Type.h revision fa78c91c54dd99ec61a9e27e6b74a549f5c9fa9c
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Basic/IdentifierTable.h"
19#include "clang/Basic/Linkage.h"
20#include "clang/Basic/PartialDiagnostic.h"
21#include "clang/AST/NestedNameSpecifier.h"
22#include "clang/AST/TemplateName.h"
23#include "llvm/Support/Casting.h"
24#include "llvm/Support/type_traits.h"
25#include "llvm/ADT/APSInt.h"
26#include "llvm/ADT/FoldingSet.h"
27#include "llvm/ADT/PointerIntPair.h"
28#include "llvm/ADT/PointerUnion.h"
29
30using llvm::isa;
31using llvm::cast;
32using llvm::cast_or_null;
33using llvm::dyn_cast;
34using llvm::dyn_cast_or_null;
35namespace clang {
36  enum {
37    TypeAlignmentInBits = 3,
38    TypeAlignment = 1 << TypeAlignmentInBits
39  };
40  class Type;
41  class ExtQuals;
42  class QualType;
43}
44
45namespace llvm {
46  template <typename T>
47  class PointerLikeTypeTraits;
48  template<>
49  class PointerLikeTypeTraits< ::clang::Type*> {
50  public:
51    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
52    static inline ::clang::Type *getFromVoidPointer(void *P) {
53      return static_cast< ::clang::Type*>(P);
54    }
55    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
56  };
57  template<>
58  class PointerLikeTypeTraits< ::clang::ExtQuals*> {
59  public:
60    static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
61    static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
62      return static_cast< ::clang::ExtQuals*>(P);
63    }
64    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
65  };
66
67  template <>
68  struct isPodLike<clang::QualType> { static const bool value = true; };
69}
70
71namespace clang {
72  class ASTContext;
73  class TypedefDecl;
74  class TemplateDecl;
75  class TemplateTypeParmDecl;
76  class NonTypeTemplateParmDecl;
77  class TemplateTemplateParmDecl;
78  class TagDecl;
79  class RecordDecl;
80  class CXXRecordDecl;
81  class EnumDecl;
82  class FieldDecl;
83  class ObjCInterfaceDecl;
84  class ObjCProtocolDecl;
85  class ObjCMethodDecl;
86  class UnresolvedUsingTypenameDecl;
87  class Expr;
88  class Stmt;
89  class SourceLocation;
90  class StmtIteratorBase;
91  class TemplateArgument;
92  class TemplateArgumentLoc;
93  class TemplateArgumentListInfo;
94  class Type;
95  class ElaboratedType;
96  struct PrintingPolicy;
97
98  template <typename> class CanQual;
99  typedef CanQual<Type> CanQualType;
100
101  // Provide forward declarations for all of the *Type classes
102#define TYPE(Class, Base) class Class##Type;
103#include "clang/AST/TypeNodes.def"
104
105/// Qualifiers - The collection of all-type qualifiers we support.
106/// Clang supports five independent qualifiers:
107/// * C99: const, volatile, and restrict
108/// * Embedded C (TR18037): address spaces
109/// * Objective C: the GC attributes (none, weak, or strong)
110class Qualifiers {
111public:
112  enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
113    Const    = 0x1,
114    Restrict = 0x2,
115    Volatile = 0x4,
116    CVRMask = Const | Volatile | Restrict
117  };
118
119  enum GC {
120    GCNone = 0,
121    Weak,
122    Strong
123  };
124
125  enum {
126    /// The maximum supported address space number.
127    /// 24 bits should be enough for anyone.
128    MaxAddressSpace = 0xffffffu,
129
130    /// The width of the "fast" qualifier mask.
131    FastWidth = 2,
132
133    /// The fast qualifier mask.
134    FastMask = (1 << FastWidth) - 1
135  };
136
137  Qualifiers() : Mask(0) {}
138
139  static Qualifiers fromFastMask(unsigned Mask) {
140    Qualifiers Qs;
141    Qs.addFastQualifiers(Mask);
142    return Qs;
143  }
144
145  static Qualifiers fromCVRMask(unsigned CVR) {
146    Qualifiers Qs;
147    Qs.addCVRQualifiers(CVR);
148    return Qs;
149  }
150
151  // Deserialize qualifiers from an opaque representation.
152  static Qualifiers fromOpaqueValue(unsigned opaque) {
153    Qualifiers Qs;
154    Qs.Mask = opaque;
155    return Qs;
156  }
157
158  // Serialize these qualifiers into an opaque representation.
