Type.h revision e86d78cf4754a6aef2cf9a33d847aa15338e276f
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Basic/IdentifierTable.h"
19#include "clang/Basic/Linkage.h"
20#include "clang/Basic/PartialDiagnostic.h"
21#include "clang/Basic/Visibility.h"
22#include "clang/AST/NestedNameSpecifier.h"
23#include "clang/AST/TemplateName.h"
24#include "llvm/Support/Casting.h"
25#include "llvm/Support/type_traits.h"
26#include "llvm/ADT/APSInt.h"
27#include "llvm/ADT/FoldingSet.h"
28#include "llvm/ADT/PointerIntPair.h"
29#include "llvm/ADT/PointerUnion.h"
30
31using llvm::isa;
32using llvm::cast;
33using llvm::cast_or_null;
34using llvm::dyn_cast;
35using llvm::dyn_cast_or_null;
36namespace clang {
37  enum {
38    TypeAlignmentInBits = 3,
39    TypeAlignment = 1 << TypeAlignmentInBits
40  };
41  class Type;
42  class ExtQuals;
43  class QualType;
44}
45
46namespace llvm {
47  template <typename T>
48  class PointerLikeTypeTraits;
49  template<>
50  class PointerLikeTypeTraits< ::clang::Type*> {
51  public:
52    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
53    static inline ::clang::Type *getFromVoidPointer(void *P) {
54      return static_cast< ::clang::Type*>(P);
55    }
56    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
57  };
58  template<>
59  class PointerLikeTypeTraits< ::clang::ExtQuals*> {
60  public:
61    static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
62    static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
63      return static_cast< ::clang::ExtQuals*>(P);
64    }
65    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
66  };
67
68  template <>
69  struct isPodLike<clang::QualType> { static const bool value = true; };
70}
71
72namespace clang {
73  class ASTContext;
74  class TypedefDecl;
75  class TemplateDecl;
76  class TemplateTypeParmDecl;
77  class NonTypeTemplateParmDecl;
78  class TemplateTemplateParmDecl;
79  class TagDecl;
80  class RecordDecl;
81  class CXXRecordDecl;
82  class EnumDecl;
83  class FieldDecl;
84  class ObjCInterfaceDecl;
85  class ObjCProtocolDecl;
86  class ObjCMethodDecl;
87  class UnresolvedUsingTypenameDecl;
88  class Expr;
89  class Stmt;
90  class SourceLocation;
91  class StmtIteratorBase;
92  class TemplateArgument;
93  class TemplateArgumentLoc;
94  class TemplateArgumentListInfo;
95  class Type;
96  class ElaboratedType;
97  struct PrintingPolicy;
98
99  template <typename> class CanQual;
100  typedef CanQual<Type> CanQualType;
101
102  // Provide forward declarations for all of the *Type classes
103#define TYPE(Class, Base) class Class##Type;
104#include "clang/AST/TypeNodes.def"
105
106/// Qualifiers - The collection of all-type qualifiers we support.
107/// Clang supports five independent qualifiers:
108/// * C99: const, volatile, and restrict
109/// * Embedded C (TR18037): address spaces
110/// * Objective C: the GC attributes (none, weak, or strong)
111class Qualifiers {
112public:
113  enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
114    Const    = 0x1,
115    Restrict = 0x2,
116    Volatile = 0x4,
117    CVRMask = Const | Volatile | Restrict
118  };
119
120  enum GC {
121    GCNone = 0,
122    Weak,
123    Strong
124  };
125
126  enum {
127    /// The maximum supported address space number.
128    /// 24 bits should be enough for anyone.
129    MaxAddressSpace = 0xffffffu,
130
131    /// The width of the "fast" qualifier mask.
132    FastWidth = 2,
133
134    /// The fast qualifier mask.
135    FastMask = (1 << FastWidth) - 1
136  };
137
138  Qualifiers() : Mask(0) {}
139
140  static Qualifiers fromFastMask(unsigned Mask) {
141    Qualifiers Qs;
142    Qs.addFastQualifiers(Mask);
143    return Qs;
144  }
145
146  static Qualifiers fromCVRMask(unsigned CVR) {
147    Qualifiers Qs;
148    Qs.addCVRQualifiers(CVR);
149    return Qs;
150  }
151
152  // Deserialize qualifiers from an opaque representation.
153  static Qualifiers fromOpaqueValue(unsigned opaque) {
154    Qualifiers Qs;
155    Qs.Mask = opaque;
156    return Qs;
157  }
158
159  // Serialize these qualifiers into an opaque representation.
160  unsigned getAsOpaqueValue() const {
161    return Mask;
162  }
163
164  bool hasConst() const { return Mask & Const; }
165  void setConst(bool flag) {
166    Mask = (Mask & ~Const) | (flag ? Const : 0);
167  }
168  void removeConst() { Mask &= ~Const; }
169  void addConst() { Mask |= Const; }
170
171  bool hasVolatile() const { return Mask & Volatile; }
172  void setVolatile(bool flag) {
173    Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
174  }
175  void removeVolatile() { Mask &= ~Volatile; }
176  void addVolatile() { Mask |= Volatile; }
177
178  bool hasRestrict() const { return Mask & Restrict; }
179  void setRestrict(bool flag) {
180    Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
181  }
182  void removeRestrict() { Mask &= ~Restrict; }
183  void addRestrict() { Mask |= Restrict; }
184
185  bool hasCVRQualifiers() const { return getCVRQualifiers(); }
186  unsigned getCVRQualifiers() const { return Mask & CVRMask; }
187  void setCVRQualifiers(unsigned mask) {
188    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
189    Mask = (Mask & ~CVRMask) | mask;
190  }
191  void removeCVRQualifiers(unsigned mask) {
192    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
193    Mask &= ~mask;
194  }
195  void removeCVRQualifiers() {
196    removeCVRQualifiers(CVRMask);
197  }
198  void addCVRQualifiers(unsigned mask) {
199    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
200    Mask |= mask;
201  }
202
203  bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
204  GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
205  void setObjCGCAttr(GC type) {
206    Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
207  }
208  void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
209  void addObjCGCAttr(GC type) {
210    assert(type);
211    setObjCGCAttr(type);
212  }
213
214  bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
215  unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
216  void setAddressSpace(unsigned space) {
217    assert(space <= MaxAddressSpace);
218    Mask = (Mask & ~AddressSpaceMask)
219         | (((uint32_t) space) << AddressSpaceShift);
220  }
221  void removeAddressSpace() { setAddressSpace(0); }
222  void addAddressSpace(unsigned space) {
223    assert(space);
224    setAddressSpace(space);
225  }
226
227  // Fast qualifiers are those that can be allocated directly
228  // on a QualType object.
229  bool hasFastQualifiers() const { return getFastQualifiers(); }
230  unsigned getFastQualifiers() const { return Mask & FastMask; }
231  void setFastQualifiers(unsigned mask) {
232    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
233    Mask = (Mask & ~FastMask) | mask;
234  }
235  void removeFastQualifiers(unsigned mask) {
236    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
237    Mask &= ~mask;
238  }
239  void removeFastQualifiers() {
240    removeFastQualifiers(FastMask);
241  }
242  void addFastQualifiers(unsigned mask) {
243    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
244    Mask |= mask;
245  }
246
247  /// hasNonFastQualifiers - Return true if the set contains any
248  /// qualifiers which require an ExtQuals node to be allocated.
249  bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
250  Qualifiers getNonFastQualifiers() const {
251    Qualifiers Quals = *this;
252    Quals.setFastQualifiers(0);
253    return Quals;
254  }
255
256  /// hasQualifiers - Return true if the set contains any qualifiers.
257  bool hasQualifiers() const { return Mask; }
258  bool empty() const { return !Mask; }
259
260  /// \brief Add the qualifiers from the given set to this set.
261  void addQualifiers(Qualifiers Q) {
262    // If the other set doesn't have any non-boolean qualifiers, just
263    // bit-or it in.
264    if (!(Q.Mask & ~CVRMask))
265      Mask |= Q.Mask;
266    else {
267      Mask |= (Q.Mask & CVRMask);
268      if (Q.hasAddressSpace())
269        addAddressSpace(Q.getAddressSpace());
270      if (Q.hasObjCGCAttr())
271        addObjCGCAttr(Q.getObjCGCAttr());
272    }
273  }
274
275  bool isSupersetOf(Qualifiers Other) const;
276
277  bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
278  bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
279
280  operator bool() const { return hasQualifiers(); }
281
282  Qualifiers &operator+=(Qualifiers R) {
283    addQualifiers(R);
284    return *this;
285  }
286
287  // Union two qualifier sets.  If an enumerated qualifier appears
288  // in both sets, use the one from the right.
289  friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
290    L += R;
291    return L;
292  }
293
294  Qualifiers &operator-=(Qualifiers R) {
295    Mask = Mask & ~(R.Mask);
296    return *this;
297  }
298
299  /// \brief Compute the difference between two qualifier sets.
300  friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
301    L -= R;
302    return L;
303  }
304
305  std::string getAsString() const;
306  std::string getAsString(const PrintingPolicy &Policy) const {
307    std::string Buffer;
308    getAsStringInternal(Buffer, Policy);
309    return Buffer;
310  }
311  void getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const;
312
313  void Profile(llvm::FoldingSetNodeID &ID) const {
314    ID.AddInteger(Mask);
315  }
316
317private:
318
319  // bits:     |0 1 2|3 .. 4|5  ..  31|
320  //           |C R V|GCAttr|AddrSpace|
321  uint32_t Mask;
322
323  static const uint32_t GCAttrMask = 0x18;
324  static const uint32_t GCAttrShift = 3;
325  static const uint32_t AddressSpaceMask = ~(CVRMask | GCAttrMask);
326  static const uint32_t AddressSpaceShift = 5;
327};
328
329
330/// ExtQuals - We can encode up to three bits in the low bits of a
331/// type pointer, but there are many more type qualifiers that we want
332/// to be able to apply to an arbitrary type.  Therefore we have this
333/// struct, intended to be heap-allocated and used by QualType to
334/// store qualifiers.
335///
336/// The current design tags the 'const' and 'restrict' qualifiers in
337/// two low bits on the QualType pointer; a third bit records whether
338/// the pointer is an ExtQuals node.  'const' was chosen because it is
339/// orders of magnitude more common than the other two qualifiers, in
340/// both library and user code.  It's relatively rare to see
341/// 'restrict' in user code, but many standard C headers are saturated
342/// with 'restrict' declarations, so that representing them efficiently
343/// is a critical goal of this representation.
344class ExtQuals : public llvm::FoldingSetNode {
345  // NOTE: changing the fast qualifiers should be straightforward as
346  // long as you don't make 'const' non-fast.
347  // 1. Qualifiers:
348  //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
349  //       Fast qualifiers must occupy the low-order bits.
350  //    b) Update Qualifiers::FastWidth and FastMask.
351  // 2. QualType:
352  //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
353  //    b) Update remove{Volatile,Restrict}, defined near the end of
354  //       this header.
355  // 3. ASTContext:
356  //    a) Update get{Volatile,Restrict}Type.
357
358  /// Context - the context to which this set belongs.  We save this
359  /// here so that QualifierCollector can use it to reapply extended
360  /// qualifiers to an arbitrary type without requiring a context to
361  /// be pushed through every single API dealing with qualifiers.
362  ASTContext& Context;
363
364  /// BaseType - the underlying type that this qualifies
365  const Type *BaseType;
366
367  /// Quals - the immutable set of qualifiers applied by this
368  /// node;  always contains extended qualifiers.
369  Qualifiers Quals;
370
371public:
372  ExtQuals(ASTContext& Context, const Type *Base, Qualifiers Quals)
373    : Context(Context), BaseType(Base), Quals(Quals)
374  {
375    assert(Quals.hasNonFastQualifiers()
376           && "ExtQuals created with no fast qualifiers");
377    assert(!Quals.hasFastQualifiers()
378           && "ExtQuals created with fast qualifiers");
379  }
380
381  Qualifiers getQualifiers() const { return Quals; }
382
383  bool hasVolatile() const { return Quals.hasVolatile(); }
384
385  bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
386  Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
387
388  bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
389  unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
390
391  const Type *getBaseType() const { return BaseType; }
392
393  ASTContext &getContext() const { return Context; }
394
395public:
396  void Profile(llvm::FoldingSetNodeID &ID) const {
397    Profile(ID, getBaseType(), Quals);
398  }
399  static void Profile(llvm::FoldingSetNodeID &ID,
400                      const Type *BaseType,
401                      Qualifiers Quals) {
402    assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
403    ID.AddPointer(BaseType);
404    Quals.Profile(ID);
405  }
406};
407
408/// CallingConv - Specifies the calling convention that a function uses.
409enum CallingConv {
410  CC_Default,
411  CC_C,           // __attribute__((cdecl))
412  CC_X86StdCall,  // __attribute__((stdcall))
413  CC_X86FastCall, // __attribute__((fastcall))
414  CC_X86ThisCall, // __attribute__((thiscall))
415  CC_X86Pascal    // __attribute__((pascal))
416};
417
418
419/// QualType - For efficiency, we don't store CV-qualified types as nodes on
420/// their own: instead each reference to a type stores the qualifiers.  This
421/// greatly reduces the number of nodes we need to allocate for types (for
422/// example we only need one for 'int', 'const int', 'volatile int',
423/// 'const volatile int', etc).
424///
425/// As an added efficiency bonus, instead of making this a pair, we
426/// just store the two bits we care about in the low bits of the
427/// pointer.  To handle the packing/unpacking, we make QualType be a
428/// simple wrapper class that acts like a smart pointer.  A third bit
429/// indicates whether there are extended qualifiers present, in which
430/// case the pointer points to a special structure.
431class QualType {
432  // Thankfully, these are efficiently composable.
433  llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
434                       Qualifiers::FastWidth> Value;
435
436  const ExtQuals *getExtQualsUnsafe() const {
437    return Value.getPointer().get<const ExtQuals*>();
438  }
439
440  const Type *getTypePtrUnsafe() const {
441    return Value.getPointer().get<const Type*>();
442  }
443
444  QualType getUnqualifiedTypeSlow() const;
445
446  friend class QualifierCollector;
447public:
448  QualType() {}
449
450  QualType(const Type *Ptr, unsigned Quals)
451    : Value(Ptr, Quals) {}
452  QualType(const ExtQuals *Ptr, unsigned Quals)
453    : Value(Ptr, Quals) {}
454
455  unsigned getLocalFastQualifiers() const { return Value.getInt(); }
456  void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
457
458  /// Retrieves a pointer to the underlying (unqualified) type.
459  /// This should really return a const Type, but it's not worth
460  /// changing all the users right now.
461  Type *getTypePtr() const {
462    if (hasLocalNonFastQualifiers())
463      return const_cast<Type*>(getExtQualsUnsafe()->getBaseType());
464    return const_cast<Type*>(getTypePtrUnsafe());
465  }
466
467  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
468  static QualType getFromOpaquePtr(void *Ptr) {
469    QualType T;
470    T.Value.setFromOpaqueValue(Ptr);
471    return T;
472  }
473
474  Type &operator*() const {
475    return *getTypePtr();
476  }
477
478  Type *operator->() const {
479    return getTypePtr();
480  }
481
482  bool isCanonical() const;
483  bool isCanonicalAsParam() const;
484
485  /// isNull - Return true if this QualType doesn't point to a type yet.
486  bool isNull() const {
487    return Value.getPointer().isNull();
488  }
489
490  /// \brief Determine whether this particular QualType instance has the
491  /// "const" qualifier set, without looking through typedefs that may have
492  /// added "const" at a different level.
493  bool isLocalConstQualified() const {
494    return (getLocalFastQualifiers() & Qualifiers::Const);
495  }
496
497  /// \brief Determine whether this type is const-qualified.
498  bool isConstQualified() const;
499
500  /// \brief Determine whether this particular QualType instance has the
501  /// "restrict" qualifier set, without looking through typedefs that may have
502  /// added "restrict" at a different level.
503  bool isLocalRestrictQualified() const {
504    return (getLocalFastQualifiers() & Qualifiers::Restrict);
505  }
506
507  /// \brief Determine whether this type is restrict-qualified.
508  bool isRestrictQualified() const;
509
510  /// \brief Determine whether this particular QualType instance has the
511  /// "volatile" qualifier set, without looking through typedefs that may have
512  /// added "volatile" at a different level.
513  bool isLocalVolatileQualified() const {
514    return (hasLocalNonFastQualifiers() && getExtQualsUnsafe()->hasVolatile());
515  }
516
517  /// \brief Determine whether this type is volatile-qualified.
518  bool isVolatileQualified() const;
519
520  /// \brief Determine whether this particular QualType instance has any
521  /// qualifiers, without looking through any typedefs that might add
522  /// qualifiers at a different level.
523  bool hasLocalQualifiers() const {
524    return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
525  }
526
527  /// \brief Determine whether this type has any qualifiers.
528  bool hasQualifiers() const;
529
530  /// \brief Determine whether this particular QualType instance has any
531  /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
532  /// instance.
533  bool hasLocalNonFastQualifiers() const {
534    return Value.getPointer().is<const ExtQuals*>();
535  }
536
537  /// \brief Retrieve the set of qualifiers local to this particular QualType
538  /// instance, not including any qualifiers acquired through typedefs or
539  /// other sugar.
