Type.h revision f8910df57799256c1897a8610dc52685729ae90e
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Basic/IdentifierTable.h"
19#include "clang/AST/NestedNameSpecifier.h"
20#include "clang/AST/TemplateName.h"
21#include "llvm/Support/Casting.h"
22#include "llvm/ADT/APSInt.h"
23#include "llvm/ADT/FoldingSet.h"
24#include "llvm/ADT/PointerIntPair.h"
25#include "llvm/ADT/PointerUnion.h"
26
27using llvm::isa;
28using llvm::cast;
29using llvm::cast_or_null;
30using llvm::dyn_cast;
31using llvm::dyn_cast_or_null;
32namespace clang { class Type; }
33
34namespace llvm {
35  template <typename T>
36  class PointerLikeTypeTraits;
37  template<>
38  class PointerLikeTypeTraits< ::clang::Type*> {
39  public:
40    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
41    static inline ::clang::Type *getFromVoidPointer(void *P) {
42      return static_cast< ::clang::Type*>(P);
43    }
44    enum { NumLowBitsAvailable = 3 };
45  };
46}
47
48namespace clang {
49  class ASTContext;
50  class TypedefDecl;
51  class TemplateDecl;
52  class TemplateTypeParmDecl;
53  class NonTypeTemplateParmDecl;
54  class TemplateTemplateParmDecl;
55  class TagDecl;
56  class RecordDecl;
57  class CXXRecordDecl;
58  class EnumDecl;
59  class FieldDecl;
60  class ObjCInterfaceDecl;
61  class ObjCProtocolDecl;
62  class ObjCMethodDecl;
63  class Expr;
64  class Stmt;
65  class SourceLocation;
66  class StmtIteratorBase;
67  class TemplateArgument;
68  class QualifiedNameType;
69  struct PrintingPolicy;
70
71  // Provide forward declarations for all of the *Type classes
72#define TYPE(Class, Base) class Class##Type;
73#include "clang/AST/TypeNodes.def"
74
75/// QualType - For efficiency, we don't store CVR-qualified types as nodes on
76/// their own: instead each reference to a type stores the qualifiers.  This
77/// greatly reduces the number of nodes we need to allocate for types (for
78/// example we only need one for 'int', 'const int', 'volatile int',
79/// 'const volatile int', etc).
80///
81/// As an added efficiency bonus, instead of making this a pair, we just store
82/// the three bits we care about in the low bits of the pointer.  To handle the
83/// packing/unpacking, we make QualType be a simple wrapper class that acts like
84/// a smart pointer.
85class QualType {
86  llvm::PointerIntPair<Type*, 3> Value;
87public:
88  enum TQ {   // NOTE: These flags must be kept in sync with DeclSpec::TQ.
89    Const    = 0x1,
90    Restrict = 0x2,
91    Volatile = 0x4,
92    CVRFlags = Const|Restrict|Volatile
93  };
94
95  enum GCAttrTypes {
96    GCNone = 0,
97    Weak,
98    Strong
99  };
100
101  QualType() {}
102
103  QualType(const Type *Ptr, unsigned Quals)
104    : Value(const_cast<Type*>(Ptr), Quals) {}
105
106  unsigned getCVRQualifiers() const { return Value.getInt(); }
107  void setCVRQualifiers(unsigned Quals) { Value.setInt(Quals); }
108  Type *getTypePtr() const { return Value.getPointer(); }
109
110  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
111  static QualType getFromOpaquePtr(void *Ptr) {
112    QualType T;
113    T.Value.setFromOpaqueValue(Ptr);
114    return T;
115  }
116
117  Type &operator*() const {
118    return *getTypePtr();
119  }
120
121  Type *operator->() const {
122    return getTypePtr();
123  }
124
125  /// isNull - Return true if this QualType doesn't point to a type yet.
126  bool isNull() const {
127    return getTypePtr() == 0;
128  }
129
130  bool isConstQualified() const {
131    return (getCVRQualifiers() & Const) ? true : false;
132  }
133  bool isVolatileQualified() const {
134    return (getCVRQualifiers() & Volatile) ? true : false;
135  }
136  bool isRestrictQualified() const {
137    return (getCVRQualifiers() & Restrict) ? true : false;
138  }
139
140  bool isConstant(ASTContext& Ctx) const;
141
142  /// addConst/addVolatile/addRestrict - add the specified type qual to this
143  /// QualType.
144  void addConst()    { Value.setInt(Value.getInt() | Const); }
145  void addVolatile() { Value.setInt(Value.getInt() | Volatile); }
146  void addRestrict() { Value.setInt(Value.getInt() | Restrict); }
147
148  void removeConst()    { Value.setInt(Value.getInt() & ~Const); }
149  void removeVolatile() { Value.setInt(Value.getInt() & ~Volatile); }
150  void removeRestrict() { Value.setInt(Value.getInt() & ~Restrict); }
151
152  QualType getQualifiedType(unsigned TQs) const {
153    return QualType(getTypePtr(), TQs);
154  }
155  QualType getWithAdditionalQualifiers(unsigned TQs) const {
156    return QualType(getTypePtr(), TQs|getCVRQualifiers());
157  }
158
159  QualType withConst() const { return getWithAdditionalQualifiers(Const); }
160  QualType withVolatile() const { return getWithAdditionalQualifiers(Volatile);}
161  QualType withRestrict() const { return getWithAdditionalQualifiers(Restrict);}
162
163  QualType getUnqualifiedType() const;
164  bool isMoreQualifiedThan(QualType Other) const;
165  bool isAtLeastAsQualifiedAs(QualType Other) const;
166  QualType getNonReferenceType() const;
167
168  /// getDesugaredType - Return the specified type with any "sugar" removed from
169  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
170  /// the type is already concrete, it returns it unmodified.  This is similar
171  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
172  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
173  /// concrete.
174  QualType getDesugaredType(bool ForDisplay = false) const;
175
176  /// operator==/!= - Indicate whether the specified types and qualifiers are
177  /// identical.
178  bool operator==(const QualType &RHS) const {
179    return Value == RHS.Value;
180  }
181  bool operator!=(const QualType &RHS) const {
182    return Value != RHS.Value;
183  }
184  std::string getAsString() const;
185
186  std::string getAsString(const PrintingPolicy &Policy) const {
187    std::string S;
188    getAsStringInternal(S, Policy);
189    return S;
190  }
191  void getAsStringInternal(std::string &Str,
192                           const PrintingPolicy &Policy) const;
193
194  void dump(const char *s) const;
195  void dump() const;
196
197  void Profile(llvm::FoldingSetNodeID &ID) const {
198    ID.AddPointer(getAsOpaquePtr());
199  }
200
201public:
202
203  /// getAddressSpace - Return the address space of this type.
204  inline unsigned getAddressSpace() const;
205
206  /// GCAttrTypesAttr - Returns gc attribute of this type.
207  inline QualType::GCAttrTypes getObjCGCAttr() const;
208
209  /// isObjCGCWeak true when Type is objc's weak.
210  bool isObjCGCWeak() const {
211    return getObjCGCAttr() == Weak;
212  }
213
214  /// isObjCGCStrong true when Type is objc's strong.
215  bool isObjCGCStrong() const {
216    return getObjCGCAttr() == Strong;
217  }
218};
219
220} // end clang.
221
222namespace llvm {
223/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
224/// to a specific Type class.
225template<> struct simplify_type<const ::clang::QualType> {
226  typedef ::clang::Type* SimpleType;
227  static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
228    return Val.getTypePtr();
229  }
230};
231template<> struct simplify_type< ::clang::QualType>
232  : public simplify_type<const ::clang::QualType> {};
233
234// Teach SmallPtrSet that QualType is "basically a pointer".
235template<>
236class PointerLikeTypeTraits<clang::QualType> {
237public:
238  static inline void *getAsVoidPointer(clang::QualType P) {
239    return P.getAsOpaquePtr();
240  }
241  static inline clang::QualType getFromVoidPointer(void *P) {
242    return clang::QualType::getFromOpaquePtr(P);
243  }
244  // CVR qualifiers go in low bits.
245  enum { NumLowBitsAvailable = 0 };
246};
247} // end namespace llvm
248
249namespace clang {
250
251/// Type - This is the base class of the type hierarchy.  A central concept
252/// with types is that each type always has a canonical type.  A canonical type
253/// is the type with any typedef names stripped out of it or the types it
254/// references.  For example, consider:
255///
256///  typedef int  foo;
257///  typedef foo* bar;
258///    'int *'    'foo *'    'bar'
259///
260/// There will be a Type object created for 'int'.  Since int is canonical, its
261/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
262/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
263/// there is a PointerType that represents 'int*', which, like 'int', is
264/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
265/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
266/// is also 'int*'.
267///
268/// Non-canonical types are useful for emitting diagnostics, without losing
269/// information about typedefs being used.  Canonical types are useful for type
270/// comparisons (they allow by-pointer equality tests) and useful for reasoning
271/// about whether something has a particular form (e.g. is a function type),
272/// because they implicitly, recursively, strip all typedefs out of a type.
273///
274/// Types, once created, are immutable.
275///
276class Type {
277public:
278  enum TypeClass {
279#define TYPE(Class, Base) Class,
280#define ABSTRACT_TYPE(Class, Base)
281#include "clang/AST/TypeNodes.def"
282    TagFirst = Record, TagLast = Enum
283  };
284
285private:
286  QualType CanonicalType;
287
288  /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
289  bool Dependent : 1;
290
291  /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
292  /// Note that this should stay at the end of the ivars for Type so that
293  /// subclasses can pack their bitfields into the same word.
294  unsigned TC : 6;
295
296  Type(const Type&);           // DO NOT IMPLEMENT.
297  void operator=(const Type&); // DO NOT IMPLEMENT.
298protected:
299  // silence VC++ warning C4355: 'this' : used in base member initializer list
300  Type *this_() { return this; }
301  Type(TypeClass tc, QualType Canonical, bool dependent)
302    : CanonicalType(Canonical.isNull() ? QualType(this_(), 0) : Canonical),
303      Dependent(dependent), TC(tc) {}
304  virtual ~Type() {}
305  virtual void Destroy(ASTContext& C);
306  friend class ASTContext;
307
308public:
309  TypeClass getTypeClass() const { return static_cast<TypeClass>(TC); }
310
311  bool isCanonical() const { return CanonicalType.getTypePtr() == this; }
312
313  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
314  /// object types, function types, and incomplete types.
315
316  /// \brief Determines whether the type describes an object in memory.
317  ///
318  /// Note that this definition of object type corresponds to the C++
319  /// definition of object type, which includes incomplete types, as
320  /// opposed to the C definition (which does not include incomplete
321  /// types).
322  bool isObjectType() const;
323
324  /// isIncompleteType - Return true if this is an incomplete type.
325  /// A type that can describe objects, but which lacks information needed to
326  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
327  /// routine will need to determine if the size is actually required.