159  unsigned getAsOpaqueValue() const {
160    return Mask;
161  }
162
163  bool hasConst() const { return Mask & Const; }
164  void setConst(bool flag) {
165    Mask = (Mask & ~Const) | (flag ? Const : 0);
166  }
167  void removeConst() { Mask &= ~Const; }
168  void addConst() { Mask |= Const; }
169
170  bool hasVolatile() const { return Mask & Volatile; }
171  void setVolatile(bool flag) {
172    Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
173  }
174  void removeVolatile() { Mask &= ~Volatile; }
175  void addVolatile() { Mask |= Volatile; }
176
177  bool hasRestrict() const { return Mask & Restrict; }
178  void setRestrict(bool flag) {
179    Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
180  }
181  void removeRestrict() { Mask &= ~Restrict; }
182  void addRestrict() { Mask |= Restrict; }
183
184  bool hasCVRQualifiers() const { return getCVRQualifiers(); }
185  unsigned getCVRQualifiers() const { return Mask & CVRMask; }
186  void setCVRQualifiers(unsigned mask) {
187    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
188    Mask = (Mask & ~CVRMask) | mask;
189  }
190  void removeCVRQualifiers(unsigned mask) {
191    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
192    Mask &= ~mask;
193  }
194  void removeCVRQualifiers() {
195    removeCVRQualifiers(CVRMask);
196  }
197  void addCVRQualifiers(unsigned mask) {
198    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
199    Mask |= mask;
200  }
201
202  bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
203  GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
204  void setObjCGCAttr(GC type) {
205    Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
206  }
207  void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
208  void addObjCGCAttr(GC type) {
209    assert(type);
210    setObjCGCAttr(type);
211  }
212
213  bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
214  unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
215  void setAddressSpace(unsigned space) {
216    assert(space <= MaxAddressSpace);
217    Mask = (Mask & ~AddressSpaceMask)
218         | (((uint32_t) space) << AddressSpaceShift);
219  }
220  void removeAddressSpace() { setAddressSpace(0); }
221  void addAddressSpace(unsigned space) {
222    assert(space);
223    setAddressSpace(space);
224  }
225
226  // Fast qualifiers are those that can be allocated directly
227  // on a QualType object.
228  bool hasFastQualifiers() const { return getFastQualifiers(); }
229  unsigned getFastQualifiers() const { return Mask & FastMask; }
230  void setFastQualifiers(unsigned mask) {
231    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
232    Mask = (Mask & ~FastMask) | mask;
233  }
234  void removeFastQualifiers(unsigned mask) {
235    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
236    Mask &= ~mask;
237  }
238  void removeFastQualifiers() {
239    removeFastQualifiers(FastMask);
240  }
241  void addFastQualifiers(unsigned mask) {
242    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
243    Mask |= mask;
244  }
245
246  /// hasNonFastQualifiers - Return true if the set contains any
247  /// qualifiers which require an ExtQuals node to be allocated.
248  bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
249  Qualifiers getNonFastQualifiers() const {
250    Qualifiers Quals = *this;
251    Quals.setFastQualifiers(0);
252    return Quals;
253  }
254
255  /// hasQualifiers - Return true if the set contains any qualifiers.
256  bool hasQualifiers() const { return Mask; }
257  bool empty() const { return !Mask; }
258
259  /// \brief Add the qualifiers from the given set to this set.
260  void addQualifiers(Qualifiers Q) {
261    // If the other set doesn't have any non-boolean qualifiers, just
262    // bit-or it in.
263    if (!(Q.Mask & ~CVRMask))
264      Mask |= Q.Mask;
265    else {
266      Mask |= (Q.Mask & CVRMask);
267      if (Q.hasAddressSpace())
268        addAddressSpace(Q.getAddressSpace());
269      if (Q.hasObjCGCAttr())
270        addObjCGCAttr(Q.getObjCGCAttr());
271    }
272  }
273
274  bool isSupersetOf(Qualifiers Other) const;
275
276  bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
277  bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
278
279  operator bool() const { return hasQualifiers(); }
280
281  Qualifiers &operator+=(Qualifiers R) {
282    addQualifiers(R);
283    return *this;
284  }
285
286  // Union two qualifier sets.  If an enumerated qualifier appears
287  // in both sets, use the one from the right.
288  friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
289    L += R;
290    return L;
291  }
292
293  std::string getAsString() const;
294  std::string getAsString(const PrintingPolicy &Policy) const {
295    std::string Buffer;
296    getAsStringInternal(Buffer, Policy);
297    return Buffer;
298  }
299  void getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const;
300
301  void Profile(llvm::FoldingSetNodeID &ID) const {
302    ID.AddInteger(Mask);
303  }
304
305private:
306
307  // bits:     |0 1 2|3 .. 4|5  ..  31|
308  //           |C R V|GCAttr|AddrSpace|
309  uint32_t Mask;
310
311  static const uint32_t GCAttrMask = 0x18;
312  static const uint32_t GCAttrShift = 3;
313  static const uint32_t AddressSpaceMask = ~(CVRMask | GCAttrMask);
314  static const uint32_t AddressSpaceShift = 5;
315};
316
317
318/// ExtQuals - We can encode up to three bits in the low bits of a
319/// type pointer, but there are many more type qualifiers that we want
320/// to be able to apply to an arbitrary type.  Therefore we have this
321/// struct, intended to be heap-allocated and used by QualType to
322/// store qualifiers.
