Type.h revision f4c7371fb1d3cebcfb40abad4537bb82515704ea
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Basic/IdentifierTable.h"
19#include "clang/Basic/Linkage.h"
20#include "clang/Basic/PartialDiagnostic.h"
21#include "clang/Basic/Visibility.h"
22#include "clang/AST/NestedNameSpecifier.h"
23#include "clang/AST/TemplateName.h"
24#include "llvm/Support/Casting.h"
25#include "llvm/Support/type_traits.h"
26#include "llvm/ADT/APSInt.h"
27#include "llvm/ADT/FoldingSet.h"
28#include "llvm/ADT/Optional.h"
29#include "llvm/ADT/PointerIntPair.h"
30#include "llvm/ADT/PointerUnion.h"
31
32using llvm::isa;
33using llvm::cast;
34using llvm::cast_or_null;
35using llvm::dyn_cast;
36using llvm::dyn_cast_or_null;
37namespace clang {
38  enum {
39    TypeAlignmentInBits = 4,
40    TypeAlignment = 1 << TypeAlignmentInBits
41  };
42  class Type;
43  class ExtQuals;
44  class QualType;
45}
46
47namespace llvm {
48  template <typename T>
49  class PointerLikeTypeTraits;
50  template<>
51  class PointerLikeTypeTraits< ::clang::Type*> {
52  public:
53    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
54    static inline ::clang::Type *getFromVoidPointer(void *P) {
55      return static_cast< ::clang::Type*>(P);
56    }
57    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
58  };
59  template<>
60  class PointerLikeTypeTraits< ::clang::ExtQuals*> {
61  public:
62    static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
63    static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
64      return static_cast< ::clang::ExtQuals*>(P);
65    }
66    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
67  };
68
69  template <>
70  struct isPodLike<clang::QualType> { static const bool value = true; };
71}
72
73namespace clang {
74  class ASTContext;
75  class TypedefDecl;
76  class TemplateDecl;
77  class TemplateTypeParmDecl;
78  class NonTypeTemplateParmDecl;
79  class TemplateTemplateParmDecl;
80  class TagDecl;
81  class RecordDecl;
82  class CXXRecordDecl;
83  class EnumDecl;
84  class FieldDecl;
85  class ObjCInterfaceDecl;
86  class ObjCProtocolDecl;
87  class ObjCMethodDecl;
88  class UnresolvedUsingTypenameDecl;
89  class Expr;
90  class Stmt;
91  class SourceLocation;
92  class StmtIteratorBase;
93  class TemplateArgument;
94  class TemplateArgumentLoc;
95  class TemplateArgumentListInfo;
96  class ElaboratedType;
97  struct PrintingPolicy;
98
99  template <typename> class CanQual;
100  typedef CanQual<Type> CanQualType;
101
102  // Provide forward declarations for all of the *Type classes
103#define TYPE(Class, Base) class Class##Type;
104#include "clang/AST/TypeNodes.def"
105
106/// Qualifiers - The collection of all-type qualifiers we support.
107/// Clang supports five independent qualifiers:
108/// * C99: const, volatile, and restrict
109/// * Embedded C (TR18037): address spaces
110/// * Objective C: the GC attributes (none, weak, or strong)
111class Qualifiers {
112public:
113  enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
114    Const    = 0x1,
115    Restrict = 0x2,
116    Volatile = 0x4,
117    CVRMask = Const | Volatile | Restrict
118  };
119
120  enum GC {
121    GCNone = 0,
122    Weak,
123    Strong
124  };
125
126  enum {
127    /// The maximum supported address space number.
128    /// 24 bits should be enough for anyone.
129    MaxAddressSpace = 0xffffffu,
130
131    /// The width of the "fast" qualifier mask.
132    FastWidth = 3,
133
134    /// The fast qualifier mask.
135    FastMask = (1 << FastWidth) - 1
136  };
137
138  Qualifiers() : Mask(0) {}
139
140  static Qualifiers fromFastMask(unsigned Mask) {
141    Qualifiers Qs;
142    Qs.addFastQualifiers(Mask);
143    return Qs;
144  }
145
146  static Qualifiers fromCVRMask(unsigned CVR) {
147    Qualifiers Qs;
148    Qs.addCVRQualifiers(CVR);
149    return Qs;
150  }
151
152  // Deserialize qualifiers from an opaque representation.
153  static Qualifiers fromOpaqueValue(unsigned opaque) {
154    Qualifiers Qs;
155    Qs.Mask = opaque;
156    return Qs;
157  }
158
159  // Serialize these qualifiers into an opaque representation.
160  unsigned getAsOpaqueValue() const {
161    return Mask;
162  }
163
164  bool hasConst() const { return Mask & Const; }
165  void setConst(bool flag) {
166    Mask = (Mask & ~Const) | (flag ? Const : 0);
167  }
168  void removeConst() { Mask &= ~Const; }
169  void addConst() { Mask |= Const; }
170
171  bool hasVolatile() const { return Mask & Volatile; }
172  void setVolatile(bool flag) {
173    Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
174  }
175  void removeVolatile() { Mask &= ~Volatile; }
176  void addVolatile() { Mask |= Volatile; }
177
178  bool hasRestrict() const { return Mask & Restrict; }
179  void setRestrict(bool flag) {
180    Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
181  }
182  void removeRestrict() { Mask &= ~Restrict; }
183  void addRestrict() { Mask |= Restrict; }
184
185  bool hasCVRQualifiers() const { return getCVRQualifiers(); }
186  unsigned getCVRQualifiers() const { return Mask & CVRMask; }
187  void setCVRQualifiers(unsigned mask) {
188    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
189    Mask = (Mask & ~CVRMask) | mask;
190  }
191  void removeCVRQualifiers(unsigned mask) {
192    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
193    Mask &= ~mask;
194  }
195  void removeCVRQualifiers() {
196    removeCVRQualifiers(CVRMask);
197  }
198  void addCVRQualifiers(unsigned mask) {
199    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
200    Mask |= mask;
201  }
202
203  bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
204  GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
205  void setObjCGCAttr(GC type) {
206    Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
207  }
208  void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
209  void addObjCGCAttr(GC type) {
210    assert(type);
211    setObjCGCAttr(type);
212  }
213
214  bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
215  unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
216  void setAddressSpace(unsigned space) {
217    assert(space <= MaxAddressSpace);
218    Mask = (Mask & ~AddressSpaceMask)
219         | (((uint32_t) space) << AddressSpaceShift);
220  }
221  void removeAddressSpace() { setAddressSpace(0); }
222  void addAddressSpace(unsigned space) {
223    assert(space);
224    setAddressSpace(space);
225  }
226
227  // Fast qualifiers are those that can be allocated directly
228  // on a QualType object.
229  bool hasFastQualifiers() const { return getFastQualifiers(); }
230  unsigned getFastQualifiers() const { return Mask & FastMask; }
231  void setFastQualifiers(unsigned mask) {
232    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
233    Mask = (Mask & ~FastMask) | mask;
234  }
235  void removeFastQualifiers(unsigned mask) {
236    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
237    Mask &= ~mask;
238  }
239  void removeFastQualifiers() {
240    removeFastQualifiers(FastMask);
241  }
242  void addFastQualifiers(unsigned mask) {
243    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
244    Mask |= mask;
245  }
246
247  /// hasNonFastQualifiers - Return true if the set contains any
248  /// qualifiers which require an ExtQuals node to be allocated.
249  bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
250  Qualifiers getNonFastQualifiers() const {
251    Qualifiers Quals = *this;
252    Quals.setFastQualifiers(0);
253    return Quals;
254  }
255
256  /// hasQualifiers - Return true if the set contains any qualifiers.
257  bool hasQualifiers() const { return Mask; }
258  bool empty() const { return !Mask; }
259
260  /// \brief Add the qualifiers from the given set to this set.
261  void addQualifiers(Qualifiers Q) {
262    // If the other set doesn't have any non-boolean qualifiers, just
263    // bit-or it in.
264    if (!(Q.Mask & ~CVRMask))
265      Mask |= Q.Mask;
266    else {
267      Mask |= (Q.Mask & CVRMask);
268      if (Q.hasAddressSpace())
269        addAddressSpace(Q.getAddressSpace());
270      if (Q.hasObjCGCAttr())
271        addObjCGCAttr(Q.getObjCGCAttr());
272    }
273  }
274
275  /// \brief Add the qualifiers from the given set to this set, given that
276  /// they don't conflict.
277  void addConsistentQualifiers(Qualifiers qs) {
278    assert(getAddressSpace() == qs.getAddressSpace() ||
279           !hasAddressSpace() || !qs.hasAddressSpace());
280    assert(getObjCGCAttr() == qs.getObjCGCAttr() ||
281           !hasObjCGCAttr() || !qs.hasObjCGCAttr());
282    Mask |= qs.Mask;
283  }
284
285  /// \brief Determines if these qualifiers compatibly include another set.
286  /// Generally this answers the question of whether an object with the other
287  /// qualifiers can be safely used as an object with these qualifiers.
288  bool compatiblyIncludes(Qualifiers other) const {
289    // Non-CVR qualifiers must match exactly.  CVR qualifiers may subset.
290    return ((Mask & ~CVRMask) == (other.Mask & ~CVRMask)) &&
291           (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask));
292  }
293
294  bool isSupersetOf(Qualifiers Other) const;
295
296  bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
297  bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
298
299  operator bool() const { return hasQualifiers(); }
300
301  Qualifiers &operator+=(Qualifiers R) {
302    addQualifiers(R);
303    return *this;
304  }
305
306  // Union two qualifier sets.  If an enumerated qualifier appears
307  // in both sets, use the one from the right.
308  friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
309    L += R;
310    return L;
311  }
312
313  Qualifiers &operator-=(Qualifiers R) {
314    Mask = Mask & ~(R.Mask);
315    return *this;
316  }
317
318  /// \brief Compute the difference between two qualifier sets.
319  friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
320    L -= R;
321    return L;
322  }
323
324  std::string getAsString() const;
325  std::string getAsString(const PrintingPolicy &Policy) const {
326    std::string Buffer;
327    getAsStringInternal(Buffer, Policy);
328    return Buffer;
329  }
330  void getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const;
331
332  void Profile(llvm::FoldingSetNodeID &ID) const {
333    ID.AddInteger(Mask);
334  }
335
336private:
337
338  // bits:     |0 1 2|3 .. 4|5  ..  31|
339  //           |C R V|GCAttr|AddrSpace|
340  uint32_t Mask;
341
342  static const uint32_t GCAttrMask = 0x18;
343  static const uint32_t GCAttrShift = 3;
344  static const uint32_t AddressSpaceMask = ~(CVRMask | GCAttrMask);
345  static const uint32_t AddressSpaceShift = 5;
346};
347
348/// \brief Base class that is common to both the \c ExtQuals and \c Type
349/// classes, which allows \c QualType to access the common fields between the
350/// two.
351///
352class ExtQualsTypeCommonBase {
353protected:
354  ExtQualsTypeCommonBase(const Type *BaseType) : BaseType(BaseType) { }
355
356  /// \brief The "base" type of an extended qualifiers type (\c ExtQuals) or
357  /// a self-referential pointer (for \c Type).
358  ///
359  /// This pointer allows an efficient mapping from a QualType to its
360  /// underlying type pointer.
361  const Type *BaseType;
362
363  friend class QualType;
364};
365
366/// ExtQuals - We can encode up to four bits in the low bits of a
367/// type pointer, but there are many more type qualifiers that we want
368/// to be able to apply to an arbitrary type.  Therefore we have this
369/// struct, intended to be heap-allocated and used by QualType to
370/// store qualifiers.
371///
372/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
373/// in three low bits on the QualType pointer; a fourth bit records whether
374/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
375/// Objective-C GC attributes) are much more rare.
376class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
377  // NOTE: changing the fast qualifiers should be straightforward as
378  // long as you don't make 'const' non-fast.
379  // 1. Qualifiers:
380  //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
381  //       Fast qualifiers must occupy the low-order bits.
382  //    b) Update Qualifiers::FastWidth and FastMask.
383  // 2. QualType:
384  //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
385  //    b) Update remove{Volatile,Restrict}, defined near the end of
386  //       this header.
387  // 3. ASTContext:
388  //    a) Update get{Volatile,Restrict}Type.
389
390  /// Quals - the immutable set of qualifiers applied by this
391  /// node;  always contains extended qualifiers.
392  Qualifiers Quals;
393
394public:
395  ExtQuals(const Type *Base, Qualifiers Quals)
396    : ExtQualsTypeCommonBase(Base), Quals(Quals)
397  {
398    assert(Quals.hasNonFastQualifiers()
399           && "ExtQuals created with no fast qualifiers");
400    assert(!Quals.hasFastQualifiers()
401           && "ExtQuals created with fast qualifiers");
402  }
403
404  Qualifiers getQualifiers() const { return Quals; }
405
406  bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
407  Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
408
409  bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
410  unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
411
412  const Type *getBaseType() const { return BaseType; }
413
414public:
415  void Profile(llvm::FoldingSetNodeID &ID) const {
416    Profile(ID, getBaseType(), Quals);
417  }
418  static void Profile(llvm::FoldingSetNodeID &ID,
419                      const Type *BaseType,
420                      Qualifiers Quals) {
421    assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
422    ID.AddPointer(BaseType);
423    Quals.Profile(ID);
424  }
425};
426
427/// CallingConv - Specifies the calling convention that a function uses.
428enum CallingConv {
429  CC_Default,
430  CC_C,           // __attribute__((cdecl))
431  CC_X86StdCall,  // __attribute__((stdcall))
432  CC_X86FastCall, // __attribute__((fastcall))
433  CC_X86ThisCall, // __attribute__((thiscall))
434  CC_X86Pascal    // __attribute__((pascal))
435};
436
437typedef std::pair<const Type*, Qualifiers> SplitQualType;
438
439/// QualType - For efficiency, we don't store CV-qualified types as nodes on
440/// their own: instead each reference to a type stores the qualifiers.  This
441/// greatly reduces the number of nodes we need to allocate for types (for
442/// example we only need one for 'int', 'const int', 'volatile int',
443/// 'const volatile int', etc).
444///
445/// As an added efficiency bonus, instead of making this a pair, we
446/// just store the two bits we care about in the low bits of the
447/// pointer.  To handle the packing/unpacking, we make QualType be a
448/// simple wrapper class that acts like a smart pointer.  A third bit
449/// indicates whether there are extended qualifiers present, in which
450/// case the pointer points to a special structure.
451class QualType {
452  // Thankfully, these are efficiently composable.
453  llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
454                       Qualifiers::FastWidth> Value;
455
456  const ExtQuals *getExtQualsUnsafe() const {
457    return Value.getPointer().get<const ExtQuals*>();
458  }
459
460  const Type *getTypePtrUnsafe() const {
461    return Value.getPointer().get<const Type*>();
462  }
463
464  friend class QualifierCollector;
465public:
466  QualType() {}
467
468  QualType(const Type *Ptr, unsigned Quals)
469    : Value(Ptr, Quals) {}
470  QualType(const ExtQuals *Ptr, unsigned Quals)
471    : Value(Ptr, Quals) {}
472
473  unsigned getLocalFastQualifiers() const { return Value.getInt(); }
474  void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
475
476  /// Retrieves a pointer to the underlying (unqualified) type.
477  /// This should really return a const Type, but it's not worth
478  /// changing all the users right now.
479  ///
480  /// This function requires that the type not be NULL. If the type might be
481  /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
482  const Type *getTypePtr() const {
483    assert(!isNull() && "Cannot retrieve a NULL type pointer");
484    uintptr_t CommonPtrVal
485      = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
486    CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
487    ExtQualsTypeCommonBase *CommonPtr
488      = reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
489    return const_cast<Type *>(CommonPtr->BaseType);
490  }
491
492  const Type *getTypePtrOrNull() const {
493    uintptr_t TypePtrPtrVal
494      = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
495    TypePtrPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
496    Type **TypePtrPtr = reinterpret_cast<Type**>(TypePtrPtrVal);
497    return TypePtrPtr ? *TypePtrPtr : 0;
498  }
499
500  /// Divides a QualType into its unqualified type and a set of local
501  /// qualifiers.
502  SplitQualType split() const {
503    if (!hasLocalNonFastQualifiers())
504      return SplitQualType(getTypePtrUnsafe(),
505                           Qualifiers::fromFastMask(getLocalFastQualifiers()));
506
507    const ExtQuals *eq = getExtQualsUnsafe();
508    Qualifiers qs = eq->getQualifiers();
509    qs.addFastQualifiers(getLocalFastQualifiers());
510    return SplitQualType(eq->getBaseType(), qs);
511  }
512
513  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
514  static QualType getFromOpaquePtr(const void *Ptr) {
515    QualType T;
516    T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
517    return T;
518  }
519
520  const Type &operator*() const {
521    return *getTypePtr();
522  }
523
524  const Type *operator->() const {
525    return getTypePtr();
526  }
527
528  bool isCanonical() const;
529  bool isCanonicalAsParam() const;
530
531  /// isNull - Return true if this QualType doesn't point to a type yet.
532  bool isNull() const {
533    return Value.getPointer().isNull();
534  }
535
536  /// \brief Determine whether this particular QualType instance has the
537  /// "const" qualifier set, without looking through typedefs that may have
538  /// added "const" at a different level.
539  bool isLocalConstQualified() const {
540    return (getLocalFastQualifiers() & Qualifiers::Const);
541  }
542
543  /// \brief Determine whether this type is const-qualified.
544  bool isConstQualified() const;
545
546  /// \brief Determine whether this particular QualType instance has the
547  /// "restrict" qualifier set, without looking through typedefs that may have
548  /// added "restrict" at a different level.
549  bool isLocalRestrictQualified() const {
550    return (getLocalFastQualifiers() & Qualifiers::Restrict);
551  }
552
553  /// \brief Determine whether this type is restrict-qualified.
554  bool isRestrictQualified() const;
555
556  /// \brief Determine whether this particular QualType instance has the
557  /// "volatile" qualifier set, without looking through typedefs that may have
558  /// added "volatile" at a different level.
559  bool isLocalVolatileQualified() const {
560    return (getLocalFastQualifiers() & Qualifiers::Volatile);
561  }
562
563  /// \brief Determine whether this type is volatile-qualified.
564  bool isVolatileQualified() const;
565
566  /// \brief Determine whether this particular QualType instance has any
567  /// qualifiers, without looking through any typedefs that might add
568  /// qualifiers at a different level.
569  bool hasLocalQualifiers() const {
570    return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
571  }
572
573  /// \brief Determine whether this type has any qualifiers.
574  bool hasQualifiers() const;
575
576  /// \brief Determine whether this particular QualType instance has any
577  /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
578  /// instance.
579  bool hasLocalNonFastQualifiers() const {
580    return Value.getPointer().is<const ExtQuals*>();
581  }
582
583  /// \brief Retrieve the set of qualifiers local to this particular QualType
584  /// instance, not including any qualifiers acquired through typedefs or
585  /// other sugar.
