Type.h revision e81fdb1fdde48d3fa18df56c5797f6b0bc5dfc4a
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/AST/NestedNameSpecifier.h"
18#include "clang/AST/TemplateName.h"
19#include "clang/Basic/Diagnostic.h"
20#include "clang/Basic/ExceptionSpecificationType.h"
21#include "clang/Basic/IdentifierTable.h"
22#include "clang/Basic/LLVM.h"
23#include "clang/Basic/Linkage.h"
24#include "clang/Basic/PartialDiagnostic.h"
25#include "clang/Basic/Specifiers.h"
26#include "clang/Basic/Visibility.h"
27#include "llvm/ADT/APSInt.h"
28#include "llvm/ADT/FoldingSet.h"
29#include "llvm/ADT/Optional.h"
30#include "llvm/ADT/PointerIntPair.h"
31#include "llvm/ADT/PointerUnion.h"
32#include "llvm/ADT/Twine.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/type_traits.h"
35
36namespace clang {
37  enum {
38    TypeAlignmentInBits = 4,
39    TypeAlignment = 1 << TypeAlignmentInBits
40  };
41  class Type;
42  class ExtQuals;
43  class QualType;
44}
45
46namespace llvm {
47  template <typename T>
48  class PointerLikeTypeTraits;
49  template<>
50  class PointerLikeTypeTraits< ::clang::Type*> {
51  public:
52    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
53    static inline ::clang::Type *getFromVoidPointer(void *P) {
54      return static_cast< ::clang::Type*>(P);
55    }
56    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
57  };
58  template<>
59  class PointerLikeTypeTraits< ::clang::ExtQuals*> {
60  public:
61    static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
62    static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
63      return static_cast< ::clang::ExtQuals*>(P);
64    }
65    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
66  };
67
68  template <>
69  struct isPodLike<clang::QualType> { static const bool value = true; };
70}
71
72namespace clang {
73  class ASTContext;
74  class TypedefNameDecl;
75  class TemplateDecl;
76  class TemplateTypeParmDecl;
77  class NonTypeTemplateParmDecl;
78  class TemplateTemplateParmDecl;
79  class TagDecl;
80  class RecordDecl;
81  class CXXRecordDecl;
82  class EnumDecl;
83  class FieldDecl;
84  class FunctionDecl;
85  class ObjCInterfaceDecl;
86  class ObjCProtocolDecl;
87  class ObjCMethodDecl;
88  class UnresolvedUsingTypenameDecl;
89  class Expr;
90  class Stmt;
91  class SourceLocation;
92  class StmtIteratorBase;
93  class TemplateArgument;
94  class TemplateArgumentLoc;
95  class TemplateArgumentListInfo;
96  class ElaboratedType;
97  class ExtQuals;
98  class ExtQualsTypeCommonBase;
99  struct PrintingPolicy;
100
101  template <typename> class CanQual;
102  typedef CanQual<Type> CanQualType;
103
104  // Provide forward declarations for all of the *Type classes
105#define TYPE(Class, Base) class Class##Type;
106#include "clang/AST/TypeNodes.def"
107
108/// Qualifiers - The collection of all-type qualifiers we support.
109/// Clang supports five independent qualifiers:
110/// * C99: const, volatile, and restrict
111/// * Embedded C (TR18037): address spaces
112/// * Objective C: the GC attributes (none, weak, or strong)
113class Qualifiers {
114public:
115  enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
116    Const    = 0x1,
117    Restrict = 0x2,
118    Volatile = 0x4,
119    CVRMask = Const | Volatile | Restrict
120  };
121
122  enum GC {
123    GCNone = 0,
124    Weak,
125    Strong
126  };
127
128  enum ObjCLifetime {
129    /// There is no lifetime qualification on this type.
130    OCL_None,
131
132    /// This object can be modified without requiring retains or
133    /// releases.
134    OCL_ExplicitNone,
135
136    /// Assigning into this object requires the old value to be
137    /// released and the new value to be retained.  The timing of the
138    /// release of the old value is inexact: it may be moved to
139    /// immediately after the last known point where the value is
140    /// live.
141    OCL_Strong,
142
143    /// Reading or writing from this object requires a barrier call.
144    OCL_Weak,
145
146    /// Assigning into this object requires a lifetime extension.
147    OCL_Autoreleasing
148  };
149
150  enum {
151    /// The maximum supported address space number.
152    /// 24 bits should be enough for anyone.
153    MaxAddressSpace = 0xffffffu,
154
155    /// The width of the "fast" qualifier mask.
156    FastWidth = 3,
157
158    /// The fast qualifier mask.
159    FastMask = (1 << FastWidth) - 1
160  };
161
162  Qualifiers() : Mask(0) {}
163
164  /// \brief Returns the common set of qualifiers while removing them from
165  /// the given sets.
166  static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
167    // If both are only CVR-qualified, bit operations are sufficient.
168    if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
169      Qualifiers Q;
170      Q.Mask = L.Mask & R.Mask;
171      L.Mask &= ~Q.Mask;
172      R.Mask &= ~Q.Mask;
173      return Q;
174    }
175
176    Qualifiers Q;
177    unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
178    Q.addCVRQualifiers(CommonCRV);
179    L.removeCVRQualifiers(CommonCRV);
180    R.removeCVRQualifiers(CommonCRV);
181
182    if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
183      Q.setObjCGCAttr(L.getObjCGCAttr());
184      L.removeObjCGCAttr();
185      R.removeObjCGCAttr();
186    }
187
188    if (L.getObjCLifetime() == R.getObjCLifetime()) {
189      Q.setObjCLifetime(L.getObjCLifetime());
190      L.removeObjCLifetime();
191      R.removeObjCLifetime();
192    }
193
194    if (L.getAddressSpace() == R.getAddressSpace()) {
195      Q.setAddressSpace(L.getAddressSpace());
196      L.removeAddressSpace();
197      R.removeAddressSpace();
198    }
199    return Q;
200  }
201
202  static Qualifiers fromFastMask(unsigned Mask) {
203    Qualifiers Qs;
204    Qs.addFastQualifiers(Mask);
205    return Qs;
206  }
207
208  static Qualifiers fromCVRMask(unsigned CVR) {
209    Qualifiers Qs;
210    Qs.addCVRQualifiers(CVR);
211    return Qs;
212  }
213
214  // Deserialize qualifiers from an opaque representation.
215  static Qualifiers fromOpaqueValue(unsigned opaque) {
216    Qualifiers Qs;
217    Qs.Mask = opaque;
218    return Qs;
219  }
220
221  // Serialize these qualifiers into an opaque representation.
222  unsigned getAsOpaqueValue() const {
223    return Mask;
224  }
225
226  bool hasConst() const { return Mask & Const; }
227  void setConst(bool flag) {
228    Mask = (Mask & ~Const) | (flag ? Const : 0);
229  }
230  void removeConst() { Mask &= ~Const; }
231  void addConst() { Mask |= Const; }
232
233  bool hasVolatile() const { return Mask & Volatile; }
234  void setVolatile(bool flag) {
235    Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
236  }
237  void removeVolatile() { Mask &= ~Volatile; }
238  void addVolatile() { Mask |= Volatile; }
239
240  bool hasRestrict() const { return Mask & Restrict; }
241  void setRestrict(bool flag) {
242    Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
243  }
244  void removeRestrict() { Mask &= ~Restrict; }
245  void addRestrict() { Mask |= Restrict; }
246
247  bool hasCVRQualifiers() const { return getCVRQualifiers(); }
248  unsigned getCVRQualifiers() const { return Mask & CVRMask; }
249  void setCVRQualifiers(unsigned mask) {
250    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
251    Mask = (Mask & ~CVRMask) | mask;
252  }
253  void removeCVRQualifiers(unsigned mask) {
254    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
255    Mask &= ~mask;
256  }
257  void removeCVRQualifiers() {
258    removeCVRQualifiers(CVRMask);
259  }
260  void addCVRQualifiers(unsigned mask) {
261    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
262    Mask |= mask;
263  }
264
265  bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
266  GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
267  void setObjCGCAttr(GC type) {
268    Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
269  }
270  void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
271  void addObjCGCAttr(GC type) {
272    assert(type);
273    setObjCGCAttr(type);
274  }
275  Qualifiers withoutObjCGCAttr() const {
276    Qualifiers qs = *this;
277    qs.removeObjCGCAttr();
278    return qs;
279  }
280  Qualifiers withoutObjCLifetime() const {
281    Qualifiers qs = *this;
282    qs.removeObjCLifetime();
283    return qs;
284  }
285
286  bool hasObjCLifetime() const { return Mask & LifetimeMask; }
287  ObjCLifetime getObjCLifetime() const {
288    return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
289  }
290  void setObjCLifetime(ObjCLifetime type) {
291    Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
292  }
293  void removeObjCLifetime() { setObjCLifetime(OCL_None); }
294  void addObjCLifetime(ObjCLifetime type) {
295    assert(type);
296    assert(!hasObjCLifetime());
297    Mask |= (type << LifetimeShift);
298  }
299
300  /// True if the lifetime is neither None or ExplicitNone.
301  bool hasNonTrivialObjCLifetime() const {
302    ObjCLifetime lifetime = getObjCLifetime();
303    return (lifetime > OCL_ExplicitNone);
304  }
305
306  /// True if the lifetime is either strong or weak.
307  bool hasStrongOrWeakObjCLifetime() const {
308    ObjCLifetime lifetime = getObjCLifetime();
309    return (lifetime == OCL_Strong || lifetime == OCL_Weak);
310  }
311
312  bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
313  unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
314  void setAddressSpace(unsigned space) {
315    assert(space <= MaxAddressSpace);
316    Mask = (Mask & ~AddressSpaceMask)
317         | (((uint32_t) space) << AddressSpaceShift);
318  }
319  void removeAddressSpace() { setAddressSpace(0); }
320  void addAddressSpace(unsigned space) {
321    assert(space);
322    setAddressSpace(space);
323  }
324
325  // Fast qualifiers are those that can be allocated directly
326  // on a QualType object.
327  bool hasFastQualifiers() const { return getFastQualifiers(); }
328  unsigned getFastQualifiers() const { return Mask & FastMask; }
329  void setFastQualifiers(unsigned mask) {
330    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
331    Mask = (Mask & ~FastMask) | mask;
332  }
333  void removeFastQualifiers(unsigned mask) {
334    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
335    Mask &= ~mask;
336  }
337  void removeFastQualifiers() {
338    removeFastQualifiers(FastMask);
339  }
340  void addFastQualifiers(unsigned mask) {
341    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
342    Mask |= mask;
343  }
344
345  /// hasNonFastQualifiers - Return true if the set contains any
346  /// qualifiers which require an ExtQuals node to be allocated.
347  bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
348  Qualifiers getNonFastQualifiers() const {
349    Qualifiers Quals = *this;
350    Quals.setFastQualifiers(0);
351    return Quals;
352  }
353
354  /// hasQualifiers - Return true if the set contains any qualifiers.
355  bool hasQualifiers() const { return Mask; }
356  bool empty() const { return !Mask; }
357
358  /// \brief Add the qualifiers from the given set to this set.
359  void addQualifiers(Qualifiers Q) {
360    // If the other set doesn't have any non-boolean qualifiers, just
361    // bit-or it in.
362    if (!(Q.Mask & ~CVRMask))
363      Mask |= Q.Mask;
364    else {
365      Mask |= (Q.Mask & CVRMask);
366      if (Q.hasAddressSpace())
367        addAddressSpace(Q.getAddressSpace());
368      if (Q.hasObjCGCAttr())
369        addObjCGCAttr(Q.getObjCGCAttr());
370      if (Q.hasObjCLifetime())
371        addObjCLifetime(Q.getObjCLifetime());
372    }
373  }
374
375  /// \brief Remove the qualifiers from the given set from this set.
376  void removeQualifiers(Qualifiers Q) {
377    // If the other set doesn't have any non-boolean qualifiers, just
378    // bit-and the inverse in.
379    if (!(Q.Mask & ~CVRMask))
380      Mask &= ~Q.Mask;
381    else {
382      Mask &= ~(Q.Mask & CVRMask);
383      if (getObjCGCAttr() == Q.getObjCGCAttr())
384        removeObjCGCAttr();
385      if (getObjCLifetime() == Q.getObjCLifetime())
386        removeObjCLifetime();
387      if (getAddressSpace() == Q.getAddressSpace())
388        removeAddressSpace();
389    }
390  }
391
392  /// \brief Add the qualifiers from the given set to this set, given that
393  /// they don't conflict.
394  void addConsistentQualifiers(Qualifiers qs) {
395    assert(getAddressSpace() == qs.getAddressSpace() ||
396           !hasAddressSpace() || !qs.hasAddressSpace());
397    assert(getObjCGCAttr() == qs.getObjCGCAttr() ||
398           !hasObjCGCAttr() || !qs.hasObjCGCAttr());
399    assert(getObjCLifetime() == qs.getObjCLifetime() ||
400           !hasObjCLifetime() || !qs.hasObjCLifetime());
401    Mask |= qs.Mask;
402  }
403
404  /// \brief Determines if these qualifiers compatibly include another set.
405  /// Generally this answers the question of whether an object with the other
406  /// qualifiers can be safely used as an object with these qualifiers.
407  bool compatiblyIncludes(Qualifiers other) const {
408    return
409      // Address spaces must match exactly.
410      getAddressSpace() == other.getAddressSpace() &&
411      // ObjC GC qualifiers can match, be added, or be removed, but can't be
412      // changed.
413      (getObjCGCAttr() == other.getObjCGCAttr() ||
414       !hasObjCGCAttr() || !other.hasObjCGCAttr()) &&
415      // ObjC lifetime qualifiers must match exactly.
416      getObjCLifetime() == other.getObjCLifetime() &&
417      // CVR qualifiers may subset.
418      (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask));
419  }
420
421  /// \brief Determines if these qualifiers compatibly include another set of
422  /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
423  ///
424  /// One set of Objective-C lifetime qualifiers compatibly includes the other
425  /// if the lifetime qualifiers match, or if both are non-__weak and the
426  /// including set also contains the 'const' qualifier.
427  bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
428    if (getObjCLifetime() == other.getObjCLifetime())
429      return true;
430
431    if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
432      return false;
433
434    return hasConst();
435  }
436
437  /// \brief Determine whether this set of qualifiers is a strict superset of
438  /// another set of qualifiers, not considering qualifier compatibility.
439  bool isStrictSupersetOf(Qualifiers Other) const;
440
441  bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
442  bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
443
444  operator bool() const { return hasQualifiers(); }
445
446  Qualifiers &operator+=(Qualifiers R) {
447    addQualifiers(R);
448    return *this;
449  }
450
451  // Union two qualifier sets.  If an enumerated qualifier appears
452  // in both sets, use the one from the right.
453  friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
454    L += R;
455    return L;
456  }
457
458  Qualifiers &operator-=(Qualifiers R) {
459    removeQualifiers(R);
460    return *this;
461  }
462
463  /// \brief Compute the difference between two qualifier sets.
464  friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
465    L -= R;
466    return L;
467  }
468
469  std::string getAsString() const;
470  std::string getAsString(const PrintingPolicy &Policy) const;
471
472  bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
473  void print(raw_ostream &OS, const PrintingPolicy &Policy,
474             bool appendSpaceIfNonEmpty = false) const;
475
476  void Profile(llvm::FoldingSetNodeID &ID) const {
477    ID.AddInteger(Mask);
478  }
479
480private:
481
482  // bits:     |0 1 2|3 .. 4|5  ..  7|8   ...   31|
483  //           |C R V|GCAttr|Lifetime|AddressSpace|
484  uint32_t Mask;
485
486  static const uint32_t GCAttrMask = 0x18;
487  static const uint32_t GCAttrShift = 3;
488  static const uint32_t LifetimeMask = 0xE0;
489  static const uint32_t LifetimeShift = 5;
490  static const uint32_t AddressSpaceMask = ~(CVRMask|GCAttrMask|LifetimeMask);
491  static const uint32_t AddressSpaceShift = 8;
492};
493
494/// A std::pair-like structure for storing a qualified type split
495/// into its local qualifiers and its locally-unqualified type.
496struct SplitQualType {
497  /// The locally-unqualified type.
498  const Type *Ty;
499
500  /// The local qualifiers.
501  Qualifiers Quals;
502
503  SplitQualType() : Ty(0), Quals() {}
504  SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
505
506  SplitQualType getSingleStepDesugaredType() const; // end of this file
507
508  // Make llvm::tie work.
509  operator std::pair<const Type *,Qualifiers>() const {
510    return std::pair<const Type *,Qualifiers>(Ty, Quals);
511  }
512
513  friend bool operator==(SplitQualType a, SplitQualType b) {
514    return a.Ty == b.Ty && a.Quals == b.Quals;
515  }
516  friend bool operator!=(SplitQualType a, SplitQualType b) {
517    return a.Ty != b.Ty || a.Quals != b.Quals;
518  }
519};
520
521/// QualType - For efficiency, we don't store CV-qualified types as nodes on
522/// their own: instead each reference to a type stores the qualifiers.  This
523/// greatly reduces the number of nodes we need to allocate for types (for
524/// example we only need one for 'int', 'const int', 'volatile int',
525/// 'const volatile int', etc).
526///
527/// As an added efficiency bonus, instead of making this a pair, we
528/// just store the two bits we care about in the low bits of the
529/// pointer.  To handle the packing/unpacking, we make QualType be a
530/// simple wrapper class that acts like a smart pointer.  A third bit
531/// indicates whether there are extended qualifiers present, in which
532/// case the pointer points to a special structure.
533class QualType {
534  // Thankfully, these are efficiently composable.
535  llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
536                       Qualifiers::FastWidth> Value;
537
538  const ExtQuals *getExtQualsUnsafe() const {
539    return Value.getPointer().get<const ExtQuals*>();
540  }
541
542  const Type *getTypePtrUnsafe() const {
543    return Value.getPointer().get<const Type*>();
544  }
545
546  const ExtQualsTypeCommonBase *getCommonPtr() const {
547    assert(!isNull() && "Cannot retrieve a NULL type pointer");
548    uintptr_t CommonPtrVal
549      = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
550    CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
551    return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
552  }
553
554  friend class QualifierCollector;
555public:
556  QualType() {}
557
558  QualType(const Type *Ptr, unsigned Quals)
559    : Value(Ptr, Quals) {}
560  QualType(const ExtQuals *Ptr, unsigned Quals)
561    : Value(Ptr, Quals) {}
562
563  unsigned getLocalFastQualifiers() const { return Value.getInt(); }
564  void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
565
566  /// Retrieves a pointer to the underlying (unqualified) type.
567  ///
568  /// This function requires that the type not be NULL. If the type might be
569  /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
570  const Type *getTypePtr() const;
571
572  const Type *getTypePtrOrNull() const;
573
574  /// Retrieves a pointer to the name of the base type.
575  const IdentifierInfo *getBaseTypeIdentifier() const;
576
577  /// Divides a QualType into its unqualified type and a set of local
578  /// qualifiers.
579  SplitQualType split() const;
580
581  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
582  static QualType getFromOpaquePtr(const void *Ptr) {
583    QualType T;
584    T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
585    return T;
586  }
587
588  const Type &operator*() const {
589    return *getTypePtr();
590  }
591
592  const Type *operator->() const {
593    return getTypePtr();
594  }
595
596  bool isCanonical() const;
597  bool isCanonicalAsParam() const;
598
599  /// isNull - Return true if this QualType doesn't point to a type yet.
600  bool isNull() const {
601    return Value.getPointer().isNull();
602  }
603
604  /// \brief Determine whether this particular QualType instance has the
605  /// "const" qualifier set, without looking through typedefs that may have
606  /// added "const" at a different level.
607  bool isLocalConstQualified() const {
608    return (getLocalFastQualifiers() & Qualifiers::Const);
609  }
610
611  /// \brief Determine whether this type is const-qualified.
612  bool isConstQualified() const;
613
614  /// \brief Determine whether this particular QualType instance has the
615  /// "restrict" qualifier set, without looking through typedefs that may have
616  /// added "restrict" at a different level.
617  bool isLocalRestrictQualified() const {
618    return (getLocalFastQualifiers() & Qualifiers::Restrict);
619  }
620
621  /// \brief Determine whether this type is restrict-qualified.
622  bool isRestrictQualified() const;
623
624  /// \brief Determine whether this particular QualType instance has the
625  /// "volatile" qualifier set, without looking through typedefs that may have
626  /// added "volatile" at a different level.
627  bool isLocalVolatileQualified() const {
628    return (getLocalFastQualifiers() & Qualifiers::Volatile);
629  }
630
631  /// \brief Determine whether this type is volatile-qualified.
632  bool isVolatileQualified() const;
633
634  /// \brief Determine whether this particular QualType instance has any
635  /// qualifiers, without looking through any typedefs that might add
636  /// qualifiers at a different level.
637  bool hasLocalQualifiers() const {
638    return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
639  }
640
641  /// \brief Determine whether this type has any qualifiers.
642  bool hasQualifiers() const;
643
644  /// \brief Determine whether this particular QualType instance has any
645  /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
646  /// instance.
647  bool hasLocalNonFastQualifiers() const {
648    return Value.getPointer().is<const ExtQuals*>();
649  }
650
651  /// \brief Retrieve the set of qualifiers local to this particular QualType
652  /// instance, not including any qualifiers acquired through typedefs or
653  /// other sugar.
654  Qualifiers getLocalQualifiers() const;
655
656  /// \brief Retrieve the set of qualifiers applied to this type.
657  Qualifiers getQualifiers() const;
658
659  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
660  /// local to this particular QualType instance, not including any qualifiers
661  /// acquired through typedefs or other sugar.
662  unsigned getLocalCVRQualifiers() const {
663    return getLocalFastQualifiers();
664  }
665
666  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
667  /// applied to this type.
668  unsigned getCVRQualifiers() const;
669
670  bool isConstant(ASTContext& Ctx) const {
671    return QualType::isConstant(*this, Ctx);
672  }
673
674  /// \brief Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
675  bool isPODType(ASTContext &Context) const;
676
677  /// isCXX98PODType() - Return true if this is a POD type according to the
678  /// rules of the C++98 standard, regardless of the current compilation's
679  /// language.
680  bool isCXX98PODType(ASTContext &Context) const;
681
682  /// isCXX11PODType() - Return true if this is a POD type according to the
683  /// more relaxed rules of the C++11 standard, regardless of the current
684  /// compilation's language.
685  /// (C++0x [basic.types]p9)
686  bool isCXX11PODType(ASTContext &Context) const;
687
688  /// isTrivialType - Return true if this is a trivial type
689  /// (C++0x [basic.types]p9)
690  bool isTrivialType(ASTContext &Context) const;
691
692  /// isTriviallyCopyableType - Return true if this is a trivially
693  /// copyable type (C++0x [basic.types]p9)
694  bool isTriviallyCopyableType(ASTContext &Context) const;
695
696  // Don't promise in the API that anything besides 'const' can be
697  // easily added.
698
699  /// addConst - add the specified type qualifier to this QualType.
700  void addConst() {
701    addFastQualifiers(Qualifiers::Const);
702  }
703  QualType withConst() const {
704    return withFastQualifiers(Qualifiers::Const);
705  }
706
707  /// addVolatile - add the specified type qualifier to this QualType.