323///
324/// The current design tags the 'const' and 'restrict' qualifiers in
325/// two low bits on the QualType pointer; a third bit records whether
326/// the pointer is an ExtQuals node.  'const' was chosen because it is
327/// orders of magnitude more common than the other two qualifiers, in
328/// both library and user code.  It's relatively rare to see
329/// 'restrict' in user code, but many standard C headers are saturated
330/// with 'restrict' declarations, so that representing them efficiently
331/// is a critical goal of this representation.
332class ExtQuals : public llvm::FoldingSetNode {
333  // NOTE: changing the fast qualifiers should be straightforward as
334  // long as you don't make 'const' non-fast.
335  // 1. Qualifiers:
336  //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
337  //       Fast qualifiers must occupy the low-order bits.
338  //    b) Update Qualifiers::FastWidth and FastMask.
339  // 2. QualType:
340  //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
341  //    b) Update remove{Volatile,Restrict}, defined near the end of
342  //       this header.
343  // 3. ASTContext:
344  //    a) Update get{Volatile,Restrict}Type.
345
346  /// Context - the context to which this set belongs.  We save this
347  /// here so that QualifierCollector can use it to reapply extended
348  /// qualifiers to an arbitrary type without requiring a context to
349  /// be pushed through every single API dealing with qualifiers.
350  ASTContext& Context;
351
352  /// BaseType - the underlying type that this qualifies
353  const Type *BaseType;
354
355  /// Quals - the immutable set of qualifiers applied by this
356  /// node;  always contains extended qualifiers.
357  Qualifiers Quals;
358
359public:
360  ExtQuals(ASTContext& Context, const Type *Base, Qualifiers Quals)
361    : Context(Context), BaseType(Base), Quals(Quals)
362  {
363    assert(Quals.hasNonFastQualifiers()
364           && "ExtQuals created with no fast qualifiers");
365    assert(!Quals.hasFastQualifiers()
366           && "ExtQuals created with fast qualifiers");
367  }
368
369  Qualifiers getQualifiers() const { return Quals; }
370
371  bool hasVolatile() const { return Quals.hasVolatile(); }
372
373  bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
374  Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
375
376  bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
377  unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
378
379  const Type *getBaseType() const { return BaseType; }
380
381  ASTContext &getContext() const { return Context; }
382
383public:
384  void Profile(llvm::FoldingSetNodeID &ID) const {
385    Profile(ID, getBaseType(), Quals);
386  }
387  static void Profile(llvm::FoldingSetNodeID &ID,
388                      const Type *BaseType,
389                      Qualifiers Quals) {
390    assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
391    ID.AddPointer(BaseType);
392    Quals.Profile(ID);
393  }
394};
395
396/// CallingConv - Specifies the calling convention that a function uses.
397enum CallingConv {
398  CC_Default,
399  CC_C,           // __attribute__((cdecl))
400  CC_X86StdCall,  // __attribute__((stdcall))
401  CC_X86FastCall, // __attribute__((fastcall))
402  CC_X86ThisCall  // __attribute__((thiscall))
403};
404
405
406/// QualType - For efficiency, we don't store CV-qualified types as nodes on
407/// their own: instead each reference to a type stores the qualifiers.  This
408/// greatly reduces the number of nodes we need to allocate for types (for
409/// example we only need one for 'int', 'const int', 'volatile int',
410/// 'const volatile int', etc).
411///
412/// As an added efficiency bonus, instead of making this a pair, we
413/// just store the two bits we care about in the low bits of the
414/// pointer.  To handle the packing/unpacking, we make QualType be a
415/// simple wrapper class that acts like a smart pointer.  A third bit
416/// indicates whether there are extended qualifiers present, in which
417/// case the pointer points to a special structure.
418class QualType {
419  // Thankfully, these are efficiently composable.
420  llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
421                       Qualifiers::FastWidth> Value;
422
423  const ExtQuals *getExtQualsUnsafe() const {
424    return Value.getPointer().get<const ExtQuals*>();
425  }
426
427  const Type *getTypePtrUnsafe() const {
428    return Value.getPointer().get<const Type*>();
429  }
430
431  QualType getUnqualifiedTypeSlow() const;
432
433  friend class QualifierCollector;
434public:
435  QualType() {}
436
437  QualType(const Type *Ptr, unsigned Quals)
438    : Value(Ptr, Quals) {}
439  QualType(const ExtQuals *Ptr, unsigned Quals)
440    : Value(Ptr, Quals) {}
441
442  unsigned getLocalFastQualifiers() const { return Value.getInt(); }
443  void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
444
445  /// Retrieves a pointer to the underlying (unqualified) type.
446  /// This should really return a const Type, but it's not worth
447  /// changing all the users right now.
448  Type *getTypePtr() const {
449    if (hasLocalNonFastQualifiers())
450      return const_cast<Type*>(getExtQualsUnsafe()->getBaseType());
451    return const_cast<Type*>(getTypePtrUnsafe());
452  }
453
454  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
455  static QualType getFromOpaquePtr(void *Ptr) {
456    QualType T;
457    T.Value.setFromOpaqueValue(Ptr);
458    return T;
459  }
460
461  Type &operator*() const {
462    return *getTypePtr();
463  }
464
465  Type *operator->() const {
466    return getTypePtr();
467  }
468
469  bool isCanonical() const;
470  bool isCanonicalAsParam() const;
471
472  /// isNull - Return true if this QualType doesn't point to a type yet.