540  Qualifiers getLocalQualifiers() const {
541    Qualifiers Quals;
542    if (hasLocalNonFastQualifiers())
543      Quals = getExtQualsUnsafe()->getQualifiers();
544    Quals.addFastQualifiers(getLocalFastQualifiers());
545    return Quals;
546  }
547
548  /// \brief Retrieve the set of qualifiers applied to this type.
549  Qualifiers getQualifiers() const;
550
551  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
552  /// local to this particular QualType instance, not including any qualifiers
553  /// acquired through typedefs or other sugar.
554  unsigned getLocalCVRQualifiers() const {
555    unsigned CVR = getLocalFastQualifiers();
556    if (isLocalVolatileQualified())
557      CVR |= Qualifiers::Volatile;
558    return CVR;
559  }
560
561  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
562  /// applied to this type.
563  unsigned getCVRQualifiers() const;
564
565  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
566  /// applied to this type, looking through any number of unqualified array
567  /// types to their element types' qualifiers.
568  unsigned getCVRQualifiersThroughArrayTypes() const;
569
570  bool isConstant(ASTContext& Ctx) const {
571    return QualType::isConstant(*this, Ctx);
572  }
573
574  // Don't promise in the API that anything besides 'const' can be
575  // easily added.
576
577  /// addConst - add the specified type qualifier to this QualType.
578  void addConst() {
579    addFastQualifiers(Qualifiers::Const);
580  }
581  QualType withConst() const {
582    return withFastQualifiers(Qualifiers::Const);
583  }
584
585  void addFastQualifiers(unsigned TQs) {
586    assert(!(TQs & ~Qualifiers::FastMask)
587           && "non-fast qualifier bits set in mask!");
588    Value.setInt(Value.getInt() | TQs);
589  }
590
591  // FIXME: The remove* functions are semantically broken, because they might
592  // not remove a qualifier stored on a typedef. Most of the with* functions
593  // have the same problem.
594  void removeConst();
595  void removeVolatile();
596  void removeRestrict();
597  void removeCVRQualifiers(unsigned Mask);
598
599  void removeFastQualifiers() { Value.setInt(0); }
600  void removeFastQualifiers(unsigned Mask) {
601    assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
602    Value.setInt(Value.getInt() & ~Mask);
603  }
604
605  // Creates a type with the given qualifiers in addition to any
606  // qualifiers already on this type.
607  QualType withFastQualifiers(unsigned TQs) const {
608    QualType T = *this;
609    T.addFastQualifiers(TQs);
610    return T;
611  }
612
613  // Creates a type with exactly the given fast qualifiers, removing
614  // any existing fast qualifiers.
615  QualType withExactFastQualifiers(unsigned TQs) const {
616    return withoutFastQualifiers().withFastQualifiers(TQs);
617  }
618
619  // Removes fast qualifiers, but leaves any extended qualifiers in place.
620  QualType withoutFastQualifiers() const {
621    QualType T = *this;
622    T.removeFastQualifiers();
623    return T;
624  }
625
626  /// \brief Return this type with all of the instance-specific qualifiers
627  /// removed, but without removing any qualifiers that may have been applied
628  /// through typedefs.
629  QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
630
631  /// \brief Return the unqualified form of the given type, which might be
632  /// desugared to eliminate qualifiers introduced via typedefs.
633  QualType getUnqualifiedType() const {
634    QualType T = getLocalUnqualifiedType();
635    if (!T.hasQualifiers())
636      return T;
637
638    return getUnqualifiedTypeSlow();
639  }
640
641  bool isMoreQualifiedThan(QualType Other) const;
642  bool isAtLeastAsQualifiedAs(QualType Other) const;
643  QualType getNonReferenceType() const;
644
645  /// \brief Determine the type of a (typically non-lvalue) expression with the
646  /// specified result type.
647  ///
648  /// This routine should be used for expressions for which the return type is
649  /// explicitly specified (e.g., in a cast or call) and isn't necessarily
650  /// an lvalue. It removes a top-level reference (since there are no
651  /// expressions of reference type) and deletes top-level cvr-qualifiers
652  /// from non-class types (in C++) or all types (in C).
653  QualType getNonLValueExprType(ASTContext &Context) const;
654
655  /// getDesugaredType - Return the specified type with any "sugar" removed from
656  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
657  /// the type is already concrete, it returns it unmodified.  This is similar
658  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
659  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
660  /// concrete.
661  ///
662  /// Qualifiers are left in place.
663  QualType getDesugaredType() const {
664    return QualType::getDesugaredType(*this);
665  }
666
667  /// operator==/!= - Indicate whether the specified types and qualifiers are
668  /// identical.
669  friend bool operator==(const QualType &LHS, const QualType &RHS) {
670    return LHS.Value == RHS.Value;
671  }
672  friend bool operator!=(const QualType &LHS, const QualType &RHS) {
673    return LHS.Value != RHS.Value;
674  }
675  std::string getAsString() const;
676
677  std::string getAsString(const PrintingPolicy &Policy) const {
678    std::string S;
679    getAsStringInternal(S, Policy);
680    return S;
681  }
682  void getAsStringInternal(std::string &Str,
683                           const PrintingPolicy &Policy) const;
684
685  void dump(const char *s) const;
686  void dump() const;
687
688  void Profile(llvm::FoldingSetNodeID &ID) const {
689    ID.AddPointer(getAsOpaquePtr());
690  }
691
692  /// getAddressSpace - Return the address space of this type.
693  inline unsigned getAddressSpace() const;
694
695  /// GCAttrTypesAttr - Returns gc attribute of this type.
696  inline Qualifiers::GC getObjCGCAttr() const;
697
698  /// isObjCGCWeak true when Type is objc's weak.
699  bool isObjCGCWeak() const {
700    return getObjCGCAttr() == Qualifiers::Weak;
701  }
702
703  /// isObjCGCStrong true when Type is objc's strong.
704  bool isObjCGCStrong() const {
705    return getObjCGCAttr() == Qualifiers::Strong;
706  }
707
708private:
709  // These methods are implemented in a separate translation unit;
710  // "static"-ize them to avoid creating temporary QualTypes in the
711  // caller.
712  static bool isConstant(QualType T, ASTContext& Ctx);
713  static QualType getDesugaredType(QualType T);
714};
715
716} // end clang.
717
718namespace llvm {
719/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
720/// to a specific Type class.
721template<> struct simplify_type<const ::clang::QualType> {
722  typedef ::clang::Type* SimpleType;
723  static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
724    return Val.getTypePtr();
725  }
726};
727template<> struct simplify_type< ::clang::QualType>
728  : public simplify_type<const ::clang::QualType> {};
729
730// Teach SmallPtrSet that QualType is "basically a pointer".
731template<>
732class PointerLikeTypeTraits<clang::QualType> {
733public:
734  static inline void *getAsVoidPointer(clang::QualType P) {
735    return P.getAsOpaquePtr();
736  }
737  static inline clang::QualType getFromVoidPointer(void *P) {
738    return clang::QualType::getFromOpaquePtr(P);
739  }
740  // Various qualifiers go in low bits.
741  enum { NumLowBitsAvailable = 0 };
742};
743
744} // end namespace llvm
745
746namespace clang {
747
748/// Type - This is the base class of the type hierarchy.  A central concept
749/// with types is that each type always has a canonical type.  A canonical type
750/// is the type with any typedef names stripped out of it or the types it
751/// references.  For example, consider:
752///
753///  typedef int  foo;
754///  typedef foo* bar;
755///    'int *'    'foo *'    'bar'
756///
757/// There will be a Type object created for 'int'.  Since int is canonical, its
758/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
759/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
760/// there is a PointerType that represents 'int*', which, like 'int', is
761/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
762/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
763/// is also 'int*'.
764///
765/// Non-canonical types are useful for emitting diagnostics, without losing
766/// information about typedefs being used.  Canonical types are useful for type
767/// comparisons (they allow by-pointer equality tests) and useful for reasoning
768/// about whether something has a particular form (e.g. is a function type),
769/// because they implicitly, recursively, strip all typedefs out of a type.
770///
771/// Types, once created, are immutable.
772///
773class Type {
774public:
775  enum TypeClass {
776#define TYPE(Class, Base) Class,
777#define LAST_TYPE(Class) TypeLast = Class,
778#define ABSTRACT_TYPE(Class, Base)
779#include "clang/AST/TypeNodes.def"
780    TagFirst = Record, TagLast = Enum
781  };
782
783private:
784  Type(const Type&);           // DO NOT IMPLEMENT.
785  void operator=(const Type&); // DO NOT IMPLEMENT.
786
787  QualType CanonicalType;
788
789  /// Bitfields required by the Type class.
790  class TypeBitfields {
791    friend class Type;
792
793    /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
794    unsigned TC : 8;
795
796    /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
797    /// Note that this should stay at the end of the ivars for Type so that
798    /// subclasses can pack their bitfields into the same word.
799    unsigned Dependent : 1;
800
801    /// \brief Whether this type is a variably-modified type (C99 6.7.5).
802    unsigned VariablyModified : 1;
803
804    /// \brief Nonzero if the cache (i.e. the bitfields here starting
805    /// with 'Cache') is valid.  If so, then this is a
806    /// LangOptions::VisibilityMode+1.
807    mutable unsigned CacheValidAndVisibility : 2;
808
809    /// \brief Linkage of this type.
810    mutable unsigned CachedLinkage : 2;
811
812    /// \brief Whether this type involves and local or unnamed types.
813    mutable unsigned CachedLocalOrUnnamed : 1;
814
815    /// \brief FromAST - Whether this type comes from an AST file.
816    mutable unsigned FromAST : 1;
817
818    bool isCacheValid() const {
819      return (CacheValidAndVisibility != 0);
820    }
821    Visibility getVisibility() const {
822      assert(isCacheValid() && "getting linkage from invalid cache");
823      return static_cast<Visibility>(CacheValidAndVisibility-1);
824    }
825    Linkage getLinkage() const {
826      assert(isCacheValid() && "getting linkage from invalid cache");
827      return static_cast<Linkage>(CachedLinkage);
828    }
829    bool hasLocalOrUnnamedType() const {
830      assert(isCacheValid() && "getting linkage from invalid cache");
831      return CachedLocalOrUnnamed;
832    }
833  };
834  enum { NumTypeBits = 16 };
835
836protected:
837  // These classes allow subclasses to somewhat cleanly pack bitfields
838  // into Type.
839
840  class ArrayTypeBitfields {
841    friend class ArrayType;
842
843    unsigned : NumTypeBits;
844
845    /// IndexTypeQuals - CVR qualifiers from declarations like
846    /// 'int X[static restrict 4]'. For function parameters only.
847    unsigned IndexTypeQuals : 3;
848
849    /// SizeModifier - storage class qualifiers from declarations like
850    /// 'int X[static restrict 4]'. For function parameters only.
851    /// Actually an ArrayType::ArraySizeModifier.
852    unsigned SizeModifier : 3;
853  };
854
855  class BuiltinTypeBitfields {
856    friend class BuiltinType;
857
858    unsigned : NumTypeBits;
859
860    /// The kind (BuiltinType::Kind) of builtin type this is.
861    unsigned Kind : 8;
862  };
863
864  class FunctionTypeBitfields {
865    friend class FunctionType;
866
867    unsigned : NumTypeBits;
868
869    /// Extra information which affects how the function is called, like
870    /// regparm and the calling convention.
871    unsigned ExtInfo : 8;
872
873    /// A bit to be used by the subclass.
874    unsigned SubclassInfo : 1;
875
876    /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
877    /// other bitfields.
878    /// The qualifiers are part of FunctionProtoType because...
879    ///
880    /// C++ 8.3.5p4: The return type, the parameter type list and the
881    /// cv-qualifier-seq, [...], are part of the function type.
882    unsigned TypeQuals : 3;
883  };
884
885  class ObjCObjectTypeBitfields {
886    friend class ObjCObjectType;
887
888    unsigned : NumTypeBits;
889
890    /// NumProtocols - The number of protocols stored directly on this
891    /// object type.
892    unsigned NumProtocols : 32 - NumTypeBits;
893  };
894
895  class ReferenceTypeBitfields {
896    friend class ReferenceType;
897
898    unsigned : NumTypeBits;
899
900    /// True if the type was originally spelled with an lvalue sigil.
901    /// This is never true of rvalue references but can also be false
902    /// on lvalue references because of C++0x [dcl.typedef]p9,
903    /// as follows:
904    ///
905    ///   typedef int &ref;    // lvalue, spelled lvalue
906    ///   typedef int &&rvref; // rvalue
907    ///   ref &a;              // lvalue, inner ref, spelled lvalue
908    ///   ref &&a;             // lvalue, inner ref
909    ///   rvref &a;            // lvalue, inner ref, spelled lvalue
910    ///   rvref &&a;           // rvalue, inner ref
911    unsigned SpelledAsLValue : 1;
912
913    /// True if the inner type is a reference type.  This only happens
914    /// in non-canonical forms.
915    unsigned InnerRef : 1;
916  };
917
918  class TypeWithKeywordBitfields {
919    friend class TypeWithKeyword;
920
921    unsigned : NumTypeBits;
922
923    /// An ElaboratedTypeKeyword.  8 bits for efficient access.
924    unsigned Keyword : 8;
925  };
926
927  class VectorTypeBitfields {
928    friend class VectorType;
929
930    unsigned : NumTypeBits;
931
932    /// VecKind - The kind of vector, either a generic vector type or some
933    /// target-specific vector type such as for AltiVec or Neon.
934    unsigned VecKind : 2;
935
936    /// NumElements - The number of elements in the vector.
937    unsigned NumElements : 30 - NumTypeBits;
938  };
939
940  union {
941    TypeBitfields TypeBits;
942    ArrayTypeBitfields ArrayTypeBits;
943    BuiltinTypeBitfields BuiltinTypeBits;
944    FunctionTypeBitfields FunctionTypeBits;
945    ObjCObjectTypeBitfields ObjCObjectTypeBits;
946    ReferenceTypeBitfields ReferenceTypeBits;
947    TypeWithKeywordBitfields TypeWithKeywordBits;
948    VectorTypeBitfields VectorTypeBits;
949  };
950
951private:
952  /// \brief Set whether this type comes from an AST file.
953  void setFromAST(bool V = true) const {
954    TypeBits.FromAST = V;
955  }
956
957  void ensureCachedProperties() const;
958
959protected:
960  /// \brief Compute the cached properties of this type.
961  class CachedProperties {
962    char linkage;
963    char visibility;
964    bool local;
965
966  public:
967    CachedProperties(Linkage linkage, Visibility visibility, bool local)
968      : linkage(linkage), visibility(visibility), local(local) {}
969
970    Linkage getLinkage() const { return (Linkage) linkage; }
971    Visibility getVisibility() const { return (Visibility) visibility; }
972    bool hasLocalOrUnnamedType() const { return local; }
973
974    friend CachedProperties merge(CachedProperties L, CachedProperties R) {
975      return CachedProperties(minLinkage(L.getLinkage(), R.getLinkage()),
976                         minVisibility(L.getVisibility(), R.getVisibility()),
977                      L.hasLocalOrUnnamedType() | R.hasLocalOrUnnamedType());
978    }
979  };
980
981  virtual CachedProperties getCachedProperties() const;
982  static CachedProperties getCachedProperties(QualType T) {
983    return getCachedProperties(T.getTypePtr());
984  }
985  static CachedProperties getCachedProperties(const Type *T);
986
987  // silence VC++ warning C4355: 'this' : used in base member initializer list
988  Type *this_() { return this; }
989  Type(TypeClass tc, QualType Canonical, bool Dependent, bool VariablyModified)
990    : CanonicalType(Canonical.isNull() ? QualType(this_(), 0) : Canonical) {
991    TypeBits.TC = tc;
992    TypeBits.Dependent = Dependent;
993    TypeBits.VariablyModified = VariablyModified;
994    TypeBits.CacheValidAndVisibility = 0;
995    TypeBits.CachedLocalOrUnnamed = false;
996    TypeBits.CachedLinkage = NoLinkage;
997    TypeBits.FromAST = false;
998  }
999  virtual ~Type();
1000  friend class ASTContext;
1001
1002  void setDependent(bool D = true) { TypeBits.Dependent = D; }
1003  void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM; }
1004
1005public:
1006  TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1007
1008  /// \brief Whether this type comes from an AST file.
1009  bool isFromAST() const { return TypeBits.FromAST; }
1010
1011  bool isCanonicalUnqualified() const {
1012    return CanonicalType.getTypePtr() == this;
1013  }
1014
1015  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
1016  /// object types, function types, and incomplete types.
1017
1018  /// isIncompleteType - Return true if this is an incomplete type.
1019  /// A type that can describe objects, but which lacks information needed to
1020  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
1021  /// routine will need to determine if the size is actually required.
1022  bool isIncompleteType() const;
1023
1024  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
1025  /// type, in other words, not a function type.
1026  bool isIncompleteOrObjectType() const {
1027    return !isFunctionType();
1028  }
1029
1030  /// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10).
1031  bool isPODType() const;
1032
1033  /// isLiteralType - Return true if this is a literal type
1034  /// (C++0x [basic.types]p10)
1035  bool isLiteralType() const;
1036
1037  /// Helper methods to distinguish type categories. All type predicates
1038  /// operate on the canonical type, ignoring typedefs and qualifiers.
1039
1040  /// isBuiltinType - returns true if the type is a builtin type.
1041  bool isBuiltinType() const;
1042
1043  /// isSpecificBuiltinType - Test for a particular builtin type.
