Type.h revision d7757931fd2f6fb2dc272e3cde0f2251c392e1ed
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Basic/IdentifierTable.h"
19#include "clang/Basic/Linkage.h"
20#include "clang/AST/NestedNameSpecifier.h"
21#include "clang/AST/TemplateName.h"
22#include "llvm/Support/Casting.h"
23#include "llvm/Support/type_traits.h"
24#include "llvm/ADT/APSInt.h"
25#include "llvm/ADT/FoldingSet.h"
26#include "llvm/ADT/PointerIntPair.h"
27#include "llvm/ADT/PointerUnion.h"
28
29using llvm::isa;
30using llvm::cast;
31using llvm::cast_or_null;
32using llvm::dyn_cast;
33using llvm::dyn_cast_or_null;
34namespace clang {
35  enum {
36    TypeAlignmentInBits = 3,
37    TypeAlignment = 1 << TypeAlignmentInBits
38  };
39  class Type;
40  class ExtQuals;
41  class QualType;
42}
43
44namespace llvm {
45  template <typename T>
46  class PointerLikeTypeTraits;
47  template<>
48  class PointerLikeTypeTraits< ::clang::Type*> {
49  public:
50    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
51    static inline ::clang::Type *getFromVoidPointer(void *P) {
52      return static_cast< ::clang::Type*>(P);
53    }
54    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
55  };
56  template<>
57  class PointerLikeTypeTraits< ::clang::ExtQuals*> {
58  public:
59    static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
60    static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
61      return static_cast< ::clang::ExtQuals*>(P);
62    }
63    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
64  };
65
66  template <>
67  struct isPodLike<clang::QualType> { static const bool value = true; };
68}
69
70namespace clang {
71  class ASTContext;
72  class TypedefDecl;
73  class TemplateDecl;
74  class TemplateTypeParmDecl;
75  class NonTypeTemplateParmDecl;
76  class TemplateTemplateParmDecl;
77  class TagDecl;
78  class RecordDecl;
79  class CXXRecordDecl;
80  class EnumDecl;
81  class FieldDecl;
82  class ObjCInterfaceDecl;
83  class ObjCProtocolDecl;
84  class ObjCMethodDecl;
85  class UnresolvedUsingTypenameDecl;
86  class Expr;
87  class Stmt;
88  class SourceLocation;
89  class StmtIteratorBase;
90  class TemplateArgument;
91  class TemplateArgumentLoc;
92  class TemplateArgumentListInfo;
93  class QualifiedNameType;
94  struct PrintingPolicy;
95
96  // Provide forward declarations for all of the *Type classes
97#define TYPE(Class, Base) class Class##Type;
98#include "clang/AST/TypeNodes.def"
99
100/// Qualifiers - The collection of all-type qualifiers we support.
101/// Clang supports five independent qualifiers:
102/// * C99: const, volatile, and restrict
103/// * Embedded C (TR18037): address spaces
104/// * Objective C: the GC attributes (none, weak, or strong)
105class Qualifiers {
106public:
107  enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
108    Const    = 0x1,
109    Restrict = 0x2,
110    Volatile = 0x4,
111    CVRMask = Const | Volatile | Restrict
112  };
113
114  enum GC {
115    GCNone = 0,
116    Weak,
117    Strong
118  };
119
120  enum {
121    /// The maximum supported address space number.
122    /// 24 bits should be enough for anyone.
123    MaxAddressSpace = 0xffffffu,
124
125    /// The width of the "fast" qualifier mask.
126    FastWidth = 2,
127
128    /// The fast qualifier mask.
129    FastMask = (1 << FastWidth) - 1
130  };
131
132  Qualifiers() : Mask(0) {}
133
134  static Qualifiers fromFastMask(unsigned Mask) {
135    Qualifiers Qs;
136    Qs.addFastQualifiers(Mask);
137    return Qs;
138  }
139
140  static Qualifiers fromCVRMask(unsigned CVR) {
141    Qualifiers Qs;
142    Qs.addCVRQualifiers(CVR);
143    return Qs;
144  }
145
146  // Deserialize qualifiers from an opaque representation.
147  static Qualifiers fromOpaqueValue(unsigned opaque) {
148    Qualifiers Qs;
149    Qs.Mask = opaque;
150    return Qs;
151  }
152
153  // Serialize these qualifiers into an opaque representation.
154  unsigned getAsOpaqueValue() const {
155    return Mask;
156  }
157
158  bool hasConst() const { return Mask & Const; }
159  void setConst(bool flag) {
160    Mask = (Mask & ~Const) | (flag ? Const : 0);
161  }
162  void removeConst() { Mask &= ~Const; }
163  void addConst() { Mask |= Const; }
164
165  bool hasVolatile() const { return Mask & Volatile; }
166  void setVolatile(bool flag) {
167    Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
168  }
169  void removeVolatile() { Mask &= ~Volatile; }
170  void addVolatile() { Mask |= Volatile; }
171
172  bool hasRestrict() const { return Mask & Restrict; }
173  void setRestrict(bool flag) {
174    Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
175  }
176  void removeRestrict() { Mask &= ~Restrict; }
177  void addRestrict() { Mask |= Restrict; }
178
179  bool hasCVRQualifiers() const { return getCVRQualifiers(); }
180  unsigned getCVRQualifiers() const { return Mask & CVRMask; }
181  void setCVRQualifiers(unsigned mask) {
182    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
183    Mask = (Mask & ~CVRMask) | mask;
184  }
185  void removeCVRQualifiers(unsigned mask) {
186    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
187    Mask &= ~mask;
188  }
189  void removeCVRQualifiers() {
190    removeCVRQualifiers(CVRMask);
191  }
192  void addCVRQualifiers(unsigned mask) {
193    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
194    Mask |= mask;
195  }
196
197  bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
198  GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
199  void setObjCGCAttr(GC type) {
200    Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
201  }
202  void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
203  void addObjCGCAttr(GC type) {
204    assert(type);
205    setObjCGCAttr(type);
206  }
207
208  bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
209  unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
210  void setAddressSpace(unsigned space) {
211    assert(space <= MaxAddressSpace);
212    Mask = (Mask & ~AddressSpaceMask)
213         | (((uint32_t) space) << AddressSpaceShift);
214  }
215  void removeAddressSpace() { setAddressSpace(0); }
216  void addAddressSpace(unsigned space) {
217    assert(space);
218    setAddressSpace(space);
219  }
220
221  // Fast qualifiers are those that can be allocated directly
222  // on a QualType object.
223  bool hasFastQualifiers() const { return getFastQualifiers(); }
224  unsigned getFastQualifiers() const { return Mask & FastMask; }
225  void setFastQualifiers(unsigned mask) {
226    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
227    Mask = (Mask & ~FastMask) | mask;
228  }
229  void removeFastQualifiers(unsigned mask) {
230    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
231    Mask &= ~mask;
232  }
233  void removeFastQualifiers() {
234    removeFastQualifiers(FastMask);
235  }
236  void addFastQualifiers(unsigned mask) {
237    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
238    Mask |= mask;
239  }
240
241  /// hasNonFastQualifiers - Return true if the set contains any
242  /// qualifiers which require an ExtQuals node to be allocated.
243  bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
244  Qualifiers getNonFastQualifiers() const {
245    Qualifiers Quals = *this;
246    Quals.setFastQualifiers(0);
247    return Quals;
248  }
249
250  /// hasQualifiers - Return true if the set contains any qualifiers.
251  bool hasQualifiers() const { return Mask; }
252  bool empty() const { return !Mask; }
253
254  /// \brief Add the qualifiers from the given set to this set.
255  void addQualifiers(Qualifiers Q) {
256    // If the other set doesn't have any non-boolean qualifiers, just
257    // bit-or it in.
258    if (!(Q.Mask & ~CVRMask))
259      Mask |= Q.Mask;
260    else {
261      Mask |= (Q.Mask & CVRMask);
262      if (Q.hasAddressSpace())
263        addAddressSpace(Q.getAddressSpace());
264      if (Q.hasObjCGCAttr())
265        addObjCGCAttr(Q.getObjCGCAttr());
266    }
267  }
268
269  bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
270  bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
271
272  operator bool() const { return hasQualifiers(); }
273
274  Qualifiers &operator+=(Qualifiers R) {
275    addQualifiers(R);
276    return *this;
277  }
278
279  // Union two qualifier sets.  If an enumerated qualifier appears
280  // in both sets, use the one from the right.
281  friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
282    L += R;
283    return L;
284  }
285
286  std::string getAsString() const;
287  std::string getAsString(const PrintingPolicy &Policy) const {
288    std::string Buffer;
289    getAsStringInternal(Buffer, Policy);
290    return Buffer;
291  }
292  void getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const;
293
294  void Profile(llvm::FoldingSetNodeID &ID) const {
295    ID.AddInteger(Mask);
296  }
297
298private:
299
300  // bits:     |0 1 2|3 .. 4|5  ..  31|
301  //           |C R V|GCAttr|AddrSpace|
302  uint32_t Mask;
303
304  static const uint32_t GCAttrMask = 0x18;
305  static const uint32_t GCAttrShift = 3;
306  static const uint32_t AddressSpaceMask = ~(CVRMask | GCAttrMask);
307  static const uint32_t AddressSpaceShift = 5;
308};
309
310
311/// ExtQuals - We can encode up to three bits in the low bits of a
312/// type pointer, but there are many more type qualifiers that we want
313/// to be able to apply to an arbitrary type.  Therefore we have this
314/// struct, intended to be heap-allocated and used by QualType to
315/// store qualifiers.
316///
317/// The current design tags the 'const' and 'restrict' qualifiers in
318/// two low bits on the QualType pointer; a third bit records whether
319/// the pointer is an ExtQuals node.  'const' was chosen because it is
320/// orders of magnitude more common than the other two qualifiers, in
321/// both library and user code.  It's relatively rare to see
322/// 'restrict' in user code, but many standard C headers are saturated
323/// with 'restrict' declarations, so that representing them efficiently
324/// is a critical goal of this representation.
325class ExtQuals : public llvm::FoldingSetNode {
326  // NOTE: changing the fast qualifiers should be straightforward as
327  // long as you don't make 'const' non-fast.
328  // 1. Qualifiers:
329  //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
330  //       Fast qualifiers must occupy the low-order bits.
331  //    b) Update Qualifiers::FastWidth and FastMask.
332  // 2. QualType:
333  //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
334  //    b) Update remove{Volatile,Restrict}, defined near the end of
335  //       this header.
336  // 3. ASTContext:
337  //    a) Update get{Volatile,Restrict}Type.
338
339  /// Context - the context to which this set belongs.  We save this
340  /// here so that QualifierCollector can use it to reapply extended
341  /// qualifiers to an arbitrary type without requiring a context to
342  /// be pushed through every single API dealing with qualifiers.
343  ASTContext& Context;
344
345  /// BaseType - the underlying type that this qualifies
346  const Type *BaseType;
347
348  /// Quals - the immutable set of qualifiers applied by this
349  /// node;  always contains extended qualifiers.
350  Qualifiers Quals;
351
352public:
353  ExtQuals(ASTContext& Context, const Type *Base, Qualifiers Quals)
354    : Context(Context), BaseType(Base), Quals(Quals)
355  {
356    assert(Quals.hasNonFastQualifiers()
357           && "ExtQuals created with no fast qualifiers");
358    assert(!Quals.hasFastQualifiers()
359           && "ExtQuals created with fast qualifiers");
360  }
361
362  Qualifiers getQualifiers() const { return Quals; }
363
364  bool hasVolatile() const { return Quals.hasVolatile(); }
365
366  bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
367  Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
368
369  bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
370  unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
371
372  const Type *getBaseType() const { return BaseType; }
373
374  ASTContext &getContext() const { return Context; }
375
376public:
377  void Profile(llvm::FoldingSetNodeID &ID) const {
378    Profile(ID, getBaseType(), Quals);
379  }
380  static void Profile(llvm::FoldingSetNodeID &ID,
381                      const Type *BaseType,
382                      Qualifiers Quals) {
383    assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
384    ID.AddPointer(BaseType);
385    Quals.Profile(ID);
386  }
387};
388
389/// CallingConv - Specifies the calling convention that a function uses.
390enum CallingConv {
391  CC_Default,
392  CC_C,           // __attribute__((cdecl))
393  CC_X86StdCall,  // __attribute__((stdcall))
394  CC_X86FastCall  // __attribute__((fastcall))
395};
396
397
398/// QualType - For efficiency, we don't store CV-qualified types as nodes on
399/// their own: instead each reference to a type stores the qualifiers.  This
400/// greatly reduces the number of nodes we need to allocate for types (for
401/// example we only need one for 'int', 'const int', 'volatile int',
402/// 'const volatile int', etc).
403///
404/// As an added efficiency bonus, instead of making this a pair, we
405/// just store the two bits we care about in the low bits of the
406/// pointer.  To handle the packing/unpacking, we make QualType be a
407/// simple wrapper class that acts like a smart pointer.  A third bit
408/// indicates whether there are extended qualifiers present, in which
409/// case the pointer points to a special structure.
410class QualType {
411  // Thankfully, these are efficiently composable.
412  llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
413                       Qualifiers::FastWidth> Value;
414
415  const ExtQuals *getExtQualsUnsafe() const {
416    return Value.getPointer().get<const ExtQuals*>();
417  }
418
419  const Type *getTypePtrUnsafe() const {
420    return Value.getPointer().get<const Type*>();
421  }
422
423  QualType getUnqualifiedTypeSlow() const;
424
425  friend class QualifierCollector;
426public:
427  QualType() {}
428
429  QualType(const Type *Ptr, unsigned Quals)
430    : Value(Ptr, Quals) {}
431  QualType(const ExtQuals *Ptr, unsigned Quals)
432    : Value(Ptr, Quals) {}
433
434  unsigned getLocalFastQualifiers() const { return Value.getInt(); }
435  void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
436
437  /// Retrieves a pointer to the underlying (unqualified) type.
438  /// This should really return a const Type, but it's not worth
439  /// changing all the users right now.
