Type.h revision f540305c5d834ad9412b41805b81a74249b7c5af
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Basic/IdentifierTable.h"
19#include "clang/Basic/Linkage.h"
20#include "clang/AST/NestedNameSpecifier.h"
21#include "clang/AST/Statistics.h"
22#include "clang/AST/TemplateName.h"
23#include "llvm/Support/Casting.h"
24#include "llvm/Support/type_traits.h"
25#include "llvm/ADT/APSInt.h"
26#include "llvm/ADT/FoldingSet.h"
27#include "llvm/ADT/PointerIntPair.h"
28#include "llvm/ADT/PointerUnion.h"
29
30using llvm::isa;
31using llvm::cast;
32using llvm::cast_or_null;
33using llvm::dyn_cast;
34using llvm::dyn_cast_or_null;
35namespace clang {
36  enum {
37    TypeAlignmentInBits = 3,
38    TypeAlignment = 1 << TypeAlignmentInBits
39  };
40  class Type;
41  class ExtQuals;
42  class QualType;
43}
44
45namespace llvm {
46  template <typename T>
47  class PointerLikeTypeTraits;
48  template<>
49  class PointerLikeTypeTraits< ::clang::Type*> {
50  public:
51    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
52    static inline ::clang::Type *getFromVoidPointer(void *P) {
53      return static_cast< ::clang::Type*>(P);
54    }
55    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
56  };
57  template<>
58  class PointerLikeTypeTraits< ::clang::ExtQuals*> {
59  public:
60    static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
61    static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
62      return static_cast< ::clang::ExtQuals*>(P);
63    }
64    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
65  };
66
67  template <>
68  struct isPodLike<clang::QualType> { static const bool value = true; };
69}
70
71namespace clang {
72  class ASTContext;
73  class TypedefDecl;
74  class TemplateDecl;
75  class TemplateTypeParmDecl;
76  class NonTypeTemplateParmDecl;
77  class TemplateTemplateParmDecl;
78  class TagDecl;
79  class RecordDecl;
80  class CXXRecordDecl;
81  class EnumDecl;
82  class FieldDecl;
83  class ObjCInterfaceDecl;
84  class ObjCProtocolDecl;
85  class ObjCMethodDecl;
86  class UnresolvedUsingTypenameDecl;
87  class Expr;
88  class Stmt;
89  class SourceLocation;
90  class StmtIteratorBase;
91  class TemplateArgument;
92  class TemplateArgumentLoc;
93  class TemplateArgumentListInfo;
94  class Type;
95  class QualifiedNameType;
96  struct PrintingPolicy;
97
98  template <typename> class CanQual;
99  typedef CanQual<Type> CanQualType;
100
101  // Provide forward declarations for all of the *Type classes
102#define TYPE(Class, Base) class Class##Type;
103#include "clang/AST/TypeNodes.def"
104
105/// Qualifiers - The collection of all-type qualifiers we support.
106/// Clang supports five independent qualifiers:
107/// * C99: const, volatile, and restrict
108/// * Embedded C (TR18037): address spaces
109/// * Objective C: the GC attributes (none, weak, or strong)
110class Qualifiers {
111public:
112  enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
113    Const    = 0x1,
114    Restrict = 0x2,
115    Volatile = 0x4,
116    CVRMask = Const | Volatile | Restrict
117  };
118
119  enum GC {
120    GCNone = 0,
121    Weak,
122    Strong
123  };
124
125  enum {
126    /// The maximum supported address space number.
127    /// 24 bits should be enough for anyone.
128    MaxAddressSpace = 0xffffffu,
129
130    /// The width of the "fast" qualifier mask.
131    FastWidth = 2,
132
133    /// The fast qualifier mask.
134    FastMask = (1 << FastWidth) - 1
135  };
136
137  Qualifiers() : Mask(0) {}
138
139  static Qualifiers fromFastMask(unsigned Mask) {
140    Qualifiers Qs;
141    Qs.addFastQualifiers(Mask);
142    return Qs;
143  }
144
145  static Qualifiers fromCVRMask(unsigned CVR) {
146    Qualifiers Qs;
147    Qs.addCVRQualifiers(CVR);
148    return Qs;
149  }
150
151  // Deserialize qualifiers from an opaque representation.
152  static Qualifiers fromOpaqueValue(unsigned opaque) {
153    Qualifiers Qs;
154    Qs.Mask = opaque;
155    return Qs;
156  }
157
158  // Serialize these qualifiers into an opaque representation.
159  unsigned getAsOpaqueValue() const {
160    return Mask;
161  }
162
163  bool hasConst() const { return Mask & Const; }
164  void setConst(bool flag) {
165    Mask = (Mask & ~Const) | (flag ? Const : 0);
166  }
167  void removeConst() { Mask &= ~Const; }
168  void addConst() { Mask |= Const; }
169
170  bool hasVolatile() const { return Mask & Volatile; }
171  void setVolatile(bool flag) {
172    Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
173  }
174  void removeVolatile() { Mask &= ~Volatile; }
175  void addVolatile() { Mask |= Volatile; }
176
177  bool hasRestrict() const { return Mask & Restrict; }
178  void setRestrict(bool flag) {
179    Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
180  }
181  void removeRestrict() { Mask &= ~Restrict; }
182  void addRestrict() { Mask |= Restrict; }
183
184  bool hasCVRQualifiers() const { return getCVRQualifiers(); }
185  unsigned getCVRQualifiers() const { return Mask & CVRMask; }
186  void setCVRQualifiers(unsigned mask) {
187    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
188    Mask = (Mask & ~CVRMask) | mask;
189  }
190  void removeCVRQualifiers(unsigned mask) {
191    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
192    Mask &= ~mask;
193  }
194  void removeCVRQualifiers() {
195    removeCVRQualifiers(CVRMask);
196  }
197  void addCVRQualifiers(unsigned mask) {
198    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
199    Mask |= mask;
200  }
201
202  bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
203  GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
204  void setObjCGCAttr(GC type) {
205    Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
206  }
207  void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
208  void addObjCGCAttr(GC type) {
209    assert(type);
210    setObjCGCAttr(type);
211  }
212
213  bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
214  unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
215  void setAddressSpace(unsigned space) {
216    assert(space <= MaxAddressSpace);
217    Mask = (Mask & ~AddressSpaceMask)
218         | (((uint32_t) space) << AddressSpaceShift);
219  }
220  void removeAddressSpace() { setAddressSpace(0); }
221  void addAddressSpace(unsigned space) {
222    assert(space);
223    setAddressSpace(space);
224  }
225
226  // Fast qualifiers are those that can be allocated directly
227  // on a QualType object.
228  bool hasFastQualifiers() const { return getFastQualifiers(); }
229  unsigned getFastQualifiers() const { return Mask & FastMask; }
230  void setFastQualifiers(unsigned mask) {
231    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
232    Mask = (Mask & ~FastMask) | mask;
233  }
234  void removeFastQualifiers(unsigned mask) {
235    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
236    Mask &= ~mask;
237  }
238  void removeFastQualifiers() {
239    removeFastQualifiers(FastMask);
240  }
241  void addFastQualifiers(unsigned mask) {
242    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
243    Mask |= mask;
244  }
245
246  /// hasNonFastQualifiers - Return true if the set contains any
247  /// qualifiers which require an ExtQuals node to be allocated.
248  bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
249  Qualifiers getNonFastQualifiers() const {
250    Qualifiers Quals = *this;
251    Quals.setFastQualifiers(0);
252    return Quals;
253  }
254
255  /// hasQualifiers - Return true if the set contains any qualifiers.
256  bool hasQualifiers() const { return Mask; }
257  bool empty() const { return !Mask; }
258
259  /// \brief Add the qualifiers from the given set to this set.
260  void addQualifiers(Qualifiers Q) {
261    // If the other set doesn't have any non-boolean qualifiers, just
262    // bit-or it in.
263    if (!(Q.Mask & ~CVRMask))
264      Mask |= Q.Mask;
265    else {
266      Mask |= (Q.Mask & CVRMask);
267      if (Q.hasAddressSpace())
268        addAddressSpace(Q.getAddressSpace());
269      if (Q.hasObjCGCAttr())
270        addObjCGCAttr(Q.getObjCGCAttr());
271    }
272  }
273
274  bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
275  bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
276
277  operator bool() const { return hasQualifiers(); }
278
279  Qualifiers &operator+=(Qualifiers R) {
280    addQualifiers(R);
281    return *this;
282  }
283
284  // Union two qualifier sets.  If an enumerated qualifier appears
285  // in both sets, use the one from the right.
286  friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
287    L += R;
288    return L;
289  }
290
291  std::string getAsString() const;
292  std::string getAsString(const PrintingPolicy &Policy) const {
293    std::string Buffer;
294    getAsStringInternal(Buffer, Policy);
295    return Buffer;
296  }
297  void getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const;
298
299  void Profile(llvm::FoldingSetNodeID &ID) const {
300    ID.AddInteger(Mask);
301  }
302
303private:
304
305  // bits:     |0 1 2|3 .. 4|5  ..  31|
306  //           |C R V|GCAttr|AddrSpace|
307  uint32_t Mask;
308
309  static const uint32_t GCAttrMask = 0x18;
310  static const uint32_t GCAttrShift = 3;
311  static const uint32_t AddressSpaceMask = ~(CVRMask | GCAttrMask);
312  static const uint32_t AddressSpaceShift = 5;
313};
314
315
316/// ExtQuals - We can encode up to three bits in the low bits of a
317/// type pointer, but there are many more type qualifiers that we want
318/// to be able to apply to an arbitrary type.  Therefore we have this
319/// struct, intended to be heap-allocated and used by QualType to
320/// store qualifiers.
321///
322/// The current design tags the 'const' and 'restrict' qualifiers in
323/// two low bits on the QualType pointer; a third bit records whether
324/// the pointer is an ExtQuals node.  'const' was chosen because it is
325/// orders of magnitude more common than the other two qualifiers, in
326/// both library and user code.  It's relatively rare to see
327/// 'restrict' in user code, but many standard C headers are saturated
328/// with 'restrict' declarations, so that representing them efficiently
329/// is a critical goal of this representation.
330class ExtQuals : public llvm::FoldingSetNode {
331  // NOTE: changing the fast qualifiers should be straightforward as
332  // long as you don't make 'const' non-fast.
333  // 1. Qualifiers:
334  //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
335  //       Fast qualifiers must occupy the low-order bits.
336  //    b) Update Qualifiers::FastWidth and FastMask.
337  // 2. QualType:
338  //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
339  //    b) Update remove{Volatile,Restrict}, defined near the end of
340  //       this header.
341  // 3. ASTContext:
342  //    a) Update get{Volatile,Restrict}Type.
343
344  /// Context - the context to which this set belongs.  We save this
345  /// here so that QualifierCollector can use it to reapply extended
346  /// qualifiers to an arbitrary type without requiring a context to
347  /// be pushed through every single API dealing with qualifiers.
348  ASTContext& Context;
349
350  /// BaseType - the underlying type that this qualifies
351  const Type *BaseType;
352
353  /// Quals - the immutable set of qualifiers applied by this
354  /// node;  always contains extended qualifiers.
355  Qualifiers Quals;
356
357public:
358  ExtQuals(ASTContext& Context, const Type *Base, Qualifiers Quals)
359    : Context(Context), BaseType(Base), Quals(Quals)
360  {
361    assert(Quals.hasNonFastQualifiers()
362           && "ExtQuals created with no fast qualifiers");
363    assert(!Quals.hasFastQualifiers()
364           && "ExtQuals created with fast qualifiers");
365  }
366
367  Qualifiers getQualifiers() const { return Quals; }
368
369  bool hasVolatile() const { return Quals.hasVolatile(); }
370
371  bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
372  Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
373
374  bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
375  unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
376
377  const Type *getBaseType() const { return BaseType; }
378
379  ASTContext &getContext() const { return Context; }
380
381public:
382  void Profile(llvm::FoldingSetNodeID &ID) const {
383    Profile(ID, getBaseType(), Quals);
384  }
385  static void Profile(llvm::FoldingSetNodeID &ID,
386                      const Type *BaseType,
387                      Qualifiers Quals) {
388    assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
389    ID.AddPointer(BaseType);
390    Quals.Profile(ID);
391  }
392};
393
394/// CallingConv - Specifies the calling convention that a function uses.
395enum CallingConv {
396  CC_Default,
397  CC_C,           // __attribute__((cdecl))
398  CC_X86StdCall,  // __attribute__((stdcall))
399  CC_X86FastCall  // __attribute__((fastcall))
400};
401
402
403/// QualType - For efficiency, we don't store CV-qualified types as nodes on
404/// their own: instead each reference to a type stores the qualifiers.  This
405/// greatly reduces the number of nodes we need to allocate for types (for
406/// example we only need one for 'int', 'const int', 'volatile int',
407/// 'const volatile int', etc).
408///
409/// As an added efficiency bonus, instead of making this a pair, we
410/// just store the two bits we care about in the low bits of the
411/// pointer.  To handle the packing/unpacking, we make QualType be a
412/// simple wrapper class that acts like a smart pointer.  A third bit
413/// indicates whether there are extended qualifiers present, in which
414/// case the pointer points to a special structure.
415class QualType {
416  // Thankfully, these are efficiently composable.
417  llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
418                       Qualifiers::FastWidth> Value;
419
420  const ExtQuals *getExtQualsUnsafe() const {
421    return Value.getPointer().get<const ExtQuals*>();
422  }
423
424  const Type *getTypePtrUnsafe() const {
425    return Value.getPointer().get<const Type*>();
426  }
427
428  QualType getUnqualifiedTypeSlow() const;
429
430  friend class QualifierCollector;
431public:
432  QualType() {}
433
434  QualType(const Type *Ptr, unsigned Quals)
435    : Value(Ptr, Quals) {}
436  QualType(const ExtQuals *Ptr, unsigned Quals)
437    : Value(Ptr, Quals) {}
438
439  unsigned getLocalFastQualifiers() const { return Value.getInt(); }
440  void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
441
442  /// Retrieves a pointer to the underlying (unqualified) type.
443  /// This should really return a const Type, but it's not worth
444  /// changing all the users right now.
445  Type *getTypePtr() const {
446    if (hasLocalNonFastQualifiers())
447      return const_cast<Type*>(getExtQualsUnsafe()->getBaseType());
448    return const_cast<Type*>(getTypePtrUnsafe());
449  }
450
451  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
452  static QualType getFromOpaquePtr(void *Ptr) {
453    QualType T;
454    T.Value.setFromOpaqueValue(Ptr);
455    return T;
456  }
457
458  Type &operator*() const {
459    return *getTypePtr();
460  }
461
462  Type *operator->() const {
463    return getTypePtr();
464  }
465
466  bool isCanonical() const;
467  bool isCanonicalAsParam() const;
468
469  /// isNull - Return true if this QualType doesn't point to a type yet.
