Type.h revision eaf5ec43ec52f650a00254d1c20d51fb7671aead
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/AST/NestedNameSpecifier.h"
18#include "clang/AST/TemplateName.h"
19#include "clang/Basic/Diagnostic.h"
20#include "clang/Basic/ExceptionSpecificationType.h"
21#include "clang/Basic/IdentifierTable.h"
22#include "clang/Basic/LLVM.h"
23#include "clang/Basic/Linkage.h"
24#include "clang/Basic/PartialDiagnostic.h"
25#include "clang/Basic/Specifiers.h"
26#include "clang/Basic/Visibility.h"
27#include "llvm/ADT/APSInt.h"
28#include "llvm/ADT/FoldingSet.h"
29#include "llvm/ADT/Optional.h"
30#include "llvm/ADT/PointerIntPair.h"
31#include "llvm/ADT/PointerUnion.h"
32#include "llvm/ADT/Twine.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/type_traits.h"
35
36namespace clang {
37  enum {
38    TypeAlignmentInBits = 4,
39    TypeAlignment = 1 << TypeAlignmentInBits
40  };
41  class Type;
42  class ExtQuals;
43  class QualType;
44}
45
46namespace llvm {
47  template <typename T>
48  class PointerLikeTypeTraits;
49  template<>
50  class PointerLikeTypeTraits< ::clang::Type*> {
51  public:
52    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
53    static inline ::clang::Type *getFromVoidPointer(void *P) {
54      return static_cast< ::clang::Type*>(P);
55    }
56    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
57  };
58  template<>
59  class PointerLikeTypeTraits< ::clang::ExtQuals*> {
60  public:
61    static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
62    static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
63      return static_cast< ::clang::ExtQuals*>(P);
64    }
65    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
66  };
67
68  template <>
69  struct isPodLike<clang::QualType> { static const bool value = true; };
70}
71
72namespace clang {
73  class ASTContext;
74  class TypedefNameDecl;
75  class TemplateDecl;
76  class TemplateTypeParmDecl;
77  class NonTypeTemplateParmDecl;
78  class TemplateTemplateParmDecl;
79  class TagDecl;
80  class RecordDecl;
81  class CXXRecordDecl;
82  class EnumDecl;
83  class FieldDecl;
84  class FunctionDecl;
85  class ObjCInterfaceDecl;
86  class ObjCProtocolDecl;
87  class ObjCMethodDecl;
88  class UnresolvedUsingTypenameDecl;
89  class Expr;
90  class Stmt;
91  class SourceLocation;
92  class StmtIteratorBase;
93  class TemplateArgument;
94  class TemplateArgumentLoc;
95  class TemplateArgumentListInfo;
96  class ElaboratedType;
97  class ExtQuals;
98  class ExtQualsTypeCommonBase;
99  struct PrintingPolicy;
100
101  template <typename> class CanQual;
102  typedef CanQual<Type> CanQualType;
103
104  // Provide forward declarations for all of the *Type classes
105#define TYPE(Class, Base) class Class##Type;
106#include "clang/AST/TypeNodes.def"
107
108/// Qualifiers - The collection of all-type qualifiers we support.
109/// Clang supports five independent qualifiers:
110/// * C99: const, volatile, and restrict
111/// * Embedded C (TR18037): address spaces
112/// * Objective C: the GC attributes (none, weak, or strong)
113class Qualifiers {
114public:
115  enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
116    Const    = 0x1,
117    Restrict = 0x2,
118    Volatile = 0x4,
119    CVRMask = Const | Volatile | Restrict
120  };
121
122  enum GC {
123    GCNone = 0,
124    Weak,
125    Strong
126  };
127
128  enum ObjCLifetime {
129    /// There is no lifetime qualification on this type.
130    OCL_None,
131
132    /// This object can be modified without requiring retains or
133    /// releases.
134    OCL_ExplicitNone,
135
136    /// Assigning into this object requires the old value to be
137    /// released and the new value to be retained.  The timing of the
138    /// release of the old value is inexact: it may be moved to
139    /// immediately after the last known point where the value is
140    /// live.
141    OCL_Strong,
142
143    /// Reading or writing from this object requires a barrier call.
144    OCL_Weak,
145
146    /// Assigning into this object requires a lifetime extension.
147    OCL_Autoreleasing
148  };
149
150  enum {
151    /// The maximum supported address space number.
152    /// 24 bits should be enough for anyone.
153    MaxAddressSpace = 0xffffffu,
154
155    /// The width of the "fast" qualifier mask.
156    FastWidth = 3,
157
158    /// The fast qualifier mask.
159    FastMask = (1 << FastWidth) - 1
160  };
161
162  Qualifiers() : Mask(0) {}
163
164  /// \brief Returns the common set of qualifiers while removing them from
165  /// the given sets.
166  static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
167    // If both are only CVR-qualified, bit operations are sufficient.
168    if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
169      Qualifiers Q;
170      Q.Mask = L.Mask & R.Mask;
171      L.Mask &= ~Q.Mask;
172      R.Mask &= ~Q.Mask;
173      return Q;
174    }
175
176    Qualifiers Q;
177    unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
178    Q.addCVRQualifiers(CommonCRV);
179    L.removeCVRQualifiers(CommonCRV);
180    R.removeCVRQualifiers(CommonCRV);
181
182    if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
183      Q.setObjCGCAttr(L.getObjCGCAttr());
184      L.removeObjCGCAttr();
185      R.removeObjCGCAttr();
186    }
187
188    if (L.getObjCLifetime() == R.getObjCLifetime()) {
189      Q.setObjCLifetime(L.getObjCLifetime());
190      L.removeObjCLifetime();
191      R.removeObjCLifetime();
192    }
193
194    if (L.getAddressSpace() == R.getAddressSpace()) {
195      Q.setAddressSpace(L.getAddressSpace());
196      L.removeAddressSpace();
197      R.removeAddressSpace();
198    }
199    return Q;
200  }
201
202  static Qualifiers fromFastMask(unsigned Mask) {
203    Qualifiers Qs;
204    Qs.addFastQualifiers(Mask);
205    return Qs;
206  }
207
208  static Qualifiers fromCVRMask(unsigned CVR) {
209    Qualifiers Qs;
210    Qs.addCVRQualifiers(CVR);
211    return Qs;
212  }
213
214  // Deserialize qualifiers from an opaque representation.
215  static Qualifiers fromOpaqueValue(unsigned opaque) {
216    Qualifiers Qs;
217    Qs.Mask = opaque;
218    return Qs;
219  }
220
221  // Serialize these qualifiers into an opaque representation.
222  unsigned getAsOpaqueValue() const {
223    return Mask;
224  }
225
226  bool hasConst() const { return Mask & Const; }
227  void setConst(bool flag) {
228    Mask = (Mask & ~Const) | (flag ? Const : 0);
229  }
230  void removeConst() { Mask &= ~Const; }
231  void addConst() { Mask |= Const; }
232
233  bool hasVolatile() const { return Mask & Volatile; }
234  void setVolatile(bool flag) {
235    Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
236  }
237  void removeVolatile() { Mask &= ~Volatile; }
238  void addVolatile() { Mask |= Volatile; }
239
240  bool hasRestrict() const { return Mask & Restrict; }
241  void setRestrict(bool flag) {
242    Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
243  }
244  void removeRestrict() { Mask &= ~Restrict; }
245  void addRestrict() { Mask |= Restrict; }
246
247  bool hasCVRQualifiers() const { return getCVRQualifiers(); }
248  unsigned getCVRQualifiers() const { return Mask & CVRMask; }
249  void setCVRQualifiers(unsigned mask) {
250    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
251    Mask = (Mask & ~CVRMask) | mask;
252  }
253  void removeCVRQualifiers(unsigned mask) {
254    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
255    Mask &= ~mask;
256  }
257  void removeCVRQualifiers() {
258    removeCVRQualifiers(CVRMask);
259  }
260  void addCVRQualifiers(unsigned mask) {
261    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
262    Mask |= mask;
263  }
264
265  bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
266  GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
267  void setObjCGCAttr(GC type) {
268    Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
269  }
270  void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
271  void addObjCGCAttr(GC type) {
272    assert(type);
273    setObjCGCAttr(type);
274  }
275  Qualifiers withoutObjCGCAttr() const {
276    Qualifiers qs = *this;
277    qs.removeObjCGCAttr();
278    return qs;
279  }
280  Qualifiers withoutObjCLifetime() const {
281    Qualifiers qs = *this;
282    qs.removeObjCLifetime();
283    return qs;
284  }
285
286  bool hasObjCLifetime() const { return Mask & LifetimeMask; }
287  ObjCLifetime getObjCLifetime() const {
288    return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
289  }
290  void setObjCLifetime(ObjCLifetime type) {
291    Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
292  }
293  void removeObjCLifetime() { setObjCLifetime(OCL_None); }
294  void addObjCLifetime(ObjCLifetime type) {
295    assert(type);
296    assert(!hasObjCLifetime());
297    Mask |= (type << LifetimeShift);
298  }
299
300  /// True if the lifetime is neither None or ExplicitNone.
301  bool hasNonTrivialObjCLifetime() const {
302    ObjCLifetime lifetime = getObjCLifetime();
303    return (lifetime > OCL_ExplicitNone);
304  }
305
306  /// True if the lifetime is either strong or weak.
307  bool hasStrongOrWeakObjCLifetime() const {
308    ObjCLifetime lifetime = getObjCLifetime();
309    return (lifetime == OCL_Strong || lifetime == OCL_Weak);
310  }
311
312  bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
313  unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
314  void setAddressSpace(unsigned space) {
315    assert(space <= MaxAddressSpace);
316    Mask = (Mask & ~AddressSpaceMask)
317         | (((uint32_t) space) << AddressSpaceShift);
318  }
319  void removeAddressSpace() { setAddressSpace(0); }
320  void addAddressSpace(unsigned space) {
321    assert(space);
322    setAddressSpace(space);
323  }
324
325  // Fast qualifiers are those that can be allocated directly
326  // on a QualType object.
327  bool hasFastQualifiers() const { return getFastQualifiers(); }
328  unsigned getFastQualifiers() const { return Mask & FastMask; }
329  void setFastQualifiers(unsigned mask) {
330    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
331    Mask = (Mask & ~FastMask) | mask;
332  }
333  void removeFastQualifiers(unsigned mask) {
334    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
335    Mask &= ~mask;
336  }
337  void removeFastQualifiers() {
338    removeFastQualifiers(FastMask);
339  }
340  void addFastQualifiers(unsigned mask) {
341    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
342    Mask |= mask;
343  }
344
345  /// hasNonFastQualifiers - Return true if the set contains any
346  /// qualifiers which require an ExtQuals node to be allocated.
347  bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
348  Qualifiers getNonFastQualifiers() const {
349    Qualifiers Quals = *this;
350    Quals.setFastQualifiers(0);
351    return Quals;
352  }
353
354  /// hasQualifiers - Return true if the set contains any qualifiers.
355  bool hasQualifiers() const { return Mask; }
356  bool empty() const { return !Mask; }
357
358  /// \brief Add the qualifiers from the given set to this set.
359  void addQualifiers(Qualifiers Q) {
360    // If the other set doesn't have any non-boolean qualifiers, just
361    // bit-or it in.
362    if (!(Q.Mask & ~CVRMask))
363      Mask |= Q.Mask;
364    else {
365      Mask |= (Q.Mask & CVRMask);
366      if (Q.hasAddressSpace())
367        addAddressSpace(Q.getAddressSpace());
368      if (Q.hasObjCGCAttr())
369        addObjCGCAttr(Q.getObjCGCAttr());
370      if (Q.hasObjCLifetime())
371        addObjCLifetime(Q.getObjCLifetime());
372    }
373  }
374
375  /// \brief Remove the qualifiers from the given set from this set.
376  void removeQualifiers(Qualifiers Q) {
377    // If the other set doesn't have any non-boolean qualifiers, just
378    // bit-and the inverse in.
379    if (!(Q.Mask & ~CVRMask))
380      Mask &= ~Q.Mask;
381    else {
382      Mask &= ~(Q.Mask & CVRMask);
383      if (getObjCGCAttr() == Q.getObjCGCAttr())
384        removeObjCGCAttr();
385      if (getObjCLifetime() == Q.getObjCLifetime())
386        removeObjCLifetime();
387      if (getAddressSpace() == Q.getAddressSpace())
388        removeAddressSpace();
389    }
390  }
391
392  /// \brief Add the qualifiers from the given set to this set, given that
393  /// they don't conflict.
394  void addConsistentQualifiers(Qualifiers qs) {
395    assert(getAddressSpace() == qs.getAddressSpace() ||
396           !hasAddressSpace() || !qs.hasAddressSpace());
397    assert(getObjCGCAttr() == qs.getObjCGCAttr() ||
398           !hasObjCGCAttr() || !qs.hasObjCGCAttr());
399    assert(getObjCLifetime() == qs.getObjCLifetime() ||
400           !hasObjCLifetime() || !qs.hasObjCLifetime());
401    Mask |= qs.Mask;
402  }
403
404  /// \brief Determines if these qualifiers compatibly include another set.
405  /// Generally this answers the question of whether an object with the other
406  /// qualifiers can be safely used as an object with these qualifiers.
407  bool compatiblyIncludes(Qualifiers other) const {
408    return
409      // Address spaces must match exactly.
410      getAddressSpace() == other.getAddressSpace() &&
411      // ObjC GC qualifiers can match, be added, or be removed, but can't be
412      // changed.
413      (getObjCGCAttr() == other.getObjCGCAttr() ||
414       !hasObjCGCAttr() || !other.hasObjCGCAttr()) &&
415      // ObjC lifetime qualifiers must match exactly.
416      getObjCLifetime() == other.getObjCLifetime() &&
417      // CVR qualifiers may subset.
418      (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask));
419  }
420
421  /// \brief Determines if these qualifiers compatibly include another set of
422  /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
423  ///
424  /// One set of Objective-C lifetime qualifiers compatibly includes the other
425  /// if the lifetime qualifiers match, or if both are non-__weak and the
426  /// including set also contains the 'const' qualifier.
427  bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
428    if (getObjCLifetime() == other.getObjCLifetime())
429      return true;
430
431    if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
432      return false;
433
434    return hasConst();
435  }
436
437  /// \brief Determine whether this set of qualifiers is a strict superset of
438  /// another set of qualifiers, not considering qualifier compatibility.
439  bool isStrictSupersetOf(Qualifiers Other) const;
440
441  bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
442  bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
443
444  operator bool() const { return hasQualifiers(); }
445
446  Qualifiers &operator+=(Qualifiers R) {
447    addQualifiers(R);
448    return *this;
449  }
450
451  // Union two qualifier sets.  If an enumerated qualifier appears
452  // in both sets, use the one from the right.
453  friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
454    L += R;
455    return L;
456  }
457
458  Qualifiers &operator-=(Qualifiers R) {
459    removeQualifiers(R);
460    return *this;
461  }
462
463  /// \brief Compute the difference between two qualifier sets.
464  friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
465    L -= R;
466    return L;
467  }
468
469  std::string getAsString() const;
470  std::string getAsString(const PrintingPolicy &Policy) const;
471
472  bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
473  void print(raw_ostream &OS, const PrintingPolicy &Policy,
474             bool appendSpaceIfNonEmpty = false) const;
475
476  void Profile(llvm::FoldingSetNodeID &ID) const {
477    ID.AddInteger(Mask);
478  }
479
480private:
481
482  // bits:     |0 1 2|3 .. 4|5  ..  7|8   ...   31|
483  //           |C R V|GCAttr|Lifetime|AddressSpace|
484  uint32_t Mask;
485
486  static const uint32_t GCAttrMask = 0x18;
487  static const uint32_t GCAttrShift = 3;
488  static const uint32_t LifetimeMask = 0xE0;
489  static const uint32_t LifetimeShift = 5;
490  static const uint32_t AddressSpaceMask = ~(CVRMask|GCAttrMask|LifetimeMask);
491  static const uint32_t AddressSpaceShift = 8;
492};
493
494/// A std::pair-like structure for storing a qualified type split
495/// into its local qualifiers and its locally-unqualified type.
496struct SplitQualType {
497  /// The locally-unqualified type.
498  const Type *Ty;
499
500  /// The local qualifiers.
501  Qualifiers Quals;
502
503  SplitQualType() : Ty(0), Quals() {}
504  SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
505
506  SplitQualType getSingleStepDesugaredType() const; // end of this file
507
508  // Make llvm::tie work.
509  operator std::pair<const Type *,Qualifiers>() const {
510    return std::pair<const Type *,Qualifiers>(Ty, Quals);
511  }
512
513  friend bool operator==(SplitQualType a, SplitQualType b) {
514    return a.Ty == b.Ty && a.Quals == b.Quals;
515  }
516  friend bool operator!=(SplitQualType a, SplitQualType b) {
517    return a.Ty != b.Ty || a.Quals != b.Quals;
518  }
519};
520
521/// QualType - For efficiency, we don't store CV-qualified types as nodes on
522/// their own: instead each reference to a type stores the qualifiers.  This
523/// greatly reduces the number of nodes we need to allocate for types (for
524/// example we only need one for 'int', 'const int', 'volatile int',
525/// 'const volatile int', etc).
526///
527/// As an added efficiency bonus, instead of making this a pair, we
528/// just store the two bits we care about in the low bits of the
529/// pointer.  To handle the packing/unpacking, we make QualType be a
530/// simple wrapper class that acts like a smart pointer.  A third bit
531/// indicates whether there are extended qualifiers present, in which
532/// case the pointer points to a special structure.
533class QualType {
534  // Thankfully, these are efficiently composable.
535  llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
536                       Qualifiers::FastWidth> Value;
537
538  const ExtQuals *getExtQualsUnsafe() const {
539    return Value.getPointer().get<const ExtQuals*>();
540  }
541
542  const Type *getTypePtrUnsafe() const {
543    return Value.getPointer().get<const Type*>();
544  }
545
546  const ExtQualsTypeCommonBase *getCommonPtr() const {
547    assert(!isNull() && "Cannot retrieve a NULL type pointer");
548    uintptr_t CommonPtrVal
549      = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
550    CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
551    return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
552  }
553
554  friend class QualifierCollector;
555public:
556  QualType() {}
557
558  QualType(const Type *Ptr, unsigned Quals)
559    : Value(Ptr, Quals) {}
560  QualType(const ExtQuals *Ptr, unsigned Quals)
561    : Value(Ptr, Quals) {}
562
563  unsigned getLocalFastQualifiers() const { return Value.getInt(); }
564  void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
565
566  /// Retrieves a pointer to the underlying (unqualified) type.
567  ///
568  /// This function requires that the type not be NULL. If the type might be
569  /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
570  const Type *getTypePtr() const;
571
572  const Type *getTypePtrOrNull() const;
573
574  /// Retrieves a pointer to the name of the base type.
575  const IdentifierInfo *getBaseTypeIdentifier() const;
576
577  /// Divides a QualType into its unqualified type and a set of local
578  /// qualifiers.
579  SplitQualType split() const;
580
581  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
582  static QualType getFromOpaquePtr(const void *Ptr) {
583    QualType T;
584    T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
585    return T;
586  }
587
588  const Type &operator*() const {
589    return *getTypePtr();
590  }
591
592  const Type *operator->() const {
593    return getTypePtr();
594  }
595
596  bool isCanonical() const;
597  bool isCanonicalAsParam() const;
598
599  /// isNull - Return true if this QualType doesn't point to a type yet.
600  bool isNull() const {
601    return Value.getPointer().isNull();
602  }
603
604  /// \brief Determine whether this particular QualType instance has the
605  /// "const" qualifier set, without looking through typedefs that may have
606  /// added "const" at a different level.
607  bool isLocalConstQualified() const {
608    return (getLocalFastQualifiers() & Qualifiers::Const);
609  }
610
611  /// \brief Determine whether this type is const-qualified.
612  bool isConstQualified() const;
613
614  /// \brief Determine whether this particular QualType instance has the
615  /// "restrict" qualifier set, without looking through typedefs that may have
616  /// added "restrict" at a different level.
617  bool isLocalRestrictQualified() const {
618    return (getLocalFastQualifiers() & Qualifiers::Restrict);
619  }
620
621  /// \brief Determine whether this type is restrict-qualified.
622  bool isRestrictQualified() const;
623
624  /// \brief Determine whether this particular QualType instance has the
625  /// "volatile" qualifier set, without looking through typedefs that may have
626  /// added "volatile" at a different level.
627  bool isLocalVolatileQualified() const {
628    return (getLocalFastQualifiers() & Qualifiers::Volatile);
629  }
630
631  /// \brief Determine whether this type is volatile-qualified.
632  bool isVolatileQualified() const;
633
634  /// \brief Determine whether this particular QualType instance has any
635  /// qualifiers, without looking through any typedefs that might add
636  /// qualifiers at a different level.
637  bool hasLocalQualifiers() const {
638    return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
639  }
640
641  /// \brief Determine whether this type has any qualifiers.
642  bool hasQualifiers() const;
643
644  /// \brief Determine whether this particular QualType instance has any
645  /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
646  /// instance.
647  bool hasLocalNonFastQualifiers() const {
648    return Value.getPointer().is<const ExtQuals*>();
649  }
650
651  /// \brief Retrieve the set of qualifiers local to this particular QualType
652  /// instance, not including any qualifiers acquired through typedefs or
653  /// other sugar.
654  Qualifiers getLocalQualifiers() const;
655
656  /// \brief Retrieve the set of qualifiers applied to this type.
657  Qualifiers getQualifiers() const;
658
659  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
660  /// local to this particular QualType instance, not including any qualifiers
661  /// acquired through typedefs or other sugar.
662  unsigned getLocalCVRQualifiers() const {
663    return getLocalFastQualifiers();
664  }
665
666  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
667  /// applied to this type.
668  unsigned getCVRQualifiers() const;
669
670  bool isConstant(ASTContext& Ctx) const {
671    return QualType::isConstant(*this, Ctx);
672  }
673
674  /// \brief Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
675  bool isPODType(ASTContext &Context) const;
676
677  /// isCXX98PODType() - Return true if this is a POD type according to the
678  /// rules of the C++98 standard, regardless of the current compilation's
679  /// language.
680  bool isCXX98PODType(ASTContext &Context) const;
681
682  /// isCXX11PODType() - Return true if this is a POD type according to the
683  /// more relaxed rules of the C++11 standard, regardless of the current
684  /// compilation's language.
685  /// (C++0x [basic.types]p9)
686  bool isCXX11PODType(ASTContext &Context) const;
687
688  /// isTrivialType - Return true if this is a trivial type
689  /// (C++0x [basic.types]p9)
690  bool isTrivialType(ASTContext &Context) const;
691
692  /// isTriviallyCopyableType - Return true if this is a trivially
693  /// copyable type (C++0x [basic.types]p9)
694  bool isTriviallyCopyableType(ASTContext &Context) const;
695
696  // Don't promise in the API that anything besides 'const' can be
697  // easily added.
698
699  /// addConst - add the specified type qualifier to this QualType.
700  void addConst() {
701    addFastQualifiers(Qualifiers::Const);
702  }
703  QualType withConst() const {
704    return withFastQualifiers(Qualifiers::Const);
705  }
706
707  /// addVolatile - add the specified type qualifier to this QualType.
708  void addVolatile() {
709    addFastQualifiers(Qualifiers::Volatile);
710  }
711  QualType withVolatile() const {
712    return withFastQualifiers(Qualifiers::Volatile);
713  }
714
715  /// Add the restrict qualifier to this QualType.