328  bool isIncompleteType() const;
329
330  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
331  /// type, in other words, not a function type.
332  bool isIncompleteOrObjectType() const {
333    return !isFunctionType();
334  }
335
336  /// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10).
337  bool isPODType() const;
338
339  /// isVariablyModifiedType (C99 6.7.5.2p2) - Return true for variable array
340  /// types that have a non-constant expression. This does not include "[]".
341  bool isVariablyModifiedType() const;
342
343  /// Helper methods to distinguish type categories. All type predicates
344  /// operate on the canonical type, ignoring typedefs and qualifiers.
345
346  /// isSpecificBuiltinType - Test for a particular builtin type.
347  bool isSpecificBuiltinType(unsigned K) const;
348
349  /// isIntegerType() does *not* include complex integers (a GCC extension).
350  /// isComplexIntegerType() can be used to test for complex integers.
351  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
352  bool isEnumeralType() const;
353  bool isBooleanType() const;
354  bool isCharType() const;
355  bool isWideCharType() const;
356  bool isIntegralType() const;
357
358  /// Floating point categories.
359  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
360  /// isComplexType() does *not* include complex integers (a GCC extension).
361  /// isComplexIntegerType() can be used to test for complex integers.
362  bool isComplexType() const;      // C99 6.2.5p11 (complex)
363  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
364  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
365  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
366  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
367  bool isVoidType() const;         // C99 6.2.5p19
368  bool isDerivedType() const;      // C99 6.2.5p20
369  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
370  bool isAggregateType() const;
371
372  // Type Predicates: Check to see if this type is structurally the specified
373  // type, ignoring typedefs and qualifiers.
374  bool isFunctionType() const;
375  bool isFunctionNoProtoType() const { return getAsFunctionNoProtoType() != 0; }
376  bool isFunctionProtoType() const { return getAsFunctionProtoType() != 0; }
377  bool isPointerType() const;
378  bool isBlockPointerType() const;
379  bool isVoidPointerType() const;
380  bool isReferenceType() const;
381  bool isLValueReferenceType() const;
382  bool isRValueReferenceType() const;
383  bool isFunctionPointerType() const;
384  bool isMemberPointerType() const;
385  bool isMemberFunctionPointerType() const;
386  bool isArrayType() const;
387  bool isConstantArrayType() const;
388  bool isIncompleteArrayType() const;
389  bool isVariableArrayType() const;
390  bool isDependentSizedArrayType() const;
391  bool isRecordType() const;
392  bool isClassType() const;
393  bool isStructureType() const;
394  bool isUnionType() const;
395  bool isComplexIntegerType() const;            // GCC _Complex integer type.
396  bool isVectorType() const;                    // GCC vector type.
397  bool isExtVectorType() const;                 // Extended vector type.
398  bool isObjCObjectPointerType() const;         // Pointer to *any* ObjC object.
399  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
400  // for the common case.
401  bool isObjCInterfaceType() const;             // NSString or NSString<foo>
402  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
403  bool isObjCQualifiedIdType() const;           // id<foo>
404  bool isObjCIdType() const;                    // id
405  bool isObjCClassType() const;                 // Class
406  bool isTemplateTypeParmType() const;          // C++ template type parameter
407  bool isNullPtrType() const;                   // C++0x nullptr_t
408
409  /// isDependentType - Whether this type is a dependent type, meaning
410  /// that its definition somehow depends on a template parameter
411  /// (C++ [temp.dep.type]).
412  bool isDependentType() const { return Dependent; }
413  bool isOverloadableType() const;
414
415  /// hasPointerRepresentation - Whether this type is represented
416  /// natively as a pointer; this includes pointers, references, block
417  /// pointers, and Objective-C interface, qualified id, and qualified
418  /// interface types, as well as nullptr_t.
419  bool hasPointerRepresentation() const;
420
421  /// hasObjCPointerRepresentation - Whether this type can represent
422  /// an objective pointer type for the purpose of GC'ability
423  bool hasObjCPointerRepresentation() const;
424
425  // Type Checking Functions: Check to see if this type is structurally the
426  // specified type, ignoring typedefs and qualifiers, and return a pointer to
427  // the best type we can.
428  const BuiltinType *getAsBuiltinType() const;
429  const FunctionType *getAsFunctionType() const;
430  const FunctionNoProtoType *getAsFunctionNoProtoType() const;
431  const FunctionProtoType *getAsFunctionProtoType() const;
432  const PointerType *getAsPointerType() const;
433  const BlockPointerType *getAsBlockPointerType() const;
434  const ReferenceType *getAsReferenceType() const;
435  const LValueReferenceType *getAsLValueReferenceType() const;
436  const RValueReferenceType *getAsRValueReferenceType() const;
437  const MemberPointerType *getAsMemberPointerType() const;
438  const TagType *getAsTagType() const;
439  const RecordType *getAsRecordType() const;
440  const RecordType *getAsStructureType() const;
441  /// NOTE: getAs*ArrayType are methods on ASTContext.
442  const TypedefType *getAsTypedefType() const;
443  const RecordType *getAsUnionType() const;
444  const EnumType *getAsEnumType() const;
445  const VectorType *getAsVectorType() const; // GCC vector type.
446  const ComplexType *getAsComplexType() const;
447  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
448  const ExtVectorType *getAsExtVectorType() const; // Extended vector type.
449  const ObjCObjectPointerType *getAsObjCObjectPointerType() const;
450  // The following is a convenience method that returns an ObjCObjectPointerType
451  // for object declared using an interface.
452  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
453  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
454  const ObjCInterfaceType *getAsObjCInterfaceType() const;
455  const ObjCQualifiedInterfaceType *getAsObjCQualifiedInterfaceType() const;
456  const TemplateTypeParmType *getAsTemplateTypeParmType() const;
457
458  const TemplateSpecializationType *
459    getAsTemplateSpecializationType() const;
460
461  /// getAsPointerToObjCInterfaceType - If this is a pointer to an ObjC
462  /// interface, return the interface type, otherwise return null.
463  const ObjCInterfaceType *getAsPointerToObjCInterfaceType() const;
464
465  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
466  /// element type of the array, potentially with type qualifiers missing.
467  /// This method should never be used when type qualifiers are meaningful.
468  const Type *getArrayElementTypeNoTypeQual() const;
469
470  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
471  /// pointer, this returns the respective pointee.
472  QualType getPointeeType() const;
473
474  /// getDesugaredType - Return the specified type with any "sugar" removed from
475  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
476  /// the type is already concrete, it returns it unmodified.  This is similar
477  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
478  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
479  /// concrete.
480  QualType getDesugaredType(bool ForDisplay = false) const;
481
482  /// More type predicates useful for type checking/promotion
483  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
484
485  /// isSignedIntegerType - Return true if this is an integer type that is
486  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
487  /// an enum decl which has a signed representation, or a vector of signed
488  /// integer element type.
489  bool isSignedIntegerType() const;
490
491  /// isUnsignedIntegerType - Return true if this is an integer type that is
492  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
493  /// decl which has an unsigned representation, or a vector of unsigned integer
494  /// element type.
495  bool isUnsignedIntegerType() const;
496
497  /// isConstantSizeType - Return true if this is not a variable sized type,
498  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
499  /// incomplete types.
500  bool isConstantSizeType() const;
501
502  /// isSpecifierType - Returns true if this type can be represented by some
503  /// set of type specifiers.
504  bool isSpecifierType() const;
505
506  QualType getCanonicalTypeInternal() const { return CanonicalType; }
507  void dump() const;
508  virtual void getAsStringInternal(std::string &InnerString,
509                                   const PrintingPolicy &Policy) const = 0;
510  static bool classof(const Type *) { return true; }
511};
512
513/// ExtQualType - TR18037 (C embedded extensions) 6.2.5p26
514/// This supports all kinds of type attributes; including,
515/// address space qualified types, objective-c's __weak and
516/// __strong attributes.
517///
518class ExtQualType : public Type, public llvm::FoldingSetNode {
519  /// BaseType - This is the underlying type that this qualifies.  All CVR
520  /// qualifiers are stored on the QualType that references this type, so we
521  /// can't have any here.
522  Type *BaseType;
523
524  /// Address Space ID - The address space ID this type is qualified with.
525  unsigned AddressSpace;
526  /// GC __weak/__strong attributes
527  QualType::GCAttrTypes GCAttrType;
528
529  ExtQualType(Type *Base, QualType CanonicalPtr, unsigned AddrSpace,
530              QualType::GCAttrTypes gcAttr) :
531      Type(ExtQual, CanonicalPtr, Base->isDependentType()), BaseType(Base),
532      AddressSpace(AddrSpace), GCAttrType(gcAttr) {
533    assert(!isa<ExtQualType>(BaseType) &&
534           "Cannot have ExtQualType of ExtQualType");
535  }
536  friend class ASTContext;  // ASTContext creates these.
537public:
538  Type *getBaseType() const { return BaseType; }
539  QualType::GCAttrTypes getObjCGCAttr() const { return GCAttrType; }
540  unsigned getAddressSpace() const { return AddressSpace; }
541
542  virtual void getAsStringInternal(std::string &InnerString,
543                                   const PrintingPolicy &Policy) const;
544
545  void Profile(llvm::FoldingSetNodeID &ID) {
546    Profile(ID, getBaseType(), AddressSpace, GCAttrType);
547  }
548  static void Profile(llvm::FoldingSetNodeID &ID, Type *Base,
549                      unsigned AddrSpace, QualType::GCAttrTypes gcAttr) {
550    ID.AddPointer(Base);
551    ID.AddInteger(AddrSpace);
552    ID.AddInteger(gcAttr);
553  }
554
555  static bool classof(const Type *T) { return T->getTypeClass() == ExtQual; }
556  static bool classof(const ExtQualType *) { return true; }
557};
558
559
560/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
561/// types are always canonical and have a literal name field.
562class BuiltinType : public Type {
563public:
564  enum Kind {
565    Void,
566
567    Bool,     // This is bool and/or _Bool.
568    Char_U,   // This is 'char' for targets where char is unsigned.
569    UChar,    // This is explicitly qualified unsigned char.
570    UShort,
571    UInt,
572    ULong,
573    ULongLong,
574    UInt128,  // __uint128_t
575
576    Char_S,   // This is 'char' for targets where char is signed.
577    SChar,    // This is explicitly qualified signed char.
578    WChar,    // This is 'wchar_t' for C++.
579    Short,
580    Int,
581    Long,
582    LongLong,
583    Int128,   // __int128_t
584
585    Float, Double, LongDouble,
586
587    NullPtr,  // This is the type of C++0x 'nullptr'.
588
589    Overload,  // This represents the type of an overloaded function declaration.
590    Dependent, // This represents the type of a type-dependent expression.
591
592    UndeducedAuto  // In C++0x, this represents the type of an auto variable
593                   // that has not been deduced yet.