1044  bool isSpecificBuiltinType(unsigned K) const;
1045
1046  /// isPlaceholderType - Test for a type which does not represent an
1047  /// actual type-system type but is instead used as a placeholder for
1048  /// various convenient purposes within Clang.  All such types are
1049  /// BuiltinTypes.
1050  bool isPlaceholderType() const;
1051
1052  /// isIntegerType() does *not* include complex integers (a GCC extension).
1053  /// isComplexIntegerType() can be used to test for complex integers.
1054  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
1055  bool isEnumeralType() const;
1056  bool isBooleanType() const;
1057  bool isCharType() const;
1058  bool isWideCharType() const;
1059  bool isAnyCharacterType() const;
1060  bool isIntegralType(ASTContext &Ctx) const;
1061
1062  /// \brief Determine whether this type is an integral or enumeration type.
1063  bool isIntegralOrEnumerationType() const;
1064  /// \brief Determine whether this type is an integral or unscoped enumeration
1065  /// type.
1066  bool isIntegralOrUnscopedEnumerationType() const;
1067
1068  /// Floating point categories.
1069  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
1070  /// isComplexType() does *not* include complex integers (a GCC extension).
1071  /// isComplexIntegerType() can be used to test for complex integers.
1072  bool isComplexType() const;      // C99 6.2.5p11 (complex)
1073  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
1074  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
1075  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
1076  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
1077  bool isVoidType() const;         // C99 6.2.5p19
1078  bool isDerivedType() const;      // C99 6.2.5p20
1079  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
1080  bool isAggregateType() const;
1081
1082  // Type Predicates: Check to see if this type is structurally the specified
1083  // type, ignoring typedefs and qualifiers.
1084  bool isFunctionType() const;
1085  bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
1086  bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
1087  bool isPointerType() const;
1088  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
1089  bool isBlockPointerType() const;
1090  bool isVoidPointerType() const;
1091  bool isReferenceType() const;
1092  bool isLValueReferenceType() const;
1093  bool isRValueReferenceType() const;
1094  bool isFunctionPointerType() const;
1095  bool isMemberPointerType() const;
1096  bool isMemberFunctionPointerType() const;
1097  bool isMemberDataPointerType() const;
1098  bool isArrayType() const;
1099  bool isConstantArrayType() const;
1100  bool isIncompleteArrayType() const;
1101  bool isVariableArrayType() const;
1102  bool isDependentSizedArrayType() const;
1103  bool isRecordType() const;
1104  bool isClassType() const;
1105  bool isStructureType() const;
1106  bool isStructureOrClassType() const;
1107  bool isUnionType() const;
1108  bool isComplexIntegerType() const;            // GCC _Complex integer type.
1109  bool isVectorType() const;                    // GCC vector type.
1110  bool isExtVectorType() const;                 // Extended vector type.
1111  bool isObjCObjectPointerType() const;         // Pointer to *any* ObjC object.
1112  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
1113  // for the common case.
1114  bool isObjCObjectType() const;                // NSString or typeof(*(id)0)
1115  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
1116  bool isObjCQualifiedIdType() const;           // id<foo>
1117  bool isObjCQualifiedClassType() const;        // Class<foo>
1118  bool isObjCObjectOrInterfaceType() const;
1119  bool isObjCIdType() const;                    // id
1120  bool isObjCClassType() const;                 // Class
1121  bool isObjCSelType() const;                 // Class
1122  bool isObjCBuiltinType() const;               // 'id' or 'Class'
1123  bool isTemplateTypeParmType() const;          // C++ template type parameter
1124  bool isNullPtrType() const;                   // C++0x nullptr_t
1125
1126  /// isDependentType - Whether this type is a dependent type, meaning
1127  /// that its definition somehow depends on a template parameter
1128  /// (C++ [temp.dep.type]).
1129  bool isDependentType() const { return TypeBits.Dependent; }
1130
1131  /// \brief Whether this type is a variably-modified type (C99 6.7.5).
1132  bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
1133
1134  /// \brief Whether this type is or contains a local or unnamed type.
1135  bool hasUnnamedOrLocalType() const;
1136
1137  bool isOverloadableType() const;
1138
1139  /// \brief Determine wither this type is a C++ elaborated-type-specifier.
1140  bool isElaboratedTypeSpecifier() const;
1141
1142  /// hasPointerRepresentation - Whether this type is represented
1143  /// natively as a pointer; this includes pointers, references, block
1144  /// pointers, and Objective-C interface, qualified id, and qualified
1145  /// interface types, as well as nullptr_t.
1146  bool hasPointerRepresentation() const;
1147
1148  /// hasObjCPointerRepresentation - Whether this type can represent
1149  /// an objective pointer type for the purpose of GC'ability
1150  bool hasObjCPointerRepresentation() const;
1151
1152  /// \brief Determine whether this type has an integer representation
1153  /// of some sort, e.g., it is an integer type or a vector.
1154  bool hasIntegerRepresentation() const;
1155
1156  /// \brief Determine whether this type has an signed integer representation
1157  /// of some sort, e.g., it is an signed integer type or a vector.
1158  bool hasSignedIntegerRepresentation() const;
1159
1160  /// \brief Determine whether this type has an unsigned integer representation
1161  /// of some sort, e.g., it is an unsigned integer type or a vector.
1162  bool hasUnsignedIntegerRepresentation() const;
1163
1164  /// \brief Determine whether this type has a floating-point representation
1165  /// of some sort, e.g., it is a floating-point type or a vector thereof.
1166  bool hasFloatingRepresentation() const;
1167
1168  // Type Checking Functions: Check to see if this type is structurally the
1169  // specified type, ignoring typedefs and qualifiers, and return a pointer to
1170  // the best type we can.
1171  const RecordType *getAsStructureType() const;
1172  /// NOTE: getAs*ArrayType are methods on ASTContext.
1173  const RecordType *getAsUnionType() const;
1174  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
1175  // The following is a convenience method that returns an ObjCObjectPointerType
1176  // for object declared using an interface.
1177  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
1178  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
1179  const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
1180  const CXXRecordDecl *getCXXRecordDeclForPointerType() const;
1181
1182  /// \brief Retrieves the CXXRecordDecl that this type refers to, either
1183  /// because the type is a RecordType or because it is the injected-class-name
1184  /// type of a class template or class template partial specialization.
1185  CXXRecordDecl *getAsCXXRecordDecl() const;
1186
1187  // Member-template getAs<specific type>'.  Look through sugar for
1188  // an instance of <specific type>.   This scheme will eventually
1189  // replace the specific getAsXXXX methods above.
1190  //
1191  // There are some specializations of this member template listed
1192  // immediately following this class.
1193  template <typename T> const T *getAs() const;
1194
1195  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
1196  /// element type of the array, potentially with type qualifiers missing.
1197  /// This method should never be used when type qualifiers are meaningful.
1198  const Type *getArrayElementTypeNoTypeQual() const;
1199
1200  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
1201  /// pointer, this returns the respective pointee.
1202  QualType getPointeeType() const;
1203
1204  /// getUnqualifiedDesugaredType() - Return the specified type with
1205  /// any "sugar" removed from the type, removing any typedefs,
1206  /// typeofs, etc., as well as any qualifiers.
1207  const Type *getUnqualifiedDesugaredType() const;
1208
1209  /// More type predicates useful for type checking/promotion
1210  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
1211
1212  /// isSignedIntegerType - Return true if this is an integer type that is
1213  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
1214  /// an enum decl which has a signed representation, or a vector of signed
1215  /// integer element type.
1216  bool isSignedIntegerType() const;
1217
1218  /// isUnsignedIntegerType - Return true if this is an integer type that is
1219  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
1220  /// decl which has an unsigned representation, or a vector of unsigned integer
1221  /// element type.
1222  bool isUnsignedIntegerType() const;
1223
1224  /// isConstantSizeType - Return true if this is not a variable sized type,
1225  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
1226  /// incomplete types.
1227  bool isConstantSizeType() const;
1228
1229  /// isSpecifierType - Returns true if this type can be represented by some
1230  /// set of type specifiers.
1231  bool isSpecifierType() const;
1232
1233  /// \brief Determine the linkage of this type.
1234  Linkage getLinkage() const;
1235
1236  /// \brief Determine the visibility of this type.
1237  Visibility getVisibility() const;
1238
1239  /// \brief Determine the linkage and visibility of this type.
1240  std::pair<Linkage,Visibility> getLinkageAndVisibility() const;
1241
1242  /// \brief Note that the linkage is no longer known.
1243  void ClearLinkageCache();
1244
1245  const char *getTypeClassName() const;
1246
1247  QualType getCanonicalTypeInternal() const {
1248    return CanonicalType;
1249  }
1250  CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
1251  void dump() const;
1252  static bool classof(const Type *) { return true; }
1253
1254  friend class ASTReader;
1255  friend class ASTWriter;
1256};
1257
1258template <> inline const TypedefType *Type::getAs() const {
1259  return dyn_cast<TypedefType>(this);
1260}
1261
1262// We can do canonical leaf types faster, because we don't have to
1263// worry about preserving child type decoration.
1264#define TYPE(Class, Base)
1265#define LEAF_TYPE(Class) \
1266template <> inline const Class##Type *Type::getAs() const { \
1267  return dyn_cast<Class##Type>(CanonicalType); \
1268}
1269#include "clang/AST/TypeNodes.def"
1270
1271
1272/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
1273/// types are always canonical and have a literal name field.
1274class BuiltinType : public Type {
1275public:
1276  enum Kind {
1277    Void,
1278
1279    Bool,     // This is bool and/or _Bool.
1280    Char_U,   // This is 'char' for targets where char is unsigned.
1281    UChar,    // This is explicitly qualified unsigned char.
1282    Char16,   // This is 'char16_t' for C++.
1283    Char32,   // This is 'char32_t' for C++.
1284    UShort,
1285    UInt,
1286    ULong,
1287    ULongLong,
1288    UInt128,  // __uint128_t
1289
1290    Char_S,   // This is 'char' for targets where char is signed.
1291    SChar,    // This is explicitly qualified signed char.
1292    WChar,    // This is 'wchar_t' for C++.
1293    Short,
1294    Int,
1295    Long,
1296    LongLong,
1297    Int128,   // __int128_t
1298
1299    Float, Double, LongDouble,
1300
1301    NullPtr,  // This is the type of C++0x 'nullptr'.
1302
1303    /// This represents the type of an expression whose type is
1304    /// totally unknown, e.g. 'T::foo'.  It is permitted for this to
1305    /// appear in situations where the structure of the type is
1306    /// theoretically deducible.
1307    Dependent,
1308
1309    Overload,  // This represents the type of an overloaded function declaration.
1310
1311    UndeducedAuto, // In C++0x, this represents the type of an auto variable
1312                   // that has not been deduced yet.
1313
1314    /// The primitive Objective C 'id' type.  The type pointed to by the
1315    /// user-visible 'id' type.  Only ever shows up in an AST as the base
1316    /// type of an ObjCObjectType.
1317    ObjCId,
1318
1319    /// The primitive Objective C 'Class' type.  The type pointed to by the
1320    /// user-visible 'Class' type.  Only ever shows up in an AST as the
1321    /// base type of an ObjCObjectType.
1322    ObjCClass,
1323
1324    ObjCSel    // This represents the ObjC 'SEL' type.
1325  };
1326
1327protected:
1328  virtual CachedProperties getCachedProperties() const;
1329
1330public:
1331  BuiltinType(Kind K)
1332    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
1333           /*VariablyModified=*/false) {
1334    BuiltinTypeBits.Kind = K;
1335  }
1336
1337  Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
1338  const char *getName(const LangOptions &LO) const;
1339
1340  bool isSugared() const { return false; }
1341  QualType desugar() const { return QualType(this, 0); }
1342
1343  bool isInteger() const {
1344    return getKind() >= Bool && getKind() <= Int128;
1345  }
1346
1347  bool isSignedInteger() const {
1348    return getKind() >= Char_S && getKind() <= Int128;
1349  }
1350
1351  bool isUnsignedInteger() const {
1352    return getKind() >= Bool && getKind() <= UInt128;
1353  }
1354
1355  bool isFloatingPoint() const {
1356    return getKind() >= Float && getKind() <= LongDouble;
1357  }
1358
1359  /// Determines whether this type is a "forbidden" placeholder type,
1360  /// i.e. a type which cannot appear in arbitrary positions in a
1361  /// fully-formed expression.
1362  bool isPlaceholderType() const {
1363    return getKind() == Overload ||
1364           getKind() == UndeducedAuto;
1365  }
1366
1367  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
1368  static bool classof(const BuiltinType *) { return true; }
1369};
1370
1371/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
1372/// types (_Complex float etc) as well as the GCC integer complex extensions.
1373///
1374class ComplexType : public Type, public llvm::FoldingSetNode {
1375  QualType ElementType;
1376  ComplexType(QualType Element, QualType CanonicalPtr) :
1377    Type(Complex, CanonicalPtr, Element->isDependentType(),
1378         Element->isVariablyModifiedType()),
1379    ElementType(Element) {
1380  }
1381  friend class ASTContext;  // ASTContext creates these.
1382
1383protected:
1384  virtual CachedProperties getCachedProperties() const;
1385
1386public:
1387  QualType getElementType() const { return ElementType; }
1388
1389  bool isSugared() const { return false; }
1390  QualType desugar() const { return QualType(this, 0); }
1391
1392  void Profile(llvm::FoldingSetNodeID &ID) {
1393    Profile(ID, getElementType());
1394  }
1395  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
1396    ID.AddPointer(Element.getAsOpaquePtr());
1397  }
1398
1399  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
1400  static bool classof(const ComplexType *) { return true; }
1401};
1402
1403/// PointerType - C99 6.7.5.1 - Pointer Declarators.
1404///
1405class PointerType : public Type, public llvm::FoldingSetNode {
1406  QualType PointeeType;
1407
1408  PointerType(QualType Pointee, QualType CanonicalPtr) :
1409    Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
1410         Pointee->isVariablyModifiedType()),
1411    PointeeType(Pointee) {
1412  }
1413  friend class ASTContext;  // ASTContext creates these.
1414
1415protected:
1416  virtual CachedProperties getCachedProperties() const;
1417
1418public:
1419
1420  QualType getPointeeType() const { return PointeeType; }
1421
1422  bool isSugared() const { return false; }
1423  QualType desugar() const { return QualType(this, 0); }
1424
1425  void Profile(llvm::FoldingSetNodeID &ID) {
1426    Profile(ID, getPointeeType());
1427  }
1428  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1429    ID.AddPointer(Pointee.getAsOpaquePtr());
1430  }
1431
1432  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
1433  static bool classof(const PointerType *) { return true; }
1434};
1435
1436/// BlockPointerType - pointer to a block type.
1437/// This type is to represent types syntactically represented as
1438/// "void (^)(int)", etc. Pointee is required to always be a function type.
1439///
1440class BlockPointerType : public Type, public llvm::FoldingSetNode {
1441  QualType PointeeType;  // Block is some kind of pointer type
1442  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
1443    Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
1444         Pointee->isVariablyModifiedType()),
1445    PointeeType(Pointee) {
1446  }
1447  friend class ASTContext;  // ASTContext creates these.
1448
1449protected:
1450  virtual CachedProperties getCachedProperties() const;
1451
1452public:
1453
1454  // Get the pointee type. Pointee is required to always be a function type.
1455  QualType getPointeeType() const { return PointeeType; }
1456
1457  bool isSugared() const { return false; }
1458  QualType desugar() const { return QualType(this, 0); }
1459
1460  void Profile(llvm::FoldingSetNodeID &ID) {
1461      Profile(ID, getPointeeType());
1462  }
1463  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1464      ID.AddPointer(Pointee.getAsOpaquePtr());
1465  }
1466
1467  static bool classof(const Type *T) {
1468    return T->getTypeClass() == BlockPointer;
1469  }
1470  static bool classof(const BlockPointerType *) { return true; }
1471};
1472
1473/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
1474///
1475class ReferenceType : public Type, public llvm::FoldingSetNode {
1476  QualType PointeeType;
1477
1478protected:
1479  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
1480                bool SpelledAsLValue) :
1481    Type(tc, CanonicalRef, Referencee->isDependentType(),
1482         Referencee->isVariablyModifiedType()), PointeeType(Referencee) {
1483    ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
1484    ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
1485  }
1486
1487  virtual CachedProperties getCachedProperties() const;
1488
1489public:
1490  bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
1491  bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
1492
1493  QualType getPointeeTypeAsWritten() const { return PointeeType; }
1494  QualType getPointeeType() const {
1495    // FIXME: this might strip inner qualifiers; okay?