473  bool isNull() const {
474    return Value.getPointer().isNull();
475  }
476
477  /// \brief Determine whether this particular QualType instance has the
478  /// "const" qualifier set, without looking through typedefs that may have
479  /// added "const" at a different level.
480  bool isLocalConstQualified() const {
481    return (getLocalFastQualifiers() & Qualifiers::Const);
482  }
483
484  /// \brief Determine whether this type is const-qualified.
485  bool isConstQualified() const;
486
487  /// \brief Determine whether this particular QualType instance has the
488  /// "restrict" qualifier set, without looking through typedefs that may have
489  /// added "restrict" at a different level.
490  bool isLocalRestrictQualified() const {
491    return (getLocalFastQualifiers() & Qualifiers::Restrict);
492  }
493
494  /// \brief Determine whether this type is restrict-qualified.
495  bool isRestrictQualified() const;
496
497  /// \brief Determine whether this particular QualType instance has the
498  /// "volatile" qualifier set, without looking through typedefs that may have
499  /// added "volatile" at a different level.
500  bool isLocalVolatileQualified() const {
501    return (hasLocalNonFastQualifiers() && getExtQualsUnsafe()->hasVolatile());
502  }
503
504  /// \brief Determine whether this type is volatile-qualified.
505  bool isVolatileQualified() const;
506
507  /// \brief Determine whether this particular QualType instance has any
508  /// qualifiers, without looking through any typedefs that might add
509  /// qualifiers at a different level.
510  bool hasLocalQualifiers() const {
511    return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
512  }
513
514  /// \brief Determine whether this type has any qualifiers.
515  bool hasQualifiers() const;
516
517  /// \brief Determine whether this particular QualType instance has any
518  /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
519  /// instance.
520  bool hasLocalNonFastQualifiers() const {
521    return Value.getPointer().is<const ExtQuals*>();
522  }
523
524  /// \brief Retrieve the set of qualifiers local to this particular QualType
525  /// instance, not including any qualifiers acquired through typedefs or
526  /// other sugar.
527  Qualifiers getLocalQualifiers() const {
528    Qualifiers Quals;
529    if (hasLocalNonFastQualifiers())
530      Quals = getExtQualsUnsafe()->getQualifiers();
531    Quals.addFastQualifiers(getLocalFastQualifiers());
532    return Quals;
533  }
534
535  /// \brief Retrieve the set of qualifiers applied to this type.
536  Qualifiers getQualifiers() const;
537
538  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
539  /// local to this particular QualType instance, not including any qualifiers
540  /// acquired through typedefs or other sugar.
541  unsigned getLocalCVRQualifiers() const {
542    unsigned CVR = getLocalFastQualifiers();
543    if (isLocalVolatileQualified())
544      CVR |= Qualifiers::Volatile;
545    return CVR;
546  }
547
548  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
549  /// applied to this type.
550  unsigned getCVRQualifiers() const;
551
552  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
553  /// applied to this type, looking through any number of unqualified array
554  /// types to their element types' qualifiers.
555  unsigned getCVRQualifiersThroughArrayTypes() const;
556
557  bool isConstant(ASTContext& Ctx) const {
558    return QualType::isConstant(*this, Ctx);
559  }
560
561  // Don't promise in the API that anything besides 'const' can be
562  // easily added.
563
564  /// addConst - add the specified type qualifier to this QualType.
565  void addConst() {
566    addFastQualifiers(Qualifiers::Const);
567  }
568  QualType withConst() const {
569    return withFastQualifiers(Qualifiers::Const);
570  }
571
572  void addFastQualifiers(unsigned TQs) {
573    assert(!(TQs & ~Qualifiers::FastMask)
574           && "non-fast qualifier bits set in mask!");
575    Value.setInt(Value.getInt() | TQs);
576  }
577
578  // FIXME: The remove* functions are semantically broken, because they might
579  // not remove a qualifier stored on a typedef. Most of the with* functions
580  // have the same problem.
581  void removeConst();
582  void removeVolatile();
583  void removeRestrict();
584  void removeCVRQualifiers(unsigned Mask);
585
586  void removeFastQualifiers() { Value.setInt(0); }
587  void removeFastQualifiers(unsigned Mask) {
588    assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
589    Value.setInt(Value.getInt() & ~Mask);
590  }
591
592  // Creates a type with the given qualifiers in addition to any
593  // qualifiers already on this type.
594  QualType withFastQualifiers(unsigned TQs) const {
595    QualType T = *this;
596    T.addFastQualifiers(TQs);
597    return T;
598  }
599
600  // Creates a type with exactly the given fast qualifiers, removing
601  // any existing fast qualifiers.