594  };
595private:
596  Kind TypeKind;
597public:
598  BuiltinType(Kind K)
599    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent)),
600      TypeKind(K) {}
601
602  Kind getKind() const { return TypeKind; }
603  const char *getName(const LangOptions &LO) const;
604
605  virtual void getAsStringInternal(std::string &InnerString,
606                                   const PrintingPolicy &Policy) const;
607
608  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
609  static bool classof(const BuiltinType *) { return true; }
610};
611
612/// FixedWidthIntType - Used for arbitrary width types that we either don't
613/// want to or can't map to named integer types.  These always have a lower
614/// integer rank than builtin types of the same width.
615class FixedWidthIntType : public Type {
616private:
617  unsigned Width;
618  bool Signed;
619public:
620  FixedWidthIntType(unsigned W, bool S) : Type(FixedWidthInt, QualType(), false),
621                                          Width(W), Signed(S) {}
622
623  unsigned getWidth() const { return Width; }
624  bool isSigned() const { return Signed; }
625  const char *getName() const;
626
627  virtual void getAsStringInternal(std::string &InnerString,
628                                   const PrintingPolicy &Policy) const;
629
630  static bool classof(const Type *T) { return T->getTypeClass() == FixedWidthInt; }
631  static bool classof(const FixedWidthIntType *) { return true; }
632};
633
634/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
635/// types (_Complex float etc) as well as the GCC integer complex extensions.
636///
637class ComplexType : public Type, public llvm::FoldingSetNode {
638  QualType ElementType;
639  ComplexType(QualType Element, QualType CanonicalPtr) :
640    Type(Complex, CanonicalPtr, Element->isDependentType()),
641    ElementType(Element) {
642  }
643  friend class ASTContext;  // ASTContext creates these.
644public:
645  QualType getElementType() const { return ElementType; }
646
647  virtual void getAsStringInternal(std::string &InnerString,
648                                   const PrintingPolicy &Policy) const;
649
650  void Profile(llvm::FoldingSetNodeID &ID) {
651    Profile(ID, getElementType());
652  }
653  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
654    ID.AddPointer(Element.getAsOpaquePtr());
655  }
656
657  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
658  static bool classof(const ComplexType *) { return true; }
659};
660
661/// PointerType - C99 6.7.5.1 - Pointer Declarators.
662///
663class PointerType : public Type, public llvm::FoldingSetNode {
664  QualType PointeeType;
665
666  PointerType(QualType Pointee, QualType CanonicalPtr) :
667    Type(Pointer, CanonicalPtr, Pointee->isDependentType()), PointeeType(Pointee) {
668  }
669  friend class ASTContext;  // ASTContext creates these.
670public:
671
672  virtual void getAsStringInternal(std::string &InnerString,
673                                   const PrintingPolicy &Policy) const;
674
675  QualType getPointeeType() const { return PointeeType; }
676
677  void Profile(llvm::FoldingSetNodeID &ID) {
678    Profile(ID, getPointeeType());
679  }
680  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
681    ID.AddPointer(Pointee.getAsOpaquePtr());
682  }
683
684  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
685  static bool classof(const PointerType *) { return true; }
686};
687
688/// BlockPointerType - pointer to a block type.
689/// This type is to represent types syntactically represented as
690/// "void (^)(int)", etc. Pointee is required to always be a function type.
691///
692class BlockPointerType : public Type, public llvm::FoldingSetNode {
693  QualType PointeeType;  // Block is some kind of pointer type
694  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
695    Type(BlockPointer, CanonicalCls, Pointee->isDependentType()),
696    PointeeType(Pointee) {
697  }
698  friend class ASTContext;  // ASTContext creates these.
699public:
700
701  // Get the pointee type. Pointee is required to always be a function type.
702  QualType getPointeeType() const { return PointeeType; }
703
704  virtual void getAsStringInternal(std::string &InnerString,
705                                   const PrintingPolicy &Policy) const;
706
707  void Profile(llvm::FoldingSetNodeID &ID) {
708      Profile(ID, getPointeeType());
709  }
710  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
711      ID.AddPointer(Pointee.getAsOpaquePtr());
712  }
713
714  static bool classof(const Type *T) {
715    return T->getTypeClass() == BlockPointer;
716  }
717  static bool classof(const BlockPointerType *) { return true; }
718};
719
720/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
721///
722class ReferenceType : public Type, public llvm::FoldingSetNode {
723  QualType PointeeType;
724
725protected:
726  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef) :
727    Type(tc, CanonicalRef, Referencee->isDependentType()),
728    PointeeType(Referencee) {
729  }
730public:
731  QualType getPointeeType() const { return PointeeType; }
732
733  void Profile(llvm::FoldingSetNodeID &ID) {
734    Profile(ID, getPointeeType());
735  }
736  static void Profile(llvm::FoldingSetNodeID &ID, QualType Referencee) {
737    ID.AddPointer(Referencee.getAsOpaquePtr());
738  }
739
740  static bool classof(const Type *T) {
741    return T->getTypeClass() == LValueReference ||
742           T->getTypeClass() == RValueReference;
743  }
744  static bool classof(const ReferenceType *) { return true; }
745};
746
747/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
748///
749class LValueReferenceType : public ReferenceType {
750  LValueReferenceType(QualType Referencee, QualType CanonicalRef) :
751    ReferenceType(LValueReference, Referencee, CanonicalRef) {
752  }
753  friend class ASTContext; // ASTContext creates these
754public:
755  virtual void getAsStringInternal(std::string &InnerString,
756                                   const PrintingPolicy &Policy) const;
757
758  static bool classof(const Type *T) {
759    return T->getTypeClass() == LValueReference;
760  }
761  static bool classof(const LValueReferenceType *) { return true; }
762};
763
764/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
765///
766class RValueReferenceType : public ReferenceType {
767  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
768    ReferenceType(RValueReference, Referencee, CanonicalRef) {
769  }
770  friend class ASTContext; // ASTContext creates these
771public:
772  virtual void getAsStringInternal(std::string &InnerString,
773                                   const PrintingPolicy &Policy) const;
774
775  static bool classof(const Type *T) {
776    return T->getTypeClass() == RValueReference;
777  }
778  static bool classof(const RValueReferenceType *) { return true; }
779};
780
781/// MemberPointerType - C++ 8.3.3 - Pointers to members
782///
783class MemberPointerType : public Type, public llvm::FoldingSetNode {
784  QualType PointeeType;
785  /// The class of which the pointee is a member. Must ultimately be a
786  /// RecordType, but could be a typedef or a template parameter too.
787  const Type *Class;
788
789  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
790    Type(MemberPointer, CanonicalPtr,
791         Cls->isDependentType() || Pointee->isDependentType()),
792    PointeeType(Pointee), Class(Cls) {
793  }
794  friend class ASTContext; // ASTContext creates these.
795public:
796
797  QualType getPointeeType() const { return PointeeType; }
798
799  const Type *getClass() const { return Class; }
800
801  virtual void getAsStringInternal(std::string &InnerString,
802                                   const PrintingPolicy &Policy) const;
803
804  void Profile(llvm::FoldingSetNodeID &ID) {
805    Profile(ID, getPointeeType(), getClass());
806  }
807  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
808                      const Type *Class) {
809    ID.AddPointer(Pointee.getAsOpaquePtr());
810    ID.AddPointer(Class);
811  }
812
813  static bool classof(const Type *T) {
814    return T->getTypeClass() == MemberPointer;
815  }
816  static bool classof(const MemberPointerType *) { return true; }
817};
818
819/// ArrayType - C99 6.7.5.2 - Array Declarators.
820///
821class ArrayType : public Type, public llvm::FoldingSetNode {
822public:
823  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
824  /// an array with a static size (e.g. int X[static 4]), or an array
825  /// with a star size (e.g. int X[*]).
826  /// 'static' is only allowed on function parameters.
827  enum ArraySizeModifier {
828    Normal, Static, Star
829  };
830private:
831  /// ElementType - The element type of the array.
832  QualType ElementType;
833
834  // NOTE: VC++ treats enums as signed, avoid using the ArraySizeModifier enum
835  /// NOTE: These fields are packed into the bitfields space in the Type class.
836  unsigned SizeModifier : 2;
837
838  /// IndexTypeQuals - Capture qualifiers in declarations like:
839  /// 'int X[static restrict 4]'. For function parameters only.
840  unsigned IndexTypeQuals : 3;
841
842protected:
843  // C++ [temp.dep.type]p1:
844  //   A type is dependent if it is...
845  //     - an array type constructed from any dependent type or whose
846  //       size is specified by a constant expression that is
847  //       value-dependent,
848  ArrayType(TypeClass tc, QualType et, QualType can,
849            ArraySizeModifier sm, unsigned tq)
850    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray),
851      ElementType(et), SizeModifier(sm), IndexTypeQuals(tq) {}
852
853  friend class ASTContext;  // ASTContext creates these.
854public:
855  QualType getElementType() const { return ElementType; }
856  ArraySizeModifier getSizeModifier() const {
857    return ArraySizeModifier(SizeModifier);
858  }
859  unsigned getIndexTypeQualifier() const { return IndexTypeQuals; }
860
861  static bool classof(const Type *T) {
862    return T->getTypeClass() == ConstantArray ||
863           T->getTypeClass() == ConstantArrayWithExpr ||
864           T->getTypeClass() == ConstantArrayWithoutExpr ||
865           T->getTypeClass() == VariableArray ||
866           T->getTypeClass() == IncompleteArray ||
867           T->getTypeClass() == DependentSizedArray;
868  }
869  static bool classof(const ArrayType *) { return true; }
870};
871
872/// ConstantArrayType - This class represents the canonical version of
873/// C arrays with a specified constant size.  For example, the canonical
874/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
875/// type is 'int' and the size is 404.
876class ConstantArrayType : public ArrayType {
877  llvm::APInt Size; // Allows us to unique the type.
878
879  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
880                    ArraySizeModifier sm, unsigned tq)
881    : ArrayType(ConstantArray, et, can, sm, tq),
882      Size(size) {}
883protected:
884  ConstantArrayType(TypeClass tc, QualType et, QualType can,
885                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
886    : ArrayType(tc, et, can, sm, tq), Size(size) {}
887  friend class ASTContext;  // ASTContext creates these.
888public:
889  const llvm::APInt &getSize() const { return Size; }
890  virtual void getAsStringInternal(std::string &InnerString,
891                                   const PrintingPolicy &Policy) const;
892
893  void Profile(llvm::FoldingSetNodeID &ID) {
894    Profile(ID, getElementType(), getSize(),
895            getSizeModifier(), getIndexTypeQualifier());
896  }
897  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
898                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
899                      unsigned TypeQuals) {
900    ID.AddPointer(ET.getAsOpaquePtr());
901    ID.AddInteger(ArraySize.getZExtValue());
902    ID.AddInteger(SizeMod);
903    ID.AddInteger(TypeQuals);
904  }
905  static bool classof(const Type *T) {
906    return T->getTypeClass() == ConstantArray ||
907           T->getTypeClass() == ConstantArrayWithExpr ||
908           T->getTypeClass() == ConstantArrayWithoutExpr;
909  }
910  static bool classof(const ConstantArrayType *) { return true; }
911};
912
913/// ConstantArrayWithExprType - This class represents C arrays with a
914/// constant size specified by means of an integer constant expression.