1496    const ReferenceType *T = this;
1497    while (T->isInnerRef())
1498      T = T->PointeeType->getAs<ReferenceType>();
1499    return T->PointeeType;
1500  }
1501
1502  void Profile(llvm::FoldingSetNodeID &ID) {
1503    Profile(ID, PointeeType, isSpelledAsLValue());
1504  }
1505  static void Profile(llvm::FoldingSetNodeID &ID,
1506                      QualType Referencee,
1507                      bool SpelledAsLValue) {
1508    ID.AddPointer(Referencee.getAsOpaquePtr());
1509    ID.AddBoolean(SpelledAsLValue);
1510  }
1511
1512  static bool classof(const Type *T) {
1513    return T->getTypeClass() == LValueReference ||
1514           T->getTypeClass() == RValueReference;
1515  }
1516  static bool classof(const ReferenceType *) { return true; }
1517};
1518
1519/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
1520///
1521class LValueReferenceType : public ReferenceType {
1522  LValueReferenceType(QualType Referencee, QualType CanonicalRef,
1523                      bool SpelledAsLValue) :
1524    ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
1525  {}
1526  friend class ASTContext; // ASTContext creates these
1527public:
1528  bool isSugared() const { return false; }
1529  QualType desugar() const { return QualType(this, 0); }
1530
1531  static bool classof(const Type *T) {
1532    return T->getTypeClass() == LValueReference;
1533  }
1534  static bool classof(const LValueReferenceType *) { return true; }
1535};
1536
1537/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
1538///
1539class RValueReferenceType : public ReferenceType {
1540  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
1541    ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
1542  }
1543  friend class ASTContext; // ASTContext creates these
1544public:
1545  bool isSugared() const { return false; }
1546  QualType desugar() const { return QualType(this, 0); }
1547
1548  static bool classof(const Type *T) {
1549    return T->getTypeClass() == RValueReference;
1550  }
1551  static bool classof(const RValueReferenceType *) { return true; }
1552};
1553
1554/// MemberPointerType - C++ 8.3.3 - Pointers to members
1555///
1556class MemberPointerType : public Type, public llvm::FoldingSetNode {
1557  QualType PointeeType;
1558  /// The class of which the pointee is a member. Must ultimately be a
1559  /// RecordType, but could be a typedef or a template parameter too.
1560  const Type *Class;
1561
1562  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
1563    Type(MemberPointer, CanonicalPtr,
1564         Cls->isDependentType() || Pointee->isDependentType(),
1565         Pointee->isVariablyModifiedType()),
1566    PointeeType(Pointee), Class(Cls) {
1567  }
1568  friend class ASTContext; // ASTContext creates these.
1569
1570protected:
1571  virtual CachedProperties getCachedProperties() const;
1572
1573public:
1574  QualType getPointeeType() const { return PointeeType; }
1575
1576  /// Returns true if the member type (i.e. the pointee type) is a
1577  /// function type rather than a data-member type.
1578  bool isMemberFunctionPointer() const {
1579    return PointeeType->isFunctionProtoType();
1580  }
1581
1582  /// Returns true if the member type (i.e. the pointee type) is a
1583  /// data type rather than a function type.
1584  bool isMemberDataPointer() const {
1585    return !PointeeType->isFunctionProtoType();
1586  }
1587
1588  const Type *getClass() const { return Class; }
1589
1590  bool isSugared() const { return false; }
1591  QualType desugar() const { return QualType(this, 0); }
1592
1593  void Profile(llvm::FoldingSetNodeID &ID) {
1594    Profile(ID, getPointeeType(), getClass());
1595  }
1596  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
1597                      const Type *Class) {
1598    ID.AddPointer(Pointee.getAsOpaquePtr());
1599    ID.AddPointer(Class);
1600  }
1601
1602  static bool classof(const Type *T) {
1603    return T->getTypeClass() == MemberPointer;
1604  }
1605  static bool classof(const MemberPointerType *) { return true; }
1606};
1607
1608/// ArrayType - C99 6.7.5.2 - Array Declarators.
1609///
1610class ArrayType : public Type, public llvm::FoldingSetNode {
1611public:
1612  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
1613  /// an array with a static size (e.g. int X[static 4]), or an array
1614  /// with a star size (e.g. int X[*]).
1615  /// 'static' is only allowed on function parameters.
1616  enum ArraySizeModifier {
1617    Normal, Static, Star
1618  };
1619private:
1620  /// ElementType - The element type of the array.
1621  QualType ElementType;
1622
1623protected:
1624  // C++ [temp.dep.type]p1:
1625  //   A type is dependent if it is...
1626  //     - an array type constructed from any dependent type or whose
1627  //       size is specified by a constant expression that is
1628  //       value-dependent,
1629  ArrayType(TypeClass tc, QualType et, QualType can,
1630            ArraySizeModifier sm, unsigned tq)
1631    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray,
1632           (tc == VariableArray || et->isVariablyModifiedType())),
1633      ElementType(et) {
1634    ArrayTypeBits.IndexTypeQuals = tq;
1635    ArrayTypeBits.SizeModifier = sm;
1636  }
1637
1638  friend class ASTContext;  // ASTContext creates these.
1639
1640  virtual CachedProperties getCachedProperties() const;
1641
1642public:
1643  QualType getElementType() const { return ElementType; }
1644  ArraySizeModifier getSizeModifier() const {
1645    return ArraySizeModifier(ArrayTypeBits.SizeModifier);
1646  }
1647  Qualifiers getIndexTypeQualifiers() const {
1648    return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
1649  }
1650  unsigned getIndexTypeCVRQualifiers() const {
1651    return ArrayTypeBits.IndexTypeQuals;
1652  }
1653
1654  static bool classof(const Type *T) {
1655    return T->getTypeClass() == ConstantArray ||
1656           T->getTypeClass() == VariableArray ||
1657           T->getTypeClass() == IncompleteArray ||
1658           T->getTypeClass() == DependentSizedArray;
1659  }
1660  static bool classof(const ArrayType *) { return true; }
1661};
1662
1663/// ConstantArrayType - This class represents the canonical version of
1664/// C arrays with a specified constant size.  For example, the canonical
1665/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
1666/// type is 'int' and the size is 404.
1667class ConstantArrayType : public ArrayType {
1668  llvm::APInt Size; // Allows us to unique the type.
1669
1670  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
1671                    ArraySizeModifier sm, unsigned tq)
1672    : ArrayType(ConstantArray, et, can, sm, tq),
1673      Size(size) {}
1674protected:
1675  ConstantArrayType(TypeClass tc, QualType et, QualType can,
1676                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
1677    : ArrayType(tc, et, can, sm, tq), Size(size) {}
1678  friend class ASTContext;  // ASTContext creates these.
1679public:
1680  const llvm::APInt &getSize() const { return Size; }
1681  bool isSugared() const { return false; }
1682  QualType desugar() const { return QualType(this, 0); }
1683
1684
1685  /// \brief Determine the number of bits required to address a member of
1686  // an array with the given element type and number of elements.
1687  static unsigned getNumAddressingBits(ASTContext &Context,
1688                                       QualType ElementType,
1689                                       const llvm::APInt &NumElements);
1690
1691  /// \brief Determine the maximum number of active bits that an array's size
1692  /// can require, which limits the maximum size of the array.
1693  static unsigned getMaxSizeBits(ASTContext &Context);
1694
1695  void Profile(llvm::FoldingSetNodeID &ID) {
1696    Profile(ID, getElementType(), getSize(),
1697            getSizeModifier(), getIndexTypeCVRQualifiers());
1698  }
1699  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1700                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
1701                      unsigned TypeQuals) {
1702    ID.AddPointer(ET.getAsOpaquePtr());
1703    ID.AddInteger(ArraySize.getZExtValue());
1704    ID.AddInteger(SizeMod);
1705    ID.AddInteger(TypeQuals);
1706  }
1707  static bool classof(const Type *T) {
1708    return T->getTypeClass() == ConstantArray;
1709  }
1710  static bool classof(const ConstantArrayType *) { return true; }
1711};
1712
1713/// IncompleteArrayType - This class represents C arrays with an unspecified
1714/// size.  For example 'int A[]' has an IncompleteArrayType where the element
1715/// type is 'int' and the size is unspecified.
1716class IncompleteArrayType : public ArrayType {
1717
1718  IncompleteArrayType(QualType et, QualType can,
1719                      ArraySizeModifier sm, unsigned tq)
1720    : ArrayType(IncompleteArray, et, can, sm, tq) {}
1721  friend class ASTContext;  // ASTContext creates these.
1722public:
1723  bool isSugared() const { return false; }
1724  QualType desugar() const { return QualType(this, 0); }
1725
1726  static bool classof(const Type *T) {
1727    return T->getTypeClass() == IncompleteArray;
1728  }
1729  static bool classof(const IncompleteArrayType *) { return true; }
1730
1731  friend class StmtIteratorBase;
1732
1733  void Profile(llvm::FoldingSetNodeID &ID) {
1734    Profile(ID, getElementType(), getSizeModifier(),
1735            getIndexTypeCVRQualifiers());
1736  }
1737
1738  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1739                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
1740    ID.AddPointer(ET.getAsOpaquePtr());
1741    ID.AddInteger(SizeMod);
1742    ID.AddInteger(TypeQuals);
1743  }
1744};
1745
1746/// VariableArrayType - This class represents C arrays with a specified size
1747/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
1748/// Since the size expression is an arbitrary expression, we store it as such.
1749///
1750/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
1751/// should not be: two lexically equivalent variable array types could mean
1752/// different things, for example, these variables do not have the same type
1753/// dynamically:
1754///
1755/// void foo(int x) {
1756///   int Y[x];
1757///   ++x;
1758///   int Z[x];
1759/// }
1760///
1761class VariableArrayType : public ArrayType {
1762  /// SizeExpr - An assignment expression. VLA's are only permitted within
1763  /// a function block.
1764  Stmt *SizeExpr;
1765  /// Brackets - The left and right array brackets.
1766  SourceRange Brackets;
1767
1768  VariableArrayType(QualType et, QualType can, Expr *e,
1769                    ArraySizeModifier sm, unsigned tq,
1770                    SourceRange brackets)
1771    : ArrayType(VariableArray, et, can, sm, tq),
1772      SizeExpr((Stmt*) e), Brackets(brackets) {}
1773  friend class ASTContext;  // ASTContext creates these.
1774
1775public:
1776  Expr *getSizeExpr() const {
1777    // We use C-style casts instead of cast<> here because we do not wish
1778    // to have a dependency of Type.h on Stmt.h/Expr.h.
1779    return (Expr*) SizeExpr;
1780  }
1781  SourceRange getBracketsRange() const { return Brackets; }
1782  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1783  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1784
1785  bool isSugared() const { return false; }
1786  QualType desugar() const { return QualType(this, 0); }
1787
1788  static bool classof(const Type *T) {
1789    return T->getTypeClass() == VariableArray;
1790  }
1791  static bool classof(const VariableArrayType *) { return true; }
1792
1793  friend class StmtIteratorBase;
1794
1795  void Profile(llvm::FoldingSetNodeID &ID) {
1796    assert(0 && "Cannnot unique VariableArrayTypes.");
1797  }
1798};
1799
1800/// DependentSizedArrayType - This type represents an array type in
1801/// C++ whose size is a value-dependent expression. For example:
1802///
1803/// \code
1804/// template<typename T, int Size>
1805/// class array {
1806///   T data[Size];
1807/// };
1808/// \endcode
1809///
1810/// For these types, we won't actually know what the array bound is
1811/// until template instantiation occurs, at which point this will
1812/// become either a ConstantArrayType or a VariableArrayType.
1813class DependentSizedArrayType : public ArrayType {
1814  ASTContext &Context;
1815
1816  /// \brief An assignment expression that will instantiate to the
1817  /// size of the array.
1818  ///
1819  /// The expression itself might be NULL, in which case the array
1820  /// type will have its size deduced from an initializer.
1821  Stmt *SizeExpr;
1822
1823  /// Brackets - The left and right array brackets.
1824  SourceRange Brackets;
1825
1826  DependentSizedArrayType(ASTContext &Context, QualType et, QualType can,
1827                          Expr *e, ArraySizeModifier sm, unsigned tq,
1828                          SourceRange brackets)
1829    : ArrayType(DependentSizedArray, et, can, sm, tq),
1830      Context(Context), SizeExpr((Stmt*) e), Brackets(brackets) {}
1831  friend class ASTContext;  // ASTContext creates these.
1832
1833public:
1834  Expr *getSizeExpr() const {
1835    // We use C-style casts instead of cast<> here because we do not wish
1836    // to have a dependency of Type.h on Stmt.h/Expr.h.
1837    return (Expr*) SizeExpr;
1838  }
1839  SourceRange getBracketsRange() const { return Brackets; }
1840  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1841  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1842
1843  bool isSugared() const { return false; }
1844  QualType desugar() const { return QualType(this, 0); }
1845
1846  static bool classof(const Type *T) {
1847    return T->getTypeClass() == DependentSizedArray;
1848  }
1849  static bool classof(const DependentSizedArrayType *) { return true; }
1850
1851  friend class StmtIteratorBase;
1852
1853
1854  void Profile(llvm::FoldingSetNodeID &ID) {
1855    Profile(ID, Context, getElementType(),
1856            getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
1857  }
1858
1859  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1860                      QualType ET, ArraySizeModifier SizeMod,
1861                      unsigned TypeQuals, Expr *E);
1862};
1863
1864/// DependentSizedExtVectorType - This type represent an extended vector type
1865/// where either the type or size is dependent. For example:
1866/// @code
1867/// template<typename T, int Size>
1868/// class vector {
1869///   typedef T __attribute__((ext_vector_type(Size))) type;
1870/// }
1871/// @endcode
1872class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
1873  ASTContext &Context;
1874  Expr *SizeExpr;
1875  /// ElementType - The element type of the array.
1876  QualType ElementType;
1877  SourceLocation loc;
1878
1879  DependentSizedExtVectorType(ASTContext &Context, QualType ElementType,
1880                              QualType can, Expr *SizeExpr, SourceLocation loc)
1881    : Type(DependentSizedExtVector, can, /*Dependent=*/true,
1882           ElementType->isVariablyModifiedType()),
1883      Context(Context), SizeExpr(SizeExpr), ElementType(ElementType),
1884      loc(loc) {}
1885  friend class ASTContext;
1886
1887public:
1888  Expr *getSizeExpr() const { return SizeExpr; }
1889  QualType getElementType() const { return ElementType; }
1890  SourceLocation getAttributeLoc() const { return loc; }
1891
1892  bool isSugared() const { return false; }
1893  QualType desugar() const { return QualType(this, 0); }
1894
1895  static bool classof(const Type *T) {
1896    return T->getTypeClass() == DependentSizedExtVector;
1897  }
1898  static bool classof(const DependentSizedExtVectorType *) { return true; }
1899
1900  void Profile(llvm::FoldingSetNodeID &ID) {
1901    Profile(ID, Context, getElementType(), getSizeExpr());
1902  }
1903
1904  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1905                      QualType ElementType, Expr *SizeExpr);
1906};
1907
1908
1909/// VectorType - GCC generic vector type. This type is created using
1910/// __attribute__((vector_size(n)), where "n" specifies the vector size in
1911/// bytes; or from an Altivec __vector or vector declaration.
1912/// Since the constructor takes the number of vector elements, the
1913/// client is responsible for converting the size into the number of elements.
1914class VectorType : public Type, public llvm::FoldingSetNode {
1915public:
1916  enum VectorKind {
1917    GenericVector,  // not a target-specific vector type
1918    AltiVecVector,  // is AltiVec vector
1919    AltiVecPixel,   // is AltiVec 'vector Pixel'
1920    AltiVecBool,    // is AltiVec 'vector bool ...'
1921    NeonVector      // is ARM Neon vector
1922  };
1923protected:
1924  /// ElementType - The element type of the vector.
1925  QualType ElementType;
1926
1927  VectorType(QualType vecType, unsigned nElements, QualType canonType,
1928             VectorKind vecKind) :
1929    Type(Vector, canonType, vecType->isDependentType(),
1930         vecType->isVariablyModifiedType()), ElementType(vecType) {
1931    VectorTypeBits.VecKind = vecKind;
1932    VectorTypeBits.NumElements = nElements;
1933  }
1934
1935  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
1936             QualType canonType, VectorKind vecKind)
1937    : Type(tc, canonType, vecType->isDependentType(),
1938           vecType->isVariablyModifiedType()), ElementType(vecType) {
1939    VectorTypeBits.VecKind = vecKind;
1940    VectorTypeBits.NumElements = nElements;
1941  }
1942  friend class ASTContext;  // ASTContext creates these.
1943
1944  virtual CachedProperties getCachedProperties() const;
1945
1946public:
1947
1948  QualType getElementType() const { return ElementType; }
1949  unsigned getNumElements() const { return VectorTypeBits.NumElements; }
1950
1951  bool isSugared() const { return false; }
1952  QualType desugar() const { return QualType(this, 0); }
1953
1954  VectorKind getVectorKind() const {
1955    return VectorKind(VectorTypeBits.VecKind);
1956  }
1957
1958  void Profile(llvm::FoldingSetNodeID &ID) {
1959    Profile(ID, getElementType(), getNumElements(),
1960            getTypeClass(), getVectorKind());
1961  }
1962  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
1963                      unsigned NumElements, TypeClass TypeClass,
1964                      VectorKind VecKind) {
1965    ID.AddPointer(ElementType.getAsOpaquePtr());
1966    ID.AddInteger(NumElements);
1967    ID.AddInteger(TypeClass);
1968    ID.AddInteger(VecKind);
1969  }
1970
1971  static bool classof(const Type *T) {
1972    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
1973  }
1974  static bool classof(const VectorType *) { return true; }
1975};
1976
1977/// ExtVectorType - Extended vector type. This type is created using
1978/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
1979/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
1980/// class enables syntactic extensions, like Vector Components for accessing
1981/// points, colors, and textures (modeled after OpenGL Shading Language).
1982class ExtVectorType : public VectorType {
1983  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
1984    VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
1985  friend class ASTContext;  // ASTContext creates these.