708  void addVolatile() {
709    addFastQualifiers(Qualifiers::Volatile);
710  }
711  QualType withVolatile() const {
712    return withFastQualifiers(Qualifiers::Volatile);
713  }
714
715  /// Add the restrict qualifier to this QualType.
716  void addRestrict() {
717    addFastQualifiers(Qualifiers::Restrict);
718  }
719  QualType withRestrict() const {
720    return withFastQualifiers(Qualifiers::Restrict);
721  }
722
723  QualType withCVRQualifiers(unsigned CVR) const {
724    return withFastQualifiers(CVR);
725  }
726
727  void addFastQualifiers(unsigned TQs) {
728    assert(!(TQs & ~Qualifiers::FastMask)
729           && "non-fast qualifier bits set in mask!");
730    Value.setInt(Value.getInt() | TQs);
731  }
732
733  void removeLocalConst();
734  void removeLocalVolatile();
735  void removeLocalRestrict();
736  void removeLocalCVRQualifiers(unsigned Mask);
737
738  void removeLocalFastQualifiers() { Value.setInt(0); }
739  void removeLocalFastQualifiers(unsigned Mask) {
740    assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
741    Value.setInt(Value.getInt() & ~Mask);
742  }
743
744  // Creates a type with the given qualifiers in addition to any
745  // qualifiers already on this type.
746  QualType withFastQualifiers(unsigned TQs) const {
747    QualType T = *this;
748    T.addFastQualifiers(TQs);
749    return T;
750  }
751
752  // Creates a type with exactly the given fast qualifiers, removing
753  // any existing fast qualifiers.
754  QualType withExactLocalFastQualifiers(unsigned TQs) const {
755    return withoutLocalFastQualifiers().withFastQualifiers(TQs);
756  }
757
758  // Removes fast qualifiers, but leaves any extended qualifiers in place.
759  QualType withoutLocalFastQualifiers() const {
760    QualType T = *this;
761    T.removeLocalFastQualifiers();
762    return T;
763  }
764
765  QualType getCanonicalType() const;
766
767  /// \brief Return this type with all of the instance-specific qualifiers
768  /// removed, but without removing any qualifiers that may have been applied
769  /// through typedefs.
770  QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
771
772  /// \brief Retrieve the unqualified variant of the given type,
773  /// removing as little sugar as possible.
774  ///
775  /// This routine looks through various kinds of sugar to find the
776  /// least-desugared type that is unqualified. For example, given:
777  ///
778  /// \code
779  /// typedef int Integer;
780  /// typedef const Integer CInteger;
781  /// typedef CInteger DifferenceType;
782  /// \endcode
783  ///
784  /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
785  /// desugar until we hit the type \c Integer, which has no qualifiers on it.
786  ///
787  /// The resulting type might still be qualified if it's sugar for an array
788  /// type.  To strip qualifiers even from within a sugared array type, use
789  /// ASTContext::getUnqualifiedArrayType.
790  inline QualType getUnqualifiedType() const;
791
792  /// getSplitUnqualifiedType - Retrieve the unqualified variant of the
793  /// given type, removing as little sugar as possible.
794  ///
795  /// Like getUnqualifiedType(), but also returns the set of
796  /// qualifiers that were built up.
797  ///
798  /// The resulting type might still be qualified if it's sugar for an array
799  /// type.  To strip qualifiers even from within a sugared array type, use
800  /// ASTContext::getUnqualifiedArrayType.
801  inline SplitQualType getSplitUnqualifiedType() const;
802
803  /// \brief Determine whether this type is more qualified than the other
804  /// given type, requiring exact equality for non-CVR qualifiers.
805  bool isMoreQualifiedThan(QualType Other) const;
806
807  /// \brief Determine whether this type is at least as qualified as the other
808  /// given type, requiring exact equality for non-CVR qualifiers.
809  bool isAtLeastAsQualifiedAs(QualType Other) const;
810
811  QualType getNonReferenceType() const;
812
813  /// \brief Determine the type of a (typically non-lvalue) expression with the
814  /// specified result type.
815  ///
816  /// This routine should be used for expressions for which the return type is
817  /// explicitly specified (e.g., in a cast or call) and isn't necessarily
818  /// an lvalue. It removes a top-level reference (since there are no
819  /// expressions of reference type) and deletes top-level cvr-qualifiers
820  /// from non-class types (in C++) or all types (in C).
821  QualType getNonLValueExprType(ASTContext &Context) const;
822
823  /// getDesugaredType - Return the specified type with any "sugar" removed from
824  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
825  /// the type is already concrete, it returns it unmodified.  This is similar
826  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
827  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
828  /// concrete.
829  ///
830  /// Qualifiers are left in place.
831  QualType getDesugaredType(const ASTContext &Context) const {
832    return getDesugaredType(*this, Context);
833  }
834
835  SplitQualType getSplitDesugaredType() const {
836    return getSplitDesugaredType(*this);
837  }
838
839  /// \brief Return the specified type with one level of "sugar" removed from
840  /// the type.
841  ///
842  /// This routine takes off the first typedef, typeof, etc. If the outer level
843  /// of the type is already concrete, it returns it unmodified.
844  QualType getSingleStepDesugaredType(const ASTContext &Context) const {
845    return getSingleStepDesugaredTypeImpl(*this, Context);
846  }
847
848  /// IgnoreParens - Returns the specified type after dropping any
849  /// outer-level parentheses.
850  QualType IgnoreParens() const {
851    if (isa<ParenType>(*this))
852      return QualType::IgnoreParens(*this);
853    return *this;
854  }
855
856  /// operator==/!= - Indicate whether the specified types and qualifiers are
857  /// identical.
858  friend bool operator==(const QualType &LHS, const QualType &RHS) {
859    return LHS.Value == RHS.Value;
860  }
861  friend bool operator!=(const QualType &LHS, const QualType &RHS) {
862    return LHS.Value != RHS.Value;
863  }
864  std::string getAsString() const {
865    return getAsString(split());
866  }
867  static std::string getAsString(SplitQualType split) {
868    return getAsString(split.Ty, split.Quals);
869  }
870  static std::string getAsString(const Type *ty, Qualifiers qs);
871
872  std::string getAsString(const PrintingPolicy &Policy) const;
873
874  void print(raw_ostream &OS, const PrintingPolicy &Policy,
875             const Twine &PlaceHolder = Twine()) const {
876    print(split(), OS, Policy, PlaceHolder);
877  }
878  static void print(SplitQualType split, raw_ostream &OS,
879                    const PrintingPolicy &policy, const Twine &PlaceHolder) {
880    return print(split.Ty, split.Quals, OS, policy, PlaceHolder);
881  }
882  static void print(const Type *ty, Qualifiers qs,
883                    raw_ostream &OS, const PrintingPolicy &policy,
884                    const Twine &PlaceHolder);
885
886  void getAsStringInternal(std::string &Str,
887                           const PrintingPolicy &Policy) const {
888    return getAsStringInternal(split(), Str, Policy);
889  }
890  static void getAsStringInternal(SplitQualType split, std::string &out,
891                                  const PrintingPolicy &policy) {
892    return getAsStringInternal(split.Ty, split.Quals, out, policy);
893  }
894  static void getAsStringInternal(const Type *ty, Qualifiers qs,
895                                  std::string &out,
896                                  const PrintingPolicy &policy);
897
898  class StreamedQualTypeHelper {
899    const QualType &T;
900    const PrintingPolicy &Policy;
901    const Twine &PlaceHolder;
902  public:
903    StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
904                           const Twine &PlaceHolder)
905      : T(T), Policy(Policy), PlaceHolder(PlaceHolder) { }
906
907    friend raw_ostream &operator<<(raw_ostream &OS,
908                                   const StreamedQualTypeHelper &SQT) {
909      SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder);
910      return OS;
911    }
912  };
913
914  StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
915                                const Twine &PlaceHolder = Twine()) const {
916    return StreamedQualTypeHelper(*this, Policy, PlaceHolder);
917  }
918
919  void dump(const char *s) const;
920  void dump() const;
921
922  void Profile(llvm::FoldingSetNodeID &ID) const {
923    ID.AddPointer(getAsOpaquePtr());
924  }
925
926  /// getAddressSpace - Return the address space of this type.
927  inline unsigned getAddressSpace() const;
928
929  /// getObjCGCAttr - Returns gc attribute of this type.
930  inline Qualifiers::GC getObjCGCAttr() const;
931
932  /// isObjCGCWeak true when Type is objc's weak.
933  bool isObjCGCWeak() const {
934    return getObjCGCAttr() == Qualifiers::Weak;
935  }
936
937  /// isObjCGCStrong true when Type is objc's strong.
938  bool isObjCGCStrong() const {
939    return getObjCGCAttr() == Qualifiers::Strong;
940  }
941
942  /// getObjCLifetime - Returns lifetime attribute of this type.
943  Qualifiers::ObjCLifetime getObjCLifetime() const {
944    return getQualifiers().getObjCLifetime();
945  }
946
947  bool hasNonTrivialObjCLifetime() const {
948    return getQualifiers().hasNonTrivialObjCLifetime();
949  }
950
951  bool hasStrongOrWeakObjCLifetime() const {
952    return getQualifiers().hasStrongOrWeakObjCLifetime();
953  }
954
955  enum DestructionKind {
956    DK_none,
957    DK_cxx_destructor,
958    DK_objc_strong_lifetime,
959    DK_objc_weak_lifetime
960  };
961
962  /// isDestructedType - nonzero if objects of this type require
963  /// non-trivial work to clean up after.  Non-zero because it's
964  /// conceivable that qualifiers (objc_gc(weak)?) could make
965  /// something require destruction.
966  DestructionKind isDestructedType() const {
967    return isDestructedTypeImpl(*this);
968  }
969
970  /// \brief Determine whether expressions of the given type are forbidden
971  /// from being lvalues in C.
972  ///
973  /// The expression types that are forbidden to be lvalues are:
974  ///   - 'void', but not qualified void
975  ///   - function types
976  ///
977  /// The exact rule here is C99 6.3.2.1:
978  ///   An lvalue is an expression with an object type or an incomplete
979  ///   type other than void.
980  bool isCForbiddenLValueType() const;
981
982private:
983  // These methods are implemented in a separate translation unit;
984  // "static"-ize them to avoid creating temporary QualTypes in the
985  // caller.
986  static bool isConstant(QualType T, ASTContext& Ctx);
987  static QualType getDesugaredType(QualType T, const ASTContext &Context);
988  static SplitQualType getSplitDesugaredType(QualType T);
989  static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
990  static QualType getSingleStepDesugaredTypeImpl(QualType type,
991                                                 const ASTContext &C);
992  static QualType IgnoreParens(QualType T);
993  static DestructionKind isDestructedTypeImpl(QualType type);
994};
995
996} // end clang.
997
998namespace llvm {
999/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
1000/// to a specific Type class.
1001template<> struct simplify_type< ::clang::QualType> {
1002  typedef const ::clang::Type *SimpleType;
1003  static SimpleType getSimplifiedValue(::clang::QualType &Val) {
1004    return Val.getTypePtr();
1005  }
1006};
1007
1008// Teach SmallPtrSet that QualType is "basically a pointer".
1009template<>
1010class PointerLikeTypeTraits<clang::QualType> {
1011public:
1012  static inline void *getAsVoidPointer(clang::QualType P) {
1013    return P.getAsOpaquePtr();
1014  }
1015  static inline clang::QualType getFromVoidPointer(void *P) {
1016    return clang::QualType::getFromOpaquePtr(P);
1017  }
1018  // Various qualifiers go in low bits.
1019  enum { NumLowBitsAvailable = 0 };
1020};
1021
1022} // end namespace llvm
1023
1024namespace clang {
1025
1026/// \brief Base class that is common to both the \c ExtQuals and \c Type
1027/// classes, which allows \c QualType to access the common fields between the
1028/// two.
1029///
1030class ExtQualsTypeCommonBase {
1031  ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
1032    : BaseType(baseType), CanonicalType(canon) {}
1033
1034  /// \brief The "base" type of an extended qualifiers type (\c ExtQuals) or
1035  /// a self-referential pointer (for \c Type).
1036  ///
1037  /// This pointer allows an efficient mapping from a QualType to its
1038  /// underlying type pointer.
1039  const Type *const BaseType;
1040
1041  /// \brief The canonical type of this type.  A QualType.
1042  QualType CanonicalType;
1043
1044  friend class QualType;
1045  friend class Type;
1046  friend class ExtQuals;
1047};
1048
1049/// ExtQuals - We can encode up to four bits in the low bits of a
1050/// type pointer, but there are many more type qualifiers that we want
1051/// to be able to apply to an arbitrary type.  Therefore we have this
1052/// struct, intended to be heap-allocated and used by QualType to
1053/// store qualifiers.
1054///
1055/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
1056/// in three low bits on the QualType pointer; a fourth bit records whether
1057/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
1058/// Objective-C GC attributes) are much more rare.
1059class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
1060  // NOTE: changing the fast qualifiers should be straightforward as
1061  // long as you don't make 'const' non-fast.
1062  // 1. Qualifiers:
1063  //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
1064  //       Fast qualifiers must occupy the low-order bits.
1065  //    b) Update Qualifiers::FastWidth and FastMask.
1066  // 2. QualType:
1067  //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
1068  //    b) Update remove{Volatile,Restrict}, defined near the end of
1069  //       this header.
1070  // 3. ASTContext:
1071  //    a) Update get{Volatile,Restrict}Type.
1072
1073  /// Quals - the immutable set of qualifiers applied by this
1074  /// node;  always contains extended qualifiers.
1075  Qualifiers Quals;
1076
1077  ExtQuals *this_() { return this; }
1078
1079public:
1080  ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
1081    : ExtQualsTypeCommonBase(baseType,
1082                             canon.isNull() ? QualType(this_(), 0) : canon),
1083      Quals(quals)
1084  {
1085    assert(Quals.hasNonFastQualifiers()
1086           && "ExtQuals created with no fast qualifiers");
1087    assert(!Quals.hasFastQualifiers()
1088           && "ExtQuals created with fast qualifiers");
1089  }
1090
1091  Qualifiers getQualifiers() const { return Quals; }
1092
1093  bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
1094  Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
1095
1096  bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
1097  Qualifiers::ObjCLifetime getObjCLifetime() const {
1098    return Quals.getObjCLifetime();
1099  }
1100
1101  bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
1102  unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
1103
1104  const Type *getBaseType() const { return BaseType; }
1105
1106public:
1107  void Profile(llvm::FoldingSetNodeID &ID) const {
1108    Profile(ID, getBaseType(), Quals);
1109  }
1110  static void Profile(llvm::FoldingSetNodeID &ID,
1111                      const Type *BaseType,
1112                      Qualifiers Quals) {
1113    assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
1114    ID.AddPointer(BaseType);
1115    Quals.Profile(ID);
1116  }
1117};
1118
1119/// \brief The kind of C++0x ref-qualifier associated with a function type,
1120/// which determines whether a member function's "this" object can be an
1121/// lvalue, rvalue, or neither.
1122enum RefQualifierKind {
1123  /// \brief No ref-qualifier was provided.
1124  RQ_None = 0,
1125  /// \brief An lvalue ref-qualifier was provided (\c &).
1126  RQ_LValue,
1127  /// \brief An rvalue ref-qualifier was provided (\c &&).
1128  RQ_RValue
1129};
1130
1131/// Type - This is the base class of the type hierarchy.  A central concept
1132/// with types is that each type always has a canonical type.  A canonical type
1133/// is the type with any typedef names stripped out of it or the types it
1134/// references.  For example, consider:
1135///
1136///  typedef int  foo;
1137///  typedef foo* bar;
1138///    'int *'    'foo *'    'bar'
1139///
1140/// There will be a Type object created for 'int'.  Since int is canonical, its
1141/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
1142/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
1143/// there is a PointerType that represents 'int*', which, like 'int', is
1144/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
1145/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
1146/// is also 'int*'.
1147///
1148/// Non-canonical types are useful for emitting diagnostics, without losing
1149/// information about typedefs being used.  Canonical types are useful for type
1150/// comparisons (they allow by-pointer equality tests) and useful for reasoning
1151/// about whether something has a particular form (e.g. is a function type),
1152/// because they implicitly, recursively, strip all typedefs out of a type.
1153///
1154/// Types, once created, are immutable.
1155///
1156class Type : public ExtQualsTypeCommonBase {
1157public:
1158  enum TypeClass {
1159#define TYPE(Class, Base) Class,
1160#define LAST_TYPE(Class) TypeLast = Class,
1161#define ABSTRACT_TYPE(Class, Base)
1162#include "clang/AST/TypeNodes.def"
1163    TagFirst = Record, TagLast = Enum
1164  };
1165
1166private:
1167  Type(const Type &) LLVM_DELETED_FUNCTION;
1168  void operator=(const Type &) LLVM_DELETED_FUNCTION;
1169
1170  /// Bitfields required by the Type class.
1171  class TypeBitfields {
1172    friend class Type;
1173    template <class T> friend class TypePropertyCache;
1174
1175    /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
1176    unsigned TC : 8;
1177
1178    /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
1179    unsigned Dependent : 1;
1180
1181    /// \brief Whether this type somehow involves a template parameter, even
1182    /// if the resolution of the type does not depend on a template parameter.
1183    unsigned InstantiationDependent : 1;
1184
1185    /// \brief Whether this type is a variably-modified type (C99 6.7.5).
1186    unsigned VariablyModified : 1;
1187
1188    /// \brief Whether this type contains an unexpanded parameter pack
1189    /// (for C++0x variadic templates).
1190    unsigned ContainsUnexpandedParameterPack : 1;
1191
1192    /// \brief True if the cache (i.e. the bitfields here starting with
1193    /// 'Cache') is valid.
1194    mutable unsigned CacheValid : 1;
1195
1196    /// \brief Linkage of this type.
1197    mutable unsigned CachedLinkage : 2;
1198
1199    /// \brief Whether this type involves and local or unnamed types.
1200    mutable unsigned CachedLocalOrUnnamed : 1;
1201
1202    /// \brief FromAST - Whether this type comes from an AST file.
1203    mutable unsigned FromAST : 1;
1204
1205    bool isCacheValid() const {
1206      return CacheValid;
1207    }
1208    Linkage getLinkage() const {
1209      assert(isCacheValid() && "getting linkage from invalid cache");
1210      return static_cast<Linkage>(CachedLinkage);
1211    }
1212    bool hasLocalOrUnnamedType() const {
1213      assert(isCacheValid() && "getting linkage from invalid cache");
1214      return CachedLocalOrUnnamed;
1215    }
1216  };
1217  enum { NumTypeBits = 19 };
1218
1219protected:
1220  // These classes allow subclasses to somewhat cleanly pack bitfields
1221  // into Type.
1222
1223  class ArrayTypeBitfields {
1224    friend class ArrayType;
1225
1226    unsigned : NumTypeBits;
1227
1228    /// IndexTypeQuals - CVR qualifiers from declarations like
1229    /// 'int X[static restrict 4]'. For function parameters only.
1230    unsigned IndexTypeQuals : 3;
1231
1232    /// SizeModifier - storage class qualifiers from declarations like
1233    /// 'int X[static restrict 4]'. For function parameters only.
1234    /// Actually an ArrayType::ArraySizeModifier.
1235    unsigned SizeModifier : 3;
1236  };
1237
1238  class BuiltinTypeBitfields {
1239    friend class BuiltinType;
1240
1241    unsigned : NumTypeBits;
1242
1243    /// The kind (BuiltinType::Kind) of builtin type this is.
1244    unsigned Kind : 8;
1245  };
1246
1247  class FunctionTypeBitfields {
1248    friend class FunctionType;
1249
1250    unsigned : NumTypeBits;
1251
1252    /// Extra information which affects how the function is called, like
1253    /// regparm and the calling convention.
1254    unsigned ExtInfo : 9;
1255
1256    /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
1257    /// other bitfields.
1258    /// The qualifiers are part of FunctionProtoType because...
1259    ///
1260    /// C++ 8.3.5p4: The return type, the parameter type list and the
1261    /// cv-qualifier-seq, [...], are part of the function type.
1262    unsigned TypeQuals : 3;
1263  };
1264
1265  class ObjCObjectTypeBitfields {
1266    friend class ObjCObjectType;
1267
1268    unsigned : NumTypeBits;
1269
1270    /// NumProtocols - The number of protocols stored directly on this
1271    /// object type.
1272    unsigned NumProtocols : 32 - NumTypeBits;
1273  };
1274
1275  class ReferenceTypeBitfields {
1276    friend class ReferenceType;
1277
1278    unsigned : NumTypeBits;
1279
1280    /// True if the type was originally spelled with an lvalue sigil.
1281    /// This is never true of rvalue references but can also be false
1282    /// on lvalue references because of C++0x [dcl.typedef]p9,
1283    /// as follows:
1284    ///
1285    ///   typedef int &ref;    // lvalue, spelled lvalue
1286    ///   typedef int &&rvref; // rvalue
1287    ///   ref &a;              // lvalue, inner ref, spelled lvalue
1288    ///   ref &&a;             // lvalue, inner ref
1289    ///   rvref &a;            // lvalue, inner ref, spelled lvalue
1290    ///   rvref &&a;           // rvalue, inner ref
1291    unsigned SpelledAsLValue : 1;
1292
1293    /// True if the inner type is a reference type.  This only happens
1294    /// in non-canonical forms.
1295    unsigned InnerRef : 1;
1296  };
1297
1298  class TypeWithKeywordBitfields {
1299    friend class TypeWithKeyword;
1300
1301    unsigned : NumTypeBits;
1302
1303    /// An ElaboratedTypeKeyword.  8 bits for efficient access.
1304    unsigned Keyword : 8;
1305  };
1306
1307  class VectorTypeBitfields {
1308    friend class VectorType;
1309
1310    unsigned : NumTypeBits;
1311
1312    /// VecKind - The kind of vector, either a generic vector type or some
1313    /// target-specific vector type such as for AltiVec or Neon.
1314    unsigned VecKind : 3;
1315
1316    /// NumElements - The number of elements in the vector.
1317    unsigned NumElements : 29 - NumTypeBits;
1318  };
1319
1320  class AttributedTypeBitfields {
1321    friend class AttributedType;
1322
1323    unsigned : NumTypeBits;
1324
1325    /// AttrKind - an AttributedType::Kind
1326    unsigned AttrKind : 32 - NumTypeBits;
1327  };
1328
1329  union {
1330    TypeBitfields TypeBits;
1331    ArrayTypeBitfields ArrayTypeBits;
1332    AttributedTypeBitfields AttributedTypeBits;
1333    BuiltinTypeBitfields BuiltinTypeBits;
1334    FunctionTypeBitfields FunctionTypeBits;
1335    ObjCObjectTypeBitfields ObjCObjectTypeBits;
1336    ReferenceTypeBitfields ReferenceTypeBits;
1337    TypeWithKeywordBitfields TypeWithKeywordBits;
1338    VectorTypeBitfields VectorTypeBits;
1339  };
1340
1341private:
1342  /// \brief Set whether this type comes from an AST file.