440  Type *getTypePtr() const {
441    if (hasLocalNonFastQualifiers())
442      return const_cast<Type*>(getExtQualsUnsafe()->getBaseType());
443    return const_cast<Type*>(getTypePtrUnsafe());
444  }
445
446  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
447  static QualType getFromOpaquePtr(void *Ptr) {
448    QualType T;
449    T.Value.setFromOpaqueValue(Ptr);
450    return T;
451  }
452
453  Type &operator*() const {
454    return *getTypePtr();
455  }
456
457  Type *operator->() const {
458    return getTypePtr();
459  }
460
461  bool isCanonical() const;
462  bool isCanonicalAsParam() const;
463
464  /// isNull - Return true if this QualType doesn't point to a type yet.
465  bool isNull() const {
466    return Value.getPointer().isNull();
467  }
468
469  /// \brief Determine whether this particular QualType instance has the
470  /// "const" qualifier set, without looking through typedefs that may have
471  /// added "const" at a different level.
472  bool isLocalConstQualified() const {
473    return (getLocalFastQualifiers() & Qualifiers::Const);
474  }
475
476  /// \brief Determine whether this type is const-qualified.
477  bool isConstQualified() const;
478
479  /// \brief Determine whether this particular QualType instance has the
480  /// "restrict" qualifier set, without looking through typedefs that may have
481  /// added "restrict" at a different level.
482  bool isLocalRestrictQualified() const {
483    return (getLocalFastQualifiers() & Qualifiers::Restrict);
484  }
485
486  /// \brief Determine whether this type is restrict-qualified.
487  bool isRestrictQualified() const;
488
489  /// \brief Determine whether this particular QualType instance has the
490  /// "volatile" qualifier set, without looking through typedefs that may have
491  /// added "volatile" at a different level.
492  bool isLocalVolatileQualified() const {
493    return (hasLocalNonFastQualifiers() && getExtQualsUnsafe()->hasVolatile());
494  }
495
496  /// \brief Determine whether this type is volatile-qualified.
497  bool isVolatileQualified() const;
498
499  /// \brief Determine whether this particular QualType instance has any
500  /// qualifiers, without looking through any typedefs that might add
501  /// qualifiers at a different level.
502  bool hasLocalQualifiers() const {
503    return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
504  }
505
506  /// \brief Determine whether this type has any qualifiers.
507  bool hasQualifiers() const;
508
509  /// \brief Determine whether this particular QualType instance has any
510  /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
511  /// instance.
512  bool hasLocalNonFastQualifiers() const {
513    return Value.getPointer().is<const ExtQuals*>();
514  }
515
516  /// \brief Retrieve the set of qualifiers local to this particular QualType
517  /// instance, not including any qualifiers acquired through typedefs or
518  /// other sugar.
519  Qualifiers getLocalQualifiers() const {
520    Qualifiers Quals;
521    if (hasLocalNonFastQualifiers())
522      Quals = getExtQualsUnsafe()->getQualifiers();
523    Quals.addFastQualifiers(getLocalFastQualifiers());
524    return Quals;
525  }
526
527  /// \brief Retrieve the set of qualifiers applied to this type.
528  Qualifiers getQualifiers() const;
529
530  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
531  /// local to this particular QualType instance, not including any qualifiers
532  /// acquired through typedefs or other sugar.
533  unsigned getLocalCVRQualifiers() const {
534    unsigned CVR = getLocalFastQualifiers();
535    if (isLocalVolatileQualified())
536      CVR |= Qualifiers::Volatile;
537    return CVR;
538  }
539
540  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
541  /// applied to this type.
542  unsigned getCVRQualifiers() const;
543
544  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
545  /// applied to this type, looking through any number of unqualified array
546  /// types to their element types' qualifiers.
547  unsigned getCVRQualifiersThroughArrayTypes() const;
548
549  bool isConstant(ASTContext& Ctx) const {
550    return QualType::isConstant(*this, Ctx);
551  }
552
553  // Don't promise in the API that anything besides 'const' can be
554  // easily added.
555
556  /// addConst - add the specified type qualifier to this QualType.
557  void addConst() {
558    addFastQualifiers(Qualifiers::Const);
559  }
560  QualType withConst() const {
561    return withFastQualifiers(Qualifiers::Const);
562  }
563
564  void addFastQualifiers(unsigned TQs) {
565    assert(!(TQs & ~Qualifiers::FastMask)
566           && "non-fast qualifier bits set in mask!");
567    Value.setInt(Value.getInt() | TQs);
568  }
569
570  // FIXME: The remove* functions are semantically broken, because they might
571  // not remove a qualifier stored on a typedef. Most of the with* functions
572  // have the same problem.
573  void removeConst();
574  void removeVolatile();
575  void removeRestrict();
576  void removeCVRQualifiers(unsigned Mask);
577
578  void removeFastQualifiers() { Value.setInt(0); }
579  void removeFastQualifiers(unsigned Mask) {
580    assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
581    Value.setInt(Value.getInt() & ~Mask);
582  }
583
584  // Creates a type with the given qualifiers in addition to any
585  // qualifiers already on this type.
586  QualType withFastQualifiers(unsigned TQs) const {
587    QualType T = *this;
588    T.addFastQualifiers(TQs);
589    return T;
590  }
591
592  // Creates a type with exactly the given fast qualifiers, removing
593  // any existing fast qualifiers.
594  QualType withExactFastQualifiers(unsigned TQs) const {
595    return withoutFastQualifiers().withFastQualifiers(TQs);
596  }
597
598  // Removes fast qualifiers, but leaves any extended qualifiers in place.
599  QualType withoutFastQualifiers() const {
600    QualType T = *this;
601    T.removeFastQualifiers();
602    return T;
603  }
604
605  /// \brief Return this type with all of the instance-specific qualifiers
606  /// removed, but without removing any qualifiers that may have been applied
607  /// through typedefs.
608  QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
609
610  /// \brief Return the unqualified form of the given type, which might be
611  /// desugared to eliminate qualifiers introduced via typedefs.
612  QualType getUnqualifiedType() const {
613    QualType T = getLocalUnqualifiedType();
614    if (!T.hasQualifiers())
615      return T;
616
617    return getUnqualifiedTypeSlow();
618  }
619
620  bool isMoreQualifiedThan(QualType Other) const;
621  bool isAtLeastAsQualifiedAs(QualType Other) const;
622  QualType getNonReferenceType() const;
623
624  /// getDesugaredType - Return the specified type with any "sugar" removed from
625  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
626  /// the type is already concrete, it returns it unmodified.  This is similar
627  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
628  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
629  /// concrete.
630  ///
631  /// Qualifiers are left in place.
632  QualType getDesugaredType() const {
633    return QualType::getDesugaredType(*this);
634  }
635
636  /// operator==/!= - Indicate whether the specified types and qualifiers are
637  /// identical.
638  friend bool operator==(const QualType &LHS, const QualType &RHS) {
639    return LHS.Value == RHS.Value;
640  }
641  friend bool operator!=(const QualType &LHS, const QualType &RHS) {
642    return LHS.Value != RHS.Value;
643  }
644  std::string getAsString() const;
645
646  std::string getAsString(const PrintingPolicy &Policy) const {
647    std::string S;
648    getAsStringInternal(S, Policy);
649    return S;
650  }
651  void getAsStringInternal(std::string &Str,
652                           const PrintingPolicy &Policy) const;
653
654  void dump(const char *s) const;
655  void dump() const;
656
657  void Profile(llvm::FoldingSetNodeID &ID) const {
658    ID.AddPointer(getAsOpaquePtr());
659  }
660
661  /// getAddressSpace - Return the address space of this type.
662  inline unsigned getAddressSpace() const;
663
664  /// GCAttrTypesAttr - Returns gc attribute of this type.
665  inline Qualifiers::GC getObjCGCAttr() const;
666
667  /// isObjCGCWeak true when Type is objc's weak.
668  bool isObjCGCWeak() const {
669    return getObjCGCAttr() == Qualifiers::Weak;
670  }
671
672  /// isObjCGCStrong true when Type is objc's strong.
673  bool isObjCGCStrong() const {
674    return getObjCGCAttr() == Qualifiers::Strong;
675  }
676
677  /// getNoReturnAttr - Returns true if the type has the noreturn attribute,
678  /// false otherwise.
679  bool getNoReturnAttr() const;
680
681  /// getCallConv - Returns the calling convention of the type if the type
682  /// is a function type, CC_Default otherwise.
683  CallingConv getCallConv() const;
684
685private:
686  // These methods are implemented in a separate translation unit;
687  // "static"-ize them to avoid creating temporary QualTypes in the
688  // caller.
689  static bool isConstant(QualType T, ASTContext& Ctx);
690  static QualType getDesugaredType(QualType T);
691};
692
693} // end clang.
694
695namespace llvm {
696/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
697/// to a specific Type class.
698template<> struct simplify_type<const ::clang::QualType> {
699  typedef ::clang::Type* SimpleType;
700  static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
701    return Val.getTypePtr();
702  }
703};
704template<> struct simplify_type< ::clang::QualType>
705  : public simplify_type<const ::clang::QualType> {};
706
707// Teach SmallPtrSet that QualType is "basically a pointer".
708template<>
709class PointerLikeTypeTraits<clang::QualType> {
710public:
711  static inline void *getAsVoidPointer(clang::QualType P) {
712    return P.getAsOpaquePtr();
713  }
714  static inline clang::QualType getFromVoidPointer(void *P) {
715    return clang::QualType::getFromOpaquePtr(P);
716  }
717  // Various qualifiers go in low bits.
718  enum { NumLowBitsAvailable = 0 };
719};
720
721} // end namespace llvm
722
723namespace clang {
724
725/// Type - This is the base class of the type hierarchy.  A central concept
726/// with types is that each type always has a canonical type.  A canonical type
727/// is the type with any typedef names stripped out of it or the types it
728/// references.  For example, consider:
729///
730///  typedef int  foo;
731///  typedef foo* bar;
732///    'int *'    'foo *'    'bar'
733///
734/// There will be a Type object created for 'int'.  Since int is canonical, its
735/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
736/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
737/// there is a PointerType that represents 'int*', which, like 'int', is
738/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
739/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
740/// is also 'int*'.
741///
742/// Non-canonical types are useful for emitting diagnostics, without losing
743/// information about typedefs being used.  Canonical types are useful for type
744/// comparisons (they allow by-pointer equality tests) and useful for reasoning
745/// about whether something has a particular form (e.g. is a function type),
746/// because they implicitly, recursively, strip all typedefs out of a type.
747///
748/// Types, once created, are immutable.
749///
750class Type {
751public:
752  enum TypeClass {
753#define TYPE(Class, Base) Class,
754#define LAST_TYPE(Class) TypeLast = Class,
755#define ABSTRACT_TYPE(Class, Base)
756#include "clang/AST/TypeNodes.def"
757    TagFirst = Record, TagLast = Enum
758  };
759
760private:
761  QualType CanonicalType;
762
763  /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
764  unsigned TC : 8;
765
766  /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
767  /// Note that this should stay at the end of the ivars for Type so that
768  /// subclasses can pack their bitfields into the same word.
769  bool Dependent : 1;
770
771  Type(const Type&);           // DO NOT IMPLEMENT.
772  void operator=(const Type&); // DO NOT IMPLEMENT.
773protected:
774  // silence VC++ warning C4355: 'this' : used in base member initializer list
775  Type *this_() { return this; }
776  Type(TypeClass tc, QualType Canonical, bool dependent)
777    : CanonicalType(Canonical.isNull() ? QualType(this_(), 0) : Canonical),
778      TC(tc), Dependent(dependent) {}
779  virtual ~Type() {}
780  virtual void Destroy(ASTContext& C);
781  friend class ASTContext;
782
783public:
784  TypeClass getTypeClass() const { return static_cast<TypeClass>(TC); }
785
786  bool isCanonicalUnqualified() const {
787    return CanonicalType.getTypePtr() == this;
788  }
789
790  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
791  /// object types, function types, and incomplete types.
792
793  /// \brief Determines whether the type describes an object in memory.
794  ///
795  /// Note that this definition of object type corresponds to the C++
796  /// definition of object type, which includes incomplete types, as
797  /// opposed to the C definition (which does not include incomplete
798  /// types).
799  bool isObjectType() const;
800
801  /// isIncompleteType - Return true if this is an incomplete type.
802  /// A type that can describe objects, but which lacks information needed to
803  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
804  /// routine will need to determine if the size is actually required.
805  bool isIncompleteType() const;
806
807  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
808  /// type, in other words, not a function type.
809  bool isIncompleteOrObjectType() const {
810    return !isFunctionType();
811  }
812
813  /// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10).
814  bool isPODType() const;
815
816  /// isLiteralType - Return true if this is a literal type
817  /// (C++0x [basic.types]p10)
818  bool isLiteralType() const;
819
820  /// isVariablyModifiedType (C99 6.7.5.2p2) - Return true for variable array
821  /// types that have a non-constant expression. This does not include "[]".
822  bool isVariablyModifiedType() const;
823
824  /// Helper methods to distinguish type categories. All type predicates
825  /// operate on the canonical type, ignoring typedefs and qualifiers.
826
827  /// isSpecificBuiltinType - Test for a particular builtin type.
828  bool isSpecificBuiltinType(unsigned K) const;
829
830  /// isIntegerType() does *not* include complex integers (a GCC extension).
831  /// isComplexIntegerType() can be used to test for complex integers.
832  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
833  bool isEnumeralType() const;
834  bool isBooleanType() const;
835  bool isCharType() const;
836  bool isWideCharType() const;
837  bool isAnyCharacterType() const;
838  bool isIntegralType() const;
839
840  /// Floating point categories.
841  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
842  /// isComplexType() does *not* include complex integers (a GCC extension).
843  /// isComplexIntegerType() can be used to test for complex integers.
844  bool isComplexType() const;      // C99 6.2.5p11 (complex)
845  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
846  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
847  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
848  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
849  bool isVoidType() const;         // C99 6.2.5p19
850  bool isDerivedType() const;      // C99 6.2.5p20
851  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
852  bool isAggregateType() const;
853
854  // Type Predicates: Check to see if this type is structurally the specified
855  // type, ignoring typedefs and qualifiers.
