // FIXME: This predicate is a helper to QualType/Type. It needs to
1408  // recursively check all fields for const-ness. If any field is declared
1409  // const, it needs to return false.
1410  bool hasConstFields() const { return false; }
1411
1412  // FIXME: RecordType needs to check when it is created that all fields are in
1413  // the same address space, and return that.
1414  unsigned getAddressSpace() const { return 0; }
1415
1416  static bool classof(const TagType *T);
1417  static bool classof(const Type *T) {
1418    return isa<TagType>(T) && classof(cast<TagType>(T));
1419  }
1420  static bool classof(const RecordType *) { return true; }
1421};
1422
1423/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
1424/// to detect TagType objects of enums.
1425class EnumType : public TagType {
1426  explicit EnumType(EnumDecl *D)
1427    : TagType(Enum, reinterpret_cast<TagDecl*>(D), QualType()) { }
1428  friend class ASTContext;   // ASTContext creates these.
1429public:
1430
1431  EnumDecl *getDecl() const {
1432    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
1433  }
1434
1435  static bool classof(const TagType *T);
1436  static bool classof(const Type *T) {
1437    return isa<TagType>(T) && classof(cast<TagType>(T));
1438  }
1439  static bool classof(const EnumType *) { return true; }
1440};
1441
1442class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
1443  unsigned Depth : 15;
1444  unsigned Index : 16;
1445  unsigned ParameterPack : 1;
1446  IdentifierInfo *Name;
1447
1448  TemplateTypeParmType(unsigned D, unsigned I, bool PP, IdentifierInfo *N,
1449                       QualType Canon)
1450    : Type(TemplateTypeParm, Canon, /*Dependent=*/true),
1451      Depth(D), Index(I), ParameterPack(PP), Name(N) { }
1452
1453  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
1454    : Type(TemplateTypeParm, QualType(this, 0), /*Dependent=*/true),
1455      Depth(D), Index(I), ParameterPack(PP), Name(0) { }
1456
1457  friend class ASTContext;  // ASTContext creates these
1458
1459public:
1460  unsigned getDepth() const { return Depth; }
1461  unsigned getIndex() const { return Index; }
1462  bool isParameterPack() const { return ParameterPack; }
1463  IdentifierInfo *getName() const { return Name; }
1464
1465  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
1466
1467  void Profile(llvm::FoldingSetNodeID &ID) {
1468    Profile(ID, Depth, Index, ParameterPack, Name);
1469  }
1470
1471  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
1472                      unsigned Index, bool ParameterPack,
1473                      IdentifierInfo *Name) {
1474    ID.AddInteger(Depth);
1475    ID.AddInteger(Index);
1476    ID.AddBoolean(ParameterPack);
1477    ID.AddPointer(Name);
1478  }
1479
1480  static bool classof(const Type *T) {
1481    return T->getTypeClass() == TemplateTypeParm;
1482  }
1483  static bool classof(const TemplateTypeParmType *T) { return true; }
1484};
1485
1486/// \brief Represents the type of a template specialization as written
1487/// in the source code.
1488///
1489/// Template specialization types represent the syntactic form of a
1490/// template-id that refers to a type, e.g., @c vector<int>. Some
1491/// template specialization types are syntactic sugar, whose canonical
1492/// type will point to some other type node that represents the
1493/// instantiation or class template specialization. For example, a
1494/// class template specialization type of @c vector<int> will refer to
1495/// a tag type for the instantiation
1496/// @c std::vector<int, std::allocator<int>>.
1497///
1498/// Other template specialization types, for which the template name
1499/// is dependent, may be canonical types. These types are always
1500/// dependent.
1501class TemplateSpecializationType
1502  : public Type, public llvm::FoldingSetNode {
1503
1504  /// \brief The name of the template being specialized.
1505  TemplateName Template;
1506
1507  /// \brief - The number of template arguments named in this class
1508  /// template specialization.
1509  unsigned NumArgs;
1510
1511  TemplateSpecializationType(TemplateName T,
1512                             const TemplateArgument *Args,
1513                             unsigned NumArgs, QualType Canon);
1514
1515  virtual void Destroy(ASTContext& C);
1516
1517  friend class ASTContext;  // ASTContext creates these
1518
1519public:
1520  /// \brief Determine whether any of the given template arguments are
1521  /// dependent.
1522  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
1523                                            unsigned NumArgs);
1524
1525  /// \brief Print a template argument list, including the '<' and '>'
1526  /// enclosing the template arguments.