470  bool isNull() const {
471    return Value.getPointer().isNull();
472  }
473
474  /// \brief Determine whether this particular QualType instance has the
475  /// "const" qualifier set, without looking through typedefs that may have
476  /// added "const" at a different level.
477  bool isLocalConstQualified() const {
478    return (getLocalFastQualifiers() & Qualifiers::Const);
479  }
480
481  /// \brief Determine whether this type is const-qualified.
482  bool isConstQualified() const;
483
484  /// \brief Determine whether this particular QualType instance has the
485  /// "restrict" qualifier set, without looking through typedefs that may have
486  /// added "restrict" at a different level.
487  bool isLocalRestrictQualified() const {
488    return (getLocalFastQualifiers() & Qualifiers::Restrict);
489  }
490
491  /// \brief Determine whether this type is restrict-qualified.
492  bool isRestrictQualified() const;
493
494  /// \brief Determine whether this particular QualType instance has the
495  /// "volatile" qualifier set, without looking through typedefs that may have
496  /// added "volatile" at a different level.
497  bool isLocalVolatileQualified() const {
498    return (hasLocalNonFastQualifiers() && getExtQualsUnsafe()->hasVolatile());
499  }
500
501  /// \brief Determine whether this type is volatile-qualified.
502  bool isVolatileQualified() const;
503
504  /// \brief Determine whether this particular QualType instance has any
505  /// qualifiers, without looking through any typedefs that might add
506  /// qualifiers at a different level.
507  bool hasLocalQualifiers() const {
508    return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
509  }
510
511  /// \brief Determine whether this type has any qualifiers.
512  bool hasQualifiers() const;
513
514  /// \brief Determine whether this particular QualType instance has any
515  /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
516  /// instance.
517  bool hasLocalNonFastQualifiers() const {
518    return Value.getPointer().is<const ExtQuals*>();
519  }
520
521  /// \brief Retrieve the set of qualifiers local to this particular QualType
522  /// instance, not including any qualifiers acquired through typedefs or
523  /// other sugar.
524  Qualifiers getLocalQualifiers() const {
525    Qualifiers Quals;
526    if (hasLocalNonFastQualifiers())
527      Quals = getExtQualsUnsafe()->getQualifiers();
528    Quals.addFastQualifiers(getLocalFastQualifiers());
529    return Quals;
530  }
531
532  /// \brief Retrieve the set of qualifiers applied to this type.
533  Qualifiers getQualifiers() const;
534
535  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
536  /// local to this particular QualType instance, not including any qualifiers
537  /// acquired through typedefs or other sugar.
538  unsigned getLocalCVRQualifiers() const {
539    unsigned CVR = getLocalFastQualifiers();
540    if (isLocalVolatileQualified())
541      CVR |= Qualifiers::Volatile;
542    return CVR;
543  }
544
545  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
546  /// applied to this type.
547  unsigned getCVRQualifiers() const;
548
549  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
550  /// applied to this type, looking through any number of unqualified array
551  /// types to their element types' qualifiers.
552  unsigned getCVRQualifiersThroughArrayTypes() const;
553
554  bool isConstant(ASTContext& Ctx) const {
555    return QualType::isConstant(*this, Ctx);
556  }
557
558  // Don't promise in the API that anything besides 'const' can be
559  // easily added.
560
561  /// addConst - add the specified type qualifier to this QualType.
562  void addConst() {
563    addFastQualifiers(Qualifiers::Const);
564  }
565  QualType withConst() const {
566    return withFastQualifiers(Qualifiers::Const);
567  }
568
569  void addFastQualifiers(unsigned TQs) {
570    assert(!(TQs & ~Qualifiers::FastMask)
571           && "non-fast qualifier bits set in mask!");
572    Value.setInt(Value.getInt() | TQs);
573  }
574
575  // FIXME: The remove* functions are semantically broken, because they might
576  // not remove a qualifier stored on a typedef. Most of the with* functions
577  // have the same problem.
578  void removeConst();
579  void removeVolatile();
580  void removeRestrict();
581  void removeCVRQualifiers(unsigned Mask);
582
583  void removeFastQualifiers() { Value.setInt(0); }
584  void removeFastQualifiers(unsigned Mask) {
585    assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
586    Value.setInt(Value.getInt() & ~Mask);
587  }
588
589  // Creates a type with the given qualifiers in addition to any
590  // qualifiers already on this type.
591  QualType withFastQualifiers(unsigned TQs) const {
592    QualType T = *this;
593    T.addFastQualifiers(TQs);
594    return T;
595  }
596
597  // Creates a type with exactly the given fast qualifiers, removing
598  // any existing fast qualifiers.
599  QualType withExactFastQualifiers(unsigned TQs) const {
600    return withoutFastQualifiers().withFastQualifiers(TQs);
601  }
602
603  // Removes fast qualifiers, but leaves any extended qualifiers in place.
604  QualType withoutFastQualifiers() const {
605    QualType T = *this;
606    T.removeFastQualifiers();
607    return T;
608  }
609
610  /// \brief Return this type with all of the instance-specific qualifiers
611  /// removed, but without removing any qualifiers that may have been applied
612  /// through typedefs.
613  QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
614
615  /// \brief Return the unqualified form of the given type, which might be
616  /// desugared to eliminate qualifiers introduced via typedefs.
617  QualType getUnqualifiedType() const {
618    QualType T = getLocalUnqualifiedType();
619    if (!T.hasQualifiers())
620      return T;
621
622    return getUnqualifiedTypeSlow();
623  }
624
625  bool isMoreQualifiedThan(QualType Other) const;
626  bool isAtLeastAsQualifiedAs(QualType Other) const;
627  QualType getNonReferenceType() const;
628
629  /// getDesugaredType - Return the specified type with any "sugar" removed from
630  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
631  /// the type is already concrete, it returns it unmodified.  This is similar
632  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
633  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
634  /// concrete.
635  ///
636  /// Qualifiers are left in place.
637  QualType getDesugaredType() const {
638    return QualType::getDesugaredType(*this);
639  }
640
641  /// operator==/!= - Indicate whether the specified types and qualifiers are
642  /// identical.
643  friend bool operator==(const QualType &LHS, const QualType &RHS) {
644    return LHS.Value == RHS.Value;
645  }
646  friend bool operator!=(const QualType &LHS, const QualType &RHS) {
647    return LHS.Value != RHS.Value;
648  }
649  std::string getAsString() const;
650
651  std::string getAsString(const PrintingPolicy &Policy) const {
652    std::string S;
653    getAsStringInternal(S, Policy);
654    return S;
655  }
656  void getAsStringInternal(std::string &Str,
657                           const PrintingPolicy &Policy) const;
658
659  void dump(const char *s) const;
660  void dump() const;
661
662  void Profile(llvm::FoldingSetNodeID &ID) const {
663    ID.AddPointer(getAsOpaquePtr());
664  }
665
666  /// getAddressSpace - Return the address space of this type.
667  inline unsigned getAddressSpace() const;
668
669  /// GCAttrTypesAttr - Returns gc attribute of this type.
670  inline Qualifiers::GC getObjCGCAttr() const;
671
672  /// isObjCGCWeak true when Type is objc's weak.
673  bool isObjCGCWeak() const {
674    return getObjCGCAttr() == Qualifiers::Weak;
675  }
676
677  /// isObjCGCStrong true when Type is objc's strong.
678  bool isObjCGCStrong() const {
679    return getObjCGCAttr() == Qualifiers::Strong;
680  }
681
682private:
683  // These methods are implemented in a separate translation unit;
684  // "static"-ize them to avoid creating temporary QualTypes in the
685  // caller.
686  static bool isConstant(QualType T, ASTContext& Ctx);
687  static QualType getDesugaredType(QualType T);
688};
689
690} // end clang.
691
692namespace llvm {
693/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
694/// to a specific Type class.
695template<> struct simplify_type<const ::clang::QualType> {
696  typedef ::clang::Type* SimpleType;
697  static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
698    return Val.getTypePtr();
699  }
700};
701template<> struct simplify_type< ::clang::QualType>
702  : public simplify_type<const ::clang::QualType> {};
703
704// Teach SmallPtrSet that QualType is "basically a pointer".
705template<>
706class PointerLikeTypeTraits<clang::QualType> {
707public:
708  static inline void *getAsVoidPointer(clang::QualType P) {
709    return P.getAsOpaquePtr();
710  }
711  static inline clang::QualType getFromVoidPointer(void *P) {
712    return clang::QualType::getFromOpaquePtr(P);
713  }
714  // Various qualifiers go in low bits.
715  enum { NumLowBitsAvailable = 0 };
716};
717
718} // end namespace llvm
719
720namespace clang {
721
722/// Type - This is the base class of the type hierarchy.  A central concept
723/// with types is that each type always has a canonical type.  A canonical type
724/// is the type with any typedef names stripped out of it or the types it
725/// references.  For example, consider:
726///
727///  typedef int  foo;
728///  typedef foo* bar;
729///    'int *'    'foo *'    'bar'
730///
731/// There will be a Type object created for 'int'.  Since int is canonical, its
732/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
733/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
734/// there is a PointerType that represents 'int*', which, like 'int', is
735/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
736/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
737/// is also 'int*'.
738///
739/// Non-canonical types are useful for emitting diagnostics, without losing
740/// information about typedefs being used.  Canonical types are useful for type
741/// comparisons (they allow by-pointer equality tests) and useful for reasoning
742/// about whether something has a particular form (e.g. is a function type),
743/// because they implicitly, recursively, strip all typedefs out of a type.
744///
745/// Types, once created, are immutable.
746///
747class Type {
748public:
749  enum TypeClass {
750#define TYPE(Class, Base) Class,
751#define LAST_TYPE(Class) TypeLast = Class,
752#define ABSTRACT_TYPE(Class, Base)
753#include "clang/AST/TypeNodes.def"
754    TagFirst = Record, TagLast = Enum
755  };
756
757private:
758  QualType CanonicalType;
759
760  /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
761  unsigned TC : 8;
762
763  /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
764  /// Note that this should stay at the end of the ivars for Type so that
765  /// subclasses can pack their bitfields into the same word.
766  bool Dependent : 1;
767
768  Type(const Type&);           // DO NOT IMPLEMENT.
769  void operator=(const Type&); // DO NOT IMPLEMENT.
770protected:
771  // silence VC++ warning C4355: 'this' : used in base member initializer list
772  Type *this_() { return this; }
773  Type(TypeClass tc, QualType Canonical, bool dependent)
774    : CanonicalType(Canonical.isNull() ? QualType(this_(), 0) : Canonical),
775      TC(tc), Dependent(dependent) {}
776  virtual ~Type() {}
777  virtual void Destroy(ASTContext& C);
778  friend class ASTContext;
779
780public:
781  TypeClass getTypeClass() const { return static_cast<TypeClass>(TC); }
782
783  bool isCanonicalUnqualified() const {
784    return CanonicalType.getTypePtr() == this;
785  }
786
787  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
788  /// object types, function types, and incomplete types.
789
790  /// \brief Determines whether the type describes an object in memory.
791  ///
792  /// Note that this definition of object type corresponds to the C++
793  /// definition of object type, which includes incomplete types, as
794  /// opposed to the C definition (which does not include incomplete
795  /// types).
796  bool isObjectType() const;
797
798  /// isIncompleteType - Return true if this is an incomplete type.
799  /// A type that can describe objects, but which lacks information needed to
800  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
801  /// routine will need to determine if the size is actually required.
802  bool isIncompleteType() const;
803
804  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
805  /// type, in other words, not a function type.
806  bool isIncompleteOrObjectType() const {
807    return !isFunctionType();
808  }
809
810  /// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10).
811  bool isPODType() const;
812
813  /// isLiteralType - Return true if this is a literal type
814  /// (C++0x [basic.types]p10)
815  bool isLiteralType() const;
816
817  /// isVariablyModifiedType (C99 6.7.5.2p2) - Return true for variable array
818  /// types that have a non-constant expression. This does not include "[]".
819  bool isVariablyModifiedType() const;
820
821  /// Helper methods to distinguish type categories. All type predicates
822  /// operate on the canonical type, ignoring typedefs and qualifiers.
823
824  /// isSpecificBuiltinType - Test for a particular builtin type.
825  bool isSpecificBuiltinType(unsigned K) const;
826
827  /// isIntegerType() does *not* include complex integers (a GCC extension).
828  /// isComplexIntegerType() can be used to test for complex integers.
829  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
830  bool isEnumeralType() const;
831  bool isBooleanType() const;
832  bool isCharType() const;
833  bool isWideCharType() const;
834  bool isAnyCharacterType() const;
835  bool isIntegralType() const;
836
837  /// Floating point categories.
838  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
839  /// isComplexType() does *not* include complex integers (a GCC extension).
840  /// isComplexIntegerType() can be used to test for complex integers.
841  bool isComplexType() const;      // C99 6.2.5p11 (complex)
842  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
843  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
844  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
845  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
846  bool isVoidType() const;         // C99 6.2.5p19
847  bool isDerivedType() const;      // C99 6.2.5p20
848  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
849  bool isAggregateType() const;
850
851  // Type Predicates: Check to see if this type is structurally the specified
852  // type, ignoring typedefs and qualifiers.
853  bool isFunctionType() const;
854  bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
855  bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
856  bool isPointerType() const;
857  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
858  bool isBlockPointerType() const;
859  bool isVoidPointerType() const;
860  bool isReferenceType() const;
861  bool isLValueReferenceType() const;
862  bool isRValueReferenceType() const;
863  bool isFunctionPointerType() const;
864  bool isMemberPointerType() const;
865  bool isMemberFunctionPointerType() const;
866  bool isArrayType() const;
867  bool isConstantArrayType() const;
868  bool isIncompleteArrayType() const;
869  bool isVariableArrayType() const;
870  bool isDependentSizedArrayType() const;
871  bool isRecordType() const;
872  bool isClassType() const;
873  bool isStructureType() const;
874  bool isUnionType() const;
875  bool isComplexIntegerType() const;            // GCC _Complex integer type.
876  bool isVectorType() const;                    // GCC vector type.
877  bool isExtVectorType() const;                 // Extended vector type.
878  bool isObjCObjectPointerType() const;         // Pointer to *any* ObjC object.
879  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
880  // for the common case.
881  bool isObjCInterfaceType() const;             // NSString or NSString<foo>
882  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
883  bool isObjCQualifiedIdType() const;           // id<foo>
884  bool isObjCQualifiedClassType() const;        // Class<foo>
885  bool isObjCIdType() const;                    // id
886  bool isObjCClassType() const;                 // Class
887  bool isObjCSelType() const;                 // Class
888  bool isObjCBuiltinType() const;               // 'id' or 'Class'
889  bool isTemplateTypeParmType() const;          // C++ template type parameter
890  bool isNullPtrType() const;                   // C++0x nullptr_t
891
892  /// isDependentType - Whether this type is a dependent type, meaning
893  /// that its definition somehow depends on a template parameter
894  /// (C++ [temp.dep.type]).