856  bool isFunctionType() const;
857  bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
858  bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
859  bool isPointerType() const;
860  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
861  bool isBlockPointerType() const;
862  bool isVoidPointerType() const;
863  bool isReferenceType() const;
864  bool isLValueReferenceType() const;
865  bool isRValueReferenceType() const;
866  bool isFunctionPointerType() const;
867  bool isMemberPointerType() const;
868  bool isMemberFunctionPointerType() const;
869  bool isArrayType() const;
870  bool isConstantArrayType() const;
871  bool isIncompleteArrayType() const;
872  bool isVariableArrayType() const;
873  bool isDependentSizedArrayType() const;
874  bool isRecordType() const;
875  bool isClassType() const;
876  bool isStructureType() const;
877  bool isUnionType() const;
878  bool isComplexIntegerType() const;            // GCC _Complex integer type.
879  bool isVectorType() const;                    // GCC vector type.
880  bool isExtVectorType() const;                 // Extended vector type.
881  bool isObjCObjectPointerType() const;         // Pointer to *any* ObjC object.
882  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
883  // for the common case.
884  bool isObjCInterfaceType() const;             // NSString or NSString<foo>
885  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
886  bool isObjCQualifiedIdType() const;           // id<foo>
887  bool isObjCQualifiedClassType() const;        // Class<foo>
888  bool isObjCIdType() const;                    // id
889  bool isObjCClassType() const;                 // Class
890  bool isObjCSelType() const;                 // Class
891  bool isObjCBuiltinType() const;               // 'id' or 'Class'
892  bool isTemplateTypeParmType() const;          // C++ template type parameter
893  bool isNullPtrType() const;                   // C++0x nullptr_t
894
895  /// isDependentType - Whether this type is a dependent type, meaning
896  /// that its definition somehow depends on a template parameter
897  /// (C++ [temp.dep.type]).
898  bool isDependentType() const { return Dependent; }
899  bool isOverloadableType() const;
900
901  /// hasPointerRepresentation - Whether this type is represented
902  /// natively as a pointer; this includes pointers, references, block
903  /// pointers, and Objective-C interface, qualified id, and qualified
904  /// interface types, as well as nullptr_t.
905  bool hasPointerRepresentation() const;
906
907  /// hasObjCPointerRepresentation - Whether this type can represent
908  /// an objective pointer type for the purpose of GC'ability
909  bool hasObjCPointerRepresentation() const;
910
911  // Type Checking Functions: Check to see if this type is structurally the
912  // specified type, ignoring typedefs and qualifiers, and return a pointer to
913  // the best type we can.
914  const RecordType *getAsStructureType() const;
915  /// NOTE: getAs*ArrayType are methods on ASTContext.
916  const RecordType *getAsUnionType() const;
917  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
918  // The following is a convenience method that returns an ObjCObjectPointerType
919  // for object declared using an interface.
920  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
921  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
922  const ObjCInterfaceType *getAsObjCQualifiedInterfaceType() const;
923  const CXXRecordDecl *getCXXRecordDeclForPointerType() const;
924
925  // Member-template getAs<specific type>'.  This scheme will eventually
926  // replace the specific getAsXXXX methods above.
927  //
928  // There are some specializations of this member template listed
929  // immediately following this class.
930  template <typename T> const T *getAs() const;
931
932  /// getAsPointerToObjCInterfaceType - If this is a pointer to an ObjC
933  /// interface, return the interface type, otherwise return null.
934  const ObjCInterfaceType *getAsPointerToObjCInterfaceType() const;
935
936  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
937  /// element type of the array, potentially with type qualifiers missing.
938  /// This method should never be used when type qualifiers are meaningful.
939  const Type *getArrayElementTypeNoTypeQual() const;
940
941  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
942  /// pointer, this returns the respective pointee.
943  QualType getPointeeType() const;
944
945  /// getUnqualifiedDesugaredType() - Return the specified type with
946  /// any "sugar" removed from the type, removing any typedefs,
947  /// typeofs, etc., as well as any qualifiers.
948  const Type *getUnqualifiedDesugaredType() const;
949
950  /// More type predicates useful for type checking/promotion
951  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
952
953  /// isSignedIntegerType - Return true if this is an integer type that is
954  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
955  /// an enum decl which has a signed representation, or a vector of signed
956  /// integer element type.
957  bool isSignedIntegerType() const;
958
959  /// isUnsignedIntegerType - Return true if this is an integer type that is
960  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
961  /// decl which has an unsigned representation, or a vector of unsigned integer
962  /// element type.
963  bool isUnsignedIntegerType() const;
964
965  /// isConstantSizeType - Return true if this is not a variable sized type,
966  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
967  /// incomplete types.
968  bool isConstantSizeType() const;
969
970  /// isSpecifierType - Returns true if this type can be represented by some
971  /// set of type specifiers.
972  bool isSpecifierType() const;
973
974  const char *getTypeClassName() const;
975
976  /// \brief Determine the linkage of this type.
977  virtual Linkage getLinkage() const;
978
979  QualType getCanonicalTypeInternal() const { return CanonicalType; }
980  void dump() const;
981  static bool classof(const Type *) { return true; }
982};
983
984template <> inline const TypedefType *Type::getAs() const {
985  return dyn_cast<TypedefType>(this);
986}
987
988// We can do canonical leaf types faster, because we don't have to
989// worry about preserving child type decoration.
990#define TYPE(Class, Base)
991#define LEAF_TYPE(Class) \
992template <> inline const Class##Type *Type::getAs() const { \
993  return dyn_cast<Class##Type>(CanonicalType); \
994}
995#include "clang/AST/TypeNodes.def"
996
997
998/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
999/// types are always canonical and have a literal name field.
1000class BuiltinType : public Type {
1001public:
1002  enum Kind {
1003    Void,
1004
1005    Bool,     // This is bool and/or _Bool.
1006    Char_U,   // This is 'char' for targets where char is unsigned.
1007    UChar,    // This is explicitly qualified unsigned char.
1008    Char16,   // This is 'char16_t' for C++.
1009    Char32,   // This is 'char32_t' for C++.
1010    UShort,
1011    UInt,
1012    ULong,
1013    ULongLong,
1014    UInt128,  // __uint128_t
1015
1016    Char_S,   // This is 'char' for targets where char is signed.
1017    SChar,    // This is explicitly qualified signed char.
1018    WChar,    // This is 'wchar_t' for C++.
1019    Short,
1020    Int,
1021    Long,
1022    LongLong,
1023    Int128,   // __int128_t
1024
1025    Float, Double, LongDouble,
1026
1027    NullPtr,  // This is the type of C++0x 'nullptr'.
1028
1029    Overload,  // This represents the type of an overloaded function declaration.
1030    Dependent, // This represents the type of a type-dependent expression.
1031
1032    UndeducedAuto, // In C++0x, this represents the type of an auto variable
1033                   // that has not been deduced yet.
1034    ObjCId,    // This represents the ObjC 'id' type.
1035    ObjCClass, // This represents the ObjC 'Class' type.
1036    ObjCSel    // This represents the ObjC 'SEL' type.
1037  };
1038private:
1039  Kind TypeKind;
1040public:
1041  BuiltinType(Kind K)
1042    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent)),
1043      TypeKind(K) {}
1044
1045  Kind getKind() const { return TypeKind; }
1046  const char *getName(const LangOptions &LO) const;
1047
1048  bool isSugared() const { return false; }
1049  QualType desugar() const { return QualType(this, 0); }
1050
1051  bool isInteger() const {
1052    return TypeKind >= Bool && TypeKind <= Int128;
1053  }
1054
1055  bool isSignedInteger() const {
1056    return TypeKind >= Char_S && TypeKind <= Int128;
1057  }
1058
1059  bool isUnsignedInteger() const {
1060    return TypeKind >= Bool && TypeKind <= UInt128;
1061  }
1062
1063  bool isFloatingPoint() const {
1064    return TypeKind >= Float && TypeKind <= LongDouble;
1065  }
1066
1067  virtual Linkage getLinkage() const;
1068
1069  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
1070  static bool classof(const BuiltinType *) { return true; }
1071};
1072
1073/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
1074/// types (_Complex float etc) as well as the GCC integer complex extensions.
1075///
1076class ComplexType : public Type, public llvm::FoldingSetNode {
1077  QualType ElementType;
1078  ComplexType(QualType Element, QualType CanonicalPtr) :
1079    Type(Complex, CanonicalPtr, Element->isDependentType()),
1080    ElementType(Element) {
1081  }
1082  friend class ASTContext;  // ASTContext creates these.
1083public:
1084  QualType getElementType() const { return ElementType; }
1085
1086  bool isSugared() const { return false; }
1087  QualType desugar() const { return QualType(this, 0); }
1088
1089  void Profile(llvm::FoldingSetNodeID &ID) {
1090    Profile(ID, getElementType());
1091  }
1092  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
1093    ID.AddPointer(Element.getAsOpaquePtr());
1094  }
1095
1096  virtual Linkage getLinkage() const;
1097
1098  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
1099  static bool classof(const ComplexType *) { return true; }
1100};
1101
1102/// PointerType - C99 6.7.5.1 - Pointer Declarators.
1103///
1104class PointerType : public Type, public llvm::FoldingSetNode {
1105  QualType PointeeType;
1106
1107  PointerType(QualType Pointee, QualType CanonicalPtr) :
1108    Type(Pointer, CanonicalPtr, Pointee->isDependentType()), PointeeType(Pointee) {
1109  }
1110  friend class ASTContext;  // ASTContext creates these.
1111public:
1112
1113  QualType getPointeeType() const { return PointeeType; }
1114
1115  bool isSugared() const { return false; }
1116  QualType desugar() const { return QualType(this, 0); }
1117
1118  void Profile(llvm::FoldingSetNodeID &ID) {
1119    Profile(ID, getPointeeType());
1120  }
1121  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1122    ID.AddPointer(Pointee.getAsOpaquePtr());
1123  }
1124
1125  virtual Linkage getLinkage() const;
1126
1127  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
1128  static bool classof(const PointerType *) { return true; }
1129};
1130
1131/// BlockPointerType - pointer to a block type.
1132/// This type is to represent types syntactically represented as
1133/// "void (^)(int)", etc. Pointee is required to always be a function type.
1134///
1135class BlockPointerType : public Type, public llvm::FoldingSetNode {
1136  QualType PointeeType;  // Block is some kind of pointer type
1137  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
1138    Type(BlockPointer, CanonicalCls, Pointee->isDependentType()),
1139    PointeeType(Pointee) {
1140  }
1141  friend class ASTContext;  // ASTContext creates these.
1142public:
1143
1144  // Get the pointee type. Pointee is required to always be a function type.
1145  QualType getPointeeType() const { return PointeeType; }
1146
1147  bool isSugared() const { return false; }
1148  QualType desugar() const { return QualType(this, 0); }
1149
1150  void Profile(llvm::FoldingSetNodeID &ID) {
1151      Profile(ID, getPointeeType());
1152  }
1153  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1154      ID.AddPointer(Pointee.getAsOpaquePtr());
1155  }
1156
1157  virtual Linkage getLinkage() const;
1158
1159  static bool classof(const Type *T) {
1160    return T->getTypeClass() == BlockPointer;
1161  }
1162  static bool classof(const BlockPointerType *) { return true; }
1163};
1164
1165/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
1166///
1167class ReferenceType : public Type, public llvm::FoldingSetNode {
1168  QualType PointeeType;
1169
1170  /// True if the type was originally spelled with an lvalue sigil.
1171  /// This is never true of rvalue references but can also be false
1172  /// on lvalue references because of C++0x [dcl.typedef]p9,
1173  /// as follows:
1174  ///
1175  ///   typedef int &ref;    // lvalue, spelled lvalue
1176  ///   typedef int &&rvref; // rvalue
1177  ///   ref &a;              // lvalue, inner ref, spelled lvalue
1178  ///   ref &&a;             // lvalue, inner ref
1179  ///   rvref &a;            // lvalue, inner ref, spelled lvalue
1180  ///   rvref &&a;           // rvalue, inner ref
1181  bool SpelledAsLValue;
1182
1183  /// True if the inner type is a reference type.  This only happens
1184  /// in non-canonical forms.
1185  bool InnerRef;
1186
1187protected:
1188  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
1189                bool SpelledAsLValue) :
1190    Type(tc, CanonicalRef, Referencee->isDependentType()),
1191    PointeeType(Referencee), SpelledAsLValue(SpelledAsLValue),
1192    InnerRef(Referencee->isReferenceType()) {
1193  }
1194public:
1195  bool isSpelledAsLValue() const { return SpelledAsLValue; }
1196  bool isInnerRef() const { return InnerRef; }
1197
1198  QualType getPointeeTypeAsWritten() const { return PointeeType; }
1199  QualType getPointeeType() const {
1200    // FIXME: this might strip inner qualifiers; okay?
1201    const ReferenceType *T = this;
1202    while (T->InnerRef)
1203      T = T->PointeeType->getAs<ReferenceType>();
1204    return T->PointeeType;
1205  }
1206
1207  void Profile(llvm::FoldingSetNodeID &ID) {
1208    Profile(ID, PointeeType, SpelledAsLValue);
1209  }
1210  static void Profile(llvm::FoldingSetNodeID &ID,
1211                      QualType Referencee,
1212                      bool SpelledAsLValue) {
1213    ID.AddPointer(Referencee.getAsOpaquePtr());
1214    ID.AddBoolean(SpelledAsLValue);
1215  }
1216
1217  virtual Linkage getLinkage() const;
1218
1219  static bool classof(const Type *T) {
1220    return T->getTypeClass() == LValueReference ||
1221           T->getTypeClass() == RValueReference;
1222  }
1223  static bool classof(const ReferenceType *) { return true; }
1224};
1225
1226/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
1227///
1228class LValueReferenceType : public ReferenceType {
1229  LValueReferenceType(QualType Referencee, QualType CanonicalRef,
1230                      bool SpelledAsLValue) :
1231    ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
1232  {}
1233  friend class ASTContext; // ASTContext creates these
1234public:
1235  bool isSugared() const { return false; }
1236  QualType desugar() const { return QualType(this, 0); }
1237
1238  static bool classof(const Type *T) {
1239    return T->getTypeClass() == LValueReference;
1240  }
1241  static bool classof(const LValueReferenceType *) { return true; }
1242};
1243
1244/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
1245///
1246class RValueReferenceType : public ReferenceType {
1247  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
1248    ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
1249  }
1250  friend class ASTContext; // ASTContext creates these
1251public:
1252  bool isSugared() const { return false; }
1253  QualType desugar() const { return QualType(this, 0); }
1254
1255  static bool classof(const Type *T) {
1256    return T->getTypeClass() == RValueReference;
1257  }
1258  static bool classof(const RValueReferenceType *) { return true; }
1259};
1260
1261/// MemberPointerType - C++ 8.3.3 - Pointers to members
1262///
1263class MemberPointerType : public Type, public llvm::FoldingSetNode {
1264  QualType PointeeType;
1265  /// The class of which the pointee is a member. Must ultimately be a
1266  /// RecordType, but could be a typedef or a template parameter too.