586  Qualifiers getLocalQualifiers() const {
587    Qualifiers Quals;
588    if (hasLocalNonFastQualifiers())
589      Quals = getExtQualsUnsafe()->getQualifiers();
590    Quals.addFastQualifiers(getLocalFastQualifiers());
591    return Quals;
592  }
593
594  /// \brief Retrieve the set of qualifiers applied to this type.
595  Qualifiers getQualifiers() const;
596
597  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
598  /// local to this particular QualType instance, not including any qualifiers
599  /// acquired through typedefs or other sugar.
600  unsigned getLocalCVRQualifiers() const {
601    return getLocalFastQualifiers();
602  }
603
604  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
605  /// applied to this type.
606  unsigned getCVRQualifiers() const;
607
608  bool isConstant(ASTContext& Ctx) const {
609    return QualType::isConstant(*this, Ctx);
610  }
611
612  // Don't promise in the API that anything besides 'const' can be
613  // easily added.
614
615  /// addConst - add the specified type qualifier to this QualType.
616  void addConst() {
617    addFastQualifiers(Qualifiers::Const);
618  }
619  QualType withConst() const {
620    return withFastQualifiers(Qualifiers::Const);
621  }
622
623  void addFastQualifiers(unsigned TQs) {
624    assert(!(TQs & ~Qualifiers::FastMask)
625           && "non-fast qualifier bits set in mask!");
626    Value.setInt(Value.getInt() | TQs);
627  }
628
629  void removeLocalConst();
630  void removeLocalVolatile();
631  void removeLocalRestrict();
632  void removeLocalCVRQualifiers(unsigned Mask);
633
634  void removeLocalFastQualifiers() { Value.setInt(0); }
635  void removeLocalFastQualifiers(unsigned Mask) {
636    assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
637    Value.setInt(Value.getInt() & ~Mask);
638  }
639
640  // Creates a type with the given qualifiers in addition to any
641  // qualifiers already on this type.
642  QualType withFastQualifiers(unsigned TQs) const {
643    QualType T = *this;
644    T.addFastQualifiers(TQs);
645    return T;
646  }
647
648  // Creates a type with exactly the given fast qualifiers, removing
649  // any existing fast qualifiers.
650  QualType withExactLocalFastQualifiers(unsigned TQs) const {
651    return withoutLocalFastQualifiers().withFastQualifiers(TQs);
652  }
653
654  // Removes fast qualifiers, but leaves any extended qualifiers in place.
655  QualType withoutLocalFastQualifiers() const {
656    QualType T = *this;
657    T.removeLocalFastQualifiers();
658    return T;
659  }
660
661  /// \brief Return this type with all of the instance-specific qualifiers
662  /// removed, but without removing any qualifiers that may have been applied
663  /// through typedefs.
664  QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
665
666  /// \brief Retrieve the unqualified variant of the given type,
667  /// removing as little sugar as possible.
668  ///
669  /// This routine looks through various kinds of sugar to find the
670  /// least-desugared type that is unqualified. For example, given:
671  ///
672  /// \code
673  /// typedef int Integer;
674  /// typedef const Integer CInteger;
675  /// typedef CInteger DifferenceType;
676  /// \endcode
677  ///
678  /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
679  /// desugar until we hit the type \c Integer, which has no qualifiers on it.
680  ///
681  /// The resulting type might still be qualified if it's an array
682  /// type.  To strip qualifiers even from within an array type, use
683  /// ASTContext::getUnqualifiedArrayType.
684  inline QualType getUnqualifiedType() const;
685
686  /// getSplitUnqualifiedType - Retrieve the unqualified variant of the
687  /// given type, removing as little sugar as possible.
688  ///
689  /// Like getUnqualifiedType(), but also returns the set of
690  /// qualifiers that were built up.
691  ///
692  /// The resulting type might still be qualified if it's an array
693  /// type.  To strip qualifiers even from within an array type, use
694  /// ASTContext::getUnqualifiedArrayType.
695  inline SplitQualType getSplitUnqualifiedType() const;
696
697  bool isMoreQualifiedThan(QualType Other) const;
698  bool isAtLeastAsQualifiedAs(QualType Other) const;
699  QualType getNonReferenceType() const;
700
701  /// \brief Determine the type of a (typically non-lvalue) expression with the
702  /// specified result type.
703  ///
704  /// This routine should be used for expressions for which the return type is
705  /// explicitly specified (e.g., in a cast or call) and isn't necessarily
706  /// an lvalue. It removes a top-level reference (since there are no
707  /// expressions of reference type) and deletes top-level cvr-qualifiers
708  /// from non-class types (in C++) or all types (in C).
709  QualType getNonLValueExprType(ASTContext &Context) const;
710
711  /// getDesugaredType - Return the specified type with any "sugar" removed from
712  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
713  /// the type is already concrete, it returns it unmodified.  This is similar
714  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
715  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
716  /// concrete.
717  ///
718  /// Qualifiers are left in place.
719  QualType getDesugaredType(const ASTContext &Context) const {
720    return getDesugaredType(*this, Context);
721  }
722
723  SplitQualType getSplitDesugaredType() const {
724    return getSplitDesugaredType(*this);
725  }
726
727  /// IgnoreParens - Returns the specified type after dropping any
728  /// outer-level parentheses.
729  QualType IgnoreParens() const {
730    if (isa<ParenType>(*this))
731      return QualType::IgnoreParens(*this);
732    return *this;
733  }
734
735  /// operator==/!= - Indicate whether the specified types and qualifiers are
736  /// identical.
737  friend bool operator==(const QualType &LHS, const QualType &RHS) {
738    return LHS.Value == RHS.Value;
739  }
740  friend bool operator!=(const QualType &LHS, const QualType &RHS) {
741    return LHS.Value != RHS.Value;
742  }
743  std::string getAsString() const {
744    return getAsString(split());
745  }
746  static std::string getAsString(SplitQualType split) {
747    return getAsString(split.first, split.second);
748  }
749  static std::string getAsString(const Type *ty, Qualifiers qs);
750
751  std::string getAsString(const PrintingPolicy &Policy) const {
752    std::string S;
753    getAsStringInternal(S, Policy);
754    return S;
755  }
756  void getAsStringInternal(std::string &Str,
757                           const PrintingPolicy &Policy) const {
758    return getAsStringInternal(split(), Str, Policy);
759  }
760  static void getAsStringInternal(SplitQualType split, std::string &out,
761                                  const PrintingPolicy &policy) {
762    return getAsStringInternal(split.first, split.second, out, policy);
763  }
764  static void getAsStringInternal(const Type *ty, Qualifiers qs,
765                                  std::string &out,
766                                  const PrintingPolicy &policy);
767
768  void dump(const char *s) const;
769  void dump() const;
770
771  void Profile(llvm::FoldingSetNodeID &ID) const {
772    ID.AddPointer(getAsOpaquePtr());
773  }
774
775  /// getAddressSpace - Return the address space of this type.
776  inline unsigned getAddressSpace() const;
777
778  /// GCAttrTypesAttr - Returns gc attribute of this type.
779  inline Qualifiers::GC getObjCGCAttr() const;
780
781  /// isObjCGCWeak true when Type is objc's weak.
782  bool isObjCGCWeak() const {
783    return getObjCGCAttr() == Qualifiers::Weak;
784  }
785
786  /// isObjCGCStrong true when Type is objc's strong.
787  bool isObjCGCStrong() const {
788    return getObjCGCAttr() == Qualifiers::Strong;
789  }
790
791private:
792  // These methods are implemented in a separate translation unit;
793  // "static"-ize them to avoid creating temporary QualTypes in the
794  // caller.
795  static bool isConstant(QualType T, ASTContext& Ctx);
796  static QualType getDesugaredType(QualType T, const ASTContext &Context);
797  static SplitQualType getSplitDesugaredType(QualType T);
798  static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
799  static QualType IgnoreParens(QualType T);
800};
801
802} // end clang.
803
804namespace llvm {
805/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
806/// to a specific Type class.
807template<> struct simplify_type<const ::clang::QualType> {
808  typedef const ::clang::Type *SimpleType;
809  static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
810    return Val.getTypePtr();
811  }
812};
813template<> struct simplify_type< ::clang::QualType>
814  : public simplify_type<const ::clang::QualType> {};
815
816// Teach SmallPtrSet that QualType is "basically a pointer".
817template<>
818class PointerLikeTypeTraits<clang::QualType> {
819public:
820  static inline void *getAsVoidPointer(clang::QualType P) {
821    return P.getAsOpaquePtr();
822  }
823  static inline clang::QualType getFromVoidPointer(void *P) {
824    return clang::QualType::getFromOpaquePtr(P);
825  }
826  // Various qualifiers go in low bits.
827  enum { NumLowBitsAvailable = 0 };
828};
829
830} // end namespace llvm
831
832namespace clang {
833
834/// Type - This is the base class of the type hierarchy.  A central concept
835/// with types is that each type always has a canonical type.  A canonical type
836/// is the type with any typedef names stripped out of it or the types it
837/// references.  For example, consider:
838///
839///  typedef int  foo;
840///  typedef foo* bar;
841///    'int *'    'foo *'    'bar'
842///
843/// There will be a Type object created for 'int'.  Since int is canonical, its
844/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
845/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
846/// there is a PointerType that represents 'int*', which, like 'int', is
847/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
848/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
849/// is also 'int*'.
850///
851/// Non-canonical types are useful for emitting diagnostics, without losing
852/// information about typedefs being used.  Canonical types are useful for type
853/// comparisons (they allow by-pointer equality tests) and useful for reasoning
854/// about whether something has a particular form (e.g. is a function type),
855/// because they implicitly, recursively, strip all typedefs out of a type.
856///
857/// Types, once created, are immutable.
858///
859class Type : public ExtQualsTypeCommonBase {
860public:
861  enum TypeClass {
862#define TYPE(Class, Base) Class,
863#define LAST_TYPE(Class) TypeLast = Class,
864#define ABSTRACT_TYPE(Class, Base)
865#include "clang/AST/TypeNodes.def"
866    TagFirst = Record, TagLast = Enum
867  };
868
869private:
870  Type(const Type&);           // DO NOT IMPLEMENT.
871  void operator=(const Type&); // DO NOT IMPLEMENT.
872
873  QualType CanonicalType;
874
875  /// Bitfields required by the Type class.
876  class TypeBitfields {
877    friend class Type;
878    template <class T> friend class TypePropertyCache;
879
880    /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
881    unsigned TC : 8;
882
883    /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
884    /// Note that this should stay at the end of the ivars for Type so that
885    /// subclasses can pack their bitfields into the same word.
886    unsigned Dependent : 1;
887
888    /// \brief Whether this type is a variably-modified type (C99 6.7.5).
889    unsigned VariablyModified : 1;
890
891    /// \brief Whether this type contains an unexpanded parameter pack
892    /// (for C++0x variadic templates).
893    unsigned ContainsUnexpandedParameterPack : 1;
894
895    /// \brief Nonzero if the cache (i.e. the bitfields here starting
896    /// with 'Cache') is valid.  If so, then this is a
897    /// LangOptions::VisibilityMode+1.
898    mutable unsigned CacheValidAndVisibility : 2;
899
900    /// \brief Linkage of this type.
901    mutable unsigned CachedLinkage : 2;
902
903    /// \brief Whether this type involves and local or unnamed types.
904    mutable unsigned CachedLocalOrUnnamed : 1;
905
906    /// \brief FromAST - Whether this type comes from an AST file.
907    mutable unsigned FromAST : 1;
908
909    bool isCacheValid() const {
910      return (CacheValidAndVisibility != 0);
911    }
912    Visibility getVisibility() const {
913      assert(isCacheValid() && "getting linkage from invalid cache");
914      return static_cast<Visibility>(CacheValidAndVisibility-1);
915    }
916    Linkage getLinkage() const {
917      assert(isCacheValid() && "getting linkage from invalid cache");
918      return static_cast<Linkage>(CachedLinkage);
919    }
920    bool hasLocalOrUnnamedType() const {
921      assert(isCacheValid() && "getting linkage from invalid cache");
922      return CachedLocalOrUnnamed;
923    }
924  };
925  enum { NumTypeBits = 17 };
926
927protected:
928  // These classes allow subclasses to somewhat cleanly pack bitfields
929  // into Type.
930
931  class ArrayTypeBitfields {
932    friend class ArrayType;
933
934    unsigned : NumTypeBits;
935
936    /// IndexTypeQuals - CVR qualifiers from declarations like
937    /// 'int X[static restrict 4]'. For function parameters only.
938    unsigned IndexTypeQuals : 3;
939
940    /// SizeModifier - storage class qualifiers from declarations like
941    /// 'int X[static restrict 4]'. For function parameters only.
942    /// Actually an ArrayType::ArraySizeModifier.
943    unsigned SizeModifier : 3;
944  };
945
946  class BuiltinTypeBitfields {
947    friend class BuiltinType;
948
949    unsigned : NumTypeBits;
950
951    /// The kind (BuiltinType::Kind) of builtin type this is.
952    unsigned Kind : 8;
953  };
954
955  class FunctionTypeBitfields {
956    friend class FunctionType;
957
958    unsigned : NumTypeBits;
959
960    /// Extra information which affects how the function is called, like
961    /// regparm and the calling convention.
962    unsigned ExtInfo : 8;
963
964    /// Whether the function is variadic.  Only used by FunctionProtoType.
965    unsigned Variadic : 1;
966
967    /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
968    /// other bitfields.
969    /// The qualifiers are part of FunctionProtoType because...
970    ///
971    /// C++ 8.3.5p4: The return type, the parameter type list and the
972    /// cv-qualifier-seq, [...], are part of the function type.
973    unsigned TypeQuals : 3;
974  };
975
976  class ObjCObjectTypeBitfields {
977    friend class ObjCObjectType;
978
979    unsigned : NumTypeBits;
980
981    /// NumProtocols - The number of protocols stored directly on this
982    /// object type.
983    unsigned NumProtocols : 32 - NumTypeBits;
984  };
985
986  class ReferenceTypeBitfields {
987    friend class ReferenceType;
988
989    unsigned : NumTypeBits;
990
991    /// True if the type was originally spelled with an lvalue sigil.
992    /// This is never true of rvalue references but can also be false
993    /// on lvalue references because of C++0x [dcl.typedef]p9,
994    /// as follows:
995    ///
996    ///   typedef int &ref;    // lvalue, spelled lvalue
997    ///   typedef int &&rvref; // rvalue
998    ///   ref &a;              // lvalue, inner ref, spelled lvalue
999    ///   ref &&a;             // lvalue, inner ref
1000    ///   rvref &a;            // lvalue, inner ref, spelled lvalue
1001    ///   rvref &&a;           // rvalue, inner ref
1002    unsigned SpelledAsLValue : 1;
1003
1004    /// True if the inner type is a reference type.  This only happens
1005    /// in non-canonical forms.
1006    unsigned InnerRef : 1;
1007  };
1008
1009  class TypeWithKeywordBitfields {
1010    friend class TypeWithKeyword;
1011
1012    unsigned : NumTypeBits;
1013
1014    /// An ElaboratedTypeKeyword.  8 bits for efficient access.
1015    unsigned Keyword : 8;
1016  };
1017
1018  class VectorTypeBitfields {
1019    friend class VectorType;
1020
1021    unsigned : NumTypeBits;
1022
1023    /// VecKind - The kind of vector, either a generic vector type or some
1024    /// target-specific vector type such as for AltiVec or Neon.
1025    unsigned VecKind : 3;
1026
1027    /// NumElements - The number of elements in the vector.
1028    unsigned NumElements : 29 - NumTypeBits;
1029  };
1030
1031  class AttributedTypeBitfields {
1032    friend class AttributedType;
1033
1034    unsigned : NumTypeBits;
1035
1036    /// AttrKind - an AttributedType::Kind
1037    unsigned AttrKind : 32 - NumTypeBits;
1038  };
1039
1040  union {
1041    TypeBitfields TypeBits;
1042    ArrayTypeBitfields ArrayTypeBits;
1043    AttributedTypeBitfields AttributedTypeBits;
1044    BuiltinTypeBitfields BuiltinTypeBits;
1045    FunctionTypeBitfields FunctionTypeBits;
1046    ObjCObjectTypeBitfields ObjCObjectTypeBits;
1047    ReferenceTypeBitfields ReferenceTypeBits;
1048    TypeWithKeywordBitfields TypeWithKeywordBits;
1049    VectorTypeBitfields VectorTypeBits;
1050  };
1051
1052private:
1053  /// \brief Set whether this type comes from an AST file.
1054  void setFromAST(bool V = true) const {
1055    TypeBits.FromAST = V;
1056  }
1057
1058  template <class T> friend class TypePropertyCache;
1059
1060protected:
1061  // silence VC++ warning C4355: 'this' : used in base member initializer list
1062  Type *this_() { return this; }
1063  Type(TypeClass tc, QualType Canonical, bool Dependent, bool VariablyModified,
1064       bool ContainsUnexpandedParameterPack)
1065    : ExtQualsTypeCommonBase(this),
1066      CanonicalType(Canonical.isNull() ? QualType(this_(), 0) : Canonical) {
1067    TypeBits.TC = tc;
1068    TypeBits.Dependent = Dependent;
1069    TypeBits.VariablyModified = VariablyModified;
1070    TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
1071    TypeBits.CacheValidAndVisibility = 0;
1072    TypeBits.CachedLocalOrUnnamed = false;
1073    TypeBits.CachedLinkage = NoLinkage;
1074    TypeBits.FromAST = false;
1075  }
1076  friend class ASTContext;
1077
1078  void setDependent(bool D = true) { TypeBits.Dependent = D; }
1079  void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM; }
1080  void setContainsUnexpandedParameterPack(bool PP = true) {
1081    TypeBits.ContainsUnexpandedParameterPack = PP;
1082  }
1083
1084public:
1085  TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1086
1087  /// \brief Whether this type comes from an AST file.
1088  bool isFromAST() const { return TypeBits.FromAST; }
1089
1090  /// \brief Whether this type is or contains an unexpanded parameter
1091  /// pack, used to support C++0x variadic templates.
1092  ///
1093  /// A type that contains a parameter pack shall be expanded by the
1094  /// ellipsis operator at some point. For example, the typedef in the
1095  /// following example contains an unexpanded parameter pack 'T':
1096  ///
1097  /// \code
1098  /// template<typename ...T>
1099  /// struct X {
1100  ///   typedef T* pointer_types; // ill-formed; T is a parameter pack.
1101  /// };
1102  /// \endcode
1103  ///
1104  /// Note that this routine does not specify which
1105  bool containsUnexpandedParameterPack() const {
1106    return TypeBits.ContainsUnexpandedParameterPack;
1107  }
1108
1109  bool isCanonicalUnqualified() const {
1110    return CanonicalType.getTypePtr() == this;
1111  }
1112
1113  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
1114  /// object types, function types, and incomplete types.
1115
1116  /// isIncompleteType - Return true if this is an incomplete type.
1117  /// A type that can describe objects, but which lacks information needed to
1118  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
1119  /// routine will need to determine if the size is actually required.