895  bool isDependentType() const { return Dependent; }
896  bool isOverloadableType() const;
897
898  /// hasPointerRepresentation - Whether this type is represented
899  /// natively as a pointer; this includes pointers, references, block
900  /// pointers, and Objective-C interface, qualified id, and qualified
901  /// interface types, as well as nullptr_t.
902  bool hasPointerRepresentation() const;
903
904  /// hasObjCPointerRepresentation - Whether this type can represent
905  /// an objective pointer type for the purpose of GC'ability
906  bool hasObjCPointerRepresentation() const;
907
908  // Type Checking Functions: Check to see if this type is structurally the
909  // specified type, ignoring typedefs and qualifiers, and return a pointer to
910  // the best type we can.
911  const RecordType *getAsStructureType() const;
912  /// NOTE: getAs*ArrayType are methods on ASTContext.
913  const RecordType *getAsUnionType() const;
914  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
915  // The following is a convenience method that returns an ObjCObjectPointerType
916  // for object declared using an interface.
917  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
918  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
919  const ObjCInterfaceType *getAsObjCQualifiedInterfaceType() const;
920  const CXXRecordDecl *getCXXRecordDeclForPointerType() const;
921
922  // Member-template getAs<specific type>'.  This scheme will eventually
923  // replace the specific getAsXXXX methods above.
924  //
925  // There are some specializations of this member template listed
926  // immediately following this class.
927  template <typename T> const T *getAs() const;
928
929  /// getAsPointerToObjCInterfaceType - If this is a pointer to an ObjC
930  /// interface, return the interface type, otherwise return null.
931  const ObjCInterfaceType *getAsPointerToObjCInterfaceType() const;
932
933  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
934  /// element type of the array, potentially with type qualifiers missing.
935  /// This method should never be used when type qualifiers are meaningful.
936  const Type *getArrayElementTypeNoTypeQual() const;
937
938  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
939  /// pointer, this returns the respective pointee.
940  QualType getPointeeType() const;
941
942  /// getNoReturnAttr - Returns true if the type has the noreturn attribute,
943  /// false otherwise.
944  bool getNoReturnAttr() const;
945
946  /// getCallConv - Returns the calling convention of the type if the type
947  /// is a function type, CC_Default otherwise.
948  CallingConv getCallConv() const;
949
950  /// getUnqualifiedDesugaredType() - Return the specified type with
951  /// any "sugar" removed from the type, removing any typedefs,
952  /// typeofs, etc., as well as any qualifiers.
953  const Type *getUnqualifiedDesugaredType() const;
954
955  /// More type predicates useful for type checking/promotion
956  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
957
958  /// isSignedIntegerType - Return true if this is an integer type that is
959  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
960  /// an enum decl which has a signed representation, or a vector of signed
961  /// integer element type.
962  bool isSignedIntegerType() const;
963
964  /// isUnsignedIntegerType - Return true if this is an integer type that is
965  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
966  /// decl which has an unsigned representation, or a vector of unsigned integer
967  /// element type.
968  bool isUnsignedIntegerType() const;
969
970  /// isConstantSizeType - Return true if this is not a variable sized type,
971  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
972  /// incomplete types.
973  bool isConstantSizeType() const;
974
975  /// isSpecifierType - Returns true if this type can be represented by some
976  /// set of type specifiers.
977  bool isSpecifierType() const;
978
979  const char *getTypeClassName() const;
980
981  /// \brief Determine the linkage of this type.
982  virtual Linkage getLinkage() const;
983
984  QualType getCanonicalTypeInternal() const {
985    return CanonicalType;
986  }
987  CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
988  void dump() const;
989  static bool classof(const Type *) { return true; }
990};
991
992template <> inline const TypedefType *Type::getAs() const {
993  return dyn_cast<TypedefType>(this);
994}
995
996// We can do canonical leaf types faster, because we don't have to
997// worry about preserving child type decoration.
998#define TYPE(Class, Base)
999#define LEAF_TYPE(Class) \
1000template <> inline const Class##Type *Type::getAs() const { \
1001  return dyn_cast<Class##Type>(CanonicalType); \
1002}
1003#include "clang/AST/TypeNodes.def"
1004
1005
1006/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
1007/// types are always canonical and have a literal name field.
1008class BuiltinType : public Type {
1009public:
1010  enum Kind {
1011    Void,
1012
1013    Bool,     // This is bool and/or _Bool.
1014    Char_U,   // This is 'char' for targets where char is unsigned.
1015    UChar,    // This is explicitly qualified unsigned char.
1016    Char16,   // This is 'char16_t' for C++.
1017    Char32,   // This is 'char32_t' for C++.
1018    UShort,
1019    UInt,
1020    ULong,
1021    ULongLong,
1022    UInt128,  // __uint128_t
1023
1024    Char_S,   // This is 'char' for targets where char is signed.
1025    SChar,    // This is explicitly qualified signed char.
1026    WChar,    // This is 'wchar_t' for C++.
1027    Short,
1028    Int,
1029    Long,
1030    LongLong,
1031    Int128,   // __int128_t
1032
1033    Float, Double, LongDouble,
1034
1035    NullPtr,  // This is the type of C++0x 'nullptr'.
1036
1037    Overload,  // This represents the type of an overloaded function declaration.
1038    Dependent, // This represents the type of a type-dependent expression.
1039
1040    UndeducedAuto, // In C++0x, this represents the type of an auto variable
1041                   // that has not been deduced yet.
1042    ObjCId,    // This represents the ObjC 'id' type.
1043    ObjCClass, // This represents the ObjC 'Class' type.
1044    ObjCSel    // This represents the ObjC 'SEL' type.
1045  };
1046private:
1047  Kind TypeKind;
1048public:
1049  BuiltinType(Kind K)
1050    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent)),
1051      TypeKind(K) {}
1052
1053  Kind getKind() const { return TypeKind; }
1054  const char *getName(const LangOptions &LO) const;
1055
1056  bool isSugared() const { return false; }
1057  QualType desugar() const { return QualType(this, 0); }
1058
1059  bool isInteger() const {
1060    return TypeKind >= Bool && TypeKind <= Int128;
1061  }
1062
1063  bool isSignedInteger() const {
1064    return TypeKind >= Char_S && TypeKind <= Int128;
1065  }
1066
1067  bool isUnsignedInteger() const {
1068    return TypeKind >= Bool && TypeKind <= UInt128;
1069  }
1070
1071  bool isFloatingPoint() const {
1072    return TypeKind >= Float && TypeKind <= LongDouble;
1073  }
1074
1075  virtual Linkage getLinkage() const;
1076
1077  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
1078  static bool classof(const BuiltinType *) { return true; }
1079};
1080
1081/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
1082/// types (_Complex float etc) as well as the GCC integer complex extensions.
1083///
1084class ComplexType : public Type, public llvm::FoldingSetNode {
1085  QualType ElementType;
1086  ComplexType(QualType Element, QualType CanonicalPtr) :
1087    Type(Complex, CanonicalPtr, Element->isDependentType()),
1088    ElementType(Element) {
1089  }
1090  friend class ASTContext;  // ASTContext creates these.
1091public:
1092  QualType getElementType() const { return ElementType; }
1093
1094  bool isSugared() const { return false; }
1095  QualType desugar() const { return QualType(this, 0); }
1096
1097  void Profile(llvm::FoldingSetNodeID &ID) {
1098    Profile(ID, getElementType());
1099  }
1100  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
1101    ID.AddPointer(Element.getAsOpaquePtr());
1102  }
1103
1104  virtual Linkage getLinkage() const;
1105
1106  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
1107  static bool classof(const ComplexType *) { return true; }
1108};
1109
1110/// PointerType - C99 6.7.5.1 - Pointer Declarators.
1111///
1112class PointerType : public Type, public llvm::FoldingSetNode {
1113  QualType PointeeType;
1114
1115  PointerType(QualType Pointee, QualType CanonicalPtr) :
1116    Type(Pointer, CanonicalPtr, Pointee->isDependentType()), PointeeType(Pointee) {
1117  }
1118  friend class ASTContext;  // ASTContext creates these.
1119public:
1120
1121  QualType getPointeeType() const { return PointeeType; }
1122
1123  bool isSugared() const { return false; }
1124  QualType desugar() const { return QualType(this, 0); }
1125
1126  void Profile(llvm::FoldingSetNodeID &ID) {
1127    Profile(ID, getPointeeType());
1128  }
1129  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1130    ID.AddPointer(Pointee.getAsOpaquePtr());
1131  }
1132
1133  virtual Linkage getLinkage() const;
1134
1135  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
1136  static bool classof(const PointerType *) { return true; }
1137};
1138
1139/// BlockPointerType - pointer to a block type.
1140/// This type is to represent types syntactically represented as
1141/// "void (^)(int)", etc. Pointee is required to always be a function type.
1142///
1143class BlockPointerType : public Type, public llvm::FoldingSetNode {
1144  QualType PointeeType;  // Block is some kind of pointer type
1145  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
1146    Type(BlockPointer, CanonicalCls, Pointee->isDependentType()),
1147    PointeeType(Pointee) {
1148  }
1149  friend class ASTContext;  // ASTContext creates these.
1150public:
1151
1152  // Get the pointee type. Pointee is required to always be a function type.
1153  QualType getPointeeType() const { return PointeeType; }
1154
1155  bool isSugared() const { return false; }
1156  QualType desugar() const { return QualType(this, 0); }
1157
1158  void Profile(llvm::FoldingSetNodeID &ID) {
1159      Profile(ID, getPointeeType());
1160  }
1161  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1162      ID.AddPointer(Pointee.getAsOpaquePtr());
1163  }
1164
1165  virtual Linkage getLinkage() const;
1166
1167  static bool classof(const Type *T) {
1168    return T->getTypeClass() == BlockPointer;
1169  }
1170  static bool classof(const BlockPointerType *) { return true; }
1171};
1172
1173/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
1174///
1175class ReferenceType : public Type, public llvm::FoldingSetNode {
1176  QualType PointeeType;
1177
1178  /// True if the type was originally spelled with an lvalue sigil.
1179  /// This is never true of rvalue references but can also be false
1180  /// on lvalue references because of C++0x [dcl.typedef]p9,
1181  /// as follows:
1182  ///
1183  ///   typedef int &ref;    // lvalue, spelled lvalue
1184  ///   typedef int &&rvref; // rvalue
1185  ///   ref &a;              // lvalue, inner ref, spelled lvalue
1186  ///   ref &&a;             // lvalue, inner ref
1187  ///   rvref &a;            // lvalue, inner ref, spelled lvalue
1188  ///   rvref &&a;           // rvalue, inner ref
1189  bool SpelledAsLValue;
1190
1191  /// True if the inner type is a reference type.  This only happens
1192  /// in non-canonical forms.
1193  bool InnerRef;
1194
1195protected:
1196  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
1197                bool SpelledAsLValue) :
1198    Type(tc, CanonicalRef, Referencee->isDependentType()),
1199    PointeeType(Referencee), SpelledAsLValue(SpelledAsLValue),
1200    InnerRef(Referencee->isReferenceType()) {
1201  }
1202public:
1203  bool isSpelledAsLValue() const { return SpelledAsLValue; }
1204  bool isInnerRef() const { return InnerRef; }
1205
1206  QualType getPointeeTypeAsWritten() const { return PointeeType; }
1207  QualType getPointeeType() const {
1208    // FIXME: this might strip inner qualifiers; okay?
1209    const ReferenceType *T = this;
1210    while (T->InnerRef)
1211      T = T->PointeeType->getAs<ReferenceType>();
1212    return T->PointeeType;
1213  }
1214
1215  void Profile(llvm::FoldingSetNodeID &ID) {
1216    Profile(ID, PointeeType, SpelledAsLValue);
1217  }
1218  static void Profile(llvm::FoldingSetNodeID &ID,
1219                      QualType Referencee,
1220                      bool SpelledAsLValue) {
1221    ID.AddPointer(Referencee.getAsOpaquePtr());
1222    ID.AddBoolean(SpelledAsLValue);
1223  }
1224
1225  virtual Linkage getLinkage() const;
1226
1227  static bool classof(const Type *T) {
1228    return T->getTypeClass() == LValueReference ||
1229           T->getTypeClass() == RValueReference;
1230  }
1231  static bool classof(const ReferenceType *) { return true; }
1232};
1233
1234/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
1235///
1236class LValueReferenceType : public ReferenceType {
1237  LValueReferenceType(QualType Referencee, QualType CanonicalRef,
1238                      bool SpelledAsLValue) :
1239    ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
1240  {}
1241  friend class ASTContext; // ASTContext creates these
1242public:
1243  bool isSugared() const { return false; }
1244  QualType desugar() const { return QualType(this, 0); }
1245
1246  static bool classof(const Type *T) {
1247    return T->getTypeClass() == LValueReference;
1248  }
1249  static bool classof(const LValueReferenceType *) { return true; }
1250};
1251
1252/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
1253///
1254class RValueReferenceType : public ReferenceType {
1255  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
1256    ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
1257  }
1258  friend class ASTContext; // ASTContext creates these
1259public:
1260  bool isSugared() const { return false; }
1261  QualType desugar() const { return QualType(this, 0); }
1262
1263  static bool classof(const Type *T) {
1264    return T->getTypeClass() == RValueReference;
1265  }
1266  static bool classof(const RValueReferenceType *) { return true; }
1267};
1268
1269/// MemberPointerType - C++ 8.3.3 - Pointers to members
1270///
1271class MemberPointerType : public Type, public llvm::FoldingSetNode {
1272  QualType PointeeType;
1273  /// The class of which the pointee is a member. Must ultimately be a
1274  /// RecordType, but could be a typedef or a template parameter too.
1275  const Type *Class;
1276
1277  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
1278    Type(MemberPointer, CanonicalPtr,
1279         Cls->isDependentType() || Pointee->isDependentType()),
1280    PointeeType(Pointee), Class(Cls) {
1281  }
1282  friend class ASTContext; // ASTContext creates these.
1283public:
1284
1285  QualType getPointeeType() const { return PointeeType; }
1286
1287  const Type *getClass() const { return Class; }
1288
1289  bool isSugared() const { return false; }
1290  QualType desugar() const { return QualType(this, 0); }
1291
1292  void Profile(llvm::FoldingSetNodeID &ID) {
1293    Profile(ID, getPointeeType(), getClass());
1294  }
1295  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
1296                      const Type *Class) {
1297    ID.AddPointer(Pointee.getAsOpaquePtr());
1298    ID.AddPointer(Class);
1299  }
1300
1301  virtual Linkage getLinkage() const;
1302
1303  static bool classof(const Type *T) {
1304    return T->getTypeClass() == MemberPointer;
1305  }
1306  static bool classof(const MemberPointerType *) { return true; }
1307};
1308
1309/// ArrayType - C99 6.7.5.2 - Array Declarators.