1267  const Type *Class;
1268
1269  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
1270    Type(MemberPointer, CanonicalPtr,
1271         Cls->isDependentType() || Pointee->isDependentType()),
1272    PointeeType(Pointee), Class(Cls) {
1273  }
1274  friend class ASTContext; // ASTContext creates these.
1275public:
1276
1277  QualType getPointeeType() const { return PointeeType; }
1278
1279  const Type *getClass() const { return Class; }
1280
1281  bool isSugared() const { return false; }
1282  QualType desugar() const { return QualType(this, 0); }
1283
1284  void Profile(llvm::FoldingSetNodeID &ID) {
1285    Profile(ID, getPointeeType(), getClass());
1286  }
1287  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
1288                      const Type *Class) {
1289    ID.AddPointer(Pointee.getAsOpaquePtr());
1290    ID.AddPointer(Class);
1291  }
1292
1293  virtual Linkage getLinkage() const;
1294
1295  static bool classof(const Type *T) {
1296    return T->getTypeClass() == MemberPointer;
1297  }
1298  static bool classof(const MemberPointerType *) { return true; }
1299};
1300
1301/// ArrayType - C99 6.7.5.2 - Array Declarators.
1302///
1303class ArrayType : public Type, public llvm::FoldingSetNode {
1304public:
1305  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
1306  /// an array with a static size (e.g. int X[static 4]), or an array
1307  /// with a star size (e.g. int X[*]).
1308  /// 'static' is only allowed on function parameters.
1309  enum ArraySizeModifier {
1310    Normal, Static, Star
1311  };
1312private:
1313  /// ElementType - The element type of the array.
1314  QualType ElementType;
1315
1316  // NOTE: VC++ treats enums as signed, avoid using the ArraySizeModifier enum
1317  /// NOTE: These fields are packed into the bitfields space in the Type class.
1318  unsigned SizeModifier : 2;
1319
1320  /// IndexTypeQuals - Capture qualifiers in declarations like:
1321  /// 'int X[static restrict 4]'. For function parameters only.
1322  unsigned IndexTypeQuals : 3;
1323
1324protected:
1325  // C++ [temp.dep.type]p1:
1326  //   A type is dependent if it is...
1327  //     - an array type constructed from any dependent type or whose
1328  //       size is specified by a constant expression that is
1329  //       value-dependent,
1330  ArrayType(TypeClass tc, QualType et, QualType can,
1331            ArraySizeModifier sm, unsigned tq)
1332    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray),
1333      ElementType(et), SizeModifier(sm), IndexTypeQuals(tq) {}
1334
1335  friend class ASTContext;  // ASTContext creates these.
1336public:
1337  QualType getElementType() const { return ElementType; }
1338  ArraySizeModifier getSizeModifier() const {
1339    return ArraySizeModifier(SizeModifier);
1340  }
1341  Qualifiers getIndexTypeQualifiers() const {
1342    return Qualifiers::fromCVRMask(IndexTypeQuals);
1343  }
1344  unsigned getIndexTypeCVRQualifiers() const { return IndexTypeQuals; }
1345
1346  virtual Linkage getLinkage() const;
1347
1348  static bool classof(const Type *T) {
1349    return T->getTypeClass() == ConstantArray ||
1350           T->getTypeClass() == VariableArray ||
1351           T->getTypeClass() == IncompleteArray ||
1352           T->getTypeClass() == DependentSizedArray;
1353  }
1354  static bool classof(const ArrayType *) { return true; }
1355};
1356
1357/// ConstantArrayType - This class represents the canonical version of
1358/// C arrays with a specified constant size.  For example, the canonical
1359/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
1360/// type is 'int' and the size is 404.
1361class ConstantArrayType : public ArrayType {
1362  llvm::APInt Size; // Allows us to unique the type.
1363
1364  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
1365                    ArraySizeModifier sm, unsigned tq)
1366    : ArrayType(ConstantArray, et, can, sm, tq),
1367      Size(size) {}
1368protected:
1369  ConstantArrayType(TypeClass tc, QualType et, QualType can,
1370                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
1371    : ArrayType(tc, et, can, sm, tq), Size(size) {}
1372  friend class ASTContext;  // ASTContext creates these.
1373public:
1374  const llvm::APInt &getSize() const { return Size; }
1375  bool isSugared() const { return false; }
1376  QualType desugar() const { return QualType(this, 0); }
1377
1378  void Profile(llvm::FoldingSetNodeID &ID) {
1379    Profile(ID, getElementType(), getSize(),
1380            getSizeModifier(), getIndexTypeCVRQualifiers());
1381  }
1382  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1383                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
1384                      unsigned TypeQuals) {
1385    ID.AddPointer(ET.getAsOpaquePtr());
1386    ID.AddInteger(ArraySize.getZExtValue());
1387    ID.AddInteger(SizeMod);
1388    ID.AddInteger(TypeQuals);
1389  }
1390  static bool classof(const Type *T) {
1391    return T->getTypeClass() == ConstantArray;
1392  }
1393  static bool classof(const ConstantArrayType *) { return true; }
1394};
1395
1396/// IncompleteArrayType - This class represents C arrays with an unspecified
1397/// size.  For example 'int A[]' has an IncompleteArrayType where the element
1398/// type is 'int' and the size is unspecified.
1399class IncompleteArrayType : public ArrayType {
1400
1401  IncompleteArrayType(QualType et, QualType can,
1402                      ArraySizeModifier sm, unsigned tq)
1403    : ArrayType(IncompleteArray, et, can, sm, tq) {}
1404  friend class ASTContext;  // ASTContext creates these.
1405public:
1406  bool isSugared() const { return false; }
1407  QualType desugar() const { return QualType(this, 0); }
1408
1409  static bool classof(const Type *T) {
1410    return T->getTypeClass() == IncompleteArray;
1411  }
1412  static bool classof(const IncompleteArrayType *) { return true; }
1413
1414  friend class StmtIteratorBase;
1415
1416  void Profile(llvm::FoldingSetNodeID &ID) {
1417    Profile(ID, getElementType(), getSizeModifier(),
1418            getIndexTypeCVRQualifiers());
1419  }
1420
1421  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1422                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
1423    ID.AddPointer(ET.getAsOpaquePtr());
1424    ID.AddInteger(SizeMod);
1425    ID.AddInteger(TypeQuals);
1426  }
1427};
1428
1429/// VariableArrayType - This class represents C arrays with a specified size
1430/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
1431/// Since the size expression is an arbitrary expression, we store it as such.
1432///
1433/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
1434/// should not be: two lexically equivalent variable array types could mean
1435/// different things, for example, these variables do not have the same type
1436/// dynamically:
1437///
1438/// void foo(int x) {
1439///   int Y[x];
1440///   ++x;
1441///   int Z[x];
1442/// }
1443///
1444class VariableArrayType : public ArrayType {
1445  /// SizeExpr - An assignment expression. VLA's are only permitted within
1446  /// a function block.
1447  Stmt *SizeExpr;
1448  /// Brackets - The left and right array brackets.
1449  SourceRange Brackets;
1450
1451  VariableArrayType(QualType et, QualType can, Expr *e,
1452                    ArraySizeModifier sm, unsigned tq,
1453                    SourceRange brackets)
1454    : ArrayType(VariableArray, et, can, sm, tq),
1455      SizeExpr((Stmt*) e), Brackets(brackets) {}
1456  friend class ASTContext;  // ASTContext creates these.
1457  virtual void Destroy(ASTContext& C);
1458
1459public:
1460  Expr *getSizeExpr() const {
1461    // We use C-style casts instead of cast<> here because we do not wish
1462    // to have a dependency of Type.h on Stmt.h/Expr.h.
1463    return (Expr*) SizeExpr;
1464  }
1465  SourceRange getBracketsRange() const { return Brackets; }
1466  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1467  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1468
1469  bool isSugared() const { return false; }
1470  QualType desugar() const { return QualType(this, 0); }
1471
1472  static bool classof(const Type *T) {
1473    return T->getTypeClass() == VariableArray;
1474  }
1475  static bool classof(const VariableArrayType *) { return true; }
1476
1477  friend class StmtIteratorBase;
1478
1479  void Profile(llvm::FoldingSetNodeID &ID) {
1480    assert(0 && "Cannnot unique VariableArrayTypes.");
1481  }
1482};
1483
1484/// DependentSizedArrayType - This type represents an array type in
1485/// C++ whose size is a value-dependent expression. For example:
1486///
1487/// \code
1488/// template<typename T, int Size>
1489/// class array {
1490///   T data[Size];
1491/// };
1492/// \endcode
1493///
1494/// For these types, we won't actually know what the array bound is
1495/// until template instantiation occurs, at which point this will
1496/// become either a ConstantArrayType or a VariableArrayType.
1497class DependentSizedArrayType : public ArrayType {
1498  ASTContext &Context;
1499
1500  /// \brief An assignment expression that will instantiate to the
1501  /// size of the array.
1502  ///
1503  /// The expression itself might be NULL, in which case the array
1504  /// type will have its size deduced from an initializer.
1505  Stmt *SizeExpr;
1506
1507  /// Brackets - The left and right array brackets.
1508  SourceRange Brackets;
1509
1510  DependentSizedArrayType(ASTContext &Context, QualType et, QualType can,
1511                          Expr *e, ArraySizeModifier sm, unsigned tq,
1512                          SourceRange brackets)
1513    : ArrayType(DependentSizedArray, et, can, sm, tq),
1514      Context(Context), SizeExpr((Stmt*) e), Brackets(brackets) {}
1515  friend class ASTContext;  // ASTContext creates these.
1516  virtual void Destroy(ASTContext& C);
1517
1518public:
1519  Expr *getSizeExpr() const {
1520    // We use C-style casts instead of cast<> here because we do not wish
1521    // to have a dependency of Type.h on Stmt.h/Expr.h.
1522    return (Expr*) SizeExpr;
1523  }
1524  SourceRange getBracketsRange() const { return Brackets; }
1525  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1526  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1527
1528  bool isSugared() const { return false; }
1529  QualType desugar() const { return QualType(this, 0); }
1530
1531  static bool classof(const Type *T) {
1532    return T->getTypeClass() == DependentSizedArray;
1533  }
1534  static bool classof(const DependentSizedArrayType *) { return true; }
1535
1536  friend class StmtIteratorBase;
1537
1538
1539  void Profile(llvm::FoldingSetNodeID &ID) {
1540    Profile(ID, Context, getElementType(),
1541            getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
1542  }
1543
1544  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1545                      QualType ET, ArraySizeModifier SizeMod,
1546                      unsigned TypeQuals, Expr *E);
1547};
1548
1549/// DependentSizedExtVectorType - This type represent an extended vector type
1550/// where either the type or size is dependent. For example:
1551/// @code
1552/// template<typename T, int Size>
1553/// class vector {
1554///   typedef T __attribute__((ext_vector_type(Size))) type;
1555/// }
1556/// @endcode
1557class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
1558  ASTContext &Context;
1559  Expr *SizeExpr;
1560  /// ElementType - The element type of the array.
1561  QualType ElementType;
1562  SourceLocation loc;
1563
1564  DependentSizedExtVectorType(ASTContext &Context, QualType ElementType,
1565                              QualType can, Expr *SizeExpr, SourceLocation loc)
1566    : Type (DependentSizedExtVector, can, true),
1567      Context(Context), SizeExpr(SizeExpr), ElementType(ElementType),
1568      loc(loc) {}
1569  friend class ASTContext;
1570  virtual void Destroy(ASTContext& C);
1571
1572public:
1573  Expr *getSizeExpr() const { return SizeExpr; }
1574  QualType getElementType() const { return ElementType; }
1575  SourceLocation getAttributeLoc() const { return loc; }
1576
1577  bool isSugared() const { return false; }
1578  QualType desugar() const { return QualType(this, 0); }
1579
1580  static bool classof(const Type *T) {
1581    return T->getTypeClass() == DependentSizedExtVector;
1582  }
1583  static bool classof(const DependentSizedExtVectorType *) { return true; }
1584
1585  void Profile(llvm::FoldingSetNodeID &ID) {
1586    Profile(ID, Context, getElementType(), getSizeExpr());
1587  }
1588
1589  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1590                      QualType ElementType, Expr *SizeExpr);
1591};
1592
1593
1594/// VectorType - GCC generic vector type. This type is created using
1595/// __attribute__((vector_size(n)), where "n" specifies the vector size in
1596/// bytes; or from an Altivec __vector or vector declaration.
1597/// Since the constructor takes the number of vector elements, the
1598/// client is responsible for converting the size into the number of elements.
1599class VectorType : public Type, public llvm::FoldingSetNode {
1600protected:
1601  /// ElementType - The element type of the vector.
1602  QualType ElementType;
1603
1604  /// NumElements - The number of elements in the vector.
1605  unsigned NumElements;
1606
1607  /// AltiVec - True if this is for an Altivec vector.
1608  bool AltiVec;
1609
1610  /// Pixel - True if this is for an Altivec vector pixel.
1611  bool Pixel;
1612
1613  VectorType(QualType vecType, unsigned nElements, QualType canonType,
1614      bool isAltiVec, bool isPixel) :
1615    Type(Vector, canonType, vecType->isDependentType()),
1616    ElementType(vecType), NumElements(nElements),
1617    AltiVec(isAltiVec), Pixel(isPixel) {}
1618  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
1619             QualType canonType, bool isAltiVec, bool isPixel)
1620    : Type(tc, canonType, vecType->isDependentType()), ElementType(vecType),
1621      NumElements(nElements), AltiVec(isAltiVec), Pixel(isPixel) {}
1622  friend class ASTContext;  // ASTContext creates these.