1986public:
1987  static int getPointAccessorIdx(char c) {
1988    switch (c) {
1989    default: return -1;
1990    case 'x': return 0;
1991    case 'y': return 1;
1992    case 'z': return 2;
1993    case 'w': return 3;
1994    }
1995  }
1996  static int getNumericAccessorIdx(char c) {
1997    switch (c) {
1998      default: return -1;
1999      case '0': return 0;
2000      case '1': return 1;
2001      case '2': return 2;
2002      case '3': return 3;
2003      case '4': return 4;
2004      case '5': return 5;
2005      case '6': return 6;
2006      case '7': return 7;
2007      case '8': return 8;
2008      case '9': return 9;
2009      case 'A':
2010      case 'a': return 10;
2011      case 'B':
2012      case 'b': return 11;
2013      case 'C':
2014      case 'c': return 12;
2015      case 'D':
2016      case 'd': return 13;
2017      case 'E':
2018      case 'e': return 14;
2019      case 'F':
2020      case 'f': return 15;
2021    }
2022  }
2023
2024  static int getAccessorIdx(char c) {
2025    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
2026    return getNumericAccessorIdx(c);
2027  }
2028
2029  bool isAccessorWithinNumElements(char c) const {
2030    if (int idx = getAccessorIdx(c)+1)
2031      return unsigned(idx-1) < getNumElements();
2032    return false;
2033  }
2034  bool isSugared() const { return false; }
2035  QualType desugar() const { return QualType(this, 0); }
2036
2037  static bool classof(const Type *T) {
2038    return T->getTypeClass() == ExtVector;
2039  }
2040  static bool classof(const ExtVectorType *) { return true; }
2041};
2042
2043/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
2044/// class of FunctionNoProtoType and FunctionProtoType.
2045///
2046class FunctionType : public Type {
2047  virtual void ANCHOR(); // Key function for FunctionType.
2048
2049  // The type returned by the function.
2050  QualType ResultType;
2051
2052 public:
2053  // This class is used for passing arround the information needed to
2054  // construct a call. It is not actually used for storage, just for
2055  // factoring together common arguments.
2056  // If you add a field (say Foo), other than the obvious places (both, constructors,
2057  // compile failures), what you need to update is
2058  // * Operetor==
2059  // * getFoo
2060  // * withFoo
2061  // * functionType. Add Foo, getFoo.
2062  // * ASTContext::getFooType
2063  // * ASTContext::mergeFunctionTypes
2064  // * FunctionNoProtoType::Profile
2065  // * FunctionProtoType::Profile
2066  // * TypePrinter::PrintFunctionProto
2067  // * AST read and write
2068  // * Codegen
2069
2070  class ExtInfo {
2071    enum { CallConvMask = 0x7 };
2072    enum { NoReturnMask = 0x8 };
2073    enum { RegParmMask = ~(CallConvMask | NoReturnMask),
2074           RegParmOffset = 4 };
2075
2076    unsigned Bits;
2077
2078    ExtInfo(unsigned Bits) : Bits(Bits) {}
2079
2080    friend class FunctionType;
2081
2082   public:
2083    // Constructor with no defaults. Use this when you know that you
2084    // have all the elements (when reading an AST file for example).
2085    ExtInfo(bool noReturn, unsigned regParm, CallingConv cc) {
2086      Bits = ((unsigned) cc) |
2087             (noReturn ? NoReturnMask : 0) |
2088             (regParm << RegParmOffset);
2089    }
2090
2091    // Constructor with all defaults. Use when for example creating a
2092    // function know to use defaults.
2093    ExtInfo() : Bits(0) {}
2094
2095    bool getNoReturn() const { return Bits & NoReturnMask; }
2096    unsigned getRegParm() const { return Bits >> RegParmOffset; }
2097    CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
2098
2099    bool operator==(ExtInfo Other) const {
2100      return Bits == Other.Bits;
2101    }
2102    bool operator!=(ExtInfo Other) const {
2103      return Bits != Other.Bits;
2104    }
2105
2106    // Note that we don't have setters. That is by design, use
2107    // the following with methods instead of mutating these objects.
2108
2109    ExtInfo withNoReturn(bool noReturn) const {
2110      if (noReturn)
2111        return ExtInfo(Bits | NoReturnMask);
2112      else
2113        return ExtInfo(Bits & ~NoReturnMask);
2114    }
2115
2116    ExtInfo withRegParm(unsigned RegParm) const {
2117      return ExtInfo((Bits & ~RegParmMask) | (RegParm << RegParmOffset));
2118    }
2119
2120    ExtInfo withCallingConv(CallingConv cc) const {
2121      return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
2122    }
2123
2124    void Profile(llvm::FoldingSetNodeID &ID) {
2125      ID.AddInteger(Bits);
2126    }
2127  };
2128
2129protected:
2130  FunctionType(TypeClass tc, QualType res, bool SubclassInfo,
2131               unsigned typeQuals, QualType Canonical, bool Dependent,
2132               bool VariablyModified, ExtInfo Info)
2133    : Type(tc, Canonical, Dependent, VariablyModified), ResultType(res) {
2134    FunctionTypeBits.ExtInfo = Info.Bits;
2135    FunctionTypeBits.SubclassInfo = SubclassInfo;
2136    FunctionTypeBits.TypeQuals = typeQuals;
2137  }
2138  bool getSubClassData() const { return FunctionTypeBits.SubclassInfo; }
2139  unsigned getTypeQuals() const { return FunctionTypeBits.TypeQuals; }
2140public:
2141
2142  QualType getResultType() const { return ResultType; }
2143
2144  unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
2145  bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
2146  CallingConv getCallConv() const { return getExtInfo().getCC(); }
2147  ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
2148
2149  /// \brief Determine the type of an expression that calls a function of
2150  /// this type.
2151  QualType getCallResultType(ASTContext &Context) const {
2152    return getResultType().getNonLValueExprType(Context);
2153  }
2154
2155  static llvm::StringRef getNameForCallConv(CallingConv CC);
2156
2157  static bool classof(const Type *T) {
2158    return T->getTypeClass() == FunctionNoProto ||
2159           T->getTypeClass() == FunctionProto;
2160  }
2161  static bool classof(const FunctionType *) { return true; }
2162};
2163
2164/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
2165/// no information available about its arguments.
2166class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
2167  FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
2168    : FunctionType(FunctionNoProto, Result, false, 0, Canonical,
2169                   /*Dependent=*/false, Result->isVariablyModifiedType(),
2170                   Info) {}
2171  friend class ASTContext;  // ASTContext creates these.
2172
2173protected:
2174  virtual CachedProperties getCachedProperties() const;
2175
2176public:
2177  // No additional state past what FunctionType provides.
2178
2179  bool isSugared() const { return false; }
2180  QualType desugar() const { return QualType(this, 0); }
2181
2182  void Profile(llvm::FoldingSetNodeID &ID) {
2183    Profile(ID, getResultType(), getExtInfo());
2184  }
2185  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
2186                      ExtInfo Info) {
2187    Info.Profile(ID);
2188    ID.AddPointer(ResultType.getAsOpaquePtr());
2189  }
2190
2191  static bool classof(const Type *T) {
2192    return T->getTypeClass() == FunctionNoProto;
2193  }
2194  static bool classof(const FunctionNoProtoType *) { return true; }
2195};
2196
2197/// FunctionProtoType - Represents a prototype with argument type info, e.g.
2198/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
2199/// arguments, not as having a single void argument. Such a type can have an
2200/// exception specification, but this specification is not part of the canonical
2201/// type.
2202class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
2203  FunctionProtoType(QualType Result, const QualType *ArgArray, unsigned numArgs,
2204                    bool isVariadic, unsigned typeQuals, bool hasExs,
2205                    bool hasAnyExs, const QualType *ExArray,
2206                    unsigned numExs, QualType Canonical,
2207                    const ExtInfo &Info);
2208
2209  /// NumArgs - The number of arguments this function has, not counting '...'.
2210  unsigned NumArgs : 20;
2211
2212  /// NumExceptions - The number of types in the exception spec, if any.
2213  unsigned NumExceptions : 10;
2214
2215  /// HasExceptionSpec - Whether this function has an exception spec at all.
2216  bool HasExceptionSpec : 1;
2217
2218  /// AnyExceptionSpec - Whether this function has a throw(...) spec.
2219  bool AnyExceptionSpec : 1;
2220
2221  /// ArgInfo - There is an variable size array after the class in memory that
2222  /// holds the argument types.
2223
2224  /// Exceptions - There is another variable size array after ArgInfo that
2225  /// holds the exception types.
2226
2227  friend class ASTContext;  // ASTContext creates these.
2228
2229protected:
2230  virtual CachedProperties getCachedProperties() const;
2231
2232public:
2233  unsigned getNumArgs() const { return NumArgs; }
2234  QualType getArgType(unsigned i) const {
2235    assert(i < NumArgs && "Invalid argument number!");
2236    return arg_type_begin()[i];
2237  }
2238
2239  bool hasExceptionSpec() const { return HasExceptionSpec; }
2240  bool hasAnyExceptionSpec() const { return AnyExceptionSpec; }
2241  unsigned getNumExceptions() const { return NumExceptions; }
2242  QualType getExceptionType(unsigned i) const {
2243    assert(i < NumExceptions && "Invalid exception number!");
2244    return exception_begin()[i];
2245  }
2246  bool hasEmptyExceptionSpec() const {
2247    return hasExceptionSpec() && !hasAnyExceptionSpec() &&
2248      getNumExceptions() == 0;
2249  }
2250
2251  bool isVariadic() const { return getSubClassData(); }
2252  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
2253
2254  typedef const QualType *arg_type_iterator;
2255  arg_type_iterator arg_type_begin() const {
2256    return reinterpret_cast<const QualType *>(this+1);
2257  }
2258  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
2259
2260  typedef const QualType *exception_iterator;
2261  exception_iterator exception_begin() const {
2262    // exceptions begin where arguments end
2263    return arg_type_end();
2264  }
2265  exception_iterator exception_end() const {
2266    return exception_begin() + NumExceptions;
2267  }
2268
2269  bool isSugared() const { return false; }
2270  QualType desugar() const { return QualType(this, 0); }
2271
2272  static bool classof(const Type *T) {
2273    return T->getTypeClass() == FunctionProto;
2274  }
2275  static bool classof(const FunctionProtoType *) { return true; }
2276
2277  void Profile(llvm::FoldingSetNodeID &ID);
2278  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
2279                      arg_type_iterator ArgTys, unsigned NumArgs,
2280                      bool isVariadic, unsigned TypeQuals,
2281                      bool hasExceptionSpec, bool anyExceptionSpec,
2282                      unsigned NumExceptions, exception_iterator Exs,
2283                      ExtInfo ExtInfo);
2284};
2285
2286
2287/// \brief Represents the dependent type named by a dependently-scoped
2288/// typename using declaration, e.g.
2289///   using typename Base<T>::foo;
2290/// Template instantiation turns these into the underlying type.
2291class UnresolvedUsingType : public Type {
2292  UnresolvedUsingTypenameDecl *Decl;
2293
2294  UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
2295    : Type(UnresolvedUsing, QualType(), true, false),
2296      Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
2297  friend class ASTContext; // ASTContext creates these.
2298public:
2299
2300  UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
2301
2302  bool isSugared() const { return false; }
2303  QualType desugar() const { return QualType(this, 0); }
2304
2305  static bool classof(const Type *T) {
2306    return T->getTypeClass() == UnresolvedUsing;
2307  }
2308  static bool classof(const UnresolvedUsingType *) { return true; }
2309
2310  void Profile(llvm::FoldingSetNodeID &ID) {
2311    return Profile(ID, Decl);
2312  }
2313  static void Profile(llvm::FoldingSetNodeID &ID,
2314                      UnresolvedUsingTypenameDecl *D) {
2315    ID.AddPointer(D);
2316  }
2317};
2318
2319
2320class TypedefType : public Type {
2321  TypedefDecl *Decl;
2322protected:
2323  TypedefType(TypeClass tc, const TypedefDecl *D, QualType can)
2324    : Type(tc, can, can->isDependentType(), can->isVariablyModifiedType()),
2325      Decl(const_cast<TypedefDecl*>(D)) {
2326    assert(!isa<TypedefType>(can) && "Invalid canonical type");
2327  }
2328  friend class ASTContext;  // ASTContext creates these.
2329public:
2330
2331  TypedefDecl *getDecl() const { return Decl; }
2332
2333  /// LookThroughTypedefs - Return the ultimate type this typedef corresponds to
2334  /// potentially looking through *all* consecutive typedefs.  This returns the
2335  /// sum of the type qualifiers, so if you have:
2336  ///   typedef const int A;
2337  ///   typedef volatile A B;
2338  /// looking through the typedefs for B will give you "const volatile A".
2339  QualType LookThroughTypedefs() const;
2340
2341  bool isSugared() const { return true; }
2342  QualType desugar() const;
2343
2344  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
2345  static bool classof(const TypedefType *) { return true; }
2346};
2347
2348/// TypeOfExprType (GCC extension).
2349class TypeOfExprType : public Type {
2350  Expr *TOExpr;
2351
2352protected:
2353  TypeOfExprType(Expr *E, QualType can = QualType());
2354  friend class ASTContext;  // ASTContext creates these.
2355public:
2356  Expr *getUnderlyingExpr() const { return TOExpr; }
2357
2358  /// \brief Remove a single level of sugar.
2359  QualType desugar() const;
2360
2361  /// \brief Returns whether this type directly provides sugar.
2362  bool isSugared() const { return true; }
2363
2364  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
2365  static bool classof(const TypeOfExprType *) { return true; }
2366};
2367
2368/// \brief Internal representation of canonical, dependent
2369/// typeof(expr) types.
2370///
2371/// This class is used internally by the ASTContext to manage
2372/// canonical, dependent types, only. Clients will only see instances
2373/// of this class via TypeOfExprType nodes.
2374class DependentTypeOfExprType
2375  : public TypeOfExprType, public llvm::FoldingSetNode {
2376  ASTContext &Context;
2377
2378public:
2379  DependentTypeOfExprType(ASTContext &Context, Expr *E)
2380    : TypeOfExprType(E), Context(Context) { }
2381
2382  bool isSugared() const { return false; }
2383  QualType desugar() const { return QualType(this, 0); }
2384
2385  void Profile(llvm::FoldingSetNodeID &ID) {
2386    Profile(ID, Context, getUnderlyingExpr());
2387  }
2388
2389  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
2390                      Expr *E);
2391};
2392
2393/// TypeOfType (GCC extension).
2394class TypeOfType : public Type {
2395  QualType TOType;
2396  TypeOfType(QualType T, QualType can)
2397    : Type(TypeOf, can, T->isDependentType(), T->isVariablyModifiedType()),
2398      TOType(T) {
2399    assert(!isa<TypedefType>(can) && "Invalid canonical type");
2400  }
2401  friend class ASTContext;  // ASTContext creates these.
2402public:
2403  QualType getUnderlyingType() const { return TOType; }
2404
2405  /// \brief Remove a single level of sugar.
2406  QualType desugar() const { return getUnderlyingType(); }
2407
2408  /// \brief Returns whether this type directly provides sugar.
2409  bool isSugared() const { return true; }
2410
2411  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
2412  static bool classof(const TypeOfType *) { return true; }
2413};
2414
2415/// DecltypeType (C++0x)
2416class DecltypeType : public Type {
2417  Expr *E;
2418
2419  // FIXME: We could get rid of UnderlyingType if we wanted to: We would have to
2420  // Move getDesugaredType to ASTContext so that it can call getDecltypeForExpr
2421  // from it.
2422  QualType UnderlyingType;
2423
2424protected:
2425  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
2426  friend class ASTContext;  // ASTContext creates these.
2427public:
2428  Expr *getUnderlyingExpr() const { return E; }
2429  QualType getUnderlyingType() const { return UnderlyingType; }
2430
2431  /// \brief Remove a single level of sugar.
2432  QualType desugar() const { return getUnderlyingType(); }
2433
2434  /// \brief Returns whether this type directly provides sugar.
2435  bool isSugared() const { return !isDependentType(); }
2436
2437  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
2438  static bool classof(const DecltypeType *) { return true; }
2439};
2440
2441/// \brief Internal representation of canonical, dependent
2442/// decltype(expr) types.
2443///
2444/// This class is used internally by the ASTContext to manage
2445/// canonical, dependent types, only. Clients will only see instances
2446/// of this class via DecltypeType nodes.
2447class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
2448  ASTContext &Context;
2449
2450public:
2451  DependentDecltypeType(ASTContext &Context, Expr *E);
2452
2453  bool isSugared() const { return false; }
2454  QualType desugar() const { return QualType(this, 0); }
2455
2456  void Profile(llvm::FoldingSetNodeID &ID) {
2457    Profile(ID, Context, getUnderlyingExpr());
2458  }
2459
2460  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
2461                      Expr *E);
2462};
2463
2464class TagType : public Type {
2465  /// Stores the TagDecl associated with this type. The decl may point to any
2466  /// TagDecl that declares the entity.
2467  TagDecl * decl;
2468
2469protected:
2470  TagType(TypeClass TC, const TagDecl *D, QualType can);
2471
2472  virtual CachedProperties getCachedProperties() const;
2473
2474public:
2475  TagDecl *getDecl() const;
2476
2477  /// @brief Determines whether this type is in the process of being
2478  /// defined.