1310///
1311class ArrayType : public Type, public llvm::FoldingSetNode {
1312public:
1313  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
1314  /// an array with a static size (e.g. int X[static 4]), or an array
1315  /// with a star size (e.g. int X[*]).
1316  /// 'static' is only allowed on function parameters.
1317  enum ArraySizeModifier {
1318    Normal, Static, Star
1319  };
1320private:
1321  /// ElementType - The element type of the array.
1322  QualType ElementType;
1323
1324  // NOTE: VC++ treats enums as signed, avoid using the ArraySizeModifier enum
1325  /// NOTE: These fields are packed into the bitfields space in the Type class.
1326  unsigned SizeModifier : 2;
1327
1328  /// IndexTypeQuals - Capture qualifiers in declarations like:
1329  /// 'int X[static restrict 4]'. For function parameters only.
1330  unsigned IndexTypeQuals : 3;
1331
1332protected:
1333  // C++ [temp.dep.type]p1:
1334  //   A type is dependent if it is...
1335  //     - an array type constructed from any dependent type or whose
1336  //       size is specified by a constant expression that is
1337  //       value-dependent,
1338  ArrayType(TypeClass tc, QualType et, QualType can,
1339            ArraySizeModifier sm, unsigned tq)
1340    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray),
1341      ElementType(et), SizeModifier(sm), IndexTypeQuals(tq) {}
1342
1343  friend class ASTContext;  // ASTContext creates these.
1344public:
1345  QualType getElementType() const { return ElementType; }
1346  ArraySizeModifier getSizeModifier() const {
1347    return ArraySizeModifier(SizeModifier);
1348  }
1349  Qualifiers getIndexTypeQualifiers() const {
1350    return Qualifiers::fromCVRMask(IndexTypeQuals);
1351  }
1352  unsigned getIndexTypeCVRQualifiers() const { return IndexTypeQuals; }
1353
1354  virtual Linkage getLinkage() const;
1355
1356  static bool classof(const Type *T) {
1357    return T->getTypeClass() == ConstantArray ||
1358           T->getTypeClass() == VariableArray ||
1359           T->getTypeClass() == IncompleteArray ||
1360           T->getTypeClass() == DependentSizedArray;
1361  }
1362  static bool classof(const ArrayType *) { return true; }
1363};
1364
1365/// ConstantArrayType - This class represents the canonical version of
1366/// C arrays with a specified constant size.  For example, the canonical
1367/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
1368/// type is 'int' and the size is 404.
1369class ConstantArrayType : public ArrayType {
1370  llvm::APInt Size; // Allows us to unique the type.
1371
1372  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
1373                    ArraySizeModifier sm, unsigned tq)
1374    : ArrayType(ConstantArray, et, can, sm, tq),
1375      Size(size) {}
1376protected:
1377  ConstantArrayType(TypeClass tc, QualType et, QualType can,
1378                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
1379    : ArrayType(tc, et, can, sm, tq), Size(size) {}
1380  friend class ASTContext;  // ASTContext creates these.
1381public:
1382  const llvm::APInt &getSize() const { return Size; }
1383  bool isSugared() const { return false; }
1384  QualType desugar() const { return QualType(this, 0); }
1385
1386  void Profile(llvm::FoldingSetNodeID &ID) {
1387    Profile(ID, getElementType(), getSize(),
1388            getSizeModifier(), getIndexTypeCVRQualifiers());
1389  }
1390  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1391                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
1392                      unsigned TypeQuals) {
1393    ID.AddPointer(ET.getAsOpaquePtr());
1394    ID.AddInteger(ArraySize.getZExtValue());
1395    ID.AddInteger(SizeMod);
1396    ID.AddInteger(TypeQuals);
1397  }
1398  static bool classof(const Type *T) {
1399    return T->getTypeClass() == ConstantArray;
1400  }
1401  static bool classof(const ConstantArrayType *) { return true; }
1402};
1403
1404/// IncompleteArrayType - This class represents C arrays with an unspecified
1405/// size.  For example 'int A[]' has an IncompleteArrayType where the element
1406/// type is 'int' and the size is unspecified.
1407class IncompleteArrayType : public ArrayType {
1408
1409  IncompleteArrayType(QualType et, QualType can,
1410                      ArraySizeModifier sm, unsigned tq)
1411    : ArrayType(IncompleteArray, et, can, sm, tq) {}
1412  friend class ASTContext;  // ASTContext creates these.
1413public:
1414  bool isSugared() const { return false; }
1415  QualType desugar() const { return QualType(this, 0); }
1416
1417  static bool classof(const Type *T) {
1418    return T->getTypeClass() == IncompleteArray;
1419  }
1420  static bool classof(const IncompleteArrayType *) { return true; }
1421
1422  friend class StmtIteratorBase;
1423
1424  void Profile(llvm::FoldingSetNodeID &ID) {
1425    Profile(ID, getElementType(), getSizeModifier(),
1426            getIndexTypeCVRQualifiers());
1427  }
1428
1429  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1430                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
1431    ID.AddPointer(ET.getAsOpaquePtr());
1432    ID.AddInteger(SizeMod);
1433    ID.AddInteger(TypeQuals);
1434  }
1435};
1436
1437/// VariableArrayType - This class represents C arrays with a specified size
1438/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
1439/// Since the size expression is an arbitrary expression, we store it as such.
1440///
1441/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
1442/// should not be: two lexically equivalent variable array types could mean
1443/// different things, for example, these variables do not have the same type
1444/// dynamically:
1445///
1446/// void foo(int x) {
1447///   int Y[x];
1448///   ++x;
1449///   int Z[x];
1450/// }
1451///
1452class VariableArrayType : public ArrayType {
1453  /// SizeExpr - An assignment expression. VLA's are only permitted within
1454  /// a function block.
1455  Stmt *SizeExpr;
1456  /// Brackets - The left and right array brackets.
1457  SourceRange Brackets;
1458
1459  VariableArrayType(QualType et, QualType can, Expr *e,
1460                    ArraySizeModifier sm, unsigned tq,
1461                    SourceRange brackets)
1462    : ArrayType(VariableArray, et, can, sm, tq),
1463      SizeExpr((Stmt*) e), Brackets(brackets) {}
1464  friend class ASTContext;  // ASTContext creates these.
1465  virtual void Destroy(ASTContext& C);
1466
1467public:
1468  Expr *getSizeExpr() const {
1469    // We use C-style casts instead of cast<> here because we do not wish
1470    // to have a dependency of Type.h on Stmt.h/Expr.h.
1471    return (Expr*) SizeExpr;
1472  }
1473  SourceRange getBracketsRange() const { return Brackets; }
1474  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1475  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1476
1477  bool isSugared() const { return false; }
1478  QualType desugar() const { return QualType(this, 0); }
1479
1480  static bool classof(const Type *T) {
1481    return T->getTypeClass() == VariableArray;
1482  }
1483  static bool classof(const VariableArrayType *) { return true; }
1484
1485  friend class StmtIteratorBase;
1486
1487  void Profile(llvm::FoldingSetNodeID &ID) {
1488    assert(0 && "Cannnot unique VariableArrayTypes.");
1489  }
1490};
1491
1492/// DependentSizedArrayType - This type represents an array type in
1493/// C++ whose size is a value-dependent expression. For example:
1494///
1495/// \code
1496/// template<typename T, int Size>
1497/// class array {
1498///   T data[Size];
1499/// };
1500/// \endcode
1501///
1502/// For these types, we won't actually know what the array bound is
1503/// until template instantiation occurs, at which point this will
1504/// become either a ConstantArrayType or a VariableArrayType.
1505class DependentSizedArrayType : public ArrayType {
1506  ASTContext &Context;
1507
1508  /// \brief An assignment expression that will instantiate to the
1509  /// size of the array.
1510  ///
1511  /// The expression itself might be NULL, in which case the array
1512  /// type will have its size deduced from an initializer.
1513  Stmt *SizeExpr;
1514
1515  /// Brackets - The left and right array brackets.
1516  SourceRange Brackets;
1517
1518  DependentSizedArrayType(ASTContext &Context, QualType et, QualType can,
1519                          Expr *e, ArraySizeModifier sm, unsigned tq,
1520                          SourceRange brackets)
1521    : ArrayType(DependentSizedArray, et, can, sm, tq),
1522      Context(Context), SizeExpr((Stmt*) e), Brackets(brackets) {}
1523  friend class ASTContext;  // ASTContext creates these.
1524  virtual void Destroy(ASTContext& C);
1525
1526public:
1527  Expr *getSizeExpr() const {
1528    // We use C-style casts instead of cast<> here because we do not wish
1529    // to have a dependency of Type.h on Stmt.h/Expr.h.
1530    return (Expr*) SizeExpr;
1531  }
1532  SourceRange getBracketsRange() const { return Brackets; }
1533  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1534  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1535
1536  bool isSugared() const { return false; }
1537  QualType desugar() const { return QualType(this, 0); }
1538
1539  static bool classof(const Type *T) {
1540    return T->getTypeClass() == DependentSizedArray;
1541  }
1542  static bool classof(const DependentSizedArrayType *) { return true; }
1543
1544  friend class StmtIteratorBase;
1545
1546
1547  void Profile(llvm::FoldingSetNodeID &ID) {
1548    Profile(ID, Context, getElementType(),
1549            getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
1550  }
1551
1552  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1553                      QualType ET, ArraySizeModifier SizeMod,
1554                      unsigned TypeQuals, Expr *E);
1555};
1556
1557/// DependentSizedExtVectorType - This type represent an extended vector type
1558/// where either the type or size is dependent. For example:
1559/// @code
1560/// template<typename T, int Size>
1561/// class vector {
1562///   typedef T __attribute__((ext_vector_type(Size))) type;
1563/// }
1564/// @endcode
1565class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
1566  ASTContext &Context;
1567  Expr *SizeExpr;
1568  /// ElementType - The element type of the array.
1569  QualType ElementType;
1570  SourceLocation loc;
1571
1572  DependentSizedExtVectorType(ASTContext &Context, QualType ElementType,
1573                              QualType can, Expr *SizeExpr, SourceLocation loc)
1574    : Type (DependentSizedExtVector, can, true),
1575      Context(Context), SizeExpr(SizeExpr), ElementType(ElementType),
1576      loc(loc) {}
1577  friend class ASTContext;
1578  virtual void Destroy(ASTContext& C);
1579
1580public:
1581  Expr *getSizeExpr() const { return SizeExpr; }
1582  QualType getElementType() const { return ElementType; }
1583  SourceLocation getAttributeLoc() const { return loc; }
1584
1585  bool isSugared() const { return false; }
1586  QualType desugar() const { return QualType(this, 0); }
1587
1588  static bool classof(const Type *T) {
1589    return T->getTypeClass() == DependentSizedExtVector;
1590  }
1591  static bool classof(const DependentSizedExtVectorType *) { return true; }
1592
1593  void Profile(llvm::FoldingSetNodeID &ID) {
1594    Profile(ID, Context, getElementType(), getSizeExpr());
1595  }
1596
1597  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1598                      QualType ElementType, Expr *SizeExpr);
1599};
1600
1601
1602/// VectorType - GCC generic vector type. This type is created using
1603/// __attribute__((vector_size(n)), where "n" specifies the vector size in
1604/// bytes; or from an Altivec __vector or vector declaration.
1605/// Since the constructor takes the number of vector elements, the
1606/// client is responsible for converting the size into the number of elements.
1607class VectorType : public Type, public llvm::FoldingSetNode {
1608protected:
1609  /// ElementType - The element type of the vector.
1610  QualType ElementType;
1611
1612  /// NumElements - The number of elements in the vector.
1613  unsigned NumElements;
1614
1615  /// AltiVec - True if this is for an Altivec vector.
1616  bool AltiVec;
1617
1618  /// Pixel - True if this is for an Altivec vector pixel.
1619  bool Pixel;
1620
1621  VectorType(QualType vecType, unsigned nElements, QualType canonType,
1622      bool isAltiVec, bool isPixel) :
1623    Type(Vector, canonType, vecType->isDependentType()),
1624    ElementType(vecType), NumElements(nElements),
1625    AltiVec(isAltiVec), Pixel(isPixel) {}
1626  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
1627             QualType canonType, bool isAltiVec, bool isPixel)
1628    : Type(tc, canonType, vecType->isDependentType()), ElementType(vecType),
1629      NumElements(nElements), AltiVec(isAltiVec), Pixel(isPixel) {}
1630  friend class ASTContext;  // ASTContext creates these.
1631public:
1632
1633  QualType getElementType() const { return ElementType; }
1634  unsigned getNumElements() const { return NumElements; }
1635
1636  bool isSugared() const { return false; }
1637  QualType desugar() const { return QualType(this, 0); }
1638
1639  bool isAltiVec() const { return AltiVec; }
1640
1641  bool isPixel() const { return Pixel; }
1642
1643  void Profile(llvm::FoldingSetNodeID &ID) {
1644    Profile(ID, getElementType(), getNumElements(), getTypeClass(),
1645      AltiVec, Pixel);
1646  }
1647  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
1648                      unsigned NumElements, TypeClass TypeClass,
1649                      bool isAltiVec, bool isPixel) {
1650    ID.AddPointer(ElementType.getAsOpaquePtr());
1651    ID.AddInteger(NumElements);
1652    ID.AddInteger(TypeClass);
1653    ID.AddBoolean(isAltiVec);
1654    ID.AddBoolean(isPixel);
1655  }
1656
1657  virtual Linkage getLinkage() const;
1658
1659  static bool classof(const Type *T) {
1660    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
1661  }
1662  static bool classof(const VectorType *) { return true; }
1663};
1664
1665/// ExtVectorType - Extended vector type. This type is created using
1666/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
1667/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
1668/// class enables syntactic extensions, like Vector Components for accessing
1669/// points, colors, and textures (modeled after OpenGL Shading Language).
1670class ExtVectorType : public VectorType {
1671  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
1672    VectorType(ExtVector, vecType, nElements, canonType, false, false) {}
1673  friend class ASTContext;  // ASTContext creates these.