1623public:
1624
1625  QualType getElementType() const { return ElementType; }
1626  unsigned getNumElements() const { return NumElements; }
1627
1628  bool isSugared() const { return false; }
1629  QualType desugar() const { return QualType(this, 0); }
1630
1631  bool isAltiVec() const { return AltiVec; }
1632
1633  bool isPixel() const { return Pixel; }
1634
1635  void Profile(llvm::FoldingSetNodeID &ID) {
1636    Profile(ID, getElementType(), getNumElements(), getTypeClass(),
1637      AltiVec, Pixel);
1638  }
1639  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
1640                      unsigned NumElements, TypeClass TypeClass,
1641                      bool isAltiVec, bool isPixel) {
1642    ID.AddPointer(ElementType.getAsOpaquePtr());
1643    ID.AddInteger(NumElements);
1644    ID.AddInteger(TypeClass);
1645    ID.AddBoolean(isAltiVec);
1646    ID.AddBoolean(isPixel);
1647  }
1648
1649  virtual Linkage getLinkage() const;
1650
1651  static bool classof(const Type *T) {
1652    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
1653  }
1654  static bool classof(const VectorType *) { return true; }
1655};
1656
1657/// ExtVectorType - Extended vector type. This type is created using
1658/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
1659/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
1660/// class enables syntactic extensions, like Vector Components for accessing
1661/// points, colors, and textures (modeled after OpenGL Shading Language).
1662class ExtVectorType : public VectorType {
1663  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
1664    VectorType(ExtVector, vecType, nElements, canonType, false, false) {}
1665  friend class ASTContext;  // ASTContext creates these.
1666public:
1667  static int getPointAccessorIdx(char c) {
1668    switch (c) {
1669    default: return -1;
1670    case 'x': return 0;
1671    case 'y': return 1;
1672    case 'z': return 2;
1673    case 'w': return 3;
1674    }
1675  }
1676  static int getNumericAccessorIdx(char c) {
1677    switch (c) {
1678      default: return -1;
1679      case '0': return 0;
1680      case '1': return 1;
1681      case '2': return 2;
1682      case '3': return 3;
1683      case '4': return 4;
1684      case '5': return 5;
1685      case '6': return 6;
1686      case '7': return 7;
1687      case '8': return 8;
1688      case '9': return 9;
1689      case 'A':
1690      case 'a': return 10;
1691      case 'B':
1692      case 'b': return 11;
1693      case 'C':
1694      case 'c': return 12;
1695      case 'D':
1696      case 'd': return 13;
1697      case 'E':
1698      case 'e': return 14;
1699      case 'F':
1700      case 'f': return 15;
1701    }
1702  }
1703
1704  static int getAccessorIdx(char c) {
1705    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
1706    return getNumericAccessorIdx(c);
1707  }
1708
1709  bool isAccessorWithinNumElements(char c) const {
1710    if (int idx = getAccessorIdx(c)+1)
1711      return unsigned(idx-1) < NumElements;
1712    return false;
1713  }
1714  bool isSugared() const { return false; }
1715  QualType desugar() const { return QualType(this, 0); }
1716
1717  static bool classof(const Type *T) {
1718    return T->getTypeClass() == ExtVector;
1719  }
1720  static bool classof(const ExtVectorType *) { return true; }
1721};
1722
1723/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
1724/// class of FunctionNoProtoType and FunctionProtoType.
1725///
1726class FunctionType : public Type {
1727  /// SubClassData - This field is owned by the subclass, put here to pack
1728  /// tightly with the ivars in Type.
1729  bool SubClassData : 1;
1730
1731  /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
1732  /// other bitfields.
1733  /// The qualifiers are part of FunctionProtoType because...
1734  ///
1735  /// C++ 8.3.5p4: The return type, the parameter type list and the
1736  /// cv-qualifier-seq, [...], are part of the function type.
1737  ///
1738  unsigned TypeQuals : 3;
1739
1740  /// NoReturn - Indicates if the function type is attribute noreturn.
1741  unsigned NoReturn : 1;
1742
1743  /// CallConv - The calling convention used by the function.
1744  unsigned CallConv : 2;
1745
1746  // The type returned by the function.
1747  QualType ResultType;
1748protected:
1749  FunctionType(TypeClass tc, QualType res, bool SubclassInfo,
1750               unsigned typeQuals, QualType Canonical, bool Dependent,
1751               bool noReturn = false, CallingConv callConv = CC_Default)
1752    : Type(tc, Canonical, Dependent),
1753      SubClassData(SubclassInfo), TypeQuals(typeQuals), NoReturn(noReturn),
1754      CallConv(callConv), ResultType(res) {}
1755  bool getSubClassData() const { return SubClassData; }
1756  unsigned getTypeQuals() const { return TypeQuals; }
1757public:
1758
1759  QualType getResultType() const { return ResultType; }
1760  bool getNoReturnAttr() const { return NoReturn; }
1761  CallingConv getCallConv() const { return (CallingConv)CallConv; }
1762
1763  static llvm::StringRef getNameForCallConv(CallingConv CC);
1764
1765  static bool classof(const Type *T) {
1766    return T->getTypeClass() == FunctionNoProto ||
1767           T->getTypeClass() == FunctionProto;
1768  }
1769  static bool classof(const FunctionType *) { return true; }
1770};
1771
1772/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
1773/// no information available about its arguments.
1774class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
1775  FunctionNoProtoType(QualType Result, QualType Canonical,
1776                      bool NoReturn = false, CallingConv CallConv = CC_Default)
1777    : FunctionType(FunctionNoProto, Result, false, 0, Canonical,
1778                   /*Dependent=*/false, NoReturn, CallConv) {}
1779  friend class ASTContext;  // ASTContext creates these.
1780public:
1781  // No additional state past what FunctionType provides.
1782
1783  bool isSugared() const { return false; }
1784  QualType desugar() const { return QualType(this, 0); }
1785
1786  void Profile(llvm::FoldingSetNodeID &ID) {
1787    Profile(ID, getResultType(), getNoReturnAttr(), getCallConv());
1788  }
1789  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
1790                      bool NoReturn, CallingConv CallConv) {
1791    ID.AddInteger(CallConv);
1792    ID.AddInteger(NoReturn);
1793    ID.AddPointer(ResultType.getAsOpaquePtr());
1794  }
1795
1796  virtual Linkage getLinkage() const;
1797
1798  static bool classof(const Type *T) {
1799    return T->getTypeClass() == FunctionNoProto;
1800  }
1801  static bool classof(const FunctionNoProtoType *) { return true; }
1802};
1803
1804/// FunctionProtoType - Represents a prototype with argument type info, e.g.
1805/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
1806/// arguments, not as having a single void argument. Such a type can have an
1807/// exception specification, but this specification is not part of the canonical
1808/// type.
1809class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
1810  /// hasAnyDependentType - Determine whether there are any dependent
1811  /// types within the arguments passed in.
1812  static bool hasAnyDependentType(const QualType *ArgArray, unsigned numArgs) {
1813    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
1814      if (ArgArray[Idx]->isDependentType())
1815    return true;
1816
1817    return false;
1818  }
1819
1820  FunctionProtoType(QualType Result, const QualType *ArgArray, unsigned numArgs,
1821                    bool isVariadic, unsigned typeQuals, bool hasExs,
1822                    bool hasAnyExs, const QualType *ExArray,
1823                    unsigned numExs, QualType Canonical, bool NoReturn,
1824                    CallingConv CallConv)
1825    : FunctionType(FunctionProto, Result, isVariadic, typeQuals, Canonical,
1826                   (Result->isDependentType() ||
1827                    hasAnyDependentType(ArgArray, numArgs)), NoReturn,
1828                   CallConv),
1829      NumArgs(numArgs), NumExceptions(numExs), HasExceptionSpec(hasExs),
1830      AnyExceptionSpec(hasAnyExs) {
1831    // Fill in the trailing argument array.
1832    QualType *ArgInfo = reinterpret_cast<QualType*>(this+1);
1833    for (unsigned i = 0; i != numArgs; ++i)
1834      ArgInfo[i] = ArgArray[i];
1835    // Fill in the exception array.
1836    QualType *Ex = ArgInfo + numArgs;
1837    for (unsigned i = 0; i != numExs; ++i)
1838      Ex[i] = ExArray[i];
1839  }
1840
1841  /// NumArgs - The number of arguments this function has, not counting '...'.
1842  unsigned NumArgs : 20;
1843
1844  /// NumExceptions - The number of types in the exception spec, if any.
1845  unsigned NumExceptions : 10;
1846
1847  /// HasExceptionSpec - Whether this function has an exception spec at all.
1848  bool HasExceptionSpec : 1;
1849
1850  /// AnyExceptionSpec - Whether this function has a throw(...) spec.
1851  bool AnyExceptionSpec : 1;
1852
1853  /// ArgInfo - There is an variable size array after the class in memory that
1854  /// holds the argument types.
1855
1856  /// Exceptions - There is another variable size array after ArgInfo that
1857  /// holds the exception types.
1858
1859  friend class ASTContext;  // ASTContext creates these.
1860
1861public:
1862  unsigned getNumArgs() const { return NumArgs; }
1863  QualType getArgType(unsigned i) const {
1864    assert(i < NumArgs && "Invalid argument number!");
1865    return arg_type_begin()[i];
1866  }
1867
1868  bool hasExceptionSpec() const { return HasExceptionSpec; }
1869  bool hasAnyExceptionSpec() const { return AnyExceptionSpec; }
1870  unsigned getNumExceptions() const { return NumExceptions; }
1871  QualType getExceptionType(unsigned i) const {
1872    assert(i < NumExceptions && "Invalid exception number!");
1873    return exception_begin()[i];
1874  }
1875  bool hasEmptyExceptionSpec() const {
1876    return hasExceptionSpec() && !hasAnyExceptionSpec() &&
1877      getNumExceptions() == 0;
1878  }
1879
1880  bool isVariadic() const { return getSubClassData(); }
1881  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
1882
1883  typedef const QualType *arg_type_iterator;
1884  arg_type_iterator arg_type_begin() const {
1885    return reinterpret_cast<const QualType *>(this+1);
1886  }
1887  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
1888
1889  typedef const QualType *exception_iterator;
1890  exception_iterator exception_begin() const {
1891    // exceptions begin where arguments end
1892    return arg_type_end();
1893  }
1894  exception_iterator exception_end() const {
1895    return exception_begin() + NumExceptions;
1896  }
1897
1898  bool isSugared() const { return false; }
1899  QualType desugar() const { return QualType(this, 0); }
1900
1901  virtual Linkage getLinkage() const;
1902
1903  static bool classof(const Type *T) {
1904    return T->getTypeClass() == FunctionProto;
1905  }
1906  static bool classof(const FunctionProtoType *) { return true; }
1907
1908  void Profile(llvm::FoldingSetNodeID &ID);
1909  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
1910                      arg_type_iterator ArgTys, unsigned NumArgs,
1911                      bool isVariadic, unsigned TypeQuals,
1912                      bool hasExceptionSpec, bool anyExceptionSpec,
1913                      unsigned NumExceptions, exception_iterator Exs,
1914                      bool NoReturn, CallingConv CallConv);
1915};
1916
1917
1918/// \brief Represents the dependent type named by a dependently-scoped
1919/// typename using declaration, e.g.
1920///   using typename Base<T>::foo;
1921/// Template instantiation turns these into the underlying type.
1922class UnresolvedUsingType : public Type {
1923  UnresolvedUsingTypenameDecl *Decl;
1924
1925  UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
1926    : Type(UnresolvedUsing, QualType(), true),
1927      Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
1928  friend class ASTContext; // ASTContext creates these.
1929public:
1930
1931  UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
1932
1933  bool isSugared() const { return false; }
1934  QualType desugar() const { return QualType(this, 0); }
1935
1936  static bool classof(const Type *T) {
1937    return T->getTypeClass() == UnresolvedUsing;
1938  }
1939  static bool classof(const UnresolvedUsingType *) { return true; }
1940
1941  void Profile(llvm::FoldingSetNodeID &ID) {
1942    return Profile(ID, Decl);
1943  }
1944  static void Profile(llvm::FoldingSetNodeID &ID,
1945                      UnresolvedUsingTypenameDecl *D) {
1946    ID.AddPointer(D);
1947  }
1948};
1949
1950
1951class TypedefType : public Type {
1952  TypedefDecl *Decl;
1953protected:
1954  TypedefType(TypeClass tc, const TypedefDecl *D, QualType can)
1955    : Type(tc, can, can->isDependentType()),
1956      Decl(const_cast<TypedefDecl*>(D)) {
1957    assert(!isa<TypedefType>(can) && "Invalid canonical type");
1958  }
1959  friend class ASTContext;  // ASTContext creates these.
1960public:
1961
1962  TypedefDecl *getDecl() const { return Decl; }
1963
1964  /// LookThroughTypedefs - Return the ultimate type this typedef corresponds to
1965  /// potentially looking through *all* consecutive typedefs.  This returns the
1966  /// sum of the type qualifiers, so if you have:
1967  ///   typedef const int A;
1968  ///   typedef volatile A B;
1969  /// looking through the typedefs for B will give you "const volatile A".
1970  QualType LookThroughTypedefs() const;
1971
1972  bool isSugared() const { return true; }
1973  QualType desugar() const;
1974
1975  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
1976  static bool classof(const TypedefType *) { return true; }
1977};
1978
1979/// TypeOfExprType (GCC extension).
1980class TypeOfExprType : public Type {
1981  Expr *TOExpr;
1982
1983protected:
1984  TypeOfExprType(Expr *E, QualType can = QualType());
1985  friend class ASTContext;  // ASTContext creates these.
1986public:
1987  Expr *getUnderlyingExpr() const { return TOExpr; }
1988
1989  /// \brief Remove a single level of sugar.
1990  QualType desugar() const;
1991
1992  /// \brief Returns whether this type directly provides sugar.
1993  bool isSugared() const { return true; }
1994
1995  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
1996  static bool classof(const TypeOfExprType *) { return true; }
1997};
1998
1999/// \brief Internal representation of canonical, dependent
2000/// typeof(expr) types.
2001///
2002/// This class is used internally by the ASTContext to manage
2003/// canonical, dependent types, only. Clients will only see instances
2004/// of this class via TypeOfExprType nodes.
2005class DependentTypeOfExprType
2006  : public TypeOfExprType, public llvm::FoldingSetNode {
2007  ASTContext &Context;
2008
2009public:
2010  DependentTypeOfExprType(ASTContext &Context, Expr *E)
2011    : TypeOfExprType(E), Context(Context) { }
2012
2013  bool isSugared() const { return false; }
2014  QualType desugar() const { return QualType(this, 0); }
2015
2016  void Profile(llvm::FoldingSetNodeID &ID) {
2017    Profile(ID, Context, getUnderlyingExpr());
2018  }
2019
2020  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
2021                      Expr *E);
2022};
2023
2024/// TypeOfType (GCC extension).