716  void addRestrict() {
717    addFastQualifiers(Qualifiers::Restrict);
718  }
719  QualType withRestrict() const {
720    return withFastQualifiers(Qualifiers::Restrict);
721  }
722
723  QualType withCVRQualifiers(unsigned CVR) const {
724    return withFastQualifiers(CVR);
725  }
726
727  void addFastQualifiers(unsigned TQs) {
728    assert(!(TQs & ~Qualifiers::FastMask)
729           && "non-fast qualifier bits set in mask!");
730    Value.setInt(Value.getInt() | TQs);
731  }
732
733  void removeLocalConst();
734  void removeLocalVolatile();
735  void removeLocalRestrict();
736  void removeLocalCVRQualifiers(unsigned Mask);
737
738  void removeLocalFastQualifiers() { Value.setInt(0); }
739  void removeLocalFastQualifiers(unsigned Mask) {
740    assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
741    Value.setInt(Value.getInt() & ~Mask);
742  }
743
744  // Creates a type with the given qualifiers in addition to any
745  // qualifiers already on this type.
746  QualType withFastQualifiers(unsigned TQs) const {
747    QualType T = *this;
748    T.addFastQualifiers(TQs);
749    return T;
750  }
751
752  // Creates a type with exactly the given fast qualifiers, removing
753  // any existing fast qualifiers.
754  QualType withExactLocalFastQualifiers(unsigned TQs) const {
755    return withoutLocalFastQualifiers().withFastQualifiers(TQs);
756  }
757
758  // Removes fast qualifiers, but leaves any extended qualifiers in place.
759  QualType withoutLocalFastQualifiers() const {
760    QualType T = *this;
761    T.removeLocalFastQualifiers();
762    return T;
763  }
764
765  QualType getCanonicalType() const;
766
767  /// \brief Return this type with all of the instance-specific qualifiers
768  /// removed, but without removing any qualifiers that may have been applied
769  /// through typedefs.
770  QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
771
772  /// \brief Retrieve the unqualified variant of the given type,
773  /// removing as little sugar as possible.
774  ///
775  /// This routine looks through various kinds of sugar to find the
776  /// least-desugared type that is unqualified. For example, given:
777  ///
778  /// \code
779  /// typedef int Integer;
780  /// typedef const Integer CInteger;
781  /// typedef CInteger DifferenceType;
782  /// \endcode
783  ///
784  /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
785  /// desugar until we hit the type \c Integer, which has no qualifiers on it.
786  ///
787  /// The resulting type might still be qualified if it's an array
788  /// type.  To strip qualifiers even from within an array type, use
789  /// ASTContext::getUnqualifiedArrayType.
790  inline QualType getUnqualifiedType() const;
791
792  /// getSplitUnqualifiedType - Retrieve the unqualified variant of the
793  /// given type, removing as little sugar as possible.
794  ///
795  /// Like getUnqualifiedType(), but also returns the set of
796  /// qualifiers that were built up.
797  ///
798  /// The resulting type might still be qualified if it's an array
799  /// type.  To strip qualifiers even from within an array type, use
800  /// ASTContext::getUnqualifiedArrayType.
801  inline SplitQualType getSplitUnqualifiedType() const;
802
803  /// \brief Determine whether this type is more qualified than the other
804  /// given type, requiring exact equality for non-CVR qualifiers.
805  bool isMoreQualifiedThan(QualType Other) const;
806
807  /// \brief Determine whether this type is at least as qualified as the other
808  /// given type, requiring exact equality for non-CVR qualifiers.
809  bool isAtLeastAsQualifiedAs(QualType Other) const;
810
811  QualType getNonReferenceType() const;
812
813  /// \brief Determine the type of a (typically non-lvalue) expression with the
814  /// specified result type.
815  ///
816  /// This routine should be used for expressions for which the return type is
817  /// explicitly specified (e.g., in a cast or call) and isn't necessarily
818  /// an lvalue. It removes a top-level reference (since there are no
819  /// expressions of reference type) and deletes top-level cvr-qualifiers
820  /// from non-class types (in C++) or all types (in C).
821  QualType getNonLValueExprType(ASTContext &Context) const;
822
823  /// getDesugaredType - Return the specified type with any "sugar" removed from
824  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
825  /// the type is already concrete, it returns it unmodified.  This is similar
826  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
827  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
828  /// concrete.
829  ///
830  /// Qualifiers are left in place.
831  QualType getDesugaredType(const ASTContext &Context) const {
832    return getDesugaredType(*this, Context);
833  }
834
835  SplitQualType getSplitDesugaredType() const {
836    return getSplitDesugaredType(*this);
837  }
838
839  /// \brief Return the specified type with one level of "sugar" removed from
840  /// the type.
841  ///
842  /// This routine takes off the first typedef, typeof, etc. If the outer level
843  /// of the type is already concrete, it returns it unmodified.
844  QualType getSingleStepDesugaredType(const ASTContext &Context) const {
845    return getSingleStepDesugaredTypeImpl(*this, Context);
846  }
847
848  /// IgnoreParens - Returns the specified type after dropping any
849  /// outer-level parentheses.
850  QualType IgnoreParens() const {
851    if (isa<ParenType>(*this))
852      return QualType::IgnoreParens(*this);
853    return *this;
854  }
855
856  /// operator==/!= - Indicate whether the specified types and qualifiers are
857  /// identical.
858  friend bool operator==(const QualType &LHS, const QualType &RHS) {
859    return LHS.Value == RHS.Value;
860  }
861  friend bool operator!=(const QualType &LHS, const QualType &RHS) {
862    return LHS.Value != RHS.Value;
863  }
864  std::string getAsString() const {
865    return getAsString(split());
866  }
867  static std::string getAsString(SplitQualType split) {
868    return getAsString(split.Ty, split.Quals);
869  }
870  static std::string getAsString(const Type *ty, Qualifiers qs);
871
872  std::string getAsString(const PrintingPolicy &Policy) const;
873
874  void print(raw_ostream &OS, const PrintingPolicy &Policy,
875             const Twine &PlaceHolder = Twine()) const {
876    print(split(), OS, Policy, PlaceHolder);
877  }
878  static void print(SplitQualType split, raw_ostream &OS,
879                    const PrintingPolicy &policy, const Twine &PlaceHolder) {
880    return print(split.Ty, split.Quals, OS, policy, PlaceHolder);
881  }
882  static void print(const Type *ty, Qualifiers qs,
883                    raw_ostream &OS, const PrintingPolicy &policy,
884                    const Twine &PlaceHolder);
885
886  void getAsStringInternal(std::string &Str,
887                           const PrintingPolicy &Policy) const {
888    return getAsStringInternal(split(), Str, Policy);
889  }
890  static void getAsStringInternal(SplitQualType split, std::string &out,
891                                  const PrintingPolicy &policy) {
892    return getAsStringInternal(split.Ty, split.Quals, out, policy);
893  }
894  static void getAsStringInternal(const Type *ty, Qualifiers qs,
895                                  std::string &out,
896                                  const PrintingPolicy &policy);
897
898  class StreamedQualTypeHelper {
899    const QualType &T;
900    const PrintingPolicy &Policy;
901    const Twine &PlaceHolder;
902  public:
903    StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
904                           const Twine &PlaceHolder)
905      : T(T), Policy(Policy), PlaceHolder(PlaceHolder) { }
906
907    friend raw_ostream &operator<<(raw_ostream &OS,
908                                   const StreamedQualTypeHelper &SQT) {
909      SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder);
910      return OS;
911    }
912  };
913
914  StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
915                                const Twine &PlaceHolder = Twine()) const {
916    return StreamedQualTypeHelper(*this, Policy, PlaceHolder);
917  }
918
919  void dump(const char *s) const;
920  void dump() const;
921
922  void Profile(llvm::FoldingSetNodeID &ID) const {
923    ID.AddPointer(getAsOpaquePtr());
924  }
925
926  /// getAddressSpace - Return the address space of this type.
927  inline unsigned getAddressSpace() const;
928
929  /// getObjCGCAttr - Returns gc attribute of this type.
930  inline Qualifiers::GC getObjCGCAttr() const;
931
932  /// isObjCGCWeak true when Type is objc's weak.
933  bool isObjCGCWeak() const {
934    return getObjCGCAttr() == Qualifiers::Weak;
935  }
936
937  /// isObjCGCStrong true when Type is objc's strong.
938  bool isObjCGCStrong() const {
939    return getObjCGCAttr() == Qualifiers::Strong;
940  }
941
942  /// getObjCLifetime - Returns lifetime attribute of this type.
943  Qualifiers::ObjCLifetime getObjCLifetime() const {
944    return getQualifiers().getObjCLifetime();
945  }
946
947  bool hasNonTrivialObjCLifetime() const {
948    return getQualifiers().hasNonTrivialObjCLifetime();
949  }
950
951  bool hasStrongOrWeakObjCLifetime() const {
952    return getQualifiers().hasStrongOrWeakObjCLifetime();
953  }
954
955  enum DestructionKind {
956    DK_none,
957    DK_cxx_destructor,
958    DK_objc_strong_lifetime,
959    DK_objc_weak_lifetime
960  };
961
962  /// isDestructedType - nonzero if objects of this type require
963  /// non-trivial work to clean up after.  Non-zero because it's
964  /// conceivable that qualifiers (objc_gc(weak)?) could make
965  /// something require destruction.
966  DestructionKind isDestructedType() const {
967    return isDestructedTypeImpl(*this);
968  }
969
970  /// \brief Determine whether expressions of the given type are forbidden
971  /// from being lvalues in C.
972  ///
973  /// The expression types that are forbidden to be lvalues are:
974  ///   - 'void', but not qualified void
975  ///   - function types
976  ///
977  /// The exact rule here is C99 6.3.2.1:
978  ///   An lvalue is an expression with an object type or an incomplete
979  ///   type other than void.
980  bool isCForbiddenLValueType() const;
981
982private:
983  // These methods are implemented in a separate translation unit;
984  // "static"-ize them to avoid creating temporary QualTypes in the
985  // caller.
986  static bool isConstant(QualType T, ASTContext& Ctx);
987  static QualType getDesugaredType(QualType T, const ASTContext &Context);
988  static SplitQualType getSplitDesugaredType(QualType T);
989  static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
990  static QualType getSingleStepDesugaredTypeImpl(QualType type,
991                                                 const ASTContext &C);
992  static QualType IgnoreParens(QualType T);
993  static DestructionKind isDestructedTypeImpl(QualType type);
994};
995
996} // end clang.
997
998namespace llvm {
999/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
1000/// to a specific Type class.
1001template<> struct simplify_type<const ::clang::QualType> {
1002  typedef const ::clang::Type *SimpleType;
1003  static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
1004    return Val.getTypePtr();
1005  }
1006};
1007template<> struct simplify_type< ::clang::QualType>
1008  : public simplify_type<const ::clang::QualType> {};
1009
1010// Teach SmallPtrSet that QualType is "basically a pointer".
1011template<>
1012class PointerLikeTypeTraits<clang::QualType> {
1013public:
1014  static inline void *getAsVoidPointer(clang::QualType P) {
1015    return P.getAsOpaquePtr();
1016  }
1017  static inline clang::QualType getFromVoidPointer(void *P) {
1018    return clang::QualType::getFromOpaquePtr(P);
1019  }
1020  // Various qualifiers go in low bits.
1021  enum { NumLowBitsAvailable = 0 };
1022};
1023
1024} // end namespace llvm
1025
1026namespace clang {
1027
1028/// \brief Base class that is common to both the \c ExtQuals and \c Type
1029/// classes, which allows \c QualType to access the common fields between the
1030/// two.
1031///
1032class ExtQualsTypeCommonBase {
1033  ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
1034    : BaseType(baseType), CanonicalType(canon) {}
1035
1036  /// \brief The "base" type of an extended qualifiers type (\c ExtQuals) or
1037  /// a self-referential pointer (for \c Type).
1038  ///
1039  /// This pointer allows an efficient mapping from a QualType to its
1040  /// underlying type pointer.
1041  const Type *const BaseType;
1042
1043  /// \brief The canonical type of this type.  A QualType.
1044  QualType CanonicalType;
1045
1046  friend class QualType;
1047  friend class Type;
1048  friend class ExtQuals;
1049};
1050
1051/// ExtQuals - We can encode up to four bits in the low bits of a
1052/// type pointer, but there are many more type qualifiers that we want
1053/// to be able to apply to an arbitrary type.  Therefore we have this
1054/// struct, intended to be heap-allocated and used by QualType to
1055/// store qualifiers.
1056///
1057/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
1058/// in three low bits on the QualType pointer; a fourth bit records whether
1059/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
1060/// Objective-C GC attributes) are much more rare.
1061class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
1062  // NOTE: changing the fast qualifiers should be straightforward as
1063  // long as you don't make 'const' non-fast.
1064  // 1. Qualifiers:
1065  //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
1066  //       Fast qualifiers must occupy the low-order bits.
1067  //    b) Update Qualifiers::FastWidth and FastMask.
1068  // 2. QualType:
1069  //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
1070  //    b) Update remove{Volatile,Restrict}, defined near the end of
1071  //       this header.
1072  // 3. ASTContext:
1073  //    a) Update get{Volatile,Restrict}Type.
1074
1075  /// Quals - the immutable set of qualifiers applied by this
1076  /// node;  always contains extended qualifiers.
1077  Qualifiers Quals;
1078
1079  ExtQuals *this_() { return this; }
1080
1081public:
1082  ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
1083    : ExtQualsTypeCommonBase(baseType,
1084                             canon.isNull() ? QualType(this_(), 0) : canon),
1085      Quals(quals)
1086  {
1087    assert(Quals.hasNonFastQualifiers()
1088           && "ExtQuals created with no fast qualifiers");
1089    assert(!Quals.hasFastQualifiers()
1090           && "ExtQuals created with fast qualifiers");
1091  }
1092
1093  Qualifiers getQualifiers() const { return Quals; }
1094
1095  bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
1096  Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
1097
1098  bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
1099  Qualifiers::ObjCLifetime getObjCLifetime() const {
1100    return Quals.getObjCLifetime();
1101  }
1102
1103  bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
1104  unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
1105
1106  const Type *getBaseType() const { return BaseType; }
1107
1108public:
1109  void Profile(llvm::FoldingSetNodeID &ID) const {
1110    Profile(ID, getBaseType(), Quals);
1111  }
1112  static void Profile(llvm::FoldingSetNodeID &ID,
1113                      const Type *BaseType,
1114                      Qualifiers Quals) {
1115    assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
1116    ID.AddPointer(BaseType);
1117    Quals.Profile(ID);
1118  }
1119};
1120
1121/// \brief The kind of C++0x ref-qualifier associated with a function type,
1122/// which determines whether a member function's "this" object can be an
1123/// lvalue, rvalue, or neither.
1124enum RefQualifierKind {
1125  /// \brief No ref-qualifier was provided.
1126  RQ_None = 0,
1127  /// \brief An lvalue ref-qualifier was provided (\c &).
1128  RQ_LValue,
1129  /// \brief An rvalue ref-qualifier was provided (\c &&).
1130  RQ_RValue
1131};
1132
1133/// Type - This is the base class of the type hierarchy.  A central concept
1134/// with types is that each type always has a canonical type.  A canonical type
1135/// is the type with any typedef names stripped out of it or the types it
1136/// references.  For example, consider:
1137///
1138///  typedef int  foo;
1139///  typedef foo* bar;
1140///    'int *'    'foo *'    'bar'
1141///
1142/// There will be a Type object created for 'int'.  Since int is canonical, its
1143/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
1144/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
1145/// there is a PointerType that represents 'int*', which, like 'int', is
1146/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
1147/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
1148/// is also 'int*'.
1149///
1150/// Non-canonical types are useful for emitting diagnostics, without losing
1151/// information about typedefs being used.  Canonical types are useful for type
1152/// comparisons (they allow by-pointer equality tests) and useful for reasoning
1153/// about whether something has a particular form (e.g. is a function type),
1154/// because they implicitly, recursively, strip all typedefs out of a type.
1155///
1156/// Types, once created, are immutable.
1157///
1158class Type : public ExtQualsTypeCommonBase {
1159public:
1160  enum TypeClass {
1161#define TYPE(Class, Base) Class,
1162#define LAST_TYPE(Class) TypeLast = Class,
1163#define ABSTRACT_TYPE(Class, Base)
1164#include "clang/AST/TypeNodes.def"
1165    TagFirst = Record, TagLast = Enum
1166  };
1167
1168private:
1169  Type(const Type &) LLVM_DELETED_FUNCTION;
1170  void operator=(const Type &) LLVM_DELETED_FUNCTION;
1171
1172  /// Bitfields required by the Type class.
1173  class TypeBitfields {
1174    friend class Type;
1175    template <class T> friend class TypePropertyCache;
1176
1177    /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
1178    unsigned TC : 8;
1179
1180    /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
1181    unsigned Dependent : 1;
1182
1183    /// \brief Whether this type somehow involves a template parameter, even
1184    /// if the resolution of the type does not depend on a template parameter.
1185    unsigned InstantiationDependent : 1;
1186
1187    /// \brief Whether this type is a variably-modified type (C99 6.7.5).
1188    unsigned VariablyModified : 1;
1189
1190    /// \brief Whether this type contains an unexpanded parameter pack
1191    /// (for C++0x variadic templates).
1192    unsigned ContainsUnexpandedParameterPack : 1;
1193
1194    /// \brief Nonzero if the cache (i.e. the bitfields here starting
1195    /// with 'Cache') is valid.  If so, then this is a
1196    /// LangOptions::VisibilityMode+1.
1197    mutable unsigned CacheValidAndVisibility : 2;
1198
1199    /// \brief True if the visibility was set explicitly in the source code.
1200    mutable unsigned CachedExplicitVisibility : 1;
1201
1202    /// \brief Linkage of this type.
1203    mutable unsigned CachedLinkage : 2;
1204
1205    /// \brief Whether this type involves and local or unnamed types.
1206    mutable unsigned CachedLocalOrUnnamed : 1;
1207
1208    /// \brief FromAST - Whether this type comes from an AST file.
1209    mutable unsigned FromAST : 1;
1210
1211    bool isCacheValid() const {
1212      return (CacheValidAndVisibility != 0);
1213    }
1214    Visibility getVisibility() const {
1215      assert(isCacheValid() && "getting linkage from invalid cache");
1216      return static_cast<Visibility>(CacheValidAndVisibility-1);
1217    }
1218    bool isVisibilityExplicit() const {
1219      assert(isCacheValid() && "getting linkage from invalid cache");
1220      return CachedExplicitVisibility;
1221    }
1222    Linkage getLinkage() const {
1223      assert(isCacheValid() && "getting linkage from invalid cache");
1224      return static_cast<Linkage>(CachedLinkage);
1225    }
1226    bool hasLocalOrUnnamedType() const {
1227      assert(isCacheValid() && "getting linkage from invalid cache");
1228      return CachedLocalOrUnnamed;
1229    }
1230  };
1231  enum { NumTypeBits = 19 };
1232
1233protected:
1234  // These classes allow subclasses to somewhat cleanly pack bitfields
1235  // into Type.
1236
1237  class ArrayTypeBitfields {
1238    friend class ArrayType;
1239
1240    unsigned : NumTypeBits;
1241
1242    /// IndexTypeQuals - CVR qualifiers from declarations like
1243    /// 'int X[static restrict 4]'. For function parameters only.
1244    unsigned IndexTypeQuals : 3;
1245
1246    /// SizeModifier - storage class qualifiers from declarations like
1247    /// 'int X[static restrict 4]'. For function parameters only.
1248    /// Actually an ArrayType::ArraySizeModifier.
1249    unsigned SizeModifier : 3;
1250  };
1251
1252  class BuiltinTypeBitfields {
1253    friend class BuiltinType;
1254
1255    unsigned : NumTypeBits;
1256
1257    /// The kind (BuiltinType::Kind) of builtin type this is.
1258    unsigned Kind : 8;
1259  };
1260
1261  class FunctionTypeBitfields {
1262    friend class FunctionType;
1263
1264    unsigned : NumTypeBits;
1265
1266    /// Extra information which affects how the function is called, like
1267    /// regparm and the calling convention.
1268    unsigned ExtInfo : 9;
1269
1270    /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
1271    /// other bitfields.
1272    /// The qualifiers are part of FunctionProtoType because...
1273    ///
1274    /// C++ 8.3.5p4: The return type, the parameter type list and the
1275    /// cv-qualifier-seq, [...], are part of the function type.
1276    unsigned TypeQuals : 3;
1277
1278    /// \brief The ref-qualifier associated with a \c FunctionProtoType.
1279    ///
1280    /// This is a value of type \c RefQualifierKind.
1281    unsigned RefQualifier : 2;
1282  };
1283
1284  class ObjCObjectTypeBitfields {
1285    friend class ObjCObjectType;
1286
1287    unsigned : NumTypeBits;
1288
1289    /// NumProtocols - The number of protocols stored directly on this
1290    /// object type.
1291    unsigned NumProtocols : 32 - NumTypeBits;
1292  };
1293
1294  class ReferenceTypeBitfields {
1295    friend class ReferenceType;
1296
1297    unsigned : NumTypeBits;
1298
1299    /// True if the type was originally spelled with an lvalue sigil.
1300    /// This is never true of rvalue references but can also be false
1301    /// on lvalue references because of C++0x [dcl.typedef]p9,
1302    /// as follows:
1303    ///
1304    ///   typedef int &ref;    // lvalue, spelled lvalue
1305    ///   typedef int &&rvref; // rvalue
1306    ///   ref &a;              // lvalue, inner ref, spelled lvalue
1307    ///   ref &&a;             // lvalue, inner ref
1308    ///   rvref &a;            // lvalue, inner ref, spelled lvalue
1309    ///   rvref &&a;           // rvalue, inner ref
1310    unsigned SpelledAsLValue : 1;
1311
1312    /// True if the inner type is a reference type.  This only happens
1313    /// in non-canonical forms.
1314    unsigned InnerRef : 1;
1315  };
1316
1317  class TypeWithKeywordBitfields {
1318    friend class TypeWithKeyword;
1319
1320    unsigned : NumTypeBits;
1321
1322    /// An ElaboratedTypeKeyword.  8 bits for efficient access.
1323    unsigned Keyword : 8;
1324  };
1325
1326  class VectorTypeBitfields {
1327    friend class VectorType;
1328
1329    unsigned : NumTypeBits;
1330
1331    /// VecKind - The kind of vector, either a generic vector type or some
1332    /// target-specific vector type such as for AltiVec or Neon.
1333    unsigned VecKind : 3;
1334
1335    /// NumElements - The number of elements in the vector.
1336    unsigned NumElements : 29 - NumTypeBits;
1337  };
1338
1339  class AttributedTypeBitfields {
1340    friend class AttributedType;
1341
1342    unsigned : NumTypeBits;
1343
1344    /// AttrKind - an AttributedType::Kind
1345    unsigned AttrKind : 32 - NumTypeBits;
1346  };
1347
1348  union {
1349    TypeBitfields TypeBits;
1350    ArrayTypeBitfields ArrayTypeBits;
1351    AttributedTypeBitfields AttributedTypeBits;
1352    BuiltinTypeBitfields BuiltinTypeBits;
1353    FunctionTypeBitfields FunctionTypeBits;
1354    ObjCObjectTypeBitfields ObjCObjectTypeBits;
1355    ReferenceTypeBitfields ReferenceTypeBits;
1356    TypeWithKeywordBitfields TypeWithKeywordBits;
1357    VectorTypeBitfields VectorTypeBits;
1358  };
1359
1360private:
1361  /// \brief Set whether this type comes from an AST file.