1120  bool isIncompleteType() const;
1121
1122  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
1123  /// type, in other words, not a function type.
1124  bool isIncompleteOrObjectType() const {
1125    return !isFunctionType();
1126  }
1127
1128  /// \brief Determine whether this type is an object type.
1129  bool isObjectType() const {
1130    // C++ [basic.types]p8:
1131    //   An object type is a (possibly cv-qualified) type that is not a
1132    //   function type, not a reference type, and not a void type.
1133    return !isReferenceType() && !isFunctionType() && !isVoidType();
1134  }
1135
1136  /// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10).
1137  bool isPODType() const;
1138
1139  /// isLiteralType - Return true if this is a literal type
1140  /// (C++0x [basic.types]p10)
1141  bool isLiteralType() const;
1142
1143  /// Helper methods to distinguish type categories. All type predicates
1144  /// operate on the canonical type, ignoring typedefs and qualifiers.
1145
1146  /// isBuiltinType - returns true if the type is a builtin type.
1147  bool isBuiltinType() const;
1148
1149  /// isSpecificBuiltinType - Test for a particular builtin type.
1150  bool isSpecificBuiltinType(unsigned K) const;
1151
1152  /// isPlaceholderType - Test for a type which does not represent an
1153  /// actual type-system type but is instead used as a placeholder for
1154  /// various convenient purposes within Clang.  All such types are
1155  /// BuiltinTypes.
1156  bool isPlaceholderType() const;
1157
1158  /// isIntegerType() does *not* include complex integers (a GCC extension).
1159  /// isComplexIntegerType() can be used to test for complex integers.
1160  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
1161  bool isEnumeralType() const;
1162  bool isBooleanType() const;
1163  bool isCharType() const;
1164  bool isWideCharType() const;
1165  bool isAnyCharacterType() const;
1166  bool isIntegralType(ASTContext &Ctx) const;
1167
1168  /// \brief Determine whether this type is an integral or enumeration type.
1169  bool isIntegralOrEnumerationType() const;
1170  /// \brief Determine whether this type is an integral or unscoped enumeration
1171  /// type.
1172  bool isIntegralOrUnscopedEnumerationType() const;
1173
1174  /// Floating point categories.
1175  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
1176  /// isComplexType() does *not* include complex integers (a GCC extension).
1177  /// isComplexIntegerType() can be used to test for complex integers.
1178  bool isComplexType() const;      // C99 6.2.5p11 (complex)
1179  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
1180  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
1181  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
1182  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
1183  bool isVoidType() const;         // C99 6.2.5p19
1184  bool isDerivedType() const;      // C99 6.2.5p20
1185  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
1186  bool isAggregateType() const;
1187
1188  // Type Predicates: Check to see if this type is structurally the specified
1189  // type, ignoring typedefs and qualifiers.
1190  bool isFunctionType() const;
1191  bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
1192  bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
1193  bool isPointerType() const;
1194  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
1195  bool isBlockPointerType() const;
1196  bool isVoidPointerType() const;
1197  bool isReferenceType() const;
1198  bool isLValueReferenceType() const;
1199  bool isRValueReferenceType() const;
1200  bool isFunctionPointerType() const;
1201  bool isMemberPointerType() const;
1202  bool isMemberFunctionPointerType() const;
1203  bool isMemberDataPointerType() const;
1204  bool isArrayType() const;
1205  bool isConstantArrayType() const;
1206  bool isIncompleteArrayType() const;
1207  bool isVariableArrayType() const;
1208  bool isDependentSizedArrayType() const;
1209  bool isRecordType() const;
1210  bool isClassType() const;
1211  bool isStructureType() const;
1212  bool isStructureOrClassType() const;
1213  bool isUnionType() const;
1214  bool isComplexIntegerType() const;            // GCC _Complex integer type.
1215  bool isVectorType() const;                    // GCC vector type.
1216  bool isExtVectorType() const;                 // Extended vector type.
1217  bool isObjCObjectPointerType() const;         // Pointer to *any* ObjC object.
1218  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
1219  // for the common case.
1220  bool isObjCObjectType() const;                // NSString or typeof(*(id)0)
1221  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
1222  bool isObjCQualifiedIdType() const;           // id<foo>
1223  bool isObjCQualifiedClassType() const;        // Class<foo>
1224  bool isObjCObjectOrInterfaceType() const;
1225  bool isObjCIdType() const;                    // id
1226  bool isObjCClassType() const;                 // Class
1227  bool isObjCSelType() const;                 // Class
1228  bool isObjCBuiltinType() const;               // 'id' or 'Class'
1229  bool isTemplateTypeParmType() const;          // C++ template type parameter
1230  bool isNullPtrType() const;                   // C++0x nullptr_t
1231
1232  enum ScalarTypeKind {
1233    STK_Pointer,
1234    STK_MemberPointer,
1235    STK_Bool,
1236    STK_Integral,
1237    STK_Floating,
1238    STK_IntegralComplex,
1239    STK_FloatingComplex
1240  };
1241  /// getScalarTypeKind - Given that this is a scalar type, classify it.
1242  ScalarTypeKind getScalarTypeKind() const;
1243
1244  /// isDependentType - Whether this type is a dependent type, meaning
1245  /// that its definition somehow depends on a template parameter
1246  /// (C++ [temp.dep.type]).
1247  bool isDependentType() const { return TypeBits.Dependent; }
1248
1249  /// \brief Whether this type is a variably-modified type (C99 6.7.5).
1250  bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
1251
1252  /// \brief Whether this type is or contains a local or unnamed type.
1253  bool hasUnnamedOrLocalType() const;
1254
1255  bool isOverloadableType() const;
1256
1257  /// \brief Determine wither this type is a C++ elaborated-type-specifier.
1258  bool isElaboratedTypeSpecifier() const;
1259
1260  /// hasPointerRepresentation - Whether this type is represented
1261  /// natively as a pointer; this includes pointers, references, block
1262  /// pointers, and Objective-C interface, qualified id, and qualified
1263  /// interface types, as well as nullptr_t.
1264  bool hasPointerRepresentation() const;
1265
1266  /// hasObjCPointerRepresentation - Whether this type can represent
1267  /// an objective pointer type for the purpose of GC'ability
1268  bool hasObjCPointerRepresentation() const;
1269
1270  /// \brief Determine whether this type has an integer representation
1271  /// of some sort, e.g., it is an integer type or a vector.
1272  bool hasIntegerRepresentation() const;
1273
1274  /// \brief Determine whether this type has an signed integer representation
1275  /// of some sort, e.g., it is an signed integer type or a vector.
1276  bool hasSignedIntegerRepresentation() const;
1277
1278  /// \brief Determine whether this type has an unsigned integer representation
1279  /// of some sort, e.g., it is an unsigned integer type or a vector.
1280  bool hasUnsignedIntegerRepresentation() const;
1281
1282  /// \brief Determine whether this type has a floating-point representation
1283  /// of some sort, e.g., it is a floating-point type or a vector thereof.
1284  bool hasFloatingRepresentation() const;
1285
1286  // Type Checking Functions: Check to see if this type is structurally the
1287  // specified type, ignoring typedefs and qualifiers, and return a pointer to
1288  // the best type we can.
1289  const RecordType *getAsStructureType() const;
1290  /// NOTE: getAs*ArrayType are methods on ASTContext.
1291  const RecordType *getAsUnionType() const;
1292  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
1293  // The following is a convenience method that returns an ObjCObjectPointerType
1294  // for object declared using an interface.
1295  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
1296  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
1297  const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
1298  const CXXRecordDecl *getCXXRecordDeclForPointerType() const;
1299
1300  /// \brief Retrieves the CXXRecordDecl that this type refers to, either
1301  /// because the type is a RecordType or because it is the injected-class-name
1302  /// type of a class template or class template partial specialization.
1303  CXXRecordDecl *getAsCXXRecordDecl() const;
1304
1305  // Member-template getAs<specific type>'.  Look through sugar for
1306  // an instance of <specific type>.   This scheme will eventually
1307  // replace the specific getAsXXXX methods above.
1308  //
1309  // There are some specializations of this member template listed
1310  // immediately following this class.
1311  template <typename T> const T *getAs() const;
1312
1313  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
1314  /// element type of the array, potentially with type qualifiers missing.
1315  /// This method should never be used when type qualifiers are meaningful.
1316  const Type *getArrayElementTypeNoTypeQual() const;
1317
1318  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
1319  /// pointer, this returns the respective pointee.
1320  QualType getPointeeType() const;
1321
1322  /// getUnqualifiedDesugaredType() - Return the specified type with
1323  /// any "sugar" removed from the type, removing any typedefs,
1324  /// typeofs, etc., as well as any qualifiers.
1325  const Type *getUnqualifiedDesugaredType() const;
1326
1327  /// More type predicates useful for type checking/promotion
1328  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
1329
1330  /// isSignedIntegerType - Return true if this is an integer type that is
1331  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
1332  /// an enum decl which has a signed representation, or a vector of signed
1333  /// integer element type.
1334  bool isSignedIntegerType() const;
1335
1336  /// isUnsignedIntegerType - Return true if this is an integer type that is
1337  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
1338  /// decl which has an unsigned representation, or a vector of unsigned integer
1339  /// element type.
1340  bool isUnsignedIntegerType() const;
1341
1342  /// isConstantSizeType - Return true if this is not a variable sized type,
1343  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
1344  /// incomplete types.
1345  bool isConstantSizeType() const;
1346
1347  /// isSpecifierType - Returns true if this type can be represented by some
1348  /// set of type specifiers.
1349  bool isSpecifierType() const;
1350
1351  /// \brief Determine the linkage of this type.
1352  Linkage getLinkage() const;
1353
1354  /// \brief Determine the visibility of this type.
1355  Visibility getVisibility() const;
1356
1357  /// \brief Determine the linkage and visibility of this type.
1358  std::pair<Linkage,Visibility> getLinkageAndVisibility() const;
1359
1360  /// \brief Note that the linkage is no longer known.
1361  void ClearLinkageCache();
1362
1363  const char *getTypeClassName() const;
1364
1365  QualType getCanonicalTypeInternal() const {
1366    return CanonicalType;
1367  }
1368  CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
1369  void dump() const;
1370  static bool classof(const Type *) { return true; }
1371
1372  friend class ASTReader;
1373  friend class ASTWriter;
1374};
1375
1376template <> inline const TypedefType *Type::getAs() const {
1377  return dyn_cast<TypedefType>(this);
1378}
1379
1380// We can do canonical leaf types faster, because we don't have to
1381// worry about preserving child type decoration.
1382#define TYPE(Class, Base)
1383#define LEAF_TYPE(Class) \
1384template <> inline const Class##Type *Type::getAs() const { \
1385  return dyn_cast<Class##Type>(CanonicalType); \
1386}
1387#include "clang/AST/TypeNodes.def"
1388
1389
1390/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
1391/// types are always canonical and have a literal name field.
1392class BuiltinType : public Type {
1393public:
1394  enum Kind {
1395    Void,
1396
1397    Bool,     // This is bool and/or _Bool.
1398    Char_U,   // This is 'char' for targets where char is unsigned.
1399    UChar,    // This is explicitly qualified unsigned char.
1400    WChar_U,  // This is 'wchar_t' for C++, when unsigned.
1401    Char16,   // This is 'char16_t' for C++.
1402    Char32,   // This is 'char32_t' for C++.
1403    UShort,
1404    UInt,
1405    ULong,
1406    ULongLong,
1407    UInt128,  // __uint128_t
1408
1409    Char_S,   // This is 'char' for targets where char is signed.
1410    SChar,    // This is explicitly qualified signed char.
1411    WChar_S,  // This is 'wchar_t' for C++, when signed.
1412    Short,
1413    Int,
1414    Long,
1415    LongLong,
1416    Int128,   // __int128_t
1417
1418    Float, Double, LongDouble,
1419
1420    NullPtr,  // This is the type of C++0x 'nullptr'.
1421
1422    /// This represents the type of an expression whose type is
1423    /// totally unknown, e.g. 'T::foo'.  It is permitted for this to
1424    /// appear in situations where the structure of the type is
1425    /// theoretically deducible.
1426    Dependent,
1427
1428    Overload,  // This represents the type of an overloaded function declaration.
1429
1430    UndeducedAuto, // In C++0x, this represents the type of an auto variable
1431                   // that has not been deduced yet.
1432
1433    /// The primitive Objective C 'id' type.  The type pointed to by the
1434    /// user-visible 'id' type.  Only ever shows up in an AST as the base
1435    /// type of an ObjCObjectType.
1436    ObjCId,
1437
1438    /// The primitive Objective C 'Class' type.  The type pointed to by the
1439    /// user-visible 'Class' type.  Only ever shows up in an AST as the
1440    /// base type of an ObjCObjectType.
1441    ObjCClass,
1442
1443    ObjCSel    // This represents the ObjC 'SEL' type.
1444  };
1445
1446public:
1447  BuiltinType(Kind K)
1448    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
1449           /*VariablyModified=*/false,
1450           /*Unexpanded paramter pack=*/false) {
1451    BuiltinTypeBits.Kind = K;
1452  }
1453
1454  Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
1455  const char *getName(const LangOptions &LO) const;
1456
1457  bool isSugared() const { return false; }
1458  QualType desugar() const { return QualType(this, 0); }
1459
1460  bool isInteger() const {
1461    return getKind() >= Bool && getKind() <= Int128;
1462  }
1463
1464  bool isSignedInteger() const {
1465    return getKind() >= Char_S && getKind() <= Int128;
1466  }
1467
1468  bool isUnsignedInteger() const {
1469    return getKind() >= Bool && getKind() <= UInt128;
1470  }
1471
1472  bool isFloatingPoint() const {
1473    return getKind() >= Float && getKind() <= LongDouble;
1474  }
1475
1476  /// Determines whether this type is a "forbidden" placeholder type,
1477  /// i.e. a type which cannot appear in arbitrary positions in a
1478  /// fully-formed expression.
1479  bool isPlaceholderType() const {
1480    return getKind() == Overload ||
1481           getKind() == UndeducedAuto;
1482  }
1483
1484  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
1485  static bool classof(const BuiltinType *) { return true; }
1486};
1487
1488/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
1489/// types (_Complex float etc) as well as the GCC integer complex extensions.
1490///
1491class ComplexType : public Type, public llvm::FoldingSetNode {
1492  QualType ElementType;
1493  ComplexType(QualType Element, QualType CanonicalPtr) :
1494    Type(Complex, CanonicalPtr, Element->isDependentType(),
1495         Element->isVariablyModifiedType(),
1496         Element->containsUnexpandedParameterPack()),
1497    ElementType(Element) {
1498  }
1499  friend class ASTContext;  // ASTContext creates these.
1500
1501public:
1502  QualType getElementType() const { return ElementType; }
1503
1504  bool isSugared() const { return false; }
1505  QualType desugar() const { return QualType(this, 0); }
1506
1507  void Profile(llvm::FoldingSetNodeID &ID) {
1508    Profile(ID, getElementType());
1509  }
1510  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
1511    ID.AddPointer(Element.getAsOpaquePtr());
1512  }
1513
1514  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
1515  static bool classof(const ComplexType *) { return true; }
1516};
1517
1518/// ParenType - Sugar for parentheses used when specifying types.
1519///
1520class ParenType : public Type, public llvm::FoldingSetNode {
1521  QualType Inner;
1522
1523  ParenType(QualType InnerType, QualType CanonType) :
1524    Type(Paren, CanonType, InnerType->isDependentType(),
1525         InnerType->isVariablyModifiedType(),
1526         InnerType->containsUnexpandedParameterPack()),
1527    Inner(InnerType) {
1528  }
1529  friend class ASTContext;  // ASTContext creates these.
1530
1531public:
1532
1533  QualType getInnerType() const { return Inner; }
1534
1535  bool isSugared() const { return true; }
1536  QualType desugar() const { return getInnerType(); }
1537
1538  void Profile(llvm::FoldingSetNodeID &ID) {
1539    Profile(ID, getInnerType());
1540  }
1541  static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
1542    Inner.Profile(ID);
1543  }
1544
1545  static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
1546  static bool classof(const ParenType *) { return true; }
1547};
1548
1549/// PointerType - C99 6.7.5.1 - Pointer Declarators.
1550///
1551class PointerType : public Type, public llvm::FoldingSetNode {
1552  QualType PointeeType;
1553
1554  PointerType(QualType Pointee, QualType CanonicalPtr) :
1555    Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
1556         Pointee->isVariablyModifiedType(),
1557         Pointee->containsUnexpandedParameterPack()),
1558    PointeeType(Pointee) {
1559  }
1560  friend class ASTContext;  // ASTContext creates these.
1561
1562public:
1563
1564  QualType getPointeeType() const { return PointeeType; }
1565
1566  bool isSugared() const { return false; }
1567  QualType desugar() const { return QualType(this, 0); }
1568
1569  void Profile(llvm::FoldingSetNodeID &ID) {
1570    Profile(ID, getPointeeType());
1571  }
1572  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1573    ID.AddPointer(Pointee.getAsOpaquePtr());
1574  }
1575
1576  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
1577  static bool classof(const PointerType *) { return true; }
1578};
1579
1580/// BlockPointerType - pointer to a block type.
1581/// This type is to represent types syntactically represented as
1582/// "void (^)(int)", etc. Pointee is required to always be a function type.
1583///
1584class BlockPointerType : public Type, public llvm::FoldingSetNode {
1585  QualType PointeeType;  // Block is some kind of pointer type
1586  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
1587    Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
1588         Pointee->isVariablyModifiedType(),
1589         Pointee->containsUnexpandedParameterPack()),
1590    PointeeType(Pointee) {
1591  }
1592  friend class ASTContext;  // ASTContext creates these.
1593
1594public:
1595
1596  // Get the pointee type. Pointee is required to always be a function type.
1597  QualType getPointeeType() const { return PointeeType; }
1598
1599  bool isSugared() const { return false; }
1600  QualType desugar() const { return QualType(this, 0); }
1601
1602  void Profile(llvm::FoldingSetNodeID &ID) {
1603      Profile(ID, getPointeeType());
1604  }
1605  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1606      ID.AddPointer(Pointee.getAsOpaquePtr());
1607  }
1608
1609  static bool classof(const Type *T) {
1610    return T->getTypeClass() == BlockPointer;
1611  }
1612  static bool classof(const BlockPointerType *) { return true; }
1613};
1614
1615/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
1616///
1617class ReferenceType : public Type, public llvm::FoldingSetNode {
1618  QualType PointeeType;
1619
1620protected:
1621  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
1622                bool SpelledAsLValue) :
1623    Type(tc, CanonicalRef, Referencee->isDependentType(),
1624         Referencee->isVariablyModifiedType(),
1625         Referencee->containsUnexpandedParameterPack()),
1626    PointeeType(Referencee)
1627  {
1628    ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
1629    ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
1630  }
1631
1632public:
1633  bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
1634  bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
1635
1636  QualType getPointeeTypeAsWritten() const { return PointeeType; }
1637  QualType getPointeeType() const {
1638    // FIXME: this might strip inner qualifiers; okay?