2025class TypeOfType : public Type {
2026  QualType TOType;
2027  TypeOfType(QualType T, QualType can)
2028    : Type(TypeOf, can, T->isDependentType()), TOType(T) {
2029    assert(!isa<TypedefType>(can) && "Invalid canonical type");
2030  }
2031  friend class ASTContext;  // ASTContext creates these.
2032public:
2033  QualType getUnderlyingType() const { return TOType; }
2034
2035  /// \brief Remove a single level of sugar.
2036  QualType desugar() const { return getUnderlyingType(); }
2037
2038  /// \brief Returns whether this type directly provides sugar.
2039  bool isSugared() const { return true; }
2040
2041  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
2042  static bool classof(const TypeOfType *) { return true; }
2043};
2044
2045/// DecltypeType (C++0x)
2046class DecltypeType : public Type {
2047  Expr *E;
2048
2049  // FIXME: We could get rid of UnderlyingType if we wanted to: We would have to
2050  // Move getDesugaredType to ASTContext so that it can call getDecltypeForExpr
2051  // from it.
2052  QualType UnderlyingType;
2053
2054protected:
2055  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
2056  friend class ASTContext;  // ASTContext creates these.
2057public:
2058  Expr *getUnderlyingExpr() const { return E; }
2059  QualType getUnderlyingType() const { return UnderlyingType; }
2060
2061  /// \brief Remove a single level of sugar.
2062  QualType desugar() const { return getUnderlyingType(); }
2063
2064  /// \brief Returns whether this type directly provides sugar.
2065  bool isSugared() const { return !isDependentType(); }
2066
2067  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
2068  static bool classof(const DecltypeType *) { return true; }
2069};
2070
2071/// \brief Internal representation of canonical, dependent
2072/// decltype(expr) types.
2073///
2074/// This class is used internally by the ASTContext to manage
2075/// canonical, dependent types, only. Clients will only see instances
2076/// of this class via DecltypeType nodes.
2077class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
2078  ASTContext &Context;
2079
2080public:
2081  DependentDecltypeType(ASTContext &Context, Expr *E);
2082
2083  bool isSugared() const { return false; }
2084  QualType desugar() const { return QualType(this, 0); }
2085
2086  void Profile(llvm::FoldingSetNodeID &ID) {
2087    Profile(ID, Context, getUnderlyingExpr());
2088  }
2089
2090  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
2091                      Expr *E);
2092};
2093
2094class TagType : public Type {
2095  /// Stores the TagDecl associated with this type. The decl will
2096  /// point to the TagDecl that actually defines the entity (or is a
2097  /// definition in progress), if there is such a definition. The
2098  /// single-bit value will be non-zero when this tag is in the
2099  /// process of being defined.
2100  mutable llvm::PointerIntPair<TagDecl *, 1> decl;
2101  friend class ASTContext;
2102  friend class TagDecl;
2103
2104protected:
2105  TagType(TypeClass TC, const TagDecl *D, QualType can);
2106
2107public:
2108  TagDecl *getDecl() const { return decl.getPointer(); }
2109
2110  /// @brief Determines whether this type is in the process of being
2111  /// defined.
2112  bool isBeingDefined() const { return decl.getInt(); }
2113  void setBeingDefined(bool Def) const { decl.setInt(Def? 1 : 0); }
2114
2115  virtual Linkage getLinkage() const;
2116
2117  static bool classof(const Type *T) {
2118    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
2119  }
2120  static bool classof(const TagType *) { return true; }
2121  static bool classof(const RecordType *) { return true; }
2122  static bool classof(const EnumType *) { return true; }
2123};
2124
2125/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
2126/// to detect TagType objects of structs/unions/classes.
2127class RecordType : public TagType {
2128protected:
2129  explicit RecordType(const RecordDecl *D)
2130    : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2131  explicit RecordType(TypeClass TC, RecordDecl *D)
2132    : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2133  friend class ASTContext;   // ASTContext creates these.
2134public:
2135
2136  RecordDecl *getDecl() const {
2137    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
2138  }
2139
2140  // FIXME: This predicate is a helper to QualType/Type. It needs to
2141  // recursively check all fields for const-ness. If any field is declared
2142  // const, it needs to return false.
2143  bool hasConstFields() const { return false; }
2144
2145  // FIXME: RecordType needs to check when it is created that all fields are in
2146  // the same address space, and return that.
2147  unsigned getAddressSpace() const { return 0; }
2148
2149  bool isSugared() const { return false; }
2150  QualType desugar() const { return QualType(this, 0); }
2151
2152  static bool classof(const TagType *T);
2153  static bool classof(const Type *T) {
2154    return isa<TagType>(T) && classof(cast<TagType>(T));
2155  }
2156  static bool classof(const RecordType *) { return true; }
2157};
2158
2159/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
2160/// to detect TagType objects of enums.
2161class EnumType : public TagType {
2162  explicit EnumType(const EnumDecl *D)
2163    : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2164  friend class ASTContext;   // ASTContext creates these.
2165public:
2166
2167  EnumDecl *getDecl() const {
2168    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
2169  }
2170
2171  bool isSugared() const { return false; }
2172  QualType desugar() const { return QualType(this, 0); }
2173
2174  static bool classof(const TagType *T);
2175  static bool classof(const Type *T) {
2176    return isa<TagType>(T) && classof(cast<TagType>(T));
2177  }
2178  static bool classof(const EnumType *) { return true; }
2179};
2180
2181/// ElaboratedType - A non-canonical type used to represents uses of
2182/// elaborated type specifiers in C++.  For example:
2183///
2184///   void foo(union MyUnion);
2185///            ^^^^^^^^^^^^^
2186///
2187/// At the moment, for efficiency we do not create elaborated types in
2188/// C, since outside of typedefs all references to structs would
2189/// necessarily be elaborated.
2190class ElaboratedType : public Type, public llvm::FoldingSetNode {
2191public:
2192  enum TagKind {
2193    TK_struct,
2194    TK_union,
2195    TK_class,
2196    TK_enum
2197  };
2198
2199private:
2200  /// The tag that was used in this elaborated type specifier.
2201  TagKind Tag;
2202
2203  /// The underlying type.
2204  QualType UnderlyingType;
2205
2206  explicit ElaboratedType(QualType Ty, TagKind Tag, QualType Canon)
2207    : Type(Elaborated, Canon, Canon->isDependentType()),
2208      Tag(Tag), UnderlyingType(Ty) { }
2209  friend class ASTContext;   // ASTContext creates these.
2210
2211public:
2212  TagKind getTagKind() const { return Tag; }
2213  QualType getUnderlyingType() const { return UnderlyingType; }
2214
2215  /// \brief Remove a single level of sugar.
2216  QualType desugar() const { return getUnderlyingType(); }
2217
2218  /// \brief Returns whether this type directly provides sugar.
2219  bool isSugared() const { return true; }
2220
2221  static const char *getNameForTagKind(TagKind Kind) {
2222    switch (Kind) {
2223    default: assert(0 && "Unknown TagKind!");
2224    case TK_struct: return "struct";
2225    case TK_union:  return "union";
2226    case TK_class:  return "class";
2227    case TK_enum:   return "enum";
2228    }
2229  }
2230
2231  void Profile(llvm::FoldingSetNodeID &ID) {
2232    Profile(ID, getUnderlyingType(), getTagKind());
2233  }
2234  static void Profile(llvm::FoldingSetNodeID &ID, QualType T, TagKind Tag) {
2235    ID.AddPointer(T.getAsOpaquePtr());
2236    ID.AddInteger(Tag);
2237  }
2238
2239  static bool classof(const ElaboratedType*) { return true; }
2240  static bool classof(const Type *T) { return T->getTypeClass() == Elaborated; }
2241};
2242
2243class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2244  unsigned Depth : 15;
2245  unsigned Index : 16;
2246  unsigned ParameterPack : 1;
2247  IdentifierInfo *Name;
2248
2249  TemplateTypeParmType(unsigned D, unsigned I, bool PP, IdentifierInfo *N,
2250                       QualType Canon)
2251    : Type(TemplateTypeParm, Canon, /*Dependent=*/true),
2252      Depth(D), Index(I), ParameterPack(PP), Name(N) { }
2253
2254  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
2255    : Type(TemplateTypeParm, QualType(this, 0), /*Dependent=*/true),
2256      Depth(D), Index(I), ParameterPack(PP), Name(0) { }
2257
2258  friend class ASTContext;  // ASTContext creates these
2259
2260public:
2261  unsigned getDepth() const { return Depth; }
2262  unsigned getIndex() const { return Index; }
2263  bool isParameterPack() const { return ParameterPack; }
2264  IdentifierInfo *getName() const { return Name; }
2265
2266  bool isSugared() const { return false; }
2267  QualType desugar() const { return QualType(this, 0); }
2268
2269  void Profile(llvm::FoldingSetNodeID &ID) {
2270    Profile(ID, Depth, Index, ParameterPack, Name);
2271  }
2272
2273  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
2274                      unsigned Index, bool ParameterPack,
2275                      IdentifierInfo *Name) {
2276    ID.AddInteger(Depth);
2277    ID.AddInteger(Index);
2278    ID.AddBoolean(ParameterPack);
2279    ID.AddPointer(Name);
2280  }
2281
2282  static bool classof(const Type *T) {
2283    return T->getTypeClass() == TemplateTypeParm;
2284  }
2285  static bool classof(const TemplateTypeParmType *T) { return true; }
2286};
2287
2288/// \brief Represents the result of substituting a type for a template
2289/// type parameter.
2290///
2291/// Within an instantiated template, all template type parameters have
2292/// been replaced with these.  They are used solely to record that a
2293/// type was originally written as a template type parameter;
2294/// therefore they are never canonical.
2295class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2296  // The original type parameter.
2297  const TemplateTypeParmType *Replaced;
2298
2299  SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
2300    : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType()),
2301      Replaced(Param) { }
2302
2303  friend class ASTContext;
2304
2305public:
2306  IdentifierInfo *getName() const { return Replaced->getName(); }
2307
2308  /// Gets the template parameter that was substituted for.
2309  const TemplateTypeParmType *getReplacedParameter() const {
2310    return Replaced;
2311  }
2312
2313  /// Gets the type that was substituted for the template
2314  /// parameter.
2315  QualType getReplacementType() const {
2316    return getCanonicalTypeInternal();
2317  }
2318
2319  bool isSugared() const { return true; }
2320  QualType desugar() const { return getReplacementType(); }
2321
2322  void Profile(llvm::FoldingSetNodeID &ID) {
2323    Profile(ID, getReplacedParameter(), getReplacementType());
2324  }
2325  static void Profile(llvm::FoldingSetNodeID &ID,
2326                      const TemplateTypeParmType *Replaced,
2327                      QualType Replacement) {
2328    ID.AddPointer(Replaced);
2329    ID.AddPointer(Replacement.getAsOpaquePtr());
2330  }
2331
2332  static bool classof(const Type *T) {
2333    return T->getTypeClass() == SubstTemplateTypeParm;
2334  }
2335  static bool classof(const SubstTemplateTypeParmType *T) { return true; }
2336};
2337
2338/// \brief Represents the type of a template specialization as written
2339/// in the source code.
2340///
2341/// Template specialization types represent the syntactic form of a
2342/// template-id that refers to a type, e.g., @c vector<int>. Some
2343/// template specialization types are syntactic sugar, whose canonical
2344/// type will point to some other type node that represents the
2345/// instantiation or class template specialization. For example, a
2346/// class template specialization type of @c vector<int> will refer to
2347/// a tag type for the instantiation
2348/// @c std::vector<int, std::allocator<int>>.
2349///
2350/// Other template specialization types, for which the template name
2351/// is dependent, may be canonical types. These types are always
2352/// dependent.
2353class TemplateSpecializationType
2354  : public Type, public llvm::FoldingSetNode {
2355
2356  // FIXME: Currently needed for profiling expressions; can we avoid this?
2357  ASTContext &Context;
2358
2359    /// \brief The name of the template being specialized.
2360  TemplateName Template;
2361
2362  /// \brief - The number of template arguments named in this class
2363  /// template specialization.
2364  unsigned NumArgs;
2365
2366  TemplateSpecializationType(ASTContext &Context,
2367                             TemplateName T,
2368                             const TemplateArgument *Args,
2369                             unsigned NumArgs, QualType Canon);
2370
2371  virtual void Destroy(ASTContext& C);
2372
2373  friend class ASTContext;  // ASTContext creates these
2374
2375public:
2376  /// \brief Determine whether any of the given template arguments are
2377  /// dependent.
2378  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
2379                                            unsigned NumArgs);
2380
2381  static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
2382                                            unsigned NumArgs);
2383
2384  static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &);
2385
2386  /// \brief Print a template argument list, including the '<' and '>'
2387  /// enclosing the template arguments.
2388  static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
2389                                               unsigned NumArgs,
2390                                               const PrintingPolicy &Policy);
2391
2392  static std::string PrintTemplateArgumentList(const TemplateArgumentLoc *Args,
2393                                               unsigned NumArgs,
2394                                               const PrintingPolicy &Policy);
2395
2396  static std::string PrintTemplateArgumentList(const TemplateArgumentListInfo &,
2397                                               const PrintingPolicy &Policy);
2398
2399  typedef const TemplateArgument * iterator;
2400
2401  iterator begin() const { return getArgs(); }
2402  iterator end() const;
2403
2404  /// \brief Retrieve the name of the template that we are specializing.
2405  TemplateName getTemplateName() const { return Template; }
2406
2407  /// \brief Retrieve the template arguments.
2408  const TemplateArgument *getArgs() const {
2409    return reinterpret_cast<const TemplateArgument *>(this + 1);
2410  }
2411
2412  /// \brief Retrieve the number of template arguments.
2413  unsigned getNumArgs() const { return NumArgs; }
2414
2415  /// \brief Retrieve a specific template argument as a type.