915/// For example 'int A[sizeof(int)]' has ConstantArrayWithExprType where
916/// the element type is 'int' and the size expression is 'sizeof(int)'.
917/// These types are non-canonical.
918class ConstantArrayWithExprType : public ConstantArrayType {
919  /// SizeExpr - The ICE occurring in the concrete syntax.
920  Expr *SizeExpr;
921  /// Brackets - The left and right array brackets.
922  SourceRange Brackets;
923
924  ConstantArrayWithExprType(QualType et, QualType can,
925                            const llvm::APInt &size, Expr *e,
926                            ArraySizeModifier sm, unsigned tq,
927                            SourceRange brackets)
928    : ConstantArrayType(ConstantArrayWithExpr, et, can, size, sm, tq),
929      SizeExpr(e), Brackets(brackets) {}
930  friend class ASTContext;  // ASTContext creates these.
931  virtual void Destroy(ASTContext& C);
932
933public:
934  Expr *getSizeExpr() const { return SizeExpr; }
935  SourceRange getBracketsRange() const { return Brackets; }
936  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
937  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
938
939  virtual void getAsStringInternal(std::string &InnerString,
940                                   const PrintingPolicy &Policy) const;
941
942  static bool classof(const Type *T) {
943    return T->getTypeClass() == ConstantArrayWithExpr;
944  }
945  static bool classof(const ConstantArrayWithExprType *) { return true; }
946
947  void Profile(llvm::FoldingSetNodeID &ID) {
948    assert(0 && "Cannot unique ConstantArrayWithExprTypes.");
949  }
950};
951
952/// ConstantArrayWithoutExprType - This class represents C arrays with a
953/// constant size that was not specified by an integer constant expression,
954/// but inferred by static semantics.
955/// For example 'int A[] = { 0, 1, 2 }' has ConstantArrayWithoutExprType.
956/// These types are non-canonical: the corresponding canonical type,
957/// having the size specified in an APInt object, is a ConstantArrayType.
958class ConstantArrayWithoutExprType : public ConstantArrayType {
959
960  ConstantArrayWithoutExprType(QualType et, QualType can,
961                               const llvm::APInt &size,
962                               ArraySizeModifier sm, unsigned tq)
963    : ConstantArrayType(ConstantArrayWithoutExpr, et, can, size, sm, tq) {}
964  friend class ASTContext;  // ASTContext creates these.
965
966public:
967  virtual void getAsStringInternal(std::string &InnerString,
968                                   const PrintingPolicy &Policy) const;
969
970  static bool classof(const Type *T) {
971    return T->getTypeClass() == ConstantArrayWithoutExpr;
972  }
973  static bool classof(const ConstantArrayWithoutExprType *) { return true; }
974
975  void Profile(llvm::FoldingSetNodeID &ID) {
976    assert(0 && "Cannot unique ConstantArrayWithoutExprTypes.");
977  }
978};
979
980/// IncompleteArrayType - This class represents C arrays with an unspecified
981/// size.  For example 'int A[]' has an IncompleteArrayType where the element
982/// type is 'int' and the size is unspecified.
983class IncompleteArrayType : public ArrayType {
984
985  IncompleteArrayType(QualType et, QualType can,
986                      ArraySizeModifier sm, unsigned tq)
987    : ArrayType(IncompleteArray, et, can, sm, tq) {}
988  friend class ASTContext;  // ASTContext creates these.
989public:
990  virtual void getAsStringInternal(std::string &InnerString,
991                                   const PrintingPolicy &Policy) const;
992
993  static bool classof(const Type *T) {
994    return T->getTypeClass() == IncompleteArray;
995  }
996  static bool classof(const IncompleteArrayType *) { return true; }
997
998  friend class StmtIteratorBase;
999
1000  void Profile(llvm::FoldingSetNodeID &ID) {
1001    Profile(ID, getElementType(), getSizeModifier(), getIndexTypeQualifier());
1002  }
1003
1004  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1005                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
1006    ID.AddPointer(ET.getAsOpaquePtr());
1007    ID.AddInteger(SizeMod);
1008    ID.AddInteger(TypeQuals);
1009  }
1010};
1011
1012/// VariableArrayType - This class represents C arrays with a specified size
1013/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
1014/// Since the size expression is an arbitrary expression, we store it as such.
1015///
1016/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
1017/// should not be: two lexically equivalent variable array types could mean
1018/// different things, for example, these variables do not have the same type
1019/// dynamically:
1020///
1021/// void foo(int x) {
1022///   int Y[x];
1023///   ++x;
1024///   int Z[x];
1025/// }
1026///
1027class VariableArrayType : public ArrayType {
1028  /// SizeExpr - An assignment expression. VLA's are only permitted within
1029  /// a function block.
1030  Stmt *SizeExpr;
1031  /// Brackets - The left and right array brackets.
1032  SourceRange Brackets;
1033
1034  VariableArrayType(QualType et, QualType can, Expr *e,
1035                    ArraySizeModifier sm, unsigned tq,
1036                    SourceRange brackets)
1037    : ArrayType(VariableArray, et, can, sm, tq),
1038      SizeExpr((Stmt*) e), Brackets(brackets) {}
1039  friend class ASTContext;  // ASTContext creates these.
1040  virtual void Destroy(ASTContext& C);
1041
1042public:
1043  Expr *getSizeExpr() const {
1044    // We use C-style casts instead of cast<> here because we do not wish
1045    // to have a dependency of Type.h on Stmt.h/Expr.h.
1046    return (Expr*) SizeExpr;
1047  }
1048  SourceRange getBracketsRange() const { return Brackets; }
1049  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1050  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1051
1052  virtual void getAsStringInternal(std::string &InnerString,
1053                                   const PrintingPolicy &Policy) const;
1054
1055  static bool classof(const Type *T) {
1056    return T->getTypeClass() == VariableArray;
1057  }
1058  static bool classof(const VariableArrayType *) { return true; }
1059
1060  friend class StmtIteratorBase;
1061
1062  void Profile(llvm::FoldingSetNodeID &ID) {
1063    assert(0 && "Cannnot unique VariableArrayTypes.");
1064  }
1065};
1066
1067/// DependentSizedArrayType - This type represents an array type in
1068/// C++ whose size is a value-dependent expression. For example:
1069/// @code
1070/// template<typename T, int Size>
1071/// class array {
1072///   T data[Size];
1073/// };
1074/// @endcode
1075/// For these types, we won't actually know what the array bound is
1076/// until template instantiation occurs, at which point this will
1077/// become either a ConstantArrayType or a VariableArrayType.
1078class DependentSizedArrayType : public ArrayType {
1079  /// SizeExpr - An assignment expression that will instantiate to the
1080  /// size of the array.
1081  Stmt *SizeExpr;
1082  /// Brackets - The left and right array brackets.
1083  SourceRange Brackets;
1084
1085  DependentSizedArrayType(QualType et, QualType can, Expr *e,
1086			  ArraySizeModifier sm, unsigned tq,
1087                          SourceRange brackets)
1088    : ArrayType(DependentSizedArray, et, can, sm, tq),
1089      SizeExpr((Stmt*) e), Brackets(brackets) {}
1090  friend class ASTContext;  // ASTContext creates these.
1091  virtual void Destroy(ASTContext& C);
1092
1093public:
1094  Expr *getSizeExpr() const {
1095    // We use C-style casts instead of cast<> here because we do not wish
1096    // to have a dependency of Type.h on Stmt.h/Expr.h.
1097    return (Expr*) SizeExpr;
1098  }
1099  SourceRange getBracketsRange() const { return Brackets; }
1100  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1101  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1102
1103  virtual void getAsStringInternal(std::string &InnerString,
1104                                   const PrintingPolicy &Policy) const;
1105
1106  static bool classof(const Type *T) {
1107    return T->getTypeClass() == DependentSizedArray;
1108  }
1109  static bool classof(const DependentSizedArrayType *) { return true; }
1110
1111  friend class StmtIteratorBase;
1112
1113  void Profile(llvm::FoldingSetNodeID &ID) {
1114    assert(0 && "Cannnot unique DependentSizedArrayTypes.");
1115  }
1116};
1117
1118/// DependentSizedExtVectorType - This type represent an extended vector type
1119/// where either the type or size is dependent. For example:
1120/// @code
1121/// template<typename T, int Size>
1122/// class vector {
1123///   typedef T __attribute__((ext_vector_type(Size))) type;
1124/// }
1125/// @endcode
1126class DependentSizedExtVectorType : public Type {
1127  Expr *SizeExpr;
1128  /// ElementType - The element type of the array.
1129  QualType ElementType;
1130  SourceLocation loc;
1131
1132  DependentSizedExtVectorType(QualType ElementType, QualType can,
1133                              Expr *SizeExpr, SourceLocation loc)
1134    : Type (DependentSizedExtVector, can, true),
1135    SizeExpr(SizeExpr), ElementType(ElementType), loc(loc) {}
1136  friend class ASTContext;
1137  virtual void Destroy(ASTContext& C);
1138
1139public:
1140  const Expr *getSizeExpr() const { return SizeExpr; }
1141  QualType getElementType() const { return ElementType; }
1142  SourceLocation getAttributeLoc() const { return loc; }
1143
1144  virtual void getAsStringInternal(std::string &InnerString,
1145                                   const PrintingPolicy &Policy) const;
1146
1147  static bool classof(const Type *T) {
1148    return T->getTypeClass() == DependentSizedExtVector;
1149  }
1150  static bool classof(const DependentSizedExtVectorType *) { return true; }
1151};
1152
1153
1154/// VectorType - GCC generic vector type. This type is created using
1155/// __attribute__((vector_size(n)), where "n" specifies the vector size in
1156/// bytes. Since the constructor takes the number of vector elements, the
1157/// client is responsible for converting the size into the number of elements.
1158class VectorType : public Type, public llvm::FoldingSetNode {
1159protected:
1160  /// ElementType - The element type of the vector.
1161  QualType ElementType;
1162
1163  /// NumElements - The number of elements in the vector.
1164  unsigned NumElements;
1165
1166  VectorType(QualType vecType, unsigned nElements, QualType canonType) :
1167    Type(Vector, canonType, vecType->isDependentType()),
1168    ElementType(vecType), NumElements(nElements) {}
1169  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
1170             QualType canonType)
1171    : Type(tc, canonType, vecType->isDependentType()), ElementType(vecType),
1172      NumElements(nElements) {}
1173  friend class ASTContext;  // ASTContext creates these.