602  QualType withExactFastQualifiers(unsigned TQs) const {
603    return withoutFastQualifiers().withFastQualifiers(TQs);
604  }
605
606  // Removes fast qualifiers, but leaves any extended qualifiers in place.
607  QualType withoutFastQualifiers() const {
608    QualType T = *this;
609    T.removeFastQualifiers();
610    return T;
611  }
612
613  /// \brief Return this type with all of the instance-specific qualifiers
614  /// removed, but without removing any qualifiers that may have been applied
615  /// through typedefs.
616  QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
617
618  /// \brief Return the unqualified form of the given type, which might be
619  /// desugared to eliminate qualifiers introduced via typedefs.
620  QualType getUnqualifiedType() const {
621    QualType T = getLocalUnqualifiedType();
622    if (!T.hasQualifiers())
623      return T;
624
625    return getUnqualifiedTypeSlow();
626  }
627
628  bool isMoreQualifiedThan(QualType Other) const;
629  bool isAtLeastAsQualifiedAs(QualType Other) const;
630  QualType getNonReferenceType() const;
631
632  /// \brief Determine the type of a (typically non-lvalue) expression with the
633  /// specified result type.
634  ///
635  /// This routine should be used for expressions for which the return type is
636  /// explicitly specified (e.g., in a cast or call) and isn't necessarily
637  /// an lvalue. It removes a top-level reference (since there are no
638  /// expressions of reference type) and deletes top-level cvr-qualifiers
639  /// from non-class types (in C++) or all types (in C).
640  QualType getNonLValueExprType(ASTContext &Context) const;
641
642  /// getDesugaredType - Return the specified type with any "sugar" removed from
643  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
644  /// the type is already concrete, it returns it unmodified.  This is similar
645  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
646  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
647  /// concrete.
648  ///
649  /// Qualifiers are left in place.
650  QualType getDesugaredType() const {
651    return QualType::getDesugaredType(*this);
652  }
653
654  /// operator==/!= - Indicate whether the specified types and qualifiers are
655  /// identical.
656  friend bool operator==(const QualType &LHS, const QualType &RHS) {
657    return LHS.Value == RHS.Value;
658  }
659  friend bool operator!=(const QualType &LHS, const QualType &RHS) {
660    return LHS.Value != RHS.Value;
661  }
662  std::string getAsString() const;
663
664  std::string getAsString(const PrintingPolicy &Policy) const {
665    std::string S;
666    getAsStringInternal(S, Policy);
667    return S;
668  }
669  void getAsStringInternal(std::string &Str,
670                           const PrintingPolicy &Policy) const;
671
672  void dump(const char *s) const;
673  void dump() const;
674
675  void Profile(llvm::FoldingSetNodeID &ID) const {
676    ID.AddPointer(getAsOpaquePtr());
677  }
678
679  /// getAddressSpace - Return the address space of this type.
680  inline unsigned getAddressSpace() const;
681
682  /// GCAttrTypesAttr - Returns gc attribute of this type.
683  inline Qualifiers::GC getObjCGCAttr() const;
684
685  /// isObjCGCWeak true when Type is objc's weak.
686  bool isObjCGCWeak() const {
687    return getObjCGCAttr() == Qualifiers::Weak;
688  }
689
690  /// isObjCGCStrong true when Type is objc's strong.
691  bool isObjCGCStrong() const {
692    return getObjCGCAttr() == Qualifiers::Strong;
693  }
694
695private:
696  // These methods are implemented in a separate translation unit;
697  // "static"-ize them to avoid creating temporary QualTypes in the
698  // caller.
699  static bool isConstant(QualType T, ASTContext& Ctx);
700  static QualType getDesugaredType(QualType T);
701};
702
703} // end clang.
704
705namespace llvm {
706/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
707/// to a specific Type class.
708template<> struct simplify_type<const ::clang::QualType> {
709  typedef ::clang::Type* SimpleType;
710  static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
711    return Val.getTypePtr();
712  }
713};
714template<> struct simplify_type< ::clang::QualType>
715  : public simplify_type<const ::clang::QualType> {};
716
717// Teach SmallPtrSet that QualType is "basically a pointer".
718template<>
719class PointerLikeTypeTraits<clang::QualType> {
720public:
721  static inline void *getAsVoidPointer(clang::QualType P) {
722    return P.getAsOpaquePtr();
723  }
724  static inline clang::QualType getFromVoidPointer(void *P) {
725    return clang::QualType::getFromOpaquePtr(P);
726  }
727  // Various qualifiers go in low bits.
728  enum { NumLowBitsAvailable = 0 };
729};
730
731} // end namespace llvm
732
733namespace clang {
734
735/// Type - This is the base class of the type hierarchy.  A central concept
736/// with types is that each type always has a canonical type.  A canonical type
737/// is the type with any typedef names stripped out of it or the types it
738/// references.  For example, consider:
739///
740///  typedef int  foo;
741///  typedef foo* bar;
742///    'int *'    'foo *'    'bar'
743///
744/// There will be a Type object created for 'int'.  Since int is canonical, its
745/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
746/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
747/// there is a PointerType that represents 'int*', which, like 'int', is
748/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
749/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
750/// is also 'int*'.