1343  void setFromAST(bool V = true) const {
1344    TypeBits.FromAST = V;
1345  }
1346
1347  template <class T> friend class TypePropertyCache;
1348
1349protected:
1350  // silence VC++ warning C4355: 'this' : used in base member initializer list
1351  Type *this_() { return this; }
1352  Type(TypeClass tc, QualType canon, bool Dependent,
1353       bool InstantiationDependent, bool VariablyModified,
1354       bool ContainsUnexpandedParameterPack)
1355    : ExtQualsTypeCommonBase(this,
1356                             canon.isNull() ? QualType(this_(), 0) : canon) {
1357    TypeBits.TC = tc;
1358    TypeBits.Dependent = Dependent;
1359    TypeBits.InstantiationDependent = Dependent || InstantiationDependent;
1360    TypeBits.VariablyModified = VariablyModified;
1361    TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
1362    TypeBits.CacheValid = false;
1363    TypeBits.CachedLocalOrUnnamed = false;
1364    TypeBits.CachedLinkage = NoLinkage;
1365    TypeBits.FromAST = false;
1366  }
1367  friend class ASTContext;
1368
1369  void setDependent(bool D = true) {
1370    TypeBits.Dependent = D;
1371    if (D)
1372      TypeBits.InstantiationDependent = true;
1373  }
1374  void setInstantiationDependent(bool D = true) {
1375    TypeBits.InstantiationDependent = D; }
1376  void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM;
1377  }
1378  void setContainsUnexpandedParameterPack(bool PP = true) {
1379    TypeBits.ContainsUnexpandedParameterPack = PP;
1380  }
1381
1382public:
1383  TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1384
1385  /// \brief Whether this type comes from an AST file.
1386  bool isFromAST() const { return TypeBits.FromAST; }
1387
1388  /// \brief Whether this type is or contains an unexpanded parameter
1389  /// pack, used to support C++0x variadic templates.
1390  ///
1391  /// A type that contains a parameter pack shall be expanded by the
1392  /// ellipsis operator at some point. For example, the typedef in the
1393  /// following example contains an unexpanded parameter pack 'T':
1394  ///
1395  /// \code
1396  /// template<typename ...T>
1397  /// struct X {
1398  ///   typedef T* pointer_types; // ill-formed; T is a parameter pack.
1399  /// };
1400  /// \endcode
1401  ///
1402  /// Note that this routine does not specify which
1403  bool containsUnexpandedParameterPack() const {
1404    return TypeBits.ContainsUnexpandedParameterPack;
1405  }
1406
1407  /// Determines if this type would be canonical if it had no further
1408  /// qualification.
1409  bool isCanonicalUnqualified() const {
1410    return CanonicalType == QualType(this, 0);
1411  }
1412
1413  /// Pull a single level of sugar off of this locally-unqualified type.
1414  /// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
1415  /// or QualType::getSingleStepDesugaredType(const ASTContext&).
1416  QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
1417
1418  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
1419  /// object types, function types, and incomplete types.
1420
1421  /// isIncompleteType - Return true if this is an incomplete type.
1422  /// A type that can describe objects, but which lacks information needed to
1423  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
1424  /// routine will need to determine if the size is actually required.
1425  ///
1426  /// \brief Def If non-NULL, and the type refers to some kind of declaration
1427  /// that can be completed (such as a C struct, C++ class, or Objective-C
1428  /// class), will be set to the declaration.
1429  bool isIncompleteType(NamedDecl **Def = 0) const;
1430
1431  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
1432  /// type, in other words, not a function type.
1433  bool isIncompleteOrObjectType() const {
1434    return !isFunctionType();
1435  }
1436
1437  /// \brief Determine whether this type is an object type.
1438  bool isObjectType() const {
1439    // C++ [basic.types]p8:
1440    //   An object type is a (possibly cv-qualified) type that is not a
1441    //   function type, not a reference type, and not a void type.
1442    return !isReferenceType() && !isFunctionType() && !isVoidType();
1443  }
1444
1445  /// isLiteralType - Return true if this is a literal type
1446  /// (C++0x [basic.types]p10)
1447  bool isLiteralType() const;
1448
1449  /// \brief Test if this type is a standard-layout type.
1450  /// (C++0x [basic.type]p9)
1451  bool isStandardLayoutType() const;
1452
1453  /// Helper methods to distinguish type categories. All type predicates
1454  /// operate on the canonical type, ignoring typedefs and qualifiers.
1455
1456  /// isBuiltinType - returns true if the type is a builtin type.
1457  bool isBuiltinType() const;
1458
1459  /// isSpecificBuiltinType - Test for a particular builtin type.
1460  bool isSpecificBuiltinType(unsigned K) const;
1461
1462  /// isPlaceholderType - Test for a type which does not represent an
1463  /// actual type-system type but is instead used as a placeholder for
1464  /// various convenient purposes within Clang.  All such types are
1465  /// BuiltinTypes.
1466  bool isPlaceholderType() const;
1467  const BuiltinType *getAsPlaceholderType() const;
1468
1469  /// isSpecificPlaceholderType - Test for a specific placeholder type.
1470  bool isSpecificPlaceholderType(unsigned K) const;
1471
1472  /// isNonOverloadPlaceholderType - Test for a placeholder type
1473  /// other than Overload;  see BuiltinType::isNonOverloadPlaceholderType.
1474  bool isNonOverloadPlaceholderType() const;
1475
1476  /// isIntegerType() does *not* include complex integers (a GCC extension).
1477  /// isComplexIntegerType() can be used to test for complex integers.
1478  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
1479  bool isEnumeralType() const;
1480  bool isBooleanType() const;
1481  bool isCharType() const;
1482  bool isWideCharType() const;
1483  bool isChar16Type() const;
1484  bool isChar32Type() const;
1485  bool isAnyCharacterType() const;
1486  bool isIntegralType(ASTContext &Ctx) const;
1487
1488  /// \brief Determine whether this type is an integral or enumeration type.
1489  bool isIntegralOrEnumerationType() const;
1490  /// \brief Determine whether this type is an integral or unscoped enumeration
1491  /// type.
1492  bool isIntegralOrUnscopedEnumerationType() const;
1493
1494  /// Floating point categories.
1495  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
1496  /// isComplexType() does *not* include complex integers (a GCC extension).
1497  /// isComplexIntegerType() can be used to test for complex integers.
1498  bool isComplexType() const;      // C99 6.2.5p11 (complex)
1499  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
1500  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
1501  bool isHalfType() const;         // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
1502  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
1503  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
1504  bool isVoidType() const;         // C99 6.2.5p19
1505  bool isDerivedType() const;      // C99 6.2.5p20
1506  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
1507  bool isAggregateType() const;
1508  bool isFundamentalType() const;
1509  bool isCompoundType() const;
1510
1511  // Type Predicates: Check to see if this type is structurally the specified
1512  // type, ignoring typedefs and qualifiers.
1513  bool isFunctionType() const;
1514  bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
1515  bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
1516  bool isPointerType() const;
1517  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
1518  bool isBlockPointerType() const;
1519  bool isVoidPointerType() const;
1520  bool isReferenceType() const;
1521  bool isLValueReferenceType() const;
1522  bool isRValueReferenceType() const;
1523  bool isFunctionPointerType() const;
1524  bool isMemberPointerType() const;
1525  bool isMemberFunctionPointerType() const;
1526  bool isMemberDataPointerType() const;
1527  bool isArrayType() const;
1528  bool isConstantArrayType() const;
1529  bool isIncompleteArrayType() const;
1530  bool isVariableArrayType() const;
1531  bool isDependentSizedArrayType() const;
1532  bool isRecordType() const;
1533  bool isClassType() const;
1534  bool isStructureType() const;
1535  bool isInterfaceType() const;
1536  bool isStructureOrClassType() const;
1537  bool isUnionType() const;
1538  bool isComplexIntegerType() const;            // GCC _Complex integer type.
1539  bool isVectorType() const;                    // GCC vector type.
1540  bool isExtVectorType() const;                 // Extended vector type.
1541  bool isObjCObjectPointerType() const;         // pointer to ObjC object
1542  bool isObjCRetainableType() const;            // ObjC object or block pointer
1543  bool isObjCLifetimeType() const;              // (array of)* retainable type
1544  bool isObjCIndirectLifetimeType() const;      // (pointer to)* lifetime type
1545  bool isObjCNSObjectType() const;              // __attribute__((NSObject))
1546  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
1547  // for the common case.
1548  bool isObjCObjectType() const;                // NSString or typeof(*(id)0)
1549  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
1550  bool isObjCQualifiedIdType() const;           // id<foo>
1551  bool isObjCQualifiedClassType() const;        // Class<foo>
1552  bool isObjCObjectOrInterfaceType() const;
1553  bool isObjCIdType() const;                    // id
1554  bool isObjCClassType() const;                 // Class
1555  bool isObjCSelType() const;                 // Class
1556  bool isObjCBuiltinType() const;               // 'id' or 'Class'
1557  bool isObjCARCBridgableType() const;
1558  bool isCARCBridgableType() const;
1559  bool isTemplateTypeParmType() const;          // C++ template type parameter
1560  bool isNullPtrType() const;                   // C++0x nullptr_t
1561  bool isAtomicType() const;                    // C11 _Atomic()
1562
1563  bool isImage1dT() const;                      // OpenCL image1d_t
1564  bool isImage1dArrayT() const;                 // OpenCL image1d_array_t
1565  bool isImage1dBufferT() const;                // OpenCL image1d_buffer_t
1566  bool isImage2dT() const;                      // OpenCL image2d_t
1567  bool isImage2dArrayT() const;                 // OpenCL image2d_array_t
1568  bool isImage3dT() const;                      // OpenCL image3d_t
1569
1570  bool isImageType() const;                     // Any OpenCL image type
1571
1572  bool isSamplerT() const;                      // OpenCL sampler_t
1573  bool isEventT() const;                        // OpenCL event_t
1574
1575  bool isOpenCLSpecificType() const;            // Any OpenCL specific type
1576
1577  /// Determines if this type, which must satisfy
1578  /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
1579  /// than implicitly __strong.
1580  bool isObjCARCImplicitlyUnretainedType() const;
1581
1582  /// Return the implicit lifetime for this type, which must not be dependent.
1583  Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
1584
1585  enum ScalarTypeKind {
1586    STK_CPointer,
1587    STK_BlockPointer,
1588    STK_ObjCObjectPointer,
1589    STK_MemberPointer,
1590    STK_Bool,
1591    STK_Integral,
1592    STK_Floating,
1593    STK_IntegralComplex,
1594    STK_FloatingComplex
1595  };
1596  /// getScalarTypeKind - Given that this is a scalar type, classify it.
1597  ScalarTypeKind getScalarTypeKind() const;
1598
1599  /// isDependentType - Whether this type is a dependent type, meaning
1600  /// that its definition somehow depends on a template parameter
1601  /// (C++ [temp.dep.type]).
1602  bool isDependentType() const { return TypeBits.Dependent; }
1603
1604  /// \brief Determine whether this type is an instantiation-dependent type,
1605  /// meaning that the type involves a template parameter (even if the
1606  /// definition does not actually depend on the type substituted for that
1607  /// template parameter).
1608  bool isInstantiationDependentType() const {
1609    return TypeBits.InstantiationDependent;
1610  }
1611
1612  /// \brief Whether this type is a variably-modified type (C99 6.7.5).
1613  bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
1614
1615  /// \brief Whether this type involves a variable-length array type
1616  /// with a definite size.
1617  bool hasSizedVLAType() const;
1618
1619  /// \brief Whether this type is or contains a local or unnamed type.
1620  bool hasUnnamedOrLocalType() const;
1621
1622  bool isOverloadableType() const;
1623
1624  /// \brief Determine wither this type is a C++ elaborated-type-specifier.
1625  bool isElaboratedTypeSpecifier() const;
1626
1627  bool canDecayToPointerType() const;
1628
1629  /// hasPointerRepresentation - Whether this type is represented
1630  /// natively as a pointer; this includes pointers, references, block
1631  /// pointers, and Objective-C interface, qualified id, and qualified
1632  /// interface types, as well as nullptr_t.
1633  bool hasPointerRepresentation() const;
1634
1635  /// hasObjCPointerRepresentation - Whether this type can represent
1636  /// an objective pointer type for the purpose of GC'ability
1637  bool hasObjCPointerRepresentation() const;
1638
1639  /// \brief Determine whether this type has an integer representation
1640  /// of some sort, e.g., it is an integer type or a vector.
1641  bool hasIntegerRepresentation() const;
1642
1643  /// \brief Determine whether this type has an signed integer representation
1644  /// of some sort, e.g., it is an signed integer type or a vector.
1645  bool hasSignedIntegerRepresentation() const;
1646
1647  /// \brief Determine whether this type has an unsigned integer representation
1648  /// of some sort, e.g., it is an unsigned integer type or a vector.
1649  bool hasUnsignedIntegerRepresentation() const;
1650
1651  /// \brief Determine whether this type has a floating-point representation
1652  /// of some sort, e.g., it is a floating-point type or a vector thereof.
1653  bool hasFloatingRepresentation() const;
1654
1655  // Type Checking Functions: Check to see if this type is structurally the
1656  // specified type, ignoring typedefs and qualifiers, and return a pointer to
1657  // the best type we can.
1658  const RecordType *getAsStructureType() const;
1659  /// NOTE: getAs*ArrayType are methods on ASTContext.
1660  const RecordType *getAsUnionType() const;
1661  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
1662  // The following is a convenience method that returns an ObjCObjectPointerType
1663  // for object declared using an interface.
1664  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
1665  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
1666  const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
1667  const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
1668
1669  /// \brief Retrieves the CXXRecordDecl that this type refers to, either
1670  /// because the type is a RecordType or because it is the injected-class-name
1671  /// type of a class template or class template partial specialization.
1672  CXXRecordDecl *getAsCXXRecordDecl() const;
1673
1674  /// If this is a pointer or reference to a RecordType, return the
1675  /// CXXRecordDecl that that type refers to.
1676  ///
1677  /// If this is not a pointer or reference, or the type being pointed to does
1678  /// not refer to a CXXRecordDecl, returns NULL.
1679  const CXXRecordDecl *getPointeeCXXRecordDecl() const;
1680
1681  /// \brief Get the AutoType whose type will be deduced for a variable with
1682  /// an initializer of this type. This looks through declarators like pointer
1683  /// types, but not through decltype or typedefs.
1684  AutoType *getContainedAutoType() const;
1685
1686  /// Member-template getAs<specific type>'.  Look through sugar for
1687  /// an instance of \<specific type>.   This scheme will eventually
1688  /// replace the specific getAsXXXX methods above.
1689  ///
1690  /// There are some specializations of this member template listed
1691  /// immediately following this class.
1692  template <typename T> const T *getAs() const;
1693
1694  /// A variant of getAs<> for array types which silently discards
1695  /// qualifiers from the outermost type.
1696  const ArrayType *getAsArrayTypeUnsafe() const;
1697
1698  /// Member-template castAs<specific type>.  Look through sugar for
1699  /// the underlying instance of \<specific type>.
1700  ///
1701  /// This method has the same relationship to getAs<T> as cast<T> has
1702  /// to dyn_cast<T>; which is to say, the underlying type *must*
1703  /// have the intended type, and this method will never return null.
1704  template <typename T> const T *castAs() const;
1705
1706  /// A variant of castAs<> for array type which silently discards
1707  /// qualifiers from the outermost type.
1708  const ArrayType *castAsArrayTypeUnsafe() const;
1709
1710  /// getBaseElementTypeUnsafe - Get the base element type of this
1711  /// type, potentially discarding type qualifiers.  This method
1712  /// should never be used when type qualifiers are meaningful.
1713  const Type *getBaseElementTypeUnsafe() const;
1714
1715  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
1716  /// element type of the array, potentially with type qualifiers missing.
1717  /// This method should never be used when type qualifiers are meaningful.
1718  const Type *getArrayElementTypeNoTypeQual() const;
1719
1720  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
1721  /// pointer, this returns the respective pointee.
1722  QualType getPointeeType() const;
1723
1724  /// getUnqualifiedDesugaredType() - Return the specified type with
1725  /// any "sugar" removed from the type, removing any typedefs,
1726  /// typeofs, etc., as well as any qualifiers.
1727  const Type *getUnqualifiedDesugaredType() const;
1728
1729  /// More type predicates useful for type checking/promotion
1730  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
1731
1732  /// isSignedIntegerType - Return true if this is an integer type that is
1733  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
1734  /// or an enum decl which has a signed representation.
1735  bool isSignedIntegerType() const;
1736
1737  /// isUnsignedIntegerType - Return true if this is an integer type that is
1738  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
1739  /// or an enum decl which has an unsigned representation.
1740  bool isUnsignedIntegerType() const;
1741
1742  /// Determines whether this is an integer type that is signed or an
1743  /// enumeration types whose underlying type is a signed integer type.
1744  bool isSignedIntegerOrEnumerationType() const;
1745
1746  /// Determines whether this is an integer type that is unsigned or an
1747  /// enumeration types whose underlying type is a unsigned integer type.
1748  bool isUnsignedIntegerOrEnumerationType() const;
1749
1750  /// isConstantSizeType - Return true if this is not a variable sized type,
1751  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
1752  /// incomplete types.
1753  bool isConstantSizeType() const;
1754
1755  /// isSpecifierType - Returns true if this type can be represented by some
1756  /// set of type specifiers.
1757  bool isSpecifierType() const;
1758
1759  /// \brief Determine the linkage of this type.
1760  Linkage getLinkage() const;
1761
1762  /// \brief Determine the visibility of this type.
1763  Visibility getVisibility() const {
1764    return getLinkageAndVisibility().getVisibility();
1765  }
1766
1767  /// \brief Return true if the visibility was explicitly set is the code.
1768  bool isVisibilityExplicit() const {
1769    return getLinkageAndVisibility().isVisibilityExplicit();
1770  }
1771
1772  /// \brief Determine the linkage and visibility of this type.
1773  LinkageInfo getLinkageAndVisibility() const;
1774
1775  /// \brief True if the computed linkage is valid. Used for consistency
1776  /// checking. Should always return true.
1777  bool isLinkageValid() const;
1778
1779  const char *getTypeClassName() const;
1780
1781  QualType getCanonicalTypeInternal() const {
1782    return CanonicalType;
1783  }
1784  CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
1785  LLVM_ATTRIBUTE_USED void dump() const;
1786
1787  friend class ASTReader;
1788  friend class ASTWriter;
1789};
1790
1791/// \brief This will check for a TypedefType by removing any existing sugar
1792/// until it reaches a TypedefType or a non-sugared type.
1793template <> const TypedefType *Type::getAs() const;
1794
1795/// \brief This will check for a TemplateSpecializationType by removing any
1796/// existing sugar until it reaches a TemplateSpecializationType or a
1797/// non-sugared type.
1798template <> const TemplateSpecializationType *Type::getAs() const;
1799
1800// We can do canonical leaf types faster, because we don't have to
1801// worry about preserving child type decoration.
1802#define TYPE(Class, Base)
1803#define LEAF_TYPE(Class) \
1804template <> inline const Class##Type *Type::getAs() const { \
1805  return dyn_cast<Class##Type>(CanonicalType); \
1806} \
1807template <> inline const Class##Type *Type::castAs() const { \
1808  return cast<Class##Type>(CanonicalType); \
1809}
1810#include "clang/AST/TypeNodes.def"
1811
1812
1813/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
1814/// types are always canonical and have a literal name field.
1815class BuiltinType : public Type {
1816public:
1817  enum Kind {
1818#define BUILTIN_TYPE(Id, SingletonId) Id,
1819#define LAST_BUILTIN_TYPE(Id) LastKind = Id
1820#include "clang/AST/BuiltinTypes.def"
1821  };
1822
1823public:
1824  BuiltinType(Kind K)
1825    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
1826           /*InstantiationDependent=*/(K == Dependent),
1827           /*VariablyModified=*/false,
1828           /*Unexpanded paramter pack=*/false) {
1829    BuiltinTypeBits.Kind = K;
1830  }
1831
1832  Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
1833  StringRef getName(const PrintingPolicy &Policy) const;
1834  const char *getNameAsCString(const PrintingPolicy &Policy) const {
1835    // The StringRef is null-terminated.
1836    StringRef str = getName(Policy);
1837    assert(!str.empty() && str.data()[str.size()] == '\0');
1838    return str.data();
1839  }
1840
1841  bool isSugared() const { return false; }
1842  QualType desugar() const { return QualType(this, 0); }
1843
1844  bool isInteger() const {
1845    return getKind() >= Bool && getKind() <= Int128;
1846  }
1847
1848  bool isSignedInteger() const {
1849    return getKind() >= Char_S && getKind() <= Int128;
1850  }
1851
1852  bool isUnsignedInteger() const {
1853    return getKind() >= Bool && getKind() <= UInt128;
1854  }
1855
1856  bool isFloatingPoint() const {
1857    return getKind() >= Half && getKind() <= LongDouble;
1858  }
1859
1860  /// Determines whether the given kind corresponds to a placeholder type.
1861  static bool isPlaceholderTypeKind(Kind K) {
1862    return K >= Overload;
1863  }
1864
1865  /// Determines whether this type is a placeholder type, i.e. a type
1866  /// which cannot appear in arbitrary positions in a fully-formed
1867  /// expression.
1868  bool isPlaceholderType() const {
1869    return isPlaceholderTypeKind(getKind());
1870  }
1871
1872  /// Determines whether this type is a placeholder type other than
1873  /// Overload.  Most placeholder types require only syntactic
1874  /// information about their context in order to be resolved (e.g.
1875  /// whether it is a call expression), which means they can (and
1876  /// should) be resolved in an earlier "phase" of analysis.
1877  /// Overload expressions sometimes pick up further information
1878  /// from their context, like whether the context expects a
1879  /// specific function-pointer type, and so frequently need
1880  /// special treatment.
1881  bool isNonOverloadPlaceholderType() const {
1882    return getKind() > Overload;
1883  }
1884
1885  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
1886};
1887
1888/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
1889/// types (_Complex float etc) as well as the GCC integer complex extensions.
1890///
1891class ComplexType : public Type, public llvm::FoldingSetNode {
1892  QualType ElementType;
1893  ComplexType(QualType Element, QualType CanonicalPtr) :
1894    Type(Complex, CanonicalPtr, Element->isDependentType(),
1895         Element->isInstantiationDependentType(),
1896         Element->isVariablyModifiedType(),
1897         Element->containsUnexpandedParameterPack()),
1898    ElementType(Element) {
1899  }
1900  friend class ASTContext;  // ASTContext creates these.
1901
1902public:
1903  QualType getElementType() const { return ElementType; }
1904
1905  bool isSugared() const { return false; }
1906  QualType desugar() const { return QualType(this, 0); }
1907
1908  void Profile(llvm::FoldingSetNodeID &ID) {
1909    Profile(ID, getElementType());
1910  }
1911  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
1912    ID.AddPointer(Element.getAsOpaquePtr());
1913  }
1914
1915  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
1916};
1917
1918/// ParenType - Sugar for parentheses used when specifying types.
1919///
1920class ParenType : public Type, public llvm::FoldingSetNode {
1921  QualType Inner;
1922
1923  ParenType(QualType InnerType, QualType CanonType) :
1924    Type(Paren, CanonType, InnerType->isDependentType(),
1925         InnerType->isInstantiationDependentType(),
1926         InnerType->isVariablyModifiedType(),
1927         InnerType->containsUnexpandedParameterPack()),
1928    Inner(InnerType) {
1929  }
1930  friend class ASTContext;  // ASTContext creates these.