2416  /// \precondition @c isArgType(Arg)
2417  const TemplateArgument &getArg(unsigned Idx) const;
2418
2419  bool isSugared() const { return !isDependentType(); }
2420  QualType desugar() const { return getCanonicalTypeInternal(); }
2421
2422  void Profile(llvm::FoldingSetNodeID &ID) {
2423    Profile(ID, Template, getArgs(), NumArgs, Context);
2424  }
2425
2426  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
2427                      const TemplateArgument *Args, unsigned NumArgs,
2428                      ASTContext &Context);
2429
2430  static bool classof(const Type *T) {
2431    return T->getTypeClass() == TemplateSpecialization;
2432  }
2433  static bool classof(const TemplateSpecializationType *T) { return true; }
2434};
2435
2436/// \brief Represents a type that was referred to via a qualified
2437/// name, e.g., N::M::type.
2438///
2439/// This type is used to keep track of a type name as written in the
2440/// source code, including any nested-name-specifiers. The type itself
2441/// is always "sugar", used to express what was written in the source
2442/// code but containing no additional semantic information.
2443class QualifiedNameType : public Type, public llvm::FoldingSetNode {
2444  /// \brief The nested name specifier containing the qualifier.
2445  NestedNameSpecifier *NNS;
2446
2447  /// \brief The type that this qualified name refers to.
2448  QualType NamedType;
2449
2450  QualifiedNameType(NestedNameSpecifier *NNS, QualType NamedType,
2451                    QualType CanonType)
2452    : Type(QualifiedName, CanonType, NamedType->isDependentType()),
2453      NNS(NNS), NamedType(NamedType) { }
2454
2455  friend class ASTContext;  // ASTContext creates these
2456
2457public:
2458  /// \brief Retrieve the qualification on this type.
2459  NestedNameSpecifier *getQualifier() const { return NNS; }
2460
2461  /// \brief Retrieve the type named by the qualified-id.
2462  QualType getNamedType() const { return NamedType; }
2463
2464  /// \brief Remove a single level of sugar.
2465  QualType desugar() const { return getNamedType(); }
2466
2467  /// \brief Returns whether this type directly provides sugar.
2468  bool isSugared() const { return true; }
2469
2470  void Profile(llvm::FoldingSetNodeID &ID) {
2471    Profile(ID, NNS, NamedType);
2472  }
2473
2474  static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
2475                      QualType NamedType) {
2476    ID.AddPointer(NNS);
2477    NamedType.Profile(ID);
2478  }
2479
2480  static bool classof(const Type *T) {
2481    return T->getTypeClass() == QualifiedName;
2482  }
2483  static bool classof(const QualifiedNameType *T) { return true; }
2484};
2485
2486/// \brief Represents a 'typename' specifier that names a type within
2487/// a dependent type, e.g., "typename T::type".
2488///
2489/// TypenameType has a very similar structure to QualifiedNameType,
2490/// which also involves a nested-name-specifier following by a type,
2491/// and (FIXME!) both can even be prefixed by the 'typename'
2492/// keyword. However, the two types serve very different roles:
2493/// QualifiedNameType is a non-semantic type that serves only as sugar
2494/// to show how a particular type was written in the source
2495/// code. TypenameType, on the other hand, only occurs when the
2496/// nested-name-specifier is dependent, such that we cannot resolve
2497/// the actual type until after instantiation.
2498class TypenameType : public Type, public llvm::FoldingSetNode {
2499  /// \brief The nested name specifier containing the qualifier.
2500  NestedNameSpecifier *NNS;
2501
2502  typedef llvm::PointerUnion<const IdentifierInfo *,
2503                             const TemplateSpecializationType *> NameType;
2504
2505  /// \brief The type that this typename specifier refers to.
2506  NameType Name;
2507
2508  TypenameType(NestedNameSpecifier *NNS, const IdentifierInfo *Name,
2509               QualType CanonType)
2510    : Type(Typename, CanonType, true), NNS(NNS), Name(Name) {
2511    assert(NNS->isDependent() &&
2512           "TypenameType requires a dependent nested-name-specifier");
2513  }
2514
2515  TypenameType(NestedNameSpecifier *NNS, const TemplateSpecializationType *Ty,
2516               QualType CanonType)
2517    : Type(Typename, CanonType, true), NNS(NNS), Name(Ty) {
2518    assert(NNS->isDependent() &&
2519           "TypenameType requires a dependent nested-name-specifier");
2520  }
2521
2522  friend class ASTContext;  // ASTContext creates these
2523
2524public:
2525  /// \brief Retrieve the qualification on this type.
2526  NestedNameSpecifier *getQualifier() const { return NNS; }
2527
2528  /// \brief Retrieve the type named by the typename specifier as an
2529  /// identifier.
2530  ///
2531  /// This routine will return a non-NULL identifier pointer when the
2532  /// form of the original typename was terminated by an identifier,
2533  /// e.g., "typename T::type".
2534  const IdentifierInfo *getIdentifier() const {
2535    return Name.dyn_cast<const IdentifierInfo *>();
2536  }
2537
2538  /// \brief Retrieve the type named by the typename specifier as a
2539  /// type specialization.
2540  const TemplateSpecializationType *getTemplateId() const {
2541    return Name.dyn_cast<const TemplateSpecializationType *>();
2542  }
2543
2544  bool isSugared() const { return false; }
2545  QualType desugar() const { return QualType(this, 0); }
2546
2547  void Profile(llvm::FoldingSetNodeID &ID) {
2548    Profile(ID, NNS, Name);
2549  }
2550
2551  static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
2552                      NameType Name) {
2553    ID.AddPointer(NNS);
2554    ID.AddPointer(Name.getOpaqueValue());
2555  }
2556
2557  static bool classof(const Type *T) {
2558    return T->getTypeClass() == Typename;
2559  }
2560  static bool classof(const TypenameType *T) { return true; }
2561};
2562
2563/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
2564/// object oriented design.  They basically correspond to C++ classes.  There
2565/// are two kinds of interface types, normal interfaces like "NSString" and
2566/// qualified interfaces, which are qualified with a protocol list like
2567/// "NSString<NSCopyable, NSAmazing>".
2568class ObjCInterfaceType : public Type, public llvm::FoldingSetNode {
2569  ObjCInterfaceDecl *Decl;
2570
2571  /// \brief The number of protocols stored after the ObjCInterfaceType node.
2572  /// The list of protocols is sorted on protocol name. No protocol is enterred
2573  /// more than once.
2574  unsigned NumProtocols;
2575
2576  ObjCInterfaceType(QualType Canonical, ObjCInterfaceDecl *D,
2577                    ObjCProtocolDecl **Protos, unsigned NumP);
2578  friend class ASTContext;  // ASTContext creates these.
2579public:
2580  void Destroy(ASTContext& C);
2581
2582  ObjCInterfaceDecl *getDecl() const { return Decl; }
2583
2584  /// getNumProtocols - Return the number of qualifying protocols in this
2585  /// interface type, or 0 if there are none.
2586  unsigned getNumProtocols() const { return NumProtocols; }
2587
2588  /// \brief Retrieve the Ith protocol.
2589  ObjCProtocolDecl *getProtocol(unsigned I) const {
2590    assert(I < getNumProtocols() && "Out-of-range protocol access");
2591    return qual_begin()[I];
2592  }
2593
2594  /// qual_iterator and friends: this provides access to the (potentially empty)
2595  /// list of protocols qualifying this interface.
2596  typedef ObjCProtocolDecl*  const * qual_iterator;
2597  qual_iterator qual_begin() const {
2598    return reinterpret_cast<qual_iterator>(this + 1);
2599  }
2600  qual_iterator qual_end() const   {
2601    return qual_begin() + NumProtocols;
2602  }
2603  bool qual_empty() const { return NumProtocols == 0; }
2604
2605  bool isSugared() const { return false; }
2606  QualType desugar() const { return QualType(this, 0); }
2607
2608  void Profile(llvm::FoldingSetNodeID &ID);
2609  static void Profile(llvm::FoldingSetNodeID &ID,
2610                      const ObjCInterfaceDecl *Decl,
2611                      ObjCProtocolDecl * const *protocols,
2612                      unsigned NumProtocols);
2613
2614  virtual Linkage getLinkage() const;
2615
2616  static bool classof(const Type *T) {
2617    return T->getTypeClass() == ObjCInterface;
2618  }
2619  static bool classof(const ObjCInterfaceType *) { return true; }
2620};
2621
2622/// ObjCObjectPointerType - Used to represent 'id', 'Interface *', 'id <p>',
2623/// and 'Interface <p> *'.
2624///
2625/// Duplicate protocols are removed and protocol list is canonicalized to be in
2626/// alphabetical order.
2627class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
2628  QualType PointeeType; // A builtin or interface type.
2629
2630  /// \brief The number of protocols stored after the ObjCObjectPointerType
2631  /// node.
2632  ///
2633  /// The list of protocols is sorted on protocol name. No protocol is enterred
2634  /// more than once.
2635  unsigned NumProtocols;
2636
2637  ObjCObjectPointerType(QualType Canonical, QualType T,
2638                        ObjCProtocolDecl **Protos, unsigned NumP);
2639  friend class ASTContext;  // ASTContext creates these.
2640
2641public:
2642  void Destroy(ASTContext& C);
2643
2644  // Get the pointee type. Pointee will either be:
2645  // - a built-in type (for 'id' and 'Class').
2646  // - an interface type (for user-defined types).
2647  // - a TypedefType whose canonical type is an interface (as in 'T' below).
2648  //   For example: typedef NSObject T; T *var;
2649  QualType getPointeeType() const { return PointeeType; }
2650
2651  const ObjCInterfaceType *getInterfaceType() const {
2652    return PointeeType->getAs<ObjCInterfaceType>();
2653  }
2654  /// getInterfaceDecl - returns an interface decl for user-defined types.
2655  ObjCInterfaceDecl *getInterfaceDecl() const {
2656    return getInterfaceType() ? getInterfaceType()->getDecl() : 0;
2657  }
2658  /// isObjCIdType - true for "id".
2659  bool isObjCIdType() const {
2660    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCId) &&
2661           !NumProtocols;
2662  }
2663  /// isObjCClassType - true for "Class".
2664  bool isObjCClassType() const {
2665    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCClass) &&
2666           !NumProtocols;
2667  }
2668
2669  /// isObjCQualifiedIdType - true for "id <p>".
2670  bool isObjCQualifiedIdType() const {
2671    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCId) &&
2672           NumProtocols;
2673  }
2674  /// isObjCQualifiedClassType - true for "Class <p>".
2675  bool isObjCQualifiedClassType() const {
2676    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCClass) &&
2677           NumProtocols;
2678  }
2679  /// qual_iterator and friends: this provides access to the (potentially empty)
2680  /// list of protocols qualifying this interface.
2681  typedef ObjCProtocolDecl*  const * qual_iterator;
2682
2683  qual_iterator qual_begin() const {
2684    return reinterpret_cast<qual_iterator> (this + 1);
2685  }
2686  qual_iterator qual_end() const   {
2687    return qual_begin() + NumProtocols;
2688  }
2689  bool qual_empty() const { return NumProtocols == 0; }
2690
2691  /// getNumProtocols - Return the number of qualifying protocols in this
2692  /// interface type, or 0 if there are none.
2693  unsigned getNumProtocols() const { return NumProtocols; }
2694
2695  /// \brief Retrieve the Ith protocol.
2696  ObjCProtocolDecl *getProtocol(unsigned I) const {
2697    assert(I < getNumProtocols() && "Out-of-range protocol access");
2698    return qual_begin()[I];
2699  }
2700
2701  bool isSugared() const { return false; }
2702  QualType desugar() const { return QualType(this, 0); }
2703
2704  virtual Linkage getLinkage() const;
2705
2706  void Profile(llvm::FoldingSetNodeID &ID);
2707  static void Profile(llvm::FoldingSetNodeID &ID, QualType T,
2708                      ObjCProtocolDecl *const *protocols,
2709                      unsigned NumProtocols);
2710  static bool classof(const Type *T) {
2711    return T->getTypeClass() == ObjCObjectPointer;
2712  }
2713  static bool classof(const ObjCObjectPointerType *) { return true; }
2714};
2715
2716/// A qualifier set is used to build a set of qualifiers.
2717class QualifierCollector : public Qualifiers {
2718  ASTContext *Context;
2719
2720public:
2721  QualifierCollector(Qualifiers Qs = Qualifiers())
2722    : Qualifiers(Qs), Context(0) {}
2723  QualifierCollector(ASTContext &Context, Qualifiers Qs = Qualifiers())
2724    : Qualifiers(Qs), Context(&Context) {}
2725
2726  void setContext(ASTContext &C) { Context = &C; }
2727
2728  /// Collect any qualifiers on the given type and return an
2729  /// unqualified type.
2730  const Type *strip(QualType QT) {
2731    addFastQualifiers(QT.getLocalFastQualifiers());
2732    if (QT.hasLocalNonFastQualifiers()) {
2733      const ExtQuals *EQ = QT.getExtQualsUnsafe();
2734      Context = &EQ->getContext();
2735      addQualifiers(EQ->getQualifiers());
2736      return EQ->getBaseType();
2737    }
2738    return QT.getTypePtrUnsafe();
2739  }
2740
2741  /// Apply the collected qualifiers to the given type.
2742  QualType apply(QualType QT) const;
2743
2744  /// Apply the collected qualifiers to the given type.
2745  QualType apply(const Type* T) const;
2746
2747};
2748
2749
2750// Inline function definitions.