1362  void setFromAST(bool V = true) const {
1363    TypeBits.FromAST = V;
1364  }
1365
1366  template <class T> friend class TypePropertyCache;
1367
1368protected:
1369  // silence VC++ warning C4355: 'this' : used in base member initializer list
1370  Type *this_() { return this; }
1371  Type(TypeClass tc, QualType canon, bool Dependent,
1372       bool InstantiationDependent, bool VariablyModified,
1373       bool ContainsUnexpandedParameterPack)
1374    : ExtQualsTypeCommonBase(this,
1375                             canon.isNull() ? QualType(this_(), 0) : canon) {
1376    TypeBits.TC = tc;
1377    TypeBits.Dependent = Dependent;
1378    TypeBits.InstantiationDependent = Dependent || InstantiationDependent;
1379    TypeBits.VariablyModified = VariablyModified;
1380    TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
1381    TypeBits.CacheValidAndVisibility = 0;
1382    TypeBits.CachedExplicitVisibility = false;
1383    TypeBits.CachedLocalOrUnnamed = false;
1384    TypeBits.CachedLinkage = NoLinkage;
1385    TypeBits.FromAST = false;
1386  }
1387  friend class ASTContext;
1388
1389  void setDependent(bool D = true) {
1390    TypeBits.Dependent = D;
1391    if (D)
1392      TypeBits.InstantiationDependent = true;
1393  }
1394  void setInstantiationDependent(bool D = true) {
1395    TypeBits.InstantiationDependent = D; }
1396  void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM;
1397  }
1398  void setContainsUnexpandedParameterPack(bool PP = true) {
1399    TypeBits.ContainsUnexpandedParameterPack = PP;
1400  }
1401
1402public:
1403  TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1404
1405  /// \brief Whether this type comes from an AST file.
1406  bool isFromAST() const { return TypeBits.FromAST; }
1407
1408  /// \brief Whether this type is or contains an unexpanded parameter
1409  /// pack, used to support C++0x variadic templates.
1410  ///
1411  /// A type that contains a parameter pack shall be expanded by the
1412  /// ellipsis operator at some point. For example, the typedef in the
1413  /// following example contains an unexpanded parameter pack 'T':
1414  ///
1415  /// \code
1416  /// template<typename ...T>
1417  /// struct X {
1418  ///   typedef T* pointer_types; // ill-formed; T is a parameter pack.
1419  /// };
1420  /// \endcode
1421  ///
1422  /// Note that this routine does not specify which
1423  bool containsUnexpandedParameterPack() const {
1424    return TypeBits.ContainsUnexpandedParameterPack;
1425  }
1426
1427  /// Determines if this type would be canonical if it had no further
1428  /// qualification.
1429  bool isCanonicalUnqualified() const {
1430    return CanonicalType == QualType(this, 0);
1431  }
1432
1433  /// Pull a single level of sugar off of this locally-unqualified type.
1434  /// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
1435  /// or QualType::getSingleStepDesugaredType(const ASTContext&).
1436  QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
1437
1438  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
1439  /// object types, function types, and incomplete types.
1440
1441  /// isIncompleteType - Return true if this is an incomplete type.
1442  /// A type that can describe objects, but which lacks information needed to
1443  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
1444  /// routine will need to determine if the size is actually required.
1445  ///
1446  /// \brief Def If non-NULL, and the type refers to some kind of declaration
1447  /// that can be completed (such as a C struct, C++ class, or Objective-C
1448  /// class), will be set to the declaration.
1449  bool isIncompleteType(NamedDecl **Def = 0) const;
1450
1451  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
1452  /// type, in other words, not a function type.
1453  bool isIncompleteOrObjectType() const {
1454    return !isFunctionType();
1455  }
1456
1457  /// \brief Determine whether this type is an object type.
1458  bool isObjectType() const {
1459    // C++ [basic.types]p8:
1460    //   An object type is a (possibly cv-qualified) type that is not a
1461    //   function type, not a reference type, and not a void type.
1462    return !isReferenceType() && !isFunctionType() && !isVoidType();
1463  }
1464
1465  /// isLiteralType - Return true if this is a literal type
1466  /// (C++0x [basic.types]p10)
1467  bool isLiteralType() const;
1468
1469  /// \brief Test if this type is a standard-layout type.
1470  /// (C++0x [basic.type]p9)
1471  bool isStandardLayoutType() const;
1472
1473  /// Helper methods to distinguish type categories. All type predicates
1474  /// operate on the canonical type, ignoring typedefs and qualifiers.
1475
1476  /// isBuiltinType - returns true if the type is a builtin type.
1477  bool isBuiltinType() const;
1478
1479  /// isSpecificBuiltinType - Test for a particular builtin type.
1480  bool isSpecificBuiltinType(unsigned K) const;
1481
1482  /// isPlaceholderType - Test for a type which does not represent an
1483  /// actual type-system type but is instead used as a placeholder for
1484  /// various convenient purposes within Clang.  All such types are
1485  /// BuiltinTypes.
1486  bool isPlaceholderType() const;
1487  const BuiltinType *getAsPlaceholderType() const;
1488
1489  /// isSpecificPlaceholderType - Test for a specific placeholder type.
1490  bool isSpecificPlaceholderType(unsigned K) const;
1491
1492  /// isNonOverloadPlaceholderType - Test for a placeholder type
1493  /// other than Overload;  see BuiltinType::isNonOverloadPlaceholderType.
1494  bool isNonOverloadPlaceholderType() const;
1495
1496  /// isIntegerType() does *not* include complex integers (a GCC extension).
1497  /// isComplexIntegerType() can be used to test for complex integers.
1498  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
1499  bool isEnumeralType() const;
1500  bool isBooleanType() const;
1501  bool isCharType() const;
1502  bool isWideCharType() const;
1503  bool isChar16Type() const;
1504  bool isChar32Type() const;
1505  bool isAnyCharacterType() const;
1506  bool isIntegralType(ASTContext &Ctx) const;
1507
1508  /// \brief Determine whether this type is an integral or enumeration type.
1509  bool isIntegralOrEnumerationType() const;
1510  /// \brief Determine whether this type is an integral or unscoped enumeration
1511  /// type.
1512  bool isIntegralOrUnscopedEnumerationType() const;
1513
1514  /// Floating point categories.
1515  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
1516  /// isComplexType() does *not* include complex integers (a GCC extension).
1517  /// isComplexIntegerType() can be used to test for complex integers.
1518  bool isComplexType() const;      // C99 6.2.5p11 (complex)
1519  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
1520  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
1521  bool isHalfType() const;         // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
1522  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
1523  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
1524  bool isVoidType() const;         // C99 6.2.5p19
1525  bool isDerivedType() const;      // C99 6.2.5p20
1526  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
1527  bool isAggregateType() const;
1528  bool isFundamentalType() const;
1529  bool isCompoundType() const;
1530
1531  // Type Predicates: Check to see if this type is structurally the specified
1532  // type, ignoring typedefs and qualifiers.
1533  bool isFunctionType() const;
1534  bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
1535  bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
1536  bool isPointerType() const;
1537  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
1538  bool isBlockPointerType() const;
1539  bool isVoidPointerType() const;
1540  bool isReferenceType() const;
1541  bool isLValueReferenceType() const;
1542  bool isRValueReferenceType() const;
1543  bool isFunctionPointerType() const;
1544  bool isMemberPointerType() const;
1545  bool isMemberFunctionPointerType() const;
1546  bool isMemberDataPointerType() const;
1547  bool isArrayType() const;
1548  bool isConstantArrayType() const;
1549  bool isIncompleteArrayType() const;
1550  bool isVariableArrayType() const;
1551  bool isDependentSizedArrayType() const;
1552  bool isRecordType() const;
1553  bool isClassType() const;
1554  bool isStructureType() const;
1555  bool isInterfaceType() const;
1556  bool isStructureOrClassType() const;
1557  bool isUnionType() const;
1558  bool isComplexIntegerType() const;            // GCC _Complex integer type.
1559  bool isVectorType() const;                    // GCC vector type.
1560  bool isExtVectorType() const;                 // Extended vector type.
1561  bool isObjCObjectPointerType() const;         // pointer to ObjC object
1562  bool isObjCRetainableType() const;            // ObjC object or block pointer
1563  bool isObjCLifetimeType() const;              // (array of)* retainable type
1564  bool isObjCIndirectLifetimeType() const;      // (pointer to)* lifetime type
1565  bool isObjCNSObjectType() const;              // __attribute__((NSObject))
1566  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
1567  // for the common case.
1568  bool isObjCObjectType() const;                // NSString or typeof(*(id)0)
1569  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
1570  bool isObjCQualifiedIdType() const;           // id<foo>
1571  bool isObjCQualifiedClassType() const;        // Class<foo>
1572  bool isObjCObjectOrInterfaceType() const;
1573  bool isObjCIdType() const;                    // id
1574  bool isObjCClassType() const;                 // Class
1575  bool isObjCSelType() const;                 // Class
1576  bool isObjCBuiltinType() const;               // 'id' or 'Class'
1577  bool isObjCARCBridgableType() const;
1578  bool isCARCBridgableType() const;
1579  bool isTemplateTypeParmType() const;          // C++ template type parameter
1580  bool isNullPtrType() const;                   // C++0x nullptr_t
1581  bool isAtomicType() const;                    // C11 _Atomic()
1582
1583  bool isImage1dT() const;                      // OpenCL image1d_t
1584  bool isImage1dArrayT() const;                 // OpenCL image1d_array_t
1585  bool isImage1dBufferT() const;                // OpenCL image1d_buffer_t
1586  bool isImage2dT() const;                      // OpenCL image2d_t
1587  bool isImage2dArrayT() const;                 // OpenCL image2d_array_t
1588  bool isImage3dT() const;                      // OpenCL image3d_t
1589
1590  bool isImageType() const;                     // Any OpenCL image type
1591
1592  bool isOpenCLSpecificType() const;            // Any OpenCL specific type
1593
1594  /// Determines if this type, which must satisfy
1595  /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
1596  /// than implicitly __strong.
1597  bool isObjCARCImplicitlyUnretainedType() const;
1598
1599  /// Return the implicit lifetime for this type, which must not be dependent.
1600  Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
1601
1602  enum ScalarTypeKind {
1603    STK_CPointer,
1604    STK_BlockPointer,
1605    STK_ObjCObjectPointer,
1606    STK_MemberPointer,
1607    STK_Bool,
1608    STK_Integral,
1609    STK_Floating,
1610    STK_IntegralComplex,
1611    STK_FloatingComplex
1612  };
1613  /// getScalarTypeKind - Given that this is a scalar type, classify it.
1614  ScalarTypeKind getScalarTypeKind() const;
1615
1616  /// isDependentType - Whether this type is a dependent type, meaning
1617  /// that its definition somehow depends on a template parameter
1618  /// (C++ [temp.dep.type]).
1619  bool isDependentType() const { return TypeBits.Dependent; }
1620
1621  /// \brief Determine whether this type is an instantiation-dependent type,
1622  /// meaning that the type involves a template parameter (even if the
1623  /// definition does not actually depend on the type substituted for that
1624  /// template parameter).
1625  bool isInstantiationDependentType() const {
1626    return TypeBits.InstantiationDependent;
1627  }
1628
1629  /// \brief Whether this type is a variably-modified type (C99 6.7.5).
1630  bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
1631
1632  /// \brief Whether this type involves a variable-length array type
1633  /// with a definite size.
1634  bool hasSizedVLAType() const;
1635
1636  /// \brief Whether this type is or contains a local or unnamed type.
1637  bool hasUnnamedOrLocalType() const;
1638
1639  bool isOverloadableType() const;
1640
1641  /// \brief Determine wither this type is a C++ elaborated-type-specifier.
1642  bool isElaboratedTypeSpecifier() const;
1643
1644  bool canDecayToPointerType() const;
1645
1646  /// hasPointerRepresentation - Whether this type is represented
1647  /// natively as a pointer; this includes pointers, references, block
1648  /// pointers, and Objective-C interface, qualified id, and qualified
1649  /// interface types, as well as nullptr_t.
1650  bool hasPointerRepresentation() const;
1651
1652  /// hasObjCPointerRepresentation - Whether this type can represent
1653  /// an objective pointer type for the purpose of GC'ability
1654  bool hasObjCPointerRepresentation() const;
1655
1656  /// \brief Determine whether this type has an integer representation
1657  /// of some sort, e.g., it is an integer type or a vector.
1658  bool hasIntegerRepresentation() const;
1659
1660  /// \brief Determine whether this type has an signed integer representation
1661  /// of some sort, e.g., it is an signed integer type or a vector.
1662  bool hasSignedIntegerRepresentation() const;
1663
1664  /// \brief Determine whether this type has an unsigned integer representation
1665  /// of some sort, e.g., it is an unsigned integer type or a vector.
1666  bool hasUnsignedIntegerRepresentation() const;
1667
1668  /// \brief Determine whether this type has a floating-point representation
1669  /// of some sort, e.g., it is a floating-point type or a vector thereof.
1670  bool hasFloatingRepresentation() const;
1671
1672  // Type Checking Functions: Check to see if this type is structurally the
1673  // specified type, ignoring typedefs and qualifiers, and return a pointer to
1674  // the best type we can.
1675  const RecordType *getAsStructureType() const;
1676  /// NOTE: getAs*ArrayType are methods on ASTContext.
1677  const RecordType *getAsUnionType() const;
1678  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
1679  // The following is a convenience method that returns an ObjCObjectPointerType
1680  // for object declared using an interface.
1681  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
1682  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
1683  const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
1684  const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
1685
1686  /// \brief Retrieves the CXXRecordDecl that this type refers to, either
1687  /// because the type is a RecordType or because it is the injected-class-name
1688  /// type of a class template or class template partial specialization.
1689  CXXRecordDecl *getAsCXXRecordDecl() const;
1690
1691  /// If this is a pointer or reference to a RecordType, return the
1692  /// CXXRecordDecl that that type refers to.
1693  ///
1694  /// If this is not a pointer or reference, or the type being pointed to does
1695  /// not refer to a CXXRecordDecl, returns NULL.
1696  const CXXRecordDecl *getPointeeCXXRecordDecl() const;
1697
1698  /// \brief Get the AutoType whose type will be deduced for a variable with
1699  /// an initializer of this type. This looks through declarators like pointer
1700  /// types, but not through decltype or typedefs.
1701  AutoType *getContainedAutoType() const;
1702
1703  /// Member-template getAs<specific type>'.  Look through sugar for
1704  /// an instance of \<specific type>.   This scheme will eventually
1705  /// replace the specific getAsXXXX methods above.
1706  ///
1707  /// There are some specializations of this member template listed
1708  /// immediately following this class.
1709  template <typename T> const T *getAs() const;
1710
1711  /// A variant of getAs<> for array types which silently discards
1712  /// qualifiers from the outermost type.
1713  const ArrayType *getAsArrayTypeUnsafe() const;
1714
1715  /// Member-template castAs<specific type>.  Look through sugar for
1716  /// the underlying instance of \<specific type>.
1717  ///
1718  /// This method has the same relationship to getAs<T> as cast<T> has
1719  /// to dyn_cast<T>; which is to say, the underlying type *must*
1720  /// have the intended type, and this method will never return null.
1721  template <typename T> const T *castAs() const;
1722
1723  /// A variant of castAs<> for array type which silently discards
1724  /// qualifiers from the outermost type.
1725  const ArrayType *castAsArrayTypeUnsafe() const;
1726
1727  /// getBaseElementTypeUnsafe - Get the base element type of this
1728  /// type, potentially discarding type qualifiers.  This method
1729  /// should never be used when type qualifiers are meaningful.
1730  const Type *getBaseElementTypeUnsafe() const;
1731
1732  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
1733  /// element type of the array, potentially with type qualifiers missing.
1734  /// This method should never be used when type qualifiers are meaningful.
1735  const Type *getArrayElementTypeNoTypeQual() const;
1736
1737  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
1738  /// pointer, this returns the respective pointee.
1739  QualType getPointeeType() const;
1740
1741  /// getUnqualifiedDesugaredType() - Return the specified type with
1742  /// any "sugar" removed from the type, removing any typedefs,
1743  /// typeofs, etc., as well as any qualifiers.
1744  const Type *getUnqualifiedDesugaredType() const;
1745
1746  /// More type predicates useful for type checking/promotion
1747  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
1748
1749  /// isSignedIntegerType - Return true if this is an integer type that is
1750  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
1751  /// or an enum decl which has a signed representation.
1752  bool isSignedIntegerType() const;
1753
1754  /// isUnsignedIntegerType - Return true if this is an integer type that is
1755  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
1756  /// or an enum decl which has an unsigned representation.
1757  bool isUnsignedIntegerType() const;
1758
1759  /// Determines whether this is an integer type that is signed or an
1760  /// enumeration types whose underlying type is a signed integer type.
1761  bool isSignedIntegerOrEnumerationType() const;
1762
1763  /// Determines whether this is an integer type that is unsigned or an
1764  /// enumeration types whose underlying type is a unsigned integer type.
1765  bool isUnsignedIntegerOrEnumerationType() const;
1766
1767  /// isConstantSizeType - Return true if this is not a variable sized type,
1768  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
1769  /// incomplete types.
1770  bool isConstantSizeType() const;
1771
1772  /// isSpecifierType - Returns true if this type can be represented by some
1773  /// set of type specifiers.
1774  bool isSpecifierType() const;
1775
1776  /// \brief Determine the linkage of this type.
1777  Linkage getLinkage() const;
1778
1779  /// \brief Determine the visibility of this type.
1780  Visibility getVisibility() const;
1781
1782  /// \brief Return true if the visibility was explicitly set is the code.
1783  bool isVisibilityExplicit() const;
1784
1785  /// \brief Determine the linkage and visibility of this type.
1786  std::pair<Linkage,Visibility> getLinkageAndVisibility() const;
1787
1788  /// \brief Note that the linkage is no longer known.
1789  void ClearLinkageCache();
1790
1791  const char *getTypeClassName() const;
1792
1793  QualType getCanonicalTypeInternal() const {
1794    return CanonicalType;
1795  }
1796  CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
1797  LLVM_ATTRIBUTE_USED void dump() const;
1798
1799  friend class ASTReader;
1800  friend class ASTWriter;
1801};
1802
1803/// \brief This will check for a TypedefType by removing any existing sugar
1804/// until it reaches a TypedefType or a non-sugared type.
1805template <> const TypedefType *Type::getAs() const;
1806
1807/// \brief This will check for a TemplateSpecializationType by removing any
1808/// existing sugar until it reaches a TemplateSpecializationType or a
1809/// non-sugared type.
1810template <> const TemplateSpecializationType *Type::getAs() const;
1811
1812// We can do canonical leaf types faster, because we don't have to
1813// worry about preserving child type decoration.
1814#define TYPE(Class, Base)
1815#define LEAF_TYPE(Class) \
1816template <> inline const Class##Type *Type::getAs() const { \
1817  return dyn_cast<Class##Type>(CanonicalType); \
1818} \
1819template <> inline const Class##Type *Type::castAs() const { \
1820  return cast<Class##Type>(CanonicalType); \
1821}
1822#include "clang/AST/TypeNodes.def"
1823
1824
1825/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
1826/// types are always canonical and have a literal name field.
1827class BuiltinType : public Type {
1828public:
1829  enum Kind {
1830#define BUILTIN_TYPE(Id, SingletonId) Id,
1831#define LAST_BUILTIN_TYPE(Id) LastKind = Id
1832#include "clang/AST/BuiltinTypes.def"
1833  };
1834
1835public:
1836  BuiltinType(Kind K)
1837    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
1838           /*InstantiationDependent=*/(K == Dependent),
1839           /*VariablyModified=*/false,
1840           /*Unexpanded paramter pack=*/false) {
1841    BuiltinTypeBits.Kind = K;
1842  }
1843
1844  Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
1845  StringRef getName(const PrintingPolicy &Policy) const;
1846  const char *getNameAsCString(const PrintingPolicy &Policy) const {
1847    // The StringRef is null-terminated.
1848    StringRef str = getName(Policy);
1849    assert(!str.empty() && str.data()[str.size()] == '\0');
1850    return str.data();
1851  }
1852
1853  bool isSugared() const { return false; }
1854  QualType desugar() const { return QualType(this, 0); }
1855
1856  bool isInteger() const {
1857    return getKind() >= Bool && getKind() <= Int128;
1858  }
1859
1860  bool isSignedInteger() const {
1861    return getKind() >= Char_S && getKind() <= Int128;
1862  }
1863
1864  bool isUnsignedInteger() const {
1865    return getKind() >= Bool && getKind() <= UInt128;
1866  }
1867
1868  bool isFloatingPoint() const {
1869    return getKind() >= Half && getKind() <= LongDouble;
1870  }
1871
1872  /// Determines whether the given kind corresponds to a placeholder type.
1873  static bool isPlaceholderTypeKind(Kind K) {
1874    return K >= Overload;
1875  }
1876
1877  /// Determines whether this type is a placeholder type, i.e. a type
1878  /// which cannot appear in arbitrary positions in a fully-formed
1879  /// expression.
1880  bool isPlaceholderType() const {
1881    return isPlaceholderTypeKind(getKind());
1882  }
1883
1884  /// Determines whether this type is a placeholder type other than
1885  /// Overload.  Most placeholder types require only syntactic
1886  /// information about their context in order to be resolved (e.g.
1887  /// whether it is a call expression), which means they can (and
1888  /// should) be resolved in an earlier "phase" of analysis.
1889  /// Overload expressions sometimes pick up further information
1890  /// from their context, like whether the context expects a
1891  /// specific function-pointer type, and so frequently need
1892  /// special treatment.
1893  bool isNonOverloadPlaceholderType() const {
1894    return getKind() > Overload;
1895  }
1896
1897  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
1898};
1899
1900/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
1901/// types (_Complex float etc) as well as the GCC integer complex extensions.
1902///
1903class ComplexType : public Type, public llvm::FoldingSetNode {
1904  QualType ElementType;
1905  ComplexType(QualType Element, QualType CanonicalPtr) :
1906    Type(Complex, CanonicalPtr, Element->isDependentType(),
1907         Element->isInstantiationDependentType(),
1908         Element->isVariablyModifiedType(),
1909         Element->containsUnexpandedParameterPack()),
1910    ElementType(Element) {
1911  }
1912  friend class ASTContext;  // ASTContext creates these.
1913
1914public:
1915  QualType getElementType() const { return ElementType; }
1916
1917  bool isSugared() const { return false; }
1918  QualType desugar() const { return QualType(this, 0); }
1919
1920  void Profile(llvm::FoldingSetNodeID &ID) {
1921    Profile(ID, getElementType());
1922  }
1923  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
1924    ID.AddPointer(Element.getAsOpaquePtr());
1925  }
1926
1927  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
1928};
1929
1930/// ParenType - Sugar for parentheses used when specifying types.
1931///
1932class ParenType : public Type, public llvm::FoldingSetNode {
1933  QualType Inner;
1934
1935  ParenType(QualType InnerType, QualType CanonType) :
1936    Type(Paren, CanonType, InnerType->isDependentType(),
1937         InnerType->isInstantiationDependentType(),
1938         InnerType->isVariablyModifiedType(),
1939         InnerType->containsUnexpandedParameterPack()),
1940    Inner(InnerType) {
1941  }
1942  friend class ASTContext;  // ASTContext creates these.