1931
1932public:
1933
1934  QualType getInnerType() const { return Inner; }
1935
1936  bool isSugared() const { return true; }
1937  QualType desugar() const { return getInnerType(); }
1938
1939  void Profile(llvm::FoldingSetNodeID &ID) {
1940    Profile(ID, getInnerType());
1941  }
1942  static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
1943    Inner.Profile(ID);
1944  }
1945
1946  static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
1947};
1948
1949/// PointerType - C99 6.7.5.1 - Pointer Declarators.
1950///
1951class PointerType : public Type, public llvm::FoldingSetNode {
1952  QualType PointeeType;
1953
1954  PointerType(QualType Pointee, QualType CanonicalPtr) :
1955    Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
1956         Pointee->isInstantiationDependentType(),
1957         Pointee->isVariablyModifiedType(),
1958         Pointee->containsUnexpandedParameterPack()),
1959    PointeeType(Pointee) {
1960  }
1961  friend class ASTContext;  // ASTContext creates these.
1962
1963public:
1964
1965  QualType getPointeeType() const { return PointeeType; }
1966
1967  bool isSugared() const { return false; }
1968  QualType desugar() const { return QualType(this, 0); }
1969
1970  void Profile(llvm::FoldingSetNodeID &ID) {
1971    Profile(ID, getPointeeType());
1972  }
1973  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1974    ID.AddPointer(Pointee.getAsOpaquePtr());
1975  }
1976
1977  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
1978};
1979
1980/// BlockPointerType - pointer to a block type.
1981/// This type is to represent types syntactically represented as
1982/// "void (^)(int)", etc. Pointee is required to always be a function type.
1983///
1984class BlockPointerType : public Type, public llvm::FoldingSetNode {
1985  QualType PointeeType;  // Block is some kind of pointer type
1986  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
1987    Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
1988         Pointee->isInstantiationDependentType(),
1989         Pointee->isVariablyModifiedType(),
1990         Pointee->containsUnexpandedParameterPack()),
1991    PointeeType(Pointee) {
1992  }
1993  friend class ASTContext;  // ASTContext creates these.
1994
1995public:
1996
1997  // Get the pointee type. Pointee is required to always be a function type.
1998  QualType getPointeeType() const { return PointeeType; }
1999
2000  bool isSugared() const { return false; }
2001  QualType desugar() const { return QualType(this, 0); }
2002
2003  void Profile(llvm::FoldingSetNodeID &ID) {
2004      Profile(ID, getPointeeType());
2005  }
2006  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2007      ID.AddPointer(Pointee.getAsOpaquePtr());
2008  }
2009
2010  static bool classof(const Type *T) {
2011    return T->getTypeClass() == BlockPointer;
2012  }
2013};
2014
2015/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
2016///
2017class ReferenceType : public Type, public llvm::FoldingSetNode {
2018  QualType PointeeType;
2019
2020protected:
2021  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
2022                bool SpelledAsLValue) :
2023    Type(tc, CanonicalRef, Referencee->isDependentType(),
2024         Referencee->isInstantiationDependentType(),
2025         Referencee->isVariablyModifiedType(),
2026         Referencee->containsUnexpandedParameterPack()),
2027    PointeeType(Referencee)
2028  {
2029    ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
2030    ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
2031  }
2032
2033public:
2034  bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
2035  bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
2036
2037  QualType getPointeeTypeAsWritten() const { return PointeeType; }
2038  QualType getPointeeType() const {
2039    // FIXME: this might strip inner qualifiers; okay?
2040    const ReferenceType *T = this;
2041    while (T->isInnerRef())
2042      T = T->PointeeType->castAs<ReferenceType>();
2043    return T->PointeeType;
2044  }
2045
2046  void Profile(llvm::FoldingSetNodeID &ID) {
2047    Profile(ID, PointeeType, isSpelledAsLValue());
2048  }
2049  static void Profile(llvm::FoldingSetNodeID &ID,
2050                      QualType Referencee,
2051                      bool SpelledAsLValue) {
2052    ID.AddPointer(Referencee.getAsOpaquePtr());
2053    ID.AddBoolean(SpelledAsLValue);
2054  }
2055
2056  static bool classof(const Type *T) {
2057    return T->getTypeClass() == LValueReference ||
2058           T->getTypeClass() == RValueReference;
2059  }
2060};
2061
2062/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
2063///
2064class LValueReferenceType : public ReferenceType {
2065  LValueReferenceType(QualType Referencee, QualType CanonicalRef,
2066                      bool SpelledAsLValue) :
2067    ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
2068  {}
2069  friend class ASTContext; // ASTContext creates these
2070public:
2071  bool isSugared() const { return false; }
2072  QualType desugar() const { return QualType(this, 0); }
2073
2074  static bool classof(const Type *T) {
2075    return T->getTypeClass() == LValueReference;
2076  }
2077};
2078
2079/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
2080///
2081class RValueReferenceType : public ReferenceType {
2082  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
2083    ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
2084  }
2085  friend class ASTContext; // ASTContext creates these
2086public:
2087  bool isSugared() const { return false; }
2088  QualType desugar() const { return QualType(this, 0); }
2089
2090  static bool classof(const Type *T) {
2091    return T->getTypeClass() == RValueReference;
2092  }
2093};
2094
2095/// MemberPointerType - C++ 8.3.3 - Pointers to members
2096///
2097class MemberPointerType : public Type, public llvm::FoldingSetNode {
2098  QualType PointeeType;
2099  /// The class of which the pointee is a member. Must ultimately be a
2100  /// RecordType, but could be a typedef or a template parameter too.
2101  const Type *Class;
2102
2103  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
2104    Type(MemberPointer, CanonicalPtr,
2105         Cls->isDependentType() || Pointee->isDependentType(),
2106         (Cls->isInstantiationDependentType() ||
2107          Pointee->isInstantiationDependentType()),
2108         Pointee->isVariablyModifiedType(),
2109         (Cls->containsUnexpandedParameterPack() ||
2110          Pointee->containsUnexpandedParameterPack())),
2111    PointeeType(Pointee), Class(Cls) {
2112  }
2113  friend class ASTContext; // ASTContext creates these.
2114
2115public:
2116  QualType getPointeeType() const { return PointeeType; }
2117
2118  /// Returns true if the member type (i.e. the pointee type) is a
2119  /// function type rather than a data-member type.
2120  bool isMemberFunctionPointer() const {
2121    return PointeeType->isFunctionProtoType();
2122  }
2123
2124  /// Returns true if the member type (i.e. the pointee type) is a
2125  /// data type rather than a function type.
2126  bool isMemberDataPointer() const {
2127    return !PointeeType->isFunctionProtoType();
2128  }
2129
2130  const Type *getClass() const { return Class; }
2131
2132  bool isSugared() const { return false; }
2133  QualType desugar() const { return QualType(this, 0); }
2134
2135  void Profile(llvm::FoldingSetNodeID &ID) {
2136    Profile(ID, getPointeeType(), getClass());
2137  }
2138  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
2139                      const Type *Class) {
2140    ID.AddPointer(Pointee.getAsOpaquePtr());
2141    ID.AddPointer(Class);
2142  }
2143
2144  static bool classof(const Type *T) {
2145    return T->getTypeClass() == MemberPointer;
2146  }
2147};
2148
2149/// ArrayType - C99 6.7.5.2 - Array Declarators.
2150///
2151class ArrayType : public Type, public llvm::FoldingSetNode {
2152public:
2153  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
2154  /// an array with a static size (e.g. int X[static 4]), or an array
2155  /// with a star size (e.g. int X[*]).
2156  /// 'static' is only allowed on function parameters.
2157  enum ArraySizeModifier {
2158    Normal, Static, Star
2159  };
2160private:
2161  /// ElementType - The element type of the array.
2162  QualType ElementType;
2163
2164protected:
2165  // C++ [temp.dep.type]p1:
2166  //   A type is dependent if it is...
2167  //     - an array type constructed from any dependent type or whose
2168  //       size is specified by a constant expression that is
2169  //       value-dependent,
2170  ArrayType(TypeClass tc, QualType et, QualType can,
2171            ArraySizeModifier sm, unsigned tq,
2172            bool ContainsUnexpandedParameterPack)
2173    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray,
2174           et->isInstantiationDependentType() || tc == DependentSizedArray,
2175           (tc == VariableArray || et->isVariablyModifiedType()),
2176           ContainsUnexpandedParameterPack),
2177      ElementType(et) {
2178    ArrayTypeBits.IndexTypeQuals = tq;
2179    ArrayTypeBits.SizeModifier = sm;
2180  }
2181
2182  friend class ASTContext;  // ASTContext creates these.
2183
2184public:
2185  QualType getElementType() const { return ElementType; }
2186  ArraySizeModifier getSizeModifier() const {
2187    return ArraySizeModifier(ArrayTypeBits.SizeModifier);
2188  }
2189  Qualifiers getIndexTypeQualifiers() const {
2190    return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
2191  }
2192  unsigned getIndexTypeCVRQualifiers() const {
2193    return ArrayTypeBits.IndexTypeQuals;
2194  }
2195
2196  static bool classof(const Type *T) {
2197    return T->getTypeClass() == ConstantArray ||
2198           T->getTypeClass() == VariableArray ||
2199           T->getTypeClass() == IncompleteArray ||
2200           T->getTypeClass() == DependentSizedArray;
2201  }
2202};
2203
2204/// ConstantArrayType - This class represents the canonical version of
2205/// C arrays with a specified constant size.  For example, the canonical
2206/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
2207/// type is 'int' and the size is 404.
2208class ConstantArrayType : public ArrayType {
2209  llvm::APInt Size; // Allows us to unique the type.
2210
2211  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
2212                    ArraySizeModifier sm, unsigned tq)
2213    : ArrayType(ConstantArray, et, can, sm, tq,
2214                et->containsUnexpandedParameterPack()),
2215      Size(size) {}
2216protected:
2217  ConstantArrayType(TypeClass tc, QualType et, QualType can,
2218                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
2219    : ArrayType(tc, et, can, sm, tq, et->containsUnexpandedParameterPack()),
2220      Size(size) {}
2221  friend class ASTContext;  // ASTContext creates these.
2222public:
2223  const llvm::APInt &getSize() const { return Size; }
2224  bool isSugared() const { return false; }
2225  QualType desugar() const { return QualType(this, 0); }
2226
2227
2228  /// \brief Determine the number of bits required to address a member of
2229  // an array with the given element type and number of elements.
2230  static unsigned getNumAddressingBits(ASTContext &Context,
2231                                       QualType ElementType,
2232                                       const llvm::APInt &NumElements);
2233
2234  /// \brief Determine the maximum number of active bits that an array's size
2235  /// can require, which limits the maximum size of the array.
2236  static unsigned getMaxSizeBits(ASTContext &Context);
2237
2238  void Profile(llvm::FoldingSetNodeID &ID) {
2239    Profile(ID, getElementType(), getSize(),
2240            getSizeModifier(), getIndexTypeCVRQualifiers());
2241  }
2242  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2243                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
2244                      unsigned TypeQuals) {
2245    ID.AddPointer(ET.getAsOpaquePtr());
2246    ID.AddInteger(ArraySize.getZExtValue());
2247    ID.AddInteger(SizeMod);
2248    ID.AddInteger(TypeQuals);
2249  }
2250  static bool classof(const Type *T) {
2251    return T->getTypeClass() == ConstantArray;
2252  }
2253};
2254
2255/// IncompleteArrayType - This class represents C arrays with an unspecified
2256/// size.  For example 'int A[]' has an IncompleteArrayType where the element
2257/// type is 'int' and the size is unspecified.
2258class IncompleteArrayType : public ArrayType {
2259
2260  IncompleteArrayType(QualType et, QualType can,
2261                      ArraySizeModifier sm, unsigned tq)
2262    : ArrayType(IncompleteArray, et, can, sm, tq,
2263                et->containsUnexpandedParameterPack()) {}
2264  friend class ASTContext;  // ASTContext creates these.
2265public:
2266  bool isSugared() const { return false; }
2267  QualType desugar() const { return QualType(this, 0); }
2268
2269  static bool classof(const Type *T) {
2270    return T->getTypeClass() == IncompleteArray;
2271  }
2272
2273  friend class StmtIteratorBase;
2274
2275  void Profile(llvm::FoldingSetNodeID &ID) {
2276    Profile(ID, getElementType(), getSizeModifier(),
2277            getIndexTypeCVRQualifiers());
2278  }
2279
2280  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2281                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
2282    ID.AddPointer(ET.getAsOpaquePtr());
2283    ID.AddInteger(SizeMod);
2284    ID.AddInteger(TypeQuals);
2285  }
2286};
2287
2288/// VariableArrayType - This class represents C arrays with a specified size
2289/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
2290/// Since the size expression is an arbitrary expression, we store it as such.
2291///
2292/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
2293/// should not be: two lexically equivalent variable array types could mean
2294/// different things, for example, these variables do not have the same type
2295/// dynamically:
2296///
2297/// void foo(int x) {
2298///   int Y[x];
2299///   ++x;
2300///   int Z[x];
2301/// }
2302///
2303class VariableArrayType : public ArrayType {
2304  /// SizeExpr - An assignment expression. VLA's are only permitted within
2305  /// a function block.
2306  Stmt *SizeExpr;
2307  /// Brackets - The left and right array brackets.
2308  SourceRange Brackets;
2309
2310  VariableArrayType(QualType et, QualType can, Expr *e,
2311                    ArraySizeModifier sm, unsigned tq,
2312                    SourceRange brackets)
2313    : ArrayType(VariableArray, et, can, sm, tq,
2314                et->containsUnexpandedParameterPack()),
2315      SizeExpr((Stmt*) e), Brackets(brackets) {}
2316  friend class ASTContext;  // ASTContext creates these.
2317
2318public:
2319  Expr *getSizeExpr() const {
2320    // We use C-style casts instead of cast<> here because we do not wish
2321    // to have a dependency of Type.h on Stmt.h/Expr.h.
2322    return (Expr*) SizeExpr;
2323  }
2324  SourceRange getBracketsRange() const { return Brackets; }
2325  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
2326  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
2327
2328  bool isSugared() const { return false; }
2329  QualType desugar() const { return QualType(this, 0); }
2330
2331  static bool classof(const Type *T) {
2332    return T->getTypeClass() == VariableArray;
2333  }
2334
2335  friend class StmtIteratorBase;
2336
2337  void Profile(llvm::FoldingSetNodeID &ID) {
2338    llvm_unreachable("Cannot unique VariableArrayTypes.");
2339  }
2340};
2341
2342/// DependentSizedArrayType - This type represents an array type in
2343/// C++ whose size is a value-dependent expression. For example:
2344///
2345/// \code
2346/// template<typename T, int Size>
2347/// class array {
2348///   T data[Size];
2349/// };
2350/// \endcode
2351///
2352/// For these types, we won't actually know what the array bound is
2353/// until template instantiation occurs, at which point this will
2354/// become either a ConstantArrayType or a VariableArrayType.
2355class DependentSizedArrayType : public ArrayType {
2356  const ASTContext &Context;
2357
2358  /// \brief An assignment expression that will instantiate to the
2359  /// size of the array.
2360  ///
2361  /// The expression itself might be NULL, in which case the array
2362  /// type will have its size deduced from an initializer.
2363  Stmt *SizeExpr;
2364
2365  /// Brackets - The left and right array brackets.
2366  SourceRange Brackets;
2367
2368  DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
2369                          Expr *e, ArraySizeModifier sm, unsigned tq,
2370                          SourceRange brackets);
2371
2372  friend class ASTContext;  // ASTContext creates these.
2373
2374public:
2375  Expr *getSizeExpr() const {
2376    // We use C-style casts instead of cast<> here because we do not wish
2377    // to have a dependency of Type.h on Stmt.h/Expr.h.
2378    return (Expr*) SizeExpr;
2379  }
2380  SourceRange getBracketsRange() const { return Brackets; }
2381  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
2382  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
2383
2384  bool isSugared() const { return false; }
2385  QualType desugar() const { return QualType(this, 0); }
2386
2387  static bool classof(const Type *T) {
2388    return T->getTypeClass() == DependentSizedArray;
2389  }
2390
2391  friend class StmtIteratorBase;
2392
2393
2394  void Profile(llvm::FoldingSetNodeID &ID) {
2395    Profile(ID, Context, getElementType(),
2396            getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
2397  }
2398
2399  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2400                      QualType ET, ArraySizeModifier SizeMod,
2401                      unsigned TypeQuals, Expr *E);
2402};
2403
2404/// DependentSizedExtVectorType - This type represent an extended vector type
2405/// where either the type or size is dependent. For example:
2406/// @code
2407/// template<typename T, int Size>
2408/// class vector {
2409///   typedef T __attribute__((ext_vector_type(Size))) type;
2410/// }
2411/// @endcode
2412class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
2413  const ASTContext &Context;
2414  Expr *SizeExpr;
2415  /// ElementType - The element type of the array.
2416  QualType ElementType;
2417  SourceLocation loc;
2418
2419  DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
2420                              QualType can, Expr *SizeExpr, SourceLocation loc);
2421
2422  friend class ASTContext;
2423
2424public:
2425  Expr *getSizeExpr() const { return SizeExpr; }
2426  QualType getElementType() const { return ElementType; }
2427  SourceLocation getAttributeLoc() const { return loc; }
2428
2429  bool isSugared() const { return false; }
2430  QualType desugar() const { return QualType(this, 0); }
2431
2432  static bool classof(const Type *T) {
2433    return T->getTypeClass() == DependentSizedExtVector;
2434  }
2435
2436  void Profile(llvm::FoldingSetNodeID &ID) {
2437    Profile(ID, Context, getElementType(), getSizeExpr());
2438  }
2439
2440  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2441                      QualType ElementType, Expr *SizeExpr);
2442};
2443
2444
2445/// VectorType - GCC generic vector type. This type is created using
2446/// __attribute__((vector_size(n)), where "n" specifies the vector size in
2447/// bytes; or from an Altivec __vector or vector declaration.
2448/// Since the constructor takes the number of vector elements, the
2449/// client is responsible for converting the size into the number of elements.
2450class VectorType : public Type, public llvm::FoldingSetNode {
2451public:
2452  enum VectorKind {
2453    GenericVector,  // not a target-specific vector type
2454    AltiVecVector,  // is AltiVec vector
2455    AltiVecPixel,   // is AltiVec 'vector Pixel'
2456    AltiVecBool,    // is AltiVec 'vector bool ...'
2457    NeonVector,     // is ARM Neon vector
2458    NeonPolyVector  // is ARM Neon polynomial vector
2459  };
2460protected:
2461  /// ElementType - The element type of the vector.
2462  QualType ElementType;
2463
2464  VectorType(QualType vecType, unsigned nElements, QualType canonType,
2465             VectorKind vecKind);
2466
2467  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
2468             QualType canonType, VectorKind vecKind);
2469
2470  friend class ASTContext;  // ASTContext creates these.
2471
2472public:
2473
2474  QualType getElementType() const { return ElementType; }
2475  unsigned getNumElements() const { return VectorTypeBits.NumElements; }
2476
2477  bool isSugared() const { return false; }
2478  QualType desugar() const { return QualType(this, 0); }
2479
2480  VectorKind getVectorKind() const {
2481    return VectorKind(VectorTypeBits.VecKind);
2482  }
2483
2484  void Profile(llvm::FoldingSetNodeID &ID) {
2485    Profile(ID, getElementType(), getNumElements(),
2486            getTypeClass(), getVectorKind());
2487  }
2488  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
2489                      unsigned NumElements, TypeClass TypeClass,
2490                      VectorKind VecKind) {
2491    ID.AddPointer(ElementType.getAsOpaquePtr());
2492    ID.AddInteger(NumElements);
2493    ID.AddInteger(TypeClass);
2494    ID.AddInteger(VecKind);
2495  }
2496
2497  static bool classof(const Type *T) {
2498    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
2499  }
2500};
2501
2502/// ExtVectorType - Extended vector type. This type is created using
2503/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
2504/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
2505/// class enables syntactic extensions, like Vector Components for accessing
2506/// points, colors, and textures (modeled after OpenGL Shading Language).
2507class ExtVectorType : public VectorType {
2508  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
2509    VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
2510  friend class ASTContext;  // ASTContext creates these.
2511public:
2512  static int getPointAccessorIdx(char c) {
2513    switch (c) {
2514    default: return -1;
2515    case 'x': return 0;
2516    case 'y': return 1;
2517    case 'z': return 2;
2518    case 'w': return 3;
2519    }
2520  }
2521  static int getNumericAccessorIdx(char c) {
2522    switch (c) {
2523      default: return -1;
2524      case '0': return 0;
2525      case '1': return 1;
2526      case '2': return 2;
2527      case '3': return 3;
2528      case '4': return 4;
2529      case '5': return 5;
2530      case '6': return 6;
2531      case '7': return 7;
2532      case '8': return 8;
2533      case '9': return 9;
2534      case 'A':
2535      case 'a': return 10;
2536      case 'B':
2537      case 'b': return 11;
2538      case 'C':
2539      case 'c': return 12;
2540      case 'D':
2541      case 'd': return 13;
2542      case 'E':
2543      case 'e': return 14;
2544      case 'F':
2545      case 'f': return 15;
2546    }
2547  }
2548
2549  static int getAccessorIdx(char c) {
2550    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
2551    return getNumericAccessorIdx(c);
2552  }
2553
2554  bool isAccessorWithinNumElements(char c) const {
2555    if (int idx = getAccessorIdx(c)+1)
2556      return unsigned(idx-1) < getNumElements();
2557    return false;
2558  }
2559  bool isSugared() const { return false; }
2560  QualType desugar() const { return QualType(this, 0); }
2561
2562  static bool classof(const Type *T) {
2563    return T->getTypeClass() == ExtVector;
2564  }
2565};
2566
2567/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
2568/// class of FunctionNoProtoType and FunctionProtoType.
2569///
2570class FunctionType : public Type {
2571  // The type returned by the function.
2572  QualType ResultType;
2573
2574 public:
2575  /// ExtInfo - A class which abstracts out some details necessary for
2576  /// making a call.
2577  ///
2578  /// It is not actually used directly for storing this information in
2579  /// a FunctionType, although FunctionType does currently use the
2580  /// same bit-pattern.
2581  ///
2582  // If you add a field (say Foo), other than the obvious places (both,
2583  // constructors, compile failures), what you need to update is
2584  // * Operator==
2585  // * getFoo
2586  // * withFoo
2587  // * functionType. Add Foo, getFoo.
2588  // * ASTContext::getFooType
2589  // * ASTContext::mergeFunctionTypes
2590  // * FunctionNoProtoType::Profile
2591  // * FunctionProtoType::Profile
2592  // * TypePrinter::PrintFunctionProto
2593  // * AST read and write
2594  // * Codegen
2595  class ExtInfo {
2596    // Feel free to rearrange or add bits, but if you go over 9,
2597    // you'll need to adjust both the Bits field below and
2598    // Type::FunctionTypeBitfields.
2599
2600    //   |  CC  |noreturn|produces|regparm|
2601    //   |0 .. 3|   4    |    5   | 6 .. 8|
2602    //
2603    // regparm is either 0 (no regparm attribute) or the regparm value+1.