1174public:
1175
1176  QualType getElementType() const { return ElementType; }
1177  unsigned getNumElements() const { return NumElements; }
1178
1179  virtual void getAsStringInternal(std::string &InnerString,
1180                                   const PrintingPolicy &Policy) const;
1181
1182  void Profile(llvm::FoldingSetNodeID &ID) {
1183    Profile(ID, getElementType(), getNumElements(), getTypeClass());
1184  }
1185  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
1186                      unsigned NumElements, TypeClass TypeClass) {
1187    ID.AddPointer(ElementType.getAsOpaquePtr());
1188    ID.AddInteger(NumElements);
1189    ID.AddInteger(TypeClass);
1190  }
1191  static bool classof(const Type *T) {
1192    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
1193  }
1194  static bool classof(const VectorType *) { return true; }
1195};
1196
1197/// ExtVectorType - Extended vector type. This type is created using
1198/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
1199/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
1200/// class enables syntactic extensions, like Vector Components for accessing
1201/// points, colors, and textures (modeled after OpenGL Shading Language).
1202class ExtVectorType : public VectorType {
1203  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
1204    VectorType(ExtVector, vecType, nElements, canonType) {}
1205  friend class ASTContext;  // ASTContext creates these.
1206public:
1207  static int getPointAccessorIdx(char c) {
1208    switch (c) {
1209    default: return -1;
1210    case 'x': return 0;
1211    case 'y': return 1;
1212    case 'z': return 2;
1213    case 'w': return 3;
1214    }
1215  }
1216  static int getNumericAccessorIdx(char c) {
1217    switch (c) {
1218      default: return -1;
1219      case '0': return 0;
1220      case '1': return 1;
1221      case '2': return 2;
1222      case '3': return 3;
1223      case '4': return 4;
1224      case '5': return 5;
1225      case '6': return 6;
1226      case '7': return 7;
1227      case '8': return 8;
1228      case '9': return 9;
1229      case 'A':
1230      case 'a': return 10;
1231      case 'B':
1232      case 'b': return 11;
1233      case 'C':
1234      case 'c': return 12;
1235      case 'D':
1236      case 'd': return 13;
1237      case 'E':
1238      case 'e': return 14;
1239      case 'F':
1240      case 'f': return 15;
1241    }
1242  }
1243
1244  static int getAccessorIdx(char c) {
1245    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
1246    return getNumericAccessorIdx(c);
1247  }
1248
1249  bool isAccessorWithinNumElements(char c) const {
1250    if (int idx = getAccessorIdx(c)+1)
1251      return unsigned(idx-1) < NumElements;
1252    return false;
1253  }
1254  virtual void getAsStringInternal(std::string &InnerString,
1255                                   const PrintingPolicy &Policy) const;
1256
1257  static bool classof(const Type *T) {
1258    return T->getTypeClass() == ExtVector;
1259  }
1260  static bool classof(const ExtVectorType *) { return true; }
1261};
1262
1263/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
1264/// class of FunctionNoProtoType and FunctionProtoType.
1265///
1266class FunctionType : public Type {
1267  /// SubClassData - This field is owned by the subclass, put here to pack
1268  /// tightly with the ivars in Type.
1269  bool SubClassData : 1;
1270
1271  /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
1272  /// other bitfields.
1273  /// The qualifiers are part of FunctionProtoType because...
1274  ///
1275  /// C++ 8.3.5p4: The return type, the parameter type list and the
1276  /// cv-qualifier-seq, [...], are part of the function type.
1277  ///
1278  unsigned TypeQuals : 3;
1279
1280  // The type returned by the function.
1281  QualType ResultType;
1282protected:
1283  FunctionType(TypeClass tc, QualType res, bool SubclassInfo,
1284               unsigned typeQuals, QualType Canonical, bool Dependent)
1285    : Type(tc, Canonical, Dependent),
1286      SubClassData(SubclassInfo), TypeQuals(typeQuals), ResultType(res) {}
1287  bool getSubClassData() const { return SubClassData; }
1288  unsigned getTypeQuals() const { return TypeQuals; }
1289public:
1290
1291  QualType getResultType() const { return ResultType; }
1292
1293
1294  static bool classof(const Type *T) {
1295    return T->getTypeClass() == FunctionNoProto ||
1296           T->getTypeClass() == FunctionProto;
1297  }
1298  static bool classof(const FunctionType *) { return true; }
1299};
1300
1301/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
1302/// no information available about its arguments.
1303class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
1304  FunctionNoProtoType(QualType Result, QualType Canonical)
1305    : FunctionType(FunctionNoProto, Result, false, 0, Canonical,
1306                   /*Dependent=*/false) {}
1307  friend class ASTContext;  // ASTContext creates these.
1308public:
1309  // No additional state past what FunctionType provides.
1310
1311  virtual void getAsStringInternal(std::string &InnerString,
1312                                   const PrintingPolicy &Policy) const;
1313
1314  void Profile(llvm::FoldingSetNodeID &ID) {
1315    Profile(ID, getResultType());
1316  }
1317  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType) {
1318    ID.AddPointer(ResultType.getAsOpaquePtr());
1319  }
1320
1321  static bool classof(const Type *T) {
1322    return T->getTypeClass() == FunctionNoProto;
1323  }
1324  static bool classof(const FunctionNoProtoType *) { return true; }
1325};
1326
1327/// FunctionProtoType - Represents a prototype with argument type info, e.g.
1328/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
1329/// arguments, not as having a single void argument. Such a type can have an
1330/// exception specification, but this specification is not part of the canonical
1331/// type.
1332class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
1333  /// hasAnyDependentType - Determine whether there are any dependent
1334  /// types within the arguments passed in.
1335  static bool hasAnyDependentType(const QualType *ArgArray, unsigned numArgs) {
1336    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
1337      if (ArgArray[Idx]->isDependentType())
1338    return true;
1339
1340    return false;
1341  }
1342
1343  FunctionProtoType(QualType Result, const QualType *ArgArray, unsigned numArgs,
1344                    bool isVariadic, unsigned typeQuals, bool hasExs,
1345                    bool hasAnyExs, const QualType *ExArray,
1346                    unsigned numExs, QualType Canonical)
1347    : FunctionType(FunctionProto, Result, isVariadic, typeQuals, Canonical,
1348                   (Result->isDependentType() ||
1349                    hasAnyDependentType(ArgArray, numArgs))),
1350      NumArgs(numArgs), NumExceptions(numExs), HasExceptionSpec(hasExs),
1351      AnyExceptionSpec(hasAnyExs) {
1352    // Fill in the trailing argument array.
1353    QualType *ArgInfo = reinterpret_cast<QualType*>(this+1);
1354    for (unsigned i = 0; i != numArgs; ++i)
1355      ArgInfo[i] = ArgArray[i];
1356    // Fill in the exception array.
1357    QualType *Ex = ArgInfo + numArgs;
1358    for (unsigned i = 0; i != numExs; ++i)
1359      Ex[i] = ExArray[i];
1360  }
1361
1362  /// NumArgs - The number of arguments this function has, not counting '...'.
1363  unsigned NumArgs : 20;
1364
1365  /// NumExceptions - The number of types in the exception spec, if any.
1366  unsigned NumExceptions : 10;
1367
1368  /// HasExceptionSpec - Whether this function has an exception spec at all.
1369  bool HasExceptionSpec : 1;
1370
1371  /// AnyExceptionSpec - Whether this function has a throw(...) spec.
1372  bool AnyExceptionSpec : 1;
1373
1374  /// ArgInfo - There is an variable size array after the class in memory that
1375  /// holds the argument types.
1376
1377  /// Exceptions - There is another variable size array after ArgInfo that
1378  /// holds the exception types.
1379
1380  friend class ASTContext;  // ASTContext creates these.
1381
1382public:
1383  unsigned getNumArgs() const { return NumArgs; }
1384  QualType getArgType(unsigned i) const {
1385    assert(i < NumArgs && "Invalid argument number!");
1386    return arg_type_begin()[i];
1387  }
1388
1389  bool hasExceptionSpec() const { return HasExceptionSpec; }
1390  bool hasAnyExceptionSpec() const { return AnyExceptionSpec; }
1391  unsigned getNumExceptions() const { return NumExceptions; }
1392  QualType getExceptionType(unsigned i) const {
1393    assert(i < NumExceptions && "Invalid exception number!");
1394    return exception_begin()[i];
1395  }
1396  bool hasEmptyExceptionSpec() const {
1397    return hasExceptionSpec() && !hasAnyExceptionSpec() &&
1398      getNumExceptions() == 0;
1399  }
1400
1401  bool isVariadic() const { return getSubClassData(); }
1402  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
1403
1404  typedef const QualType *arg_type_iterator;
1405  arg_type_iterator arg_type_begin() const {
1406    return reinterpret_cast<const QualType *>(this+1);
1407  }
1408  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
1409
1410  typedef const QualType *exception_iterator;
1411  exception_iterator exception_begin() const {
1412    // exceptions begin where arguments end
1413    return arg_type_end();
1414  }
1415  exception_iterator exception_end() const {
1416    return exception_begin() + NumExceptions;
1417  }
1418
1419  virtual void getAsStringInternal(std::string &InnerString,
1420                                   const PrintingPolicy &Policy) const;
1421
1422  static bool classof(const Type *T) {
1423    return T->getTypeClass() == FunctionProto;
1424  }
1425  static bool classof(const FunctionProtoType *) { return true; }
1426
1427  void Profile(llvm::FoldingSetNodeID &ID);
1428  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
1429                      arg_type_iterator ArgTys, unsigned NumArgs,
1430                      bool isVariadic, unsigned TypeQuals,
1431                      bool hasExceptionSpec, bool anyExceptionSpec,
1432                      unsigned NumExceptions, exception_iterator Exs);
1433};
1434
1435
1436class TypedefType : public Type {
1437  TypedefDecl *Decl;
1438protected:
1439  TypedefType(TypeClass tc, TypedefDecl *D, QualType can)
1440    : Type(tc, can, can->isDependentType()), Decl(D) {
1441    assert(!isa<TypedefType>(can) && "Invalid canonical type");
1442  }
1443  friend class ASTContext;  // ASTContext creates these.
1444public:
1445
1446  TypedefDecl *getDecl() const { return Decl; }
1447
1448  /// LookThroughTypedefs - Return the ultimate type this typedef corresponds to
1449  /// potentially looking through *all* consecutive typedefs.  This returns the
1450  /// sum of the type qualifiers, so if you have:
1451  ///   typedef const int A;
1452  ///   typedef volatile A B;
1453  /// looking through the typedefs for B will give you "const volatile A".
1454  QualType LookThroughTypedefs() const;
1455
1456  virtual void getAsStringInternal(std::string &InnerString,
1457                                   const PrintingPolicy &Policy) const;
1458
1459  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
1460  static bool classof(const TypedefType *) { return true; }
1461};
1462
1463/// TypeOfExprType (GCC extension).