1527  static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
1528                                               unsigned NumArgs,
1529                                               const PrintingPolicy &Policy);
1530
1531  typedef const TemplateArgument * iterator;
1532
1533  iterator begin() const { return getArgs(); }
1534  iterator end() const;
1535
1536  /// \brief Retrieve the name of the template that we are specializing.
1537  TemplateName getTemplateName() const { return Template; }
1538
1539  /// \brief Retrieve the template arguments.
1540  const TemplateArgument *getArgs() const {
1541    return reinterpret_cast<const TemplateArgument *>(this + 1);
1542  }
1543
1544  /// \brief Retrieve the number of template arguments.
1545  unsigned getNumArgs() const { return NumArgs; }
1546
1547  /// \brief Retrieve a specific template argument as a type.
1548  /// \precondition @c isArgType(Arg)
1549  const TemplateArgument &getArg(unsigned Idx) const;
1550
1551  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
1552
1553  void Profile(llvm::FoldingSetNodeID &ID) {
1554    Profile(ID, Template, getArgs(), NumArgs);
1555  }
1556
1557  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
1558                      const TemplateArgument *Args, unsigned NumArgs);
1559
1560  static bool classof(const Type *T) {
1561    return T->getTypeClass() == TemplateSpecialization;
1562  }
1563  static bool classof(const TemplateSpecializationType *T) { return true; }
1564};
1565
1566/// \brief Represents a type that was referred to via a qualified
1567/// name, e.g., N::M::type.
1568///
1569/// This type is used to keep track of a type name as written in the
1570/// source code, including any nested-name-specifiers. The type itself
1571/// is always "sugar", used to express what was written in the source
1572/// code but containing no additional semantic information.
1573class QualifiedNameType : public Type, public llvm::FoldingSetNode {
1574  /// \brief The nested name specifier containing the qualifier.
1575  NestedNameSpecifier *NNS;
1576
1577  /// \brief The type that this qualified name refers to.
1578  QualType NamedType;
1579
1580  QualifiedNameType(NestedNameSpecifier *NNS, QualType NamedType,
1581                    QualType CanonType)
1582    : Type(QualifiedName, CanonType, NamedType->isDependentType()),
1583      NNS(NNS), NamedType(NamedType) { }
1584
1585  friend class ASTContext;  // ASTContext creates these
1586
1587public:
1588  /// \brief Retrieve the qualification on this type.
1589  NestedNameSpecifier *getQualifier() const { return NNS; }
1590
1591  /// \brief Retrieve the type named by the qualified-id.
1592  QualType getNamedType() const { return NamedType; }
1593
1594  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
1595
1596  void Profile(llvm::FoldingSetNodeID &ID) {
1597    Profile(ID, NNS, NamedType);
1598  }
1599
1600  static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
1601                      QualType NamedType) {
1602    ID.AddPointer(NNS);
1603    NamedType.Profile(ID);
1604  }
1605
1606  static bool classof(const Type *T) {
1607    return T->getTypeClass() == QualifiedName;
1608  }
1609  static bool classof(const QualifiedNameType *T) { return true; }
1610};
1611
1612/// \brief Represents a 'typename' specifier that names a type within
1613/// a dependent type, e.g., "typename T::type".
1614///
1615/// TypenameType has a very similar structure to QualifiedNameType,
1616/// which also involves a nested-name-specifier following by a type,
1617/// and (FIXME!) both can even be prefixed by the 'typename'
1618/// keyword. However, the two types serve very different roles:
1619/// QualifiedNameType is a non-semantic type that serves only as sugar
1620/// to show how a particular type was written in the source
1621/// code. TypenameType, on the other hand, only occurs when the
1622/// nested-name-specifier is dependent, such that we cannot resolve
1623/// the actual type until after instantiation.
1624class TypenameType : public Type, public llvm::FoldingSetNode {
1625  /// \brief The nested name specifier containing the qualifier.
1626  NestedNameSpecifier *NNS;
1627
1628  typedef llvm::PointerUnion<const IdentifierInfo *,
1629                             const TemplateSpecializationType *> NameType;
1630
1631  /// \brief The type that this typename specifier refers to.