1674public:
1675  static int getPointAccessorIdx(char c) {
1676    switch (c) {
1677    default: return -1;
1678    case 'x': return 0;
1679    case 'y': return 1;
1680    case 'z': return 2;
1681    case 'w': return 3;
1682    }
1683  }
1684  static int getNumericAccessorIdx(char c) {
1685    switch (c) {
1686      default: return -1;
1687      case '0': return 0;
1688      case '1': return 1;
1689      case '2': return 2;
1690      case '3': return 3;
1691      case '4': return 4;
1692      case '5': return 5;
1693      case '6': return 6;
1694      case '7': return 7;
1695      case '8': return 8;
1696      case '9': return 9;
1697      case 'A':
1698      case 'a': return 10;
1699      case 'B':
1700      case 'b': return 11;
1701      case 'C':
1702      case 'c': return 12;
1703      case 'D':
1704      case 'd': return 13;
1705      case 'E':
1706      case 'e': return 14;
1707      case 'F':
1708      case 'f': return 15;
1709    }
1710  }
1711
1712  static int getAccessorIdx(char c) {
1713    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
1714    return getNumericAccessorIdx(c);
1715  }
1716
1717  bool isAccessorWithinNumElements(char c) const {
1718    if (int idx = getAccessorIdx(c)+1)
1719      return unsigned(idx-1) < NumElements;
1720    return false;
1721  }
1722  bool isSugared() const { return false; }
1723  QualType desugar() const { return QualType(this, 0); }
1724
1725  static bool classof(const Type *T) {
1726    return T->getTypeClass() == ExtVector;
1727  }
1728  static bool classof(const ExtVectorType *) { return true; }
1729};
1730
1731/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
1732/// class of FunctionNoProtoType and FunctionProtoType.
1733///
1734class FunctionType : public Type {
1735  /// SubClassData - This field is owned by the subclass, put here to pack
1736  /// tightly with the ivars in Type.
1737  bool SubClassData : 1;
1738
1739  /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
1740  /// other bitfields.
1741  /// The qualifiers are part of FunctionProtoType because...
1742  ///
1743  /// C++ 8.3.5p4: The return type, the parameter type list and the
1744  /// cv-qualifier-seq, [...], are part of the function type.
1745  ///
1746  unsigned TypeQuals : 3;
1747
1748  /// NoReturn - Indicates if the function type is attribute noreturn.
1749  unsigned NoReturn : 1;
1750
1751  /// CallConv - The calling convention used by the function.
1752  unsigned CallConv : 2;
1753
1754  // The type returned by the function.
1755  QualType ResultType;
1756protected:
1757  FunctionType(TypeClass tc, QualType res, bool SubclassInfo,
1758               unsigned typeQuals, QualType Canonical, bool Dependent,
1759               bool noReturn, CallingConv callConv)
1760    : Type(tc, Canonical, Dependent),
1761      SubClassData(SubclassInfo), TypeQuals(typeQuals), NoReturn(noReturn),
1762      CallConv(callConv), ResultType(res) {}
1763  bool getSubClassData() const { return SubClassData; }
1764  unsigned getTypeQuals() const { return TypeQuals; }
1765public:
1766
1767  QualType getResultType() const { return ResultType; }
1768  bool getNoReturnAttr() const { return NoReturn; }
1769  CallingConv getCallConv() const { return (CallingConv)CallConv; }
1770
1771  static llvm::StringRef getNameForCallConv(CallingConv CC);
1772
1773  static bool classof(const Type *T) {
1774    return T->getTypeClass() == FunctionNoProto ||
1775           T->getTypeClass() == FunctionProto;
1776  }
1777  static bool classof(const FunctionType *) { return true; }
1778};
1779
1780/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
1781/// no information available about its arguments.
1782class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
1783  FunctionNoProtoType(QualType Result, QualType Canonical,
1784                      bool NoReturn = false, CallingConv CallConv = CC_Default)
1785    : FunctionType(FunctionNoProto, Result, false, 0, Canonical,
1786                   /*Dependent=*/false, NoReturn, CallConv) {}
1787  friend class ASTContext;  // ASTContext creates these.
1788public:
1789  // No additional state past what FunctionType provides.
1790
1791  bool isSugared() const { return false; }
1792  QualType desugar() const { return QualType(this, 0); }
1793
1794  void Profile(llvm::FoldingSetNodeID &ID) {
1795    Profile(ID, getResultType(), getNoReturnAttr(), getCallConv());
1796  }
1797  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
1798                      bool NoReturn, CallingConv CallConv) {
1799    ID.AddInteger(CallConv);
1800    ID.AddInteger(NoReturn);
1801    ID.AddPointer(ResultType.getAsOpaquePtr());
1802  }
1803
1804  virtual Linkage getLinkage() const;
1805
1806  static bool classof(const Type *T) {
1807    return T->getTypeClass() == FunctionNoProto;
1808  }
1809  static bool classof(const FunctionNoProtoType *) { return true; }
1810};
1811
1812/// FunctionProtoType - Represents a prototype with argument type info, e.g.
1813/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
1814/// arguments, not as having a single void argument. Such a type can have an
1815/// exception specification, but this specification is not part of the canonical
1816/// type.
1817class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
1818  /// hasAnyDependentType - Determine whether there are any dependent
1819  /// types within the arguments passed in.
1820  static bool hasAnyDependentType(const QualType *ArgArray, unsigned numArgs) {
1821    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
1822      if (ArgArray[Idx]->isDependentType())
1823    return true;
1824
1825    return false;
1826  }
1827
1828  FunctionProtoType(QualType Result, const QualType *ArgArray, unsigned numArgs,
1829                    bool isVariadic, unsigned typeQuals, bool hasExs,
1830                    bool hasAnyExs, const QualType *ExArray,
1831                    unsigned numExs, QualType Canonical, bool NoReturn,
1832                    CallingConv CallConv)
1833    : FunctionType(FunctionProto, Result, isVariadic, typeQuals, Canonical,
1834                   (Result->isDependentType() ||
1835                    hasAnyDependentType(ArgArray, numArgs)), NoReturn,
1836                   CallConv),
1837      NumArgs(numArgs), NumExceptions(numExs), HasExceptionSpec(hasExs),
1838      AnyExceptionSpec(hasAnyExs) {
1839    // Fill in the trailing argument array.
1840    QualType *ArgInfo = reinterpret_cast<QualType*>(this+1);
1841    for (unsigned i = 0; i != numArgs; ++i)
1842      ArgInfo[i] = ArgArray[i];
1843    // Fill in the exception array.
1844    QualType *Ex = ArgInfo + numArgs;
1845    for (unsigned i = 0; i != numExs; ++i)
1846      Ex[i] = ExArray[i];
1847  }
1848
1849  /// NumArgs - The number of arguments this function has, not counting '...'.
1850  unsigned NumArgs : 20;
1851
1852  /// NumExceptions - The number of types in the exception spec, if any.
1853  unsigned NumExceptions : 10;
1854
1855  /// HasExceptionSpec - Whether this function has an exception spec at all.
1856  bool HasExceptionSpec : 1;
1857
1858  /// AnyExceptionSpec - Whether this function has a throw(...) spec.
1859  bool AnyExceptionSpec : 1;
1860
1861  /// ArgInfo - There is an variable size array after the class in memory that
1862  /// holds the argument types.
1863
1864  /// Exceptions - There is another variable size array after ArgInfo that
1865  /// holds the exception types.
1866
1867  friend class ASTContext;  // ASTContext creates these.
1868
1869public:
1870  unsigned getNumArgs() const { return NumArgs; }
1871  QualType getArgType(unsigned i) const {
1872    assert(i < NumArgs && "Invalid argument number!");
1873    return arg_type_begin()[i];
1874  }
1875
1876  bool hasExceptionSpec() const { return HasExceptionSpec; }
1877  bool hasAnyExceptionSpec() const { return AnyExceptionSpec; }
1878  unsigned getNumExceptions() const { return NumExceptions; }
1879  QualType getExceptionType(unsigned i) const {
1880    assert(i < NumExceptions && "Invalid exception number!");
1881    return exception_begin()[i];
1882  }
1883  bool hasEmptyExceptionSpec() const {
1884    return hasExceptionSpec() && !hasAnyExceptionSpec() &&
1885      getNumExceptions() == 0;
1886  }
1887
1888  bool isVariadic() const { return getSubClassData(); }
1889  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
1890
1891  typedef const QualType *arg_type_iterator;
1892  arg_type_iterator arg_type_begin() const {
1893    return reinterpret_cast<const QualType *>(this+1);
1894  }
1895  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
1896
1897  typedef const QualType *exception_iterator;
1898  exception_iterator exception_begin() const {
1899    // exceptions begin where arguments end
1900    return arg_type_end();
1901  }
1902  exception_iterator exception_end() const {
1903    return exception_begin() + NumExceptions;
1904  }
1905
1906  bool isSugared() const { return false; }
1907  QualType desugar() const { return QualType(this, 0); }
1908
1909  virtual Linkage getLinkage() const;
1910
1911  static bool classof(const Type *T) {
1912    return T->getTypeClass() == FunctionProto;
1913  }
1914  static bool classof(const FunctionProtoType *) { return true; }
1915
1916  void Profile(llvm::FoldingSetNodeID &ID);
1917  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
1918                      arg_type_iterator ArgTys, unsigned NumArgs,
1919                      bool isVariadic, unsigned TypeQuals,
1920                      bool hasExceptionSpec, bool anyExceptionSpec,
1921                      unsigned NumExceptions, exception_iterator Exs,
1922                      bool NoReturn, CallingConv CallConv);
1923};
1924
1925
1926/// \brief Represents the dependent type named by a dependently-scoped
1927/// typename using declaration, e.g.
1928///   using typename Base<T>::foo;
1929/// Template instantiation turns these into the underlying type.
1930class UnresolvedUsingType : public Type {
1931  UnresolvedUsingTypenameDecl *Decl;
1932
1933  UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
1934    : Type(UnresolvedUsing, QualType(), true),
1935      Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
1936  friend class ASTContext; // ASTContext creates these.
1937public:
1938
1939  UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
1940
1941  bool isSugared() const { return false; }
1942  QualType desugar() const { return QualType(this, 0); }
1943
1944  static bool classof(const Type *T) {
1945    return T->getTypeClass() == UnresolvedUsing;
1946  }
1947  static bool classof(const UnresolvedUsingType *) { return true; }
1948
1949  void Profile(llvm::FoldingSetNodeID &ID) {
1950    return Profile(ID, Decl);
1951  }
1952  static void Profile(llvm::FoldingSetNodeID &ID,
1953                      UnresolvedUsingTypenameDecl *D) {
1954    ID.AddPointer(D);
1955  }
1956};
1957
1958
1959class TypedefType : public Type {
1960  TypedefDecl *Decl;
1961protected:
1962  TypedefType(TypeClass tc, const TypedefDecl *D, QualType can)
1963    : Type(tc, can, can->isDependentType()),
1964      Decl(const_cast<TypedefDecl*>(D)) {
1965    assert(!isa<TypedefType>(can) && "Invalid canonical type");
1966  }
1967  friend class ASTContext;  // ASTContext creates these.
1968public:
1969
1970  TypedefDecl *getDecl() const { return Decl; }
1971
1972  /// LookThroughTypedefs - Return the ultimate type this typedef corresponds to
1973  /// potentially looking through *all* consecutive typedefs.  This returns the
1974  /// sum of the type qualifiers, so if you have:
1975  ///   typedef const int A;
1976  ///   typedef volatile A B;
1977  /// looking through the typedefs for B will give you "const volatile A".
1978  QualType LookThroughTypedefs() const;
1979
1980  bool isSugared() const { return true; }
1981  QualType desugar() const;
1982
1983  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
1984  static bool classof(const TypedefType *) { return true; }
1985};
1986
1987/// TypeOfExprType (GCC extension).
1988class TypeOfExprType : public Type {
1989  Expr *TOExpr;
1990
1991protected:
1992  TypeOfExprType(Expr *E, QualType can = QualType());
1993  friend class ASTContext;  // ASTContext creates these.
1994public:
1995  Expr *getUnderlyingExpr() const { return TOExpr; }
1996
1997  /// \brief Remove a single level of sugar.
1998  QualType desugar() const;
1999
2000  /// \brief Returns whether this type directly provides sugar.
2001  bool isSugared() const { return true; }
2002
2003  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
2004  static bool classof(const TypeOfExprType *) { return true; }
2005};
2006
2007/// \brief Internal representation of canonical, dependent
2008/// typeof(expr) types.
2009///
2010/// This class is used internally by the ASTContext to manage
2011/// canonical, dependent types, only. Clients will only see instances
2012/// of this class via TypeOfExprType nodes.
2013class DependentTypeOfExprType
2014  : public TypeOfExprType, public llvm::FoldingSetNode {
2015  ASTContext &Context;
2016
2017public:
2018  DependentTypeOfExprType(ASTContext &Context, Expr *E)
2019    : TypeOfExprType(E), Context(Context) { }
2020
2021  bool isSugared() const { return false; }
2022  QualType desugar() const { return QualType(this, 0); }
2023
2024  void Profile(llvm::FoldingSetNodeID &ID) {
2025    Profile(ID, Context, getUnderlyingExpr());
2026  }
2027
2028  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
2029                      Expr *E);
2030};
2031
2032/// TypeOfType (GCC extension).
2033class TypeOfType : public Type {
2034  QualType TOType;
2035  TypeOfType(QualType T, QualType can)
2036    : Type(TypeOf, can, T->isDependentType()), TOType(T) {
2037    assert(!isa<TypedefType>(can) && "Invalid canonical type");
2038  }
2039  friend class ASTContext;  // ASTContext creates these.
2040public:
2041  QualType getUnderlyingType() const { return TOType; }
2042
2043  /// \brief Remove a single level of sugar.
2044  QualType desugar() const { return getUnderlyingType(); }
2045
2046  /// \brief Returns whether this type directly provides sugar.
2047  bool isSugared() const { return true; }
2048
2049  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
2050  static bool classof(const TypeOfType *) { return true; }
2051};
2052
2053/// DecltypeType (C++0x)
2054class DecltypeType : public Type {
2055  Expr *E;
2056
2057  // FIXME: We could get rid of UnderlyingType if we wanted to: We would have to
2058  // Move getDesugaredType to ASTContext so that it can call getDecltypeForExpr
2059  // from it.
2060  QualType UnderlyingType;
2061
2062protected:
2063  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
2064  friend class ASTContext;  // ASTContext creates these.
2065public:
2066  Expr *getUnderlyingExpr() const { return E; }
2067  QualType getUnderlyingType() const { return UnderlyingType; }
2068
2069  /// \brief Remove a single level of sugar.
2070  QualType desugar() const { return getUnderlyingType(); }
2071
2072  /// \brief Returns whether this type directly provides sugar.
2073  bool isSugared() const { return !isDependentType(); }
2074
2075  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
2076  static bool classof(const DecltypeType *) { return true; }
2077};
2078
2079/// \brief Internal representation of canonical, dependent
2080/// decltype(expr) types.
2081///
2082/// This class is used internally by the ASTContext to manage
2083/// canonical, dependent types, only. Clients will only see instances
2084/// of this class via DecltypeType nodes.