1464class TypeOfExprType : public Type {
1465  Expr *TOExpr;
1466  TypeOfExprType(Expr *E, QualType can = QualType());
1467  friend class ASTContext;  // ASTContext creates these.
1468public:
1469  Expr *getUnderlyingExpr() const { return TOExpr; }
1470
1471  virtual void getAsStringInternal(std::string &InnerString,
1472                                   const PrintingPolicy &Policy) const;
1473
1474  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
1475  static bool classof(const TypeOfExprType *) { return true; }
1476};
1477
1478/// TypeOfType (GCC extension).
1479class TypeOfType : public Type {
1480  QualType TOType;
1481  TypeOfType(QualType T, QualType can)
1482    : Type(TypeOf, can, T->isDependentType()), TOType(T) {
1483    assert(!isa<TypedefType>(can) && "Invalid canonical type");
1484  }
1485  friend class ASTContext;  // ASTContext creates these.
1486public:
1487  QualType getUnderlyingType() const { return TOType; }
1488
1489  virtual void getAsStringInternal(std::string &InnerString,
1490                                   const PrintingPolicy &Policy) const;
1491
1492  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
1493  static bool classof(const TypeOfType *) { return true; }
1494};
1495
1496/// DecltypeType (C++0x)
1497class DecltypeType : public Type {
1498  Expr *E;
1499
1500  // FIXME: We could get rid of UnderlyingType if we wanted to: We would have to
1501  // Move getDesugaredType to ASTContext so that it can call getDecltypeForExpr
1502  // from it.
1503  QualType UnderlyingType;
1504
1505  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
1506  friend class ASTContext;  // ASTContext creates these.
1507public:
1508  Expr *getUnderlyingExpr() const { return E; }
1509  QualType getUnderlyingType() const { return UnderlyingType; }
1510
1511  virtual void getAsStringInternal(std::string &InnerString,
1512                                   const PrintingPolicy &Policy) const;
1513
1514  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
1515  static bool classof(const DecltypeType *) { return true; }
1516};
1517
1518class TagType : public Type {
1519  /// Stores the TagDecl associated with this type. The decl will
1520  /// point to the TagDecl that actually defines the entity (or is a
1521  /// definition in progress), if there is such a definition. The
1522  /// single-bit value will be non-zero when this tag is in the
1523  /// process of being defined.
1524  mutable llvm::PointerIntPair<TagDecl *, 1> decl;
1525  friend class ASTContext;
1526  friend class TagDecl;
1527
1528protected:
1529  TagType(TypeClass TC, TagDecl *D, QualType can);
1530
1531public:
1532  TagDecl *getDecl() const { return decl.getPointer(); }
1533
1534  /// @brief Determines whether this type is in the process of being
1535  /// defined.
1536  bool isBeingDefined() const { return decl.getInt(); }
1537  void setBeingDefined(bool Def) { decl.setInt(Def? 1 : 0); }
1538
1539  virtual void getAsStringInternal(std::string &InnerString,
1540                                   const PrintingPolicy &Policy) const;
1541
1542  static bool classof(const Type *T) {
1543    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
1544  }
1545  static bool classof(const TagType *) { return true; }
1546  static bool classof(const RecordType *) { return true; }
1547  static bool classof(const EnumType *) { return true; }
1548};
1549
1550/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
1551/// to detect TagType objects of structs/unions/classes.
1552class RecordType : public TagType {
1553protected:
1554  explicit RecordType(RecordDecl *D)
1555    : TagType(Record, reinterpret_cast<TagDecl*>(D), QualType()) { }
1556  explicit RecordType(TypeClass TC, RecordDecl *D)
1557    : TagType(TC, reinterpret_cast<TagDecl*>(D), QualType()) { }
1558  friend class ASTContext;   // ASTContext creates these.
1559public:
1560
1561  RecordDecl *getDecl() const {
1562    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
1563  }
1564
1565  // FIXME: This predicate is a helper to QualType/Type. It needs to
1566  // recursively check all fields for const-ness. If any field is declared
1567  // const, it needs to return false.
1568  bool hasConstFields() const { return false; }
1569
1570  // FIXME: RecordType needs to check when it is created that all fields are in
1571  // the same address space, and return that.
1572  unsigned getAddressSpace() const { return 0; }
1573
1574  static bool classof(const TagType *T);
1575  static bool classof(const Type *T) {
1576    return isa<TagType>(T) && classof(cast<TagType>(T));
1577  }
1578  static bool classof(const RecordType *) { return true; }
1579};
1580
1581/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
1582/// to detect TagType objects of enums.
1583class EnumType : public TagType {
1584  explicit EnumType(EnumDecl *D)
1585    : TagType(Enum, reinterpret_cast<TagDecl*>(D), QualType()) { }
1586  friend class ASTContext;   // ASTContext creates these.
1587public:
1588
1589  EnumDecl *getDecl() const {
1590    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
1591  }
1592
1593  static bool classof(const TagType *T);
1594  static bool classof(const Type *T) {
1595    return isa<TagType>(T) && classof(cast<TagType>(T));
1596  }
1597  static bool classof(const EnumType *) { return true; }
1598};
1599
1600class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
1601  unsigned Depth : 15;
1602  unsigned Index : 16;
1603  unsigned ParameterPack : 1;
1604  IdentifierInfo *Name;
1605
1606  TemplateTypeParmType(unsigned D, unsigned I, bool PP, IdentifierInfo *N,
1607                       QualType Canon)
1608    : Type(TemplateTypeParm, Canon, /*Dependent=*/true),
1609      Depth(D), Index(I), ParameterPack(PP), Name(N) { }
1610
1611  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
1612    : Type(TemplateTypeParm, QualType(this, 0), /*Dependent=*/true),
1613      Depth(D), Index(I), ParameterPack(PP), Name(0) { }
1614
1615  friend class ASTContext;  // ASTContext creates these
1616
1617public:
1618  unsigned getDepth() const { return Depth; }
1619  unsigned getIndex() const { return Index; }
1620  bool isParameterPack() const { return ParameterPack; }
1621  IdentifierInfo *getName() const { return Name; }
1622
1623  virtual void getAsStringInternal(std::string &InnerString,
1624                                   const PrintingPolicy &Policy) const;
1625
1626  void Profile(llvm::FoldingSetNodeID &ID) {
1627    Profile(ID, Depth, Index, ParameterPack, Name);
1628  }
1629
1630  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
1631                      unsigned Index, bool ParameterPack,
1632                      IdentifierInfo *Name) {
1633    ID.AddInteger(Depth);
1634    ID.AddInteger(Index);
1635    ID.AddBoolean(ParameterPack);
1636    ID.AddPointer(Name);
1637  }
1638
1639  static bool classof(const Type *T) {
1640    return T->getTypeClass() == TemplateTypeParm;
1641  }
1642  static bool classof(const TemplateTypeParmType *T) { return true; }
1643};
1644
1645/// \brief Represents the type of a template specialization as written
1646/// in the source code.
1647///
1648/// Template specialization types represent the syntactic form of a
1649/// template-id that refers to a type, e.g., @c vector<int>. Some
1650/// template specialization types are syntactic sugar, whose canonical
1651/// type will point to some other type node that represents the
1652/// instantiation or class template specialization. For example, a
1653/// class template specialization type of @c vector<int> will refer to
1654/// a tag type for the instantiation
1655/// @c std::vector<int, std::allocator<int>>.
1656///
1657/// Other template specialization types, for which the template name
1658/// is dependent, may be canonical types. These types are always
1659/// dependent.
1660class TemplateSpecializationType
1661  : public Type, public llvm::FoldingSetNode {
1662
1663  /// \brief The name of the template being specialized.
1664  TemplateName Template;
1665
1666  /// \brief - The number of template arguments named in this class
1667  /// template specialization.
1668  unsigned NumArgs;
1669
1670  TemplateSpecializationType(TemplateName T,
1671                             const TemplateArgument *Args,
1672                             unsigned NumArgs, QualType Canon);
1673
1674  virtual void Destroy(ASTContext& C);
1675
1676  friend class ASTContext;  // ASTContext creates these
1677
1678public:
1679  /// \brief Determine whether any of the given template arguments are
1680  /// dependent.
1681  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
1682                                            unsigned NumArgs);
1683
1684  /// \brief Print a template argument list, including the '<' and '>'
1685  /// enclosing the template arguments.
1686  static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
1687                                               unsigned NumArgs,
1688                                               const PrintingPolicy &Policy);
1689
1690  typedef const TemplateArgument * iterator;
1691
1692  iterator begin() const { return getArgs(); }
1693  iterator end() const;
1694
1695  /// \brief Retrieve the name of the template that we are specializing.
1696  TemplateName getTemplateName() const { return Template; }
1697
1698  /// \brief Retrieve the template arguments.
1699  const TemplateArgument *getArgs() const {
1700    return reinterpret_cast<const TemplateArgument *>(this + 1);
1701  }
1702
1703  /// \brief Retrieve the number of template arguments.
1704  unsigned getNumArgs() const { return NumArgs; }
1705
1706  /// \brief Retrieve a specific template argument as a type.
1707  /// \precondition @c isArgType(Arg)
1708  const TemplateArgument &getArg(unsigned Idx) const;
1709
1710  virtual void getAsStringInternal(std::string &InnerString,
1711                                   const PrintingPolicy &Policy) const;
1712
1713  void Profile(llvm::FoldingSetNodeID &ID) {
1714    Profile(ID, Template, getArgs(), NumArgs);
1715  }
1716
1717  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
1718                      const TemplateArgument *Args, unsigned NumArgs);
1719
1720  static bool classof(const Type *T) {
1721    return T->getTypeClass() == TemplateSpecialization;
1722  }
1723  static bool classof(const TemplateSpecializationType *T) { return true; }
1724};
1725
1726/// \brief Represents a type that was referred to via a qualified
1727/// name, e.g., N::M::type.
1728///
1729/// This type is used to keep track of a type name as written in the
1730/// source code, including any nested-name-specifiers. The type itself
1731/// is always "sugar", used to express what was written in the source
1732/// code but containing no additional semantic information.
1733class QualifiedNameType : public Type, public llvm::FoldingSetNode {
1734  /// \brief The nested name specifier containing the qualifier.
1735  NestedNameSpecifier *NNS;
1736
1737  /// \brief The type that this qualified name refers to.
1738  QualType NamedType;
1739
1740  QualifiedNameType(NestedNameSpecifier *NNS, QualType NamedType,
1741                    QualType CanonType)
1742    : Type(QualifiedName, CanonType, NamedType->isDependentType()),
1743      NNS(NNS), NamedType(NamedType) { }
1744
1745  friend class ASTContext;  // ASTContext creates these
1746
1747public:
1748  /// \brief Retrieve the qualification on this type.
1749  NestedNameSpecifier *getQualifier() const { return NNS; }
1750
1751  /// \brief Retrieve the type named by the qualified-id.