2604    enum { CallConvMask = 0xF };
2605    enum { NoReturnMask = 0x10 };
2606    enum { ProducesResultMask = 0x20 };
2607    enum { RegParmMask = ~(CallConvMask | NoReturnMask | ProducesResultMask),
2608           RegParmOffset = 6 }; // Assumed to be the last field
2609
2610    uint16_t Bits;
2611
2612    ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
2613
2614    friend class FunctionType;
2615
2616   public:
2617    // Constructor with no defaults. Use this when you know that you
2618    // have all the elements (when reading an AST file for example).
2619    ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
2620            bool producesResult) {
2621      assert((!hasRegParm || regParm < 7) && "Invalid regparm value");
2622      Bits = ((unsigned) cc) |
2623             (noReturn ? NoReturnMask : 0) |
2624             (producesResult ? ProducesResultMask : 0) |
2625             (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0);
2626    }
2627
2628    // Constructor with all defaults. Use when for example creating a
2629    // function know to use defaults.
2630    ExtInfo() : Bits(0) {}
2631
2632    bool getNoReturn() const { return Bits & NoReturnMask; }
2633    bool getProducesResult() const { return Bits & ProducesResultMask; }
2634    bool getHasRegParm() const { return (Bits >> RegParmOffset) != 0; }
2635    unsigned getRegParm() const {
2636      unsigned RegParm = Bits >> RegParmOffset;
2637      if (RegParm > 0)
2638        --RegParm;
2639      return RegParm;
2640    }
2641    CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
2642
2643    bool operator==(ExtInfo Other) const {
2644      return Bits == Other.Bits;
2645    }
2646    bool operator!=(ExtInfo Other) const {
2647      return Bits != Other.Bits;
2648    }
2649
2650    // Note that we don't have setters. That is by design, use
2651    // the following with methods instead of mutating these objects.
2652
2653    ExtInfo withNoReturn(bool noReturn) const {
2654      if (noReturn)
2655        return ExtInfo(Bits | NoReturnMask);
2656      else
2657        return ExtInfo(Bits & ~NoReturnMask);
2658    }
2659
2660    ExtInfo withProducesResult(bool producesResult) const {
2661      if (producesResult)
2662        return ExtInfo(Bits | ProducesResultMask);
2663      else
2664        return ExtInfo(Bits & ~ProducesResultMask);
2665    }
2666
2667    ExtInfo withRegParm(unsigned RegParm) const {
2668      assert(RegParm < 7 && "Invalid regparm value");
2669      return ExtInfo((Bits & ~RegParmMask) |
2670                     ((RegParm + 1) << RegParmOffset));
2671    }
2672
2673    ExtInfo withCallingConv(CallingConv cc) const {
2674      return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
2675    }
2676
2677    void Profile(llvm::FoldingSetNodeID &ID) const {
2678      ID.AddInteger(Bits);
2679    }
2680  };
2681
2682protected:
2683  FunctionType(TypeClass tc, QualType res,
2684               unsigned typeQuals, QualType Canonical, bool Dependent,
2685               bool InstantiationDependent,
2686               bool VariablyModified, bool ContainsUnexpandedParameterPack,
2687               ExtInfo Info)
2688    : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
2689           ContainsUnexpandedParameterPack),
2690      ResultType(res) {
2691    FunctionTypeBits.ExtInfo = Info.Bits;
2692    FunctionTypeBits.TypeQuals = typeQuals;
2693  }
2694  unsigned getTypeQuals() const { return FunctionTypeBits.TypeQuals; }
2695
2696public:
2697
2698  QualType getResultType() const { return ResultType; }
2699
2700  bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
2701  unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
2702  /// \brief Determine whether this function type includes the GNU noreturn
2703  /// attribute. The C++11 [[noreturn]] attribute does not affect the function
2704  /// type.
2705  bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
2706  CallingConv getCallConv() const { return getExtInfo().getCC(); }
2707  ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
2708  bool isConst() const { return getTypeQuals() & Qualifiers::Const; }
2709  bool isVolatile() const { return getTypeQuals() & Qualifiers::Volatile; }
2710  bool isRestrict() const { return getTypeQuals() & Qualifiers::Restrict; }
2711
2712  /// \brief Determine the type of an expression that calls a function of
2713  /// this type.
2714  QualType getCallResultType(ASTContext &Context) const {
2715    return getResultType().getNonLValueExprType(Context);
2716  }
2717
2718  static StringRef getNameForCallConv(CallingConv CC);
2719
2720  static bool classof(const Type *T) {
2721    return T->getTypeClass() == FunctionNoProto ||
2722           T->getTypeClass() == FunctionProto;
2723  }
2724};
2725
2726/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
2727/// no information available about its arguments.
2728class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
2729  FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
2730    : FunctionType(FunctionNoProto, Result, 0, Canonical,
2731                   /*Dependent=*/false, /*InstantiationDependent=*/false,
2732                   Result->isVariablyModifiedType(),
2733                   /*ContainsUnexpandedParameterPack=*/false, Info) {}
2734
2735  friend class ASTContext;  // ASTContext creates these.
2736
2737public:
2738  // No additional state past what FunctionType provides.
2739
2740  bool isSugared() const { return false; }
2741  QualType desugar() const { return QualType(this, 0); }
2742
2743  void Profile(llvm::FoldingSetNodeID &ID) {
2744    Profile(ID, getResultType(), getExtInfo());
2745  }
2746  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
2747                      ExtInfo Info) {
2748    Info.Profile(ID);
2749    ID.AddPointer(ResultType.getAsOpaquePtr());
2750  }
2751
2752  static bool classof(const Type *T) {
2753    return T->getTypeClass() == FunctionNoProto;
2754  }
2755};
2756
2757/// FunctionProtoType - Represents a prototype with argument type info, e.g.
2758/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
2759/// arguments, not as having a single void argument. Such a type can have an
2760/// exception specification, but this specification is not part of the canonical
2761/// type.
2762class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
2763public:
2764  /// ExtProtoInfo - Extra information about a function prototype.
2765  struct ExtProtoInfo {
2766    ExtProtoInfo() :
2767      Variadic(false), HasTrailingReturn(false), TypeQuals(0),
2768      ExceptionSpecType(EST_None), RefQualifier(RQ_None),
2769      NumExceptions(0), Exceptions(0), NoexceptExpr(0),
2770      ExceptionSpecDecl(0), ExceptionSpecTemplate(0),
2771      ConsumedArguments(0) {}
2772
2773    FunctionType::ExtInfo ExtInfo;
2774    bool Variadic : 1;
2775    bool HasTrailingReturn : 1;
2776    unsigned char TypeQuals;
2777    ExceptionSpecificationType ExceptionSpecType;
2778    RefQualifierKind RefQualifier;
2779    unsigned NumExceptions;
2780    const QualType *Exceptions;
2781    Expr *NoexceptExpr;
2782    FunctionDecl *ExceptionSpecDecl;
2783    FunctionDecl *ExceptionSpecTemplate;
2784    const bool *ConsumedArguments;
2785  };
2786
2787private:
2788  /// \brief Determine whether there are any argument types that
2789  /// contain an unexpanded parameter pack.
2790  static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
2791                                                 unsigned numArgs) {
2792    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
2793      if (ArgArray[Idx]->containsUnexpandedParameterPack())
2794        return true;
2795
2796    return false;
2797  }
2798
2799  FunctionProtoType(QualType result, ArrayRef<QualType> args,
2800                    QualType canonical, const ExtProtoInfo &epi);
2801
2802  /// NumArgs - The number of arguments this function has, not counting '...'.
2803  unsigned NumArgs : 15;
2804
2805  /// NumExceptions - The number of types in the exception spec, if any.
2806  unsigned NumExceptions : 9;
2807
2808  /// ExceptionSpecType - The type of exception specification this function has.
2809  unsigned ExceptionSpecType : 3;
2810
2811  /// HasAnyConsumedArgs - Whether this function has any consumed arguments.
2812  unsigned HasAnyConsumedArgs : 1;
2813
2814  /// Variadic - Whether the function is variadic.
2815  unsigned Variadic : 1;
2816
2817  /// HasTrailingReturn - Whether this function has a trailing return type.
2818  unsigned HasTrailingReturn : 1;
2819
2820  /// \brief The ref-qualifier associated with a \c FunctionProtoType.
2821  ///
2822  /// This is a value of type \c RefQualifierKind.
2823  unsigned RefQualifier : 2;
2824
2825  // ArgInfo - There is an variable size array after the class in memory that
2826  // holds the argument types.
2827
2828  // Exceptions - There is another variable size array after ArgInfo that
2829  // holds the exception types.
2830
2831  // NoexceptExpr - Instead of Exceptions, there may be a single Expr* pointing
2832  // to the expression in the noexcept() specifier.
2833
2834  // ExceptionSpecDecl, ExceptionSpecTemplate - Instead of Exceptions, there may
2835  // be a pair of FunctionDecl* pointing to the function which should be used to
2836  // instantiate this function type's exception specification, and the function
2837  // from which it should be instantiated.
2838
2839  // ConsumedArgs - A variable size array, following Exceptions
2840  // and of length NumArgs, holding flags indicating which arguments
2841  // are consumed.  This only appears if HasAnyConsumedArgs is true.
2842
2843  friend class ASTContext;  // ASTContext creates these.
2844
2845  const bool *getConsumedArgsBuffer() const {
2846    assert(hasAnyConsumedArgs());
2847
2848    // Find the end of the exceptions.
2849    Expr * const *eh_end = reinterpret_cast<Expr * const *>(arg_type_end());
2850    if (getExceptionSpecType() != EST_ComputedNoexcept)
2851      eh_end += NumExceptions;
2852    else
2853      eh_end += 1; // NoexceptExpr
2854
2855    return reinterpret_cast<const bool*>(eh_end);
2856  }
2857
2858public:
2859  unsigned getNumArgs() const { return NumArgs; }
2860  QualType getArgType(unsigned i) const {
2861    assert(i < NumArgs && "Invalid argument number!");
2862    return arg_type_begin()[i];
2863  }
2864  ArrayRef<QualType> getArgTypes() const {
2865    return ArrayRef<QualType>(arg_type_begin(), arg_type_end());
2866  }
2867
2868  ExtProtoInfo getExtProtoInfo() const {
2869    ExtProtoInfo EPI;
2870    EPI.ExtInfo = getExtInfo();
2871    EPI.Variadic = isVariadic();
2872    EPI.HasTrailingReturn = hasTrailingReturn();
2873    EPI.ExceptionSpecType = getExceptionSpecType();
2874    EPI.TypeQuals = static_cast<unsigned char>(getTypeQuals());
2875    EPI.RefQualifier = getRefQualifier();
2876    if (EPI.ExceptionSpecType == EST_Dynamic) {
2877      EPI.NumExceptions = NumExceptions;
2878      EPI.Exceptions = exception_begin();
2879    } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2880      EPI.NoexceptExpr = getNoexceptExpr();
2881    } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
2882      EPI.ExceptionSpecDecl = getExceptionSpecDecl();
2883      EPI.ExceptionSpecTemplate = getExceptionSpecTemplate();
2884    } else if (EPI.ExceptionSpecType == EST_Unevaluated) {
2885      EPI.ExceptionSpecDecl = getExceptionSpecDecl();
2886    }
2887    if (hasAnyConsumedArgs())
2888      EPI.ConsumedArguments = getConsumedArgsBuffer();
2889    return EPI;
2890  }
2891
2892  /// \brief Get the kind of exception specification on this function.
2893  ExceptionSpecificationType getExceptionSpecType() const {
2894    return static_cast<ExceptionSpecificationType>(ExceptionSpecType);
2895  }
2896  /// \brief Return whether this function has any kind of exception spec.
2897  bool hasExceptionSpec() const {
2898    return getExceptionSpecType() != EST_None;
2899  }
2900  /// \brief Return whether this function has a dynamic (throw) exception spec.
2901  bool hasDynamicExceptionSpec() const {
2902    return isDynamicExceptionSpec(getExceptionSpecType());
2903  }
2904  /// \brief Return whether this function has a noexcept exception spec.
2905  bool hasNoexceptExceptionSpec() const {
2906    return isNoexceptExceptionSpec(getExceptionSpecType());
2907  }
2908  /// \brief Result type of getNoexceptSpec().
2909  enum NoexceptResult {
2910    NR_NoNoexcept,  ///< There is no noexcept specifier.
2911    NR_BadNoexcept, ///< The noexcept specifier has a bad expression.
2912    NR_Dependent,   ///< The noexcept specifier is dependent.
2913    NR_Throw,       ///< The noexcept specifier evaluates to false.
2914    NR_Nothrow      ///< The noexcept specifier evaluates to true.
2915  };
2916  /// \brief Get the meaning of the noexcept spec on this function, if any.
2917  NoexceptResult getNoexceptSpec(ASTContext &Ctx) const;
2918  unsigned getNumExceptions() const { return NumExceptions; }
2919  QualType getExceptionType(unsigned i) const {
2920    assert(i < NumExceptions && "Invalid exception number!");
2921    return exception_begin()[i];
2922  }
2923  Expr *getNoexceptExpr() const {
2924    if (getExceptionSpecType() != EST_ComputedNoexcept)
2925      return 0;
2926    // NoexceptExpr sits where the arguments end.
2927    return *reinterpret_cast<Expr *const *>(arg_type_end());
2928  }
2929  /// \brief If this function type has an exception specification which hasn't
2930  /// been determined yet (either because it has not been evaluated or because
2931  /// it has not been instantiated), this is the function whose exception
2932  /// specification is represented by this type.
2933  FunctionDecl *getExceptionSpecDecl() const {
2934    if (getExceptionSpecType() != EST_Uninstantiated &&
2935        getExceptionSpecType() != EST_Unevaluated)
2936      return 0;
2937    return reinterpret_cast<FunctionDecl * const *>(arg_type_end())[0];
2938  }
2939  /// \brief If this function type has an uninstantiated exception
2940  /// specification, this is the function whose exception specification
2941  /// should be instantiated to find the exception specification for
2942  /// this type.
2943  FunctionDecl *getExceptionSpecTemplate() const {
2944    if (getExceptionSpecType() != EST_Uninstantiated)
2945      return 0;
2946    return reinterpret_cast<FunctionDecl * const *>(arg_type_end())[1];
2947  }
2948  bool isNothrow(ASTContext &Ctx) const {
2949    ExceptionSpecificationType EST = getExceptionSpecType();
2950    assert(EST != EST_Unevaluated && EST != EST_Uninstantiated);
2951    if (EST == EST_DynamicNone || EST == EST_BasicNoexcept)
2952      return true;
2953    if (EST != EST_ComputedNoexcept)
2954      return false;
2955    return getNoexceptSpec(Ctx) == NR_Nothrow;
2956  }
2957
2958  bool isVariadic() const { return Variadic; }
2959
2960  /// \brief Determines whether this function prototype contains a
2961  /// parameter pack at the end.
2962  ///
2963  /// A function template whose last parameter is a parameter pack can be
2964  /// called with an arbitrary number of arguments, much like a variadic
2965  /// function.
2966  bool isTemplateVariadic() const;
2967
2968  bool hasTrailingReturn() const { return HasTrailingReturn; }
2969
2970  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
2971
2972
2973  /// \brief Retrieve the ref-qualifier associated with this function type.
2974  RefQualifierKind getRefQualifier() const {
2975    return static_cast<RefQualifierKind>(RefQualifier);
2976  }
2977
2978  typedef const QualType *arg_type_iterator;
2979  arg_type_iterator arg_type_begin() const {
2980    return reinterpret_cast<const QualType *>(this+1);
2981  }
2982  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
2983
2984  typedef const QualType *exception_iterator;
2985  exception_iterator exception_begin() const {
2986    // exceptions begin where arguments end
2987    return arg_type_end();
2988  }
2989  exception_iterator exception_end() const {
2990    if (getExceptionSpecType() != EST_Dynamic)
2991      return exception_begin();
2992    return exception_begin() + NumExceptions;
2993  }
2994
2995  bool hasAnyConsumedArgs() const {
2996    return HasAnyConsumedArgs;
2997  }
2998  bool isArgConsumed(unsigned I) const {
2999    assert(I < getNumArgs() && "argument index out of range!");
3000    if (hasAnyConsumedArgs())
3001      return getConsumedArgsBuffer()[I];
3002    return false;
3003  }
3004
3005  bool isSugared() const { return false; }
3006  QualType desugar() const { return QualType(this, 0); }
3007
3008  void printExceptionSpecification(raw_ostream &OS,
3009                                   const PrintingPolicy &Policy) const;
3010
3011  static bool classof(const Type *T) {
3012    return T->getTypeClass() == FunctionProto;
3013  }
3014
3015  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
3016  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
3017                      arg_type_iterator ArgTys, unsigned NumArgs,
3018                      const ExtProtoInfo &EPI, const ASTContext &Context);
3019};
3020
3021
3022/// \brief Represents the dependent type named by a dependently-scoped
3023/// typename using declaration, e.g.
3024///   using typename Base<T>::foo;
3025/// Template instantiation turns these into the underlying type.
3026class UnresolvedUsingType : public Type {
3027  UnresolvedUsingTypenameDecl *Decl;
3028
3029  UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
3030    : Type(UnresolvedUsing, QualType(), true, true, false,
3031           /*ContainsUnexpandedParameterPack=*/false),
3032      Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
3033  friend class ASTContext; // ASTContext creates these.
3034public:
3035
3036  UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
3037
3038  bool isSugared() const { return false; }
3039  QualType desugar() const { return QualType(this, 0); }
3040
3041  static bool classof(const Type *T) {
3042    return T->getTypeClass() == UnresolvedUsing;
3043  }
3044
3045  void Profile(llvm::FoldingSetNodeID &ID) {
3046    return Profile(ID, Decl);
3047  }
3048  static void Profile(llvm::FoldingSetNodeID &ID,
3049                      UnresolvedUsingTypenameDecl *D) {
3050    ID.AddPointer(D);
3051  }
3052};
3053
3054
3055class TypedefType : public Type {
3056  TypedefNameDecl *Decl;
3057protected:
3058  TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType can)
3059    : Type(tc, can, can->isDependentType(),
3060           can->isInstantiationDependentType(),
3061           can->isVariablyModifiedType(),
3062           /*ContainsUnexpandedParameterPack=*/false),
3063      Decl(const_cast<TypedefNameDecl*>(D)) {
3064    assert(!isa<TypedefType>(can) && "Invalid canonical type");
3065  }
3066  friend class ASTContext;  // ASTContext creates these.
3067public:
3068
3069  TypedefNameDecl *getDecl() const { return Decl; }
3070
3071  bool isSugared() const { return true; }
3072  QualType desugar() const;
3073
3074  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
3075};
3076
3077/// TypeOfExprType (GCC extension).
3078class TypeOfExprType : public Type {
3079  Expr *TOExpr;
3080
3081protected:
3082  TypeOfExprType(Expr *E, QualType can = QualType());
3083  friend class ASTContext;  // ASTContext creates these.
3084public:
3085  Expr *getUnderlyingExpr() const { return TOExpr; }
3086
3087  /// \brief Remove a single level of sugar.
3088  QualType desugar() const;
3089
3090  /// \brief Returns whether this type directly provides sugar.
3091  bool isSugared() const;
3092
3093  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
3094};
3095
3096/// \brief Internal representation of canonical, dependent
3097/// typeof(expr) types.
3098///
3099/// This class is used internally by the ASTContext to manage
3100/// canonical, dependent types, only. Clients will only see instances
3101/// of this class via TypeOfExprType nodes.
3102class DependentTypeOfExprType
3103  : public TypeOfExprType, public llvm::FoldingSetNode {
3104  const ASTContext &Context;
3105
3106public:
3107  DependentTypeOfExprType(const ASTContext &Context, Expr *E)
3108    : TypeOfExprType(E), Context(Context) { }
3109
3110  void Profile(llvm::FoldingSetNodeID &ID) {
3111    Profile(ID, Context, getUnderlyingExpr());
3112  }
3113
3114  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3115                      Expr *E);
3116};
3117
3118/// TypeOfType (GCC extension).
3119class TypeOfType : public Type {
3120  QualType TOType;
3121  TypeOfType(QualType T, QualType can)
3122    : Type(TypeOf, can, T->isDependentType(),
3123           T->isInstantiationDependentType(),
3124           T->isVariablyModifiedType(),
3125           T->containsUnexpandedParameterPack()),
3126      TOType(T) {
3127    assert(!isa<TypedefType>(can) && "Invalid canonical type");
3128  }
3129  friend class ASTContext;  // ASTContext creates these.
3130public:
3131  QualType getUnderlyingType() const { return TOType; }
3132
3133  /// \brief Remove a single level of sugar.
3134  QualType desugar() const { return getUnderlyingType(); }
3135
3136  /// \brief Returns whether this type directly provides sugar.
3137  bool isSugared() const { return true; }
3138
3139  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
3140};
3141
3142/// DecltypeType (C++0x)
3143class DecltypeType : public Type {
3144  Expr *E;
3145  QualType UnderlyingType;
3146
3147protected:
3148  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
3149  friend class ASTContext;  // ASTContext creates these.
3150public:
3151  Expr *getUnderlyingExpr() const { return E; }
3152  QualType getUnderlyingType() const { return UnderlyingType; }
3153
3154  /// \brief Remove a single level of sugar.
3155  QualType desugar() const;
3156
3157  /// \brief Returns whether this type directly provides sugar.
3158  bool isSugared() const;
3159
3160  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
3161};
3162
3163/// \brief Internal representation of canonical, dependent
3164/// decltype(expr) types.
3165///
3166/// This class is used internally by the ASTContext to manage
3167/// canonical, dependent types, only. Clients will only see instances
3168/// of this class via DecltypeType nodes.
3169class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
3170  const ASTContext &Context;
3171
3172public:
3173  DependentDecltypeType(const ASTContext &Context, Expr *E);
3174
3175  void Profile(llvm::FoldingSetNodeID &ID) {
3176    Profile(ID, Context, getUnderlyingExpr());
3177  }
3178
3179  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3180                      Expr *E);
3181};
3182
3183/// \brief A unary type transform, which is a type constructed from another
3184class UnaryTransformType : public Type {
3185public:
3186  enum UTTKind {
3187    EnumUnderlyingType
3188  };
3189
3190private:
3191  /// The untransformed type.
3192  QualType BaseType;
3193  /// The transformed type if not dependent, otherwise the same as BaseType.
3194  QualType UnderlyingType;
3195
3196  UTTKind UKind;
3197protected:
3198  UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
3199                     QualType CanonicalTy);
3200  friend class ASTContext;
3201public:
3202  bool isSugared() const { return !isDependentType(); }
3203  QualType desugar() const { return UnderlyingType; }
3204
3205  QualType getUnderlyingType() const { return UnderlyingType; }
3206  QualType getBaseType() const { return BaseType; }
3207
3208  UTTKind getUTTKind() const { return UKind; }
3209
3210  static bool classof(const Type *T) {
3211    return T->getTypeClass() == UnaryTransform;
3212  }
3213};
3214
3215class TagType : public Type {
3216  /// Stores the TagDecl associated with this type. The decl may point to any
3217  /// TagDecl that declares the entity.
3218  TagDecl * decl;
3219
3220  friend class ASTReader;
3221
3222protected:
3223  TagType(TypeClass TC, const TagDecl *D, QualType can);
3224
3225public:
3226  TagDecl *getDecl() const;
3227
3228  /// @brief Determines whether this type is in the process of being
3229  /// defined.