2085class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
2086  ASTContext &Context;
2087
2088public:
2089  DependentDecltypeType(ASTContext &Context, Expr *E);
2090
2091  bool isSugared() const { return false; }
2092  QualType desugar() const { return QualType(this, 0); }
2093
2094  void Profile(llvm::FoldingSetNodeID &ID) {
2095    Profile(ID, Context, getUnderlyingExpr());
2096  }
2097
2098  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
2099                      Expr *E);
2100};
2101
2102class TagType : public Type {
2103  /// Stores the TagDecl associated with this type. The decl will
2104  /// point to the TagDecl that actually defines the entity (or is a
2105  /// definition in progress), if there is such a definition. The
2106  /// single-bit value will be non-zero when this tag is in the
2107  /// process of being defined.
2108  mutable llvm::PointerIntPair<TagDecl *, 1> decl;
2109  friend class ASTContext;
2110  friend class TagDecl;
2111
2112protected:
2113  TagType(TypeClass TC, const TagDecl *D, QualType can);
2114
2115public:
2116  TagDecl *getDecl() const { return decl.getPointer(); }
2117
2118  /// @brief Determines whether this type is in the process of being
2119  /// defined.
2120  bool isBeingDefined() const { return decl.getInt(); }
2121  void setBeingDefined(bool Def) const { decl.setInt(Def? 1 : 0); }
2122
2123  virtual Linkage getLinkage() const;
2124
2125  static bool classof(const Type *T) {
2126    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
2127  }
2128  static bool classof(const TagType *) { return true; }
2129  static bool classof(const RecordType *) { return true; }
2130  static bool classof(const EnumType *) { return true; }
2131};
2132
2133/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
2134/// to detect TagType objects of structs/unions/classes.
2135class RecordType : public TagType {
2136protected:
2137  explicit RecordType(const RecordDecl *D)
2138    : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2139  explicit RecordType(TypeClass TC, RecordDecl *D)
2140    : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2141  friend class ASTContext;   // ASTContext creates these.
2142public:
2143
2144  RecordDecl *getDecl() const {
2145    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
2146  }
2147
2148  // FIXME: This predicate is a helper to QualType/Type. It needs to
2149  // recursively check all fields for const-ness. If any field is declared
2150  // const, it needs to return false.
2151  bool hasConstFields() const { return false; }
2152
2153  // FIXME: RecordType needs to check when it is created that all fields are in
2154  // the same address space, and return that.
2155  unsigned getAddressSpace() const { return 0; }
2156
2157  bool isSugared() const { return false; }
2158  QualType desugar() const { return QualType(this, 0); }
2159
2160  static bool classof(const TagType *T);
2161  static bool classof(const Type *T) {
2162    return isa<TagType>(T) && classof(cast<TagType>(T));
2163  }
2164  static bool classof(const RecordType *) { return true; }
2165};
2166
2167/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
2168/// to detect TagType objects of enums.
2169class EnumType : public TagType {
2170  explicit EnumType(const EnumDecl *D)
2171    : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2172  friend class ASTContext;   // ASTContext creates these.
2173public:
2174
2175  EnumDecl *getDecl() const {
2176    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
2177  }
2178
2179  bool isSugared() const { return false; }
2180  QualType desugar() const { return QualType(this, 0); }
2181
2182  static bool classof(const TagType *T);
2183  static bool classof(const Type *T) {
2184    return isa<TagType>(T) && classof(cast<TagType>(T));
2185  }
2186  static bool classof(const EnumType *) { return true; }
2187};
2188
2189/// ElaboratedType - A non-canonical type used to represents uses of
2190/// elaborated type specifiers in C++.  For example:
2191///
2192///   void foo(union MyUnion);
2193///            ^^^^^^^^^^^^^
2194///
2195/// At the moment, for efficiency we do not create elaborated types in
2196/// C, since outside of typedefs all references to structs would
2197/// necessarily be elaborated.
2198class ElaboratedType : public Type, public llvm::FoldingSetNode {
2199public:
2200  enum TagKind {
2201    TK_struct,
2202    TK_union,
2203    TK_class,
2204    TK_enum
2205  };
2206
2207private:
2208  /// The tag that was used in this elaborated type specifier.
2209  TagKind Tag;
2210
2211  /// The underlying type.
2212  QualType UnderlyingType;
2213
2214  explicit ElaboratedType(QualType Ty, TagKind Tag, QualType Canon)
2215    : Type(Elaborated, Canon, Canon->isDependentType()),
2216      Tag(Tag), UnderlyingType(Ty) { }
2217  friend class ASTContext;   // ASTContext creates these.
2218
2219public:
2220  TagKind getTagKind() const { return Tag; }
2221  QualType getUnderlyingType() const { return UnderlyingType; }
2222
2223  /// \brief Remove a single level of sugar.
2224  QualType desugar() const { return getUnderlyingType(); }
2225
2226  /// \brief Returns whether this type directly provides sugar.
2227  bool isSugared() const { return true; }
2228
2229  static const char *getNameForTagKind(TagKind Kind) {
2230    switch (Kind) {
2231    default: assert(0 && "Unknown TagKind!");
2232    case TK_struct: return "struct";
2233    case TK_union:  return "union";
2234    case TK_class:  return "class";
2235    case TK_enum:   return "enum";
2236    }
2237  }
2238
2239  void Profile(llvm::FoldingSetNodeID &ID) {
2240    Profile(ID, getUnderlyingType(), getTagKind());
2241  }
2242  static void Profile(llvm::FoldingSetNodeID &ID, QualType T, TagKind Tag) {
2243    ID.AddPointer(T.getAsOpaquePtr());
2244    ID.AddInteger(Tag);
2245  }
2246
2247  static bool classof(const ElaboratedType*) { return true; }
2248  static bool classof(const Type *T) { return T->getTypeClass() == Elaborated; }
2249};
2250
2251class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2252  unsigned Depth : 15;
2253  unsigned Index : 16;
2254  unsigned ParameterPack : 1;
2255  IdentifierInfo *Name;
2256
2257  TemplateTypeParmType(unsigned D, unsigned I, bool PP, IdentifierInfo *N,
2258                       QualType Canon)
2259    : Type(TemplateTypeParm, Canon, /*Dependent=*/true),
2260      Depth(D), Index(I), ParameterPack(PP), Name(N) { }
2261
2262  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
2263    : Type(TemplateTypeParm, QualType(this, 0), /*Dependent=*/true),
2264      Depth(D), Index(I), ParameterPack(PP), Name(0) { }
2265
2266  friend class ASTContext;  // ASTContext creates these
2267
2268public:
2269  unsigned getDepth() const { return Depth; }
2270  unsigned getIndex() const { return Index; }
2271  bool isParameterPack() const { return ParameterPack; }
2272  IdentifierInfo *getName() const { return Name; }
2273
2274  bool isSugared() const { return false; }
2275  QualType desugar() const { return QualType(this, 0); }
2276
2277  void Profile(llvm::FoldingSetNodeID &ID) {
2278    Profile(ID, Depth, Index, ParameterPack, Name);
2279  }
2280
2281  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
2282                      unsigned Index, bool ParameterPack,
2283                      IdentifierInfo *Name) {
2284    ID.AddInteger(Depth);
2285    ID.AddInteger(Index);
2286    ID.AddBoolean(ParameterPack);
2287    ID.AddPointer(Name);
2288  }
2289
2290  static bool classof(const Type *T) {
2291    return T->getTypeClass() == TemplateTypeParm;
2292  }
2293  static bool classof(const TemplateTypeParmType *T) { return true; }
2294};
2295
2296/// \brief Represents the result of substituting a type for a template
2297/// type parameter.
2298///
2299/// Within an instantiated template, all template type parameters have
2300/// been replaced with these.  They are used solely to record that a
2301/// type was originally written as a template type parameter;
2302/// therefore they are never canonical.
2303class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2304  // The original type parameter.
2305  const TemplateTypeParmType *Replaced;
2306
2307  SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
2308    : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType()),
2309      Replaced(Param) { }
2310
2311  friend class ASTContext;
2312
2313public:
2314  IdentifierInfo *getName() const { return Replaced->getName(); }
2315
2316  /// Gets the template parameter that was substituted for.
2317  const TemplateTypeParmType *getReplacedParameter() const {
2318    return Replaced;
2319  }
2320
2321  /// Gets the type that was substituted for the template
2322  /// parameter.
2323  QualType getReplacementType() const {
2324    return getCanonicalTypeInternal();
2325  }
2326
2327  bool isSugared() const { return true; }
2328  QualType desugar() const { return getReplacementType(); }
2329
2330  void Profile(llvm::FoldingSetNodeID &ID) {
2331    Profile(ID, getReplacedParameter(), getReplacementType());
2332  }
2333  static void Profile(llvm::FoldingSetNodeID &ID,
2334                      const TemplateTypeParmType *Replaced,
2335                      QualType Replacement) {
2336    ID.AddPointer(Replaced);
2337    ID.AddPointer(Replacement.getAsOpaquePtr());
2338  }
2339
2340  static bool classof(const Type *T) {
2341    return T->getTypeClass() == SubstTemplateTypeParm;
2342  }
2343  static bool classof(const SubstTemplateTypeParmType *T) { return true; }
2344};
2345
2346/// \brief Represents the type of a template specialization as written
2347/// in the source code.
2348///
2349/// Template specialization types represent the syntactic form of a
2350/// template-id that refers to a type, e.g., @c vector<int>. Some
2351/// template specialization types are syntactic sugar, whose canonical
2352/// type will point to some other type node that represents the
2353/// instantiation or class template specialization. For example, a
2354/// class template specialization type of @c vector<int> will refer to
2355/// a tag type for the instantiation
2356/// @c std::vector<int, std::allocator<int>>.
2357///
2358/// Other template specialization types, for which the template name
2359/// is dependent, may be canonical types. These types are always
2360/// dependent.
2361class TemplateSpecializationType
2362  : public Type, public llvm::FoldingSetNode {
2363
2364  // FIXME: Currently needed for profiling expressions; can we avoid this?
2365  ASTContext &Context;
2366
2367    /// \brief The name of the template being specialized.
2368  TemplateName Template;
2369
2370  /// \brief - The number of template arguments named in this class
2371  /// template specialization.
2372  unsigned NumArgs;
2373
2374  TemplateSpecializationType(ASTContext &Context,
2375                             TemplateName T,
2376                             const TemplateArgument *Args,
2377                             unsigned NumArgs, QualType Canon);
2378
2379  virtual void Destroy(ASTContext& C);
2380
2381  friend class ASTContext;  // ASTContext creates these
2382
2383public:
2384  /// \brief Determine whether any of the given template arguments are
2385  /// dependent.
2386  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
2387                                            unsigned NumArgs);
2388
2389  static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
2390                                            unsigned NumArgs);
2391
2392  static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &);
2393
2394  /// \brief Print a template argument list, including the '<' and '>'
2395  /// enclosing the template arguments.
2396  static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
2397                                               unsigned NumArgs,
2398                                               const PrintingPolicy &Policy);
2399
2400  static std::string PrintTemplateArgumentList(const TemplateArgumentLoc *Args,
2401                                               unsigned NumArgs,
2402                                               const PrintingPolicy &Policy);
2403
2404  static std::string PrintTemplateArgumentList(const TemplateArgumentListInfo &,
2405                                               const PrintingPolicy &Policy);
2406
2407  typedef const TemplateArgument * iterator;
2408
2409  iterator begin() const { return getArgs(); }
2410  iterator end() const;
2411
2412  /// \brief Retrieve the name of the template that we are specializing.
2413  TemplateName getTemplateName() const { return Template; }
2414
2415  /// \brief Retrieve the template arguments.
2416  const TemplateArgument *getArgs() const {
2417    return reinterpret_cast<const TemplateArgument *>(this + 1);
2418  }
2419
2420  /// \brief Retrieve the number of template arguments.
2421  unsigned getNumArgs() const { return NumArgs; }
2422
2423  /// \brief Retrieve a specific template argument as a type.
2424  /// \precondition @c isArgType(Arg)
2425  const TemplateArgument &getArg(unsigned Idx) const;
2426
2427  bool isSugared() const { return !isDependentType(); }
2428  QualType desugar() const { return getCanonicalTypeInternal(); }
2429
2430  void Profile(llvm::FoldingSetNodeID &ID) {
2431    Profile(ID, Template, getArgs(), NumArgs, Context);
2432  }
2433
2434  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
2435                      const TemplateArgument *Args, unsigned NumArgs,
2436                      ASTContext &Context);
2437
2438  static bool classof(const Type *T) {
2439    return T->getTypeClass() == TemplateSpecialization;
2440  }
2441  static bool classof(const TemplateSpecializationType *T) { return true; }
2442};
2443
2444/// \brief The injected class name of a C++ class template.  Used to
2445/// record that a type was spelled with a bare identifier rather than
2446/// as a template-id; the equivalent for non-templated classes is just
2447/// RecordType.
2448///
2449/// For consistency, template instantiation turns these into RecordTypes.
2450///
2451/// The desugared form is always a unqualified TemplateSpecializationType.
2452/// The canonical form is always either a TemplateSpecializationType
2453/// (when dependent) or a RecordType (otherwise).
2454class InjectedClassNameType : public Type {
2455  CXXRecordDecl *Decl;
2456
2457  QualType UnderlyingType;
2458
2459  friend class ASTContext; // ASTContext creates these.
2460  InjectedClassNameType(CXXRecordDecl *D, QualType TST, QualType Canon)
2461    : Type(InjectedClassName, Canon, Canon->isDependentType()),
2462      Decl(D), UnderlyingType(TST) {
2463    assert(isa<TemplateSpecializationType>(TST));
2464    assert(!TST.hasQualifiers());
2465    assert(TST->getCanonicalTypeInternal() == Canon);
2466  }
2467
2468public:
2469  QualType getUnderlyingType() const { return UnderlyingType; }
2470  const TemplateSpecializationType *getUnderlyingTST() const {
2471    return cast<TemplateSpecializationType>(UnderlyingType.getTypePtr());
2472  }
2473
2474  CXXRecordDecl *getDecl() const { return Decl; }
2475
2476  bool isSugared() const { return true; }
2477  QualType desugar() const { return UnderlyingType; }
2478
2479  static bool classof(const Type *T) {
2480    return T->getTypeClass() == InjectedClassName;
2481  }
2482  static bool classof(const InjectedClassNameType *T) { return true; }
2483};
2484
2485/// \brief Represents a type that was referred to via a qualified
2486/// name, e.g., N::M::type.
2487///
2488/// This type is used to keep track of a type name as written in the
2489/// source code, including any nested-name-specifiers. The type itself
2490/// is always "sugar", used to express what was written in the source
2491/// code but containing no additional semantic information.