1639    const ReferenceType *T = this;
1640    while (T->isInnerRef())
1641      T = T->PointeeType->getAs<ReferenceType>();
1642    return T->PointeeType;
1643  }
1644
1645  void Profile(llvm::FoldingSetNodeID &ID) {
1646    Profile(ID, PointeeType, isSpelledAsLValue());
1647  }
1648  static void Profile(llvm::FoldingSetNodeID &ID,
1649                      QualType Referencee,
1650                      bool SpelledAsLValue) {
1651    ID.AddPointer(Referencee.getAsOpaquePtr());
1652    ID.AddBoolean(SpelledAsLValue);
1653  }
1654
1655  static bool classof(const Type *T) {
1656    return T->getTypeClass() == LValueReference ||
1657           T->getTypeClass() == RValueReference;
1658  }
1659  static bool classof(const ReferenceType *) { return true; }
1660};
1661
1662/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
1663///
1664class LValueReferenceType : public ReferenceType {
1665  LValueReferenceType(QualType Referencee, QualType CanonicalRef,
1666                      bool SpelledAsLValue) :
1667    ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
1668  {}
1669  friend class ASTContext; // ASTContext creates these
1670public:
1671  bool isSugared() const { return false; }
1672  QualType desugar() const { return QualType(this, 0); }
1673
1674  static bool classof(const Type *T) {
1675    return T->getTypeClass() == LValueReference;
1676  }
1677  static bool classof(const LValueReferenceType *) { return true; }
1678};
1679
1680/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
1681///
1682class RValueReferenceType : public ReferenceType {
1683  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
1684    ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
1685  }
1686  friend class ASTContext; // ASTContext creates these
1687public:
1688  bool isSugared() const { return false; }
1689  QualType desugar() const { return QualType(this, 0); }
1690
1691  static bool classof(const Type *T) {
1692    return T->getTypeClass() == RValueReference;
1693  }
1694  static bool classof(const RValueReferenceType *) { return true; }
1695};
1696
1697/// MemberPointerType - C++ 8.3.3 - Pointers to members
1698///
1699class MemberPointerType : public Type, public llvm::FoldingSetNode {
1700  QualType PointeeType;
1701  /// The class of which the pointee is a member. Must ultimately be a
1702  /// RecordType, but could be a typedef or a template parameter too.
1703  const Type *Class;
1704
1705  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
1706    Type(MemberPointer, CanonicalPtr,
1707         Cls->isDependentType() || Pointee->isDependentType(),
1708         Pointee->isVariablyModifiedType(),
1709         (Cls->containsUnexpandedParameterPack() ||
1710          Pointee->containsUnexpandedParameterPack())),
1711    PointeeType(Pointee), Class(Cls) {
1712  }
1713  friend class ASTContext; // ASTContext creates these.
1714
1715public:
1716  QualType getPointeeType() const { return PointeeType; }
1717
1718  /// Returns true if the member type (i.e. the pointee type) is a
1719  /// function type rather than a data-member type.
1720  bool isMemberFunctionPointer() const {
1721    return PointeeType->isFunctionProtoType();
1722  }
1723
1724  /// Returns true if the member type (i.e. the pointee type) is a
1725  /// data type rather than a function type.
1726  bool isMemberDataPointer() const {
1727    return !PointeeType->isFunctionProtoType();
1728  }
1729
1730  const Type *getClass() const { return Class; }
1731
1732  bool isSugared() const { return false; }
1733  QualType desugar() const { return QualType(this, 0); }
1734
1735  void Profile(llvm::FoldingSetNodeID &ID) {
1736    Profile(ID, getPointeeType(), getClass());
1737  }
1738  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
1739                      const Type *Class) {
1740    ID.AddPointer(Pointee.getAsOpaquePtr());
1741    ID.AddPointer(Class);
1742  }
1743
1744  static bool classof(const Type *T) {
1745    return T->getTypeClass() == MemberPointer;
1746  }
1747  static bool classof(const MemberPointerType *) { return true; }
1748};
1749
1750/// ArrayType - C99 6.7.5.2 - Array Declarators.
1751///
1752class ArrayType : public Type, public llvm::FoldingSetNode {
1753public:
1754  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
1755  /// an array with a static size (e.g. int X[static 4]), or an array
1756  /// with a star size (e.g. int X[*]).
1757  /// 'static' is only allowed on function parameters.
1758  enum ArraySizeModifier {
1759    Normal, Static, Star
1760  };
1761private:
1762  /// ElementType - The element type of the array.
1763  QualType ElementType;
1764
1765protected:
1766  // C++ [temp.dep.type]p1:
1767  //   A type is dependent if it is...
1768  //     - an array type constructed from any dependent type or whose
1769  //       size is specified by a constant expression that is
1770  //       value-dependent,
1771  ArrayType(TypeClass tc, QualType et, QualType can,
1772            ArraySizeModifier sm, unsigned tq,
1773            bool ContainsUnexpandedParameterPack)
1774    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray,
1775           (tc == VariableArray || et->isVariablyModifiedType()),
1776           ContainsUnexpandedParameterPack),
1777      ElementType(et) {
1778    ArrayTypeBits.IndexTypeQuals = tq;
1779    ArrayTypeBits.SizeModifier = sm;
1780  }
1781
1782  friend class ASTContext;  // ASTContext creates these.
1783
1784public:
1785  QualType getElementType() const { return ElementType; }
1786  ArraySizeModifier getSizeModifier() const {
1787    return ArraySizeModifier(ArrayTypeBits.SizeModifier);
1788  }
1789  Qualifiers getIndexTypeQualifiers() const {
1790    return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
1791  }
1792  unsigned getIndexTypeCVRQualifiers() const {
1793    return ArrayTypeBits.IndexTypeQuals;
1794  }
1795
1796  static bool classof(const Type *T) {
1797    return T->getTypeClass() == ConstantArray ||
1798           T->getTypeClass() == VariableArray ||
1799           T->getTypeClass() == IncompleteArray ||
1800           T->getTypeClass() == DependentSizedArray;
1801  }
1802  static bool classof(const ArrayType *) { return true; }
1803};
1804
1805/// ConstantArrayType - This class represents the canonical version of
1806/// C arrays with a specified constant size.  For example, the canonical
1807/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
1808/// type is 'int' and the size is 404.
1809class ConstantArrayType : public ArrayType {
1810  llvm::APInt Size; // Allows us to unique the type.
1811
1812  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
1813                    ArraySizeModifier sm, unsigned tq)
1814    : ArrayType(ConstantArray, et, can, sm, tq,
1815                et->containsUnexpandedParameterPack()),
1816      Size(size) {}
1817protected:
1818  ConstantArrayType(TypeClass tc, QualType et, QualType can,
1819                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
1820    : ArrayType(tc, et, can, sm, tq, et->containsUnexpandedParameterPack()),
1821      Size(size) {}
1822  friend class ASTContext;  // ASTContext creates these.
1823public:
1824  const llvm::APInt &getSize() const { return Size; }
1825  bool isSugared() const { return false; }
1826  QualType desugar() const { return QualType(this, 0); }
1827
1828
1829  /// \brief Determine the number of bits required to address a member of
1830  // an array with the given element type and number of elements.
1831  static unsigned getNumAddressingBits(ASTContext &Context,
1832                                       QualType ElementType,
1833                                       const llvm::APInt &NumElements);
1834
1835  /// \brief Determine the maximum number of active bits that an array's size
1836  /// can require, which limits the maximum size of the array.
1837  static unsigned getMaxSizeBits(ASTContext &Context);
1838
1839  void Profile(llvm::FoldingSetNodeID &ID) {
1840    Profile(ID, getElementType(), getSize(),
1841            getSizeModifier(), getIndexTypeCVRQualifiers());
1842  }
1843  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1844                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
1845                      unsigned TypeQuals) {
1846    ID.AddPointer(ET.getAsOpaquePtr());
1847    ID.AddInteger(ArraySize.getZExtValue());
1848    ID.AddInteger(SizeMod);
1849    ID.AddInteger(TypeQuals);
1850  }
1851  static bool classof(const Type *T) {
1852    return T->getTypeClass() == ConstantArray;
1853  }
1854  static bool classof(const ConstantArrayType *) { return true; }
1855};
1856
1857/// IncompleteArrayType - This class represents C arrays with an unspecified
1858/// size.  For example 'int A[]' has an IncompleteArrayType where the element
1859/// type is 'int' and the size is unspecified.
1860class IncompleteArrayType : public ArrayType {
1861
1862  IncompleteArrayType(QualType et, QualType can,
1863                      ArraySizeModifier sm, unsigned tq)
1864    : ArrayType(IncompleteArray, et, can, sm, tq,
1865                et->containsUnexpandedParameterPack()) {}
1866  friend class ASTContext;  // ASTContext creates these.
1867public:
1868  bool isSugared() const { return false; }
1869  QualType desugar() const { return QualType(this, 0); }
1870
1871  static bool classof(const Type *T) {
1872    return T->getTypeClass() == IncompleteArray;
1873  }
1874  static bool classof(const IncompleteArrayType *) { return true; }
1875
1876  friend class StmtIteratorBase;
1877
1878  void Profile(llvm::FoldingSetNodeID &ID) {
1879    Profile(ID, getElementType(), getSizeModifier(),
1880            getIndexTypeCVRQualifiers());
1881  }
1882
1883  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1884                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
1885    ID.AddPointer(ET.getAsOpaquePtr());
1886    ID.AddInteger(SizeMod);
1887    ID.AddInteger(TypeQuals);
1888  }
1889};
1890
1891/// VariableArrayType - This class represents C arrays with a specified size
1892/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
1893/// Since the size expression is an arbitrary expression, we store it as such.
1894///
1895/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
1896/// should not be: two lexically equivalent variable array types could mean
1897/// different things, for example, these variables do not have the same type
1898/// dynamically:
1899///
1900/// void foo(int x) {
1901///   int Y[x];
1902///   ++x;
1903///   int Z[x];
1904/// }
1905///
1906class VariableArrayType : public ArrayType {
1907  /// SizeExpr - An assignment expression. VLA's are only permitted within
1908  /// a function block.
1909  Stmt *SizeExpr;
1910  /// Brackets - The left and right array brackets.
1911  SourceRange Brackets;
1912
1913  VariableArrayType(QualType et, QualType can, Expr *e,
1914                    ArraySizeModifier sm, unsigned tq,
1915                    SourceRange brackets)
1916    : ArrayType(VariableArray, et, can, sm, tq,
1917                et->containsUnexpandedParameterPack()),
1918      SizeExpr((Stmt*) e), Brackets(brackets) {}
1919  friend class ASTContext;  // ASTContext creates these.
1920
1921public:
1922  Expr *getSizeExpr() const {
1923    // We use C-style casts instead of cast<> here because we do not wish
1924    // to have a dependency of Type.h on Stmt.h/Expr.h.
1925    return (Expr*) SizeExpr;
1926  }
1927  SourceRange getBracketsRange() const { return Brackets; }
1928  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1929  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1930
1931  bool isSugared() const { return false; }
1932  QualType desugar() const { return QualType(this, 0); }
1933
1934  static bool classof(const Type *T) {
1935    return T->getTypeClass() == VariableArray;
1936  }
1937  static bool classof(const VariableArrayType *) { return true; }
1938
1939  friend class StmtIteratorBase;
1940
1941  void Profile(llvm::FoldingSetNodeID &ID) {
1942    assert(0 && "Cannnot unique VariableArrayTypes.");
1943  }
1944};
1945
1946/// DependentSizedArrayType - This type represents an array type in
1947/// C++ whose size is a value-dependent expression. For example:
1948///
1949/// \code
1950/// template<typename T, int Size>
1951/// class array {
1952///   T data[Size];
1953/// };
1954/// \endcode
1955///
1956/// For these types, we won't actually know what the array bound is
1957/// until template instantiation occurs, at which point this will
1958/// become either a ConstantArrayType or a VariableArrayType.
1959class DependentSizedArrayType : public ArrayType {
1960  const ASTContext &Context;
1961
1962  /// \brief An assignment expression that will instantiate to the
1963  /// size of the array.
1964  ///
1965  /// The expression itself might be NULL, in which case the array
1966  /// type will have its size deduced from an initializer.
1967  Stmt *SizeExpr;
1968
1969  /// Brackets - The left and right array brackets.
1970  SourceRange Brackets;
1971
1972  DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
1973                          Expr *e, ArraySizeModifier sm, unsigned tq,
1974                          SourceRange brackets);
1975
1976  friend class ASTContext;  // ASTContext creates these.
1977
1978public:
1979  Expr *getSizeExpr() const {
1980    // We use C-style casts instead of cast<> here because we do not wish
1981    // to have a dependency of Type.h on Stmt.h/Expr.h.
1982    return (Expr*) SizeExpr;
1983  }
1984  SourceRange getBracketsRange() const { return Brackets; }
1985  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1986  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1987
1988  bool isSugared() const { return false; }
1989  QualType desugar() const { return QualType(this, 0); }
1990
1991  static bool classof(const Type *T) {
1992    return T->getTypeClass() == DependentSizedArray;
1993  }
1994  static bool classof(const DependentSizedArrayType *) { return true; }
1995
1996  friend class StmtIteratorBase;
1997
1998
1999  void Profile(llvm::FoldingSetNodeID &ID) {
2000    Profile(ID, Context, getElementType(),
2001            getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
2002  }
2003
2004  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2005                      QualType ET, ArraySizeModifier SizeMod,
2006                      unsigned TypeQuals, Expr *E);
2007};
2008
2009/// DependentSizedExtVectorType - This type represent an extended vector type
2010/// where either the type or size is dependent. For example:
2011/// @code
2012/// template<typename T, int Size>
2013/// class vector {
2014///   typedef T __attribute__((ext_vector_type(Size))) type;
2015/// }
2016/// @endcode
2017class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
2018  const ASTContext &Context;
2019  Expr *SizeExpr;
2020  /// ElementType - The element type of the array.
2021  QualType ElementType;
2022  SourceLocation loc;
2023
2024  DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
2025                              QualType can, Expr *SizeExpr, SourceLocation loc);
2026
2027  friend class ASTContext;
2028
2029public:
2030  Expr *getSizeExpr() const { return SizeExpr; }
2031  QualType getElementType() const { return ElementType; }
2032  SourceLocation getAttributeLoc() const { return loc; }
2033
2034  bool isSugared() const { return false; }
2035  QualType desugar() const { return QualType(this, 0); }
2036
2037  static bool classof(const Type *T) {
2038    return T->getTypeClass() == DependentSizedExtVector;
2039  }
2040  static bool classof(const DependentSizedExtVectorType *) { return true; }
2041
2042  void Profile(llvm::FoldingSetNodeID &ID) {
2043    Profile(ID, Context, getElementType(), getSizeExpr());
2044  }
2045
2046  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2047                      QualType ElementType, Expr *SizeExpr);
2048};
2049
2050
2051/// VectorType - GCC generic vector type. This type is created using
2052/// __attribute__((vector_size(n)), where "n" specifies the vector size in
2053/// bytes; or from an Altivec __vector or vector declaration.
2054/// Since the constructor takes the number of vector elements, the
2055/// client is responsible for converting the size into the number of elements.
2056class VectorType : public Type, public llvm::FoldingSetNode {
2057public:
2058  enum VectorKind {
2059    GenericVector,  // not a target-specific vector type
2060    AltiVecVector,  // is AltiVec vector
2061    AltiVecPixel,   // is AltiVec 'vector Pixel'
2062    AltiVecBool,    // is AltiVec 'vector bool ...'
2063    NeonVector,     // is ARM Neon vector
2064    NeonPolyVector  // is ARM Neon polynomial vector
2065  };
2066protected:
2067  /// ElementType - The element type of the vector.
2068  QualType ElementType;
2069
2070  VectorType(QualType vecType, unsigned nElements, QualType canonType,
2071             VectorKind vecKind);
2072
2073  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
2074             QualType canonType, VectorKind vecKind);
2075
2076  friend class ASTContext;  // ASTContext creates these.
2077
2078public:
2079
2080  QualType getElementType() const { return ElementType; }
2081  unsigned getNumElements() const { return VectorTypeBits.NumElements; }
2082
2083  bool isSugared() const { return false; }
2084  QualType desugar() const { return QualType(this, 0); }
2085
2086  VectorKind getVectorKind() const {
2087    return VectorKind(VectorTypeBits.VecKind);
2088  }
2089
2090  void Profile(llvm::FoldingSetNodeID &ID) {
2091    Profile(ID, getElementType(), getNumElements(),
2092            getTypeClass(), getVectorKind());
2093  }
2094  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
2095                      unsigned NumElements, TypeClass TypeClass,
2096                      VectorKind VecKind) {
2097    ID.AddPointer(ElementType.getAsOpaquePtr());
2098    ID.AddInteger(NumElements);
2099    ID.AddInteger(TypeClass);
2100    ID.AddInteger(VecKind);
2101  }
2102
2103  static bool classof(const Type *T) {
2104    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
2105  }
2106  static bool classof(const VectorType *) { return true; }
2107};
2108
2109/// ExtVectorType - Extended vector type. This type is created using
2110/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
2111/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
2112/// class enables syntactic extensions, like Vector Components for accessing
2113/// points, colors, and textures (modeled after OpenGL Shading Language).
2114class ExtVectorType : public VectorType {
2115  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
2116    VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
2117  friend class ASTContext;  // ASTContext creates these.
2118public:
2119  static int getPointAccessorIdx(char c) {
2120    switch (c) {
2121    default: return -1;
2122    case 'x': return 0;
2123    case 'y': return 1;
2124    case 'z': return 2;
2125    case 'w': return 3;
2126    }
2127  }
2128  static int getNumericAccessorIdx(char c) {
2129    switch (c) {
2130      default: return -1;
2131      case '0': return 0;
2132      case '1': return 1;
2133      case '2': return 2;
2134      case '3': return 3;
2135      case '4': return 4;
2136      case '5': return 5;
2137      case '6': return 6;
2138      case '7': return 7;
2139      case '8': return 8;
2140      case '9': return 9;
2141      case 'A':
2142      case 'a': return 10;
2143      case 'B':
2144      case 'b': return 11;
2145      case 'C':
2146      case 'c': return 12;
2147      case 'D':
2148      case 'd': return 13;
2149      case 'E':
2150      case 'e': return 14;
2151      case 'F':
2152      case 'f': return 15;
2153    }
2154  }
2155
2156  static int getAccessorIdx(char c) {
2157    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
2158    return getNumericAccessorIdx(c);
2159  }
2160
2161  bool isAccessorWithinNumElements(char c) const {
2162    if (int idx = getAccessorIdx(c)+1)
2163      return unsigned(idx-1) < getNumElements();
2164    return false;
2165  }
2166  bool isSugared() const { return false; }
2167  QualType desugar() const { return QualType(this, 0); }
2168
2169  static bool classof(const Type *T) {
2170    return T->getTypeClass() == ExtVector;
2171  }
2172  static bool classof(const ExtVectorType *) { return true; }
2173};
2174
2175/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
2176/// class of FunctionNoProtoType and FunctionProtoType.