1943
1944public:
1945
1946  QualType getInnerType() const { return Inner; }
1947
1948  bool isSugared() const { return true; }
1949  QualType desugar() const { return getInnerType(); }
1950
1951  void Profile(llvm::FoldingSetNodeID &ID) {
1952    Profile(ID, getInnerType());
1953  }
1954  static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
1955    Inner.Profile(ID);
1956  }
1957
1958  static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
1959};
1960
1961/// PointerType - C99 6.7.5.1 - Pointer Declarators.
1962///
1963class PointerType : public Type, public llvm::FoldingSetNode {
1964  QualType PointeeType;
1965
1966  PointerType(QualType Pointee, QualType CanonicalPtr) :
1967    Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
1968         Pointee->isInstantiationDependentType(),
1969         Pointee->isVariablyModifiedType(),
1970         Pointee->containsUnexpandedParameterPack()),
1971    PointeeType(Pointee) {
1972  }
1973  friend class ASTContext;  // ASTContext creates these.
1974
1975public:
1976
1977  QualType getPointeeType() const { return PointeeType; }
1978
1979  bool isSugared() const { return false; }
1980  QualType desugar() const { return QualType(this, 0); }
1981
1982  void Profile(llvm::FoldingSetNodeID &ID) {
1983    Profile(ID, getPointeeType());
1984  }
1985  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1986    ID.AddPointer(Pointee.getAsOpaquePtr());
1987  }
1988
1989  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
1990};
1991
1992/// BlockPointerType - pointer to a block type.
1993/// This type is to represent types syntactically represented as
1994/// "void (^)(int)", etc. Pointee is required to always be a function type.
1995///
1996class BlockPointerType : public Type, public llvm::FoldingSetNode {
1997  QualType PointeeType;  // Block is some kind of pointer type
1998  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
1999    Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
2000         Pointee->isInstantiationDependentType(),
2001         Pointee->isVariablyModifiedType(),
2002         Pointee->containsUnexpandedParameterPack()),
2003    PointeeType(Pointee) {
2004  }
2005  friend class ASTContext;  // ASTContext creates these.
2006
2007public:
2008
2009  // Get the pointee type. Pointee is required to always be a function type.
2010  QualType getPointeeType() const { return PointeeType; }
2011
2012  bool isSugared() const { return false; }
2013  QualType desugar() const { return QualType(this, 0); }
2014
2015  void Profile(llvm::FoldingSetNodeID &ID) {
2016      Profile(ID, getPointeeType());
2017  }
2018  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2019      ID.AddPointer(Pointee.getAsOpaquePtr());
2020  }
2021
2022  static bool classof(const Type *T) {
2023    return T->getTypeClass() == BlockPointer;
2024  }
2025};
2026
2027/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
2028///
2029class ReferenceType : public Type, public llvm::FoldingSetNode {
2030  QualType PointeeType;
2031
2032protected:
2033  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
2034                bool SpelledAsLValue) :
2035    Type(tc, CanonicalRef, Referencee->isDependentType(),
2036         Referencee->isInstantiationDependentType(),
2037         Referencee->isVariablyModifiedType(),
2038         Referencee->containsUnexpandedParameterPack()),
2039    PointeeType(Referencee)
2040  {
2041    ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
2042    ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
2043  }
2044
2045public:
2046  bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
2047  bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
2048
2049  QualType getPointeeTypeAsWritten() const { return PointeeType; }
2050  QualType getPointeeType() const {
2051    // FIXME: this might strip inner qualifiers; okay?
2052    const ReferenceType *T = this;
2053    while (T->isInnerRef())
2054      T = T->PointeeType->castAs<ReferenceType>();
2055    return T->PointeeType;
2056  }
2057
2058  void Profile(llvm::FoldingSetNodeID &ID) {
2059    Profile(ID, PointeeType, isSpelledAsLValue());
2060  }
2061  static void Profile(llvm::FoldingSetNodeID &ID,
2062                      QualType Referencee,
2063                      bool SpelledAsLValue) {
2064    ID.AddPointer(Referencee.getAsOpaquePtr());
2065    ID.AddBoolean(SpelledAsLValue);
2066  }
2067
2068  static bool classof(const Type *T) {
2069    return T->getTypeClass() == LValueReference ||
2070           T->getTypeClass() == RValueReference;
2071  }
2072};
2073
2074/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
2075///
2076class LValueReferenceType : public ReferenceType {
2077  LValueReferenceType(QualType Referencee, QualType CanonicalRef,
2078                      bool SpelledAsLValue) :
2079    ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
2080  {}
2081  friend class ASTContext; // ASTContext creates these
2082public:
2083  bool isSugared() const { return false; }
2084  QualType desugar() const { return QualType(this, 0); }
2085
2086  static bool classof(const Type *T) {
2087    return T->getTypeClass() == LValueReference;
2088  }
2089};
2090
2091/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
2092///
2093class RValueReferenceType : public ReferenceType {
2094  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
2095    ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
2096  }
2097  friend class ASTContext; // ASTContext creates these
2098public:
2099  bool isSugared() const { return false; }
2100  QualType desugar() const { return QualType(this, 0); }
2101
2102  static bool classof(const Type *T) {
2103    return T->getTypeClass() == RValueReference;
2104  }
2105};
2106
2107/// MemberPointerType - C++ 8.3.3 - Pointers to members
2108///
2109class MemberPointerType : public Type, public llvm::FoldingSetNode {
2110  QualType PointeeType;
2111  /// The class of which the pointee is a member. Must ultimately be a
2112  /// RecordType, but could be a typedef or a template parameter too.
2113  const Type *Class;
2114
2115  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
2116    Type(MemberPointer, CanonicalPtr,
2117         Cls->isDependentType() || Pointee->isDependentType(),
2118         (Cls->isInstantiationDependentType() ||
2119          Pointee->isInstantiationDependentType()),
2120         Pointee->isVariablyModifiedType(),
2121         (Cls->containsUnexpandedParameterPack() ||
2122          Pointee->containsUnexpandedParameterPack())),
2123    PointeeType(Pointee), Class(Cls) {
2124  }
2125  friend class ASTContext; // ASTContext creates these.
2126
2127public:
2128  QualType getPointeeType() const { return PointeeType; }
2129
2130  /// Returns true if the member type (i.e. the pointee type) is a
2131  /// function type rather than a data-member type.
2132  bool isMemberFunctionPointer() const {
2133    return PointeeType->isFunctionProtoType();
2134  }
2135
2136  /// Returns true if the member type (i.e. the pointee type) is a
2137  /// data type rather than a function type.
2138  bool isMemberDataPointer() const {
2139    return !PointeeType->isFunctionProtoType();
2140  }
2141
2142  const Type *getClass() const { return Class; }
2143
2144  bool isSugared() const { return false; }
2145  QualType desugar() const { return QualType(this, 0); }
2146
2147  void Profile(llvm::FoldingSetNodeID &ID) {
2148    Profile(ID, getPointeeType(), getClass());
2149  }
2150  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
2151                      const Type *Class) {
2152    ID.AddPointer(Pointee.getAsOpaquePtr());
2153    ID.AddPointer(Class);
2154  }
2155
2156  static bool classof(const Type *T) {
2157    return T->getTypeClass() == MemberPointer;
2158  }
2159};
2160
2161/// ArrayType - C99 6.7.5.2 - Array Declarators.
2162///
2163class ArrayType : public Type, public llvm::FoldingSetNode {
2164public:
2165  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
2166  /// an array with a static size (e.g. int X[static 4]), or an array
2167  /// with a star size (e.g. int X[*]).
2168  /// 'static' is only allowed on function parameters.
2169  enum ArraySizeModifier {
2170    Normal, Static, Star
2171  };
2172private:
2173  /// ElementType - The element type of the array.
2174  QualType ElementType;
2175
2176protected:
2177  // C++ [temp.dep.type]p1:
2178  //   A type is dependent if it is...
2179  //     - an array type constructed from any dependent type or whose
2180  //       size is specified by a constant expression that is
2181  //       value-dependent,
2182  ArrayType(TypeClass tc, QualType et, QualType can,
2183            ArraySizeModifier sm, unsigned tq,
2184            bool ContainsUnexpandedParameterPack)
2185    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray,
2186           et->isInstantiationDependentType() || tc == DependentSizedArray,
2187           (tc == VariableArray || et->isVariablyModifiedType()),
2188           ContainsUnexpandedParameterPack),
2189      ElementType(et) {
2190    ArrayTypeBits.IndexTypeQuals = tq;
2191    ArrayTypeBits.SizeModifier = sm;
2192  }
2193
2194  friend class ASTContext;  // ASTContext creates these.
2195
2196public:
2197  QualType getElementType() const { return ElementType; }
2198  ArraySizeModifier getSizeModifier() const {
2199    return ArraySizeModifier(ArrayTypeBits.SizeModifier);
2200  }
2201  Qualifiers getIndexTypeQualifiers() const {
2202    return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
2203  }
2204  unsigned getIndexTypeCVRQualifiers() const {
2205    return ArrayTypeBits.IndexTypeQuals;
2206  }
2207
2208  static bool classof(const Type *T) {
2209    return T->getTypeClass() == ConstantArray ||
2210           T->getTypeClass() == VariableArray ||
2211           T->getTypeClass() == IncompleteArray ||
2212           T->getTypeClass() == DependentSizedArray;
2213  }
2214};
2215
2216/// ConstantArrayType - This class represents the canonical version of
2217/// C arrays with a specified constant size.  For example, the canonical
2218/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
2219/// type is 'int' and the size is 404.
2220class ConstantArrayType : public ArrayType {
2221  llvm::APInt Size; // Allows us to unique the type.
2222
2223  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
2224                    ArraySizeModifier sm, unsigned tq)
2225    : ArrayType(ConstantArray, et, can, sm, tq,
2226                et->containsUnexpandedParameterPack()),
2227      Size(size) {}
2228protected:
2229  ConstantArrayType(TypeClass tc, QualType et, QualType can,
2230                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
2231    : ArrayType(tc, et, can, sm, tq, et->containsUnexpandedParameterPack()),
2232      Size(size) {}
2233  friend class ASTContext;  // ASTContext creates these.
2234public:
2235  const llvm::APInt &getSize() const { return Size; }
2236  bool isSugared() const { return false; }
2237  QualType desugar() const { return QualType(this, 0); }
2238
2239
2240  /// \brief Determine the number of bits required to address a member of
2241  // an array with the given element type and number of elements.
2242  static unsigned getNumAddressingBits(ASTContext &Context,
2243                                       QualType ElementType,
2244                                       const llvm::APInt &NumElements);
2245
2246  /// \brief Determine the maximum number of active bits that an array's size
2247  /// can require, which limits the maximum size of the array.
2248  static unsigned getMaxSizeBits(ASTContext &Context);
2249
2250  void Profile(llvm::FoldingSetNodeID &ID) {
2251    Profile(ID, getElementType(), getSize(),
2252            getSizeModifier(), getIndexTypeCVRQualifiers());
2253  }
2254  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2255                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
2256                      unsigned TypeQuals) {
2257    ID.AddPointer(ET.getAsOpaquePtr());
2258    ID.AddInteger(ArraySize.getZExtValue());
2259    ID.AddInteger(SizeMod);
2260    ID.AddInteger(TypeQuals);
2261  }
2262  static bool classof(const Type *T) {
2263    return T->getTypeClass() == ConstantArray;
2264  }
2265};
2266
2267/// IncompleteArrayType - This class represents C arrays with an unspecified
2268/// size.  For example 'int A[]' has an IncompleteArrayType where the element
2269/// type is 'int' and the size is unspecified.
2270class IncompleteArrayType : public ArrayType {
2271
2272  IncompleteArrayType(QualType et, QualType can,
2273                      ArraySizeModifier sm, unsigned tq)
2274    : ArrayType(IncompleteArray, et, can, sm, tq,
2275                et->containsUnexpandedParameterPack()) {}
2276  friend class ASTContext;  // ASTContext creates these.
2277public:
2278  bool isSugared() const { return false; }
2279  QualType desugar() const { return QualType(this, 0); }
2280
2281  static bool classof(const Type *T) {
2282    return T->getTypeClass() == IncompleteArray;
2283  }
2284
2285  friend class StmtIteratorBase;
2286
2287  void Profile(llvm::FoldingSetNodeID &ID) {
2288    Profile(ID, getElementType(), getSizeModifier(),
2289            getIndexTypeCVRQualifiers());
2290  }
2291
2292  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2293                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
2294    ID.AddPointer(ET.getAsOpaquePtr());
2295    ID.AddInteger(SizeMod);
2296    ID.AddInteger(TypeQuals);
2297  }
2298};
2299
2300/// VariableArrayType - This class represents C arrays with a specified size
2301/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
2302/// Since the size expression is an arbitrary expression, we store it as such.
2303///
2304/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
2305/// should not be: two lexically equivalent variable array types could mean
2306/// different things, for example, these variables do not have the same type
2307/// dynamically:
2308///
2309/// void foo(int x) {
2310///   int Y[x];
2311///   ++x;
2312///   int Z[x];
2313/// }
2314///
2315class VariableArrayType : public ArrayType {
2316  /// SizeExpr - An assignment expression. VLA's are only permitted within
2317  /// a function block.
2318  Stmt *SizeExpr;
2319  /// Brackets - The left and right array brackets.
2320  SourceRange Brackets;
2321
2322  VariableArrayType(QualType et, QualType can, Expr *e,
2323                    ArraySizeModifier sm, unsigned tq,
2324                    SourceRange brackets)
2325    : ArrayType(VariableArray, et, can, sm, tq,
2326                et->containsUnexpandedParameterPack()),
2327      SizeExpr((Stmt*) e), Brackets(brackets) {}
2328  friend class ASTContext;  // ASTContext creates these.
2329
2330public:
2331  Expr *getSizeExpr() const {
2332    // We use C-style casts instead of cast<> here because we do not wish
2333    // to have a dependency of Type.h on Stmt.h/Expr.h.
2334    return (Expr*) SizeExpr;
2335  }
2336  SourceRange getBracketsRange() const { return Brackets; }
2337  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
2338  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
2339
2340  bool isSugared() const { return false; }
2341  QualType desugar() const { return QualType(this, 0); }
2342
2343  static bool classof(const Type *T) {
2344    return T->getTypeClass() == VariableArray;
2345  }
2346
2347  friend class StmtIteratorBase;
2348
2349  void Profile(llvm::FoldingSetNodeID &ID) {
2350    llvm_unreachable("Cannot unique VariableArrayTypes.");
2351  }
2352};
2353
2354/// DependentSizedArrayType - This type represents an array type in
2355/// C++ whose size is a value-dependent expression. For example:
2356///
2357/// \code
2358/// template<typename T, int Size>
2359/// class array {
2360///   T data[Size];
2361/// };
2362/// \endcode
2363///
2364/// For these types, we won't actually know what the array bound is
2365/// until template instantiation occurs, at which point this will
2366/// become either a ConstantArrayType or a VariableArrayType.
2367class DependentSizedArrayType : public ArrayType {
2368  const ASTContext &Context;
2369
2370  /// \brief An assignment expression that will instantiate to the
2371  /// size of the array.
2372  ///
2373  /// The expression itself might be NULL, in which case the array
2374  /// type will have its size deduced from an initializer.
2375  Stmt *SizeExpr;
2376
2377  /// Brackets - The left and right array brackets.
2378  SourceRange Brackets;
2379
2380  DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
2381                          Expr *e, ArraySizeModifier sm, unsigned tq,
2382                          SourceRange brackets);
2383
2384  friend class ASTContext;  // ASTContext creates these.
2385
2386public:
2387  Expr *getSizeExpr() const {
2388    // We use C-style casts instead of cast<> here because we do not wish
2389    // to have a dependency of Type.h on Stmt.h/Expr.h.
2390    return (Expr*) SizeExpr;
2391  }
2392  SourceRange getBracketsRange() const { return Brackets; }
2393  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
2394  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
2395
2396  bool isSugared() const { return false; }
2397  QualType desugar() const { return QualType(this, 0); }
2398
2399  static bool classof(const Type *T) {
2400    return T->getTypeClass() == DependentSizedArray;
2401  }
2402
2403  friend class StmtIteratorBase;
2404
2405
2406  void Profile(llvm::FoldingSetNodeID &ID) {
2407    Profile(ID, Context, getElementType(),
2408            getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
2409  }
2410
2411  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2412                      QualType ET, ArraySizeModifier SizeMod,
2413                      unsigned TypeQuals, Expr *E);
2414};
2415
2416/// DependentSizedExtVectorType - This type represent an extended vector type
2417/// where either the type or size is dependent. For example:
2418/// @code
2419/// template<typename T, int Size>
2420/// class vector {
2421///   typedef T __attribute__((ext_vector_type(Size))) type;
2422/// }
2423/// @endcode
2424class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
2425  const ASTContext &Context;
2426  Expr *SizeExpr;
2427  /// ElementType - The element type of the array.
2428  QualType ElementType;
2429  SourceLocation loc;
2430
2431  DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
2432                              QualType can, Expr *SizeExpr, SourceLocation loc);
2433
2434  friend class ASTContext;
2435
2436public:
2437  Expr *getSizeExpr() const { return SizeExpr; }
2438  QualType getElementType() const { return ElementType; }
2439  SourceLocation getAttributeLoc() const { return loc; }
2440
2441  bool isSugared() const { return false; }
2442  QualType desugar() const { return QualType(this, 0); }
2443
2444  static bool classof(const Type *T) {
2445    return T->getTypeClass() == DependentSizedExtVector;
2446  }
2447
2448  void Profile(llvm::FoldingSetNodeID &ID) {
2449    Profile(ID, Context, getElementType(), getSizeExpr());
2450  }
2451
2452  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2453                      QualType ElementType, Expr *SizeExpr);
2454};
2455
2456
2457/// VectorType - GCC generic vector type. This type is created using
2458/// __attribute__((vector_size(n)), where "n" specifies the vector size in
2459/// bytes; or from an Altivec __vector or vector declaration.
2460/// Since the constructor takes the number of vector elements, the
2461/// client is responsible for converting the size into the number of elements.
2462class VectorType : public Type, public llvm::FoldingSetNode {
2463public:
2464  enum VectorKind {
2465    GenericVector,  // not a target-specific vector type
2466    AltiVecVector,  // is AltiVec vector
2467    AltiVecPixel,   // is AltiVec 'vector Pixel'
2468    AltiVecBool,    // is AltiVec 'vector bool ...'
2469    NeonVector,     // is ARM Neon vector
2470    NeonPolyVector  // is ARM Neon polynomial vector
2471  };
2472protected:
2473  /// ElementType - The element type of the vector.
2474  QualType ElementType;
2475
2476  VectorType(QualType vecType, unsigned nElements, QualType canonType,
2477             VectorKind vecKind);
2478
2479  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
2480             QualType canonType, VectorKind vecKind);
2481
2482  friend class ASTContext;  // ASTContext creates these.
2483
2484public:
2485
2486  QualType getElementType() const { return ElementType; }
2487  unsigned getNumElements() const { return VectorTypeBits.NumElements; }
2488
2489  bool isSugared() const { return false; }
2490  QualType desugar() const { return QualType(this, 0); }
2491
2492  VectorKind getVectorKind() const {
2493    return VectorKind(VectorTypeBits.VecKind);
2494  }
2495
2496  void Profile(llvm::FoldingSetNodeID &ID) {
2497    Profile(ID, getElementType(), getNumElements(),
2498            getTypeClass(), getVectorKind());
2499  }
2500  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
2501                      unsigned NumElements, TypeClass TypeClass,
2502                      VectorKind VecKind) {
2503    ID.AddPointer(ElementType.getAsOpaquePtr());
2504    ID.AddInteger(NumElements);
2505    ID.AddInteger(TypeClass);
2506    ID.AddInteger(VecKind);
2507  }
2508
2509  static bool classof(const Type *T) {
2510    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
2511  }
2512};
2513
2514/// ExtVectorType - Extended vector type. This type is created using
2515/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
2516/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
2517/// class enables syntactic extensions, like Vector Components for accessing
2518/// points, colors, and textures (modeled after OpenGL Shading Language).
2519class ExtVectorType : public VectorType {
2520  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
2521    VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
2522  friend class ASTContext;  // ASTContext creates these.
2523public:
2524  static int getPointAccessorIdx(char c) {
2525    switch (c) {
2526    default: return -1;
2527    case 'x': return 0;
2528    case 'y': return 1;
2529    case 'z': return 2;
2530    case 'w': return 3;
2531    }
2532  }
2533  static int getNumericAccessorIdx(char c) {
2534    switch (c) {
2535      default: return -1;
2536      case '0': return 0;
2537      case '1': return 1;
2538      case '2': return 2;
2539      case '3': return 3;
2540      case '4': return 4;
2541      case '5': return 5;
2542      case '6': return 6;
2543      case '7': return 7;
2544      case '8': return 8;
2545      case '9': return 9;
2546      case 'A':
2547      case 'a': return 10;
2548      case 'B':
2549      case 'b': return 11;
2550      case 'C':
2551      case 'c': return 12;
2552      case 'D':
2553      case 'd': return 13;
2554      case 'E':
2555      case 'e': return 14;
2556      case 'F':
2557      case 'f': return 15;
2558    }
2559  }
2560
2561  static int getAccessorIdx(char c) {
2562    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
2563    return getNumericAccessorIdx(c);
2564  }
2565
2566  bool isAccessorWithinNumElements(char c) const {
2567    if (int idx = getAccessorIdx(c)+1)
2568      return unsigned(idx-1) < getNumElements();
2569    return false;
2570  }
2571  bool isSugared() const { return false; }
2572  QualType desugar() const { return QualType(this, 0); }
2573
2574  static bool classof(const Type *T) {
2575    return T->getTypeClass() == ExtVector;
2576  }
2577};
2578
2579/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
2580/// class of FunctionNoProtoType and FunctionProtoType.
2581///
2582class FunctionType : public Type {
2583  // The type returned by the function.
2584  QualType ResultType;
2585
2586 public:
2587  /// ExtInfo - A class which abstracts out some details necessary for
2588  /// making a call.
2589  ///
2590  /// It is not actually used directly for storing this information in
2591  /// a FunctionType, although FunctionType does currently use the
2592  /// same bit-pattern.
2593  ///
2594  // If you add a field (say Foo), other than the obvious places (both,
2595  // constructors, compile failures), what you need to update is
2596  // * Operator==
2597  // * getFoo
2598  // * withFoo
2599  // * functionType. Add Foo, getFoo.
2600  // * ASTContext::getFooType
2601  // * ASTContext::mergeFunctionTypes
2602  // * FunctionNoProtoType::Profile
2603  // * FunctionProtoType::Profile
2604  // * TypePrinter::PrintFunctionProto
2605  // * AST read and write
2606  // * Codegen
2607  class ExtInfo {
2608    // Feel free to rearrange or add bits, but if you go over 9,
2609    // you'll need to adjust both the Bits field below and
2610    // Type::FunctionTypeBitfields.
2611
2612    //   |  CC  |noreturn|produces|regparm|
2613    //   |0 .. 3|   4    |    5   | 6 .. 8|
2614    //
2615    // regparm is either 0 (no regparm attribute) or the regparm value+1.