2492class QualifiedNameType : public Type, public llvm::FoldingSetNode {
2493  /// \brief The nested name specifier containing the qualifier.
2494  NestedNameSpecifier *NNS;
2495
2496  /// \brief The type that this qualified name refers to.
2497  QualType NamedType;
2498
2499  QualifiedNameType(NestedNameSpecifier *NNS, QualType NamedType,
2500                    QualType CanonType)
2501    : Type(QualifiedName, CanonType, NamedType->isDependentType()),
2502      NNS(NNS), NamedType(NamedType) { }
2503
2504  friend class ASTContext;  // ASTContext creates these
2505
2506public:
2507  /// \brief Retrieve the qualification on this type.
2508  NestedNameSpecifier *getQualifier() const { return NNS; }
2509
2510  /// \brief Retrieve the type named by the qualified-id.
2511  QualType getNamedType() const { return NamedType; }
2512
2513  /// \brief Remove a single level of sugar.
2514  QualType desugar() const { return getNamedType(); }
2515
2516  /// \brief Returns whether this type directly provides sugar.
2517  bool isSugared() const { return true; }
2518
2519  void Profile(llvm::FoldingSetNodeID &ID) {
2520    Profile(ID, NNS, NamedType);
2521  }
2522
2523  static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
2524                      QualType NamedType) {
2525    ID.AddPointer(NNS);
2526    NamedType.Profile(ID);
2527  }
2528
2529  static bool classof(const Type *T) {
2530    return T->getTypeClass() == QualifiedName;
2531  }
2532  static bool classof(const QualifiedNameType *T) { return true; }
2533};
2534
2535/// \brief Represents a 'typename' specifier that names a type within
2536/// a dependent type, e.g., "typename T::type".
2537///
2538/// TypenameType has a very similar structure to QualifiedNameType,
2539/// which also involves a nested-name-specifier following by a type,
2540/// and (FIXME!) both can even be prefixed by the 'typename'
2541/// keyword. However, the two types serve very different roles:
2542/// QualifiedNameType is a non-semantic type that serves only as sugar
2543/// to show how a particular type was written in the source
2544/// code. TypenameType, on the other hand, only occurs when the
2545/// nested-name-specifier is dependent, such that we cannot resolve
2546/// the actual type until after instantiation.
2547class TypenameType : public Type, public llvm::FoldingSetNode {
2548  /// \brief The nested name specifier containing the qualifier.
2549  NestedNameSpecifier *NNS;
2550
2551  typedef llvm::PointerUnion<const IdentifierInfo *,
2552                             const TemplateSpecializationType *> NameType;
2553
2554  /// \brief The type that this typename specifier refers to.
2555  NameType Name;
2556
2557  TypenameType(NestedNameSpecifier *NNS, const IdentifierInfo *Name,
2558               QualType CanonType)
2559    : Type(Typename, CanonType, true), NNS(NNS), Name(Name) {
2560    assert(NNS->isDependent() &&
2561           "TypenameType requires a dependent nested-name-specifier");
2562  }
2563
2564  TypenameType(NestedNameSpecifier *NNS, const TemplateSpecializationType *Ty,
2565               QualType CanonType)
2566    : Type(Typename, CanonType, true), NNS(NNS), Name(Ty) {
2567    assert(NNS->isDependent() &&
2568           "TypenameType requires a dependent nested-name-specifier");
2569  }
2570
2571  friend class ASTContext;  // ASTContext creates these
2572
2573public:
2574  /// \brief Retrieve the qualification on this type.
2575  NestedNameSpecifier *getQualifier() const { return NNS; }
2576
2577  /// \brief Retrieve the type named by the typename specifier as an
2578  /// identifier.
2579  ///
2580  /// This routine will return a non-NULL identifier pointer when the
2581  /// form of the original typename was terminated by an identifier,
2582  /// e.g., "typename T::type".
2583  const IdentifierInfo *getIdentifier() const {
2584    return Name.dyn_cast<const IdentifierInfo *>();
2585  }
2586
2587  /// \brief Retrieve the type named by the typename specifier as a
2588  /// type specialization.
2589  const TemplateSpecializationType *getTemplateId() const {
2590    return Name.dyn_cast<const TemplateSpecializationType *>();
2591  }
2592
2593  bool isSugared() const { return false; }
2594  QualType desugar() const { return QualType(this, 0); }
2595
2596  void Profile(llvm::FoldingSetNodeID &ID) {
2597    Profile(ID, NNS, Name);
2598  }
2599
2600  static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
2601                      NameType Name) {
2602    ID.AddPointer(NNS);
2603    ID.AddPointer(Name.getOpaqueValue());
2604  }
2605
2606  static bool classof(const Type *T) {
2607    return T->getTypeClass() == Typename;
2608  }
2609  static bool classof(const TypenameType *T) { return true; }
2610};
2611
2612/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
2613/// object oriented design.  They basically correspond to C++ classes.  There
2614/// are two kinds of interface types, normal interfaces like "NSString" and
2615/// qualified interfaces, which are qualified with a protocol list like
2616/// "NSString<NSCopyable, NSAmazing>".
2617class ObjCInterfaceType : public Type, public llvm::FoldingSetNode {
2618  ObjCInterfaceDecl *Decl;
2619
2620  /// \brief The number of protocols stored after the ObjCInterfaceType node.
2621  /// The list of protocols is sorted on protocol name. No protocol is enterred
2622  /// more than once.
2623  unsigned NumProtocols;
2624
2625  ObjCInterfaceType(QualType Canonical, ObjCInterfaceDecl *D,
2626                    ObjCProtocolDecl **Protos, unsigned NumP);
2627  friend class ASTContext;  // ASTContext creates these.
2628public:
2629  void Destroy(ASTContext& C);
2630
2631  ObjCInterfaceDecl *getDecl() const { return Decl; }
2632
2633  /// getNumProtocols - Return the number of qualifying protocols in this
2634  /// interface type, or 0 if there are none.
2635  unsigned getNumProtocols() const { return NumProtocols; }
2636
2637  /// \brief Retrieve the Ith protocol.
2638  ObjCProtocolDecl *getProtocol(unsigned I) const {
2639    assert(I < getNumProtocols() && "Out-of-range protocol access");
2640    return qual_begin()[I];
2641  }
2642
2643  /// qual_iterator and friends: this provides access to the (potentially empty)
2644  /// list of protocols qualifying this interface.
2645  typedef ObjCProtocolDecl*  const * qual_iterator;
2646  qual_iterator qual_begin() const {
2647    return reinterpret_cast<qual_iterator>(this + 1);
2648  }
2649  qual_iterator qual_end() const   {
2650    return qual_begin() + NumProtocols;
2651  }
2652  bool qual_empty() const { return NumProtocols == 0; }
2653
2654  bool isSugared() const { return false; }
2655  QualType desugar() const { return QualType(this, 0); }
2656
2657  void Profile(llvm::FoldingSetNodeID &ID);
2658  static void Profile(llvm::FoldingSetNodeID &ID,
2659                      const ObjCInterfaceDecl *Decl,
2660                      ObjCProtocolDecl * const *protocols,
2661                      unsigned NumProtocols);
2662
2663  virtual Linkage getLinkage() const;
2664
2665  static bool classof(const Type *T) {
2666    return T->getTypeClass() == ObjCInterface;
2667  }
2668  static bool classof(const ObjCInterfaceType *) { return true; }
2669};
2670
2671/// ObjCObjectPointerType - Used to represent 'id', 'Interface *', 'id <p>',
2672/// and 'Interface <p> *'.
2673///
2674/// Duplicate protocols are removed and protocol list is canonicalized to be in
2675/// alphabetical order.
2676class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
2677  QualType PointeeType; // A builtin or interface type.
2678
2679  /// \brief The number of protocols stored after the ObjCObjectPointerType
2680  /// node.
2681  ///
2682  /// The list of protocols is sorted on protocol name. No protocol is enterred
2683  /// more than once.
2684  unsigned NumProtocols;
2685
2686  ObjCObjectPointerType(QualType Canonical, QualType T,
2687                        ObjCProtocolDecl **Protos, unsigned NumP);
2688  friend class ASTContext;  // ASTContext creates these.
2689
2690public:
2691  void Destroy(ASTContext& C);
2692
2693  // Get the pointee type. Pointee will either be:
2694  // - a built-in type (for 'id' and 'Class').
2695  // - an interface type (for user-defined types).
2696  // - a TypedefType whose canonical type is an interface (as in 'T' below).
2697  //   For example: typedef NSObject T; T *var;
2698  QualType getPointeeType() const { return PointeeType; }
2699
2700  const ObjCInterfaceType *getInterfaceType() const {
2701    return PointeeType->getAs<ObjCInterfaceType>();
2702  }
2703  /// getInterfaceDecl - returns an interface decl for user-defined types.
2704  ObjCInterfaceDecl *getInterfaceDecl() const {
2705    return getInterfaceType() ? getInterfaceType()->getDecl() : 0;
2706  }
2707  /// isObjCIdType - true for "id".
2708  bool isObjCIdType() const {
2709    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCId) &&
2710           !NumProtocols;
2711  }
2712  /// isObjCClassType - true for "Class".
2713  bool isObjCClassType() const {
2714    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCClass) &&
2715           !NumProtocols;
2716  }
2717
2718  /// isObjCQualifiedIdType - true for "id <p>".
2719  bool isObjCQualifiedIdType() const {
2720    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCId) &&
2721           NumProtocols;
2722  }
2723  /// isObjCQualifiedClassType - true for "Class <p>".
2724  bool isObjCQualifiedClassType() const {
2725    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCClass) &&
2726           NumProtocols;
2727  }
2728  /// qual_iterator and friends: this provides access to the (potentially empty)
2729  /// list of protocols qualifying this interface.
2730  typedef ObjCProtocolDecl*  const * qual_iterator;
2731
2732  qual_iterator qual_begin() const {
2733    return reinterpret_cast<qual_iterator> (this + 1);
2734  }
2735  qual_iterator qual_end() const   {
2736    return qual_begin() + NumProtocols;
2737  }
2738  bool qual_empty() const { return NumProtocols == 0; }
2739
2740  /// getNumProtocols - Return the number of qualifying protocols in this
2741  /// interface type, or 0 if there are none.
2742  unsigned getNumProtocols() const { return NumProtocols; }
2743
2744  /// \brief Retrieve the Ith protocol.
2745  ObjCProtocolDecl *getProtocol(unsigned I) const {
2746    assert(I < getNumProtocols() && "Out-of-range protocol access");
2747    return qual_begin()[I];
2748  }
2749
2750  bool isSugared() const { return false; }
2751  QualType desugar() const { return QualType(this, 0); }
2752
2753  virtual Linkage getLinkage() const;
2754
2755  void Profile(llvm::FoldingSetNodeID &ID);
2756  static void Profile(llvm::FoldingSetNodeID &ID, QualType T,
2757                      ObjCProtocolDecl *const *protocols,
2758                      unsigned NumProtocols);
2759  static bool classof(const Type *T) {
2760    return T->getTypeClass() == ObjCObjectPointer;
2761  }
2762  static bool classof(const ObjCObjectPointerType *) { return true; }
2763};
2764
2765/// A qualifier set is used to build a set of qualifiers.
2766class QualifierCollector : public Qualifiers {
2767  ASTContext *Context;
2768
2769public:
2770  QualifierCollector(Qualifiers Qs = Qualifiers())
2771    : Qualifiers(Qs), Context(0) {}
2772  QualifierCollector(ASTContext &Context, Qualifiers Qs = Qualifiers())
2773    : Qualifiers(Qs), Context(&Context) {}
2774
2775  void setContext(ASTContext &C) { Context = &C; }
2776
2777  /// Collect any qualifiers on the given type and return an
2778  /// unqualified type.
2779  const Type *strip(QualType QT) {
2780    addFastQualifiers(QT.getLocalFastQualifiers());
2781    if (QT.hasLocalNonFastQualifiers()) {
2782      const ExtQuals *EQ = QT.getExtQualsUnsafe();
2783      Context = &EQ->getContext();
2784      addQualifiers(EQ->getQualifiers());
2785      return EQ->getBaseType();
2786    }
2787    return QT.getTypePtrUnsafe();
2788  }
2789
2790  /// Apply the collected qualifiers to the given type.
2791  QualType apply(QualType QT) const;
2792
2793  /// Apply the collected qualifiers to the given type.
2794  QualType apply(const Type* T) const;
2795
2796};
2797
2798
2799// Inline function definitions.
2800
2801inline bool QualType::isCanonical() const {
2802  const Type *T = getTypePtr();
2803  if (hasLocalQualifiers())
2804    return T->isCanonicalUnqualified() && !isa<ArrayType>(T);
2805  return T->isCanonicalUnqualified();
2806}
2807
2808inline bool QualType::isCanonicalAsParam() const {
2809  if (hasLocalQualifiers()) return false;
2810  const Type *T = getTypePtr();
2811  return T->isCanonicalUnqualified() &&
2812           !isa<FunctionType>(T) && !isa<ArrayType>(T);
2813}
2814
2815inline bool QualType::isConstQualified() const {
2816  return isLocalConstQualified() ||
2817              getTypePtr()->getCanonicalTypeInternal().isLocalConstQualified();
2818}
2819
2820inline bool QualType::isRestrictQualified() const {
2821  return isLocalRestrictQualified() ||
2822            getTypePtr()->getCanonicalTypeInternal().isLocalRestrictQualified();
2823}
2824
2825
2826inline bool QualType::isVolatileQualified() const {
2827  return isLocalVolatileQualified() ||
2828  getTypePtr()->getCanonicalTypeInternal().isLocalVolatileQualified();
2829}
2830
2831inline bool QualType::hasQualifiers() const {
2832  return hasLocalQualifiers() ||
2833                  getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers();
2834}
2835
2836inline Qualifiers QualType::getQualifiers() const {
2837  Qualifiers Quals = getLocalQualifiers();
2838  Quals.addQualifiers(
2839                 getTypePtr()->getCanonicalTypeInternal().getLocalQualifiers());
2840  return Quals;
2841}
2842
2843inline unsigned QualType::getCVRQualifiers() const {
2844  return getLocalCVRQualifiers() |
2845              getTypePtr()->getCanonicalTypeInternal().getLocalCVRQualifiers();
2846}
2847
2848/// getCVRQualifiersThroughArrayTypes - If there are CVR qualifiers for this
2849/// type, returns them. Otherwise, if this is an array type, recurses
2850/// on the element type until some qualifiers have been found or a non-array
2851/// type reached.