2177///
2178class FunctionType : public Type {
2179  // The type returned by the function.
2180  QualType ResultType;
2181
2182 public:
2183  /// ExtInfo - A class which abstracts out some details necessary for
2184  /// making a call.
2185  ///
2186  /// It is not actually used directly for storing this information in
2187  /// a FunctionType, although FunctionType does currently use the
2188  /// same bit-pattern.
2189  ///
2190  // If you add a field (say Foo), other than the obvious places (both,
2191  // constructors, compile failures), what you need to update is
2192  // * Operator==
2193  // * getFoo
2194  // * withFoo
2195  // * functionType. Add Foo, getFoo.
2196  // * ASTContext::getFooType
2197  // * ASTContext::mergeFunctionTypes
2198  // * FunctionNoProtoType::Profile
2199  // * FunctionProtoType::Profile
2200  // * TypePrinter::PrintFunctionProto
2201  // * AST read and write
2202  // * Codegen
2203  class ExtInfo {
2204    // Feel free to rearrange or add bits, but if you go over 8,
2205    // you'll need to adjust both the Bits field below and
2206    // Type::FunctionTypeBitfields.
2207
2208    //   |  CC  |noreturn|regparm
2209    //   |0 .. 2|   3    |4 ..  6
2210    enum { CallConvMask = 0x7 };
2211    enum { NoReturnMask = 0x8 };
2212    enum { RegParmMask = ~(CallConvMask | NoReturnMask),
2213           RegParmOffset = 4 };
2214
2215    unsigned char Bits;
2216
2217    ExtInfo(unsigned Bits) : Bits(static_cast<unsigned char>(Bits)) {}
2218
2219    friend class FunctionType;
2220
2221   public:
2222    // Constructor with no defaults. Use this when you know that you
2223    // have all the elements (when reading an AST file for example).
2224    ExtInfo(bool noReturn, unsigned regParm, CallingConv cc) {
2225      Bits = ((unsigned) cc) |
2226             (noReturn ? NoReturnMask : 0) |
2227             (regParm << RegParmOffset);
2228    }
2229
2230    // Constructor with all defaults. Use when for example creating a
2231    // function know to use defaults.
2232    ExtInfo() : Bits(0) {}
2233
2234    bool getNoReturn() const { return Bits & NoReturnMask; }
2235    unsigned getRegParm() const { return Bits >> RegParmOffset; }
2236    CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
2237
2238    bool operator==(ExtInfo Other) const {
2239      return Bits == Other.Bits;
2240    }
2241    bool operator!=(ExtInfo Other) const {
2242      return Bits != Other.Bits;
2243    }
2244
2245    // Note that we don't have setters. That is by design, use
2246    // the following with methods instead of mutating these objects.
2247
2248    ExtInfo withNoReturn(bool noReturn) const {
2249      if (noReturn)
2250        return ExtInfo(Bits | NoReturnMask);
2251      else
2252        return ExtInfo(Bits & ~NoReturnMask);
2253    }
2254
2255    ExtInfo withRegParm(unsigned RegParm) const {
2256      return ExtInfo((Bits & ~RegParmMask) | (RegParm << RegParmOffset));
2257    }
2258
2259    ExtInfo withCallingConv(CallingConv cc) const {
2260      return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
2261    }
2262
2263    void Profile(llvm::FoldingSetNodeID &ID) const {
2264      ID.AddInteger(Bits);
2265    }
2266  };
2267
2268protected:
2269  FunctionType(TypeClass tc, QualType res, bool variadic,
2270               unsigned typeQuals, QualType Canonical, bool Dependent,
2271               bool VariablyModified, bool ContainsUnexpandedParameterPack,
2272               ExtInfo Info)
2273    : Type(tc, Canonical, Dependent, VariablyModified,
2274           ContainsUnexpandedParameterPack),
2275      ResultType(res) {
2276    FunctionTypeBits.ExtInfo = Info.Bits;
2277    FunctionTypeBits.Variadic = variadic;
2278    FunctionTypeBits.TypeQuals = typeQuals;
2279  }
2280  bool isVariadic() const { return FunctionTypeBits.Variadic; }
2281  unsigned getTypeQuals() const { return FunctionTypeBits.TypeQuals; }
2282public:
2283
2284  QualType getResultType() const { return ResultType; }
2285
2286  unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
2287  bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
2288  CallingConv getCallConv() const { return getExtInfo().getCC(); }
2289  ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
2290
2291  /// \brief Determine the type of an expression that calls a function of
2292  /// this type.
2293  QualType getCallResultType(ASTContext &Context) const {
2294    return getResultType().getNonLValueExprType(Context);
2295  }
2296
2297  static llvm::StringRef getNameForCallConv(CallingConv CC);
2298
2299  static bool classof(const Type *T) {
2300    return T->getTypeClass() == FunctionNoProto ||
2301           T->getTypeClass() == FunctionProto;
2302  }
2303  static bool classof(const FunctionType *) { return true; }
2304};
2305
2306/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
2307/// no information available about its arguments.
2308class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
2309  FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
2310    : FunctionType(FunctionNoProto, Result, false, 0, Canonical,
2311                   /*Dependent=*/false, Result->isVariablyModifiedType(),
2312                   /*ContainsUnexpandedParameterPack=*/false, Info) {}
2313
2314  friend class ASTContext;  // ASTContext creates these.
2315
2316public:
2317  // No additional state past what FunctionType provides.
2318
2319  bool isSugared() const { return false; }
2320  QualType desugar() const { return QualType(this, 0); }
2321
2322  void Profile(llvm::FoldingSetNodeID &ID) {
2323    Profile(ID, getResultType(), getExtInfo());
2324  }
2325  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
2326                      ExtInfo Info) {
2327    Info.Profile(ID);
2328    ID.AddPointer(ResultType.getAsOpaquePtr());
2329  }
2330
2331  static bool classof(const Type *T) {
2332    return T->getTypeClass() == FunctionNoProto;
2333  }
2334  static bool classof(const FunctionNoProtoType *) { return true; }
2335};
2336
2337/// FunctionProtoType - Represents a prototype with argument type info, e.g.
2338/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
2339/// arguments, not as having a single void argument. Such a type can have an
2340/// exception specification, but this specification is not part of the canonical
2341/// type.
2342class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
2343public:
2344  /// ExtProtoInfo - Extra information about a function prototype.
2345  struct ExtProtoInfo {
2346    ExtProtoInfo() :
2347      Variadic(false), HasExceptionSpec(false), HasAnyExceptionSpec(false),
2348      TypeQuals(0), NumExceptions(0), Exceptions(0) {}
2349
2350    FunctionType::ExtInfo ExtInfo;
2351    bool Variadic;
2352    bool HasExceptionSpec;
2353    bool HasAnyExceptionSpec;
2354    unsigned char TypeQuals;
2355    unsigned NumExceptions;
2356    const QualType *Exceptions;
2357  };
2358
2359private:
2360  /// \brief Determine whether there are any argument types that
2361  /// contain an unexpanded parameter pack.
2362  static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
2363                                                 unsigned numArgs) {
2364    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
2365      if (ArgArray[Idx]->containsUnexpandedParameterPack())
2366        return true;
2367
2368    return false;
2369  }
2370
2371  FunctionProtoType(QualType result, const QualType *args, unsigned numArgs,
2372                    QualType canonical, const ExtProtoInfo &epi);
2373
2374  /// NumArgs - The number of arguments this function has, not counting '...'.
2375  unsigned NumArgs : 20;
2376
2377  /// NumExceptions - The number of types in the exception spec, if any.
2378  unsigned NumExceptions : 10;
2379
2380  /// HasExceptionSpec - Whether this function has an exception spec at all.
2381  unsigned HasExceptionSpec : 1;
2382
2383  /// HasAnyExceptionSpec - Whether this function has a throw(...) spec.
2384  unsigned HasAnyExceptionSpec : 1;
2385
2386  /// ArgInfo - There is an variable size array after the class in memory that
2387  /// holds the argument types.
2388
2389  /// Exceptions - There is another variable size array after ArgInfo that
2390  /// holds the exception types.
2391
2392  friend class ASTContext;  // ASTContext creates these.
2393
2394public:
2395  unsigned getNumArgs() const { return NumArgs; }
2396  QualType getArgType(unsigned i) const {
2397    assert(i < NumArgs && "Invalid argument number!");
2398    return arg_type_begin()[i];
2399  }
2400
2401  ExtProtoInfo getExtProtoInfo() const {
2402    ExtProtoInfo EPI;
2403    EPI.ExtInfo = getExtInfo();
2404    EPI.Variadic = isVariadic();
2405    EPI.HasExceptionSpec = hasExceptionSpec();
2406    EPI.HasAnyExceptionSpec = hasAnyExceptionSpec();
2407    EPI.TypeQuals = static_cast<unsigned char>(getTypeQuals());
2408    EPI.NumExceptions = NumExceptions;
2409    EPI.Exceptions = exception_begin();
2410    return EPI;
2411  }
2412
2413  bool hasExceptionSpec() const { return HasExceptionSpec; }
2414  bool hasAnyExceptionSpec() const { return HasAnyExceptionSpec; }
2415  unsigned getNumExceptions() const { return NumExceptions; }
2416  QualType getExceptionType(unsigned i) const {
2417    assert(i < NumExceptions && "Invalid exception number!");
2418    return exception_begin()[i];
2419  }
2420  bool hasEmptyExceptionSpec() const {
2421    return hasExceptionSpec() && !hasAnyExceptionSpec() &&
2422      getNumExceptions() == 0;
2423  }
2424
2425  using FunctionType::isVariadic;
2426
2427  /// \brief Determines whether this function prototype contains a
2428  /// parameter pack at the end.
2429  ///
2430  /// A function template whose last parameter is a parameter pack can be
2431  /// called with an arbitrary number of arguments, much like a variadic
2432  /// function. However,
2433  bool isTemplateVariadic() const;
2434
2435  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
2436
2437  typedef const QualType *arg_type_iterator;
2438  arg_type_iterator arg_type_begin() const {
2439    return reinterpret_cast<const QualType *>(this+1);
2440  }
2441  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
2442
2443  typedef const QualType *exception_iterator;
2444  exception_iterator exception_begin() const {
2445    // exceptions begin where arguments end
2446    return arg_type_end();
2447  }
2448  exception_iterator exception_end() const {
2449    return exception_begin() + NumExceptions;
2450  }
2451
2452  bool isSugared() const { return false; }
2453  QualType desugar() const { return QualType(this, 0); }
2454
2455  static bool classof(const Type *T) {
2456    return T->getTypeClass() == FunctionProto;
2457  }
2458  static bool classof(const FunctionProtoType *) { return true; }
2459
2460  void Profile(llvm::FoldingSetNodeID &ID);
2461  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
2462                      arg_type_iterator ArgTys, unsigned NumArgs,
2463                      const ExtProtoInfo &EPI);
2464};
2465
2466
2467/// \brief Represents the dependent type named by a dependently-scoped
2468/// typename using declaration, e.g.
2469///   using typename Base<T>::foo;
2470/// Template instantiation turns these into the underlying type.
2471class UnresolvedUsingType : public Type {
2472  UnresolvedUsingTypenameDecl *Decl;
2473
2474  UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
2475    : Type(UnresolvedUsing, QualType(), true, false,
2476           /*ContainsUnexpandedParameterPack=*/false),
2477      Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
2478  friend class ASTContext; // ASTContext creates these.
2479public:
2480
2481  UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
2482
2483  bool isSugared() const { return false; }
2484  QualType desugar() const { return QualType(this, 0); }
2485
2486  static bool classof(const Type *T) {
2487    return T->getTypeClass() == UnresolvedUsing;
2488  }
2489  static bool classof(const UnresolvedUsingType *) { return true; }
2490
2491  void Profile(llvm::FoldingSetNodeID &ID) {
2492    return Profile(ID, Decl);
2493  }
2494  static void Profile(llvm::FoldingSetNodeID &ID,
2495                      UnresolvedUsingTypenameDecl *D) {
2496    ID.AddPointer(D);
2497  }
2498};
2499
2500
2501class TypedefType : public Type {
2502  TypedefDecl *Decl;
2503protected:
2504  TypedefType(TypeClass tc, const TypedefDecl *D, QualType can)
2505    : Type(tc, can, can->isDependentType(), can->isVariablyModifiedType(),
2506           /*ContainsUnexpandedParameterPack=*/false),
2507      Decl(const_cast<TypedefDecl*>(D)) {
2508    assert(!isa<TypedefType>(can) && "Invalid canonical type");
2509  }
2510  friend class ASTContext;  // ASTContext creates these.
2511public:
2512
2513  TypedefDecl *getDecl() const { return Decl; }
2514
2515  bool isSugared() const { return true; }
2516  QualType desugar() const;
2517
2518  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
2519  static bool classof(const TypedefType *) { return true; }
2520};
2521
2522/// TypeOfExprType (GCC extension).
2523class TypeOfExprType : public Type {
2524  Expr *TOExpr;
2525
2526protected:
2527  TypeOfExprType(Expr *E, QualType can = QualType());
2528  friend class ASTContext;  // ASTContext creates these.
2529public:
2530  Expr *getUnderlyingExpr() const { return TOExpr; }
2531
2532  /// \brief Remove a single level of sugar.
2533  QualType desugar() const;
2534
2535  /// \brief Returns whether this type directly provides sugar.
2536  bool isSugared() const { return true; }
2537
2538  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
2539  static bool classof(const TypeOfExprType *) { return true; }
2540};
2541
2542/// \brief Internal representation of canonical, dependent
2543/// typeof(expr) types.
2544///
2545/// This class is used internally by the ASTContext to manage
2546/// canonical, dependent types, only. Clients will only see instances
2547/// of this class via TypeOfExprType nodes.
2548class DependentTypeOfExprType
2549  : public TypeOfExprType, public llvm::FoldingSetNode {
2550  const ASTContext &Context;
2551
2552public:
2553  DependentTypeOfExprType(const ASTContext &Context, Expr *E)
2554    : TypeOfExprType(E), Context(Context) { }
2555
2556  bool isSugared() const { return false; }
2557  QualType desugar() const { return QualType(this, 0); }
2558
2559  void Profile(llvm::FoldingSetNodeID &ID) {
2560    Profile(ID, Context, getUnderlyingExpr());
2561  }
2562
2563  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2564                      Expr *E);
2565};
2566
2567/// TypeOfType (GCC extension).
2568class TypeOfType : public Type {
2569  QualType TOType;
2570  TypeOfType(QualType T, QualType can)
2571    : Type(TypeOf, can, T->isDependentType(), T->isVariablyModifiedType(),
2572           T->containsUnexpandedParameterPack()),
2573      TOType(T) {
2574    assert(!isa<TypedefType>(can) && "Invalid canonical type");
2575  }
2576  friend class ASTContext;  // ASTContext creates these.
2577public:
2578  QualType getUnderlyingType() const { return TOType; }
2579
2580  /// \brief Remove a single level of sugar.
2581  QualType desugar() const { return getUnderlyingType(); }
2582
2583  /// \brief Returns whether this type directly provides sugar.
2584  bool isSugared() const { return true; }
2585
2586  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
2587  static bool classof(const TypeOfType *) { return true; }
2588};
2589
2590/// DecltypeType (C++0x)
2591class DecltypeType : public Type {
2592  Expr *E;
2593
2594  // FIXME: We could get rid of UnderlyingType if we wanted to: We would have to
2595  // Move getDesugaredType to ASTContext so that it can call getDecltypeForExpr
2596  // from it.
2597  QualType UnderlyingType;
2598
2599protected:
2600  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
2601  friend class ASTContext;  // ASTContext creates these.
2602public:
2603  Expr *getUnderlyingExpr() const { return E; }
2604  QualType getUnderlyingType() const { return UnderlyingType; }
2605
2606  /// \brief Remove a single level of sugar.
2607  QualType desugar() const { return getUnderlyingType(); }
2608
2609  /// \brief Returns whether this type directly provides sugar.
2610  bool isSugared() const { return !isDependentType(); }
2611
2612  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
2613  static bool classof(const DecltypeType *) { return true; }
2614};
2615
2616/// \brief Internal representation of canonical, dependent
2617/// decltype(expr) types.
2618///
2619/// This class is used internally by the ASTContext to manage
2620/// canonical, dependent types, only. Clients will only see instances
2621/// of this class via DecltypeType nodes.
2622class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
2623  const ASTContext &Context;
2624
2625public:
2626  DependentDecltypeType(const ASTContext &Context, Expr *E);
2627
2628  bool isSugared() const { return false; }
2629  QualType desugar() const { return QualType(this, 0); }
2630
2631  void Profile(llvm::FoldingSetNodeID &ID) {
2632    Profile(ID, Context, getUnderlyingExpr());
2633  }
2634
2635  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
2636                      Expr *E);
2637};
2638
2639class TagType : public Type {
2640  /// Stores the TagDecl associated with this type. The decl may point to any
2641  /// TagDecl that declares the entity.
2642  TagDecl * decl;
2643
2644protected:
2645  TagType(TypeClass TC, const TagDecl *D, QualType can);
2646
2647public:
2648  TagDecl *getDecl() const;
2649
2650  /// @brief Determines whether this type is in the process of being
2651  /// defined.
2652  bool isBeingDefined() const;
2653
2654  static bool classof(const Type *T) {
2655    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
2656  }
2657  static bool classof(const TagType *) { return true; }
2658  static bool classof(const RecordType *) { return true; }
2659  static bool classof(const EnumType *) { return true; }
2660};
2661
2662/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
2663/// to detect TagType objects of structs/unions/classes.
2664class RecordType : public TagType {
2665protected:
2666  explicit RecordType(const RecordDecl *D)
2667    : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2668  explicit RecordType(TypeClass TC, RecordDecl *D)
2669    : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2670  friend class ASTContext;   // ASTContext creates these.
2671public:
2672
2673  RecordDecl *getDecl() const {
2674    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
2675  }
2676
2677  // FIXME: This predicate is a helper to QualType/Type. It needs to
2678  // recursively check all fields for const-ness. If any field is declared
2679  // const, it needs to return false.
2680  bool hasConstFields() const { return false; }
2681
2682  bool isSugared() const { return false; }
2683  QualType desugar() const { return QualType(this, 0); }
2684
2685  static bool classof(const TagType *T);
2686  static bool classof(const Type *T) {
2687    return isa<TagType>(T) && classof(cast<TagType>(T));
2688  }
2689  static bool classof(const RecordType *) { return true; }
2690};
2691
2692/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
2693/// to detect TagType objects of enums.
2694class EnumType : public TagType {
2695  explicit EnumType(const EnumDecl *D)
2696    : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2697  friend class ASTContext;   // ASTContext creates these.