1632  NameType Name;
1633
1634  TypenameType(NestedNameSpecifier *NNS, const IdentifierInfo *Name,
1635               QualType CanonType)
1636    : Type(Typename, CanonType, true), NNS(NNS), Name(Name) {
1637    assert(NNS->isDependent() &&
1638           "TypenameType requires a dependent nested-name-specifier");
1639  }
1640
1641  TypenameType(NestedNameSpecifier *NNS, const TemplateSpecializationType *Ty,
1642               QualType CanonType)
1643    : Type(Typename, CanonType, true), NNS(NNS), Name(Ty) {
1644    assert(NNS->isDependent() &&
1645           "TypenameType requires a dependent nested-name-specifier");
1646  }
1647
1648  friend class ASTContext;  // ASTContext creates these
1649
1650public:
1651  /// \brief Retrieve the qualification on this type.
1652  NestedNameSpecifier *getQualifier() const { return NNS; }
1653
1654  /// \brief Retrieve the type named by the typename specifier as an
1655  /// identifier.
1656  ///
1657  /// This routine will return a non-NULL identifier pointer when the
1658  /// form of the original typename was terminated by an identifier,
1659  /// e.g., "typename T::type".
1660  const IdentifierInfo *getIdentifier() const {
1661    return Name.dyn_cast<const IdentifierInfo *>();
1662  }
1663
1664  /// \brief Retrieve the type named by the typename specifier as a
1665  /// type specialization.
1666  const TemplateSpecializationType *getTemplateId() const {
1667    return Name.dyn_cast<const TemplateSpecializationType *>();
1668  }
1669
1670  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
1671
1672  void Profile(llvm::FoldingSetNodeID &ID) {
1673    Profile(ID, NNS, Name);
1674  }
1675
1676  static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
1677                      NameType Name) {
1678    ID.AddPointer(NNS);
1679    ID.AddPointer(Name.getOpaqueValue());
1680  }
1681
1682  static bool classof(const Type *T) {
1683    return T->getTypeClass() == Typename;
1684  }
1685  static bool classof(const TypenameType *T) { return true; }
1686};
1687
1688/// ObjCObjectPointerType - Used to represent 'id', 'Interface *', 'id <p>',
1689/// and 'Interface <p> *'.
1690///
1691/// Duplicate protocols are removed and protocol list is canonicalized to be in
1692/// alphabetical order.
1693class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
1694  ObjCInterfaceDecl *Decl;
1695  // List of protocols for this protocol conforming object type
1696  // List is sorted on protocol name. No protocol is entered more than once.
1697  llvm::SmallVector<ObjCProtocolDecl*, 8> Protocols;
1698
1699  ObjCObjectPointerType(ObjCInterfaceDecl *D,
1700                        ObjCProtocolDecl **Protos, unsigned NumP) :
1701    Type(ObjCObjectPointer, QualType(), /*Dependent=*/false),
1702    Decl(D), Protocols(Protos, Protos+NumP) { }
1703  friend class ASTContext;  // ASTContext creates these.
1704
1705public:
1706  ObjCInterfaceDecl *getDecl() const { return Decl; }
1707
1708  /// isObjCQualifiedIdType - true for "id <p>".
1709  bool isObjCQualifiedIdType() const { return Decl == 0 && Protocols.size(); }
1710
1711  /// qual_iterator and friends: this provides access to the (potentially empty)
1712  /// list of protocols qualifying this interface.
1713  typedef llvm::SmallVector<ObjCProtocolDecl*, 8>::const_iterator qual_iterator;
1714
1715  qual_iterator qual_begin() const { return Protocols.begin(); }
1716  qual_iterator qual_end() const   { return Protocols.end(); }
1717  bool qual_empty() const { return Protocols.size() == 0; }
1718
1719  /// getNumProtocols - Return the number of qualifying protocols in this
1720  /// interface type, or 0 if there are none.
1721  unsigned getNumProtocols() const { return Protocols.size(); }
1722
1723  void Profile(llvm::FoldingSetNodeID &ID);
1724  static void Profile(llvm::FoldingSetNodeID &ID,
1725                      const ObjCInterfaceDecl *Decl,
1726                      ObjCProtocolDecl **protocols, unsigned NumProtocols);
1727  virtual void getAsStringInternal(std::string &InnerString,
1728                                   const PrintingPolicy &Policy) const;
1729  static bool classof(const Type *T) {
1730    return T->getTypeClass() == ObjCObjectPointer;
1731  }
1732  static bool classof(const ObjCObjectPointerType *) { return true; }
1733};
1734
1735/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
1736/// object oriented design.  They basically correspond to C++ classes.  There
1737/// are two kinds of interface types, normal interfaces like "NSString" and
1738/// qualified interfaces, which are qualified with a protocol list like
1739/// "NSString<NSCopyable, NSAmazing>".  Qualified interface types are instances
1740/// of ObjCQualifiedInterfaceType, which is a subclass of ObjCInterfaceType.