2852inline unsigned QualType::getCVRQualifiersThroughArrayTypes() const {
2853  if (unsigned Quals = getCVRQualifiers())
2854    return Quals;
2855  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2856  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
2857    return AT->getElementType().getCVRQualifiersThroughArrayTypes();
2858  return 0;
2859}
2860
2861inline void QualType::removeConst() {
2862  removeFastQualifiers(Qualifiers::Const);
2863}
2864
2865inline void QualType::removeRestrict() {
2866  removeFastQualifiers(Qualifiers::Restrict);
2867}
2868
2869inline void QualType::removeVolatile() {
2870  QualifierCollector Qc;
2871  const Type *Ty = Qc.strip(*this);
2872  if (Qc.hasVolatile()) {
2873    Qc.removeVolatile();
2874    *this = Qc.apply(Ty);
2875  }
2876}
2877
2878inline void QualType::removeCVRQualifiers(unsigned Mask) {
2879  assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
2880
2881  // Fast path: we don't need to touch the slow qualifiers.
2882  if (!(Mask & ~Qualifiers::FastMask)) {
2883    removeFastQualifiers(Mask);
2884    return;
2885  }
2886
2887  QualifierCollector Qc;
2888  const Type *Ty = Qc.strip(*this);
2889  Qc.removeCVRQualifiers(Mask);
2890  *this = Qc.apply(Ty);
2891}
2892
2893/// getAddressSpace - Return the address space of this type.
2894inline unsigned QualType::getAddressSpace() const {
2895  if (hasLocalNonFastQualifiers()) {
2896    const ExtQuals *EQ = getExtQualsUnsafe();
2897    if (EQ->hasAddressSpace())
2898      return EQ->getAddressSpace();
2899  }
2900
2901  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2902  if (CT.hasLocalNonFastQualifiers()) {
2903    const ExtQuals *EQ = CT.getExtQualsUnsafe();
2904    if (EQ->hasAddressSpace())
2905      return EQ->getAddressSpace();
2906  }
2907
2908  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
2909    return AT->getElementType().getAddressSpace();
2910  if (const RecordType *RT = dyn_cast<RecordType>(CT))
2911    return RT->getAddressSpace();
2912  return 0;
2913}
2914
2915/// getObjCGCAttr - Return the gc attribute of this type.
2916inline Qualifiers::GC QualType::getObjCGCAttr() const {
2917  if (hasLocalNonFastQualifiers()) {
2918    const ExtQuals *EQ = getExtQualsUnsafe();
2919    if (EQ->hasObjCGCAttr())
2920      return EQ->getObjCGCAttr();
2921  }
2922
2923  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2924  if (CT.hasLocalNonFastQualifiers()) {
2925    const ExtQuals *EQ = CT.getExtQualsUnsafe();
2926    if (EQ->hasObjCGCAttr())
2927      return EQ->getObjCGCAttr();
2928  }
2929
2930  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
2931      return AT->getElementType().getObjCGCAttr();
2932  if (const ObjCObjectPointerType *PT = CT->getAs<ObjCObjectPointerType>())
2933    return PT->getPointeeType().getObjCGCAttr();
2934  // We most look at all pointer types, not just pointer to interface types.
2935  if (const PointerType *PT = CT->getAs<PointerType>())
2936    return PT->getPointeeType().getObjCGCAttr();
2937  return Qualifiers::GCNone;
2938}
2939
2940  /// getNoReturnAttr - Returns true if the type has the noreturn attribute,
2941  /// false otherwise.
2942inline bool Type::getNoReturnAttr() const {
2943  if (const PointerType *PT = getAs<PointerType>()) {
2944    if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
2945      return FT->getNoReturnAttr();
2946  } else if (const FunctionType *FT = getAs<FunctionType>())
2947    return FT->getNoReturnAttr();
2948
2949  return false;
2950}
2951
2952/// getCallConv - Returns the calling convention of the type if the type
2953/// is a function type, CC_Default otherwise.
2954inline CallingConv Type::getCallConv() const {
2955  if (const PointerType *PT = getAs<PointerType>())
2956    return PT->getPointeeType()->getCallConv();
2957  else if (const ReferenceType *RT = getAs<ReferenceType>())
2958    return RT->getPointeeType()->getCallConv();
2959  else if (const MemberPointerType *MPT =
2960           getAs<MemberPointerType>())
2961    return MPT->getPointeeType()->getCallConv();
2962  else if (const BlockPointerType *BPT =
2963           getAs<BlockPointerType>()) {
2964    if (const FunctionType *FT = BPT->getPointeeType()->getAs<FunctionType>())
2965      return FT->getCallConv();
2966  } else if (const FunctionType *FT = getAs<FunctionType>())
2967    return FT->getCallConv();
2968
2969  return CC_Default;
2970}
2971
2972/// isMoreQualifiedThan - Determine whether this type is more
2973/// qualified than the Other type. For example, "const volatile int"
2974/// is more qualified than "const int", "volatile int", and
2975/// "int". However, it is not more qualified than "const volatile
2976/// int".
2977inline bool QualType::isMoreQualifiedThan(QualType Other) const {
2978  // FIXME: work on arbitrary qualifiers
2979  unsigned MyQuals = this->getCVRQualifiersThroughArrayTypes();
2980  unsigned OtherQuals = Other.getCVRQualifiersThroughArrayTypes();
2981  if (getAddressSpace() != Other.getAddressSpace())
2982    return false;
2983  return MyQuals != OtherQuals && (MyQuals | OtherQuals) == MyQuals;
2984}
2985
2986/// isAtLeastAsQualifiedAs - Determine whether this type is at last
2987/// as qualified as the Other type. For example, "const volatile
2988/// int" is at least as qualified as "const int", "volatile int",
2989/// "int", and "const volatile int".
2990inline bool QualType::isAtLeastAsQualifiedAs(QualType Other) const {
2991  // FIXME: work on arbitrary qualifiers
2992  unsigned MyQuals = this->getCVRQualifiersThroughArrayTypes();
2993  unsigned OtherQuals = Other.getCVRQualifiersThroughArrayTypes();
2994  if (getAddressSpace() != Other.getAddressSpace())
2995    return false;
2996  return (MyQuals | OtherQuals) == MyQuals;
2997}
2998
2999/// getNonReferenceType - If Type is a reference type (e.g., const
3000/// int&), returns the type that the reference refers to ("const
3001/// int"). Otherwise, returns the type itself. This routine is used
3002/// throughout Sema to implement C++ 5p6:
3003///
3004///   If an expression initially has the type "reference to T" (8.3.2,
3005///   8.5.3), the type is adjusted to "T" prior to any further
3006///   analysis, the expression designates the object or function
3007///   denoted by the reference, and the expression is an lvalue.
3008inline QualType QualType::getNonReferenceType() const {
3009  if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
3010    return RefType->getPointeeType();
3011  else
3012    return *this;
3013}
3014
3015inline const ObjCInterfaceType *Type::getAsPointerToObjCInterfaceType() const {
3016  if (const PointerType *PT = getAs<PointerType>())
3017    return PT->getPointeeType()->getAs<ObjCInterfaceType>();
3018  return 0;
3019}
3020
3021inline bool Type::isFunctionType() const {
3022  return isa<FunctionType>(CanonicalType);
3023}
3024inline bool Type::isPointerType() const {
3025  return isa<PointerType>(CanonicalType);
3026}
3027inline bool Type::isAnyPointerType() const {
3028  return isPointerType() || isObjCObjectPointerType();
3029}
3030inline bool Type::isBlockPointerType() const {
3031  return isa<BlockPointerType>(CanonicalType);
3032}
3033inline bool Type::isReferenceType() const {
3034  return isa<ReferenceType>(CanonicalType);
3035}
3036inline bool Type::isLValueReferenceType() const {
3037  return isa<LValueReferenceType>(CanonicalType);
3038}
3039inline bool Type::isRValueReferenceType() const {
3040  return isa<RValueReferenceType>(CanonicalType);
3041}
3042inline bool Type::isFunctionPointerType() const {
3043  if (const PointerType* T = getAs<PointerType>())
3044    return T->getPointeeType()->isFunctionType();
3045  else
3046    return false;
3047}
3048inline bool Type::isMemberPointerType() const {
3049  return isa<MemberPointerType>(CanonicalType);
3050}
3051inline bool Type::isMemberFunctionPointerType() const {
3052  if (const MemberPointerType* T = getAs<MemberPointerType>())
3053    return T->getPointeeType()->isFunctionType();
3054  else
3055    return false;
3056}
3057inline bool Type::isArrayType() const {
3058  return isa<ArrayType>(CanonicalType);
3059}
3060inline bool Type::isConstantArrayType() const {
3061  return isa<ConstantArrayType>(CanonicalType);
3062}
3063inline bool Type::isIncompleteArrayType() const {
3064  return isa<IncompleteArrayType>(CanonicalType);
3065}
3066inline bool Type::isVariableArrayType() const {
3067  return isa<VariableArrayType>(CanonicalType);
3068}
3069inline bool Type::isDependentSizedArrayType() const {
3070  return isa<DependentSizedArrayType>(CanonicalType);
3071}
3072inline bool Type::isRecordType() const {
3073  return isa<RecordType>(CanonicalType);
3074}
3075inline bool Type::isAnyComplexType() const {
3076  return isa<ComplexType>(CanonicalType);
3077}
3078inline bool Type::isVectorType() const {
3079  return isa<VectorType>(CanonicalType);
3080}
3081inline bool Type::isExtVectorType() const {
3082  return isa<ExtVectorType>(CanonicalType);
3083}
3084inline bool Type::isObjCObjectPointerType() const {
3085  return isa<ObjCObjectPointerType>(CanonicalType);
3086}
3087inline bool Type::isObjCInterfaceType() const {
3088  return isa<ObjCInterfaceType>(CanonicalType);
3089}
3090inline bool Type::isObjCQualifiedIdType() const {
3091  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3092    return OPT->isObjCQualifiedIdType();
3093  return false;
3094}
3095inline bool Type::isObjCQualifiedClassType() const {
3096  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3097    return OPT->isObjCQualifiedClassType();
3098  return false;
3099}
3100inline bool Type::isObjCIdType() const {
3101  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3102    return OPT->isObjCIdType();
3103  return false;
3104}
3105inline bool Type::isObjCClassType() const {
3106  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3107    return OPT->isObjCClassType();
3108  return false;
3109}
3110inline bool Type::isObjCSelType() const {
3111  if (const PointerType *OPT = getAs<PointerType>())
3112    return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
3113  return false;
3114}
3115inline bool Type::isObjCBuiltinType() const {
3116  return isObjCIdType() || isObjCClassType() || isObjCSelType();
3117}
3118inline bool Type::isTemplateTypeParmType() const {
3119  return isa<TemplateTypeParmType>(CanonicalType);
3120}
3121
3122inline bool Type::isSpecificBuiltinType(unsigned K) const {
3123  if (const BuiltinType *BT = getAs<BuiltinType>())
3124    if (BT->getKind() == (BuiltinType::Kind) K)
3125      return true;
3126  return false;
3127}
3128
3129/// \brief Determines whether this is a type for which one can define
3130/// an overloaded operator.
3131inline bool Type::isOverloadableType() const {
3132  return isDependentType() || isRecordType() || isEnumeralType();
3133}
3134
3135inline bool Type::hasPointerRepresentation() const {
3136  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
3137          isObjCInterfaceType() || isObjCObjectPointerType() ||
3138          isObjCQualifiedInterfaceType() || isNullPtrType());
3139}
3140
3141inline bool Type::hasObjCPointerRepresentation() const {
3142  return (isObjCInterfaceType() || isObjCObjectPointerType() ||
3143          isObjCQualifiedInterfaceType());
3144}
3145
3146/// Insertion operator for diagnostics.  This allows sending QualType's into a
3147/// diagnostic with <<.
3148inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
3149                                           QualType T) {
3150  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
3151                  Diagnostic::ak_qualtype);
3152  return DB;
3153}
3154
3155// Helper class template that is used by Type::getAs to ensure that one does
3156// not try to look through a qualified type to get to an array type.
3157template<typename T,
3158         bool isArrayType = (llvm::is_same<T, ArrayType>::value ||
3159                             llvm::is_base_of<ArrayType, T>::value)>
3160struct ArrayType_cannot_be_used_with_getAs { };
3161
3162template<typename T>
3163struct ArrayType_cannot_be_used_with_getAs<T, true>;
3164
3165/// Member-template getAs<specific type>'.
3166template <typename T> const T *Type::getAs() const {
3167  ArrayType_cannot_be_used_with_getAs<T> at;
3168  (void)at;
3169
3170  // If this is directly a T type, return it.
3171  if (const T *Ty = dyn_cast<T>(this))
3172    return Ty;
3173
3174  // If the canonical form of this type isn't the right kind, reject it.
3175  if (!isa<T>(CanonicalType))
3176    return 0;
3177
3178  // If this is a typedef for the type, strip the typedef off without
3179  // losing all typedef information.
3180  return cast<T>(getUnqualifiedDesugaredType());
3181}
3182
3183#ifndef NDEBUG
3184  /// \brief The number of times we have dynamically checked for an
3185  /// Objective-C-specific type node.
3186  extern llvm::Statistic objc_type_checks;
3187
3188  /// \brief The number of times we have dynamically checked for a
3189  /// C++-specific type node.
3190  extern llvm::Statistic cxx_type_checks;
3191#endif
3192}  // end namespace clang
3193
3194// Enumerate Objective-C types
3195CLANG_ISA_STATISTIC(ObjCInterfaceType, objc_type_checks)
3196CLANG_ISA_STATISTIC(ObjCObjectPointerType, objc_type_checks)
3197
3198// Enumerate C++ types
3199CLANG_ISA_STATISTIC(ReferenceType, cxx_type_checks)
3200CLANG_ISA_STATISTIC(LValueReferenceType, cxx_type_checks)
3201CLANG_ISA_STATISTIC(RValueReferenceType, cxx_type_checks)
3202CLANG_ISA_STATISTIC(MemberPointerType, cxx_type_checks)
3203CLANG_ISA_STATISTIC(DependentSizedArrayType, cxx_type_checks)
3204CLANG_ISA_STATISTIC(DependentSizedExtVectorType, cxx_type_checks)
3205CLANG_ISA_STATISTIC(UnresolvedUsingType, cxx_type_checks)
3206CLANG_ISA_STATISTIC(DecltypeType, cxx_type_checks)
3207CLANG_ISA_STATISTIC(TemplateTypeParmType, cxx_type_checks)
3208CLANG_ISA_STATISTIC(SubstTemplateTypeParmType, cxx_type_checks)
3209CLANG_ISA_STATISTIC(TemplateSpecializationType, cxx_type_checks)
3210CLANG_ISA_STATISTIC(QualifiedNameType, cxx_type_checks)
3211CLANG_ISA_STATISTIC(InjectedClassNameType, cxx_type_checks)
3212CLANG_ISA_STATISTIC(TypenameType, cxx_type_checks)
3213
3214#endif
3215