2616    enum { CallConvMask = 0xF };
2617    enum { NoReturnMask = 0x10 };
2618    enum { ProducesResultMask = 0x20 };
2619    enum { RegParmMask = ~(CallConvMask | NoReturnMask | ProducesResultMask),
2620           RegParmOffset = 6 }; // Assumed to be the last field
2621
2622    uint16_t Bits;
2623
2624    ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
2625
2626    friend class FunctionType;
2627
2628   public:
2629    // Constructor with no defaults. Use this when you know that you
2630    // have all the elements (when reading an AST file for example).
2631    ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
2632            bool producesResult) {
2633      assert((!hasRegParm || regParm < 7) && "Invalid regparm value");
2634      Bits = ((unsigned) cc) |
2635             (noReturn ? NoReturnMask : 0) |
2636             (producesResult ? ProducesResultMask : 0) |
2637             (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0);
2638    }
2639
2640    // Constructor with all defaults. Use when for example creating a
2641    // function know to use defaults.
2642    ExtInfo() : Bits(0) {}
2643
2644    bool getNoReturn() const { return Bits & NoReturnMask; }
2645    bool getProducesResult() const { return Bits & ProducesResultMask; }
2646    bool getHasRegParm() const { return (Bits >> RegParmOffset) != 0; }
2647    unsigned getRegParm() const {
2648      unsigned RegParm = Bits >> RegParmOffset;
2649      if (RegParm > 0)
2650        --RegParm;
2651      return RegParm;
2652    }
2653    CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
2654
2655    bool operator==(ExtInfo Other) const {
2656      return Bits == Other.Bits;
2657    }
2658    bool operator!=(ExtInfo Other) const {
2659      return Bits != Other.Bits;
2660    }
2661
2662    // Note that we don't have setters. That is by design, use
2663    // the following with methods instead of mutating these objects.
2664
2665    ExtInfo withNoReturn(bool noReturn) const {
2666      if (noReturn)
2667        return ExtInfo(Bits | NoReturnMask);
2668      else
2669        return ExtInfo(Bits & ~NoReturnMask);
2670    }
2671
2672    ExtInfo withProducesResult(bool producesResult) const {
2673      if (producesResult)
2674        return ExtInfo(Bits | ProducesResultMask);
2675      else
2676        return ExtInfo(Bits & ~ProducesResultMask);
2677    }
2678
2679    ExtInfo withRegParm(unsigned RegParm) const {
2680      assert(RegParm < 7 && "Invalid regparm value");
2681      return ExtInfo((Bits & ~RegParmMask) |
2682                     ((RegParm + 1) << RegParmOffset));
2683    }
2684
2685    ExtInfo withCallingConv(CallingConv cc) const {
2686      return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
2687    }
2688
2689    void Profile(llvm::FoldingSetNodeID &ID) const {
2690      ID.AddInteger(Bits);
2691    }
2692  };
2693
2694protected:
2695  FunctionType(TypeClass tc, QualType res,
2696               unsigned typeQuals, RefQualifierKind RefQualifier,
2697               QualType Canonical, bool Dependent,
2698               bool InstantiationDependent,
2699               bool VariablyModified, bool ContainsUnexpandedParameterPack,
2700               ExtInfo Info)
2701    : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
2702           ContainsUnexpandedParameterPack),
2703      ResultType(res) {
2704    FunctionTypeBits.ExtInfo = Info.Bits;
2705    FunctionTypeBits.TypeQuals = typeQuals;
2706    FunctionTypeBits.RefQualifier = static_cast<unsigned>(RefQualifier);
2707  }
2708  unsigned getTypeQuals() const { return FunctionTypeBits.TypeQuals; }
2709
2710  RefQualifierKind getRefQualifier() const {
2711    return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier);
2712  }
2713
2714public:
2715
2716  QualType getResultType() const { return ResultType; }
2717
2718  bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
2719  unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
2720  bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
2721  CallingConv getCallConv() const { return getExtInfo().getCC(); }
2722  ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
2723  bool isConst() const { return getTypeQuals() & Qualifiers::Const; }
2724  bool isVolatile() const { return getTypeQuals() & Qualifiers::Volatile; }
2725  bool isRestrict() const { return getTypeQuals() & Qualifiers::Restrict; }
2726
2727  /// \brief Determine the type of an expression that calls a function of
2728  /// this type.
2729  QualType getCallResultType(ASTContext &Context) const {
2730    return getResultType().getNonLValueExprType(Context);
2731  }
2732
2733  static StringRef getNameForCallConv(CallingConv CC);
2734
2735  static bool classof(const Type *T) {
2736    return T->getTypeClass() == FunctionNoProto ||
2737           T->getTypeClass() == FunctionProto;
2738  }
2739};
2740
2741/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
2742/// no information available about its arguments.
2743class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
2744  FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
2745    : FunctionType(FunctionNoProto, Result, 0, RQ_None, Canonical,
2746                   /*Dependent=*/false, /*InstantiationDependent=*/false,
2747                   Result->isVariablyModifiedType(),
2748                   /*ContainsUnexpandedParameterPack=*/false, Info) {}
2749
2750  friend class ASTContext;  // ASTContext creates these.
2751
2752public:
2753  // No additional state past what FunctionType provides.
2754
2755  bool isSugared() const { return false; }
2756  QualType desugar() const { return QualType(this, 0); }
2757
2758  void Profile(llvm::FoldingSetNodeID &ID) {
2759    Profile(ID, getResultType(), getExtInfo());
2760  }
2761  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
2762                      ExtInfo Info) {
2763    Info.Profile(ID);
2764    ID.AddPointer(ResultType.getAsOpaquePtr());
2765  }
2766
2767  static bool classof(const Type *T) {
2768    return T->getTypeClass() == FunctionNoProto;
2769  }
2770};
2771
2772/// FunctionProtoType - Represents a prototype with argument type info, e.g.
2773/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
2774/// arguments, not as having a single void argument. Such a type can have an
2775/// exception specification, but this specification is not part of the canonical
2776/// type.
2777class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
2778public:
2779  /// ExtProtoInfo - Extra information about a function prototype.
2780  struct ExtProtoInfo {
2781    ExtProtoInfo() :
2782      Variadic(false), HasTrailingReturn(false), TypeQuals(0),
2783      ExceptionSpecType(EST_None), RefQualifier(RQ_None),
2784      NumExceptions(0), Exceptions(0), NoexceptExpr(0),
2785      ExceptionSpecDecl(0), ExceptionSpecTemplate(0),
2786      ConsumedArguments(0) {}
2787
2788    FunctionType::ExtInfo ExtInfo;
2789    bool Variadic : 1;
2790    bool HasTrailingReturn : 1;
2791    unsigned char TypeQuals;
2792    ExceptionSpecificationType ExceptionSpecType;
2793    RefQualifierKind RefQualifier;
2794    unsigned NumExceptions;
2795    const QualType *Exceptions;
2796    Expr *NoexceptExpr;
2797    FunctionDecl *ExceptionSpecDecl;
2798    FunctionDecl *ExceptionSpecTemplate;
2799    const bool *ConsumedArguments;
2800  };
2801
2802private:
2803  /// \brief Determine whether there are any argument types that
2804  /// contain an unexpanded parameter pack.
2805  static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
2806                                                 unsigned numArgs) {
2807    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
2808      if (ArgArray[Idx]->containsUnexpandedParameterPack())
2809        return true;
2810
2811    return false;
2812  }
2813
2814  FunctionProtoType(QualType result, const QualType *args, unsigned numArgs,
2815                    QualType canonical, const ExtProtoInfo &epi);
2816
2817  /// NumArgs - The number of arguments this function has, not counting '...'.
2818  unsigned NumArgs : 17;
2819
2820  /// NumExceptions - The number of types in the exception spec, if any.
2821  unsigned NumExceptions : 9;
2822
2823  /// ExceptionSpecType - The type of exception specification this function has.
2824  unsigned ExceptionSpecType : 3;
2825
2826  /// HasAnyConsumedArgs - Whether this function has any consumed arguments.
2827  unsigned HasAnyConsumedArgs : 1;
2828
2829  /// Variadic - Whether the function is variadic.
2830  unsigned Variadic : 1;
2831
2832  /// HasTrailingReturn - Whether this function has a trailing return type.
2833  unsigned HasTrailingReturn : 1;
2834
2835  // ArgInfo - There is an variable size array after the class in memory that
2836  // holds the argument types.
2837
2838  // Exceptions - There is another variable size array after ArgInfo that
2839  // holds the exception types.
2840
2841  // NoexceptExpr - Instead of Exceptions, there may be a single Expr* pointing
2842  // to the expression in the noexcept() specifier.
2843
2844  // ExceptionSpecDecl, ExceptionSpecTemplate - Instead of Exceptions, there may
2845  // be a pair of FunctionDecl* pointing to the function which should be used to
2846  // instantiate this function type's exception specification, and the function
2847  // from which it should be instantiated.
2848
2849  // ConsumedArgs - A variable size array, following Exceptions
2850  // and of length NumArgs, holding flags indicating which arguments
2851  // are consumed.  This only appears if HasAnyConsumedArgs is true.
2852
2853  friend class ASTContext;  // ASTContext creates these.
2854
2855  const bool *getConsumedArgsBuffer() const {
2856    assert(hasAnyConsumedArgs());
2857
2858    // Find the end of the exceptions.
2859    Expr * const *eh_end = reinterpret_cast<Expr * const *>(arg_type_end());
2860    if (getExceptionSpecType() != EST_ComputedNoexcept)
2861      eh_end += NumExceptions;
2862    else
2863      eh_end += 1; // NoexceptExpr
2864
2865    return reinterpret_cast<const bool*>(eh_end);
2866  }
2867
2868public:
2869  unsigned getNumArgs() const { return NumArgs; }
2870  QualType getArgType(unsigned i) const {
2871    assert(i < NumArgs && "Invalid argument number!");
2872    return arg_type_begin()[i];
2873  }
2874
2875  ExtProtoInfo getExtProtoInfo() const {
2876    ExtProtoInfo EPI;
2877    EPI.ExtInfo = getExtInfo();
2878    EPI.Variadic = isVariadic();
2879    EPI.HasTrailingReturn = hasTrailingReturn();
2880    EPI.ExceptionSpecType = getExceptionSpecType();
2881    EPI.TypeQuals = static_cast<unsigned char>(getTypeQuals());
2882    EPI.RefQualifier = getRefQualifier();
2883    if (EPI.ExceptionSpecType == EST_Dynamic) {
2884      EPI.NumExceptions = NumExceptions;
2885      EPI.Exceptions = exception_begin();
2886    } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2887      EPI.NoexceptExpr = getNoexceptExpr();
2888    } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
2889      EPI.ExceptionSpecDecl = getExceptionSpecDecl();
2890      EPI.ExceptionSpecTemplate = getExceptionSpecTemplate();
2891    } else if (EPI.ExceptionSpecType == EST_Unevaluated) {
2892      EPI.ExceptionSpecDecl = getExceptionSpecDecl();
2893    }
2894    if (hasAnyConsumedArgs())
2895      EPI.ConsumedArguments = getConsumedArgsBuffer();
2896    return EPI;
2897  }
2898
2899  /// \brief Get the kind of exception specification on this function.
2900  ExceptionSpecificationType getExceptionSpecType() const {
2901    return static_cast<ExceptionSpecificationType>(ExceptionSpecType);
2902  }
2903  /// \brief Return whether this function has any kind of exception spec.
2904  bool hasExceptionSpec() const {
2905    return getExceptionSpecType() != EST_None;
2906  }
2907  /// \brief Return whether this function has a dynamic (throw) exception spec.
2908  bool hasDynamicExceptionSpec() const {
2909    return isDynamicExceptionSpec(getExceptionSpecType());
2910  }
2911  /// \brief Return whether this function has a noexcept exception spec.
2912  bool hasNoexceptExceptionSpec() const {
2913    return isNoexceptExceptionSpec(getExceptionSpecType());
2914  }
2915  /// \brief Result type of getNoexceptSpec().
2916  enum NoexceptResult {
2917    NR_NoNoexcept,  ///< There is no noexcept specifier.
2918    NR_BadNoexcept, ///< The noexcept specifier has a bad expression.
2919    NR_Dependent,   ///< The noexcept specifier is dependent.
2920    NR_Throw,       ///< The noexcept specifier evaluates to false.
2921    NR_Nothrow      ///< The noexcept specifier evaluates to true.
2922  };
2923  /// \brief Get the meaning of the noexcept spec on this function, if any.
2924  NoexceptResult getNoexceptSpec(ASTContext &Ctx) const;
2925  unsigned getNumExceptions() const { return NumExceptions; }
2926  QualType getExceptionType(unsigned i) const {
2927    assert(i < NumExceptions && "Invalid exception number!");
2928    return exception_begin()[i];
2929  }
2930  Expr *getNoexceptExpr() const {
2931    if (getExceptionSpecType() != EST_ComputedNoexcept)
2932      return 0;
2933    // NoexceptExpr sits where the arguments end.
2934    return *reinterpret_cast<Expr *const *>(arg_type_end());
2935  }
2936  /// \brief If this function type has an exception specification which hasn't
2937  /// been determined yet (either because it has not been evaluated or because
2938  /// it has not been instantiated), this is the function whose exception
2939  /// specification is represented by this type.
2940  FunctionDecl *getExceptionSpecDecl() const {
2941    if (getExceptionSpecType() != EST_Uninstantiated &&
2942        getExceptionSpecType() != EST_Unevaluated)
2943      return 0;
2944    return reinterpret_cast<FunctionDecl * const *>(arg_type_end())[0];
2945  }
2946  /// \brief If this function type has an uninstantiated exception
2947  /// specification, this is the function whose exception specification
2948  /// should be instantiated to find the exception specification for
2949  /// this type.
2950  FunctionDecl *getExceptionSpecTemplate() const {
2951    if (getExceptionSpecType() != EST_Uninstantiated)
2952      return 0;
2953    return reinterpret_cast<FunctionDecl * const *>(arg_type_end())[1];
2954  }
2955  bool isNothrow(ASTContext &Ctx) const {
2956    ExceptionSpecificationType EST = getExceptionSpecType();
2957    assert(EST != EST_Unevaluated && EST != EST_Uninstantiated);
2958    if (EST == EST_DynamicNone || EST == EST_BasicNoexcept)
2959      return true;
2960    if (EST != EST_ComputedNoexcept)
2961      return false;
2962    return getNoexceptSpec(Ctx) == NR_Nothrow;
2963  }
2964
2965  bool isVariadic() const { return Variadic; }
2966
2967  /// \brief Determines whether this function prototype contains a
2968  /// parameter pack at the end.
2969  ///
2970  /// A function template whose last parameter is a parameter pack can be
2971  /// called with an arbitrary number of arguments, much like a variadic
2972  /// function.
2973  bool isTemplateVariadic() const;
2974
2975  bool hasTrailingReturn() const { return HasTrailingReturn; }
2976
2977  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
2978
2979
2980  /// \brief Retrieve the ref-qualifier associated with this function type.
2981  RefQualifierKind getRefQualifier() const {
2982    return FunctionType::getRefQualifier();
2983  }
2984
2985  typedef const QualType *arg_type_iterator;
2986  arg_type_iterator arg_type_begin() const {
2987    return reinterpret_cast<const QualType *>(this+1);
2988  }
2989  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
2990
2991  typedef const QualType *exception_iterator;
2992  exception_iterator exception_begin() const {
2993    // exceptions begin where arguments end
2994    return arg_type_end();
2995  }
2996  exception_iterator exception_end() const {
2997    if (getExceptionSpecType() != EST_Dynamic)
2998      return exception_begin();
2999    return exception_begin() + NumExceptions;
3000  }
3001
3002  bool hasAnyConsumedArgs() const {
3003    return HasAnyConsumedArgs;
3004  }
3005  bool isArgConsumed(unsigned I) const {
3006    assert(I < getNumArgs() && "argument index out of range!");
3007    if (hasAnyConsumedArgs())
3008      return getConsumedArgsBuffer()[I];
3009    return false;
3010  }
3011
3012  bool isSugared() const { return false; }
3013  QualType desugar() const { return QualType(this, 0); }
3014
3015  // FIXME: Remove the string version.
3016  void printExceptionSpecification(std::string &S,
3017                                   const PrintingPolicy &Policy) const;
3018  void printExceptionSpecification(raw_ostream &OS,
3019                                   const PrintingPolicy &Policy) const;
3020
3021  static bool classof(const Type *T) {
3022    return T->getTypeClass() == FunctionProto;
3023  }
3024
3025  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
3026  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
3027                      arg_type_iterator ArgTys, unsigned NumArgs,
3028                      const ExtProtoInfo &EPI, const ASTContext &Context);
3029};
3030
3031
3032/// \brief Represents the dependent type named by a dependently-scoped
3033/// typename using declaration, e.g.
3034///   using typename Base<T>::foo;
3035/// Template instantiation turns these into the underlying type.
3036class UnresolvedUsingType : public Type {
3037  UnresolvedUsingTypenameDecl *Decl;
3038
3039  UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
3040    : Type(UnresolvedUsing, QualType(), true, true, false,
3041           /*ContainsUnexpandedParameterPack=*/false),
3042      Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
3043  friend class ASTContext; // ASTContext creates these.
3044public:
3045
3046  UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
3047
3048  bool isSugared() const { return false; }
3049  QualType desugar() const { return QualType(this, 0); }
3050
3051  static bool classof(const Type *T) {
3052    return T->getTypeClass() == UnresolvedUsing;
3053  }
3054
3055  void Profile(llvm::FoldingSetNodeID &ID) {
3056    return Profile(ID, Decl);
3057  }
3058  static void Profile(llvm::FoldingSetNodeID &ID,
3059                      UnresolvedUsingTypenameDecl *D) {
3060    ID.AddPointer(D);
3061  }
3062};
3063
3064
3065class TypedefType : public Type {
3066  TypedefNameDecl *Decl;
3067protected:
3068  TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType can)
3069    : Type(tc, can, can->isDependentType(),
3070           can->isInstantiationDependentType(),
3071           can->isVariablyModifiedType(),
3072           /*ContainsUnexpandedParameterPack=*/false),
3073      Decl(const_cast<TypedefNameDecl*>(D)) {
3074    assert(!isa<TypedefType>(can) && "Invalid canonical type");
3075  }
3076  friend class ASTContext;  // ASTContext creates these.
3077public:
3078
3079  TypedefNameDecl *getDecl() const { return Decl; }
3080
3081  bool isSugared() const { return true; }
3082  QualType desugar() const;
3083
3084  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
3085};
3086
3087/// TypeOfExprType (GCC extension).
3088class TypeOfExprType : public Type {
3089  Expr *TOExpr;
3090
3091protected:
3092  TypeOfExprType(Expr *E, QualType can = QualType());
3093  friend class ASTContext;  // ASTContext creates these.
3094public:
3095  Expr *getUnderlyingExpr() const { return TOExpr; }
3096
3097  /// \brief Remove a single level of sugar.
3098  QualType desugar() const;
3099
3100  /// \brief Returns whether this type directly provides sugar.
3101  bool isSugared() const;
3102
3103  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
3104};
3105
3106/// \brief Internal representation of canonical, dependent
3107/// typeof(expr) types.
3108///
3109/// This class is used internally by the ASTContext to manage
3110/// canonical, dependent types, only. Clients will only see instances
3111/// of this class via TypeOfExprType nodes.
3112class DependentTypeOfExprType
3113  : public TypeOfExprType, public llvm::FoldingSetNode {
3114  const ASTContext &Context;
3115
3116public:
3117  DependentTypeOfExprType(const ASTContext &Context, Expr *E)
3118    : TypeOfExprType(E), Context(Context) { }
3119
3120  void Profile(llvm::FoldingSetNodeID &ID) {
3121    Profile(ID, Context, getUnderlyingExpr());
3122  }
3123
3124  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3125                      Expr *E);
3126};
3127
3128/// TypeOfType (GCC extension).
3129class TypeOfType : public Type {
3130  QualType TOType;
3131  TypeOfType(QualType T, QualType can)
3132    : Type(TypeOf, can, T->isDependentType(),
3133           T->isInstantiationDependentType(),
3134           T->isVariablyModifiedType(),
3135           T->containsUnexpandedParameterPack()),
3136      TOType(T) {
3137    assert(!isa<TypedefType>(can) && "Invalid canonical type");
3138  }
3139  friend class ASTContext;  // ASTContext creates these.
3140public:
3141  QualType getUnderlyingType() const { return TOType; }
3142
3143  /// \brief Remove a single level of sugar.
3144  QualType desugar() const { return getUnderlyingType(); }
3145
3146  /// \brief Returns whether this type directly provides sugar.
3147  bool isSugared() const { return true; }
3148
3149  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
3150};
3151
3152/// DecltypeType (C++0x)
3153class DecltypeType : public Type {
3154  Expr *E;
3155  QualType UnderlyingType;
3156
3157protected:
3158  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
3159  friend class ASTContext;  // ASTContext creates these.
3160public:
3161  Expr *getUnderlyingExpr() const { return E; }
3162  QualType getUnderlyingType() const { return UnderlyingType; }
3163
3164  /// \brief Remove a single level of sugar.
3165  QualType desugar() const;
3166
3167  /// \brief Returns whether this type directly provides sugar.
3168  bool isSugared() const;
3169
3170  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
3171};
3172
3173/// \brief Internal representation of canonical, dependent
3174/// decltype(expr) types.
3175///
3176/// This class is used internally by the ASTContext to manage
3177/// canonical, dependent types, only. Clients will only see instances
3178/// of this class via DecltypeType nodes.
3179class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
3180  const ASTContext &Context;
3181
3182public:
3183  DependentDecltypeType(const ASTContext &Context, Expr *E);
3184
3185  void Profile(llvm::FoldingSetNodeID &ID) {
3186    Profile(ID, Context, getUnderlyingExpr());
3187  }
3188
3189  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3190                      Expr *E);
3191};
3192
3193/// \brief A unary type transform, which is a type constructed from another
3194class UnaryTransformType : public Type {
3195public:
3196  enum UTTKind {
3197    EnumUnderlyingType
3198  };
3199
3200private:
3201  /// The untransformed type.
3202  QualType BaseType;
3203  /// The transformed type if not dependent, otherwise the same as BaseType.
3204  QualType UnderlyingType;
3205
3206  UTTKind UKind;
3207protected:
3208  UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
3209                     QualType CanonicalTy);
3210  friend class ASTContext;
3211public:
3212  bool isSugared() const { return !isDependentType(); }
3213  QualType desugar() const { return UnderlyingType; }
3214
3215  QualType getUnderlyingType() const { return UnderlyingType; }
3216  QualType getBaseType() const { return BaseType; }
3217
3218  UTTKind getUTTKind() const { return UKind; }
3219
3220  static bool classof(const Type *T) {
3221    return T->getTypeClass() == UnaryTransform;
3222  }
3223};
3224
3225class TagType : public Type {
3226  /// Stores the TagDecl associated with this type. The decl may point to any
3227  /// TagDecl that declares the entity.
3228  TagDecl * decl;
3229
3230  friend class ASTReader;
3231
3232protected:
3233  TagType(TypeClass TC, const TagDecl *D, QualType can);
3234
3235public:
3236  TagDecl *getDecl() const;
3237
3238  /// @brief Determines whether this type is in the process of being
3239  /// defined.
3240  bool isBeingDefined() const;
3241
3242  static bool classof(const Type *T) {
3243    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
3244  }
3245};
3246
3247/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
3248/// to detect TagType objects of structs/unions/classes.