2698public:
2699
2700  EnumDecl *getDecl() const {
2701    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
2702  }
2703
2704  bool isSugared() const { return false; }
2705  QualType desugar() const { return QualType(this, 0); }
2706
2707  static bool classof(const TagType *T);
2708  static bool classof(const Type *T) {
2709    return isa<TagType>(T) && classof(cast<TagType>(T));
2710  }
2711  static bool classof(const EnumType *) { return true; }
2712};
2713
2714/// AttributedType - An attributed type is a type to which a type
2715/// attribute has been applied.  The "modified type" is the
2716/// fully-sugared type to which the attributed type was applied;
2717/// generally it is not canonically equivalent to the attributed type.
2718/// The "equivalent type" is the minimally-desugared type which the
2719/// type is canonically equivalent to.
2720///
2721/// For example, in the following attributed type:
2722///     int32_t __attribute__((vector_size(16)))
2723///   - the modified type is the TypedefType for int32_t
2724///   - the equivalent type is VectorType(16, int32_t)
2725///   - the canonical type is VectorType(16, int)
2726class AttributedType : public Type, public llvm::FoldingSetNode {
2727public:
2728  // It is really silly to have yet another attribute-kind enum, but
2729  // clang::attr::Kind doesn't currently cover the pure type attrs.
2730  enum Kind {
2731    // Expression operand.
2732    attr_address_space,
2733    attr_regparm,
2734    attr_vector_size,
2735    attr_neon_vector_type,
2736    attr_neon_polyvector_type,
2737
2738    FirstExprOperandKind = attr_address_space,
2739    LastExprOperandKind = attr_neon_polyvector_type,
2740
2741    // Enumerated operand (string or keyword).
2742    attr_objc_gc,
2743
2744    FirstEnumOperandKind = attr_objc_gc,
2745    LastEnumOperandKind = attr_objc_gc,
2746
2747    // No operand.
2748    attr_noreturn,
2749    attr_cdecl,
2750    attr_fastcall,
2751    attr_stdcall,
2752    attr_thiscall,
2753    attr_pascal
2754  };
2755
2756private:
2757  QualType ModifiedType;
2758  QualType EquivalentType;
2759
2760  friend class ASTContext; // creates these
2761
2762  AttributedType(QualType canon, Kind attrKind,
2763                 QualType modified, QualType equivalent)
2764    : Type(Attributed, canon, canon->isDependentType(),
2765           canon->isVariablyModifiedType(),
2766           canon->containsUnexpandedParameterPack()),
2767      ModifiedType(modified), EquivalentType(equivalent) {
2768    AttributedTypeBits.AttrKind = attrKind;
2769  }
2770
2771public:
2772  Kind getAttrKind() const {
2773    return static_cast<Kind>(AttributedTypeBits.AttrKind);
2774  }
2775
2776  QualType getModifiedType() const { return ModifiedType; }
2777  QualType getEquivalentType() const { return EquivalentType; }
2778
2779  bool isSugared() const { return true; }
2780  QualType desugar() const { return getEquivalentType(); }
2781
2782  void Profile(llvm::FoldingSetNodeID &ID) {
2783    Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
2784  }
2785
2786  static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
2787                      QualType modified, QualType equivalent) {
2788    ID.AddInteger(attrKind);
2789    ID.AddPointer(modified.getAsOpaquePtr());
2790    ID.AddPointer(equivalent.getAsOpaquePtr());
2791  }
2792
2793  static bool classof(const Type *T) {
2794    return T->getTypeClass() == Attributed;
2795  }
2796  static bool classof(const AttributedType *T) { return true; }
2797};
2798
2799class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2800  unsigned Depth : 15;
2801  unsigned ParameterPack : 1;
2802  unsigned Index : 16;
2803  IdentifierInfo *Name;
2804
2805  TemplateTypeParmType(unsigned D, unsigned I, bool PP, IdentifierInfo *N,
2806                       QualType Canon)
2807    : Type(TemplateTypeParm, Canon, /*Dependent=*/true,
2808           /*VariablyModified=*/false, PP),
2809      Depth(D), ParameterPack(PP), Index(I), Name(N) { }
2810
2811  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
2812    : Type(TemplateTypeParm, QualType(this, 0), /*Dependent=*/true,
2813           /*VariablyModified=*/false, PP),
2814      Depth(D), ParameterPack(PP), Index(I), Name(0) { }
2815
2816  friend class ASTContext;  // ASTContext creates these
2817
2818public:
2819  unsigned getDepth() const { return Depth; }
2820  unsigned getIndex() const { return Index; }
2821  bool isParameterPack() const { return ParameterPack; }
2822  IdentifierInfo *getName() const { return Name; }
2823
2824  bool isSugared() const { return false; }
2825  QualType desugar() const { return QualType(this, 0); }
2826
2827  void Profile(llvm::FoldingSetNodeID &ID) {
2828    Profile(ID, Depth, Index, ParameterPack, Name);
2829  }
2830
2831  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
2832                      unsigned Index, bool ParameterPack,
2833                      IdentifierInfo *Name) {
2834    ID.AddInteger(Depth);
2835    ID.AddInteger(Index);
2836    ID.AddBoolean(ParameterPack);
2837    ID.AddPointer(Name);
2838  }
2839
2840  static bool classof(const Type *T) {
2841    return T->getTypeClass() == TemplateTypeParm;
2842  }
2843  static bool classof(const TemplateTypeParmType *T) { return true; }
2844};
2845
2846/// \brief Represents the result of substituting a type for a template
2847/// type parameter.
2848///
2849/// Within an instantiated template, all template type parameters have
2850/// been replaced with these.  They are used solely to record that a
2851/// type was originally written as a template type parameter;
2852/// therefore they are never canonical.
2853class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2854  // The original type parameter.
2855  const TemplateTypeParmType *Replaced;
2856
2857  SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
2858    : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(),
2859           Canon->isVariablyModifiedType(),
2860           Canon->containsUnexpandedParameterPack()),
2861      Replaced(Param) { }
2862
2863  friend class ASTContext;
2864
2865public:
2866  IdentifierInfo *getName() const { return Replaced->getName(); }
2867
2868  /// Gets the template parameter that was substituted for.
2869  const TemplateTypeParmType *getReplacedParameter() const {
2870    return Replaced;
2871  }
2872
2873  /// Gets the type that was substituted for the template
2874  /// parameter.
2875  QualType getReplacementType() const {
2876    return getCanonicalTypeInternal();
2877  }
2878
2879  bool isSugared() const { return true; }
2880  QualType desugar() const { return getReplacementType(); }
2881
2882  void Profile(llvm::FoldingSetNodeID &ID) {
2883    Profile(ID, getReplacedParameter(), getReplacementType());
2884  }
2885  static void Profile(llvm::FoldingSetNodeID &ID,
2886                      const TemplateTypeParmType *Replaced,
2887                      QualType Replacement) {
2888    ID.AddPointer(Replaced);
2889    ID.AddPointer(Replacement.getAsOpaquePtr());
2890  }
2891
2892  static bool classof(const Type *T) {
2893    return T->getTypeClass() == SubstTemplateTypeParm;
2894  }
2895  static bool classof(const SubstTemplateTypeParmType *T) { return true; }
2896};
2897
2898/// \brief Represents the result of substituting a set of types for a template
2899/// type parameter pack.
2900///
2901/// When a pack expansion in the source code contains multiple parameter packs
2902/// and those parameter packs correspond to different levels of template
2903/// parameter lists, this type node is used to represent a template type
2904/// parameter pack from an outer level, which has already had its argument pack
2905/// substituted but that still lives within a pack expansion that itself
2906/// could not be instantiated. When actually performing a substitution into
2907/// that pack expansion (e.g., when all template parameters have corresponding
2908/// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
2909/// at the current pack substitution index.
2910class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
2911  /// \brief The original type parameter.
2912  const TemplateTypeParmType *Replaced;
2913
2914  /// \brief A pointer to the set of template arguments that this
2915  /// parameter pack is instantiated with.
2916  const TemplateArgument *Arguments;
2917
2918  /// \brief The number of template arguments in \c Arguments.
2919  unsigned NumArguments;
2920
2921  SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
2922                                QualType Canon,
2923                                const TemplateArgument &ArgPack);
2924
2925  friend class ASTContext;
2926
2927public:
2928  IdentifierInfo *getName() const { return Replaced->getName(); }
2929
2930  /// Gets the template parameter that was substituted for.
2931  const TemplateTypeParmType *getReplacedParameter() const {
2932    return Replaced;
2933  }
2934
2935  bool isSugared() const { return false; }
2936  QualType desugar() const { return QualType(this, 0); }
2937
2938  TemplateArgument getArgumentPack() const;
2939
2940  void Profile(llvm::FoldingSetNodeID &ID);
2941  static void Profile(llvm::FoldingSetNodeID &ID,
2942                      const TemplateTypeParmType *Replaced,
2943                      const TemplateArgument &ArgPack);
2944
2945  static bool classof(const Type *T) {
2946    return T->getTypeClass() == SubstTemplateTypeParmPack;
2947  }
2948  static bool classof(const SubstTemplateTypeParmPackType *T) { return true; }
2949};
2950
2951/// \brief Represents the type of a template specialization as written
2952/// in the source code.
2953///
2954/// Template specialization types represent the syntactic form of a
2955/// template-id that refers to a type, e.g., @c vector<int>. Some
2956/// template specialization types are syntactic sugar, whose canonical
2957/// type will point to some other type node that represents the
2958/// instantiation or class template specialization. For example, a
2959/// class template specialization type of @c vector<int> will refer to
2960/// a tag type for the instantiation
2961/// @c std::vector<int, std::allocator<int>>.
2962///
2963/// Other template specialization types, for which the template name
2964/// is dependent, may be canonical types. These types are always
2965/// dependent.
2966class TemplateSpecializationType
2967  : public Type, public llvm::FoldingSetNode {
2968  /// \brief The name of the template being specialized.
2969  TemplateName Template;
2970
2971  /// \brief - The number of template arguments named in this class
2972  /// template specialization.
2973  unsigned NumArgs;
2974
2975  TemplateSpecializationType(TemplateName T,
2976                             const TemplateArgument *Args,
2977                             unsigned NumArgs, QualType Canon);
2978
2979  friend class ASTContext;  // ASTContext creates these
2980
2981public:
2982  /// \brief Determine whether any of the given template arguments are
2983  /// dependent.
2984  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
2985                                            unsigned NumArgs);
2986
2987  static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
2988                                            unsigned NumArgs);
2989
2990  static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &);
2991
2992  /// \brief Print a template argument list, including the '<' and '>'
2993  /// enclosing the template arguments.
2994  static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
2995                                               unsigned NumArgs,
2996                                               const PrintingPolicy &Policy,
2997                                               bool SkipBrackets = false);
2998
2999  static std::string PrintTemplateArgumentList(const TemplateArgumentLoc *Args,
3000                                               unsigned NumArgs,
3001                                               const PrintingPolicy &Policy);
3002
3003  static std::string PrintTemplateArgumentList(const TemplateArgumentListInfo &,
3004                                               const PrintingPolicy &Policy);
3005
3006  /// True if this template specialization type matches a current
3007  /// instantiation in the context in which it is found.
3008  bool isCurrentInstantiation() const {
3009    return isa<InjectedClassNameType>(getCanonicalTypeInternal());
3010  }
3011
3012  typedef const TemplateArgument * iterator;
3013
3014  iterator begin() const { return getArgs(); }
3015  iterator end() const; // defined inline in TemplateBase.h
3016
3017  /// \brief Retrieve the name of the template that we are specializing.
3018  TemplateName getTemplateName() const { return Template; }
3019
3020  /// \brief Retrieve the template arguments.
3021  const TemplateArgument *getArgs() const {
3022    return reinterpret_cast<const TemplateArgument *>(this + 1);
3023  }
3024
3025  /// \brief Retrieve the number of template arguments.
3026  unsigned getNumArgs() const { return NumArgs; }
3027
3028  /// \brief Retrieve a specific template argument as a type.
3029  /// \precondition @c isArgType(Arg)
3030  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
3031
3032  bool isSugared() const {
3033    return !isDependentType() || isCurrentInstantiation();
3034  }
3035  QualType desugar() const { return getCanonicalTypeInternal(); }
3036
3037  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
3038    Profile(ID, Template, getArgs(), NumArgs, Ctx);
3039  }
3040
3041  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
3042                      const TemplateArgument *Args,
3043                      unsigned NumArgs,
3044                      const ASTContext &Context);
3045
3046  static bool classof(const Type *T) {
3047    return T->getTypeClass() == TemplateSpecialization;
3048  }
3049  static bool classof(const TemplateSpecializationType *T) { return true; }
3050};
3051
3052/// \brief The injected class name of a C++ class template or class
3053/// template partial specialization.  Used to record that a type was
3054/// spelled with a bare identifier rather than as a template-id; the
3055/// equivalent for non-templated classes is just RecordType.
3056///
3057/// Injected class name types are always dependent.  Template
3058/// instantiation turns these into RecordTypes.
3059///
3060/// Injected class name types are always canonical.  This works
3061/// because it is impossible to compare an injected class name type
3062/// with the corresponding non-injected template type, for the same
3063/// reason that it is impossible to directly compare template
3064/// parameters from different dependent contexts: injected class name
3065/// types can only occur within the scope of a particular templated
3066/// declaration, and within that scope every template specialization
3067/// will canonicalize to the injected class name (when appropriate
3068/// according to the rules of the language).
3069class InjectedClassNameType : public Type {
3070  CXXRecordDecl *Decl;
3071
3072  /// The template specialization which this type represents.
3073  /// For example, in
3074  ///   template <class T> class A { ... };
3075  /// this is A<T>, whereas in
3076  ///   template <class X, class Y> class A<B<X,Y> > { ... };
3077  /// this is A<B<X,Y> >.
3078  ///
3079  /// It is always unqualified, always a template specialization type,
3080  /// and always dependent.
3081  QualType InjectedType;
3082
3083  friend class ASTContext; // ASTContext creates these.
3084  friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
3085                          // currently suitable for AST reading, too much
3086                          // interdependencies.
3087  InjectedClassNameType(CXXRecordDecl *D, QualType TST)
3088    : Type(InjectedClassName, QualType(), /*Dependent=*/true,
3089           /*VariablyModified=*/false,
3090           /*ContainsUnexpandedParameterPack=*/false),
3091      Decl(D), InjectedType(TST) {
3092    assert(isa<TemplateSpecializationType>(TST));
3093    assert(!TST.hasQualifiers());
3094    assert(TST->isDependentType());
3095  }
3096
3097public:
3098  QualType getInjectedSpecializationType() const { return InjectedType; }
3099  const TemplateSpecializationType *getInjectedTST() const {
3100    return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
3101  }
3102
3103  CXXRecordDecl *getDecl() const;
3104
3105  bool isSugared() const { return false; }
3106  QualType desugar() const { return QualType(this, 0); }
3107
3108  static bool classof(const Type *T) {
3109    return T->getTypeClass() == InjectedClassName;
3110  }
3111  static bool classof(const InjectedClassNameType *T) { return true; }
3112};
3113
3114/// \brief The kind of a tag type.
3115enum TagTypeKind {
3116  /// \brief The "struct" keyword.
3117  TTK_Struct,
3118  /// \brief The "union" keyword.
3119  TTK_Union,
3120  /// \brief The "class" keyword.
3121  TTK_Class,
3122  /// \brief The "enum" keyword.
3123  TTK_Enum
3124};
3125
3126/// \brief The elaboration keyword that precedes a qualified type name or
3127/// introduces an elaborated-type-specifier.
3128enum ElaboratedTypeKeyword {
3129  /// \brief The "struct" keyword introduces the elaborated-type-specifier.
3130  ETK_Struct,
3131  /// \brief The "union" keyword introduces the elaborated-type-specifier.
3132  ETK_Union,
3133  /// \brief The "class" keyword introduces the elaborated-type-specifier.
3134  ETK_Class,
3135  /// \brief The "enum" keyword introduces the elaborated-type-specifier.
3136  ETK_Enum,
3137  /// \brief The "typename" keyword precedes the qualified type name, e.g.,
3138  /// \c typename T::type.
3139  ETK_Typename,
3140  /// \brief No keyword precedes the qualified type name.
3141  ETK_None
3142};
3143
3144/// A helper class for Type nodes having an ElaboratedTypeKeyword.
3145/// The keyword in stored in the free bits of the base class.
3146/// Also provides a few static helpers for converting and printing
3147/// elaborated type keyword and tag type kind enumerations.
3148class TypeWithKeyword : public Type {
3149protected:
3150  TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
3151                  QualType Canonical, bool Dependent, bool VariablyModified,
3152                  bool ContainsUnexpandedParameterPack)
3153  : Type(tc, Canonical, Dependent, VariablyModified,
3154         ContainsUnexpandedParameterPack) {
3155    TypeWithKeywordBits.Keyword = Keyword;
3156  }
3157
3158public:
3159  ElaboratedTypeKeyword getKeyword() const {
3160    return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
3161  }
3162
3163  /// getKeywordForTypeSpec - Converts a type specifier (DeclSpec::TST)
3164  /// into an elaborated type keyword.
3165  static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
3166
3167  /// getTagTypeKindForTypeSpec - Converts a type specifier (DeclSpec::TST)
3168  /// into a tag type kind.  It is an error to provide a type specifier
3169  /// which *isn't* a tag kind here.
3170  static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
3171
3172  /// getKeywordForTagDeclKind - Converts a TagTypeKind into an
3173  /// elaborated type keyword.
3174  static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
3175
3176  /// getTagTypeKindForKeyword - Converts an elaborated type keyword into
3177  // a TagTypeKind. It is an error to provide an elaborated type keyword
3178  /// which *isn't* a tag kind here.
3179  static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
3180
3181  static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
3182
3183  static const char *getKeywordName(ElaboratedTypeKeyword Keyword);
3184
3185  static const char *getTagTypeKindName(TagTypeKind Kind) {
3186    return getKeywordName(getKeywordForTagTypeKind(Kind));
3187  }
3188
3189  class CannotCastToThisType {};
3190  static CannotCastToThisType classof(const Type *);
3191};
3192
3193/// \brief Represents a type that was referred to using an elaborated type
3194/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
3195/// or both.
3196///
3197/// This type is used to keep track of a type name as written in the
3198/// source code, including tag keywords and any nested-name-specifiers.
3199/// The type itself is always "sugar", used to express what was written
3200/// in the source code but containing no additional semantic information.
3201class ElaboratedType : public TypeWithKeyword, public llvm::FoldingSetNode {
3202
3203  /// \brief The nested name specifier containing the qualifier.
3204  NestedNameSpecifier *NNS;
3205
3206  /// \brief The type that this qualified name refers to.
3207  QualType NamedType;
3208
3209  ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
3210                 QualType NamedType, QualType CanonType)
3211    : TypeWithKeyword(Keyword, Elaborated, CanonType,
3212                      NamedType->isDependentType(),
3213                      NamedType->isVariablyModifiedType(),
3214                      NamedType->containsUnexpandedParameterPack()),
3215      NNS(NNS), NamedType(NamedType) {
3216    assert(!(Keyword == ETK_None && NNS == 0) &&
3217           "ElaboratedType cannot have elaborated type keyword "
3218           "and name qualifier both null.");
3219  }
3220
3221  friend class ASTContext;  // ASTContext creates these
3222
3223public:
3224  ~ElaboratedType();
3225
3226  /// \brief Retrieve the qualification on this type.