751///
752/// Non-canonical types are useful for emitting diagnostics, without losing
753/// information about typedefs being used.  Canonical types are useful for type
754/// comparisons (they allow by-pointer equality tests) and useful for reasoning
755/// about whether something has a particular form (e.g. is a function type),
756/// because they implicitly, recursively, strip all typedefs out of a type.
757///
758/// Types, once created, are immutable.
759///
760class Type {
761public:
762  enum TypeClass {
763#define TYPE(Class, Base) Class,
764#define LAST_TYPE(Class) TypeLast = Class,
765#define ABSTRACT_TYPE(Class, Base)
766#include "clang/AST/TypeNodes.def"
767    TagFirst = Record, TagLast = Enum
768  };
769
770private:
771  Type(const Type&);           // DO NOT IMPLEMENT.
772  void operator=(const Type&); // DO NOT IMPLEMENT.
773
774  QualType CanonicalType;
775
776  /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
777  unsigned TC : 8;
778
779  /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
780  /// Note that this should stay at the end of the ivars for Type so that
781  /// subclasses can pack their bitfields into the same word.
782  bool Dependent : 1;
783
784  /// \brief Whether the linkage of this type is already known.
785  mutable bool LinkageKnown : 1;
786
787  /// \brief Linkage of this type.
788  mutable unsigned CachedLinkage : 2;
789
790  /// \brief FromAST - Whether this type comes from an AST file.
791  mutable bool FromAST : 1;
792
793  /// \brief Set whether this type comes from an AST file.
794  void setFromAST(bool V = true) const {
795    FromAST = V;
796  }
797
798protected:
799  /// \brief Compute the linkage of this type.
800  virtual Linkage getLinkageImpl() const;
801
802  enum { BitsRemainingInType = 19 };
803
804  // silence VC++ warning C4355: 'this' : used in base member initializer list
805  Type *this_() { return this; }
806  Type(TypeClass tc, QualType Canonical, bool dependent)
807    : CanonicalType(Canonical.isNull() ? QualType(this_(), 0) : Canonical),
808      TC(tc), Dependent(dependent), LinkageKnown(false),
809      CachedLinkage(NoLinkage), FromAST(false) {}
810  virtual ~Type();
811  friend class ASTContext;
812
813public:
814  TypeClass getTypeClass() const { return static_cast<TypeClass>(TC); }
815
816  /// \brief Whether this type comes from an AST file.
817  bool isFromAST() const { return FromAST; }
818
819  bool isCanonicalUnqualified() const {
820    return CanonicalType.getTypePtr() == this;
821  }
822
823  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
824  /// object types, function types, and incomplete types.
825
826  /// isIncompleteType - Return true if this is an incomplete type.
827  /// A type that can describe objects, but which lacks information needed to
828  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
829  /// routine will need to determine if the size is actually required.
830  bool isIncompleteType() const;
831
832  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
833  /// type, in other words, not a function type.
834  bool isIncompleteOrObjectType() const {
835    return !isFunctionType();
836  }
837
838  /// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10).
839  bool isPODType() const;
840
841  /// isLiteralType - Return true if this is a literal type
842  /// (C++0x [basic.types]p10)
843  bool isLiteralType() const;
844
845  /// isVariablyModifiedType (C99 6.7.5.2p2) - Return true for variable array
846  /// types that have a non-constant expression. This does not include "[]".
847  bool isVariablyModifiedType() const;
848
849  /// Helper methods to distinguish type categories. All type predicates
850  /// operate on the canonical type, ignoring typedefs and qualifiers.
851
852  /// isBuiltinType - returns true if the type is a builtin type.
853  bool isBuiltinType() const;
854
855  /// isSpecificBuiltinType - Test for a particular builtin type.
856  bool isSpecificBuiltinType(unsigned K) const;
857
858  /// isIntegerType() does *not* include complex integers (a GCC extension).
859  /// isComplexIntegerType() can be used to test for complex integers.
860  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
861  bool isEnumeralType() const;
862  bool isBooleanType() const;
863  bool isCharType() const;
864  bool isWideCharType() const;
865  bool isAnyCharacterType() const;
866  bool isIntegralType(ASTContext &Ctx) const;
867
868  /// \brief Determine whether this type is an integral or enumeration type.
869  bool isIntegralOrEnumerationType() const;
870
871  /// Floating point categories.
872  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
873  /// isComplexType() does *not* include complex integers (a GCC extension).
874  /// isComplexIntegerType() can be used to test for complex integers.
875  bool isComplexType() const;      // C99 6.2.5p11 (complex)
876  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
877  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
878  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
879  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
880  bool isVoidType() const;         // C99 6.2.5p19
881  bool isDerivedType() const;      // C99 6.2.5p20
882  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
883  bool isAggregateType() const;
884
885  // Type Predicates: Check to see if this type is structurally the specified
886  // type, ignoring typedefs and qualifiers.