3230  bool isBeingDefined() const;
3231
3232  static bool classof(const Type *T) {
3233    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
3234  }
3235};
3236
3237/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
3238/// to detect TagType objects of structs/unions/classes.
3239class RecordType : public TagType {
3240protected:
3241  explicit RecordType(const RecordDecl *D)
3242    : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3243  explicit RecordType(TypeClass TC, RecordDecl *D)
3244    : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3245  friend class ASTContext;   // ASTContext creates these.
3246public:
3247
3248  RecordDecl *getDecl() const {
3249    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
3250  }
3251
3252  // FIXME: This predicate is a helper to QualType/Type. It needs to
3253  // recursively check all fields for const-ness. If any field is declared
3254  // const, it needs to return false.
3255  bool hasConstFields() const { return false; }
3256
3257  bool isSugared() const { return false; }
3258  QualType desugar() const { return QualType(this, 0); }
3259
3260  static bool classof(const Type *T) { return T->getTypeClass() == Record; }
3261};
3262
3263/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
3264/// to detect TagType objects of enums.
3265class EnumType : public TagType {
3266  explicit EnumType(const EnumDecl *D)
3267    : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3268  friend class ASTContext;   // ASTContext creates these.
3269public:
3270
3271  EnumDecl *getDecl() const {
3272    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
3273  }
3274
3275  bool isSugared() const { return false; }
3276  QualType desugar() const { return QualType(this, 0); }
3277
3278  static bool classof(const Type *T) { return T->getTypeClass() == Enum; }
3279};
3280
3281/// AttributedType - An attributed type is a type to which a type
3282/// attribute has been applied.  The "modified type" is the
3283/// fully-sugared type to which the attributed type was applied;
3284/// generally it is not canonically equivalent to the attributed type.
3285/// The "equivalent type" is the minimally-desugared type which the
3286/// type is canonically equivalent to.
3287///
3288/// For example, in the following attributed type:
3289///     int32_t __attribute__((vector_size(16)))
3290///   - the modified type is the TypedefType for int32_t
3291///   - the equivalent type is VectorType(16, int32_t)
3292///   - the canonical type is VectorType(16, int)
3293class AttributedType : public Type, public llvm::FoldingSetNode {
3294public:
3295  // It is really silly to have yet another attribute-kind enum, but
3296  // clang::attr::Kind doesn't currently cover the pure type attrs.
3297  enum Kind {
3298    // Expression operand.
3299    attr_address_space,
3300    attr_regparm,
3301    attr_vector_size,
3302    attr_neon_vector_type,
3303    attr_neon_polyvector_type,
3304
3305    FirstExprOperandKind = attr_address_space,
3306    LastExprOperandKind = attr_neon_polyvector_type,
3307
3308    // Enumerated operand (string or keyword).
3309    attr_objc_gc,
3310    attr_objc_ownership,
3311    attr_pcs,
3312
3313    FirstEnumOperandKind = attr_objc_gc,
3314    LastEnumOperandKind = attr_pcs,
3315
3316    // No operand.
3317    attr_noreturn,
3318    attr_cdecl,
3319    attr_fastcall,
3320    attr_stdcall,
3321    attr_thiscall,
3322    attr_pascal,
3323    attr_pnaclcall,
3324    attr_inteloclbicc
3325  };
3326
3327private:
3328  QualType ModifiedType;
3329  QualType EquivalentType;
3330
3331  friend class ASTContext; // creates these
3332
3333  AttributedType(QualType canon, Kind attrKind,
3334                 QualType modified, QualType equivalent)
3335    : Type(Attributed, canon, canon->isDependentType(),
3336           canon->isInstantiationDependentType(),
3337           canon->isVariablyModifiedType(),
3338           canon->containsUnexpandedParameterPack()),
3339      ModifiedType(modified), EquivalentType(equivalent) {
3340    AttributedTypeBits.AttrKind = attrKind;
3341  }
3342
3343public:
3344  Kind getAttrKind() const {
3345    return static_cast<Kind>(AttributedTypeBits.AttrKind);
3346  }
3347
3348  QualType getModifiedType() const { return ModifiedType; }
3349  QualType getEquivalentType() const { return EquivalentType; }
3350
3351  bool isSugared() const { return true; }
3352  QualType desugar() const { return getEquivalentType(); }
3353
3354  void Profile(llvm::FoldingSetNodeID &ID) {
3355    Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
3356  }
3357
3358  static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
3359                      QualType modified, QualType equivalent) {
3360    ID.AddInteger(attrKind);
3361    ID.AddPointer(modified.getAsOpaquePtr());
3362    ID.AddPointer(equivalent.getAsOpaquePtr());
3363  }
3364
3365  static bool classof(const Type *T) {
3366    return T->getTypeClass() == Attributed;
3367  }
3368};
3369
3370class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
3371  // Helper data collector for canonical types.
3372  struct CanonicalTTPTInfo {
3373    unsigned Depth : 15;
3374    unsigned ParameterPack : 1;
3375    unsigned Index : 16;
3376  };
3377
3378  union {
3379    // Info for the canonical type.
3380    CanonicalTTPTInfo CanTTPTInfo;
3381    // Info for the non-canonical type.
3382    TemplateTypeParmDecl *TTPDecl;
3383  };
3384
3385  /// Build a non-canonical type.
3386  TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
3387    : Type(TemplateTypeParm, Canon, /*Dependent=*/true,
3388           /*InstantiationDependent=*/true,
3389           /*VariablyModified=*/false,
3390           Canon->containsUnexpandedParameterPack()),
3391      TTPDecl(TTPDecl) { }
3392
3393  /// Build the canonical type.
3394  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
3395    : Type(TemplateTypeParm, QualType(this, 0),
3396           /*Dependent=*/true,
3397           /*InstantiationDependent=*/true,
3398           /*VariablyModified=*/false, PP) {
3399    CanTTPTInfo.Depth = D;
3400    CanTTPTInfo.Index = I;
3401    CanTTPTInfo.ParameterPack = PP;
3402  }
3403
3404  friend class ASTContext;  // ASTContext creates these
3405
3406  const CanonicalTTPTInfo& getCanTTPTInfo() const {
3407    QualType Can = getCanonicalTypeInternal();
3408    return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
3409  }
3410
3411public:
3412  unsigned getDepth() const { return getCanTTPTInfo().Depth; }
3413  unsigned getIndex() const { return getCanTTPTInfo().Index; }
3414  bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
3415
3416  TemplateTypeParmDecl *getDecl() const {
3417    return isCanonicalUnqualified() ? 0 : TTPDecl;
3418  }
3419
3420  IdentifierInfo *getIdentifier() const;
3421
3422  bool isSugared() const { return false; }
3423  QualType desugar() const { return QualType(this, 0); }
3424
3425  void Profile(llvm::FoldingSetNodeID &ID) {
3426    Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
3427  }
3428
3429  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
3430                      unsigned Index, bool ParameterPack,
3431                      TemplateTypeParmDecl *TTPDecl) {
3432    ID.AddInteger(Depth);
3433    ID.AddInteger(Index);
3434    ID.AddBoolean(ParameterPack);
3435    ID.AddPointer(TTPDecl);
3436  }
3437
3438  static bool classof(const Type *T) {
3439    return T->getTypeClass() == TemplateTypeParm;
3440  }
3441};
3442
3443/// \brief Represents the result of substituting a type for a template
3444/// type parameter.
3445///
3446/// Within an instantiated template, all template type parameters have
3447/// been replaced with these.  They are used solely to record that a
3448/// type was originally written as a template type parameter;
3449/// therefore they are never canonical.
3450class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
3451  // The original type parameter.
3452  const TemplateTypeParmType *Replaced;
3453
3454  SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
3455    : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(),
3456           Canon->isInstantiationDependentType(),
3457           Canon->isVariablyModifiedType(),
3458           Canon->containsUnexpandedParameterPack()),
3459      Replaced(Param) { }
3460
3461  friend class ASTContext;
3462
3463public:
3464  /// Gets the template parameter that was substituted for.
3465  const TemplateTypeParmType *getReplacedParameter() const {
3466    return Replaced;
3467  }
3468
3469  /// Gets the type that was substituted for the template
3470  /// parameter.
3471  QualType getReplacementType() const {
3472    return getCanonicalTypeInternal();
3473  }
3474
3475  bool isSugared() const { return true; }
3476  QualType desugar() const { return getReplacementType(); }
3477
3478  void Profile(llvm::FoldingSetNodeID &ID) {
3479    Profile(ID, getReplacedParameter(), getReplacementType());
3480  }
3481  static void Profile(llvm::FoldingSetNodeID &ID,
3482                      const TemplateTypeParmType *Replaced,
3483                      QualType Replacement) {
3484    ID.AddPointer(Replaced);
3485    ID.AddPointer(Replacement.getAsOpaquePtr());
3486  }
3487
3488  static bool classof(const Type *T) {
3489    return T->getTypeClass() == SubstTemplateTypeParm;
3490  }
3491};
3492
3493/// \brief Represents the result of substituting a set of types for a template
3494/// type parameter pack.
3495///
3496/// When a pack expansion in the source code contains multiple parameter packs
3497/// and those parameter packs correspond to different levels of template
3498/// parameter lists, this type node is used to represent a template type
3499/// parameter pack from an outer level, which has already had its argument pack
3500/// substituted but that still lives within a pack expansion that itself
3501/// could not be instantiated. When actually performing a substitution into
3502/// that pack expansion (e.g., when all template parameters have corresponding
3503/// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
3504/// at the current pack substitution index.
3505class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
3506  /// \brief The original type parameter.
3507  const TemplateTypeParmType *Replaced;
3508
3509  /// \brief A pointer to the set of template arguments that this
3510  /// parameter pack is instantiated with.
3511  const TemplateArgument *Arguments;
3512
3513  /// \brief The number of template arguments in \c Arguments.
3514  unsigned NumArguments;
3515
3516  SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
3517                                QualType Canon,
3518                                const TemplateArgument &ArgPack);
3519
3520  friend class ASTContext;
3521
3522public:
3523  IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }
3524
3525  /// Gets the template parameter that was substituted for.
3526  const TemplateTypeParmType *getReplacedParameter() const {
3527    return Replaced;
3528  }
3529
3530  bool isSugared() const { return false; }
3531  QualType desugar() const { return QualType(this, 0); }
3532
3533  TemplateArgument getArgumentPack() const;
3534
3535  void Profile(llvm::FoldingSetNodeID &ID);
3536  static void Profile(llvm::FoldingSetNodeID &ID,
3537                      const TemplateTypeParmType *Replaced,
3538                      const TemplateArgument &ArgPack);
3539
3540  static bool classof(const Type *T) {
3541    return T->getTypeClass() == SubstTemplateTypeParmPack;
3542  }
3543};
3544
3545/// \brief Represents a C++0x auto type.
3546///
3547/// These types are usually a placeholder for a deduced type. However, within
3548/// templates and before the initializer is attached, there is no deduced type
3549/// and an auto type is type-dependent and canonical.
3550class AutoType : public Type, public llvm::FoldingSetNode {
3551  AutoType(QualType DeducedType)
3552    : Type(Auto, DeducedType.isNull() ? QualType(this, 0) : DeducedType,
3553           /*Dependent=*/DeducedType.isNull(),
3554           /*InstantiationDependent=*/DeducedType.isNull(),
3555           /*VariablyModified=*/false, /*ContainsParameterPack=*/false) {
3556    assert((DeducedType.isNull() || !DeducedType->isDependentType()) &&
3557           "deduced a dependent type for auto");
3558  }
3559
3560  friend class ASTContext;  // ASTContext creates these
3561
3562public:
3563  bool isSugared() const { return isDeduced(); }
3564  QualType desugar() const { return getCanonicalTypeInternal(); }
3565
3566  QualType getDeducedType() const {
3567    return isDeduced() ? getCanonicalTypeInternal() : QualType();
3568  }
3569  bool isDeduced() const {
3570    return !isDependentType();
3571  }
3572
3573  void Profile(llvm::FoldingSetNodeID &ID) {
3574    Profile(ID, getDeducedType());
3575  }
3576
3577  static void Profile(llvm::FoldingSetNodeID &ID,
3578                      QualType Deduced) {
3579    ID.AddPointer(Deduced.getAsOpaquePtr());
3580  }
3581
3582  static bool classof(const Type *T) {
3583    return T->getTypeClass() == Auto;
3584  }
3585};
3586
3587/// \brief Represents a type template specialization; the template
3588/// must be a class template, a type alias template, or a template
3589/// template parameter.  A template which cannot be resolved to one of
3590/// these, e.g. because it is written with a dependent scope
3591/// specifier, is instead represented as a
3592/// @c DependentTemplateSpecializationType.
3593///
3594/// A non-dependent template specialization type is always "sugar",
3595/// typically for a @c RecordType.  For example, a class template
3596/// specialization type of @c vector<int> will refer to a tag type for
3597/// the instantiation @c std::vector<int, std::allocator<int>>
3598///
3599/// Template specializations are dependent if either the template or
3600/// any of the template arguments are dependent, in which case the
3601/// type may also be canonical.
3602///
3603/// Instances of this type are allocated with a trailing array of
3604/// TemplateArguments, followed by a QualType representing the
3605/// non-canonical aliased type when the template is a type alias
3606/// template.
3607class TemplateSpecializationType
3608  : public Type, public llvm::FoldingSetNode {
3609  /// \brief The name of the template being specialized.  This is
3610  /// either a TemplateName::Template (in which case it is a
3611  /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
3612  /// TypeAliasTemplateDecl*), a
3613  /// TemplateName::SubstTemplateTemplateParmPack, or a
3614  /// TemplateName::SubstTemplateTemplateParm (in which case the
3615  /// replacement must, recursively, be one of these).
3616  TemplateName Template;
3617
3618  /// \brief - The number of template arguments named in this class
3619  /// template specialization.
3620  unsigned NumArgs : 31;
3621
3622  /// \brief Whether this template specialization type is a substituted
3623  /// type alias.
3624  bool TypeAlias : 1;
3625
3626  TemplateSpecializationType(TemplateName T,
3627                             const TemplateArgument *Args,
3628                             unsigned NumArgs, QualType Canon,
3629                             QualType Aliased);
3630
3631  friend class ASTContext;  // ASTContext creates these
3632
3633public:
3634  /// \brief Determine whether any of the given template arguments are
3635  /// dependent.
3636  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
3637                                            unsigned NumArgs,
3638                                            bool &InstantiationDependent);
3639
3640  static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
3641                                            unsigned NumArgs,
3642                                            bool &InstantiationDependent);
3643
3644  static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &,
3645                                            bool &InstantiationDependent);
3646
3647  /// \brief Print a template argument list, including the '<' and '>'
3648  /// enclosing the template arguments.
3649  static void PrintTemplateArgumentList(raw_ostream &OS,
3650                                        const TemplateArgument *Args,
3651                                        unsigned NumArgs,
3652                                        const PrintingPolicy &Policy,
3653                                        bool SkipBrackets = false);
3654
3655  static void PrintTemplateArgumentList(raw_ostream &OS,
3656                                        const TemplateArgumentLoc *Args,
3657                                        unsigned NumArgs,
3658                                        const PrintingPolicy &Policy);
3659
3660  static void PrintTemplateArgumentList(raw_ostream &OS,
3661                                        const TemplateArgumentListInfo &,
3662                                        const PrintingPolicy &Policy);
3663
3664  /// True if this template specialization type matches a current
3665  /// instantiation in the context in which it is found.
3666  bool isCurrentInstantiation() const {
3667    return isa<InjectedClassNameType>(getCanonicalTypeInternal());
3668  }
3669
3670  /// \brief Determine if this template specialization type is for a type alias
3671  /// template that has been substituted.
3672  ///
3673  /// Nearly every template specialization type whose template is an alias
3674  /// template will be substituted. However, this is not the case when
3675  /// the specialization contains a pack expansion but the template alias
3676  /// does not have a corresponding parameter pack, e.g.,
3677  ///
3678  /// \code
3679  /// template<typename T, typename U, typename V> struct S;
3680  /// template<typename T, typename U> using A = S<T, int, U>;
3681  /// template<typename... Ts> struct X {
3682  ///   typedef A<Ts...> type; // not a type alias
3683  /// };
3684  /// \endcode
3685  bool isTypeAlias() const { return TypeAlias; }
3686
3687  /// Get the aliased type, if this is a specialization of a type alias
3688  /// template.
3689  QualType getAliasedType() const {
3690    assert(isTypeAlias() && "not a type alias template specialization");
3691    return *reinterpret_cast<const QualType*>(end());
3692  }
3693
3694  typedef const TemplateArgument * iterator;
3695
3696  iterator begin() const { return getArgs(); }
3697  iterator end() const; // defined inline in TemplateBase.h
3698
3699  /// \brief Retrieve the name of the template that we are specializing.
3700  TemplateName getTemplateName() const { return Template; }
3701
3702  /// \brief Retrieve the template arguments.
3703  const TemplateArgument *getArgs() const {
3704    return reinterpret_cast<const TemplateArgument *>(this + 1);
3705  }
3706
3707  /// \brief Retrieve the number of template arguments.
3708  unsigned getNumArgs() const { return NumArgs; }
3709
3710  /// \brief Retrieve a specific template argument as a type.
3711  /// \pre @c isArgType(Arg)
3712  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
3713
3714  bool isSugared() const {
3715    return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
3716  }
3717  QualType desugar() const { return getCanonicalTypeInternal(); }
3718
3719  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
3720    Profile(ID, Template, getArgs(), NumArgs, Ctx);
3721    if (isTypeAlias())
3722      getAliasedType().Profile(ID);
3723  }
3724
3725  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
3726                      const TemplateArgument *Args,
3727                      unsigned NumArgs,
3728                      const ASTContext &Context);
3729
3730  static bool classof(const Type *T) {
3731    return T->getTypeClass() == TemplateSpecialization;
3732  }
3733};
3734
3735/// \brief The injected class name of a C++ class template or class
3736/// template partial specialization.  Used to record that a type was
3737/// spelled with a bare identifier rather than as a template-id; the
3738/// equivalent for non-templated classes is just RecordType.
3739///
3740/// Injected class name types are always dependent.  Template
3741/// instantiation turns these into RecordTypes.
3742///
3743/// Injected class name types are always canonical.  This works
3744/// because it is impossible to compare an injected class name type
3745/// with the corresponding non-injected template type, for the same
3746/// reason that it is impossible to directly compare template
3747/// parameters from different dependent contexts: injected class name
3748/// types can only occur within the scope of a particular templated
3749/// declaration, and within that scope every template specialization
3750/// will canonicalize to the injected class name (when appropriate
3751/// according to the rules of the language).
3752class InjectedClassNameType : public Type {
3753  CXXRecordDecl *Decl;
3754
3755  /// The template specialization which this type represents.
3756  /// For example, in
3757  ///   template <class T> class A { ... };
3758  /// this is A<T>, whereas in
3759  ///   template <class X, class Y> class A<B<X,Y> > { ... };
3760  /// this is A<B<X,Y> >.
3761  ///
3762  /// It is always unqualified, always a template specialization type,
3763  /// and always dependent.
3764  QualType InjectedType;
3765
3766  friend class ASTContext; // ASTContext creates these.
3767  friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
3768                          // currently suitable for AST reading, too much
3769                          // interdependencies.
3770  InjectedClassNameType(CXXRecordDecl *D, QualType TST)
3771    : Type(InjectedClassName, QualType(), /*Dependent=*/true,
3772           /*InstantiationDependent=*/true,
3773           /*VariablyModified=*/false,
3774           /*ContainsUnexpandedParameterPack=*/false),
3775      Decl(D), InjectedType(TST) {
3776    assert(isa<TemplateSpecializationType>(TST));
3777    assert(!TST.hasQualifiers());
3778    assert(TST->isDependentType());
3779  }
3780
3781public:
3782  QualType getInjectedSpecializationType() const { return InjectedType; }
3783  const TemplateSpecializationType *getInjectedTST() const {
3784    return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
3785  }
3786
3787  CXXRecordDecl *getDecl() const;
3788
3789  bool isSugared() const { return false; }
3790  QualType desugar() const { return QualType(this, 0); }
3791
3792  static bool classof(const Type *T) {
3793    return T->getTypeClass() == InjectedClassName;
3794  }
3795};
3796
3797/// \brief The kind of a tag type.
3798enum TagTypeKind {
3799  /// \brief The "struct" keyword.
3800  TTK_Struct,
3801  /// \brief The "__interface" keyword.
3802  TTK_Interface,
3803  /// \brief The "union" keyword.
3804  TTK_Union,
3805  /// \brief The "class" keyword.
3806  TTK_Class,
3807  /// \brief The "enum" keyword.
3808  TTK_Enum
3809};
3810
3811/// \brief The elaboration keyword that precedes a qualified type name or
3812/// introduces an elaborated-type-specifier.
3813enum ElaboratedTypeKeyword {
3814  /// \brief The "struct" keyword introduces the elaborated-type-specifier.
3815  ETK_Struct,
3816  /// \brief The "__interface" keyword introduces the elaborated-type-specifier.
3817  ETK_Interface,
3818  /// \brief The "union" keyword introduces the elaborated-type-specifier.
3819  ETK_Union,
3820  /// \brief The "class" keyword introduces the elaborated-type-specifier.
3821  ETK_Class,
3822  /// \brief The "enum" keyword introduces the elaborated-type-specifier.
3823  ETK_Enum,
3824  /// \brief The "typename" keyword precedes the qualified type name, e.g.,
3825  /// \c typename T::type.
3826  ETK_Typename,
3827  /// \brief No keyword precedes the qualified type name.
3828  ETK_None
3829};
3830
3831/// A helper class for Type nodes having an ElaboratedTypeKeyword.
3832/// The keyword in stored in the free bits of the base class.
3833/// Also provides a few static helpers for converting and printing
3834/// elaborated type keyword and tag type kind enumerations.
3835class TypeWithKeyword : public Type {
3836protected:
3837  TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
3838                  QualType Canonical, bool Dependent,
3839                  bool InstantiationDependent, bool VariablyModified,
3840                  bool ContainsUnexpandedParameterPack)
3841  : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
3842         ContainsUnexpandedParameterPack) {
3843    TypeWithKeywordBits.Keyword = Keyword;
3844  }
3845
3846public:
3847  ElaboratedTypeKeyword getKeyword() const {
3848    return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
3849  }
3850
3851  /// getKeywordForTypeSpec - Converts a type specifier (DeclSpec::TST)
3852  /// into an elaborated type keyword.
3853  static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
3854
3855  /// getTagTypeKindForTypeSpec - Converts a type specifier (DeclSpec::TST)
3856  /// into a tag type kind.  It is an error to provide a type specifier
3857  /// which *isn't* a tag kind here.
3858  static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
3859
3860  /// getKeywordForTagDeclKind - Converts a TagTypeKind into an
3861  /// elaborated type keyword.
3862  static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
3863
3864  /// getTagTypeKindForKeyword - Converts an elaborated type keyword into
3865  // a TagTypeKind. It is an error to provide an elaborated type keyword
3866  /// which *isn't* a tag kind here.
3867  static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
3868
3869  static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
3870
3871  static const char *getKeywordName(ElaboratedTypeKeyword Keyword);
3872
3873  static const char *getTagTypeKindName(TagTypeKind Kind) {
3874    return getKeywordName(getKeywordForTagTypeKind(Kind));
3875  }
3876
3877  class CannotCastToThisType {};
3878  static CannotCastToThisType classof(const Type *);
3879};
3880
3881/// \brief Represents a type that was referred to using an elaborated type
3882/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
3883/// or both.