3227  NestedNameSpecifier *getQualifier() const { return NNS; }
3228
3229  /// \brief Retrieve the type named by the qualified-id.
3230  QualType getNamedType() const { return NamedType; }
3231
3232  /// \brief Remove a single level of sugar.
3233  QualType desugar() const { return getNamedType(); }
3234
3235  /// \brief Returns whether this type directly provides sugar.
3236  bool isSugared() const { return true; }
3237
3238  void Profile(llvm::FoldingSetNodeID &ID) {
3239    Profile(ID, getKeyword(), NNS, NamedType);
3240  }
3241
3242  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
3243                      NestedNameSpecifier *NNS, QualType NamedType) {
3244    ID.AddInteger(Keyword);
3245    ID.AddPointer(NNS);
3246    NamedType.Profile(ID);
3247  }
3248
3249  static bool classof(const Type *T) {
3250    return T->getTypeClass() == Elaborated;
3251  }
3252  static bool classof(const ElaboratedType *T) { return true; }
3253};
3254
3255/// \brief Represents a qualified type name for which the type name is
3256/// dependent.
3257///
3258/// DependentNameType represents a class of dependent types that involve a
3259/// dependent nested-name-specifier (e.g., "T::") followed by a (dependent)
3260/// name of a type. The DependentNameType may start with a "typename" (for a
3261/// typename-specifier), "class", "struct", "union", or "enum" (for a
3262/// dependent elaborated-type-specifier), or nothing (in contexts where we
3263/// know that we must be referring to a type, e.g., in a base class specifier).
3264class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
3265
3266  /// \brief The nested name specifier containing the qualifier.
3267  NestedNameSpecifier *NNS;
3268
3269  /// \brief The type that this typename specifier refers to.
3270  const IdentifierInfo *Name;
3271
3272  DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
3273                    const IdentifierInfo *Name, QualType CanonType)
3274    : TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true,
3275                      /*VariablyModified=*/false,
3276                      NNS->containsUnexpandedParameterPack()),
3277      NNS(NNS), Name(Name) {
3278    assert(NNS->isDependent() &&
3279           "DependentNameType requires a dependent nested-name-specifier");
3280  }
3281
3282  friend class ASTContext;  // ASTContext creates these
3283
3284public:
3285  /// \brief Retrieve the qualification on this type.
3286  NestedNameSpecifier *getQualifier() const { return NNS; }
3287
3288  /// \brief Retrieve the type named by the typename specifier as an
3289  /// identifier.
3290  ///
3291  /// This routine will return a non-NULL identifier pointer when the
3292  /// form of the original typename was terminated by an identifier,
3293  /// e.g., "typename T::type".
3294  const IdentifierInfo *getIdentifier() const {
3295    return Name;
3296  }
3297
3298  bool isSugared() const { return false; }
3299  QualType desugar() const { return QualType(this, 0); }
3300
3301  void Profile(llvm::FoldingSetNodeID &ID) {
3302    Profile(ID, getKeyword(), NNS, Name);
3303  }
3304
3305  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
3306                      NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
3307    ID.AddInteger(Keyword);
3308    ID.AddPointer(NNS);
3309    ID.AddPointer(Name);
3310  }
3311
3312  static bool classof(const Type *T) {
3313    return T->getTypeClass() == DependentName;
3314  }
3315  static bool classof(const DependentNameType *T) { return true; }
3316};
3317
3318/// DependentTemplateSpecializationType - Represents a template
3319/// specialization type whose template cannot be resolved, e.g.
3320///   A<T>::template B<T>
3321class DependentTemplateSpecializationType :
3322  public TypeWithKeyword, public llvm::FoldingSetNode {
3323
3324  /// \brief The nested name specifier containing the qualifier.
3325  NestedNameSpecifier *NNS;
3326
3327  /// \brief The identifier of the template.
3328  const IdentifierInfo *Name;
3329
3330  /// \brief - The number of template arguments named in this class
3331  /// template specialization.
3332  unsigned NumArgs;
3333
3334  const TemplateArgument *getArgBuffer() const {
3335    return reinterpret_cast<const TemplateArgument*>(this+1);
3336  }
3337  TemplateArgument *getArgBuffer() {
3338    return reinterpret_cast<TemplateArgument*>(this+1);
3339  }
3340
3341  DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
3342                                      NestedNameSpecifier *NNS,
3343                                      const IdentifierInfo *Name,
3344                                      unsigned NumArgs,
3345                                      const TemplateArgument *Args,
3346                                      QualType Canon);
3347
3348  friend class ASTContext;  // ASTContext creates these
3349
3350public:
3351  NestedNameSpecifier *getQualifier() const { return NNS; }
3352  const IdentifierInfo *getIdentifier() const { return Name; }
3353
3354  /// \brief Retrieve the template arguments.
3355  const TemplateArgument *getArgs() const {
3356    return getArgBuffer();
3357  }
3358
3359  /// \brief Retrieve the number of template arguments.
3360  unsigned getNumArgs() const { return NumArgs; }
3361
3362  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
3363
3364  typedef const TemplateArgument * iterator;
3365  iterator begin() const { return getArgs(); }
3366  iterator end() const; // inline in TemplateBase.h
3367
3368  bool isSugared() const { return false; }
3369  QualType desugar() const { return QualType(this, 0); }
3370
3371  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
3372    Profile(ID, Context, getKeyword(), NNS, Name, NumArgs, getArgs());
3373  }
3374
3375  static void Profile(llvm::FoldingSetNodeID &ID,
3376                      const ASTContext &Context,
3377                      ElaboratedTypeKeyword Keyword,
3378                      NestedNameSpecifier *Qualifier,
3379                      const IdentifierInfo *Name,
3380                      unsigned NumArgs,
3381                      const TemplateArgument *Args);
3382
3383  static bool classof(const Type *T) {
3384    return T->getTypeClass() == DependentTemplateSpecialization;
3385  }
3386  static bool classof(const DependentTemplateSpecializationType *T) {
3387    return true;
3388  }
3389};
3390
3391/// \brief Represents a pack expansion of types.
3392///
3393/// Pack expansions are part of C++0x variadic templates. A pack
3394/// expansion contains a pattern, which itself contains one or more
3395/// "unexpanded" parameter packs. When instantiated, a pack expansion
3396/// produces a series of types, each instantiated from the pattern of
3397/// the expansion, where the Ith instantiation of the pattern uses the
3398/// Ith arguments bound to each of the unexpanded parameter packs. The
3399/// pack expansion is considered to "expand" these unexpanded
3400/// parameter packs.
3401///
3402/// \code
3403/// template<typename ...Types> struct tuple;
3404///
3405/// template<typename ...Types>
3406/// struct tuple_of_references {
3407///   typedef tuple<Types&...> type;
3408/// };
3409/// \endcode
3410///
3411/// Here, the pack expansion \c Types&... is represented via a
3412/// PackExpansionType whose pattern is Types&.
3413class PackExpansionType : public Type, public llvm::FoldingSetNode {
3414  /// \brief The pattern of the pack expansion.
3415  QualType Pattern;
3416
3417  /// \brief The number of expansions that this pack expansion will
3418  /// generate when substituted (+1), or indicates that
3419  ///
3420  /// This field will only have a non-zero value when some of the parameter
3421  /// packs that occur within the pattern have been substituted but others have
3422  /// not.
3423  unsigned NumExpansions;
3424
3425  PackExpansionType(QualType Pattern, QualType Canon,
3426                    llvm::Optional<unsigned> NumExpansions)
3427    : Type(PackExpansion, Canon, /*Dependent=*/true,
3428           /*VariableModified=*/Pattern->isVariablyModifiedType(),
3429           /*ContainsUnexpandedParameterPack=*/false),
3430      Pattern(Pattern),
3431      NumExpansions(NumExpansions? *NumExpansions + 1: 0) { }
3432
3433  friend class ASTContext;  // ASTContext creates these
3434
3435public:
3436  /// \brief Retrieve the pattern of this pack expansion, which is the
3437  /// type that will be repeatedly instantiated when instantiating the
3438  /// pack expansion itself.
3439  QualType getPattern() const { return Pattern; }
3440
3441  /// \brief Retrieve the number of expansions that this pack expansion will
3442  /// generate, if known.
3443  llvm::Optional<unsigned> getNumExpansions() const {
3444    if (NumExpansions)
3445      return NumExpansions - 1;
3446
3447    return llvm::Optional<unsigned>();
3448  }
3449
3450  bool isSugared() const { return false; }
3451  QualType desugar() const { return QualType(this, 0); }
3452
3453  void Profile(llvm::FoldingSetNodeID &ID) {
3454    Profile(ID, getPattern(), getNumExpansions());
3455  }
3456
3457  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
3458                      llvm::Optional<unsigned> NumExpansions) {
3459    ID.AddPointer(Pattern.getAsOpaquePtr());
3460    ID.AddBoolean(NumExpansions);
3461    if (NumExpansions)
3462      ID.AddInteger(*NumExpansions);
3463  }
3464
3465  static bool classof(const Type *T) {
3466    return T->getTypeClass() == PackExpansion;
3467  }
3468  static bool classof(const PackExpansionType *T) {
3469    return true;
3470  }
3471};
3472
3473/// ObjCObjectType - Represents a class type in Objective C.
3474/// Every Objective C type is a combination of a base type and a
3475/// list of protocols.
3476///
3477/// Given the following declarations:
3478///   @class C;
3479///   @protocol P;
3480///
3481/// 'C' is an ObjCInterfaceType C.  It is sugar for an ObjCObjectType
3482/// with base C and no protocols.
3483///
3484/// 'C<P>' is an ObjCObjectType with base C and protocol list [P].
3485///
3486/// 'id' is a TypedefType which is sugar for an ObjCPointerType whose
3487/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
3488/// and no protocols.
3489///
3490/// 'id<P>' is an ObjCPointerType whose pointee is an ObjCObjecType
3491/// with base BuiltinType::ObjCIdType and protocol list [P].  Eventually
3492/// this should get its own sugar class to better represent the source.
3493class ObjCObjectType : public Type {
3494  // ObjCObjectType.NumProtocols - the number of protocols stored
3495  // after the ObjCObjectPointerType node.
3496  //
3497  // These protocols are those written directly on the type.  If
3498  // protocol qualifiers ever become additive, the iterators will need
3499  // to get kindof complicated.
3500  //
3501  // In the canonical object type, these are sorted alphabetically
3502  // and uniqued.
3503
3504  /// Either a BuiltinType or an InterfaceType or sugar for either.
3505  QualType BaseType;
3506
3507  ObjCProtocolDecl * const *getProtocolStorage() const {
3508    return const_cast<ObjCObjectType*>(this)->getProtocolStorage();
3509  }
3510
3511  ObjCProtocolDecl **getProtocolStorage();
3512
3513protected:
3514  ObjCObjectType(QualType Canonical, QualType Base,
3515                 ObjCProtocolDecl * const *Protocols, unsigned NumProtocols);
3516
3517  enum Nonce_ObjCInterface { Nonce_ObjCInterface };
3518  ObjCObjectType(enum Nonce_ObjCInterface)
3519        : Type(ObjCInterface, QualType(), false, false, false),
3520      BaseType(QualType(this_(), 0)) {
3521    ObjCObjectTypeBits.NumProtocols = 0;
3522  }
3523
3524public:
3525  /// getBaseType - Gets the base type of this object type.  This is
3526  /// always (possibly sugar for) one of:
3527  ///  - the 'id' builtin type (as opposed to the 'id' type visible to the
3528  ///    user, which is a typedef for an ObjCPointerType)
3529  ///  - the 'Class' builtin type (same caveat)
3530  ///  - an ObjCObjectType (currently always an ObjCInterfaceType)
3531  QualType getBaseType() const { return BaseType; }
3532
3533  bool isObjCId() const {
3534    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
3535  }
3536  bool isObjCClass() const {
3537    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
3538  }
3539  bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
3540  bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
3541  bool isObjCUnqualifiedIdOrClass() const {
3542    if (!qual_empty()) return false;
3543    if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
3544      return T->getKind() == BuiltinType::ObjCId ||
3545             T->getKind() == BuiltinType::ObjCClass;
3546    return false;
3547  }
3548  bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
3549  bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
3550
3551  /// Gets the interface declaration for this object type, if the base type
3552  /// really is an interface.
3553  ObjCInterfaceDecl *getInterface() const;
3554
3555  typedef ObjCProtocolDecl * const *qual_iterator;
3556
3557  qual_iterator qual_begin() const { return getProtocolStorage(); }
3558  qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
3559
3560  bool qual_empty() const { return getNumProtocols() == 0; }
3561
3562  /// getNumProtocols - Return the number of qualifying protocols in this
3563  /// interface type, or 0 if there are none.
3564  unsigned getNumProtocols() const { return ObjCObjectTypeBits.NumProtocols; }
3565
3566  /// \brief Fetch a protocol by index.
3567  ObjCProtocolDecl *getProtocol(unsigned I) const {
3568    assert(I < getNumProtocols() && "Out-of-range protocol access");
3569    return qual_begin()[I];
3570  }
3571
3572  bool isSugared() const { return false; }
3573  QualType desugar() const { return QualType(this, 0); }
3574
3575  static bool classof(const Type *T) {
3576    return T->getTypeClass() == ObjCObject ||
3577           T->getTypeClass() == ObjCInterface;
3578  }
3579  static bool classof(const ObjCObjectType *) { return true; }
3580};
3581
3582/// ObjCObjectTypeImpl - A class providing a concrete implementation
3583/// of ObjCObjectType, so as to not increase the footprint of
3584/// ObjCInterfaceType.  Code outside of ASTContext and the core type
3585/// system should not reference this type.
3586class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
3587  friend class ASTContext;
3588
3589  // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
3590  // will need to be modified.
3591
3592  ObjCObjectTypeImpl(QualType Canonical, QualType Base,
3593                     ObjCProtocolDecl * const *Protocols,
3594                     unsigned NumProtocols)
3595    : ObjCObjectType(Canonical, Base, Protocols, NumProtocols) {}
3596
3597public:
3598  void Profile(llvm::FoldingSetNodeID &ID);
3599  static void Profile(llvm::FoldingSetNodeID &ID,
3600                      QualType Base,
3601                      ObjCProtocolDecl *const *protocols,
3602                      unsigned NumProtocols);
3603};
3604
3605inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorage() {
3606  return reinterpret_cast<ObjCProtocolDecl**>(
3607            static_cast<ObjCObjectTypeImpl*>(this) + 1);
3608}
3609
3610/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
3611/// object oriented design.  They basically correspond to C++ classes.  There
3612/// are two kinds of interface types, normal interfaces like "NSString" and
3613/// qualified interfaces, which are qualified with a protocol list like
3614/// "NSString<NSCopyable, NSAmazing>".
3615///
3616/// ObjCInterfaceType guarantees the following properties when considered
3617/// as a subtype of its superclass, ObjCObjectType:
3618///   - There are no protocol qualifiers.  To reinforce this, code which
3619///     tries to invoke the protocol methods via an ObjCInterfaceType will
3620///     fail to compile.
3621///   - It is its own base type.  That is, if T is an ObjCInterfaceType*,
3622///     T->getBaseType() == QualType(T, 0).
3623class ObjCInterfaceType : public ObjCObjectType {
3624  ObjCInterfaceDecl *Decl;
3625
3626  ObjCInterfaceType(const ObjCInterfaceDecl *D)
3627    : ObjCObjectType(Nonce_ObjCInterface),
3628      Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
3629  friend class ASTContext;  // ASTContext creates these.
3630
3631public:
3632  /// getDecl - Get the declaration of this interface.
3633  ObjCInterfaceDecl *getDecl() const { return Decl; }
3634
3635  bool isSugared() const { return false; }
3636  QualType desugar() const { return QualType(this, 0); }
3637
3638  static bool classof(const Type *T) {
3639    return T->getTypeClass() == ObjCInterface;
3640  }
3641  static bool classof(const ObjCInterfaceType *) { return true; }
3642
3643  // Nonsense to "hide" certain members of ObjCObjectType within this
3644  // class.  People asking for protocols on an ObjCInterfaceType are
3645  // not going to get what they want: ObjCInterfaceTypes are
3646  // guaranteed to have no protocols.
3647  enum {
3648    qual_iterator,
3649    qual_begin,
3650    qual_end,
3651    getNumProtocols,
3652    getProtocol
3653  };
3654};
3655
3656inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
3657  if (const ObjCInterfaceType *T =
3658        getBaseType()->getAs<ObjCInterfaceType>())
3659    return T->getDecl();
3660  return 0;
3661}
3662
3663/// ObjCObjectPointerType - Used to represent a pointer to an
3664/// Objective C object.  These are constructed from pointer
3665/// declarators when the pointee type is an ObjCObjectType (or sugar
3666/// for one).  In addition, the 'id' and 'Class' types are typedefs
3667/// for these, and the protocol-qualified types 'id<P>' and 'Class<P>'
3668/// are translated into these.
3669///
3670/// Pointers to pointers to Objective C objects are still PointerTypes;
3671/// only the first level of pointer gets it own type implementation.
3672class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
3673  QualType PointeeType;
3674
3675  ObjCObjectPointerType(QualType Canonical, QualType Pointee)
3676    : Type(ObjCObjectPointer, Canonical, false, false, false),
3677      PointeeType(Pointee) {}
3678  friend class ASTContext;  // ASTContext creates these.
3679
3680public:
3681  /// getPointeeType - Gets the type pointed to by this ObjC pointer.
3682  /// The result will always be an ObjCObjectType or sugar thereof.
3683  QualType getPointeeType() const { return PointeeType; }
3684
3685  /// getObjCObjectType - Gets the type pointed to by this ObjC
3686  /// pointer.  This method always returns non-null.
3687  ///
3688  /// This method is equivalent to getPointeeType() except that
3689  /// it discards any typedefs (or other sugar) between this
3690  /// type and the "outermost" object type.  So for:
3691  ///   @class A; @protocol P; @protocol Q;
3692  ///   typedef A<P> AP;
3693  ///   typedef A A1;
3694  ///   typedef A1<P> A1P;
3695  ///   typedef A1P<Q> A1PQ;
3696  /// For 'A*', getObjectType() will return 'A'.
3697  /// For 'A<P>*', getObjectType() will return 'A<P>'.
3698  /// For 'AP*', getObjectType() will return 'A<P>'.
3699  /// For 'A1*', getObjectType() will return 'A'.
3700  /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
3701  /// For 'A1P*', getObjectType() will return 'A1<P>'.
3702  /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
3703  ///   adding protocols to a protocol-qualified base discards the
3704  ///   old qualifiers (for now).  But if it didn't, getObjectType()
3705  ///   would return 'A1P<Q>' (and we'd have to make iterating over
3706  ///   qualifiers more complicated).
3707  const ObjCObjectType *getObjectType() const {
3708    return PointeeType->getAs<ObjCObjectType>();
3709  }
3710
3711  /// getInterfaceType - If this pointer points to an Objective C
3712  /// @interface type, gets the type for that interface.  Any protocol
3713  /// qualifiers on the interface are ignored.