1752  QualType getNamedType() const { return NamedType; }
1753
1754  virtual void getAsStringInternal(std::string &InnerString,
1755                                   const PrintingPolicy &Policy) const;
1756
1757  void Profile(llvm::FoldingSetNodeID &ID) {
1758    Profile(ID, NNS, NamedType);
1759  }
1760
1761  static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
1762                      QualType NamedType) {
1763    ID.AddPointer(NNS);
1764    NamedType.Profile(ID);
1765  }
1766
1767  static bool classof(const Type *T) {
1768    return T->getTypeClass() == QualifiedName;
1769  }
1770  static bool classof(const QualifiedNameType *T) { return true; }
1771};
1772
1773/// \brief Represents a 'typename' specifier that names a type within
1774/// a dependent type, e.g., "typename T::type".
1775///
1776/// TypenameType has a very similar structure to QualifiedNameType,
1777/// which also involves a nested-name-specifier following by a type,
1778/// and (FIXME!) both can even be prefixed by the 'typename'
1779/// keyword. However, the two types serve very different roles:
1780/// QualifiedNameType is a non-semantic type that serves only as sugar
1781/// to show how a particular type was written in the source
1782/// code. TypenameType, on the other hand, only occurs when the
1783/// nested-name-specifier is dependent, such that we cannot resolve
1784/// the actual type until after instantiation.
1785class TypenameType : public Type, public llvm::FoldingSetNode {
1786  /// \brief The nested name specifier containing the qualifier.
1787  NestedNameSpecifier *NNS;
1788
1789  typedef llvm::PointerUnion<const IdentifierInfo *,
1790                             const TemplateSpecializationType *> NameType;
1791
1792  /// \brief The type that this typename specifier refers to.
1793  NameType Name;
1794
1795  TypenameType(NestedNameSpecifier *NNS, const IdentifierInfo *Name,
1796               QualType CanonType)
1797    : Type(Typename, CanonType, true), NNS(NNS), Name(Name) {
1798    assert(NNS->isDependent() &&
1799           "TypenameType requires a dependent nested-name-specifier");
1800  }
1801
1802  TypenameType(NestedNameSpecifier *NNS, const TemplateSpecializationType *Ty,
1803               QualType CanonType)
1804    : Type(Typename, CanonType, true), NNS(NNS), Name(Ty) {
1805    assert(NNS->isDependent() &&
1806           "TypenameType requires a dependent nested-name-specifier");
1807  }
1808
1809  friend class ASTContext;  // ASTContext creates these
1810
1811public:
1812  /// \brief Retrieve the qualification on this type.
1813  NestedNameSpecifier *getQualifier() const { return NNS; }
1814
1815  /// \brief Retrieve the type named by the typename specifier as an
1816  /// identifier.
1817  ///
1818  /// This routine will return a non-NULL identifier pointer when the
1819  /// form of the original typename was terminated by an identifier,
1820  /// e.g., "typename T::type".
1821  const IdentifierInfo *getIdentifier() const {
1822    return Name.dyn_cast<const IdentifierInfo *>();
1823  }
1824
1825  /// \brief Retrieve the type named by the typename specifier as a
1826  /// type specialization.
1827  const TemplateSpecializationType *getTemplateId() const {
1828    return Name.dyn_cast<const TemplateSpecializationType *>();
1829  }
1830
1831  virtual void getAsStringInternal(std::string &InnerString,
1832                                   const PrintingPolicy &Policy) const;
1833
1834  void Profile(llvm::FoldingSetNodeID &ID) {
1835    Profile(ID, NNS, Name);
1836  }
1837
1838  static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
1839                      NameType Name) {
1840    ID.AddPointer(NNS);
1841    ID.AddPointer(Name.getOpaqueValue());
1842  }
1843
1844  static bool classof(const Type *T) {
1845    return T->getTypeClass() == Typename;
1846  }
1847  static bool classof(const TypenameType *T) { return true; }
1848};
1849
1850/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
1851/// object oriented design.  They basically correspond to C++ classes.  There
1852/// are two kinds of interface types, normal interfaces like "NSString" and
1853/// qualified interfaces, which are qualified with a protocol list like
1854/// "NSString<NSCopyable, NSAmazing>".  Qualified interface types are instances
1855/// of ObjCQualifiedInterfaceType, which is a subclass of ObjCInterfaceType.
1856class ObjCInterfaceType : public Type {
1857  ObjCInterfaceDecl *Decl;
1858protected:
1859  ObjCInterfaceType(TypeClass tc, ObjCInterfaceDecl *D) :
1860    Type(tc, QualType(), /*Dependent=*/false), Decl(D) { }
1861  friend class ASTContext;  // ASTContext creates these.
1862
1863  // FIXME: These can go away when we move ASTContext::canAssignObjCInterfaces
1864  // to this class (as a static helper).
1865  bool isObjCIdInterface() const;
1866  bool isObjCClassInterface() const;
1867public:
1868
1869  ObjCInterfaceDecl *getDecl() const { return Decl; }
1870
1871  /// qual_iterator and friends: this provides access to the (potentially empty)
1872  /// list of protocols qualifying this interface.  If this is an instance of
1873  /// ObjCQualifiedInterfaceType it returns the list, otherwise it returns an
1874  /// empty list if there are no qualifying protocols.
1875  typedef llvm::SmallVector<ObjCProtocolDecl*, 8>::const_iterator qual_iterator;
1876  inline qual_iterator qual_begin() const;
1877  inline qual_iterator qual_end() const;
1878  bool qual_empty() const { return getTypeClass() != ObjCQualifiedInterface; }
1879
1880  /// getNumProtocols - Return the number of qualifying protocols in this
1881  /// interface type, or 0 if there are none.
1882  inline unsigned getNumProtocols() const;
1883
1884  virtual void getAsStringInternal(std::string &InnerString,
1885                                   const PrintingPolicy &Policy) const;
1886  static bool classof(const Type *T) {
1887    return T->getTypeClass() == ObjCInterface ||
1888           T->getTypeClass() == ObjCQualifiedInterface;
1889  }
1890  static bool classof(const ObjCInterfaceType *) { return true; }
1891};
1892
1893/// ObjCObjectPointerType - Used to represent 'id', 'Interface *', 'id <p>',
1894/// and 'Interface <p> *'.
1895///
1896/// Duplicate protocols are removed and protocol list is canonicalized to be in
1897/// alphabetical order.
1898class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
1899  QualType PointeeType; // will always point to an interface type.
1900
1901  // List of protocols for this protocol conforming object type
1902  // List is sorted on protocol name. No protocol is entered more than once.
1903  llvm::SmallVector<ObjCProtocolDecl*, 8> Protocols;
1904
1905  ObjCObjectPointerType(QualType T, ObjCProtocolDecl **Protos, unsigned NumP) :
1906    Type(ObjCObjectPointer, QualType(), /*Dependent=*/false),
1907    PointeeType(T), Protocols(Protos, Protos+NumP) { }
1908  friend class ASTContext;  // ASTContext creates these.
1909  friend class ObjCInterfaceType; // To enable 'id' and 'Class' predicates.
1910
1911  static ObjCInterfaceType *IdInterfaceT;
1912  static ObjCInterfaceType *ClassInterfaceT;
1913  static void setIdInterface(QualType T) {
1914    IdInterfaceT =  dyn_cast<ObjCInterfaceType>(T.getTypePtr());
1915  }
1916  static void setClassInterface(QualType T) {
1917    ClassInterfaceT =  dyn_cast<ObjCInterfaceType>(T.getTypePtr());
1918  }
1919  static ObjCInterfaceType *getIdInterface() { return IdInterfaceT; }
1920  static ObjCInterfaceType *getClassInterface() { return ClassInterfaceT; }
1921public:
1922  // Get the pointee type. Pointee is required to always be an interface type.
1923  // Note: Pointee can be a TypedefType whose canonical type is an interface.
1924  // Example: typedef NSObject T; T *var;
1925  QualType getPointeeType() const { return PointeeType; }
1926
1927  const ObjCInterfaceType *getInterfaceType() const {
1928    return PointeeType->getAsObjCInterfaceType();
1929  }
1930  ObjCInterfaceDecl *getInterfaceDecl() const {
1931    return getInterfaceType()->getDecl();
1932  }
1933  /// isObjCQualifiedIdType - true for "id <p>".
1934  bool isObjCQualifiedIdType() const {
1935    return getInterfaceType() == IdInterfaceT && Protocols.size();
1936  }
1937  bool isObjCIdType() const {
1938    return getInterfaceType() == IdInterfaceT && !Protocols.size();
1939  }
1940  bool isObjCClassType() const {
1941    return getInterfaceType() == ClassInterfaceT && !Protocols.size();
1942  }
1943  /// qual_iterator and friends: this provides access to the (potentially empty)
1944  /// list of protocols qualifying this interface.
1945  typedef llvm::SmallVector<ObjCProtocolDecl*, 8>::const_iterator qual_iterator;
1946
1947  qual_iterator qual_begin() const { return Protocols.begin(); }
1948  qual_iterator qual_end() const   { return Protocols.end(); }
1949  bool qual_empty() const { return Protocols.size() == 0; }
1950
1951  /// getNumProtocols - Return the number of qualifying protocols in this
1952  /// interface type, or 0 if there are none.
1953  unsigned getNumProtocols() const { return Protocols.size(); }
1954
1955  void Profile(llvm::FoldingSetNodeID &ID);
1956  static void Profile(llvm::FoldingSetNodeID &ID, QualType T,
1957                      ObjCProtocolDecl **protocols, unsigned NumProtocols);
1958  virtual void getAsStringInternal(std::string &InnerString,
1959                                   const PrintingPolicy &Policy) const;
1960  static bool classof(const Type *T) {
1961    return T->getTypeClass() == ObjCObjectPointer;
1962  }
1963  static bool classof(const ObjCObjectPointerType *) { return true; }
1964};
1965
1966/// ObjCQualifiedInterfaceType - This class represents interface types
1967/// conforming to a list of protocols, such as INTF<Proto1, Proto2, Proto1>.
1968///
1969/// Duplicate protocols are removed and protocol list is canonicalized to be in
1970/// alphabetical order.
1971/// FIXME: Remove this class (converting uses to ObjCObjectPointerType).
1972class ObjCQualifiedInterfaceType : public ObjCInterfaceType,
1973                                   public llvm::FoldingSetNode {
1974
1975  // List of protocols for this protocol conforming object type
1976  // List is sorted on protocol name. No protocol is enterred more than once.
1977  llvm::SmallVector<ObjCProtocolDecl*, 4> Protocols;
1978
1979  ObjCQualifiedInterfaceType(ObjCInterfaceDecl *D,
1980                             ObjCProtocolDecl **Protos, unsigned NumP) :
1981    ObjCInterfaceType(ObjCQualifiedInterface, D),
1982    Protocols(Protos, Protos+NumP) { }
1983  friend class ASTContext;  // ASTContext creates these.