3249class RecordType : public TagType {
3250protected:
3251  explicit RecordType(const RecordDecl *D)
3252    : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3253  explicit RecordType(TypeClass TC, RecordDecl *D)
3254    : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3255  friend class ASTContext;   // ASTContext creates these.
3256public:
3257
3258  RecordDecl *getDecl() const {
3259    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
3260  }
3261
3262  // FIXME: This predicate is a helper to QualType/Type. It needs to
3263  // recursively check all fields for const-ness. If any field is declared
3264  // const, it needs to return false.
3265  bool hasConstFields() const { return false; }
3266
3267  bool isSugared() const { return false; }
3268  QualType desugar() const { return QualType(this, 0); }
3269
3270  static bool classof(const Type *T) { return T->getTypeClass() == Record; }
3271};
3272
3273/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
3274/// to detect TagType objects of enums.
3275class EnumType : public TagType {
3276  explicit EnumType(const EnumDecl *D)
3277    : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
3278  friend class ASTContext;   // ASTContext creates these.
3279public:
3280
3281  EnumDecl *getDecl() const {
3282    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
3283  }
3284
3285  bool isSugared() const { return false; }
3286  QualType desugar() const { return QualType(this, 0); }
3287
3288  static bool classof(const Type *T) { return T->getTypeClass() == Enum; }
3289};
3290
3291/// AttributedType - An attributed type is a type to which a type
3292/// attribute has been applied.  The "modified type" is the
3293/// fully-sugared type to which the attributed type was applied;
3294/// generally it is not canonically equivalent to the attributed type.
3295/// The "equivalent type" is the minimally-desugared type which the
3296/// type is canonically equivalent to.
3297///
3298/// For example, in the following attributed type:
3299///     int32_t __attribute__((vector_size(16)))
3300///   - the modified type is the TypedefType for int32_t
3301///   - the equivalent type is VectorType(16, int32_t)
3302///   - the canonical type is VectorType(16, int)
3303class AttributedType : public Type, public llvm::FoldingSetNode {
3304public:
3305  // It is really silly to have yet another attribute-kind enum, but
3306  // clang::attr::Kind doesn't currently cover the pure type attrs.
3307  enum Kind {
3308    // Expression operand.
3309    attr_address_space,
3310    attr_regparm,
3311    attr_vector_size,
3312    attr_neon_vector_type,
3313    attr_neon_polyvector_type,
3314
3315    FirstExprOperandKind = attr_address_space,
3316    LastExprOperandKind = attr_neon_polyvector_type,
3317
3318    // Enumerated operand (string or keyword).
3319    attr_objc_gc,
3320    attr_objc_ownership,
3321    attr_pcs,
3322
3323    FirstEnumOperandKind = attr_objc_gc,
3324    LastEnumOperandKind = attr_pcs,
3325
3326    // No operand.
3327    attr_noreturn,
3328    attr_cdecl,
3329    attr_fastcall,
3330    attr_stdcall,
3331    attr_thiscall,
3332    attr_pascal,
3333    attr_pnaclcall
3334  };
3335
3336private:
3337  QualType ModifiedType;
3338  QualType EquivalentType;
3339
3340  friend class ASTContext; // creates these
3341
3342  AttributedType(QualType canon, Kind attrKind,
3343                 QualType modified, QualType equivalent)
3344    : Type(Attributed, canon, canon->isDependentType(),
3345           canon->isInstantiationDependentType(),
3346           canon->isVariablyModifiedType(),
3347           canon->containsUnexpandedParameterPack()),
3348      ModifiedType(modified), EquivalentType(equivalent) {
3349    AttributedTypeBits.AttrKind = attrKind;
3350  }
3351
3352public:
3353  Kind getAttrKind() const {
3354    return static_cast<Kind>(AttributedTypeBits.AttrKind);
3355  }
3356
3357  QualType getModifiedType() const { return ModifiedType; }
3358  QualType getEquivalentType() const { return EquivalentType; }
3359
3360  bool isSugared() const { return true; }
3361  QualType desugar() const { return getEquivalentType(); }
3362
3363  void Profile(llvm::FoldingSetNodeID &ID) {
3364    Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
3365  }
3366
3367  static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
3368                      QualType modified, QualType equivalent) {
3369    ID.AddInteger(attrKind);
3370    ID.AddPointer(modified.getAsOpaquePtr());
3371    ID.AddPointer(equivalent.getAsOpaquePtr());
3372  }
3373
3374  static bool classof(const Type *T) {
3375    return T->getTypeClass() == Attributed;
3376  }
3377};
3378
3379class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
3380  // Helper data collector for canonical types.
3381  struct CanonicalTTPTInfo {
3382    unsigned Depth : 15;
3383    unsigned ParameterPack : 1;
3384    unsigned Index : 16;
3385  };
3386
3387  union {
3388    // Info for the canonical type.
3389    CanonicalTTPTInfo CanTTPTInfo;
3390    // Info for the non-canonical type.
3391    TemplateTypeParmDecl *TTPDecl;
3392  };
3393
3394  /// Build a non-canonical type.
3395  TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
3396    : Type(TemplateTypeParm, Canon, /*Dependent=*/true,
3397           /*InstantiationDependent=*/true,
3398           /*VariablyModified=*/false,
3399           Canon->containsUnexpandedParameterPack()),
3400      TTPDecl(TTPDecl) { }
3401
3402  /// Build the canonical type.
3403  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
3404    : Type(TemplateTypeParm, QualType(this, 0),
3405           /*Dependent=*/true,
3406           /*InstantiationDependent=*/true,
3407           /*VariablyModified=*/false, PP) {
3408    CanTTPTInfo.Depth = D;
3409    CanTTPTInfo.Index = I;
3410    CanTTPTInfo.ParameterPack = PP;
3411  }
3412
3413  friend class ASTContext;  // ASTContext creates these
3414
3415  const CanonicalTTPTInfo& getCanTTPTInfo() const {
3416    QualType Can = getCanonicalTypeInternal();
3417    return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
3418  }
3419
3420public:
3421  unsigned getDepth() const { return getCanTTPTInfo().Depth; }
3422  unsigned getIndex() const { return getCanTTPTInfo().Index; }
3423  bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
3424
3425  TemplateTypeParmDecl *getDecl() const {
3426    return isCanonicalUnqualified() ? 0 : TTPDecl;
3427  }
3428
3429  IdentifierInfo *getIdentifier() const;
3430
3431  bool isSugared() const { return false; }
3432  QualType desugar() const { return QualType(this, 0); }
3433
3434  void Profile(llvm::FoldingSetNodeID &ID) {
3435    Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
3436  }
3437
3438  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
3439                      unsigned Index, bool ParameterPack,
3440                      TemplateTypeParmDecl *TTPDecl) {
3441    ID.AddInteger(Depth);
3442    ID.AddInteger(Index);
3443    ID.AddBoolean(ParameterPack);
3444    ID.AddPointer(TTPDecl);
3445  }
3446
3447  static bool classof(const Type *T) {
3448    return T->getTypeClass() == TemplateTypeParm;
3449  }
3450};
3451
3452/// \brief Represents the result of substituting a type for a template
3453/// type parameter.
3454///
3455/// Within an instantiated template, all template type parameters have
3456/// been replaced with these.  They are used solely to record that a
3457/// type was originally written as a template type parameter;
3458/// therefore they are never canonical.
3459class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
3460  // The original type parameter.
3461  const TemplateTypeParmType *Replaced;
3462
3463  SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
3464    : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(),
3465           Canon->isInstantiationDependentType(),
3466           Canon->isVariablyModifiedType(),
3467           Canon->containsUnexpandedParameterPack()),
3468      Replaced(Param) { }
3469
3470  friend class ASTContext;
3471
3472public:
3473  /// Gets the template parameter that was substituted for.
3474  const TemplateTypeParmType *getReplacedParameter() const {
3475    return Replaced;
3476  }
3477
3478  /// Gets the type that was substituted for the template
3479  /// parameter.
3480  QualType getReplacementType() const {
3481    return getCanonicalTypeInternal();
3482  }
3483
3484  bool isSugared() const { return true; }
3485  QualType desugar() const { return getReplacementType(); }
3486
3487  void Profile(llvm::FoldingSetNodeID &ID) {
3488    Profile(ID, getReplacedParameter(), getReplacementType());
3489  }
3490  static void Profile(llvm::FoldingSetNodeID &ID,
3491                      const TemplateTypeParmType *Replaced,
3492                      QualType Replacement) {
3493    ID.AddPointer(Replaced);
3494    ID.AddPointer(Replacement.getAsOpaquePtr());
3495  }
3496
3497  static bool classof(const Type *T) {
3498    return T->getTypeClass() == SubstTemplateTypeParm;
3499  }
3500};
3501
3502/// \brief Represents the result of substituting a set of types for a template
3503/// type parameter pack.
3504///
3505/// When a pack expansion in the source code contains multiple parameter packs
3506/// and those parameter packs correspond to different levels of template
3507/// parameter lists, this type node is used to represent a template type
3508/// parameter pack from an outer level, which has already had its argument pack
3509/// substituted but that still lives within a pack expansion that itself
3510/// could not be instantiated. When actually performing a substitution into
3511/// that pack expansion (e.g., when all template parameters have corresponding
3512/// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
3513/// at the current pack substitution index.
3514class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
3515  /// \brief The original type parameter.
3516  const TemplateTypeParmType *Replaced;
3517
3518  /// \brief A pointer to the set of template arguments that this
3519  /// parameter pack is instantiated with.
3520  const TemplateArgument *Arguments;
3521
3522  /// \brief The number of template arguments in \c Arguments.
3523  unsigned NumArguments;
3524
3525  SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
3526                                QualType Canon,
3527                                const TemplateArgument &ArgPack);
3528
3529  friend class ASTContext;
3530
3531public:
3532  IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }
3533
3534  /// Gets the template parameter that was substituted for.
3535  const TemplateTypeParmType *getReplacedParameter() const {
3536    return Replaced;
3537  }
3538
3539  bool isSugared() const { return false; }
3540  QualType desugar() const { return QualType(this, 0); }
3541
3542  TemplateArgument getArgumentPack() const;
3543
3544  void Profile(llvm::FoldingSetNodeID &ID);
3545  static void Profile(llvm::FoldingSetNodeID &ID,
3546                      const TemplateTypeParmType *Replaced,
3547                      const TemplateArgument &ArgPack);
3548
3549  static bool classof(const Type *T) {
3550    return T->getTypeClass() == SubstTemplateTypeParmPack;
3551  }
3552};
3553
3554/// \brief Represents a C++0x auto type.
3555///
3556/// These types are usually a placeholder for a deduced type. However, within
3557/// templates and before the initializer is attached, there is no deduced type
3558/// and an auto type is type-dependent and canonical.
3559class AutoType : public Type, public llvm::FoldingSetNode {
3560  AutoType(QualType DeducedType)
3561    : Type(Auto, DeducedType.isNull() ? QualType(this, 0) : DeducedType,
3562           /*Dependent=*/DeducedType.isNull(),
3563           /*InstantiationDependent=*/DeducedType.isNull(),
3564           /*VariablyModified=*/false, /*ContainsParameterPack=*/false) {
3565    assert((DeducedType.isNull() || !DeducedType->isDependentType()) &&
3566           "deduced a dependent type for auto");
3567  }
3568
3569  friend class ASTContext;  // ASTContext creates these
3570
3571public:
3572  bool isSugared() const { return isDeduced(); }
3573  QualType desugar() const { return getCanonicalTypeInternal(); }
3574
3575  QualType getDeducedType() const {
3576    return isDeduced() ? getCanonicalTypeInternal() : QualType();
3577  }
3578  bool isDeduced() const {
3579    return !isDependentType();
3580  }
3581
3582  void Profile(llvm::FoldingSetNodeID &ID) {
3583    Profile(ID, getDeducedType());
3584  }
3585
3586  static void Profile(llvm::FoldingSetNodeID &ID,
3587                      QualType Deduced) {
3588    ID.AddPointer(Deduced.getAsOpaquePtr());
3589  }
3590
3591  static bool classof(const Type *T) {
3592    return T->getTypeClass() == Auto;
3593  }
3594};
3595
3596/// \brief Represents a type template specialization; the template
3597/// must be a class template, a type alias template, or a template
3598/// template parameter.  A template which cannot be resolved to one of
3599/// these, e.g. because it is written with a dependent scope
3600/// specifier, is instead represented as a
3601/// @c DependentTemplateSpecializationType.
3602///
3603/// A non-dependent template specialization type is always "sugar",
3604/// typically for a @c RecordType.  For example, a class template
3605/// specialization type of @c vector<int> will refer to a tag type for
3606/// the instantiation @c std::vector<int, std::allocator<int>>
3607///
3608/// Template specializations are dependent if either the template or
3609/// any of the template arguments are dependent, in which case the
3610/// type may also be canonical.
3611///
3612/// Instances of this type are allocated with a trailing array of
3613/// TemplateArguments, followed by a QualType representing the
3614/// non-canonical aliased type when the template is a type alias
3615/// template.
3616class TemplateSpecializationType
3617  : public Type, public llvm::FoldingSetNode {
3618  /// \brief The name of the template being specialized.  This is
3619  /// either a TemplateName::Template (in which case it is a
3620  /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
3621  /// TypeAliasTemplateDecl*), a
3622  /// TemplateName::SubstTemplateTemplateParmPack, or a
3623  /// TemplateName::SubstTemplateTemplateParm (in which case the
3624  /// replacement must, recursively, be one of these).
3625  TemplateName Template;
3626
3627  /// \brief - The number of template arguments named in this class
3628  /// template specialization.
3629  unsigned NumArgs : 31;
3630
3631  /// \brief Whether this template specialization type is a substituted
3632  /// type alias.
3633  bool TypeAlias : 1;
3634
3635  TemplateSpecializationType(TemplateName T,
3636                             const TemplateArgument *Args,
3637                             unsigned NumArgs, QualType Canon,
3638                             QualType Aliased);
3639
3640  friend class ASTContext;  // ASTContext creates these
3641
3642public:
3643  /// \brief Determine whether any of the given template arguments are
3644  /// dependent.
3645  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
3646                                            unsigned NumArgs,
3647                                            bool &InstantiationDependent);
3648
3649  static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
3650                                            unsigned NumArgs,
3651                                            bool &InstantiationDependent);
3652
3653  static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &,
3654                                            bool &InstantiationDependent);
3655
3656  /// \brief Print a template argument list, including the '<' and '>'
3657  /// enclosing the template arguments.
3658  // FIXME: remove the string ones.
3659  static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
3660                                               unsigned NumArgs,
3661                                               const PrintingPolicy &Policy,
3662                                               bool SkipBrackets = false);
3663
3664  static std::string PrintTemplateArgumentList(const TemplateArgumentLoc *Args,
3665                                               unsigned NumArgs,
3666                                               const PrintingPolicy &Policy);
3667
3668  static std::string PrintTemplateArgumentList(const TemplateArgumentListInfo &,
3669                                               const PrintingPolicy &Policy);
3670
3671  /// \brief Print a template argument list, including the '<' and '>'
3672  /// enclosing the template arguments.
3673  static void PrintTemplateArgumentList(raw_ostream &OS,
3674                                        const TemplateArgument *Args,
3675                                        unsigned NumArgs,
3676                                        const PrintingPolicy &Policy,
3677                                        bool SkipBrackets = false);
3678
3679  static void PrintTemplateArgumentList(raw_ostream &OS,
3680                                        const TemplateArgumentLoc *Args,
3681                                        unsigned NumArgs,
3682                                        const PrintingPolicy &Policy);
3683
3684  static void PrintTemplateArgumentList(raw_ostream &OS,
3685                                        const TemplateArgumentListInfo &,
3686                                        const PrintingPolicy &Policy);
3687
3688  /// True if this template specialization type matches a current
3689  /// instantiation in the context in which it is found.
3690  bool isCurrentInstantiation() const {
3691    return isa<InjectedClassNameType>(getCanonicalTypeInternal());
3692  }
3693
3694  /// \brief Determine if this template specialization type is for a type alias
3695  /// template that has been substituted.
3696  ///
3697  /// Nearly every template specialization type whose template is an alias
3698  /// template will be substituted. However, this is not the case when
3699  /// the specialization contains a pack expansion but the template alias
3700  /// does not have a corresponding parameter pack, e.g.,
3701  ///
3702  /// \code
3703  /// template<typename T, typename U, typename V> struct S;
3704  /// template<typename T, typename U> using A = S<T, int, U>;
3705  /// template<typename... Ts> struct X {
3706  ///   typedef A<Ts...> type; // not a type alias
3707  /// };
3708  /// \endcode
3709  bool isTypeAlias() const { return TypeAlias; }
3710
3711  /// Get the aliased type, if this is a specialization of a type alias
3712  /// template.
3713  QualType getAliasedType() const {
3714    assert(isTypeAlias() && "not a type alias template specialization");
3715    return *reinterpret_cast<const QualType*>(end());
3716  }
3717
3718  typedef const TemplateArgument * iterator;
3719
3720  iterator begin() const { return getArgs(); }
3721  iterator end() const; // defined inline in TemplateBase.h
3722
3723  /// \brief Retrieve the name of the template that we are specializing.
3724  TemplateName getTemplateName() const { return Template; }
3725
3726  /// \brief Retrieve the template arguments.
3727  const TemplateArgument *getArgs() const {
3728    return reinterpret_cast<const TemplateArgument *>(this + 1);
3729  }
3730
3731  /// \brief Retrieve the number of template arguments.
3732  unsigned getNumArgs() const { return NumArgs; }
3733
3734  /// \brief Retrieve a specific template argument as a type.
3735  /// \pre @c isArgType(Arg)
3736  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
3737
3738  bool isSugared() const {
3739    return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
3740  }
3741  QualType desugar() const { return getCanonicalTypeInternal(); }
3742
3743  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
3744    Profile(ID, Template, getArgs(), NumArgs, Ctx);
3745    if (isTypeAlias())
3746      getAliasedType().Profile(ID);
3747  }
3748
3749  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
3750                      const TemplateArgument *Args,
3751                      unsigned NumArgs,
3752                      const ASTContext &Context);
3753
3754  static bool classof(const Type *T) {
3755    return T->getTypeClass() == TemplateSpecialization;
3756  }
3757};
3758
3759/// \brief The injected class name of a C++ class template or class
3760/// template partial specialization.  Used to record that a type was
3761/// spelled with a bare identifier rather than as a template-id; the
3762/// equivalent for non-templated classes is just RecordType.
3763///
3764/// Injected class name types are always dependent.  Template
3765/// instantiation turns these into RecordTypes.
3766///
3767/// Injected class name types are always canonical.  This works
3768/// because it is impossible to compare an injected class name type
3769/// with the corresponding non-injected template type, for the same
3770/// reason that it is impossible to directly compare template
3771/// parameters from different dependent contexts: injected class name
3772/// types can only occur within the scope of a particular templated
3773/// declaration, and within that scope every template specialization
3774/// will canonicalize to the injected class name (when appropriate
3775/// according to the rules of the language).
3776class InjectedClassNameType : public Type {
3777  CXXRecordDecl *Decl;
3778
3779  /// The template specialization which this type represents.
3780  /// For example, in
3781  ///   template <class T> class A { ... };
3782  /// this is A<T>, whereas in
3783  ///   template <class X, class Y> class A<B<X,Y> > { ... };
3784  /// this is A<B<X,Y> >.
3785  ///
3786  /// It is always unqualified, always a template specialization type,
3787  /// and always dependent.
3788  QualType InjectedType;
3789
3790  friend class ASTContext; // ASTContext creates these.
3791  friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
3792                          // currently suitable for AST reading, too much
3793                          // interdependencies.
3794  InjectedClassNameType(CXXRecordDecl *D, QualType TST)
3795    : Type(InjectedClassName, QualType(), /*Dependent=*/true,
3796           /*InstantiationDependent=*/true,
3797           /*VariablyModified=*/false,
3798           /*ContainsUnexpandedParameterPack=*/false),
3799      Decl(D), InjectedType(TST) {
3800    assert(isa<TemplateSpecializationType>(TST));
3801    assert(!TST.hasQualifiers());
3802    assert(TST->isDependentType());
3803  }
3804
3805public:
3806  QualType getInjectedSpecializationType() const { return InjectedType; }
3807  const TemplateSpecializationType *getInjectedTST() const {
3808    return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
3809  }
3810
3811  CXXRecordDecl *getDecl() const;
3812
3813  bool isSugared() const { return false; }
3814  QualType desugar() const { return QualType(this, 0); }
3815
3816  static bool classof(const Type *T) {
3817    return T->getTypeClass() == InjectedClassName;
3818  }
3819};
3820
3821/// \brief The kind of a tag type.
3822enum TagTypeKind {
3823  /// \brief The "struct" keyword.
3824  TTK_Struct,
3825  /// \brief The "__interface" keyword.
3826  TTK_Interface,
3827  /// \brief The "union" keyword.
3828  TTK_Union,
3829  /// \brief The "class" keyword.
3830  TTK_Class,
3831  /// \brief The "enum" keyword.
3832  TTK_Enum
3833};
3834
3835/// \brief The elaboration keyword that precedes a qualified type name or
3836/// introduces an elaborated-type-specifier.
3837enum ElaboratedTypeKeyword {
3838  /// \brief The "struct" keyword introduces the elaborated-type-specifier.
3839  ETK_Struct,
3840  /// \brief The "__interface" keyword introduces the elaborated-type-specifier.
3841  ETK_Interface,
3842  /// \brief The "union" keyword introduces the elaborated-type-specifier.
3843  ETK_Union,
3844  /// \brief The "class" keyword introduces the elaborated-type-specifier.
3845  ETK_Class,
3846  /// \brief The "enum" keyword introduces the elaborated-type-specifier.
3847  ETK_Enum,
3848  /// \brief The "typename" keyword precedes the qualified type name, e.g.,
3849  /// \c typename T::type.
3850  ETK_Typename,
3851  /// \brief No keyword precedes the qualified type name.
3852  ETK_None
3853};
3854
3855/// A helper class for Type nodes having an ElaboratedTypeKeyword.
3856/// The keyword in stored in the free bits of the base class.
3857/// Also provides a few static helpers for converting and printing
3858/// elaborated type keyword and tag type kind enumerations.
3859class TypeWithKeyword : public Type {
3860protected:
3861  TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
3862                  QualType Canonical, bool Dependent,
3863                  bool InstantiationDependent, bool VariablyModified,
3864                  bool ContainsUnexpandedParameterPack)
3865  : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
3866         ContainsUnexpandedParameterPack) {
3867    TypeWithKeywordBits.Keyword = Keyword;
3868  }
3869
3870public:
3871  ElaboratedTypeKeyword getKeyword() const {
3872    return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
3873  }
3874
3875  /// getKeywordForTypeSpec - Converts a type specifier (DeclSpec::TST)
3876  /// into an elaborated type keyword.
3877  static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
3878
3879  /// getTagTypeKindForTypeSpec - Converts a type specifier (DeclSpec::TST)
3880  /// into a tag type kind.  It is an error to provide a type specifier
3881  /// which *isn't* a tag kind here.
3882  static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
3883
3884  /// getKeywordForTagDeclKind - Converts a TagTypeKind into an
3885  /// elaborated type keyword.