3714  ///
3715  /// \return null if the base type for this pointer is 'id' or 'Class'
3716  const ObjCInterfaceType *getInterfaceType() const {
3717    return getObjectType()->getBaseType()->getAs<ObjCInterfaceType>();
3718  }
3719
3720  /// getInterfaceDecl - If this pointer points to an Objective @interface
3721  /// type, gets the declaration for that interface.
3722  ///
3723  /// \return null if the base type for this pointer is 'id' or 'Class'
3724  ObjCInterfaceDecl *getInterfaceDecl() const {
3725    return getObjectType()->getInterface();
3726  }
3727
3728  /// isObjCIdType - True if this is equivalent to the 'id' type, i.e. if
3729  /// its object type is the primitive 'id' type with no protocols.
3730  bool isObjCIdType() const {
3731    return getObjectType()->isObjCUnqualifiedId();
3732  }
3733
3734  /// isObjCClassType - True if this is equivalent to the 'Class' type,
3735  /// i.e. if its object tive is the primitive 'Class' type with no protocols.
3736  bool isObjCClassType() const {
3737    return getObjectType()->isObjCUnqualifiedClass();
3738  }
3739
3740  /// isObjCQualifiedIdType - True if this is equivalent to 'id<P>' for some
3741  /// non-empty set of protocols.
3742  bool isObjCQualifiedIdType() const {
3743    return getObjectType()->isObjCQualifiedId();
3744  }
3745
3746  /// isObjCQualifiedClassType - True if this is equivalent to 'Class<P>' for
3747  /// some non-empty set of protocols.
3748  bool isObjCQualifiedClassType() const {
3749    return getObjectType()->isObjCQualifiedClass();
3750  }
3751
3752  /// An iterator over the qualifiers on the object type.  Provided
3753  /// for convenience.  This will always iterate over the full set of
3754  /// protocols on a type, not just those provided directly.
3755  typedef ObjCObjectType::qual_iterator qual_iterator;
3756
3757  qual_iterator qual_begin() const {
3758    return getObjectType()->qual_begin();
3759  }
3760  qual_iterator qual_end() const {
3761    return getObjectType()->qual_end();
3762  }
3763  bool qual_empty() const { return getObjectType()->qual_empty(); }
3764
3765  /// getNumProtocols - Return the number of qualifying protocols on
3766  /// the object type.
3767  unsigned getNumProtocols() const {
3768    return getObjectType()->getNumProtocols();
3769  }
3770
3771  /// \brief Retrieve a qualifying protocol by index on the object
3772  /// type.
3773  ObjCProtocolDecl *getProtocol(unsigned I) const {
3774    return getObjectType()->getProtocol(I);
3775  }
3776
3777  bool isSugared() const { return false; }
3778  QualType desugar() const { return QualType(this, 0); }
3779
3780  void Profile(llvm::FoldingSetNodeID &ID) {
3781    Profile(ID, getPointeeType());
3782  }
3783  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
3784    ID.AddPointer(T.getAsOpaquePtr());
3785  }
3786  static bool classof(const Type *T) {
3787    return T->getTypeClass() == ObjCObjectPointer;
3788  }
3789  static bool classof(const ObjCObjectPointerType *) { return true; }
3790};
3791
3792/// A qualifier set is used to build a set of qualifiers.
3793class QualifierCollector : public Qualifiers {
3794public:
3795  QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
3796
3797  /// Collect any qualifiers on the given type and return an
3798  /// unqualified type.
3799  const Type *strip(QualType QT) {
3800    addFastQualifiers(QT.getLocalFastQualifiers());
3801    if (QT.hasLocalNonFastQualifiers()) {
3802      const ExtQuals *EQ = QT.getExtQualsUnsafe();
3803      addQualifiers(EQ->getQualifiers());
3804      return EQ->getBaseType();
3805    }
3806    return QT.getTypePtrUnsafe();
3807  }
3808
3809  /// Apply the collected qualifiers to the given type.
3810  QualType apply(const ASTContext &Context, QualType QT) const;
3811
3812  /// Apply the collected qualifiers to the given type.
3813  QualType apply(const ASTContext &Context, const Type* T) const;
3814};
3815
3816
3817// Inline function definitions.
3818
3819inline bool QualType::isCanonical() const {
3820  const Type *T = getTypePtr();
3821  if (hasLocalQualifiers())
3822    return T->isCanonicalUnqualified() && !isa<ArrayType>(T);
3823  return T->isCanonicalUnqualified();
3824}
3825
3826inline bool QualType::isCanonicalAsParam() const {
3827  if (hasLocalQualifiers()) return false;
3828
3829  const Type *T = getTypePtr();
3830  if ((*this)->isPointerType()) {
3831    QualType BaseType = (*this)->getAs<PointerType>()->getPointeeType();
3832    if (isa<VariableArrayType>(BaseType)) {
3833      const ArrayType *AT = dyn_cast<ArrayType>(BaseType);
3834      const VariableArrayType *VAT = cast<VariableArrayType>(AT);
3835      if (VAT->getSizeExpr())
3836        T = BaseType.getTypePtr();
3837    }
3838  }
3839  return T->isCanonicalUnqualified() &&
3840           !isa<FunctionType>(T) && !isa<ArrayType>(T);
3841}
3842
3843inline bool QualType::isConstQualified() const {
3844  return isLocalConstQualified() ||
3845              getTypePtr()->getCanonicalTypeInternal().isLocalConstQualified();
3846}
3847
3848inline bool QualType::isRestrictQualified() const {
3849  return isLocalRestrictQualified() ||
3850            getTypePtr()->getCanonicalTypeInternal().isLocalRestrictQualified();
3851}
3852
3853
3854inline bool QualType::isVolatileQualified() const {
3855  return isLocalVolatileQualified() ||
3856  getTypePtr()->getCanonicalTypeInternal().isLocalVolatileQualified();
3857}
3858
3859inline bool QualType::hasQualifiers() const {
3860  return hasLocalQualifiers() ||
3861                  getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers();
3862}
3863
3864inline QualType QualType::getUnqualifiedType() const {
3865  if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
3866    return QualType(getTypePtr(), 0);
3867
3868  return QualType(getSplitUnqualifiedTypeImpl(*this).first, 0);
3869}
3870
3871inline SplitQualType QualType::getSplitUnqualifiedType() const {
3872  if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
3873    return split();
3874
3875  return getSplitUnqualifiedTypeImpl(*this);
3876}
3877
3878inline Qualifiers QualType::getQualifiers() const {
3879  // Split this type and collect the local qualifiers.
3880  SplitQualType splitNonCanon = split();
3881  Qualifiers quals = splitNonCanon.second;
3882
3883  // Now split the canonical type and collect the local qualifiers there.
3884  SplitQualType splitCanon = splitNonCanon.first->getCanonicalTypeInternal().split();
3885  quals.addConsistentQualifiers(splitCanon.second);
3886
3887  // If the canonical type is an array, recurse on its element type.
3888  if (const ArrayType *array = dyn_cast<ArrayType>(splitCanon.first))
3889    quals.addConsistentQualifiers(array->getElementType().getQualifiers());
3890
3891  return quals;
3892}
3893
3894inline unsigned QualType::getCVRQualifiers() const {
3895  // This is basically getQualifiers() but optimized to avoid split();
3896  // there should be exactly one conditional branch in this function.
3897  unsigned cvr = getLocalCVRQualifiers();
3898  QualType type = getTypePtr()->getCanonicalTypeInternal();
3899  cvr |= type.getLocalCVRQualifiers();
3900  if (const ArrayType *array = dyn_cast<ArrayType>(type.getTypePtr()))
3901    cvr |= array->getElementType().getCVRQualifiers();
3902  return cvr;
3903}
3904
3905inline void QualType::removeLocalConst() {
3906  removeLocalFastQualifiers(Qualifiers::Const);
3907}
3908
3909inline void QualType::removeLocalRestrict() {
3910  removeLocalFastQualifiers(Qualifiers::Restrict);
3911}
3912
3913inline void QualType::removeLocalVolatile() {
3914  removeLocalFastQualifiers(Qualifiers::Volatile);
3915}
3916
3917inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
3918  assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
3919  assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask);
3920
3921  // Fast path: we don't need to touch the slow qualifiers.
3922  removeLocalFastQualifiers(Mask);
3923}
3924
3925/// getAddressSpace - Return the address space of this type.
3926inline unsigned QualType::getAddressSpace() const {
3927  if (hasLocalNonFastQualifiers()) {
3928    const ExtQuals *EQ = getExtQualsUnsafe();
3929    if (EQ->hasAddressSpace())
3930      return EQ->getAddressSpace();
3931  }
3932
3933  QualType CT = getTypePtr()->getCanonicalTypeInternal();
3934  if (CT.hasLocalNonFastQualifiers()) {
3935    const ExtQuals *EQ = CT.getExtQualsUnsafe();
3936    if (EQ->hasAddressSpace())
3937      return EQ->getAddressSpace();
3938  }
3939
3940  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
3941    return AT->getElementType().getAddressSpace();
3942  return 0;
3943}
3944
3945/// getObjCGCAttr - Return the gc attribute of this type.
3946inline Qualifiers::GC QualType::getObjCGCAttr() const {
3947  if (hasLocalNonFastQualifiers()) {
3948    const ExtQuals *EQ = getExtQualsUnsafe();
3949    if (EQ->hasObjCGCAttr())
3950      return EQ->getObjCGCAttr();
3951  }
3952
3953  QualType CT = getTypePtr()->getCanonicalTypeInternal();
3954  if (CT.hasLocalNonFastQualifiers()) {
3955    const ExtQuals *EQ = CT.getExtQualsUnsafe();
3956    if (EQ->hasObjCGCAttr())
3957      return EQ->getObjCGCAttr();
3958  }
3959
3960  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
3961      return AT->getElementType().getObjCGCAttr();
3962  return Qualifiers::GCNone;
3963}
3964
3965inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
3966  if (const PointerType *PT = t.getAs<PointerType>()) {
3967    if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
3968      return FT->getExtInfo();
3969  } else if (const FunctionType *FT = t.getAs<FunctionType>())
3970    return FT->getExtInfo();
3971
3972  return FunctionType::ExtInfo();
3973}
3974
3975inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
3976  return getFunctionExtInfo(*t);
3977}
3978
3979/// \brief Determine whether this set of qualifiers is a superset of the given
3980/// set of qualifiers.
3981inline bool Qualifiers::isSupersetOf(Qualifiers Other) const {
3982  return Mask != Other.Mask && (Mask | Other.Mask) == Mask;
3983}
3984
3985/// isMoreQualifiedThan - Determine whether this type is more
3986/// qualified than the Other type. For example, "const volatile int"
3987/// is more qualified than "const int", "volatile int", and
3988/// "int". However, it is not more qualified than "const volatile
3989/// int".
3990inline bool QualType::isMoreQualifiedThan(QualType other) const {
3991  Qualifiers myQuals = getQualifiers();
3992  Qualifiers otherQuals = other.getQualifiers();
3993  return (myQuals != otherQuals && myQuals.compatiblyIncludes(otherQuals));
3994}
3995
3996/// isAtLeastAsQualifiedAs - Determine whether this type is at last
3997/// as qualified as the Other type. For example, "const volatile
3998/// int" is at least as qualified as "const int", "volatile int",
3999/// "int", and "const volatile int".
4000inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
4001  return getQualifiers().compatiblyIncludes(other.getQualifiers());
4002}
4003
4004/// getNonReferenceType - If Type is a reference type (e.g., const
4005/// int&), returns the type that the reference refers to ("const
4006/// int"). Otherwise, returns the type itself. This routine is used
4007/// throughout Sema to implement C++ 5p6:
4008///
4009///   If an expression initially has the type "reference to T" (8.3.2,
4010///   8.5.3), the type is adjusted to "T" prior to any further
4011///   analysis, the expression designates the object or function
4012///   denoted by the reference, and the expression is an lvalue.
4013inline QualType QualType::getNonReferenceType() const {
4014  if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
4015    return RefType->getPointeeType();
4016  else
4017    return *this;
4018}
4019
4020inline bool Type::isFunctionType() const {
4021  return isa<FunctionType>(CanonicalType);
4022}
4023inline bool Type::isPointerType() const {
4024  return isa<PointerType>(CanonicalType);
4025}
4026inline bool Type::isAnyPointerType() const {
4027  return isPointerType() || isObjCObjectPointerType();
4028}
4029inline bool Type::isBlockPointerType() const {
4030  return isa<BlockPointerType>(CanonicalType);
4031}
4032inline bool Type::isReferenceType() const {
4033  return isa<ReferenceType>(CanonicalType);
4034}
4035inline bool Type::isLValueReferenceType() const {
4036  return isa<LValueReferenceType>(CanonicalType);
4037}
4038inline bool Type::isRValueReferenceType() const {
4039  return isa<RValueReferenceType>(CanonicalType);
4040}
4041inline bool Type::isFunctionPointerType() const {
4042  if (const PointerType* T = getAs<PointerType>())
4043    return T->getPointeeType()->isFunctionType();
4044  else
4045    return false;
4046}
4047inline bool Type::isMemberPointerType() const {
4048  return isa<MemberPointerType>(CanonicalType);
4049}
4050inline bool Type::isMemberFunctionPointerType() const {
4051  if (const MemberPointerType* T = getAs<MemberPointerType>())
4052    return T->isMemberFunctionPointer();
4053  else
4054    return false;
4055}
4056inline bool Type::isMemberDataPointerType() const {
4057  if (const MemberPointerType* T = getAs<MemberPointerType>())
4058    return T->isMemberDataPointer();
4059  else
4060    return false;
4061}
4062inline bool Type::isArrayType() const {
4063  return isa<ArrayType>(CanonicalType);
4064}
4065inline bool Type::isConstantArrayType() const {
4066  return isa<ConstantArrayType>(CanonicalType);
4067}
4068inline bool Type::isIncompleteArrayType() const {
4069  return isa<IncompleteArrayType>(CanonicalType);
4070}
4071inline bool Type::isVariableArrayType() const {
4072  return isa<VariableArrayType>(CanonicalType);
4073}
4074inline bool Type::isDependentSizedArrayType() const {
4075  return isa<DependentSizedArrayType>(CanonicalType);
4076}
4077inline bool Type::isBuiltinType() const {
4078  return isa<BuiltinType>(CanonicalType);
4079}
4080inline bool Type::isRecordType() const {
4081  return isa<RecordType>(CanonicalType);
4082}
4083inline bool Type::isEnumeralType() const {
4084  return isa<EnumType>(CanonicalType);
4085}
4086inline bool Type::isAnyComplexType() const {
4087  return isa<ComplexType>(CanonicalType);
4088}
4089inline bool Type::isVectorType() const {
4090  return isa<VectorType>(CanonicalType);
4091}
4092inline bool Type::isExtVectorType() const {
4093  return isa<ExtVectorType>(CanonicalType);
4094}
4095inline bool Type::isObjCObjectPointerType() const {
4096  return isa<ObjCObjectPointerType>(CanonicalType);
4097}
4098inline bool Type::isObjCObjectType() const {
4099  return isa<ObjCObjectType>(CanonicalType);
4100}
4101inline bool Type::isObjCObjectOrInterfaceType() const {
4102  return isa<ObjCInterfaceType>(CanonicalType) ||
4103    isa<ObjCObjectType>(CanonicalType);
4104}
4105
4106inline bool Type::isObjCQualifiedIdType() const {
4107  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4108    return OPT->isObjCQualifiedIdType();
4109  return false;
4110}
4111inline bool Type::isObjCQualifiedClassType() const {
4112  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4113    return OPT->isObjCQualifiedClassType();
4114  return false;
4115}
4116inline bool Type::isObjCIdType() const {
4117  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4118    return OPT->isObjCIdType();
4119  return false;
4120}
4121inline bool Type::isObjCClassType() const {
4122  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
4123    return OPT->isObjCClassType();
4124  return false;
4125}
4126inline bool Type::isObjCSelType() const {
4127  if (const PointerType *OPT = getAs<PointerType>())
4128    return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
4129  return false;
4130}
4131inline bool Type::isObjCBuiltinType() const {
4132  return isObjCIdType() || isObjCClassType() || isObjCSelType();
4133}
4134inline bool Type::isTemplateTypeParmType() const {
4135  return isa<TemplateTypeParmType>(CanonicalType);
4136}
4137
4138inline bool Type::isSpecificBuiltinType(unsigned K) const {
4139  if (const BuiltinType *BT = getAs<BuiltinType>())
4140    if (BT->getKind() == (BuiltinType::Kind) K)
4141      return true;
4142  return false;
4143}
4144
4145inline bool Type::isPlaceholderType() const {
4146  if (const BuiltinType *BT = getAs<BuiltinType>())
4147    return BT->isPlaceholderType();
4148  return false;
4149}
4150
4151/// \brief Determines whether this is a type for which one can define
4152/// an overloaded operator.
4153inline bool Type::isOverloadableType() const {
4154  return isDependentType() || isRecordType() || isEnumeralType();
4155}
4156
4157inline bool Type::hasPointerRepresentation() const {
4158  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
4159          isObjCObjectPointerType() || isNullPtrType());
4160}
4161
4162inline bool Type::hasObjCPointerRepresentation() const {
4163  return isObjCObjectPointerType();
4164}
4165
4166/// Insertion operator for diagnostics.  This allows sending QualType's into a
4167/// diagnostic with <<.
4168inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
4169                                           QualType T) {
4170  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
4171                  Diagnostic::ak_qualtype);
4172  return DB;
4173}
4174
4175/// Insertion operator for partial diagnostics.  This allows sending QualType's
4176/// into a diagnostic with <<.
4177inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
4178                                           QualType T) {
4179  PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
4180                  Diagnostic::ak_qualtype);
4181  return PD;
4182}
4183
4184// Helper class template that is used by Type::getAs to ensure that one does
4185// not try to look through a qualified type to get to an array type.
4186template<typename T,
4187         bool isArrayType = (llvm::is_same<T, ArrayType>::value ||
4188                             llvm::is_base_of<ArrayType, T>::value)>
4189struct ArrayType_cannot_be_used_with_getAs { };
4190
4191template<typename T>
4192struct ArrayType_cannot_be_used_with_getAs<T, true>;
4193
4194/// Member-template getAs<specific type>'.
4195template <typename T> const T *Type::getAs() const {
4196  ArrayType_cannot_be_used_with_getAs<T> at;
4197  (void)at;
4198
4199  // If this is directly a T type, return it.
4200  if (const T *Ty = dyn_cast<T>(this))
4201    return Ty;
4202
4203  // If the canonical form of this type isn't the right kind, reject it.
4204  if (!isa<T>(CanonicalType))
4205    return 0;
4206
4207  // If this is a typedef for the type, strip the typedef off without
4208  // losing all typedef information.
4209  return cast<T>(getUnqualifiedDesugaredType());
4210}
4211
4212}  // end namespace clang
4213
4214#endif
4215