3884///
3885/// This type is used to keep track of a type name as written in the
3886/// source code, including tag keywords and any nested-name-specifiers.
3887/// The type itself is always "sugar", used to express what was written
3888/// in the source code but containing no additional semantic information.
3889class ElaboratedType : public TypeWithKeyword, public llvm::FoldingSetNode {
3890
3891  /// \brief The nested name specifier containing the qualifier.
3892  NestedNameSpecifier *NNS;
3893
3894  /// \brief The type that this qualified name refers to.
3895  QualType NamedType;
3896
3897  ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
3898                 QualType NamedType, QualType CanonType)
3899    : TypeWithKeyword(Keyword, Elaborated, CanonType,
3900                      NamedType->isDependentType(),
3901                      NamedType->isInstantiationDependentType(),
3902                      NamedType->isVariablyModifiedType(),
3903                      NamedType->containsUnexpandedParameterPack()),
3904      NNS(NNS), NamedType(NamedType) {
3905    assert(!(Keyword == ETK_None && NNS == 0) &&
3906           "ElaboratedType cannot have elaborated type keyword "
3907           "and name qualifier both null.");
3908  }
3909
3910  friend class ASTContext;  // ASTContext creates these
3911
3912public:
3913  ~ElaboratedType();
3914
3915  /// \brief Retrieve the qualification on this type.
3916  NestedNameSpecifier *getQualifier() const { return NNS; }
3917
3918  /// \brief Retrieve the type named by the qualified-id.
3919  QualType getNamedType() const { return NamedType; }
3920
3921  /// \brief Remove a single level of sugar.
3922  QualType desugar() const { return getNamedType(); }
3923
3924  /// \brief Returns whether this type directly provides sugar.
3925  bool isSugared() const { return true; }
3926
3927  void Profile(llvm::FoldingSetNodeID &ID) {
3928    Profile(ID, getKeyword(), NNS, NamedType);
3929  }
3930
3931  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
3932                      NestedNameSpecifier *NNS, QualType NamedType) {
3933    ID.AddInteger(Keyword);
3934    ID.AddPointer(NNS);
3935    NamedType.Profile(ID);
3936  }
3937
3938  static bool classof(const Type *T) {
3939    return T->getTypeClass() == Elaborated;
3940  }
3941};
3942
3943/// \brief Represents a qualified type name for which the type name is
3944/// dependent.
3945///
3946/// DependentNameType represents a class of dependent types that involve a
3947/// dependent nested-name-specifier (e.g., "T::") followed by a (dependent)
3948/// name of a type. The DependentNameType may start with a "typename" (for a
3949/// typename-specifier), "class", "struct", "union", or "enum" (for a
3950/// dependent elaborated-type-specifier), or nothing (in contexts where we
3951/// know that we must be referring to a type, e.g., in a base class specifier).
3952class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
3953
3954  /// \brief The nested name specifier containing the qualifier.
3955  NestedNameSpecifier *NNS;
3956
3957  /// \brief The type that this typename specifier refers to.
3958  const IdentifierInfo *Name;
3959
3960  DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
3961                    const IdentifierInfo *Name, QualType CanonType)
3962    : TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true,
3963                      /*InstantiationDependent=*/true,
3964                      /*VariablyModified=*/false,
3965                      NNS->containsUnexpandedParameterPack()),
3966      NNS(NNS), Name(Name) {
3967    assert(NNS->isDependent() &&
3968           "DependentNameType requires a dependent nested-name-specifier");
3969  }
3970
3971  friend class ASTContext;  // ASTContext creates these
3972
3973public:
3974  /// \brief Retrieve the qualification on this type.
3975  NestedNameSpecifier *getQualifier() const { return NNS; }
3976
3977  /// \brief Retrieve the type named by the typename specifier as an
3978  /// identifier.
3979  ///
3980  /// This routine will return a non-NULL identifier pointer when the
3981  /// form of the original typename was terminated by an identifier,
3982  /// e.g., "typename T::type".
3983  const IdentifierInfo *getIdentifier() const {
3984    return Name;
3985  }
3986
3987  bool isSugared() const { return false; }
3988  QualType desugar() const { return QualType(this, 0); }
3989
3990  void Profile(llvm::FoldingSetNodeID &ID) {
3991    Profile(ID, getKeyword(), NNS, Name);
3992  }
3993
3994  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
3995                      NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
3996    ID.AddInteger(Keyword);
3997    ID.AddPointer(NNS);
3998    ID.AddPointer(Name);
3999  }
4000
4001  static bool classof(const Type *T) {
4002    return T->getTypeClass() == DependentName;
4003  }
4004};
4005
4006/// DependentTemplateSpecializationType - Represents a template
4007/// specialization type whose template cannot be resolved, e.g.
4008///   A<T>::template B<T>
4009class DependentTemplateSpecializationType :
4010  public TypeWithKeyword, public llvm::FoldingSetNode {
4011
4012  /// \brief The nested name specifier containing the qualifier.
4013  NestedNameSpecifier *NNS;
4014
4015  /// \brief The identifier of the template.
4016  const IdentifierInfo *Name;
4017
4018  /// \brief - The number of template arguments named in this class
4019  /// template specialization.
4020  unsigned NumArgs;
4021
4022  const TemplateArgument *getArgBuffer() const {
4023    return reinterpret_cast<const TemplateArgument*>(this+1);
4024  }
4025  TemplateArgument *getArgBuffer() {
4026    return reinterpret_cast<TemplateArgument*>(this+1);
4027  }
4028
4029  DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
4030                                      NestedNameSpecifier *NNS,
4031                                      const IdentifierInfo *Name,
4032                                      unsigned NumArgs,
4033                                      const TemplateArgument *Args,
4034                                      QualType Canon);
4035
4036  friend class ASTContext;  // ASTContext creates these
4037
4038public:
4039  NestedNameSpecifier *getQualifier() const { return NNS; }
4040  const IdentifierInfo *getIdentifier() const { return Name; }
4041
4042  /// \brief Retrieve the template arguments.
4043  const TemplateArgument *getArgs() const {
4044    return getArgBuffer();
4045  }
4046
4047  /// \brief Retrieve the number of template arguments.
4048  unsigned getNumArgs() const { return NumArgs; }
4049
4050  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
4051
4052  typedef const TemplateArgument * iterator;
4053  iterator begin() const { return getArgs(); }
4054  iterator end() const; // inline in TemplateBase.h
4055
4056  bool isSugared() const { return false; }
4057  QualType desugar() const { return QualType(this, 0); }
4058
4059  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
4060    Profile(ID, Context, getKeyword(), NNS, Name, NumArgs, getArgs());
4061  }
4062
4063  static void Profile(llvm::FoldingSetNodeID &ID,
4064                      const ASTContext &Context,
4065                      ElaboratedTypeKeyword Keyword,
4066                      NestedNameSpecifier *Qualifier,
4067                      const IdentifierInfo *Name,
4068                      unsigned NumArgs,
4069                      const TemplateArgument *Args);
4070
4071  static bool classof(const Type *T) {
4072    return T->getTypeClass() == DependentTemplateSpecialization;
4073  }
4074};
4075
4076/// \brief Represents a pack expansion of types.
4077///
4078/// Pack expansions are part of C++0x variadic templates. A pack
4079/// expansion contains a pattern, which itself contains one or more
4080/// "unexpanded" parameter packs. When instantiated, a pack expansion
4081/// produces a series of types, each instantiated from the pattern of
4082/// the expansion, where the Ith instantiation of the pattern uses the
4083/// Ith arguments bound to each of the unexpanded parameter packs. The
4084/// pack expansion is considered to "expand" these unexpanded
4085/// parameter packs.
4086///
4087/// \code
4088/// template<typename ...Types> struct tuple;
4089///
4090/// template<typename ...Types>
4091/// struct tuple_of_references {
4092///   typedef tuple<Types&...> type;
4093/// };
4094/// \endcode
4095///
4096/// Here, the pack expansion \c Types&... is represented via a
4097/// PackExpansionType whose pattern is Types&.
4098class PackExpansionType : public Type, public llvm::FoldingSetNode {
4099  /// \brief The pattern of the pack expansion.
4100  QualType Pattern;
4101
4102  /// \brief The number of expansions that this pack expansion will
4103  /// generate when substituted (+1), or indicates that
4104  ///
4105  /// This field will only have a non-zero value when some of the parameter
4106  /// packs that occur within the pattern have been substituted but others have
4107  /// not.
4108  unsigned NumExpansions;
4109
4110  PackExpansionType(QualType Pattern, QualType Canon,
4111                    Optional<unsigned> NumExpansions)
4112    : Type(PackExpansion, Canon, /*Dependent=*/Pattern->isDependentType(),
4113           /*InstantiationDependent=*/true,
4114           /*VariableModified=*/Pattern->isVariablyModifiedType(),
4115           /*ContainsUnexpandedParameterPack=*/false),
4116      Pattern(Pattern),
4117      NumExpansions(NumExpansions? *NumExpansions + 1: 0) { }
4118
4119  friend class ASTContext;  // ASTContext creates these
4120
4121public:
4122  /// \brief Retrieve the pattern of this pack expansion, which is the
4123  /// type that will be repeatedly instantiated when instantiating the
4124  /// pack expansion itself.
4125  QualType getPattern() const { return Pattern; }
4126
4127  /// \brief Retrieve the number of expansions that this pack expansion will
4128  /// generate, if known.
4129  Optional<unsigned> getNumExpansions() const {
4130    if (NumExpansions)
4131      return NumExpansions - 1;
4132
4133    return None;
4134  }
4135
4136  bool isSugared() const { return false; }
4137  QualType desugar() const { return QualType(this, 0); }
4138
4139  void Profile(llvm::FoldingSetNodeID &ID) {
4140    Profile(ID, getPattern(), getNumExpansions());
4141  }
4142
4143  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
4144                      Optional<unsigned> NumExpansions) {
4145    ID.AddPointer(Pattern.getAsOpaquePtr());
4146    ID.AddBoolean(NumExpansions.hasValue());
4147    if (NumExpansions)
4148      ID.AddInteger(*NumExpansions);
4149  }
4150
4151  static bool classof(const Type *T) {
4152    return T->getTypeClass() == PackExpansion;
4153  }
4154};
4155
4156/// ObjCObjectType - Represents a class type in Objective C.
4157/// Every Objective C type is a combination of a base type and a
4158/// list of protocols.
4159///
4160/// Given the following declarations:
4161/// \code
4162///   \@class C;
4163///   \@protocol P;
4164/// \endcode
4165///
4166/// 'C' is an ObjCInterfaceType C.  It is sugar for an ObjCObjectType
4167/// with base C and no protocols.
4168///
4169/// 'C<P>' is an ObjCObjectType with base C and protocol list [P].
4170///
4171/// 'id' is a TypedefType which is sugar for an ObjCPointerType whose
4172/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
4173/// and no protocols.
4174///
4175/// 'id<P>' is an ObjCPointerType whose pointee is an ObjCObjecType
4176/// with base BuiltinType::ObjCIdType and protocol list [P].  Eventually
4177/// this should get its own sugar class to better represent the source.
4178class ObjCObjectType : public Type {
4179  // ObjCObjectType.NumProtocols - the number of protocols stored
4180  // after the ObjCObjectPointerType node.
4181  //
4182  // These protocols are those written directly on the type.  If
4183  // protocol qualifiers ever become additive, the iterators will need
4184  // to get kindof complicated.
4185  //
4186  // In the canonical object type, these are sorted alphabetically
4187  // and uniqued.
4188
4189  /// Either a BuiltinType or an InterfaceType or sugar for either.
4190  QualType BaseType;
4191
4192  ObjCProtocolDecl * const *getProtocolStorage() const {
4193    return const_cast<ObjCObjectType*>(this)->getProtocolStorage();
4194  }
4195
4196  ObjCProtocolDecl **getProtocolStorage();
4197
4198protected:
4199  ObjCObjectType(QualType Canonical, QualType Base,
4200                 ObjCProtocolDecl * const *Protocols, unsigned NumProtocols);
4201
4202  enum Nonce_ObjCInterface { Nonce_ObjCInterface };
4203  ObjCObjectType(enum Nonce_ObjCInterface)
4204        : Type(ObjCInterface, QualType(), false, false, false, false),
4205      BaseType(QualType(this_(), 0)) {
4206    ObjCObjectTypeBits.NumProtocols = 0;
4207  }
4208
4209public:
4210  /// getBaseType - Gets the base type of this object type.  This is
4211  /// always (possibly sugar for) one of:
4212  ///  - the 'id' builtin type (as opposed to the 'id' type visible to the
4213  ///    user, which is a typedef for an ObjCPointerType)
4214  ///  - the 'Class' builtin type (same caveat)
4215  ///  - an ObjCObjectType (currently always an ObjCInterfaceType)
4216  QualType getBaseType() const { return BaseType; }
4217
4218  bool isObjCId() const {
4219    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
4220  }
4221  bool isObjCClass() const {
4222    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
4223  }
4224  bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
4225  bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
4226  bool isObjCUnqualifiedIdOrClass() const {
4227    if (!qual_empty()) return false;
4228    if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
4229      return T->getKind() == BuiltinType::ObjCId ||
4230             T->getKind() == BuiltinType::ObjCClass;
4231    return false;
4232  }
4233  bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
4234  bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
4235
4236  /// Gets the interface declaration for this object type, if the base type
4237  /// really is an interface.
4238  ObjCInterfaceDecl *getInterface() const;
4239
4240  typedef ObjCProtocolDecl * const *qual_iterator;
4241
4242  qual_iterator qual_begin() const { return getProtocolStorage(); }
4243  qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
4244
4245  bool qual_empty() const { return getNumProtocols() == 0; }
4246
4247  /// getNumProtocols - Return the number of qualifying protocols in this
4248  /// interface type, or 0 if there are none.
4249  unsigned getNumProtocols() const { return ObjCObjectTypeBits.NumProtocols; }
4250
4251  /// \brief Fetch a protocol by index.
4252  ObjCProtocolDecl *getProtocol(unsigned I) const {
4253    assert(I < getNumProtocols() && "Out-of-range protocol access");
4254    return qual_begin()[I];
4255  }
4256
4257  bool isSugared() const { return false; }
4258  QualType desugar() const { return QualType(this, 0); }
4259
4260  static bool classof(const Type *T) {
4261    return T->getTypeClass() == ObjCObject ||
4262           T->getTypeClass() == ObjCInterface;
4263  }
4264};
4265
4266/// ObjCObjectTypeImpl - A class providing a concrete implementation
4267/// of ObjCObjectType, so as to not increase the footprint of
4268/// ObjCInterfaceType.  Code outside of ASTContext and the core type
4269/// system should not reference this type.
4270class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
4271  friend class ASTContext;
4272
4273  // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
4274  // will need to be modified.
4275
4276  ObjCObjectTypeImpl(QualType Canonical, QualType Base,
4277                     ObjCProtocolDecl * const *Protocols,
4278                     unsigned NumProtocols)
4279    : ObjCObjectType(Canonical, Base, Protocols, NumProtocols) {}
4280
4281public:
4282  void Profile(llvm::FoldingSetNodeID &ID);
4283  static void Profile(llvm::FoldingSetNodeID &ID,
4284                      QualType Base,
4285                      ObjCProtocolDecl *const *protocols,
4286                      unsigned NumProtocols);
4287};
4288
4289inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorage() {
4290  return reinterpret_cast<ObjCProtocolDecl**>(
4291            static_cast<ObjCObjectTypeImpl*>(this) + 1);
4292}
4293
4294/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
4295/// object oriented design.  They basically correspond to C++ classes.  There
4296/// are two kinds of interface types, normal interfaces like "NSString" and
4297/// qualified interfaces, which are qualified with a protocol list like
4298/// "NSString<NSCopyable, NSAmazing>".
4299///
4300/// ObjCInterfaceType guarantees the following properties when considered
4301/// as a subtype of its superclass, ObjCObjectType:
4302///   - There are no protocol qualifiers.  To reinforce this, code which
4303///     tries to invoke the protocol methods via an ObjCInterfaceType will
4304///     fail to compile.
4305///   - It is its own base type.  That is, if T is an ObjCInterfaceType*,
4306///     T->getBaseType() == QualType(T, 0).
4307class ObjCInterfaceType : public ObjCObjectType {
4308  mutable ObjCInterfaceDecl *Decl;
4309
4310  ObjCInterfaceType(const ObjCInterfaceDecl *D)
4311    : ObjCObjectType(Nonce_ObjCInterface),
4312      Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
4313  friend class ASTContext;  // ASTContext creates these.
4314  friend class ASTReader;
4315  friend class ObjCInterfaceDecl;
4316
4317public:
4318  /// getDecl - Get the declaration of this interface.
4319  ObjCInterfaceDecl *getDecl() const { return Decl; }
4320
4321  bool isSugared() const { return false; }
4322  QualType desugar() const { return QualType(this, 0); }
4323
4324  static bool classof(const Type *T) {
4325    return T->getTypeClass() == ObjCInterface;
4326  }
4327
4328  // Nonsense to "hide" certain members of ObjCObjectType within this
4329  // class.  People asking for protocols on an ObjCInterfaceType are
4330  // not going to get what they want: ObjCInterfaceTypes are
4331  // guaranteed to have no protocols.
4332  enum {
4333    qual_iterator,
4334    qual_begin,
4335    qual_end,
4336    getNumProtocols,
4337    getProtocol
4338  };
4339};
4340
4341inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
4342  if (const ObjCInterfaceType *T =
4343        getBaseType()->getAs<ObjCInterfaceType>())
4344    return T->getDecl();
4345  return 0;
4346}
4347
4348/// ObjCObjectPointerType - Used to represent a pointer to an
4349/// Objective C object.  These are constructed from pointer
4350/// declarators when the pointee type is an ObjCObjectType (or sugar
4351/// for one).  In addition, the 'id' and 'Class' types are typedefs
4352/// for these, and the protocol-qualified types 'id<P>' and 'Class<P>'
4353/// are translated into these.
4354///
4355/// Pointers to pointers to Objective C objects are still PointerTypes;
4356/// only the first level of pointer gets it own type implementation.
4357class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
4358  QualType PointeeType;
4359
4360  ObjCObjectPointerType(QualType Canonical, QualType Pointee)
4361    : Type(ObjCObjectPointer, Canonical, false, false, false, false),
4362      PointeeType(Pointee) {}
4363  friend class ASTContext;  // ASTContext creates these.
4364
4365public:
4366  /// getPointeeType - Gets the type pointed to by this ObjC pointer.
4367  /// The result will always be an ObjCObjectType or sugar thereof.
4368  QualType getPointeeType() const { return PointeeType; }
4369
4370  /// getObjCObjectType - Gets the type pointed to by this ObjC
4371  /// pointer.  This method always returns non-null.
4372  ///
4373  /// This method is equivalent to getPointeeType() except that
4374  /// it discards any typedefs (or other sugar) between this
4375  /// type and the "outermost" object type.  So for:
4376  /// \code
4377  ///   \@class A; \@protocol P; \@protocol Q;
4378  ///   typedef A<P> AP;
4379  ///   typedef A A1;
4380  ///   typedef A1<P> A1P;
4381  ///   typedef A1P<Q> A1PQ;
4382  /// \endcode
4383  /// For 'A*', getObjectType() will return 'A'.
4384  /// For 'A<P>*', getObjectType() will return 'A<P>'.
4385  /// For 'AP*', getObjectType() will return 'A<P>'.
4386  /// For 'A1*', getObjectType() will return 'A'.
4387  /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
4388  /// For 'A1P*', getObjectType() will return 'A1<P>'.
4389  /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
4390  ///   adding protocols to a protocol-qualified base discards the
4391  ///   old qualifiers (for now).  But if it didn't, getObjectType()
4392  ///   would return 'A1P<Q>' (and we'd have to make iterating over
4393  ///   qualifiers more complicated).
4394  const ObjCObjectType *getObjectType() const {
4395    return PointeeType->castAs<ObjCObjectType>();
4396  }
4397
4398  /// getInterfaceType - If this pointer points to an Objective C
4399  /// \@interface type, gets the type for that interface.  Any protocol
4400  /// qualifiers on the interface are ignored.
4401  ///
4402  /// \return null if the base type for this pointer is 'id' or 'Class'
4403  const ObjCInterfaceType *getInterfaceType() const {
4404    return getObjectType()->getBaseType()->getAs<ObjCInterfaceType>();
4405  }
4406
4407  /// getInterfaceDecl - If this pointer points to an Objective \@interface
4408  /// type, gets the declaration for that interface.
4409  ///
4410  /// \return null if the base type for this pointer is 'id' or 'Class'
4411  ObjCInterfaceDecl *getInterfaceDecl() const {
4412    return getObjectType()->getInterface();
4413  }
4414
4415  /// isObjCIdType - True if this is equivalent to the 'id' type, i.e. if
4416  /// its object type is the primitive 'id' type with no protocols.
4417  bool isObjCIdType() const {
4418    return getObjectType()->isObjCUnqualifiedId();
4419  }
4420
4421  /// isObjCClassType - True if this is equivalent to the 'Class' type,
4422  /// i.e. if its object tive is the primitive 'Class' type with no protocols.
4423  bool isObjCClassType() const {
4424    return getObjectType()->isObjCUnqualifiedClass();
4425  }
4426
4427  /// isObjCQualifiedIdType - True if this is equivalent to 'id<P>' for some
4428  /// non-empty set of protocols.
4429  bool isObjCQualifiedIdType() const {
4430    return getObjectType()->isObjCQualifiedId();
4431  }
4432
4433  /// isObjCQualifiedClassType - True if this is equivalent to 'Class<P>' for
4434  /// some non-empty set of protocols.
4435  bool isObjCQualifiedClassType() const {
4436    return getObjectType()->isObjCQualifiedClass();
4437  }
4438
4439  /// An iterator over the qualifiers on the object type.  Provided
4440  /// for convenience.  This will always iterate over the full set of
4441  /// protocols on a type, not just those provided directly.
4442  typedef ObjCObjectType::qual_iterator qual_iterator;
4443
4444  qual_iterator qual_begin() const {
4445    return getObjectType()->qual_begin();
4446  }
4447  qual_iterator qual_end() const {
4448    return getObjectType()->qual_end();
4449  }
4450  bool qual_empty() const { return getObjectType()->qual_empty(); }
4451
4452  /// getNumProtocols - Return the number of qualifying protocols on
4453  /// the object type.
4454  unsigned getNumProtocols() const {
4455    return getObjectType()->getNumProtocols();
4456  }
4457
4458  /// \brief Retrieve a qualifying protocol by index on the object
4459  /// type.
4460  ObjCProtocolDecl *getProtocol(unsigned I) const {
4461    return getObjectType()->getProtocol(I);
4462  }
4463
4464  bool isSugared() const { return false; }
4465  QualType desugar() const { return QualType(this, 0); }
4466
4467  void Profile(llvm::FoldingSetNodeID &ID) {
4468    Profile(ID, getPointeeType());
4469  }
4470  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
4471    ID.AddPointer(T.getAsOpaquePtr());
4472  }
4473  static bool classof(const Type *T) {
4474    return T->getTypeClass() == ObjCObjectPointer;
4475  }
4476};
4477
4478class AtomicType : public Type, public llvm::FoldingSetNode {
4479  QualType ValueType;
4480
4481  AtomicType(QualType ValTy, QualType Canonical)
4482    : Type(Atomic, Canonical, ValTy->isDependentType(),
4483           ValTy->isInstantiationDependentType(),
4484           ValTy->isVariablyModifiedType(),
4485           ValTy->containsUnexpandedParameterPack()),
4486      ValueType(ValTy) {}
4487  friend class ASTContext;  // ASTContext creates these.