2479  bool isBeingDefined() const;
2480
2481  static bool classof(const Type *T) {
2482    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
2483  }
2484  static bool classof(const TagType *) { return true; }
2485  static bool classof(const RecordType *) { return true; }
2486  static bool classof(const EnumType *) { return true; }
2487};
2488
2489/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
2490/// to detect TagType objects of structs/unions/classes.
2491class RecordType : public TagType {
2492protected:
2493  explicit RecordType(const RecordDecl *D)
2494    : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2495  explicit RecordType(TypeClass TC, RecordDecl *D)
2496    : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2497  friend class ASTContext;   // ASTContext creates these.
2498public:
2499
2500  RecordDecl *getDecl() const {
2501    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
2502  }
2503
2504  // FIXME: This predicate is a helper to QualType/Type. It needs to
2505  // recursively check all fields for const-ness. If any field is declared
2506  // const, it needs to return false.
2507  bool hasConstFields() const { return false; }
2508
2509  // FIXME: RecordType needs to check when it is created that all fields are in
2510  // the same address space, and return that.
2511  unsigned getAddressSpace() const { return 0; }
2512
2513  bool isSugared() const { return false; }
2514  QualType desugar() const { return QualType(this, 0); }
2515
2516  static bool classof(const TagType *T);
2517  static bool classof(const Type *T) {
2518    return isa<TagType>(T) && classof(cast<TagType>(T));
2519  }
2520  static bool classof(const RecordType *) { return true; }
2521};
2522
2523/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
2524/// to detect TagType objects of enums.
2525class EnumType : public TagType {
2526  explicit EnumType(const EnumDecl *D)
2527    : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2528  friend class ASTContext;   // ASTContext creates these.
2529public:
2530
2531  EnumDecl *getDecl() const {
2532    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
2533  }
2534
2535  bool isSugared() const { return false; }
2536  QualType desugar() const { return QualType(this, 0); }
2537
2538  static bool classof(const TagType *T);
2539  static bool classof(const Type *T) {
2540    return isa<TagType>(T) && classof(cast<TagType>(T));
2541  }
2542  static bool classof(const EnumType *) { return true; }
2543};
2544
2545class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2546  unsigned Depth : 15;
2547  unsigned ParameterPack : 1;
2548  unsigned Index : 16;
2549  IdentifierInfo *Name;
2550
2551  TemplateTypeParmType(unsigned D, unsigned I, bool PP, IdentifierInfo *N,
2552                       QualType Canon)
2553    : Type(TemplateTypeParm, Canon, /*Dependent=*/true,
2554           /*VariablyModified=*/false),
2555      Depth(D), ParameterPack(PP), Index(I), Name(N) { }
2556
2557  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
2558    : Type(TemplateTypeParm, QualType(this, 0), /*Dependent=*/true,
2559           /*VariablyModified=*/false),
2560      Depth(D), ParameterPack(PP), Index(I), Name(0) { }
2561
2562  friend class ASTContext;  // ASTContext creates these
2563
2564public:
2565  unsigned getDepth() const { return Depth; }
2566  unsigned getIndex() const { return Index; }
2567  bool isParameterPack() const { return ParameterPack; }
2568  IdentifierInfo *getName() const { return Name; }
2569
2570  bool isSugared() const { return false; }
2571  QualType desugar() const { return QualType(this, 0); }
2572
2573  void Profile(llvm::FoldingSetNodeID &ID) {
2574    Profile(ID, Depth, Index, ParameterPack, Name);
2575  }
2576
2577  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
2578                      unsigned Index, bool ParameterPack,
2579                      IdentifierInfo *Name) {
2580    ID.AddInteger(Depth);
2581    ID.AddInteger(Index);
2582    ID.AddBoolean(ParameterPack);
2583    ID.AddPointer(Name);
2584  }
2585
2586  static bool classof(const Type *T) {
2587    return T->getTypeClass() == TemplateTypeParm;
2588  }
2589  static bool classof(const TemplateTypeParmType *T) { return true; }
2590};
2591
2592/// \brief Represents the result of substituting a type for a template
2593/// type parameter.
2594///
2595/// Within an instantiated template, all template type parameters have
2596/// been replaced with these.  They are used solely to record that a
2597/// type was originally written as a template type parameter;
2598/// therefore they are never canonical.
2599class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2600  // The original type parameter.
2601  const TemplateTypeParmType *Replaced;
2602
2603  SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
2604    : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(),
2605           Canon->isVariablyModifiedType()),
2606      Replaced(Param) { }
2607
2608  friend class ASTContext;
2609
2610public:
2611  IdentifierInfo *getName() const { return Replaced->getName(); }
2612
2613  /// Gets the template parameter that was substituted for.
2614  const TemplateTypeParmType *getReplacedParameter() const {
2615    return Replaced;
2616  }
2617
2618  /// Gets the type that was substituted for the template
2619  /// parameter.
2620  QualType getReplacementType() const {
2621    return getCanonicalTypeInternal();
2622  }
2623
2624  bool isSugared() const { return true; }
2625  QualType desugar() const { return getReplacementType(); }
2626
2627  void Profile(llvm::FoldingSetNodeID &ID) {
2628    Profile(ID, getReplacedParameter(), getReplacementType());
2629  }
2630  static void Profile(llvm::FoldingSetNodeID &ID,
2631                      const TemplateTypeParmType *Replaced,
2632                      QualType Replacement) {
2633    ID.AddPointer(Replaced);
2634    ID.AddPointer(Replacement.getAsOpaquePtr());
2635  }
2636
2637  static bool classof(const Type *T) {
2638    return T->getTypeClass() == SubstTemplateTypeParm;
2639  }
2640  static bool classof(const SubstTemplateTypeParmType *T) { return true; }
2641};
2642
2643/// \brief Represents the type of a template specialization as written
2644/// in the source code.
2645///
2646/// Template specialization types represent the syntactic form of a
2647/// template-id that refers to a type, e.g., @c vector<int>. Some
2648/// template specialization types are syntactic sugar, whose canonical
2649/// type will point to some other type node that represents the
2650/// instantiation or class template specialization. For example, a
2651/// class template specialization type of @c vector<int> will refer to
2652/// a tag type for the instantiation
2653/// @c std::vector<int, std::allocator<int>>.
2654///
2655/// Other template specialization types, for which the template name
2656/// is dependent, may be canonical types. These types are always
2657/// dependent.
2658class TemplateSpecializationType
2659  : public Type, public llvm::FoldingSetNode {
2660  /// \brief The name of the template being specialized.
2661  TemplateName Template;
2662
2663  /// \brief - The number of template arguments named in this class
2664  /// template specialization.
2665  unsigned NumArgs;
2666
2667  TemplateSpecializationType(TemplateName T,
2668                             const TemplateArgument *Args,
2669                             unsigned NumArgs, QualType Canon);
2670
2671  friend class ASTContext;  // ASTContext creates these
2672
2673public:
2674  /// \brief Determine whether any of the given template arguments are
2675  /// dependent.
2676  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
2677                                            unsigned NumArgs);
2678
2679  static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
2680                                            unsigned NumArgs);
2681
2682  static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &);
2683
2684  /// \brief Print a template argument list, including the '<' and '>'
2685  /// enclosing the template arguments.
2686  static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
2687                                               unsigned NumArgs,
2688                                               const PrintingPolicy &Policy);
2689
2690  static std::string PrintTemplateArgumentList(const TemplateArgumentLoc *Args,
2691                                               unsigned NumArgs,
2692                                               const PrintingPolicy &Policy);
2693
2694  static std::string PrintTemplateArgumentList(const TemplateArgumentListInfo &,
2695                                               const PrintingPolicy &Policy);
2696
2697  /// True if this template specialization type matches a current
2698  /// instantiation in the context in which it is found.
2699  bool isCurrentInstantiation() const {
2700    return isa<InjectedClassNameType>(getCanonicalTypeInternal());
2701  }
2702
2703  typedef const TemplateArgument * iterator;
2704
2705  iterator begin() const { return getArgs(); }
2706  iterator end() const; // defined inline in TemplateBase.h
2707
2708  /// \brief Retrieve the name of the template that we are specializing.
2709  TemplateName getTemplateName() const { return Template; }
2710
2711  /// \brief Retrieve the template arguments.
2712  const TemplateArgument *getArgs() const {
2713    return reinterpret_cast<const TemplateArgument *>(this + 1);
2714  }
2715
2716  /// \brief Retrieve the number of template arguments.
2717  unsigned getNumArgs() const { return NumArgs; }
2718
2719  /// \brief Retrieve a specific template argument as a type.
2720  /// \precondition @c isArgType(Arg)
2721  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
2722
2723  bool isSugared() const {
2724    return !isDependentType() || isCurrentInstantiation();
2725  }
2726  QualType desugar() const { return getCanonicalTypeInternal(); }
2727
2728  void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Ctx) {
2729    Profile(ID, Template, getArgs(), NumArgs, Ctx);
2730  }
2731
2732  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
2733                      const TemplateArgument *Args,
2734                      unsigned NumArgs,
2735                      ASTContext &Context);
2736
2737  static bool classof(const Type *T) {
2738    return T->getTypeClass() == TemplateSpecialization;
2739  }
2740  static bool classof(const TemplateSpecializationType *T) { return true; }
2741};
2742
2743/// \brief The injected class name of a C++ class template or class
2744/// template partial specialization.  Used to record that a type was
2745/// spelled with a bare identifier rather than as a template-id; the
2746/// equivalent for non-templated classes is just RecordType.
2747///
2748/// Injected class name types are always dependent.  Template
2749/// instantiation turns these into RecordTypes.
2750///
2751/// Injected class name types are always canonical.  This works
2752/// because it is impossible to compare an injected class name type
2753/// with the corresponding non-injected template type, for the same
2754/// reason that it is impossible to directly compare template
2755/// parameters from different dependent contexts: injected class name
2756/// types can only occur within the scope of a particular templated
2757/// declaration, and within that scope every template specialization
2758/// will canonicalize to the injected class name (when appropriate
2759/// according to the rules of the language).
2760class InjectedClassNameType : public Type {
2761  CXXRecordDecl *Decl;
2762
2763  /// The template specialization which this type represents.
2764  /// For example, in
2765  ///   template <class T> class A { ... };
2766  /// this is A<T>, whereas in
2767  ///   template <class X, class Y> class A<B<X,Y> > { ... };
2768  /// this is A<B<X,Y> >.
2769  ///
2770  /// It is always unqualified, always a template specialization type,
2771  /// and always dependent.
2772  QualType InjectedType;
2773
2774  friend class ASTContext; // ASTContext creates these.
2775  friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
2776                          // currently suitable for AST reading, too much
2777                          // interdependencies.
2778  InjectedClassNameType(CXXRecordDecl *D, QualType TST)
2779    : Type(InjectedClassName, QualType(), /*Dependent=*/true,
2780           /*VariablyModified=*/false),
2781      Decl(D), InjectedType(TST) {
2782    assert(isa<TemplateSpecializationType>(TST));
2783    assert(!TST.hasQualifiers());
2784    assert(TST->isDependentType());
2785  }
2786
2787public:
2788  QualType getInjectedSpecializationType() const { return InjectedType; }
2789  const TemplateSpecializationType *getInjectedTST() const {
2790    return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
2791  }
2792
2793  CXXRecordDecl *getDecl() const;
2794
2795  bool isSugared() const { return false; }
2796  QualType desugar() const { return QualType(this, 0); }
2797
2798  static bool classof(const Type *T) {
2799    return T->getTypeClass() == InjectedClassName;
2800  }
2801  static bool classof(const InjectedClassNameType *T) { return true; }
2802};
2803
2804/// \brief The kind of a tag type.
2805enum TagTypeKind {
2806  /// \brief The "struct" keyword.
2807  TTK_Struct,
2808  /// \brief The "union" keyword.
2809  TTK_Union,
2810  /// \brief The "class" keyword.
2811  TTK_Class,
2812  /// \brief The "enum" keyword.
2813  TTK_Enum
2814};
2815
2816/// \brief The elaboration keyword that precedes a qualified type name or
2817/// introduces an elaborated-type-specifier.
2818enum ElaboratedTypeKeyword {
2819  /// \brief The "struct" keyword introduces the elaborated-type-specifier.
2820  ETK_Struct,
2821  /// \brief The "union" keyword introduces the elaborated-type-specifier.
2822  ETK_Union,
2823  /// \brief The "class" keyword introduces the elaborated-type-specifier.
2824  ETK_Class,
2825  /// \brief The "enum" keyword introduces the elaborated-type-specifier.
2826  ETK_Enum,
2827  /// \brief The "typename" keyword precedes the qualified type name, e.g.,
2828  /// \c typename T::type.
2829  ETK_Typename,
2830  /// \brief No keyword precedes the qualified type name.
2831  ETK_None
2832};
2833
2834/// A helper class for Type nodes having an ElaboratedTypeKeyword.
2835/// The keyword in stored in the free bits of the base class.
2836/// Also provides a few static helpers for converting and printing
2837/// elaborated type keyword and tag type kind enumerations.
2838class TypeWithKeyword : public Type {
2839protected:
2840  TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
2841                  QualType Canonical, bool Dependent, bool VariablyModified)
2842    : Type(tc, Canonical, Dependent, VariablyModified) {
2843    TypeWithKeywordBits.Keyword = Keyword;
2844  }
2845
2846public:
2847  virtual ~TypeWithKeyword(); // pin vtable to Type.cpp
2848
2849  ElaboratedTypeKeyword getKeyword() const {
2850    return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
2851  }
2852
2853  /// getKeywordForTypeSpec - Converts a type specifier (DeclSpec::TST)
2854  /// into an elaborated type keyword.
2855  static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
2856
2857  /// getTagTypeKindForTypeSpec - Converts a type specifier (DeclSpec::TST)
2858  /// into a tag type kind.  It is an error to provide a type specifier
2859  /// which *isn't* a tag kind here.
2860  static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
2861
2862  /// getKeywordForTagDeclKind - Converts a TagTypeKind into an
2863  /// elaborated type keyword.
2864  static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
2865
2866  /// getTagTypeKindForKeyword - Converts an elaborated type keyword into
2867  // a TagTypeKind. It is an error to provide an elaborated type keyword
2868  /// which *isn't* a tag kind here.
2869  static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
2870
2871  static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
2872
2873  static const char *getKeywordName(ElaboratedTypeKeyword Keyword);
2874
2875  static const char *getTagTypeKindName(TagTypeKind Kind) {
2876    return getKeywordName(getKeywordForTagTypeKind(Kind));
2877  }
2878
2879  class CannotCastToThisType {};
2880  static CannotCastToThisType classof(const Type *);
2881};
2882
2883/// \brief Represents a type that was referred to using an elaborated type
2884/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
2885/// or both.
2886///
2887/// This type is used to keep track of a type name as written in the
2888/// source code, including tag keywords and any nested-name-specifiers.
2889/// The type itself is always "sugar", used to express what was written
2890/// in the source code but containing no additional semantic information.
2891class ElaboratedType : public TypeWithKeyword, public llvm::FoldingSetNode {
2892
2893  /// \brief The nested name specifier containing the qualifier.
2894  NestedNameSpecifier *NNS;
2895
2896  /// \brief The type that this qualified name refers to.
2897  QualType NamedType;
2898
2899  ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
2900                 QualType NamedType, QualType CanonType)
2901    : TypeWithKeyword(Keyword, Elaborated, CanonType,
2902                      NamedType->isDependentType(),
2903                      NamedType->isVariablyModifiedType()),
2904      NNS(NNS), NamedType(NamedType) {
2905    assert(!(Keyword == ETK_None && NNS == 0) &&
2906           "ElaboratedType cannot have elaborated type keyword "
2907           "and name qualifier both null.");
2908  }
2909
2910  friend class ASTContext;  // ASTContext creates these
2911
2912public:
2913  ~ElaboratedType();
2914
2915  /// \brief Retrieve the qualification on this type.
2916  NestedNameSpecifier *getQualifier() const { return NNS; }
2917
2918  /// \brief Retrieve the type named by the qualified-id.
2919  QualType getNamedType() const { return NamedType; }
2920
2921  /// \brief Remove a single level of sugar.
2922  QualType desugar() const { return getNamedType(); }
2923
2924  /// \brief Returns whether this type directly provides sugar.
2925  bool isSugared() const { return true; }
2926
2927  void Profile(llvm::FoldingSetNodeID &ID) {
2928    Profile(ID, getKeyword(), NNS, NamedType);
2929  }
2930
2931  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
2932                      NestedNameSpecifier *NNS, QualType NamedType) {
2933    ID.AddInteger(Keyword);
2934    ID.AddPointer(NNS);
2935    NamedType.Profile(ID);
2936  }
2937
2938  static bool classof(const Type *T) {
2939    return T->getTypeClass() == Elaborated;
2940  }
2941  static bool classof(const ElaboratedType *T) { return true; }
2942};
2943
2944/// \brief Represents a qualified type name for which the type name is
2945/// dependent.
2946///
2947/// DependentNameType represents a class of dependent types that involve a
2948/// dependent nested-name-specifier (e.g., "T::") followed by a (dependent)
2949/// name of a type. The DependentNameType may start with a "typename" (for a
2950/// typename-specifier), "class", "struct", "union", or "enum" (for a
2951/// dependent elaborated-type-specifier), or nothing (in contexts where we
2952/// know that we must be referring to a type, e.g., in a base class specifier).
2953class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
2954
2955  /// \brief The nested name specifier containing the qualifier.