3886  static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
3887
3888  /// getTagTypeKindForKeyword - Converts an elaborated type keyword into
3889  // a TagTypeKind. It is an error to provide an elaborated type keyword
3890  /// which *isn't* a tag kind here.
3891  static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
3892
3893  static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
3894
3895  static const char *getKeywordName(ElaboratedTypeKeyword Keyword);
3896
3897  static const char *getTagTypeKindName(TagTypeKind Kind) {
3898    return getKeywordName(getKeywordForTagTypeKind(Kind));
3899  }
3900
3901  class CannotCastToThisType {};
3902  static CannotCastToThisType classof(const Type *);
3903};
3904
3905/// \brief Represents a type that was referred to using an elaborated type
3906/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
3907/// or both.
3908///
3909/// This type is used to keep track of a type name as written in the
3910/// source code, including tag keywords and any nested-name-specifiers.
3911/// The type itself is always "sugar", used to express what was written
3912/// in the source code but containing no additional semantic information.
3913class ElaboratedType : public TypeWithKeyword, public llvm::FoldingSetNode {
3914
3915  /// \brief The nested name specifier containing the qualifier.
3916  NestedNameSpecifier *NNS;
3917
3918  /// \brief The type that this qualified name refers to.
3919  QualType NamedType;
3920
3921  ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
3922                 QualType NamedType, QualType CanonType)
3923    : TypeWithKeyword(Keyword, Elaborated, CanonType,
3924                      NamedType->isDependentType(),
3925                      NamedType->isInstantiationDependentType(),
3926                      NamedType->isVariablyModifiedType(),
3927                      NamedType->containsUnexpandedParameterPack()),
3928      NNS(NNS), NamedType(NamedType) {
3929    assert(!(Keyword == ETK_None && NNS == 0) &&
3930           "ElaboratedType cannot have elaborated type keyword "
3931           "and name qualifier both null.");
3932  }
3933
3934  friend class ASTContext;  // ASTContext creates these
3935
3936public:
3937  ~ElaboratedType();
3938
3939  /// \brief Retrieve the qualification on this type.
3940  NestedNameSpecifier *getQualifier() const { return NNS; }
3941
3942  /// \brief Retrieve the type named by the qualified-id.
3943  QualType getNamedType() const { return NamedType; }
3944
3945  /// \brief Remove a single level of sugar.
3946  QualType desugar() const { return getNamedType(); }
3947
3948  /// \brief Returns whether this type directly provides sugar.
3949  bool isSugared() const { return true; }
3950
3951  void Profile(llvm::FoldingSetNodeID &ID) {
3952    Profile(ID, getKeyword(), NNS, NamedType);
3953  }
3954
3955  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
3956                      NestedNameSpecifier *NNS, QualType NamedType) {
3957    ID.AddInteger(Keyword);
3958    ID.AddPointer(NNS);
3959    NamedType.Profile(ID);
3960  }
3961
3962  static bool classof(const Type *T) {
3963    return T->getTypeClass() == Elaborated;
3964  }
3965};
3966
3967/// \brief Represents a qualified type name for which the type name is
3968/// dependent.
3969///
3970/// DependentNameType represents a class of dependent types that involve a
3971/// dependent nested-name-specifier (e.g., "T::") followed by a (dependent)
3972/// name of a type. The DependentNameType may start with a "typename" (for a
3973/// typename-specifier), "class", "struct", "union", or "enum" (for a
3974/// dependent elaborated-type-specifier), or nothing (in contexts where we
3975/// know that we must be referring to a type, e.g., in a base class specifier).
3976class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
3977
3978  /// \brief The nested name specifier containing the qualifier.
3979  NestedNameSpecifier *NNS;
3980
3981  /// \brief The type that this typename specifier refers to.
3982  const IdentifierInfo *Name;
3983
3984  DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
3985                    const IdentifierInfo *Name, QualType CanonType)
3986    : TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true,
3987                      /*InstantiationDependent=*/true,
3988                      /*VariablyModified=*/false,
3989                      NNS->containsUnexpandedParameterPack()),
3990      NNS(NNS), Name(Name) {
3991    assert(NNS->isDependent() &&
3992           "DependentNameType requires a dependent nested-name-specifier");
3993  }
3994
3995  friend class ASTContext;  // ASTContext creates these
3996
3997public:
3998  /// \brief Retrieve the qualification on this type.
3999  NestedNameSpecifier *getQualifier() const { return NNS; }
4000
4001  /// \brief Retrieve the type named by the typename specifier as an
4002  /// identifier.
4003  ///
4004  /// This routine will return a non-NULL identifier pointer when the
4005  /// form of the original typename was terminated by an identifier,
4006  /// e.g., "typename T::type".
4007  const IdentifierInfo *getIdentifier() const {
4008    return Name;
4009  }
4010
4011  bool isSugared() const { return false; }
4012  QualType desugar() const { return QualType(this, 0); }
4013
4014  void Profile(llvm::FoldingSetNodeID &ID) {
4015    Profile(ID, getKeyword(), NNS, Name);
4016  }
4017
4018  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
4019                      NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
4020    ID.AddInteger(Keyword);
4021    ID.AddPointer(NNS);
4022    ID.AddPointer(Name);
4023  }
4024
4025  static bool classof(const Type *T) {
4026    return T->getTypeClass() == DependentName;
4027  }
4028};
4029
4030/// DependentTemplateSpecializationType - Represents a template
4031/// specialization type whose template cannot be resolved, e.g.
4032///   A<T>::template B<T>
4033class DependentTemplateSpecializationType :
4034  public TypeWithKeyword, public llvm::FoldingSetNode {
4035
4036  /// \brief The nested name specifier containing the qualifier.
4037  NestedNameSpecifier *NNS;
4038
4039  /// \brief The identifier of the template.
4040  const IdentifierInfo *Name;
4041
4042  /// \brief - The number of template arguments named in this class
4043  /// template specialization.
4044  unsigned NumArgs;
4045
4046  const TemplateArgument *getArgBuffer() const {
4047    return reinterpret_cast<const TemplateArgument*>(this+1);
4048  }
4049  TemplateArgument *getArgBuffer() {
4050    return reinterpret_cast<TemplateArgument*>(this+1);
4051  }
4052
4053  DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
4054                                      NestedNameSpecifier *NNS,
4055                                      const IdentifierInfo *Name,
4056                                      unsigned NumArgs,
4057                                      const TemplateArgument *Args,
4058                                      QualType Canon);
4059
4060  friend class ASTContext;  // ASTContext creates these
4061
4062public:
4063  NestedNameSpecifier *getQualifier() const { return NNS; }
4064  const IdentifierInfo *getIdentifier() const { return Name; }
4065
4066  /// \brief Retrieve the template arguments.
4067  const TemplateArgument *getArgs() const {
4068    return getArgBuffer();
4069  }
4070
4071  /// \brief Retrieve the number of template arguments.
4072  unsigned getNumArgs() const { return NumArgs; }
4073
4074  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
4075
4076  typedef const TemplateArgument * iterator;
4077  iterator begin() const { return getArgs(); }
4078  iterator end() const; // inline in TemplateBase.h
4079
4080  bool isSugared() const { return false; }
4081  QualType desugar() const { return QualType(this, 0); }
4082
4083  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
4084    Profile(ID, Context, getKeyword(), NNS, Name, NumArgs, getArgs());
4085  }
4086
4087  static void Profile(llvm::FoldingSetNodeID &ID,
4088                      const ASTContext &Context,
4089                      ElaboratedTypeKeyword Keyword,
4090                      NestedNameSpecifier *Qualifier,
4091                      const IdentifierInfo *Name,
4092                      unsigned NumArgs,
4093                      const TemplateArgument *Args);
4094
4095  static bool classof(const Type *T) {
4096    return T->getTypeClass() == DependentTemplateSpecialization;
4097  }
4098};
4099
4100/// \brief Represents a pack expansion of types.
4101///
4102/// Pack expansions are part of C++0x variadic templates. A pack
4103/// expansion contains a pattern, which itself contains one or more
4104/// "unexpanded" parameter packs. When instantiated, a pack expansion
4105/// produces a series of types, each instantiated from the pattern of
4106/// the expansion, where the Ith instantiation of the pattern uses the
4107/// Ith arguments bound to each of the unexpanded parameter packs. The
4108/// pack expansion is considered to "expand" these unexpanded
4109/// parameter packs.
4110///
4111/// \code
4112/// template<typename ...Types> struct tuple;
4113///
4114/// template<typename ...Types>
4115/// struct tuple_of_references {
4116///   typedef tuple<Types&...> type;
4117/// };
4118/// \endcode
4119///
4120/// Here, the pack expansion \c Types&... is represented via a
4121/// PackExpansionType whose pattern is Types&.
4122class PackExpansionType : public Type, public llvm::FoldingSetNode {
4123  /// \brief The pattern of the pack expansion.
4124  QualType Pattern;
4125
4126  /// \brief The number of expansions that this pack expansion will
4127  /// generate when substituted (+1), or indicates that
4128  ///
4129  /// This field will only have a non-zero value when some of the parameter
4130  /// packs that occur within the pattern have been substituted but others have
4131  /// not.
4132  unsigned NumExpansions;
4133
4134  PackExpansionType(QualType Pattern, QualType Canon,
4135                    llvm::Optional<unsigned> NumExpansions)
4136    : Type(PackExpansion, Canon, /*Dependent=*/Pattern->isDependentType(),
4137           /*InstantiationDependent=*/true,
4138           /*VariableModified=*/Pattern->isVariablyModifiedType(),
4139           /*ContainsUnexpandedParameterPack=*/false),
4140      Pattern(Pattern),
4141      NumExpansions(NumExpansions? *NumExpansions + 1: 0) { }
4142
4143  friend class ASTContext;  // ASTContext creates these
4144
4145public:
4146  /// \brief Retrieve the pattern of this pack expansion, which is the
4147  /// type that will be repeatedly instantiated when instantiating the
4148  /// pack expansion itself.
4149  QualType getPattern() const { return Pattern; }
4150
4151  /// \brief Retrieve the number of expansions that this pack expansion will
4152  /// generate, if known.
4153  llvm::Optional<unsigned> getNumExpansions() const {
4154    if (NumExpansions)
4155      return NumExpansions - 1;
4156
4157    return llvm::Optional<unsigned>();
4158  }
4159
4160  bool isSugared() const { return false; }
4161  QualType desugar() const { return QualType(this, 0); }
4162
4163  void Profile(llvm::FoldingSetNodeID &ID) {
4164    Profile(ID, getPattern(), getNumExpansions());
4165  }
4166
4167  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
4168                      llvm::Optional<unsigned> NumExpansions) {
4169    ID.AddPointer(Pattern.getAsOpaquePtr());
4170    ID.AddBoolean(NumExpansions);
4171    if (NumExpansions)
4172      ID.AddInteger(*NumExpansions);
4173  }
4174
4175  static bool classof(const Type *T) {
4176    return T->getTypeClass() == PackExpansion;
4177  }
4178};
4179
4180/// ObjCObjectType - Represents a class type in Objective C.
4181/// Every Objective C type is a combination of a base type and a
4182/// list of protocols.
4183///
4184/// Given the following declarations:
4185/// \code
4186///   \@class C;
4187///   \@protocol P;
4188/// \endcode
4189///
4190/// 'C' is an ObjCInterfaceType C.  It is sugar for an ObjCObjectType
4191/// with base C and no protocols.
4192///
4193/// 'C<P>' is an ObjCObjectType with base C and protocol list [P].
4194///
4195/// 'id' is a TypedefType which is sugar for an ObjCPointerType whose
4196/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
4197/// and no protocols.
4198///
4199/// 'id<P>' is an ObjCPointerType whose pointee is an ObjCObjecType
4200/// with base BuiltinType::ObjCIdType and protocol list [P].  Eventually
4201/// this should get its own sugar class to better represent the source.
4202class ObjCObjectType : public Type {
4203  // ObjCObjectType.NumProtocols - the number of protocols stored
4204  // after the ObjCObjectPointerType node.
4205  //
4206  // These protocols are those written directly on the type.  If
4207  // protocol qualifiers ever become additive, the iterators will need
4208  // to get kindof complicated.
4209  //
4210  // In the canonical object type, these are sorted alphabetically
4211  // and uniqued.
4212
4213  /// Either a BuiltinType or an InterfaceType or sugar for either.
4214  QualType BaseType;
4215
4216  ObjCProtocolDecl * const *getProtocolStorage() const {
4217    return const_cast<ObjCObjectType*>(this)->getProtocolStorage();
4218  }
4219
4220  ObjCProtocolDecl **getProtocolStorage();
4221
4222protected:
4223  ObjCObjectType(QualType Canonical, QualType Base,
4224                 ObjCProtocolDecl * const *Protocols, unsigned NumProtocols);
4225
4226  enum Nonce_ObjCInterface { Nonce_ObjCInterface };
4227  ObjCObjectType(enum Nonce_ObjCInterface)
4228        : Type(ObjCInterface, QualType(), false, false, false, false),
4229      BaseType(QualType(this_(), 0)) {
4230    ObjCObjectTypeBits.NumProtocols = 0;
4231  }
4232
4233public:
4234  /// getBaseType - Gets the base type of this object type.  This is
4235  /// always (possibly sugar for) one of:
4236  ///  - the 'id' builtin type (as opposed to the 'id' type visible to the
4237  ///    user, which is a typedef for an ObjCPointerType)
4238  ///  - the 'Class' builtin type (same caveat)
4239  ///  - an ObjCObjectType (currently always an ObjCInterfaceType)
4240  QualType getBaseType() const { return BaseType; }
4241
4242  bool isObjCId() const {
4243    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
4244  }
4245  bool isObjCClass() const {
4246    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
4247  }
4248  bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
4249  bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
4250  bool isObjCUnqualifiedIdOrClass() const {
4251    if (!qual_empty()) return false;
4252    if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
4253      return T->getKind() == BuiltinType::ObjCId ||
4254             T->getKind() == BuiltinType::ObjCClass;
4255    return false;
4256  }
4257  bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
4258  bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
4259
4260  /// Gets the interface declaration for this object type, if the base type
4261  /// really is an interface.
4262  ObjCInterfaceDecl *getInterface() const;
4263
4264  typedef ObjCProtocolDecl * const *qual_iterator;
4265
4266  qual_iterator qual_begin() const { return getProtocolStorage(); }
4267  qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
4268
4269  bool qual_empty() const { return getNumProtocols() == 0; }
4270
4271  /// getNumProtocols - Return the number of qualifying protocols in this
4272  /// interface type, or 0 if there are none.
4273  unsigned getNumProtocols() const { return ObjCObjectTypeBits.NumProtocols; }
4274
4275  /// \brief Fetch a protocol by index.
4276  ObjCProtocolDecl *getProtocol(unsigned I) const {
4277    assert(I < getNumProtocols() && "Out-of-range protocol access");
4278    return qual_begin()[I];
4279  }
4280
4281  bool isSugared() const { return false; }
4282  QualType desugar() const { return QualType(this, 0); }
4283
4284  static bool classof(const Type *T) {
4285    return T->getTypeClass() == ObjCObject ||
4286           T->getTypeClass() == ObjCInterface;
4287  }
4288};
4289
4290/// ObjCObjectTypeImpl - A class providing a concrete implementation
4291/// of ObjCObjectType, so as to not increase the footprint of
4292/// ObjCInterfaceType.  Code outside of ASTContext and the core type
4293/// system should not reference this type.
4294class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
4295  friend class ASTContext;
4296
4297  // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
4298  // will need to be modified.
4299
4300  ObjCObjectTypeImpl(QualType Canonical, QualType Base,
4301                     ObjCProtocolDecl * const *Protocols,
4302                     unsigned NumProtocols)
4303    : ObjCObjectType(Canonical, Base, Protocols, NumProtocols) {}
4304
4305public:
4306  void Profile(llvm::FoldingSetNodeID &ID);
4307  static void Profile(llvm::FoldingSetNodeID &ID,
4308                      QualType Base,
4309                      ObjCProtocolDecl *const *protocols,
4310                      unsigned NumProtocols);
4311};
4312
4313inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorage() {
4314  return reinterpret_cast<ObjCProtocolDecl**>(
4315            static_cast<ObjCObjectTypeImpl*>(this) + 1);
4316}
4317
4318/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
4319/// object oriented design.  They basically correspond to C++ classes.  There
4320/// are two kinds of interface types, normal interfaces like "NSString" and
4321/// qualified interfaces, which are qualified with a protocol list like
4322/// "NSString<NSCopyable, NSAmazing>".
4323///
4324/// ObjCInterfaceType guarantees the following properties when considered
4325/// as a subtype of its superclass, ObjCObjectType:
4326///   - There are no protocol qualifiers.  To reinforce this, code which
4327///     tries to invoke the protocol methods via an ObjCInterfaceType will
4328///     fail to compile.
4329///   - It is its own base type.  That is, if T is an ObjCInterfaceType*,
4330///     T->getBaseType() == QualType(T, 0).
4331class ObjCInterfaceType : public ObjCObjectType {
4332  mutable ObjCInterfaceDecl *Decl;
4333
4334  ObjCInterfaceType(const ObjCInterfaceDecl *D)
4335    : ObjCObjectType(Nonce_ObjCInterface),
4336      Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
4337  friend class ASTContext;  // ASTContext creates these.
4338  friend class ASTReader;
4339  friend class ObjCInterfaceDecl;
4340
4341public:
4342  /// getDecl - Get the declaration of this interface.
4343  ObjCInterfaceDecl *getDecl() const { return Decl; }
4344
4345  bool isSugared() const { return false; }
4346  QualType desugar() const { return QualType(this, 0); }
4347
4348  static bool classof(const Type *T) {
4349    return T->getTypeClass() == ObjCInterface;
4350  }
4351
4352  // Nonsense to "hide" certain members of ObjCObjectType within this
4353  // class.  People asking for protocols on an ObjCInterfaceType are
4354  // not going to get what they want: ObjCInterfaceTypes are
4355  // guaranteed to have no protocols.
4356  enum {
4357    qual_iterator,
4358    qual_begin,
4359    qual_end,
4360    getNumProtocols,
4361    getProtocol
4362  };
4363};
4364
4365inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
4366  if (const ObjCInterfaceType *T =
4367        getBaseType()->getAs<ObjCInterfaceType>())
4368    return T->getDecl();
4369  return 0;
4370}
4371
4372/// ObjCObjectPointerType - Used to represent a pointer to an
4373/// Objective C object.  These are constructed from pointer
4374/// declarators when the pointee type is an ObjCObjectType (or sugar
4375/// for one).  In addition, the 'id' and 'Class' types are typedefs
4376/// for these, and the protocol-qualified types 'id<P>' and 'Class<P>'
4377/// are translated into these.
4378///
4379/// Pointers to pointers to Objective C objects are still PointerTypes;
4380/// only the first level of pointer gets it own type implementation.
4381class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
4382  QualType PointeeType;
4383
4384  ObjCObjectPointerType(QualType Canonical, QualType Pointee)
4385    : Type(ObjCObjectPointer, Canonical, false, false, false, false),
4386      PointeeType(Pointee) {}
4387  friend class ASTContext;  // ASTContext creates these.
4388
4389public:
4390  /// getPointeeType - Gets the type pointed to by this ObjC pointer.
4391  /// The result will always be an ObjCObjectType or sugar thereof.
4392  QualType getPointeeType() const { return PointeeType; }
4393
4394  /// getObjCObjectType - Gets the type pointed to by this ObjC
4395  /// pointer.  This method always returns non-null.
4396  ///
4397  /// This method is equivalent to getPointeeType() except that
4398  /// it discards any typedefs (or other sugar) between this
4399  /// type and the "outermost" object type.  So for:
4400  /// \code
4401  ///   \@class A; \@protocol P; \@protocol Q;
4402  ///   typedef A<P> AP;
4403  ///   typedef A A1;
4404  ///   typedef A1<P> A1P;
4405  ///   typedef A1P<Q> A1PQ;
4406  /// \endcode
4407  /// For 'A*', getObjectType() will return 'A'.
4408  /// For 'A<P>*', getObjectType() will return 'A<P>'.
4409  /// For 'AP*', getObjectType() will return 'A<P>'.
4410  /// For 'A1*', getObjectType() will return 'A'.
4411  /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
4412  /// For 'A1P*', getObjectType() will return 'A1<P>'.
4413  /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
4414  ///   adding protocols to a protocol-qualified base discards the
4415  ///   old qualifiers (for now).  But if it didn't, getObjectType()
4416  ///   would return 'A1P<Q>' (and we'd have to make iterating over
4417  ///   qualifiers more complicated).
4418  const ObjCObjectType *getObjectType() const {
4419    return PointeeType->castAs<ObjCObjectType>();
4420  }
4421
4422  /// getInterfaceType - If this pointer points to an Objective C
4423  /// \@interface type, gets the type for that interface.  Any protocol
4424  /// qualifiers on the interface are ignored.
4425  ///
4426  /// \return null if the base type for this pointer is 'id' or 'Class'
4427  const ObjCInterfaceType *getInterfaceType() const {
4428    return getObjectType()->getBaseType()->getAs<ObjCInterfaceType>();
4429  }
4430
4431  /// getInterfaceDecl - If this pointer points to an Objective \@interface
4432  /// type, gets the declaration for that interface.
4433  ///
4434  /// \return null if the base type for this pointer is 'id' or 'Class'
4435  ObjCInterfaceDecl *getInterfaceDecl() const {
4436    return getObjectType()->getInterface();
4437  }
4438
4439  /// isObjCIdType - True if this is equivalent to the 'id' type, i.e. if
4440  /// its object type is the primitive 'id' type with no protocols.
4441  bool isObjCIdType() const {
4442    return getObjectType()->isObjCUnqualifiedId();
4443  }
4444
4445  /// isObjCClassType - True if this is equivalent to the 'Class' type,
4446  /// i.e. if its object tive is the primitive 'Class' type with no protocols.
4447  bool isObjCClassType() const {
4448    return getObjectType()->isObjCUnqualifiedClass();
4449  }
4450
4451  /// isObjCQualifiedIdType - True if this is equivalent to 'id<P>' for some
4452  /// non-empty set of protocols.
4453  bool isObjCQualifiedIdType() const {
4454    return getObjectType()->isObjCQualifiedId();
4455  }
4456
4457  /// isObjCQualifiedClassType - True if this is equivalent to 'Class<P>' for
4458  /// some non-empty set of protocols.
4459  bool isObjCQualifiedClassType() const {
4460    return getObjectType()->isObjCQualifiedClass();
4461  }
4462
4463  /// An iterator over the qualifiers on the object type.  Provided
4464  /// for convenience.  This will always iterate over the full set of
4465  /// protocols on a type, not just those provided directly.
4466  typedef ObjCObjectType::qual_iterator qual_iterator;
4467
4468  qual_iterator qual_begin() const {
4469    return getObjectType()->qual_begin();
4470  }
4471  qual_iterator qual_end() const {
4472    return getObjectType()->qual_end();
4473  }
4474  bool qual_empty() const { return getObjectType()->qual_empty(); }
4475
4476  /// getNumProtocols - Return the number of qualifying protocols on
4477  /// the object type.
4478  unsigned getNumProtocols() const {
4479    return getObjectType()->getNumProtocols();
4480  }
4481
4482  /// \brief Retrieve a qualifying protocol by index on the object
4483  /// type.