887  bool isFunctionType() const;
888  bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
889  bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
890  bool isPointerType() const;
891  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
892  bool isBlockPointerType() const;
893  bool isVoidPointerType() const;
894  bool isReferenceType() const;
895  bool isLValueReferenceType() const;
896  bool isRValueReferenceType() const;
897  bool isFunctionPointerType() const;
898  bool isMemberPointerType() const;
899  bool isMemberFunctionPointerType() const;
900  bool isArrayType() const;
901  bool isConstantArrayType() const;
902  bool isIncompleteArrayType() const;
903  bool isVariableArrayType() const;
904  bool isDependentSizedArrayType() const;
905  bool isRecordType() const;
906  bool isClassType() const;
907  bool isStructureType() const;
908  bool isStructureOrClassType() const;
909  bool isUnionType() const;
910  bool isComplexIntegerType() const;            // GCC _Complex integer type.
911  bool isVectorType() const;                    // GCC vector type.
912  bool isExtVectorType() const;                 // Extended vector type.
913  bool isObjCObjectPointerType() const;         // Pointer to *any* ObjC object.
914  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
915  // for the common case.
916  bool isObjCObjectType() const;                // NSString or typeof(*(id)0)
917  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
918  bool isObjCQualifiedIdType() const;           // id<foo>
919  bool isObjCQualifiedClassType() const;        // Class<foo>
920  bool isObjCObjectOrInterfaceType() const;
921  bool isObjCIdType() const;                    // id
922  bool isObjCClassType() const;                 // Class
923  bool isObjCSelType() const;                 // Class
924  bool isObjCBuiltinType() const;               // 'id' or 'Class'
925  bool isTemplateTypeParmType() const;          // C++ template type parameter
926  bool isNullPtrType() const;                   // C++0x nullptr_t
927
928  /// isDependentType - Whether this type is a dependent type, meaning
929  /// that its definition somehow depends on a template parameter
930  /// (C++ [temp.dep.type]).
931  bool isDependentType() const { return Dependent; }
932  bool isOverloadableType() const;
933
934  /// \brief Determine wither this type is a C++ elaborated-type-specifier.
935  bool isElaboratedTypeSpecifier() const;
936
937  /// hasPointerRepresentation - Whether this type is represented
938  /// natively as a pointer; this includes pointers, references, block
939  /// pointers, and Objective-C interface, qualified id, and qualified
940  /// interface types, as well as nullptr_t.
941  bool hasPointerRepresentation() const;
942
943  /// hasObjCPointerRepresentation - Whether this type can represent
944  /// an objective pointer type for the purpose of GC'ability
945  bool hasObjCPointerRepresentation() const;
946
947  /// \brief Determine whether this type has an integer representation
948  /// of some sort, e.g., it is an integer type or a vector.
949  bool hasIntegerRepresentation() const;
950
951  /// \brief Determine whether this type has an signed integer representation
952  /// of some sort, e.g., it is an signed integer type or a vector.
953  bool hasSignedIntegerRepresentation() const;
954
955  /// \brief Determine whether this type has an unsigned integer representation
956  /// of some sort, e.g., it is an unsigned integer type or a vector.
957  bool hasUnsignedIntegerRepresentation() const;
958
959  /// \brief Determine whether this type has a floating-point representation
960  /// of some sort, e.g., it is a floating-point type or a vector thereof.
961  bool hasFloatingRepresentation() const;
962
963  // Type Checking Functions: Check to see if this type is structurally the
964  // specified type, ignoring typedefs and qualifiers, and return a pointer to
965  // the best type we can.
966  const RecordType *getAsStructureType() const;
967  /// NOTE: getAs*ArrayType are methods on ASTContext.
968  const RecordType *getAsUnionType() const;
969  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
970  // The following is a convenience method that returns an ObjCObjectPointerType
971  // for object declared using an interface.
972  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
973  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
974  const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
975  const CXXRecordDecl *getCXXRecordDeclForPointerType() const;
976
977  /// \brief Retrieves the CXXRecordDecl that this type refers to, either
978  /// because the type is a RecordType or because it is the injected-class-name
979  /// type of a class template or class template partial specialization.
980  CXXRecordDecl *getAsCXXRecordDecl() const;
981
982  // Member-template getAs<specific type>'.  Look through sugar for
983  // an instance of <specific type>.   This scheme will eventually
984  // replace the specific getAsXXXX methods above.
985  //
986  // There are some specializations of this member template listed
987  // immediately following this class.
988  template <typename T> const T *getAs() const;
989
990  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
991  /// element type of the array, potentially with type qualifiers missing.
992  /// This method should never be used when type qualifiers are meaningful.
993  const Type *getArrayElementTypeNoTypeQual() const;
994
995  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
996  /// pointer, this returns the respective pointee.
997  QualType getPointeeType() const;
998
999  /// getUnqualifiedDesugaredType() - Return the specified type with
1000  /// any "sugar" removed from the type, removing any typedefs,
1001  /// typeofs, etc., as well as any qualifiers.