1984public:
1985
1986  unsigned getNumProtocols() const {
1987    return Protocols.size();
1988  }
1989
1990  qual_iterator qual_begin() const { return Protocols.begin(); }
1991  qual_iterator qual_end() const   { return Protocols.end(); }
1992
1993  virtual void getAsStringInternal(std::string &InnerString,
1994                                   const PrintingPolicy &Policy) const;
1995
1996  void Profile(llvm::FoldingSetNodeID &ID);
1997  static void Profile(llvm::FoldingSetNodeID &ID,
1998                      const ObjCInterfaceDecl *Decl,
1999                      ObjCProtocolDecl **protocols, unsigned NumProtocols);
2000
2001  static bool classof(const Type *T) {
2002    return T->getTypeClass() == ObjCQualifiedInterface;
2003  }
2004  static bool classof(const ObjCQualifiedInterfaceType *) { return true; }
2005};
2006
2007inline ObjCInterfaceType::qual_iterator ObjCInterfaceType::qual_begin() const {
2008  if (const ObjCQualifiedInterfaceType *QIT =
2009         dyn_cast<ObjCQualifiedInterfaceType>(this))
2010    return QIT->qual_begin();
2011  return 0;
2012}
2013inline ObjCInterfaceType::qual_iterator ObjCInterfaceType::qual_end() const {
2014  if (const ObjCQualifiedInterfaceType *QIT =
2015         dyn_cast<ObjCQualifiedInterfaceType>(this))
2016    return QIT->qual_end();
2017  return 0;
2018}
2019
2020/// getNumProtocols - Return the number of qualifying protocols in this
2021/// interface type, or 0 if there are none.
2022inline unsigned ObjCInterfaceType::getNumProtocols() const {
2023  if (const ObjCQualifiedInterfaceType *QIT =
2024        dyn_cast<ObjCQualifiedInterfaceType>(this))
2025    return QIT->getNumProtocols();
2026  return 0;
2027}
2028
2029// Inline function definitions.
2030
2031/// getUnqualifiedType - Return the type without any qualifiers.
2032inline QualType QualType::getUnqualifiedType() const {
2033  Type *TP = getTypePtr();
2034  if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(TP))
2035    TP = EXTQT->getBaseType();
2036  return QualType(TP, 0);
2037}
2038
2039/// getAddressSpace - Return the address space of this type.
2040inline unsigned QualType::getAddressSpace() const {
2041  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2042  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
2043    return AT->getElementType().getAddressSpace();
2044  if (const RecordType *RT = dyn_cast<RecordType>(CT))
2045    return RT->getAddressSpace();
2046  if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CT))
2047    return EXTQT->getAddressSpace();
2048  return 0;
2049}
2050
2051/// getObjCGCAttr - Return the gc attribute of this type.
2052inline QualType::GCAttrTypes QualType::getObjCGCAttr() const {
2053  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2054  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
2055      return AT->getElementType().getObjCGCAttr();
2056  if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CT))
2057    return EXTQT->getObjCGCAttr();
2058  if (const ObjCObjectPointerType *PT = CT->getAsObjCObjectPointerType())
2059    return PT->getPointeeType().getObjCGCAttr();
2060  return GCNone;
2061}
2062
2063/// isMoreQualifiedThan - Determine whether this type is more
2064/// qualified than the Other type. For example, "const volatile int"
2065/// is more qualified than "const int", "volatile int", and
2066/// "int". However, it is not more qualified than "const volatile
2067/// int".
2068inline bool QualType::isMoreQualifiedThan(QualType Other) const {
2069  unsigned MyQuals = this->getCVRQualifiers();
2070  unsigned OtherQuals = Other.getCVRQualifiers();
2071  if (getAddressSpace() != Other.getAddressSpace())
2072    return false;
2073  return MyQuals != OtherQuals && (MyQuals | OtherQuals) == MyQuals;
2074}
2075
2076/// isAtLeastAsQualifiedAs - Determine whether this type is at last
2077/// as qualified as the Other type. For example, "const volatile
2078/// int" is at least as qualified as "const int", "volatile int",
2079/// "int", and "const volatile int".
2080inline bool QualType::isAtLeastAsQualifiedAs(QualType Other) const {
2081  unsigned MyQuals = this->getCVRQualifiers();
2082  unsigned OtherQuals = Other.getCVRQualifiers();
2083  if (getAddressSpace() != Other.getAddressSpace())
2084    return false;
2085  return (MyQuals | OtherQuals) == MyQuals;
2086}
2087
2088/// getNonReferenceType - If Type is a reference type (e.g., const
2089/// int&), returns the type that the reference refers to ("const
2090/// int"). Otherwise, returns the type itself. This routine is used
2091/// throughout Sema to implement C++ 5p6:
2092///
2093///   If an expression initially has the type "reference to T" (8.3.2,
2094///   8.5.3), the type is adjusted to "T" prior to any further
2095///   analysis, the expression designates the object or function
2096///   denoted by the reference, and the expression is an lvalue.
2097inline QualType QualType::getNonReferenceType() const {
2098  if (const ReferenceType *RefType = (*this)->getAsReferenceType())
2099    return RefType->getPointeeType();
2100  else
2101    return *this;
2102}
2103
2104inline const TypedefType* Type::getAsTypedefType() const {
2105  return dyn_cast<TypedefType>(this);
2106}
2107inline const ObjCInterfaceType *Type::getAsPointerToObjCInterfaceType() const {
2108  if (const PointerType *PT = getAsPointerType())
2109    return PT->getPointeeType()->getAsObjCInterfaceType();
2110  return 0;
2111}
2112
2113// NOTE: All of these methods use "getUnqualifiedType" to strip off address
2114// space qualifiers if present.
2115inline bool Type::isFunctionType() const {
2116  return isa<FunctionType>(CanonicalType.getUnqualifiedType());
2117}
2118inline bool Type::isPointerType() const {
2119  return isa<PointerType>(CanonicalType.getUnqualifiedType());
2120}
2121inline bool Type::isBlockPointerType() const {
2122  return isa<BlockPointerType>(CanonicalType.getUnqualifiedType());
2123}
2124inline bool Type::isReferenceType() const {
2125  return isa<ReferenceType>(CanonicalType.getUnqualifiedType());
2126}
2127inline bool Type::isLValueReferenceType() const {
2128  return isa<LValueReferenceType>(CanonicalType.getUnqualifiedType());
2129}
2130inline bool Type::isRValueReferenceType() const {
2131  return isa<RValueReferenceType>(CanonicalType.getUnqualifiedType());
2132}
2133inline bool Type::isFunctionPointerType() const {
2134  if (const PointerType* T = getAsPointerType())
2135    return T->getPointeeType()->isFunctionType();
2136  else
2137    return false;
2138}
2139inline bool Type::isMemberPointerType() const {
2140  return isa<MemberPointerType>(CanonicalType.getUnqualifiedType());
2141}
2142inline bool Type::isMemberFunctionPointerType() const {
2143  if (const MemberPointerType* T = getAsMemberPointerType())
2144    return T->getPointeeType()->isFunctionType();
2145  else
2146    return false;
2147}
2148inline bool Type::isArrayType() const {
2149  return isa<ArrayType>(CanonicalType.getUnqualifiedType());
2150}
2151inline bool Type::isConstantArrayType() const {
2152  return isa<ConstantArrayType>(CanonicalType.getUnqualifiedType());
2153}
2154inline bool Type::isIncompleteArrayType() const {
2155  return isa<IncompleteArrayType>(CanonicalType.getUnqualifiedType());
2156}
2157inline bool Type::isVariableArrayType() const {
2158  return isa<VariableArrayType>(CanonicalType.getUnqualifiedType());
2159}
2160inline bool Type::isDependentSizedArrayType() const {
2161  return isa<DependentSizedArrayType>(CanonicalType.getUnqualifiedType());
2162}
2163inline bool Type::isRecordType() const {
2164  return isa<RecordType>(CanonicalType.getUnqualifiedType());
2165}
2166inline bool Type::isAnyComplexType() const {
2167  return isa<ComplexType>(CanonicalType.getUnqualifiedType());
2168}
2169inline bool Type::isVectorType() const {
2170  return isa<VectorType>(CanonicalType.getUnqualifiedType());
2171}
2172inline bool Type::isExtVectorType() const {
2173  return isa<ExtVectorType>(CanonicalType.getUnqualifiedType());
2174}
2175inline bool Type::isObjCObjectPointerType() const {
2176  return isa<ObjCObjectPointerType>(CanonicalType.getUnqualifiedType());
2177}
2178inline bool Type::isObjCInterfaceType() const {
2179  return isa<ObjCInterfaceType>(CanonicalType.getUnqualifiedType());
2180}
2181inline bool Type::isObjCQualifiedInterfaceType() const {
2182  return isa<ObjCQualifiedInterfaceType>(CanonicalType.getUnqualifiedType());
2183}
2184inline bool Type::isObjCQualifiedIdType() const {
2185  if (const ObjCObjectPointerType *OPT = getAsObjCObjectPointerType()) {
2186    return OPT->isObjCQualifiedIdType();
2187  }
2188  return false;
2189}
2190inline bool Type::isObjCIdType() const {
2191  if (const ObjCObjectPointerType *OPT = getAsObjCObjectPointerType()) {
2192    return OPT->isObjCIdType();
2193  }
2194  return false;
2195}
2196inline bool Type::isObjCClassType() const {
2197  if (const ObjCObjectPointerType *OPT = getAsObjCObjectPointerType()) {
2198    return OPT->isObjCClassType();
2199  }
2200  return false;
2201}
2202inline bool Type::isTemplateTypeParmType() const {
2203  return isa<TemplateTypeParmType>(CanonicalType.getUnqualifiedType());
2204}
2205
2206inline bool Type::isSpecificBuiltinType(unsigned K) const {
2207  if (const BuiltinType *BT = getAsBuiltinType())
2208    if (BT->getKind() == (BuiltinType::Kind) K)
2209      return true;
2210  return false;
2211}
2212
2213/// \brief Determines whether this is a type for which one can define
2214/// an overloaded operator.
2215inline bool Type::isOverloadableType() const {
2216  return isDependentType() || isRecordType() || isEnumeralType();
2217}
2218
2219inline bool Type::hasPointerRepresentation() const {
2220  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
2221          isObjCInterfaceType() || isObjCObjectPointerType() ||
2222          isObjCQualifiedInterfaceType() || isNullPtrType());
2223}
2224
2225inline bool Type::hasObjCPointerRepresentation() const {
2226  return (isObjCInterfaceType() || isObjCObjectPointerType() ||
2227          isObjCQualifiedInterfaceType());
2228}
2229
2230/// Insertion operator for diagnostics.  This allows sending QualType's into a
2231/// diagnostic with <<.
2232inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
2233                                           QualType T) {
2234  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
2235                  Diagnostic::ak_qualtype);
2236  return DB;
2237}
2238
2239}  // end namespace clang
2240
2241#endif
2242