2751
2752inline bool QualType::isCanonical() const {
2753  const Type *T = getTypePtr();
2754  if (hasLocalQualifiers())
2755    return T->isCanonicalUnqualified() && !isa<ArrayType>(T);
2756  return T->isCanonicalUnqualified();
2757}
2758
2759inline bool QualType::isCanonicalAsParam() const {
2760  if (hasLocalQualifiers()) return false;
2761  const Type *T = getTypePtr();
2762  return T->isCanonicalUnqualified() &&
2763           !isa<FunctionType>(T) && !isa<ArrayType>(T);
2764}
2765
2766inline bool QualType::isConstQualified() const {
2767  return isLocalConstQualified() ||
2768              getTypePtr()->getCanonicalTypeInternal().isLocalConstQualified();
2769}
2770
2771inline bool QualType::isRestrictQualified() const {
2772  return isLocalRestrictQualified() ||
2773            getTypePtr()->getCanonicalTypeInternal().isLocalRestrictQualified();
2774}
2775
2776
2777inline bool QualType::isVolatileQualified() const {
2778  return isLocalVolatileQualified() ||
2779  getTypePtr()->getCanonicalTypeInternal().isLocalVolatileQualified();
2780}
2781
2782inline bool QualType::hasQualifiers() const {
2783  return hasLocalQualifiers() ||
2784                  getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers();
2785}
2786
2787inline Qualifiers QualType::getQualifiers() const {
2788  Qualifiers Quals = getLocalQualifiers();
2789  Quals.addQualifiers(
2790                 getTypePtr()->getCanonicalTypeInternal().getLocalQualifiers());
2791  return Quals;
2792}
2793
2794inline unsigned QualType::getCVRQualifiers() const {
2795  return getLocalCVRQualifiers() |
2796              getTypePtr()->getCanonicalTypeInternal().getLocalCVRQualifiers();
2797}
2798
2799/// getCVRQualifiersThroughArrayTypes - If there are CVR qualifiers for this
2800/// type, returns them. Otherwise, if this is an array type, recurses
2801/// on the element type until some qualifiers have been found or a non-array
2802/// type reached.
2803inline unsigned QualType::getCVRQualifiersThroughArrayTypes() const {
2804  if (unsigned Quals = getCVRQualifiers())
2805    return Quals;
2806  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2807  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
2808    return AT->getElementType().getCVRQualifiersThroughArrayTypes();
2809  return 0;
2810}
2811
2812inline void QualType::removeConst() {
2813  removeFastQualifiers(Qualifiers::Const);
2814}
2815
2816inline void QualType::removeRestrict() {
2817  removeFastQualifiers(Qualifiers::Restrict);
2818}
2819
2820inline void QualType::removeVolatile() {
2821  QualifierCollector Qc;
2822  const Type *Ty = Qc.strip(*this);
2823  if (Qc.hasVolatile()) {
2824    Qc.removeVolatile();
2825    *this = Qc.apply(Ty);
2826  }
2827}
2828
2829inline void QualType::removeCVRQualifiers(unsigned Mask) {
2830  assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
2831
2832  // Fast path: we don't need to touch the slow qualifiers.
2833  if (!(Mask & ~Qualifiers::FastMask)) {
2834    removeFastQualifiers(Mask);
2835    return;
2836  }
2837
2838  QualifierCollector Qc;
2839  const Type *Ty = Qc.strip(*this);
2840  Qc.removeCVRQualifiers(Mask);
2841  *this = Qc.apply(Ty);
2842}
2843
2844/// getAddressSpace - Return the address space of this type.
2845inline unsigned QualType::getAddressSpace() const {
2846  if (hasLocalNonFastQualifiers()) {
2847    const ExtQuals *EQ = getExtQualsUnsafe();
2848    if (EQ->hasAddressSpace())
2849      return EQ->getAddressSpace();
2850  }
2851
2852  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2853  if (CT.hasLocalNonFastQualifiers()) {
2854    const ExtQuals *EQ = CT.getExtQualsUnsafe();
2855    if (EQ->hasAddressSpace())
2856      return EQ->getAddressSpace();
2857  }
2858
2859  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
2860    return AT->getElementType().getAddressSpace();
2861  if (const RecordType *RT = dyn_cast<RecordType>(CT))
2862    return RT->getAddressSpace();
2863  return 0;
2864}
2865
2866/// getObjCGCAttr - Return the gc attribute of this type.
2867inline Qualifiers::GC QualType::getObjCGCAttr() const {
2868  if (hasLocalNonFastQualifiers()) {
2869    const ExtQuals *EQ = getExtQualsUnsafe();
2870    if (EQ->hasObjCGCAttr())
2871      return EQ->getObjCGCAttr();
2872  }
2873
2874  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2875  if (CT.hasLocalNonFastQualifiers()) {
2876    const ExtQuals *EQ = CT.getExtQualsUnsafe();
2877    if (EQ->hasObjCGCAttr())
2878      return EQ->getObjCGCAttr();
2879  }
2880
2881  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
2882      return AT->getElementType().getObjCGCAttr();
2883  if (const ObjCObjectPointerType *PT = CT->getAs<ObjCObjectPointerType>())
2884    return PT->getPointeeType().getObjCGCAttr();
2885  // We most look at all pointer types, not just pointer to interface types.
2886  if (const PointerType *PT = CT->getAs<PointerType>())
2887    return PT->getPointeeType().getObjCGCAttr();
2888  return Qualifiers::GCNone;
2889}
2890
2891  /// getNoReturnAttr - Returns true if the type has the noreturn attribute,
2892  /// false otherwise.
2893inline bool QualType::getNoReturnAttr() const {
2894  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2895  if (const PointerType *PT = getTypePtr()->getAs<PointerType>()) {
2896    if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
2897      return FT->getNoReturnAttr();
2898  } else if (const FunctionType *FT = getTypePtr()->getAs<FunctionType>())
2899    return FT->getNoReturnAttr();
2900
2901  return false;
2902}
2903
2904/// getCallConv - Returns the calling convention of the type if the type
2905/// is a function type, CC_Default otherwise.
2906inline CallingConv QualType::getCallConv() const {
2907  if (const PointerType *PT = getTypePtr()->getAs<PointerType>())
2908    return PT->getPointeeType().getCallConv();
2909  else if (const ReferenceType *RT = getTypePtr()->getAs<ReferenceType>())
2910    return RT->getPointeeType().getCallConv();
2911  else if (const MemberPointerType *MPT =
2912           getTypePtr()->getAs<MemberPointerType>())
2913    return MPT->getPointeeType().getCallConv();
2914  else if (const BlockPointerType *BPT =
2915           getTypePtr()->getAs<BlockPointerType>()) {
2916    if (const FunctionType *FT = BPT->getPointeeType()->getAs<FunctionType>())
2917      return FT->getCallConv();
2918  } else if (const FunctionType *FT = getTypePtr()->getAs<FunctionType>())
2919    return FT->getCallConv();
2920
2921  return CC_Default;
2922}
2923
2924/// isMoreQualifiedThan - Determine whether this type is more
2925/// qualified than the Other type. For example, "const volatile int"
2926/// is more qualified than "const int", "volatile int", and
2927/// "int". However, it is not more qualified than "const volatile
2928/// int".
2929inline bool QualType::isMoreQualifiedThan(QualType Other) const {
2930  // FIXME: work on arbitrary qualifiers
2931  unsigned MyQuals = this->getCVRQualifiersThroughArrayTypes();
2932  unsigned OtherQuals = Other.getCVRQualifiersThroughArrayTypes();
2933  if (getAddressSpace() != Other.getAddressSpace())
2934    return false;
2935  return MyQuals != OtherQuals && (MyQuals | OtherQuals) == MyQuals;
2936}
2937
2938/// isAtLeastAsQualifiedAs - Determine whether this type is at last
2939/// as qualified as the Other type. For example, "const volatile
2940/// int" is at least as qualified as "const int", "volatile int",
2941/// "int", and "const volatile int".
2942inline bool QualType::isAtLeastAsQualifiedAs(QualType Other) const {
2943  // FIXME: work on arbitrary qualifiers
2944  unsigned MyQuals = this->getCVRQualifiersThroughArrayTypes();
2945  unsigned OtherQuals = Other.getCVRQualifiersThroughArrayTypes();
2946  if (getAddressSpace() != Other.getAddressSpace())
2947    return false;
2948  return (MyQuals | OtherQuals) == MyQuals;
2949}
2950
2951/// getNonReferenceType - If Type is a reference type (e.g., const
2952/// int&), returns the type that the reference refers to ("const
2953/// int"). Otherwise, returns the type itself. This routine is used
2954/// throughout Sema to implement C++ 5p6:
2955///
2956///   If an expression initially has the type "reference to T" (8.3.2,
2957///   8.5.3), the type is adjusted to "T" prior to any further
2958///   analysis, the expression designates the object or function
2959///   denoted by the reference, and the expression is an lvalue.
2960inline QualType QualType::getNonReferenceType() const {
2961  if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
2962    return RefType->getPointeeType();
2963  else
2964    return *this;
2965}
2966
2967inline const ObjCInterfaceType *Type::getAsPointerToObjCInterfaceType() const {
2968  if (const PointerType *PT = getAs<PointerType>())
2969    return PT->getPointeeType()->getAs<ObjCInterfaceType>();
2970  return 0;
2971}
2972
2973inline bool Type::isFunctionType() const {
2974  return isa<FunctionType>(CanonicalType);
2975}
2976inline bool Type::isPointerType() const {
2977  return isa<PointerType>(CanonicalType);
2978}
2979inline bool Type::isAnyPointerType() const {
2980  return isPointerType() || isObjCObjectPointerType();
2981}
2982inline bool Type::isBlockPointerType() const {
2983  return isa<BlockPointerType>(CanonicalType);
2984}
2985inline bool Type::isReferenceType() const {
2986  return isa<ReferenceType>(CanonicalType);
2987}
2988inline bool Type::isLValueReferenceType() const {
2989  return isa<LValueReferenceType>(CanonicalType);
2990}
2991inline bool Type::isRValueReferenceType() const {
2992  return isa<RValueReferenceType>(CanonicalType);
2993}
2994inline bool Type::isFunctionPointerType() const {
2995  if (const PointerType* T = getAs<PointerType>())
2996    return T->getPointeeType()->isFunctionType();
2997  else
2998    return false;
2999}
3000inline bool Type::isMemberPointerType() const {
3001  return isa<MemberPointerType>(CanonicalType);
3002}
3003inline bool Type::isMemberFunctionPointerType() const {
3004  if (const MemberPointerType* T = getAs<MemberPointerType>())
3005    return T->getPointeeType()->isFunctionType();
3006  else
3007    return false;
3008}
3009inline bool Type::isArrayType() const {
3010  return isa<ArrayType>(CanonicalType);
3011}
3012inline bool Type::isConstantArrayType() const {
3013  return isa<ConstantArrayType>(CanonicalType);
3014}
3015inline bool Type::isIncompleteArrayType() const {
3016  return isa<IncompleteArrayType>(CanonicalType);
3017}
3018inline bool Type::isVariableArrayType() const {
3019  return isa<VariableArrayType>(CanonicalType);
3020}
3021inline bool Type::isDependentSizedArrayType() const {
3022  return isa<DependentSizedArrayType>(CanonicalType);
3023}
3024inline bool Type::isRecordType() const {
3025  return isa<RecordType>(CanonicalType);
3026}
3027inline bool Type::isAnyComplexType() const {
3028  return isa<ComplexType>(CanonicalType);
3029}
3030inline bool Type::isVectorType() const {
3031  return isa<VectorType>(CanonicalType);
3032}
3033inline bool Type::isExtVectorType() const {
3034  return isa<ExtVectorType>(CanonicalType);
3035}
3036inline bool Type::isObjCObjectPointerType() const {
3037  return isa<ObjCObjectPointerType>(CanonicalType);
3038}
3039inline bool Type::isObjCInterfaceType() const {
3040  return isa<ObjCInterfaceType>(CanonicalType);
3041}
3042inline bool Type::isObjCQualifiedIdType() const {
3043  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3044    return OPT->isObjCQualifiedIdType();
3045  return false;
3046}
3047inline bool Type::isObjCQualifiedClassType() const {
3048  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3049    return OPT->isObjCQualifiedClassType();
3050  return false;
3051}
3052inline bool Type::isObjCIdType() const {
3053  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3054    return OPT->isObjCIdType();
3055  return false;
3056}
3057inline bool Type::isObjCClassType() const {
3058  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3059    return OPT->isObjCClassType();
3060  return false;
3061}
3062inline bool Type::isObjCSelType() const {
3063  if (const PointerType *OPT = getAs<PointerType>())
3064    return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
3065  return false;
3066}
3067inline bool Type::isObjCBuiltinType() const {
3068  return isObjCIdType() || isObjCClassType() || isObjCSelType();
3069}
3070inline bool Type::isTemplateTypeParmType() const {
3071  return isa<TemplateTypeParmType>(CanonicalType);
3072}
3073
3074inline bool Type::isSpecificBuiltinType(unsigned K) const {
3075  if (const BuiltinType *BT = getAs<BuiltinType>())
3076    if (BT->getKind() == (BuiltinType::Kind) K)
3077      return true;
3078  return false;
3079}
3080
3081/// \brief Determines whether this is a type for which one can define
3082/// an overloaded operator.
3083inline bool Type::isOverloadableType() const {
3084  return isDependentType() || isRecordType() || isEnumeralType();
3085}
3086
3087inline bool Type::hasPointerRepresentation() const {
3088  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
3089          isObjCInterfaceType() || isObjCObjectPointerType() ||
3090          isObjCQualifiedInterfaceType() || isNullPtrType());
3091}
3092
3093inline bool Type::hasObjCPointerRepresentation() const {
3094  return (isObjCInterfaceType() || isObjCObjectPointerType() ||
3095          isObjCQualifiedInterfaceType());
3096}
3097
3098/// Insertion operator for diagnostics.  This allows sending QualType's into a
3099/// diagnostic with <<.
3100inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
3101                                           QualType T) {
3102  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
3103                  Diagnostic::ak_qualtype);
3104  return DB;
3105}
3106
3107// Helper class template that is used by Type::getAs to ensure that one does
3108// not try to look through a qualified type to get to an array type.
3109template<typename T,
3110         bool isArrayType = (llvm::is_same<T, ArrayType>::value ||
3111                             llvm::is_base_of<ArrayType, T>::value)>
3112struct ArrayType_cannot_be_used_with_getAs { };
3113
3114template<typename T>
3115struct ArrayType_cannot_be_used_with_getAs<T, true>;
3116
3117/// Member-template getAs<specific type>'.
3118template <typename T> const T *Type::getAs() const {
3119  ArrayType_cannot_be_used_with_getAs<T> at;
3120  (void)at;
3121
3122  // If this is directly a T type, return it.
3123  if (const T *Ty = dyn_cast<T>(this))
3124    return Ty;
3125
3126  // If the canonical form of this type isn't the right kind, reject it.
3127  if (!isa<T>(CanonicalType))
3128    return 0;
3129
3130  // If this is a typedef for the type, strip the typedef off without
3131  // losing all typedef information.
3132  return cast<T>(getUnqualifiedDesugaredType());
3133}
3134
3135}  // end namespace clang
3136
3137#endif
3138