4484  ObjCProtocolDecl *getProtocol(unsigned I) const {
4485    return getObjectType()->getProtocol(I);
4486  }
4487
4488  bool isSugared() const { return false; }
4489  QualType desugar() const { return QualType(this, 0); }
4490
4491  void Profile(llvm::FoldingSetNodeID &ID) {
4492    Profile(ID, getPointeeType());
4493  }
4494  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
4495    ID.AddPointer(T.getAsOpaquePtr());
4496  }
4497  static bool classof(const Type *T) {
4498    return T->getTypeClass() == ObjCObjectPointer;
4499  }
4500};
4501
4502class AtomicType : public Type, public llvm::FoldingSetNode {
4503  QualType ValueType;
4504
4505  AtomicType(QualType ValTy, QualType Canonical)
4506    : Type(Atomic, Canonical, ValTy->isDependentType(),
4507           ValTy->isInstantiationDependentType(),
4508           ValTy->isVariablyModifiedType(),
4509           ValTy->containsUnexpandedParameterPack()),
4510      ValueType(ValTy) {}
4511  friend class ASTContext;  // ASTContext creates these.
4512
4513  public:
4514  /// getValueType - Gets the type contained by this atomic type, i.e.
4515  /// the type returned by performing an atomic load of this atomic type.
4516  QualType getValueType() const { return ValueType; }
4517
4518  bool isSugared() const { return false; }
4519  QualType desugar() const { return QualType(this, 0); }
4520
4521  void Profile(llvm::FoldingSetNodeID &ID) {
4522    Profile(ID, getValueType());
4523  }
4524  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
4525    ID.AddPointer(T.getAsOpaquePtr());
4526  }
4527  static bool classof(const Type *T) {
4528    return T->getTypeClass() == Atomic;
4529  }
4530};
4531
4532/// A qualifier set is used to build a set of qualifiers.
4533class QualifierCollector : public Qualifiers {
4534public:
4535  QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
4536
4537  /// Collect any qualifiers on the given type and return an
4538  /// unqualified type.  The qualifiers are assumed to be consistent
4539  /// with those already in the type.
4540  const Type *strip(QualType type) {
4541    addFastQualifiers(type.getLocalFastQualifiers());
4542    if (!type.hasLocalNonFastQualifiers())
4543      return type.getTypePtrUnsafe();
4544
4545    const ExtQuals *extQuals = type.getExtQualsUnsafe();
4546    addConsistentQualifiers(extQuals->getQualifiers());
4547    return extQuals->getBaseType();
4548  }
4549
4550  /// Apply the collected qualifiers to the given type.
4551  QualType apply(const ASTContext &Context, QualType QT) const;
4552
4553  /// Apply the collected qualifiers to the given type.
4554  QualType apply(const ASTContext &Context, const Type* T) const;
4555};
4556
4557
4558// Inline function definitions.
4559
4560inline SplitQualType SplitQualType::getSingleStepDesugaredType() const {
4561  SplitQualType desugar =
4562    Ty->getLocallyUnqualifiedSingleStepDesugaredType().split();
4563  desugar.Quals.addConsistentQualifiers(Quals);
4564  return desugar;
4565}
4566
4567inline const Type *QualType::getTypePtr() const {
4568  return getCommonPtr()->BaseType;
4569}
4570
4571inline const Type *QualType::getTypePtrOrNull() const {
4572  return (isNull() ? 0 : getCommonPtr()->BaseType);
4573}
4574
4575inline SplitQualType QualType::split() const {
4576  if (!hasLocalNonFastQualifiers())
4577    return SplitQualType(getTypePtrUnsafe(),
4578                         Qualifiers::fromFastMask(getLocalFastQualifiers()));
4579
4580  const ExtQuals *eq = getExtQualsUnsafe();
4581  Qualifiers qs = eq->getQualifiers();
4582  qs.addFastQualifiers(getLocalFastQualifiers());
4583  return SplitQualType(eq->getBaseType(), qs);
4584}
4585
4586inline Qualifiers QualType::getLocalQualifiers() const {
4587  Qualifiers Quals;
4588  if (hasLocalNonFastQualifiers())
4589    Quals = getExtQualsUnsafe()->getQualifiers();
4590  Quals.addFastQualifiers(getLocalFastQualifiers());
4591  return Quals;
4592}
4593
4594inline Qualifiers QualType::getQualifiers() const {
4595  Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
4596  quals.addFastQualifiers(getLocalFastQualifiers());
4597  return quals;
4598}
4599
4600inline unsigned QualType::getCVRQualifiers() const {
4601  unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
4602  cvr |= getLocalCVRQualifiers();
4603  return cvr;
4604}
4605
4606inline QualType QualType::getCanonicalType() const {
4607  QualType canon = getCommonPtr()->CanonicalType;
4608  return canon.withFastQualifiers(getLocalFastQualifiers());
4609}
4610
4611inline bool QualType::isCanonical() const {
4612  return getTypePtr()->isCanonicalUnqualified();
4613}
4614
4615inline bool QualType::isCanonicalAsParam() const {
4616  if (!isCanonical()) return false;
4617  if (hasLocalQualifiers()) return false;
4618
4619  const Type *T = getTypePtr();
4620  if (T->isVariablyModifiedType() && T->hasSizedVLAType())
4621    return false;
4622
4623  return !isa<FunctionType>(T) && !isa<ArrayType>(T);
4624}
4625
4626inline bool QualType::isConstQualified() const {
4627  return isLocalConstQualified() ||
4628         getCommonPtr()->CanonicalType.isLocalConstQualified();
4629}
4630
4631inline bool QualType::isRestrictQualified() const {
4632  return isLocalRestrictQualified() ||
4633         getCommonPtr()->CanonicalType.isLocalRestrictQualified();
4634}
4635
4636
4637inline bool QualType::isVolatileQualified() const {
4638  return isLocalVolatileQualified() ||
4639         getCommonPtr()->CanonicalType.isLocalVolatileQualified();
4640}
4641
4642inline bool QualType::hasQualifiers() const {
4643  return hasLocalQualifiers() ||
4644         getCommonPtr()->CanonicalType.hasLocalQualifiers();
4645}
4646
4647inline QualType QualType::getUnqualifiedType() const {
4648  if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
4649    return QualType(getTypePtr(), 0);
4650
4651  return QualType(getSplitUnqualifiedTypeImpl(*this).Ty, 0);
4652}
4653
4654inline SplitQualType QualType::getSplitUnqualifiedType() const {
4655  if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
4656    return split();
4657
4658  return getSplitUnqualifiedTypeImpl(*this);
4659}
4660
4661inline void QualType::removeLocalConst() {
4662  removeLocalFastQualifiers(Qualifiers::Const);
4663}
4664
4665inline void QualType::removeLocalRestrict() {
4666  removeLocalFastQualifiers(Qualifiers::Restrict);
4667}
4668
4669inline void QualType::removeLocalVolatile() {
4670  removeLocalFastQualifiers(Qualifiers::Volatile);
4671}
4672
4673inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
4674  assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
4675  assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask);
4676
4677  // Fast path: we don't need to touch the slow qualifiers.
4678  removeLocalFastQualifiers(Mask);
4679}
4680
4681/// getAddressSpace - Return the address space of this type.
4682inline unsigned QualType::getAddressSpace() const {
4683  return getQualifiers().getAddressSpace();
4684}
4685
4686/// getObjCGCAttr - Return the gc attribute of this type.
4687inline Qualifiers::GC QualType::getObjCGCAttr() const {
4688  return getQualifiers().getObjCGCAttr();
4689}
4690
4691inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
4692  if (const PointerType *PT = t.getAs<PointerType>()) {
4693    if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
4694      return FT->getExtInfo();
4695  } else if (const FunctionType *FT = t.getAs<FunctionType>())
4696    return FT->getExtInfo();
4697
4698  return FunctionType::ExtInfo();
4699}
4700
4701inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
4702  return getFunctionExtInfo(*t);
4703}
4704
4705/// isMoreQualifiedThan - Determine whether this type is more
4706/// qualified than the Other type. For example, "const volatile int"
4707/// is more qualified than "const int", "volatile int", and
4708/// "int". However, it is not more qualified than "const volatile
4709/// int".
4710inline bool QualType::isMoreQualifiedThan(QualType other) const {
4711  Qualifiers myQuals = getQualifiers();
4712  Qualifiers otherQuals = other.getQualifiers();
4713  return (myQuals != otherQuals && myQuals.compatiblyIncludes(otherQuals));
4714}
4715
4716/// isAtLeastAsQualifiedAs - Determine whether this type is at last
4717/// as qualified as the Other type. For example, "const volatile
4718/// int" is at least as qualified as "const int", "volatile int",
4719/// "int", and "const volatile int".
4720inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
4721  return getQualifiers().compatiblyIncludes(other.getQualifiers());
4722}
4723
4724/// getNonReferenceType - If Type is a reference type (e.g., const
4725/// int&), returns the type that the reference refers to ("const
4726/// int"). Otherwise, returns the type itself. This routine is used
4727/// throughout Sema to implement C++ 5p6:
4728///
4729///   If an expression initially has the type "reference to T" (8.3.2,
4730///   8.5.3), the type is adjusted to "T" prior to any further
4731///   analysis, the expression designates the object or function
4732///   denoted by the reference, and the expression is an lvalue.
4733inline QualType QualType::getNonReferenceType() const {
4734  if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
4735    return RefType->getPointeeType();
4736  else
4737    return *this;
4738}
4739
4740inline bool QualType::isCForbiddenLValueType() const {
4741  return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
4742          getTypePtr()->isFunctionType());
4743}
4744
4745/// \brief Tests whether the type is categorized as a fundamental type.
4746///
4747/// \returns True for types specified in C++0x [basic.fundamental].
4748inline bool Type::isFundamentalType() const {
4749  return isVoidType() ||
4750         // FIXME: It's really annoying that we don't have an
4751         // 'isArithmeticType()' which agrees with the standard definition.
4752         (isArithmeticType() && !isEnumeralType());
4753}
4754
4755/// \brief Tests whether the type is categorized as a compound type.
4756///
4757/// \returns True for types specified in C++0x [basic.compound].
4758inline bool Type::isCompoundType() const {
4759  // C++0x [basic.compound]p1:
4760  //   Compound types can be constructed in the following ways:
4761  //    -- arrays of objects of a given type [...];
4762  return isArrayType() ||
4763  //    -- functions, which have parameters of given types [...];
4764         isFunctionType() ||
4765  //    -- pointers to void or objects or functions [...];
4766         isPointerType() ||
4767  //    -- references to objects or functions of a given type. [...]
4768         isReferenceType() ||
4769  //    -- classes containing a sequence of objects of various types, [...];
4770         isRecordType() ||
4771  //    -- unions, which are classes capable of containing objects of different
4772  //               types at different times;
4773         isUnionType() ||
4774  //    -- enumerations, which comprise a set of named constant values. [...];
4775         isEnumeralType() ||
4776  //    -- pointers to non-static class members, [...].
4777         isMemberPointerType();
4778}
4779
4780inline bool Type::isFunctionType() const {
4781  return isa<FunctionType>(CanonicalType);
4782}
4783inline bool Type::isPointerType() const {
4784  return isa<PointerType>(CanonicalType);
4785}
4786inline bool Type::isAnyPointerType() const {
4787  return isPointerType() || isObjCObjectPointerType();
4788}
4789inline bool Type::isBlockPointerType() const {
4790  return isa<BlockPointerType>(CanonicalType);
4791}
4792inline bool Type::isReferenceType() const {
4793  return isa<ReferenceType>(CanonicalType);
4794}
4795inline bool Type::isLValueReferenceType() const {
4796  return isa<LValueReferenceType>(CanonicalType);
4797}
4798inline bool Type::isRValueReferenceType() const {
4799  return isa<RValueReferenceType>(CanonicalType);
4800}
4801inline bool Type::isFunctionPointerType() const {
4802  if (const PointerType *T = getAs<PointerType>())
4803    return T->getPointeeType()->isFunctionType();
4804  else
4805    return false;
4806}
4807inline bool Type::isMemberPointerType() const {
4808  return isa<MemberPointerType>(CanonicalType);
4809}
4810inline bool Type::isMemberFunctionPointerType() const {
4811  if (const MemberPointerType* T = getAs<MemberPointerType>())
4812    return T->isMemberFunctionPointer();
4813  else
4814    return false;
4815}
4816inline bool Type::isMemberDataPointerType() const {
4817  if (const MemberPointerType* T = getAs<MemberPointerType>())
4818    return T->isMemberDataPointer();
4819  else
4820    return false;
4821}
4822inline bool Type::isArrayType() const {
4823  return isa<ArrayType>(CanonicalType);
4824}
4825inline bool Type::isConstantArrayType() const {
4826  return isa<ConstantArrayType>(CanonicalType);
4827}
4828inline bool Type::isIncompleteArrayType() const {
4829  return isa<IncompleteArrayType>(CanonicalType);
4830}
4831inline bool Type::isVariableArrayType() const {
4832  return isa<VariableArrayType>(CanonicalType);
4833}
4834inline bool Type::isDependentSizedArrayType() const {
4835  return isa<DependentSizedArrayType>(CanonicalType);
4836}
4837inline bool Type::isBuiltinType() const {
4838  return isa<BuiltinType>(CanonicalType);
4839}
4840inline bool Type::isRecordType() const {
4841  return isa<RecordType>(CanonicalType);
4842}
4843inline bool Type::isEnumeralType() const {
4844  return isa<EnumType>(CanonicalType);
4845}
4846inline bool Type::isAnyComplexType() const {
4847  return isa<ComplexType>(CanonicalType);
4848}
4849inline bool Type::isVectorType() const {
4850  return isa<VectorType>(CanonicalType);
4851}
4852inline bool Type::isExtVectorType() const {
4853  return isa<ExtVectorType>(CanonicalType);
4854}
4855inline bool Type::isObjCObjectPointerType() const {
4856  return isa<ObjCObjectPointerType>(CanonicalType);
4857}
4858inline bool Type::isObjCObjectType() const {
4859  return isa<ObjCObjectType>(CanonicalType);
4860}
4861inline bool Type::isObjCObjectOrInterfaceType() const {
4862  return isa<ObjCInterfaceType>(CanonicalType) ||
4863    isa<ObjCObjectType>(CanonicalType);
4864}
4865inline bool Type::isAtomicType() const {
4866  return isa<AtomicType>(CanonicalType);
4867}
4868
4869inline bool Type::isObjCQualifiedIdType() const {
4870  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4871    return OPT->isObjCQualifiedIdType();
4872  return false;
4873}
4874inline bool Type::isObjCQualifiedClassType() const {
4875  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4876    return OPT->isObjCQualifiedClassType();
4877  return false;
4878}
4879inline bool Type::isObjCIdType() const {
4880  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4881    return OPT->isObjCIdType();
4882  return false;
4883}
4884inline bool Type::isObjCClassType() const {
4885  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4886    return OPT->isObjCClassType();
4887  return false;
4888}
4889inline bool Type::isObjCSelType() const {
4890  if (const PointerType *OPT = getAs<PointerType>())
4891    return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
4892  return false;
4893}
4894inline bool Type::isObjCBuiltinType() const {
4895  return isObjCIdType() || isObjCClassType() || isObjCSelType();
4896}
4897
4898inline bool Type::isImage1dT() const {
4899  return isSpecificBuiltinType(BuiltinType::OCLImage1d);
4900}
4901
4902inline bool Type::isImage1dArrayT() const {
4903  return isSpecificBuiltinType(BuiltinType::OCLImage1dArray);
4904}
4905
4906inline bool Type::isImage1dBufferT() const {
4907  return isSpecificBuiltinType(BuiltinType::OCLImage1dBuffer);
4908}
4909
4910inline bool Type::isImage2dT() const {
4911  return isSpecificBuiltinType(BuiltinType::OCLImage2d);
4912}
4913
4914inline bool Type::isImage2dArrayT() const {
4915  return isSpecificBuiltinType(BuiltinType::OCLImage2dArray);
4916}
4917
4918inline bool Type::isImage3dT() const {
4919  return isSpecificBuiltinType(BuiltinType::OCLImage3d);
4920}
4921inline bool Type::isImageType() const {
4922  return isImage3dT() ||
4923         isImage2dT() || isImage2dArrayT() ||
4924         isImage1dT() || isImage1dArrayT() || isImage1dBufferT();
4925}
4926
4927inline bool Type::isOpenCLSpecificType() const {
4928  return isImageType();
4929}
4930
4931inline bool Type::isTemplateTypeParmType() const {
4932  return isa<TemplateTypeParmType>(CanonicalType);
4933}
4934
4935inline bool Type::isSpecificBuiltinType(unsigned K) const {
4936  if (const BuiltinType *BT = getAs<BuiltinType>())
4937    if (BT->getKind() == (BuiltinType::Kind) K)
4938      return true;
4939  return false;
4940}
4941
4942inline bool Type::isPlaceholderType() const {
4943  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
4944    return BT->isPlaceholderType();
4945  return false;
4946}
4947
4948inline const BuiltinType *Type::getAsPlaceholderType() const {
4949  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
4950    if (BT->isPlaceholderType())
4951      return BT;
4952  return 0;
4953}
4954
4955inline bool Type::isSpecificPlaceholderType(unsigned K) const {
4956  assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K));
4957  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
4958    return (BT->getKind() == (BuiltinType::Kind) K);
4959  return false;
4960}
4961
4962inline bool Type::isNonOverloadPlaceholderType() const {
4963  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
4964    return BT->isNonOverloadPlaceholderType();
4965  return false;
4966}
4967
4968inline bool Type::isVoidType() const {
4969  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
4970    return BT->getKind() == BuiltinType::Void;
4971  return false;
4972}
4973
4974inline bool Type::isHalfType() const {
4975  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
4976    return BT->getKind() == BuiltinType::Half;
4977  // FIXME: Should we allow complex __fp16? Probably not.
4978  return false;
4979}
4980
4981inline bool Type::isNullPtrType() const {
4982  if (const BuiltinType *BT = getAs<BuiltinType>())
4983    return BT->getKind() == BuiltinType::NullPtr;
4984  return false;
4985}
4986
4987extern bool IsEnumDeclComplete(EnumDecl *);
4988extern bool IsEnumDeclScoped(EnumDecl *);
4989
4990inline bool Type::isIntegerType() const {
4991  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
4992    return BT->getKind() >= BuiltinType::Bool &&
4993           BT->getKind() <= BuiltinType::Int128;
4994  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
4995    // Incomplete enum types are not treated as integer types.
4996    // FIXME: In C++, enum types are never integer types.
4997    return IsEnumDeclComplete(ET->getDecl()) &&
4998      !IsEnumDeclScoped(ET->getDecl());
4999  }
5000  return false;
5001}
5002
5003inline bool Type::isScalarType() const {
5004  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
5005    return BT->getKind() > BuiltinType::Void &&
5006           BT->getKind() <= BuiltinType::NullPtr;
5007  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
5008    // Enums are scalar types, but only if they are defined.  Incomplete enums
5009    // are not treated as scalar types.
5010    return IsEnumDeclComplete(ET->getDecl());
5011  return isa<PointerType>(CanonicalType) ||
5012         isa<BlockPointerType>(CanonicalType) ||
5013         isa<MemberPointerType>(CanonicalType) ||
5014         isa<ComplexType>(CanonicalType) ||
5015         isa<ObjCObjectPointerType>(CanonicalType);
5016}
5017
5018inline bool Type::isIntegralOrEnumerationType() const {
5019  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
5020    return BT->getKind() >= BuiltinType::Bool &&
5021           BT->getKind() <= BuiltinType::Int128;
5022
5023  // Check for a complete enum type; incomplete enum types are not properly an
5024  // enumeration type in the sense required here.
5025  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
5026    return IsEnumDeclComplete(ET->getDecl());
5027
5028  return false;
5029}
5030
5031inline bool Type::isBooleanType() const {
5032  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
5033    return BT->getKind() == BuiltinType::Bool;
5034  return false;
5035}
5036
5037/// \brief Determines whether this is a type for which one can define
5038/// an overloaded operator.
5039inline bool Type::isOverloadableType() const {
5040  return isDependentType() || isRecordType() || isEnumeralType();
5041}
5042
5043/// \brief Determines whether this type can decay to a pointer type.
5044inline bool Type::canDecayToPointerType() const {
5045  return isFunctionType() || isArrayType();
5046}
5047
5048inline bool Type::hasPointerRepresentation() const {
5049  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
5050          isObjCObjectPointerType() || isNullPtrType());
5051}
5052
5053inline bool Type::hasObjCPointerRepresentation() const {
5054  return isObjCObjectPointerType();
5055}
5056
5057inline const Type *Type::getBaseElementTypeUnsafe() const {
5058  const Type *type = this;
5059  while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
5060    type = arrayType->getElementType().getTypePtr();
5061  return type;
5062}
5063
5064/// Insertion operator for diagnostics.  This allows sending QualType's into a
5065/// diagnostic with <<.
5066inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
5067                                           QualType T) {
5068  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
5069                  DiagnosticsEngine::ak_qualtype);
5070  return DB;
5071}
5072
5073/// Insertion operator for partial diagnostics.  This allows sending QualType's
5074/// into a diagnostic with <<.
5075inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
5076                                           QualType T) {
5077  PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
5078                  DiagnosticsEngine::ak_qualtype);
5079  return PD;
5080}
5081
5082// Helper class template that is used by Type::getAs to ensure that one does
5083// not try to look through a qualified type to get to an array type.
5084template<typename T,
5085         bool isArrayType = (llvm::is_same<T, ArrayType>::value ||
5086                             llvm::is_base_of<ArrayType, T>::value)>
5087struct ArrayType_cannot_be_used_with_getAs { };
5088
5089template<typename T>
5090struct ArrayType_cannot_be_used_with_getAs<T, true>;
5091
5092// Member-template getAs<specific type>'.
5093template <typename T> const T *Type::getAs() const {
5094  ArrayType_cannot_be_used_with_getAs<T> at;
5095  (void)at;
5096
5097  // If this is directly a T type, return it.
5098  if (const T *Ty = dyn_cast<T>(this))
5099    return Ty;
5100
5101  // If the canonical form of this type isn't the right kind, reject it.
5102  if (!isa<T>(CanonicalType))
5103    return 0;
5104
5105  // If this is a typedef for the type, strip the typedef off without
5106  // losing all typedef information.
5107  return cast<T>(getUnqualifiedDesugaredType());
5108}
5109
5110inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
5111  // If this is directly an array type, return it.
5112  if (const ArrayType *arr = dyn_cast<ArrayType>(this))
5113    return arr;
5114
5115  // If the canonical form of this type isn't the right kind, reject it.
5116  if (!isa<ArrayType>(CanonicalType))
5117    return 0;
5118
5119  // If this is a typedef for the type, strip the typedef off without
5120  // losing all typedef information.
5121  return cast<ArrayType>(getUnqualifiedDesugaredType());
5122}
5123
5124template <typename T> const T *Type::castAs() const {
5125  ArrayType_cannot_be_used_with_getAs<T> at;
5126  (void) at;
5127
5128  assert(isa<T>(CanonicalType));
5129  if (const T *ty = dyn_cast<T>(this)) return ty;
5130  return cast<T>(getUnqualifiedDesugaredType());
5131}
5132
5133inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
5134  assert(isa<ArrayType>(CanonicalType));
5135  if (const ArrayType *arr = dyn_cast<ArrayType>(this)) return arr;
5136  return cast<ArrayType>(getUnqualifiedDesugaredType());
5137}
5138
5139}  // end namespace clang
5140
5141#endif
5142