2956  NestedNameSpecifier *NNS;
2957
2958  /// \brief The type that this typename specifier refers to.
2959  const IdentifierInfo *Name;
2960
2961  DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
2962                    const IdentifierInfo *Name, QualType CanonType)
2963    : TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true,
2964                      /*VariablyModified=*/false),
2965      NNS(NNS), Name(Name) {
2966    assert(NNS->isDependent() &&
2967           "DependentNameType requires a dependent nested-name-specifier");
2968  }
2969
2970  friend class ASTContext;  // ASTContext creates these
2971
2972public:
2973  virtual ~DependentNameType();
2974
2975  /// \brief Retrieve the qualification on this type.
2976  NestedNameSpecifier *getQualifier() const { return NNS; }
2977
2978  /// \brief Retrieve the type named by the typename specifier as an
2979  /// identifier.
2980  ///
2981  /// This routine will return a non-NULL identifier pointer when the
2982  /// form of the original typename was terminated by an identifier,
2983  /// e.g., "typename T::type".
2984  const IdentifierInfo *getIdentifier() const {
2985    return Name;
2986  }
2987
2988  bool isSugared() const { return false; }
2989  QualType desugar() const { return QualType(this, 0); }
2990
2991  void Profile(llvm::FoldingSetNodeID &ID) {
2992    Profile(ID, getKeyword(), NNS, Name);
2993  }
2994
2995  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
2996                      NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
2997    ID.AddInteger(Keyword);
2998    ID.AddPointer(NNS);
2999    ID.AddPointer(Name);
3000  }
3001
3002  static bool classof(const Type *T) {
3003    return T->getTypeClass() == DependentName;
3004  }
3005  static bool classof(const DependentNameType *T) { return true; }
3006};
3007
3008/// DependentTemplateSpecializationType - Represents a template
3009/// specialization type whose template cannot be resolved, e.g.
3010///   A<T>::template B<T>
3011class DependentTemplateSpecializationType :
3012  public TypeWithKeyword, public llvm::FoldingSetNode {
3013
3014  /// \brief The nested name specifier containing the qualifier.
3015  NestedNameSpecifier *NNS;
3016
3017  /// \brief The identifier of the template.
3018  const IdentifierInfo *Name;
3019
3020  /// \brief - The number of template arguments named in this class
3021  /// template specialization.
3022  unsigned NumArgs;
3023
3024  const TemplateArgument *getArgBuffer() const {
3025    return reinterpret_cast<const TemplateArgument*>(this+1);
3026  }
3027  TemplateArgument *getArgBuffer() {
3028    return reinterpret_cast<TemplateArgument*>(this+1);
3029  }
3030
3031  DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
3032                                      NestedNameSpecifier *NNS,
3033                                      const IdentifierInfo *Name,
3034                                      unsigned NumArgs,
3035                                      const TemplateArgument *Args,
3036                                      QualType Canon);
3037
3038  friend class ASTContext;  // ASTContext creates these
3039
3040public:
3041  virtual ~DependentTemplateSpecializationType();
3042
3043  NestedNameSpecifier *getQualifier() const { return NNS; }
3044  const IdentifierInfo *getIdentifier() const { return Name; }
3045
3046  /// \brief Retrieve the template arguments.
3047  const TemplateArgument *getArgs() const {
3048    return getArgBuffer();
3049  }
3050
3051  /// \brief Retrieve the number of template arguments.
3052  unsigned getNumArgs() const { return NumArgs; }
3053
3054  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
3055
3056  typedef const TemplateArgument * iterator;
3057  iterator begin() const { return getArgs(); }
3058  iterator end() const; // inline in TemplateBase.h
3059
3060  bool isSugared() const { return false; }
3061  QualType desugar() const { return QualType(this, 0); }
3062
3063  void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context) {
3064    Profile(ID, Context, getKeyword(), NNS, Name, NumArgs, getArgs());
3065  }
3066
3067  static void Profile(llvm::FoldingSetNodeID &ID,
3068                      ASTContext &Context,
3069                      ElaboratedTypeKeyword Keyword,
3070                      NestedNameSpecifier *Qualifier,
3071                      const IdentifierInfo *Name,
3072                      unsigned NumArgs,
3073                      const TemplateArgument *Args);
3074
3075  static bool classof(const Type *T) {
3076    return T->getTypeClass() == DependentTemplateSpecialization;
3077  }
3078  static bool classof(const DependentTemplateSpecializationType *T) {
3079    return true;
3080  }
3081};
3082
3083/// ObjCObjectType - Represents a class type in Objective C.
3084/// Every Objective C type is a combination of a base type and a
3085/// list of protocols.
3086///
3087/// Given the following declarations:
3088///   @class C;
3089///   @protocol P;
3090///
3091/// 'C' is an ObjCInterfaceType C.  It is sugar for an ObjCObjectType
3092/// with base C and no protocols.
3093///
3094/// 'C<P>' is an ObjCObjectType with base C and protocol list [P].
3095///
3096/// 'id' is a TypedefType which is sugar for an ObjCPointerType whose
3097/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
3098/// and no protocols.
3099///
3100/// 'id<P>' is an ObjCPointerType whose pointee is an ObjCObjecType
3101/// with base BuiltinType::ObjCIdType and protocol list [P].  Eventually
3102/// this should get its own sugar class to better represent the source.
3103class ObjCObjectType : public Type {
3104  // ObjCObjectType.NumProtocols - the number of protocols stored
3105  // after the ObjCObjectPointerType node.
3106  //
3107  // These protocols are those written directly on the type.  If
3108  // protocol qualifiers ever become additive, the iterators will need
3109  // to get kindof complicated.
3110  //
3111  // In the canonical object type, these are sorted alphabetically
3112  // and uniqued.
3113
3114  /// Either a BuiltinType or an InterfaceType or sugar for either.
3115  QualType BaseType;
3116
3117  ObjCProtocolDecl * const *getProtocolStorage() const {
3118    return const_cast<ObjCObjectType*>(this)->getProtocolStorage();
3119  }
3120
3121  ObjCProtocolDecl **getProtocolStorage();
3122
3123protected:
3124  ObjCObjectType(QualType Canonical, QualType Base,
3125                 ObjCProtocolDecl * const *Protocols, unsigned NumProtocols);
3126
3127  enum Nonce_ObjCInterface { Nonce_ObjCInterface };
3128  ObjCObjectType(enum Nonce_ObjCInterface)
3129    : Type(ObjCInterface, QualType(), false, false),
3130      BaseType(QualType(this_(), 0)) {
3131    ObjCObjectTypeBits.NumProtocols = 0;
3132  }
3133
3134protected:
3135  CachedProperties getCachedProperties() const; // key function
3136
3137public:
3138  /// getBaseType - Gets the base type of this object type.  This is
3139  /// always (possibly sugar for) one of:
3140  ///  - the 'id' builtin type (as opposed to the 'id' type visible to the
3141  ///    user, which is a typedef for an ObjCPointerType)
3142  ///  - the 'Class' builtin type (same caveat)
3143  ///  - an ObjCObjectType (currently always an ObjCInterfaceType)
3144  QualType getBaseType() const { return BaseType; }
3145
3146  bool isObjCId() const {
3147    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
3148  }
3149  bool isObjCClass() const {
3150    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
3151  }
3152  bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
3153  bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
3154  bool isObjCUnqualifiedIdOrClass() const {
3155    if (!qual_empty()) return false;
3156    if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
3157      return T->getKind() == BuiltinType::ObjCId ||
3158             T->getKind() == BuiltinType::ObjCClass;
3159    return false;
3160  }
3161  bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
3162  bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
3163
3164  /// Gets the interface declaration for this object type, if the base type
3165  /// really is an interface.
3166  ObjCInterfaceDecl *getInterface() const;
3167
3168  typedef ObjCProtocolDecl * const *qual_iterator;
3169
3170  qual_iterator qual_begin() const { return getProtocolStorage(); }
3171  qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
3172
3173  bool qual_empty() const { return getNumProtocols() == 0; }
3174
3175  /// getNumProtocols - Return the number of qualifying protocols in this
3176  /// interface type, or 0 if there are none.
3177  unsigned getNumProtocols() const { return ObjCObjectTypeBits.NumProtocols; }
3178
3179  /// \brief Fetch a protocol by index.
3180  ObjCProtocolDecl *getProtocol(unsigned I) const {
3181    assert(I < getNumProtocols() && "Out-of-range protocol access");
3182    return qual_begin()[I];
3183  }
3184
3185  bool isSugared() const { return false; }
3186  QualType desugar() const { return QualType(this, 0); }
3187
3188  static bool classof(const Type *T) {
3189    return T->getTypeClass() == ObjCObject ||
3190           T->getTypeClass() == ObjCInterface;
3191  }
3192  static bool classof(const ObjCObjectType *) { return true; }
3193};
3194
3195/// ObjCObjectTypeImpl - A class providing a concrete implementation
3196/// of ObjCObjectType, so as to not increase the footprint of
3197/// ObjCInterfaceType.  Code outside of ASTContext and the core type
3198/// system should not reference this type.
3199class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
3200  friend class ASTContext;
3201
3202  // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
3203  // will need to be modified.
3204
3205  ObjCObjectTypeImpl(QualType Canonical, QualType Base,
3206                     ObjCProtocolDecl * const *Protocols,
3207                     unsigned NumProtocols)
3208    : ObjCObjectType(Canonical, Base, Protocols, NumProtocols) {}
3209
3210public:
3211  void Profile(llvm::FoldingSetNodeID &ID);
3212  static void Profile(llvm::FoldingSetNodeID &ID,
3213                      QualType Base,
3214                      ObjCProtocolDecl *const *protocols,
3215                      unsigned NumProtocols);
3216};
3217
3218inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorage() {
3219  return reinterpret_cast<ObjCProtocolDecl**>(
3220            static_cast<ObjCObjectTypeImpl*>(this) + 1);
3221}
3222
3223/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
3224/// object oriented design.  They basically correspond to C++ classes.  There
3225/// are two kinds of interface types, normal interfaces like "NSString" and
3226/// qualified interfaces, which are qualified with a protocol list like
3227/// "NSString<NSCopyable, NSAmazing>".
3228///
3229/// ObjCInterfaceType guarantees the following properties when considered
3230/// as a subtype of its superclass, ObjCObjectType:
3231///   - There are no protocol qualifiers.  To reinforce this, code which
3232///     tries to invoke the protocol methods via an ObjCInterfaceType will
3233///     fail to compile.
3234///   - It is its own base type.  That is, if T is an ObjCInterfaceType*,
3235///     T->getBaseType() == QualType(T, 0).
3236class ObjCInterfaceType : public ObjCObjectType {
3237  ObjCInterfaceDecl *Decl;
3238
3239  ObjCInterfaceType(const ObjCInterfaceDecl *D)
3240    : ObjCObjectType(Nonce_ObjCInterface),
3241      Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
3242  friend class ASTContext;  // ASTContext creates these.
3243
3244protected:
3245  virtual CachedProperties getCachedProperties() const;
3246
3247public:
3248  /// getDecl - Get the declaration of this interface.
3249  ObjCInterfaceDecl *getDecl() const { return Decl; }
3250
3251  bool isSugared() const { return false; }
3252  QualType desugar() const { return QualType(this, 0); }
3253
3254  static bool classof(const Type *T) {
3255    return T->getTypeClass() == ObjCInterface;
3256  }
3257  static bool classof(const ObjCInterfaceType *) { return true; }
3258
3259  // Nonsense to "hide" certain members of ObjCObjectType within this
3260  // class.  People asking for protocols on an ObjCInterfaceType are
3261  // not going to get what they want: ObjCInterfaceTypes are
3262  // guaranteed to have no protocols.
3263  enum {
3264    qual_iterator,
3265    qual_begin,
3266    qual_end,
3267    getNumProtocols,
3268    getProtocol
3269  };
3270};
3271
3272inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
3273  if (const ObjCInterfaceType *T =
3274        getBaseType()->getAs<ObjCInterfaceType>())
3275    return T->getDecl();
3276  return 0;
3277}
3278
3279/// ObjCObjectPointerType - Used to represent a pointer to an
3280/// Objective C object.  These are constructed from pointer
3281/// declarators when the pointee type is an ObjCObjectType (or sugar
3282/// for one).  In addition, the 'id' and 'Class' types are typedefs
3283/// for these, and the protocol-qualified types 'id<P>' and 'Class<P>'
3284/// are translated into these.
3285///
3286/// Pointers to pointers to Objective C objects are still PointerTypes;
3287/// only the first level of pointer gets it own type implementation.
3288class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
3289  QualType PointeeType;
3290
3291  ObjCObjectPointerType(QualType Canonical, QualType Pointee)
3292    : Type(ObjCObjectPointer, Canonical, false, false),
3293      PointeeType(Pointee) {}
3294  friend class ASTContext;  // ASTContext creates these.
3295
3296protected:
3297  virtual CachedProperties getCachedProperties() const;
3298
3299public:
3300  /// getPointeeType - Gets the type pointed to by this ObjC pointer.
3301  /// The result will always be an ObjCObjectType or sugar thereof.
3302  QualType getPointeeType() const { return PointeeType; }
3303
3304  /// getObjCObjectType - Gets the type pointed to by this ObjC
3305  /// pointer.  This method always returns non-null.
3306  ///
3307  /// This method is equivalent to getPointeeType() except that
3308  /// it discards any typedefs (or other sugar) between this
3309  /// type and the "outermost" object type.  So for:
3310  ///   @class A; @protocol P; @protocol Q;
3311  ///   typedef A<P> AP;
3312  ///   typedef A A1;
3313  ///   typedef A1<P> A1P;
3314  ///   typedef A1P<Q> A1PQ;
3315  /// For 'A*', getObjectType() will return 'A'.
3316  /// For 'A<P>*', getObjectType() will return 'A<P>'.
3317  /// For 'AP*', getObjectType() will return 'A<P>'.
3318  /// For 'A1*', getObjectType() will return 'A'.
3319  /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
3320  /// For 'A1P*', getObjectType() will return 'A1<P>'.
3321  /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
3322  ///   adding protocols to a protocol-qualified base discards the
3323  ///   old qualifiers (for now).  But if it didn't, getObjectType()
3324  ///   would return 'A1P<Q>' (and we'd have to make iterating over
3325  ///   qualifiers more complicated).
3326  const ObjCObjectType *getObjectType() const {
3327    return PointeeType->getAs<ObjCObjectType>();
3328  }
3329
3330  /// getInterfaceType - If this pointer points to an Objective C
3331  /// @interface type, gets the type for that interface.  Any protocol
3332  /// qualifiers on the interface are ignored.
3333  ///
3334  /// \return null if the base type for this pointer is 'id' or 'Class'
3335  const ObjCInterfaceType *getInterfaceType() const {
3336    return getObjectType()->getBaseType()->getAs<ObjCInterfaceType>();
3337  }
3338
3339  /// getInterfaceDecl - If this pointer points to an Objective @interface
3340  /// type, gets the declaration for that interface.
3341  ///
3342  /// \return null if the base type for this pointer is 'id' or 'Class'
3343  ObjCInterfaceDecl *getInterfaceDecl() const {
3344    return getObjectType()->getInterface();
3345  }
3346
3347  /// isObjCIdType - True if this is equivalent to the 'id' type, i.e. if
3348  /// its object type is the primitive 'id' type with no protocols.
3349  bool isObjCIdType() const {
3350    return getObjectType()->isObjCUnqualifiedId();
3351  }
3352
3353  /// isObjCClassType - True if this is equivalent to the 'Class' type,
3354  /// i.e. if its object tive is the primitive 'Class' type with no protocols.
3355  bool isObjCClassType() const {
3356    return getObjectType()->isObjCUnqualifiedClass();
3357  }
3358
3359  /// isObjCQualifiedIdType - True if this is equivalent to 'id<P>' for some
3360  /// non-empty set of protocols.
3361  bool isObjCQualifiedIdType() const {
3362    return getObjectType()->isObjCQualifiedId();
3363  }
3364
3365  /// isObjCQualifiedClassType - True if this is equivalent to 'Class<P>' for
3366  /// some non-empty set of protocols.
3367  bool isObjCQualifiedClassType() const {
3368    return getObjectType()->isObjCQualifiedClass();
3369  }
3370
3371  /// An iterator over the qualifiers on the object type.  Provided
3372  /// for convenience.  This will always iterate over the full set of
3373  /// protocols on a type, not just those provided directly.
3374  typedef ObjCObjectType::qual_iterator qual_iterator;
3375
3376  qual_iterator qual_begin() const {
3377    return getObjectType()->qual_begin();
3378  }
3379  qual_iterator qual_end() const {
3380    return getObjectType()->qual_end();
3381  }
3382  bool qual_empty() const { return getObjectType()->qual_empty(); }
3383
3384  /// getNumProtocols - Return the number of qualifying protocols on
3385  /// the object type.
3386  unsigned getNumProtocols() const {
3387    return getObjectType()->getNumProtocols();
3388  }
3389
3390  /// \brief Retrieve a qualifying protocol by index on the object
3391  /// type.