1741class ObjCInterfaceType : public Type {
1742  ObjCInterfaceDecl *Decl;
1743protected:
1744  ObjCInterfaceType(TypeClass tc, ObjCInterfaceDecl *D) :
1745    Type(tc, QualType(), /*Dependent=*/false), Decl(D) { }
1746  friend class ASTContext;  // ASTContext creates these.
1747public:
1748
1749  ObjCInterfaceDecl *getDecl() const { return Decl; }
1750
1751  /// qual_iterator and friends: this provides access to the (potentially empty)
1752  /// list of protocols qualifying this interface.  If this is an instance of
1753  /// ObjCQualifiedInterfaceType it returns the list, otherwise it returns an
1754  /// empty list if there are no qualifying protocols.
1755  typedef llvm::SmallVector<ObjCProtocolDecl*, 8>::const_iterator qual_iterator;
1756  inline qual_iterator qual_begin() const;
1757  inline qual_iterator qual_end() const;
1758  bool qual_empty() const { return getTypeClass() != ObjCQualifiedInterface; }
1759
1760  /// getNumProtocols - Return the number of qualifying protocols in this
1761  /// interface type, or 0 if there are none.
1762  inline unsigned getNumProtocols() const;
1763
1764  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
1765  static bool classof(const Type *T) {
1766    return T->getTypeClass() == ObjCInterface ||
1767           T->getTypeClass() == ObjCQualifiedInterface;
1768  }
1769  static bool classof(const ObjCInterfaceType *) { return true; }
1770};
1771
1772/// ObjCQualifiedInterfaceType - This class represents interface types
1773/// conforming to a list of protocols, such as INTF<Proto1, Proto2, Proto1>.
1774///
1775/// Duplicate protocols are removed and protocol list is canonicalized to be in
1776/// alphabetical order.
1777class ObjCQualifiedInterfaceType : public ObjCInterfaceType,
1778                                   public llvm::FoldingSetNode {
1779
1780  // List of protocols for this protocol conforming object type
1781  // List is sorted on protocol name. No protocol is enterred more than once.
1782  llvm::SmallVector<ObjCProtocolDecl*, 4> Protocols;
1783
1784  ObjCQualifiedInterfaceType(ObjCInterfaceDecl *D,
1785                             ObjCProtocolDecl **Protos, unsigned NumP) :
1786    ObjCInterfaceType(ObjCQualifiedInterface, D),
1787    Protocols(Protos, Protos+NumP) { }
1788  friend class ASTContext;  // ASTContext creates these.
1789public:
1790
1791  unsigned getNumProtocols() const {
1792    return Protocols.size();
1793  }
1794
1795  qual_iterator qual_begin() const { return Protocols.begin(); }
1796  qual_iterator qual_end() const   { return Protocols.end(); }
1797
1798  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
1799
1800  void Profile(llvm::FoldingSetNodeID &ID);
1801  static void Profile(llvm::FoldingSetNodeID &ID,
1802                      const ObjCInterfaceDecl *Decl,
1803                      ObjCProtocolDecl **protocols, unsigned NumProtocols);
1804
1805  static bool classof(const Type *T) {
1806    return T->getTypeClass() == ObjCQualifiedInterface;
1807  }
1808  static bool classof(const ObjCQualifiedInterfaceType *) { return true; }
1809};
1810
1811inline ObjCInterfaceType::qual_iterator ObjCInterfaceType::qual_begin() const {
1812  if (const ObjCQualifiedInterfaceType *QIT =
1813         dyn_cast<ObjCQualifiedInterfaceType>(this))
1814    return QIT->qual_begin();
1815  return 0;
1816}
1817inline ObjCInterfaceType::qual_iterator ObjCInterfaceType::qual_end() const {
1818  if (const ObjCQualifiedInterfaceType *QIT =
1819         dyn_cast<ObjCQualifiedInterfaceType>(this))
1820    return QIT->qual_end();
1821  return 0;
1822}
1823
1824/// getNumProtocols - Return the number of qualifying protocols in this
1825/// interface type, or 0 if there are none.
1826inline unsigned ObjCInterfaceType::getNumProtocols() const {
1827  if (const ObjCQualifiedInterfaceType *QIT =
1828        dyn_cast<ObjCQualifiedInterfaceType>(this))
1829    return QIT->getNumProtocols();
1830  return 0;
1831}
1832
1833// Inline function definitions.