4488
4489  public:
4490  /// getValueType - Gets the type contained by this atomic type, i.e.
4491  /// the type returned by performing an atomic load of this atomic type.
4492  QualType getValueType() const { return ValueType; }
4493
4494  bool isSugared() const { return false; }
4495  QualType desugar() const { return QualType(this, 0); }
4496
4497  void Profile(llvm::FoldingSetNodeID &ID) {
4498    Profile(ID, getValueType());
4499  }
4500  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
4501    ID.AddPointer(T.getAsOpaquePtr());
4502  }
4503  static bool classof(const Type *T) {
4504    return T->getTypeClass() == Atomic;
4505  }
4506};
4507
4508/// A qualifier set is used to build a set of qualifiers.
4509class QualifierCollector : public Qualifiers {
4510public:
4511  QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
4512
4513  /// Collect any qualifiers on the given type and return an
4514  /// unqualified type.  The qualifiers are assumed to be consistent
4515  /// with those already in the type.
4516  const Type *strip(QualType type) {
4517    addFastQualifiers(type.getLocalFastQualifiers());
4518    if (!type.hasLocalNonFastQualifiers())
4519      return type.getTypePtrUnsafe();
4520
4521    const ExtQuals *extQuals = type.getExtQualsUnsafe();
4522    addConsistentQualifiers(extQuals->getQualifiers());
4523    return extQuals->getBaseType();
4524  }
4525
4526  /// Apply the collected qualifiers to the given type.
4527  QualType apply(const ASTContext &Context, QualType QT) const;
4528
4529  /// Apply the collected qualifiers to the given type.
4530  QualType apply(const ASTContext &Context, const Type* T) const;
4531};
4532
4533
4534// Inline function definitions.
4535
4536inline SplitQualType SplitQualType::getSingleStepDesugaredType() const {
4537  SplitQualType desugar =
4538    Ty->getLocallyUnqualifiedSingleStepDesugaredType().split();
4539  desugar.Quals.addConsistentQualifiers(Quals);
4540  return desugar;
4541}
4542
4543inline const Type *QualType::getTypePtr() const {
4544  return getCommonPtr()->BaseType;
4545}
4546
4547inline const Type *QualType::getTypePtrOrNull() const {
4548  return (isNull() ? 0 : getCommonPtr()->BaseType);
4549}
4550
4551inline SplitQualType QualType::split() const {
4552  if (!hasLocalNonFastQualifiers())
4553    return SplitQualType(getTypePtrUnsafe(),
4554                         Qualifiers::fromFastMask(getLocalFastQualifiers()));
4555
4556  const ExtQuals *eq = getExtQualsUnsafe();
4557  Qualifiers qs = eq->getQualifiers();
4558  qs.addFastQualifiers(getLocalFastQualifiers());
4559  return SplitQualType(eq->getBaseType(), qs);
4560}
4561
4562inline Qualifiers QualType::getLocalQualifiers() const {
4563  Qualifiers Quals;
4564  if (hasLocalNonFastQualifiers())
4565    Quals = getExtQualsUnsafe()->getQualifiers();
4566  Quals.addFastQualifiers(getLocalFastQualifiers());
4567  return Quals;
4568}
4569
4570inline Qualifiers QualType::getQualifiers() const {
4571  Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
4572  quals.addFastQualifiers(getLocalFastQualifiers());
4573  return quals;
4574}
4575
4576inline unsigned QualType::getCVRQualifiers() const {
4577  unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
4578  cvr |= getLocalCVRQualifiers();
4579  return cvr;
4580}
4581
4582inline QualType QualType::getCanonicalType() const {
4583  QualType canon = getCommonPtr()->CanonicalType;
4584  return canon.withFastQualifiers(getLocalFastQualifiers());
4585}
4586
4587inline bool QualType::isCanonical() const {
4588  return getTypePtr()->isCanonicalUnqualified();
4589}
4590
4591inline bool QualType::isCanonicalAsParam() const {
4592  if (!isCanonical()) return false;
4593  if (hasLocalQualifiers()) return false;
4594
4595  const Type *T = getTypePtr();
4596  if (T->isVariablyModifiedType() && T->hasSizedVLAType())
4597    return false;
4598
4599  return !isa<FunctionType>(T) && !isa<ArrayType>(T);
4600}
4601
4602inline bool QualType::isConstQualified() const {
4603  return isLocalConstQualified() ||
4604         getCommonPtr()->CanonicalType.isLocalConstQualified();
4605}
4606
4607inline bool QualType::isRestrictQualified() const {
4608  return isLocalRestrictQualified() ||
4609         getCommonPtr()->CanonicalType.isLocalRestrictQualified();
4610}
4611
4612
4613inline bool QualType::isVolatileQualified() const {
4614  return isLocalVolatileQualified() ||
4615         getCommonPtr()->CanonicalType.isLocalVolatileQualified();
4616}
4617
4618inline bool QualType::hasQualifiers() const {
4619  return hasLocalQualifiers() ||
4620         getCommonPtr()->CanonicalType.hasLocalQualifiers();
4621}
4622
4623inline QualType QualType::getUnqualifiedType() const {
4624  if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
4625    return QualType(getTypePtr(), 0);
4626
4627  return QualType(getSplitUnqualifiedTypeImpl(*this).Ty, 0);
4628}
4629
4630inline SplitQualType QualType::getSplitUnqualifiedType() const {
4631  if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
4632    return split();
4633
4634  return getSplitUnqualifiedTypeImpl(*this);
4635}
4636
4637inline void QualType::removeLocalConst() {
4638  removeLocalFastQualifiers(Qualifiers::Const);
4639}
4640
4641inline void QualType::removeLocalRestrict() {
4642  removeLocalFastQualifiers(Qualifiers::Restrict);
4643}
4644
4645inline void QualType::removeLocalVolatile() {
4646  removeLocalFastQualifiers(Qualifiers::Volatile);
4647}
4648
4649inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
4650  assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
4651  assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask);
4652
4653  // Fast path: we don't need to touch the slow qualifiers.
4654  removeLocalFastQualifiers(Mask);
4655}
4656
4657/// getAddressSpace - Return the address space of this type.
4658inline unsigned QualType::getAddressSpace() const {
4659  return getQualifiers().getAddressSpace();
4660}
4661
4662/// getObjCGCAttr - Return the gc attribute of this type.
4663inline Qualifiers::GC QualType::getObjCGCAttr() const {
4664  return getQualifiers().getObjCGCAttr();
4665}
4666
4667inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
4668  if (const PointerType *PT = t.getAs<PointerType>()) {
4669    if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
4670      return FT->getExtInfo();
4671  } else if (const FunctionType *FT = t.getAs<FunctionType>())
4672    return FT->getExtInfo();
4673
4674  return FunctionType::ExtInfo();
4675}
4676
4677inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
4678  return getFunctionExtInfo(*t);
4679}
4680
4681/// isMoreQualifiedThan - Determine whether this type is more
4682/// qualified than the Other type. For example, "const volatile int"
4683/// is more qualified than "const int", "volatile int", and
4684/// "int". However, it is not more qualified than "const volatile
4685/// int".
4686inline bool QualType::isMoreQualifiedThan(QualType other) const {
4687  Qualifiers myQuals = getQualifiers();
4688  Qualifiers otherQuals = other.getQualifiers();
4689  return (myQuals != otherQuals && myQuals.compatiblyIncludes(otherQuals));
4690}
4691
4692/// isAtLeastAsQualifiedAs - Determine whether this type is at last
4693/// as qualified as the Other type. For example, "const volatile
4694/// int" is at least as qualified as "const int", "volatile int",
4695/// "int", and "const volatile int".
4696inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
4697  return getQualifiers().compatiblyIncludes(other.getQualifiers());
4698}
4699
4700/// getNonReferenceType - If Type is a reference type (e.g., const
4701/// int&), returns the type that the reference refers to ("const
4702/// int"). Otherwise, returns the type itself. This routine is used
4703/// throughout Sema to implement C++ 5p6:
4704///
4705///   If an expression initially has the type "reference to T" (8.3.2,
4706///   8.5.3), the type is adjusted to "T" prior to any further
4707///   analysis, the expression designates the object or function
4708///   denoted by the reference, and the expression is an lvalue.
4709inline QualType QualType::getNonReferenceType() const {
4710  if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
4711    return RefType->getPointeeType();
4712  else
4713    return *this;
4714}
4715
4716inline bool QualType::isCForbiddenLValueType() const {
4717  return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
4718          getTypePtr()->isFunctionType());
4719}
4720
4721/// \brief Tests whether the type is categorized as a fundamental type.
4722///
4723/// \returns True for types specified in C++0x [basic.fundamental].
4724inline bool Type::isFundamentalType() const {
4725  return isVoidType() ||
4726         // FIXME: It's really annoying that we don't have an
4727         // 'isArithmeticType()' which agrees with the standard definition.
4728         (isArithmeticType() && !isEnumeralType());
4729}
4730
4731/// \brief Tests whether the type is categorized as a compound type.
4732///
4733/// \returns True for types specified in C++0x [basic.compound].
4734inline bool Type::isCompoundType() const {
4735  // C++0x [basic.compound]p1:
4736  //   Compound types can be constructed in the following ways:
4737  //    -- arrays of objects of a given type [...];
4738  return isArrayType() ||
4739  //    -- functions, which have parameters of given types [...];
4740         isFunctionType() ||
4741  //    -- pointers to void or objects or functions [...];
4742         isPointerType() ||
4743  //    -- references to objects or functions of a given type. [...]
4744         isReferenceType() ||
4745  //    -- classes containing a sequence of objects of various types, [...];
4746         isRecordType() ||
4747  //    -- unions, which are classes capable of containing objects of different
4748  //               types at different times;
4749         isUnionType() ||
4750  //    -- enumerations, which comprise a set of named constant values. [...];
4751         isEnumeralType() ||
4752  //    -- pointers to non-static class members, [...].
4753         isMemberPointerType();
4754}
4755
4756inline bool Type::isFunctionType() const {
4757  return isa<FunctionType>(CanonicalType);
4758}
4759inline bool Type::isPointerType() const {
4760  return isa<PointerType>(CanonicalType);
4761}
4762inline bool Type::isAnyPointerType() const {
4763  return isPointerType() || isObjCObjectPointerType();
4764}
4765inline bool Type::isBlockPointerType() const {
4766  return isa<BlockPointerType>(CanonicalType);
4767}
4768inline bool Type::isReferenceType() const {
4769  return isa<ReferenceType>(CanonicalType);
4770}
4771inline bool Type::isLValueReferenceType() const {
4772  return isa<LValueReferenceType>(CanonicalType);
4773}
4774inline bool Type::isRValueReferenceType() const {
4775  return isa<RValueReferenceType>(CanonicalType);
4776}
4777inline bool Type::isFunctionPointerType() const {
4778  if (const PointerType *T = getAs<PointerType>())
4779    return T->getPointeeType()->isFunctionType();
4780  else
4781    return false;
4782}
4783inline bool Type::isMemberPointerType() const {
4784  return isa<MemberPointerType>(CanonicalType);
4785}
4786inline bool Type::isMemberFunctionPointerType() const {
4787  if (const MemberPointerType* T = getAs<MemberPointerType>())
4788    return T->isMemberFunctionPointer();
4789  else
4790    return false;
4791}
4792inline bool Type::isMemberDataPointerType() const {
4793  if (const MemberPointerType* T = getAs<MemberPointerType>())
4794    return T->isMemberDataPointer();
4795  else
4796    return false;
4797}
4798inline bool Type::isArrayType() const {
4799  return isa<ArrayType>(CanonicalType);
4800}
4801inline bool Type::isConstantArrayType() const {
4802  return isa<ConstantArrayType>(CanonicalType);
4803}
4804inline bool Type::isIncompleteArrayType() const {
4805  return isa<IncompleteArrayType>(CanonicalType);
4806}
4807inline bool Type::isVariableArrayType() const {
4808  return isa<VariableArrayType>(CanonicalType);
4809}
4810inline bool Type::isDependentSizedArrayType() const {
4811  return isa<DependentSizedArrayType>(CanonicalType);
4812}
4813inline bool Type::isBuiltinType() const {
4814  return isa<BuiltinType>(CanonicalType);
4815}
4816inline bool Type::isRecordType() const {
4817  return isa<RecordType>(CanonicalType);
4818}
4819inline bool Type::isEnumeralType() const {
4820  return isa<EnumType>(CanonicalType);
4821}
4822inline bool Type::isAnyComplexType() const {
4823  return isa<ComplexType>(CanonicalType);
4824}
4825inline bool Type::isVectorType() const {
4826  return isa<VectorType>(CanonicalType);
4827}
4828inline bool Type::isExtVectorType() const {
4829  return isa<ExtVectorType>(CanonicalType);
4830}
4831inline bool Type::isObjCObjectPointerType() const {
4832  return isa<ObjCObjectPointerType>(CanonicalType);
4833}
4834inline bool Type::isObjCObjectType() const {
4835  return isa<ObjCObjectType>(CanonicalType);
4836}
4837inline bool Type::isObjCObjectOrInterfaceType() const {
4838  return isa<ObjCInterfaceType>(CanonicalType) ||
4839    isa<ObjCObjectType>(CanonicalType);
4840}
4841inline bool Type::isAtomicType() const {
4842  return isa<AtomicType>(CanonicalType);
4843}
4844
4845inline bool Type::isObjCQualifiedIdType() const {
4846  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4847    return OPT->isObjCQualifiedIdType();
4848  return false;
4849}
4850inline bool Type::isObjCQualifiedClassType() const {
4851  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4852    return OPT->isObjCQualifiedClassType();
4853  return false;
4854}
4855inline bool Type::isObjCIdType() const {
4856  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4857    return OPT->isObjCIdType();
4858  return false;
4859}
4860inline bool Type::isObjCClassType() const {
4861  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4862    return OPT->isObjCClassType();
4863  return false;
4864}
4865inline bool Type::isObjCSelType() const {
4866  if (const PointerType *OPT = getAs<PointerType>())
4867    return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
4868  return false;
4869}
4870inline bool Type::isObjCBuiltinType() const {
4871  return isObjCIdType() || isObjCClassType() || isObjCSelType();
4872}
4873
4874inline bool Type::isImage1dT() const {
4875  return isSpecificBuiltinType(BuiltinType::OCLImage1d);
4876}
4877
4878inline bool Type::isImage1dArrayT() const {
4879  return isSpecificBuiltinType(BuiltinType::OCLImage1dArray);
4880}
4881
4882inline bool Type::isImage1dBufferT() const {
4883  return isSpecificBuiltinType(BuiltinType::OCLImage1dBuffer);
4884}
4885
4886inline bool Type::isImage2dT() const {
4887  return isSpecificBuiltinType(BuiltinType::OCLImage2d);
4888}
4889
4890inline bool Type::isImage2dArrayT() const {
4891  return isSpecificBuiltinType(BuiltinType::OCLImage2dArray);
4892}
4893
4894inline bool Type::isImage3dT() const {
4895  return isSpecificBuiltinType(BuiltinType::OCLImage3d);
4896}
4897
4898inline bool Type::isSamplerT() const {
4899  return isSpecificBuiltinType(BuiltinType::OCLSampler);
4900}
4901
4902inline bool Type::isEventT() const {
4903  return isSpecificBuiltinType(BuiltinType::OCLEvent);
4904}
4905
4906inline bool Type::isImageType() const {
4907  return isImage3dT() ||
4908         isImage2dT() || isImage2dArrayT() ||
4909         isImage1dT() || isImage1dArrayT() || isImage1dBufferT();
4910}
4911
4912inline bool Type::isOpenCLSpecificType() const {
4913  return isSamplerT() || isEventT() || isImageType();
4914}
4915
4916inline bool Type::isTemplateTypeParmType() const {
4917  return isa<TemplateTypeParmType>(CanonicalType);
4918}
4919
4920inline bool Type::isSpecificBuiltinType(unsigned K) const {
4921  if (const BuiltinType *BT = getAs<BuiltinType>())
4922    if (BT->getKind() == (BuiltinType::Kind) K)
4923      return true;
4924  return false;
4925}
4926
4927inline bool Type::isPlaceholderType() const {
4928  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
4929    return BT->isPlaceholderType();
4930  return false;
4931}
4932
4933inline const BuiltinType *Type::getAsPlaceholderType() const {
4934  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
4935    if (BT->isPlaceholderType())
4936      return BT;
4937  return 0;
4938}
4939
4940inline bool Type::isSpecificPlaceholderType(unsigned K) const {
4941  assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K));
4942  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
4943    return (BT->getKind() == (BuiltinType::Kind) K);
4944  return false;
4945}
4946
4947inline bool Type::isNonOverloadPlaceholderType() const {
4948  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
4949    return BT->isNonOverloadPlaceholderType();
4950  return false;
4951}
4952
4953inline bool Type::isVoidType() const {
4954  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
4955    return BT->getKind() == BuiltinType::Void;
4956  return false;
4957}
4958
4959inline bool Type::isHalfType() const {
4960  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
4961    return BT->getKind() == BuiltinType::Half;
4962  // FIXME: Should we allow complex __fp16? Probably not.
4963  return false;
4964}
4965
4966inline bool Type::isNullPtrType() const {
4967  if (const BuiltinType *BT = getAs<BuiltinType>())
4968    return BT->getKind() == BuiltinType::NullPtr;
4969  return false;
4970}
4971
4972extern bool IsEnumDeclComplete(EnumDecl *);
4973extern bool IsEnumDeclScoped(EnumDecl *);
4974
4975inline bool Type::isIntegerType() const {
4976  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
4977    return BT->getKind() >= BuiltinType::Bool &&
4978           BT->getKind() <= BuiltinType::Int128;
4979  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
4980    // Incomplete enum types are not treated as integer types.
4981    // FIXME: In C++, enum types are never integer types.
4982    return IsEnumDeclComplete(ET->getDecl()) &&
4983      !IsEnumDeclScoped(ET->getDecl());
4984  }
4985  return false;
4986}
4987
4988inline bool Type::isScalarType() const {
4989  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
4990    return BT->getKind() > BuiltinType::Void &&
4991           BT->getKind() <= BuiltinType::NullPtr;
4992  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
4993    // Enums are scalar types, but only if they are defined.  Incomplete enums
4994    // are not treated as scalar types.
4995    return IsEnumDeclComplete(ET->getDecl());
4996  return isa<PointerType>(CanonicalType) ||
4997         isa<BlockPointerType>(CanonicalType) ||
4998         isa<MemberPointerType>(CanonicalType) ||
4999         isa<ComplexType>(CanonicalType) ||
5000         isa<ObjCObjectPointerType>(CanonicalType);
5001}
5002
5003inline bool Type::isIntegralOrEnumerationType() const {
5004  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
5005    return BT->getKind() >= BuiltinType::Bool &&
5006           BT->getKind() <= BuiltinType::Int128;
5007
5008  // Check for a complete enum type; incomplete enum types are not properly an
5009  // enumeration type in the sense required here.
5010  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
5011    return IsEnumDeclComplete(ET->getDecl());
5012
5013  return false;
5014}
5015
5016inline bool Type::isBooleanType() const {
5017  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
5018    return BT->getKind() == BuiltinType::Bool;
5019  return false;
5020}
5021
5022/// \brief Determines whether this is a type for which one can define
5023/// an overloaded operator.
5024inline bool Type::isOverloadableType() const {
5025  return isDependentType() || isRecordType() || isEnumeralType();
5026}
5027
5028/// \brief Determines whether this type can decay to a pointer type.
5029inline bool Type::canDecayToPointerType() const {
5030  return isFunctionType() || isArrayType();
5031}
5032
5033inline bool Type::hasPointerRepresentation() const {
5034  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
5035          isObjCObjectPointerType() || isNullPtrType());
5036}
5037
5038inline bool Type::hasObjCPointerRepresentation() const {
5039  return isObjCObjectPointerType();
5040}
5041
5042inline const Type *Type::getBaseElementTypeUnsafe() const {
5043  const Type *type = this;
5044  while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
5045    type = arrayType->getElementType().getTypePtr();
5046  return type;
5047}
5048
5049/// Insertion operator for diagnostics.  This allows sending QualType's into a
5050/// diagnostic with <<.
5051inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
5052                                           QualType T) {
5053  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
5054                  DiagnosticsEngine::ak_qualtype);
5055  return DB;
5056}
5057
5058/// Insertion operator for partial diagnostics.  This allows sending QualType's
5059/// into a diagnostic with <<.
5060inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
5061                                           QualType T) {
5062  PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
5063                  DiagnosticsEngine::ak_qualtype);
5064  return PD;
5065}
5066
5067// Helper class template that is used by Type::getAs to ensure that one does
5068// not try to look through a qualified type to get to an array type.
5069template<typename T,
5070         bool isArrayType = (llvm::is_same<T, ArrayType>::value ||
5071                             llvm::is_base_of<ArrayType, T>::value)>
5072struct ArrayType_cannot_be_used_with_getAs { };
5073
5074template<typename T>
5075struct ArrayType_cannot_be_used_with_getAs<T, true>;
5076
5077// Member-template getAs<specific type>'.
5078template <typename T> const T *Type::getAs() const {
5079  ArrayType_cannot_be_used_with_getAs<T> at;
5080  (void)at;
5081
5082  // If this is directly a T type, return it.
5083  if (const T *Ty = dyn_cast<T>(this))
5084    return Ty;
5085
5086  // If the canonical form of this type isn't the right kind, reject it.
5087  if (!isa<T>(CanonicalType))
5088    return 0;
5089
5090  // If this is a typedef for the type, strip the typedef off without
5091  // losing all typedef information.
5092  return cast<T>(getUnqualifiedDesugaredType());
5093}
5094
5095inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
5096  // If this is directly an array type, return it.
5097  if (const ArrayType *arr = dyn_cast<ArrayType>(this))
5098    return arr;
5099
5100  // If the canonical form of this type isn't the right kind, reject it.
5101  if (!isa<ArrayType>(CanonicalType))
5102    return 0;
5103
5104  // If this is a typedef for the type, strip the typedef off without
5105  // losing all typedef information.
5106  return cast<ArrayType>(getUnqualifiedDesugaredType());
5107}
5108
5109template <typename T> const T *Type::castAs() const {
5110  ArrayType_cannot_be_used_with_getAs<T> at;
5111  (void) at;
5112
5113  assert(isa<T>(CanonicalType));
5114  if (const T *ty = dyn_cast<T>(this)) return ty;
5115  return cast<T>(getUnqualifiedDesugaredType());
5116}
5117
5118inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
5119  assert(isa<ArrayType>(CanonicalType));
5120  if (const ArrayType *arr = dyn_cast<ArrayType>(this)) return arr;
5121  return cast<ArrayType>(getUnqualifiedDesugaredType());
5122}
5123
5124}  // end namespace clang
5125
5126#endif
5127