3392  ObjCProtocolDecl *getProtocol(unsigned I) const {
3393    return getObjectType()->getProtocol(I);
3394  }
3395
3396  bool isSugared() const { return false; }
3397  QualType desugar() const { return QualType(this, 0); }
3398
3399  void Profile(llvm::FoldingSetNodeID &ID) {
3400    Profile(ID, getPointeeType());
3401  }
3402  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
3403    ID.AddPointer(T.getAsOpaquePtr());
3404  }
3405  static bool classof(const Type *T) {
3406    return T->getTypeClass() == ObjCObjectPointer;
3407  }
3408  static bool classof(const ObjCObjectPointerType *) { return true; }
3409};
3410
3411/// A qualifier set is used to build a set of qualifiers.
3412class QualifierCollector : public Qualifiers {
3413  ASTContext *Context;
3414
3415public:
3416  QualifierCollector(Qualifiers Qs = Qualifiers())
3417    : Qualifiers(Qs), Context(0) {}
3418  QualifierCollector(ASTContext &Context, Qualifiers Qs = Qualifiers())
3419    : Qualifiers(Qs), Context(&Context) {}
3420
3421  void setContext(ASTContext &C) { Context = &C; }
3422
3423  /// Collect any qualifiers on the given type and return an
3424  /// unqualified type.
3425  const Type *strip(QualType QT) {
3426    addFastQualifiers(QT.getLocalFastQualifiers());
3427    if (QT.hasLocalNonFastQualifiers()) {
3428      const ExtQuals *EQ = QT.getExtQualsUnsafe();
3429      Context = &EQ->getContext();
3430      addQualifiers(EQ->getQualifiers());
3431      return EQ->getBaseType();
3432    }
3433    return QT.getTypePtrUnsafe();
3434  }
3435
3436  /// Apply the collected qualifiers to the given type.
3437  QualType apply(QualType QT) const;
3438
3439  /// Apply the collected qualifiers to the given type.
3440  QualType apply(const Type* T) const;
3441
3442};
3443
3444
3445// Inline function definitions.
3446
3447inline bool QualType::isCanonical() const {
3448  const Type *T = getTypePtr();
3449  if (hasLocalQualifiers())
3450    return T->isCanonicalUnqualified() && !isa<ArrayType>(T);
3451  return T->isCanonicalUnqualified();
3452}
3453
3454inline bool QualType::isCanonicalAsParam() const {
3455  if (hasLocalQualifiers()) return false;
3456
3457  const Type *T = getTypePtr();
3458  if ((*this)->isPointerType()) {
3459    QualType BaseType = (*this)->getAs<PointerType>()->getPointeeType();
3460    if (isa<VariableArrayType>(BaseType)) {
3461      ArrayType *AT = dyn_cast<ArrayType>(BaseType);
3462      VariableArrayType *VAT = cast<VariableArrayType>(AT);
3463      if (VAT->getSizeExpr())
3464        T = BaseType.getTypePtr();
3465    }
3466  }
3467  return T->isCanonicalUnqualified() &&
3468           !isa<FunctionType>(T) && !isa<ArrayType>(T);
3469}
3470
3471inline bool QualType::isConstQualified() const {
3472  return isLocalConstQualified() ||
3473              getTypePtr()->getCanonicalTypeInternal().isLocalConstQualified();
3474}
3475
3476inline bool QualType::isRestrictQualified() const {
3477  return isLocalRestrictQualified() ||
3478            getTypePtr()->getCanonicalTypeInternal().isLocalRestrictQualified();
3479}
3480
3481
3482inline bool QualType::isVolatileQualified() const {
3483  return isLocalVolatileQualified() ||
3484  getTypePtr()->getCanonicalTypeInternal().isLocalVolatileQualified();
3485}
3486
3487inline bool QualType::hasQualifiers() const {
3488  return hasLocalQualifiers() ||
3489                  getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers();
3490}
3491
3492inline Qualifiers QualType::getQualifiers() const {
3493  Qualifiers Quals = getLocalQualifiers();
3494  Quals.addQualifiers(
3495                 getTypePtr()->getCanonicalTypeInternal().getLocalQualifiers());
3496  return Quals;
3497}
3498
3499inline unsigned QualType::getCVRQualifiers() const {
3500  return getLocalCVRQualifiers() |
3501              getTypePtr()->getCanonicalTypeInternal().getLocalCVRQualifiers();
3502}
3503
3504/// getCVRQualifiersThroughArrayTypes - If there are CVR qualifiers for this
3505/// type, returns them. Otherwise, if this is an array type, recurses
3506/// on the element type until some qualifiers have been found or a non-array
3507/// type reached.
3508inline unsigned QualType::getCVRQualifiersThroughArrayTypes() const {
3509  if (unsigned Quals = getCVRQualifiers())
3510    return Quals;
3511  QualType CT = getTypePtr()->getCanonicalTypeInternal();
3512  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
3513    return AT->getElementType().getCVRQualifiersThroughArrayTypes();
3514  return 0;
3515}
3516
3517inline void QualType::removeConst() {
3518  removeFastQualifiers(Qualifiers::Const);
3519}
3520
3521inline void QualType::removeRestrict() {
3522  removeFastQualifiers(Qualifiers::Restrict);
3523}
3524
3525inline void QualType::removeVolatile() {
3526  QualifierCollector Qc;
3527  const Type *Ty = Qc.strip(*this);
3528  if (Qc.hasVolatile()) {
3529    Qc.removeVolatile();
3530    *this = Qc.apply(Ty);
3531  }
3532}
3533
3534inline void QualType::removeCVRQualifiers(unsigned Mask) {
3535  assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
3536
3537  // Fast path: we don't need to touch the slow qualifiers.
3538  if (!(Mask & ~Qualifiers::FastMask)) {
3539    removeFastQualifiers(Mask);
3540    return;
3541  }
3542
3543  QualifierCollector Qc;
3544  const Type *Ty = Qc.strip(*this);
3545  Qc.removeCVRQualifiers(Mask);
3546  *this = Qc.apply(Ty);
3547}
3548
3549/// getAddressSpace - Return the address space of this type.
3550inline unsigned QualType::getAddressSpace() const {
3551  if (hasLocalNonFastQualifiers()) {
3552    const ExtQuals *EQ = getExtQualsUnsafe();
3553    if (EQ->hasAddressSpace())
3554      return EQ->getAddressSpace();
3555  }
3556
3557  QualType CT = getTypePtr()->getCanonicalTypeInternal();
3558  if (CT.hasLocalNonFastQualifiers()) {
3559    const ExtQuals *EQ = CT.getExtQualsUnsafe();
3560    if (EQ->hasAddressSpace())
3561      return EQ->getAddressSpace();
3562  }
3563
3564  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
3565    return AT->getElementType().getAddressSpace();
3566  if (const RecordType *RT = dyn_cast<RecordType>(CT))
3567    return RT->getAddressSpace();
3568  return 0;
3569}
3570
3571/// getObjCGCAttr - Return the gc attribute of this type.
3572inline Qualifiers::GC QualType::getObjCGCAttr() const {
3573  if (hasLocalNonFastQualifiers()) {
3574    const ExtQuals *EQ = getExtQualsUnsafe();
3575    if (EQ->hasObjCGCAttr())
3576      return EQ->getObjCGCAttr();
3577  }
3578
3579  QualType CT = getTypePtr()->getCanonicalTypeInternal();
3580  if (CT.hasLocalNonFastQualifiers()) {
3581    const ExtQuals *EQ = CT.getExtQualsUnsafe();
3582    if (EQ->hasObjCGCAttr())
3583      return EQ->getObjCGCAttr();
3584  }
3585
3586  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
3587      return AT->getElementType().getObjCGCAttr();
3588  if (const ObjCObjectPointerType *PT = CT->getAs<ObjCObjectPointerType>())
3589    return PT->getPointeeType().getObjCGCAttr();
3590  // We most look at all pointer types, not just pointer to interface types.
3591  if (const PointerType *PT = CT->getAs<PointerType>())
3592    return PT->getPointeeType().getObjCGCAttr();
3593  return Qualifiers::GCNone;
3594}
3595
3596inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
3597  if (const PointerType *PT = t.getAs<PointerType>()) {
3598    if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
3599      return FT->getExtInfo();
3600  } else if (const FunctionType *FT = t.getAs<FunctionType>())
3601    return FT->getExtInfo();
3602
3603  return FunctionType::ExtInfo();
3604}
3605
3606inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
3607  return getFunctionExtInfo(*t);
3608}
3609
3610/// \brief Determine whether this set of qualifiers is a superset of the given
3611/// set of qualifiers.
3612inline bool Qualifiers::isSupersetOf(Qualifiers Other) const {
3613  return Mask != Other.Mask && (Mask | Other.Mask) == Mask;
3614}
3615
3616/// isMoreQualifiedThan - Determine whether this type is more
3617/// qualified than the Other type. For example, "const volatile int"
3618/// is more qualified than "const int", "volatile int", and
3619/// "int". However, it is not more qualified than "const volatile
3620/// int".
3621inline bool QualType::isMoreQualifiedThan(QualType Other) const {
3622  // FIXME: work on arbitrary qualifiers
3623  unsigned MyQuals = this->getCVRQualifiersThroughArrayTypes();
3624  unsigned OtherQuals = Other.getCVRQualifiersThroughArrayTypes();
3625  if (getAddressSpace() != Other.getAddressSpace())
3626    return false;
3627  return MyQuals != OtherQuals && (MyQuals | OtherQuals) == MyQuals;
3628}
3629
3630/// isAtLeastAsQualifiedAs - Determine whether this type is at last
3631/// as qualified as the Other type. For example, "const volatile
3632/// int" is at least as qualified as "const int", "volatile int",
3633/// "int", and "const volatile int".
3634inline bool QualType::isAtLeastAsQualifiedAs(QualType Other) const {
3635  // FIXME: work on arbitrary qualifiers
3636  unsigned MyQuals = this->getCVRQualifiersThroughArrayTypes();
3637  unsigned OtherQuals = Other.getCVRQualifiersThroughArrayTypes();
3638  if (getAddressSpace() != Other.getAddressSpace())
3639    return false;
3640  return (MyQuals | OtherQuals) == MyQuals;
3641}
3642
3643/// getNonReferenceType - If Type is a reference type (e.g., const
3644/// int&), returns the type that the reference refers to ("const
3645/// int"). Otherwise, returns the type itself. This routine is used
3646/// throughout Sema to implement C++ 5p6:
3647///
3648///   If an expression initially has the type "reference to T" (8.3.2,
3649///   8.5.3), the type is adjusted to "T" prior to any further
3650///   analysis, the expression designates the object or function
3651///   denoted by the reference, and the expression is an lvalue.
3652inline QualType QualType::getNonReferenceType() const {
3653  if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
3654    return RefType->getPointeeType();
3655  else
3656    return *this;
3657}
3658
3659inline bool Type::isFunctionType() const {
3660  return isa<FunctionType>(CanonicalType);
3661}
3662inline bool Type::isPointerType() const {
3663  return isa<PointerType>(CanonicalType);
3664}
3665inline bool Type::isAnyPointerType() const {
3666  return isPointerType() || isObjCObjectPointerType();
3667}
3668inline bool Type::isBlockPointerType() const {
3669  return isa<BlockPointerType>(CanonicalType);
3670}
3671inline bool Type::isReferenceType() const {
3672  return isa<ReferenceType>(CanonicalType);
3673}
3674inline bool Type::isLValueReferenceType() const {
3675  return isa<LValueReferenceType>(CanonicalType);
3676}
3677inline bool Type::isRValueReferenceType() const {
3678  return isa<RValueReferenceType>(CanonicalType);
3679}
3680inline bool Type::isFunctionPointerType() const {
3681  if (const PointerType* T = getAs<PointerType>())
3682    return T->getPointeeType()->isFunctionType();
3683  else
3684    return false;
3685}
3686inline bool Type::isMemberPointerType() const {
3687  return isa<MemberPointerType>(CanonicalType);
3688}
3689inline bool Type::isMemberFunctionPointerType() const {
3690  if (const MemberPointerType* T = getAs<MemberPointerType>())
3691    return T->isMemberFunctionPointer();
3692  else
3693    return false;
3694}
3695inline bool Type::isMemberDataPointerType() const {
3696  if (const MemberPointerType* T = getAs<MemberPointerType>())
3697    return T->isMemberDataPointer();
3698  else
3699    return false;
3700}
3701inline bool Type::isArrayType() const {
3702  return isa<ArrayType>(CanonicalType);
3703}
3704inline bool Type::isConstantArrayType() const {
3705  return isa<ConstantArrayType>(CanonicalType);
3706}
3707inline bool Type::isIncompleteArrayType() const {
3708  return isa<IncompleteArrayType>(CanonicalType);
3709}
3710inline bool Type::isVariableArrayType() const {
3711  return isa<VariableArrayType>(CanonicalType);
3712}
3713inline bool Type::isDependentSizedArrayType() const {
3714  return isa<DependentSizedArrayType>(CanonicalType);
3715}
3716inline bool Type::isBuiltinType() const {
3717  return isa<BuiltinType>(CanonicalType);
3718}
3719inline bool Type::isRecordType() const {
3720  return isa<RecordType>(CanonicalType);
3721}
3722inline bool Type::isEnumeralType() const {
3723  return isa<EnumType>(CanonicalType);
3724}
3725inline bool Type::isAnyComplexType() const {
3726  return isa<ComplexType>(CanonicalType);
3727}
3728inline bool Type::isVectorType() const {
3729  return isa<VectorType>(CanonicalType);
3730}
3731inline bool Type::isExtVectorType() const {
3732  return isa<ExtVectorType>(CanonicalType);
3733}
3734inline bool Type::isObjCObjectPointerType() const {
3735  return isa<ObjCObjectPointerType>(CanonicalType);
3736}
3737inline bool Type::isObjCObjectType() const {
3738  return isa<ObjCObjectType>(CanonicalType);
3739}
3740inline bool Type::isObjCObjectOrInterfaceType() const {
3741  return isa<ObjCInterfaceType>(CanonicalType) ||
3742    isa<ObjCObjectType>(CanonicalType);
3743}
3744
3745inline bool Type::isObjCQualifiedIdType() const {
3746  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3747    return OPT->isObjCQualifiedIdType();
3748  return false;
3749}
3750inline bool Type::isObjCQualifiedClassType() const {
3751  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3752    return OPT->isObjCQualifiedClassType();
3753  return false;
3754}
3755inline bool Type::isObjCIdType() const {
3756  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3757    return OPT->isObjCIdType();
3758  return false;
3759}
3760inline bool Type::isObjCClassType() const {
3761  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3762    return OPT->isObjCClassType();
3763  return false;
3764}
3765inline bool Type::isObjCSelType() const {
3766  if (const PointerType *OPT = getAs<PointerType>())
3767    return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
3768  return false;
3769}
3770inline bool Type::isObjCBuiltinType() const {
3771  return isObjCIdType() || isObjCClassType() || isObjCSelType();
3772}
3773inline bool Type::isTemplateTypeParmType() const {
3774  return isa<TemplateTypeParmType>(CanonicalType);
3775}
3776
3777inline bool Type::isSpecificBuiltinType(unsigned K) const {
3778  if (const BuiltinType *BT = getAs<BuiltinType>())
3779    if (BT->getKind() == (BuiltinType::Kind) K)
3780      return true;
3781  return false;
3782}
3783
3784inline bool Type::isPlaceholderType() const {
3785  if (const BuiltinType *BT = getAs<BuiltinType>())
3786    return BT->isPlaceholderType();
3787  return false;
3788}
3789
3790/// \brief Determines whether this is a type for which one can define
3791/// an overloaded operator.
3792inline bool Type::isOverloadableType() const {
3793  return isDependentType() || isRecordType() || isEnumeralType();
3794}
3795
3796inline bool Type::hasPointerRepresentation() const {
3797  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
3798          isObjCObjectPointerType() || isNullPtrType());
3799}
3800
3801inline bool Type::hasObjCPointerRepresentation() const {
3802  return isObjCObjectPointerType();
3803}
3804
3805/// Insertion operator for diagnostics.  This allows sending QualType's into a
3806/// diagnostic with <<.
3807inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
3808                                           QualType T) {
3809  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
3810                  Diagnostic::ak_qualtype);
3811  return DB;
3812}
3813
3814/// Insertion operator for partial diagnostics.  This allows sending QualType's
3815/// into a diagnostic with <<.
3816inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
3817                                           QualType T) {
3818  PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
3819                  Diagnostic::ak_qualtype);
3820  return PD;
3821}
3822
3823// Helper class template that is used by Type::getAs to ensure that one does
3824// not try to look through a qualified type to get to an array type.
3825template<typename T,
3826         bool isArrayType = (llvm::is_same<T, ArrayType>::value ||
3827                             llvm::is_base_of<ArrayType, T>::value)>
3828struct ArrayType_cannot_be_used_with_getAs { };
3829
3830template<typename T>
3831struct ArrayType_cannot_be_used_with_getAs<T, true>;
3832
3833/// Member-template getAs<specific type>'.
3834template <typename T> const T *Type::getAs() const {
3835  ArrayType_cannot_be_used_with_getAs<T> at;
3836  (void)at;
3837
3838  // If this is directly a T type, return it.
3839  if (const T *Ty = dyn_cast<T>(this))
3840    return Ty;
3841
3842  // If the canonical form of this type isn't the right kind, reject it.
3843  if (!isa<T>(CanonicalType))
3844    return 0;
3845
3846  // If this is a typedef for the type, strip the typedef off without
3847  // losing all typedef information.
3848  return cast<T>(getUnqualifiedDesugaredType());
3849}
3850
3851}  // end namespace clang
3852
3853#endif
3854