1834
1835/// getUnqualifiedType - Return the type without any qualifiers.
1836inline QualType QualType::getUnqualifiedType() const {
1837  Type *TP = getTypePtr();
1838  if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(TP))
1839    TP = EXTQT->getBaseType();
1840  return QualType(TP, 0);
1841}
1842
1843/// getAddressSpace - Return the address space of this type.
1844inline unsigned QualType::getAddressSpace() const {
1845  QualType CT = getTypePtr()->getCanonicalTypeInternal();
1846  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
1847    return AT->getElementType().getAddressSpace();
1848  if (const RecordType *RT = dyn_cast<RecordType>(CT))
1849    return RT->getAddressSpace();
1850  if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CT))
1851    return EXTQT->getAddressSpace();
1852  return 0;
1853}
1854
1855/// getObjCGCAttr - Return the gc attribute of this type.
1856inline QualType::GCAttrTypes QualType::getObjCGCAttr() const {
1857  QualType CT = getTypePtr()->getCanonicalTypeInternal();
1858  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
1859      return AT->getElementType().getObjCGCAttr();
1860  if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CT))
1861    return EXTQT->getObjCGCAttr();
1862  if (const PointerType *PT = CT->getAsPointerType())
1863    return PT->getPointeeType().getObjCGCAttr();
1864  return GCNone;
1865}
1866
1867/// isMoreQualifiedThan - Determine whether this type is more
1868/// qualified than the Other type. For example, "const volatile int"
1869/// is more qualified than "const int", "volatile int", and
1870/// "int". However, it is not more qualified than "const volatile
1871/// int".
1872inline bool QualType::isMoreQualifiedThan(QualType Other) const {
1873  unsigned MyQuals = this->getCVRQualifiers();
1874  unsigned OtherQuals = Other.getCVRQualifiers();
1875  if (getAddressSpace() != Other.getAddressSpace())
1876    return false;
1877  return MyQuals != OtherQuals && (MyQuals | OtherQuals) == MyQuals;
1878}
1879
1880/// isAtLeastAsQualifiedAs - Determine whether this type is at last
1881/// as qualified as the Other type. For example, "const volatile
1882/// int" is at least as qualified as "const int", "volatile int",
1883/// "int", and "const volatile int".
1884inline bool QualType::isAtLeastAsQualifiedAs(QualType Other) const {
1885  unsigned MyQuals = this->getCVRQualifiers();
1886  unsigned OtherQuals = Other.getCVRQualifiers();
1887  if (getAddressSpace() != Other.getAddressSpace())
1888    return false;
1889  return (MyQuals | OtherQuals) == MyQuals;
1890}
1891
1892/// getNonReferenceType - If Type is a reference type (e.g., const
1893/// int&), returns the type that the reference refers to ("const
1894/// int"). Otherwise, returns the type itself. This routine is used
1895/// throughout Sema to implement C++ 5p6:
1896///
1897///   If an expression initially has the type "reference to T" (8.3.2,
1898///   8.5.3), the type is adjusted to "T" prior to any further
1899///   analysis, the expression designates the object or function
1900///   denoted by the reference, and the expression is an lvalue.
1901inline QualType QualType::getNonReferenceType() const {
1902  if (const ReferenceType *RefType = (*this)->getAsReferenceType())
1903    return RefType->getPointeeType();
1904  else
1905    return *this;
1906}
1907
1908inline const TypedefType* Type::getAsTypedefType() const {
1909  return dyn_cast<TypedefType>(this);
1910}
1911inline const ObjCInterfaceType *Type::getAsPointerToObjCInterfaceType() const {
1912  if (const PointerType *PT = getAsPointerType())
1913    return PT->getPointeeType()->getAsObjCInterfaceType();
1914  return 0;
1915}
1916
1917// NOTE: All of these methods use "getUnqualifiedType" to strip off address
1918// space qualifiers if present.
1919inline bool Type::isFunctionType() const {
1920  return isa<FunctionType>(CanonicalType.getUnqualifiedType());
1921}
1922inline bool Type::isPointerType() const {
1923  return isa<PointerType>(CanonicalType.getUnqualifiedType());
1924}
1925inline bool Type::isBlockPointerType() const {
1926  return isa<BlockPointerType>(CanonicalType.getUnqualifiedType());
1927}
1928inline bool Type::isReferenceType() const {
1929  return isa<ReferenceType>(CanonicalType.getUnqualifiedType());
1930}
1931inline bool Type::isLValueReferenceType() const {
1932  return isa<LValueReferenceType>(CanonicalType.getUnqualifiedType());
1933}
1934inline bool Type::isRValueReferenceType() const {
1935  return isa<RValueReferenceType>(CanonicalType.getUnqualifiedType());
1936}
1937inline bool Type::isFunctionPointerType() const {
1938  if (const PointerType* T = getAsPointerType())
1939    return T->getPointeeType()->isFunctionType();
1940  else
1941    return false;
1942}
1943inline bool Type::isMemberPointerType() const {
1944  return isa<MemberPointerType>(CanonicalType.getUnqualifiedType());
1945}
1946inline bool Type::isMemberFunctionPointerType() const {
1947  if (const MemberPointerType* T = getAsMemberPointerType())
1948    return T->getPointeeType()->isFunctionType();
1949  else
1950    return false;
1951}
1952inline bool Type::isArrayType() const {
1953  return isa<ArrayType>(CanonicalType.getUnqualifiedType());
1954}
1955inline bool Type::isConstantArrayType() const {
1956  return isa<ConstantArrayType>(CanonicalType.getUnqualifiedType());
1957}
1958inline bool Type::isIncompleteArrayType() const {
1959  return isa<IncompleteArrayType>(CanonicalType.getUnqualifiedType());
1960}
1961inline bool Type::isVariableArrayType() const {
1962  return isa<VariableArrayType>(CanonicalType.getUnqualifiedType());
1963}
1964inline bool Type::isDependentSizedArrayType() const {
1965  return isa<DependentSizedArrayType>(CanonicalType.getUnqualifiedType());
1966}
1967inline bool Type::isRecordType() const {
1968  return isa<RecordType>(CanonicalType.getUnqualifiedType());
1969}
1970inline bool Type::isAnyComplexType() const {
1971  return isa<ComplexType>(CanonicalType.getUnqualifiedType());
1972}
1973inline bool Type::isVectorType() const {
1974  return isa<VectorType>(CanonicalType.getUnqualifiedType());
1975}
1976inline bool Type::isExtVectorType() const {
1977  return isa<ExtVectorType>(CanonicalType.getUnqualifiedType());
1978}
1979inline bool Type::isObjCObjectPointerType() const {
1980  return isa<ObjCObjectPointerType>(CanonicalType.getUnqualifiedType());
1981}
1982inline bool Type::isObjCInterfaceType() const {
1983  return isa<ObjCInterfaceType>(CanonicalType.getUnqualifiedType());
1984}
1985inline bool Type::isObjCQualifiedInterfaceType() const {
1986  return isa<ObjCQualifiedInterfaceType>(CanonicalType.getUnqualifiedType());
1987}
1988inline bool Type::isObjCQualifiedIdType() const {
1989  if (const ObjCObjectPointerType *OPT = getAsObjCObjectPointerType()) {
1990    return OPT->isObjCQualifiedIdType();
1991  }
1992  return false;
1993}
1994inline bool Type::isTemplateTypeParmType() const {
1995  return isa<TemplateTypeParmType>(CanonicalType.getUnqualifiedType());
1996}
1997
1998inline bool Type::isSpecificBuiltinType(unsigned K) const {
1999  if (const BuiltinType *BT = getAsBuiltinType())
2000    if (BT->getKind() == (BuiltinType::Kind) K)
2001      return true;
2002  return false;
2003}
2004
2005/// \brief Determines whether this is a type for which one can define
2006/// an overloaded operator.
2007inline bool Type::isOverloadableType() const {
2008  return isDependentType() || isRecordType() || isEnumeralType();
2009}
2010
2011inline bool Type::hasPointerRepresentation() const {
2012  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
2013          isObjCInterfaceType() || isObjCQualifiedIdType() ||
2014          isObjCQualifiedInterfaceType() || isNullPtrType());
2015}
2016
2017inline bool Type::hasObjCPointerRepresentation() const {
2018  return (isObjCInterfaceType() || isObjCQualifiedIdType() ||
2019          isObjCQualifiedInterfaceType());
2020}
2021
2022/// Insertion operator for diagnostics.  This allows sending QualType's into a
2023/// diagnostic with <<.
2024inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
2025                                           QualType T) {
2026  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
2027                  Diagnostic::ak_qualtype);
2028  return DB;
2029}
2030
2031}  // end namespace clang
2032
2033#endif
2034