1002  const Type *getUnqualifiedDesugaredType() const;
1003
1004  /// More type predicates useful for type checking/promotion
1005  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
1006
1007  /// isSignedIntegerType - Return true if this is an integer type that is
1008  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
1009  /// an enum decl which has a signed representation, or a vector of signed
1010  /// integer element type.
1011  bool isSignedIntegerType() const;
1012
1013  /// isUnsignedIntegerType - Return true if this is an integer type that is
1014  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
1015  /// decl which has an unsigned representation, or a vector of unsigned integer
1016  /// element type.
1017  bool isUnsignedIntegerType() const;
1018
1019  /// isConstantSizeType - Return true if this is not a variable sized type,
1020  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
1021  /// incomplete types.
1022  bool isConstantSizeType() const;
1023
1024  /// isSpecifierType - Returns true if this type can be represented by some
1025  /// set of type specifiers.
1026  bool isSpecifierType() const;
1027
1028  /// \brief Determine the linkage of this type.
1029  Linkage getLinkage() const;
1030
1031  /// \brief Note that the linkage is no longer known.
1032  void ClearLinkageCache();
1033
1034  const char *getTypeClassName() const;
1035
1036  QualType getCanonicalTypeInternal() const {
1037    return CanonicalType;
1038  }
1039  CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
1040  void dump() const;
1041  static bool classof(const Type *) { return true; }
1042
1043  friend class ASTReader;
1044  friend class ASTWriter;
1045};
1046
1047template <> inline const TypedefType *Type::getAs() const {
1048  return dyn_cast<TypedefType>(this);
1049}
1050
1051// We can do canonical leaf types faster, because we don't have to
1052// worry about preserving child type decoration.
1053#define TYPE(Class, Base)
1054#define LEAF_TYPE(Class) \
1055template <> inline const Class##Type *Type::getAs() const { \
1056  return dyn_cast<Class##Type>(CanonicalType); \
1057}
1058#include "clang/AST/TypeNodes.def"
1059
1060
1061/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
1062/// types are always canonical and have a literal name field.
1063class BuiltinType : public Type {
1064public:
1065  enum Kind {
1066    Void,
1067
1068    Bool,     // This is bool and/or _Bool.
1069    Char_U,   // This is 'char' for targets where char is unsigned.
1070    UChar,    // This is explicitly qualified unsigned char.
1071    Char16,   // This is 'char16_t' for C++.
1072    Char32,   // This is 'char32_t' for C++.
1073    UShort,
1074    UInt,
1075    ULong,
1076    ULongLong,
1077    UInt128,  // __uint128_t
1078
1079    Char_S,   // This is 'char' for targets where char is signed.
1080    SChar,    // This is explicitly qualified signed char.
1081    WChar,    // This is 'wchar_t' for C++.
1082    Short,
1083    Int,
1084    Long,
1085    LongLong,
1086    Int128,   // __int128_t
1087
1088    Float, Double, LongDouble,
1089
1090    NullPtr,  // This is the type of C++0x 'nullptr'.
1091
1092    Overload,  // This represents the type of an overloaded function declaration.
1093    Dependent, // This represents the type of a type-dependent expression.
1094
1095    UndeducedAuto, // In C++0x, this represents the type of an auto variable
1096                   // that has not been deduced yet.
1097
1098    /// The primitive Objective C 'id' type.  The type pointed to by the
1099    /// user-visible 'id' type.  Only ever shows up in an AST as the base
1100    /// type of an ObjCObjectType.
1101    ObjCId,
1102
1103    /// The primitive Objective C 'Class' type.  The type pointed to by the
1104    /// user-visible 'Class' type.  Only ever shows up in an AST as the
1105    /// base type of an ObjCObjectType.
1106    ObjCClass,
1107
1108    ObjCSel    // This represents the ObjC 'SEL' type.
1109  };
1110private:
1111  Kind TypeKind;
1112
1113protected:
1114  virtual Linkage getLinkageImpl() const;
1115
1116public:
1117  BuiltinType(Kind K)
1118    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent)),
1119      TypeKind(K) {}
1120
1121  Kind getKind() const { return TypeKind; }
1122  const char *getName(const LangOptions &LO) const;
1123
1124  bool isSugared() const { return false; }
1125  QualType desugar() const { return QualType(this, 0); }
1126
1127  bool isInteger() const {
1128    return TypeKind >= Bool && TypeKind <= Int128;
1129  }
1130
1131  bool isSignedInteger() const {
1132    return TypeKind >= Char_S && TypeKind <= Int128;
1133  }
1134
1135  bool isUnsignedInteger() const {
1136    return TypeKind >= Bool && TypeKind <= UInt128;
1137  }
1138
1139  bool isFloatingPoint() const {
1140    return TypeKind >= Float && TypeKind <= LongDouble;
1141  }
1142
1143  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
1144  static bool classof(const BuiltinType *) { return true; }
1145};
1146
1147/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
1148/// types (_Complex float etc) as well as the GCC integer complex extensions.
1149///
1150class ComplexType : public Type, public llvm::FoldingSetNode {
1151  QualType ElementType;
1152  ComplexType(QualType Element, QualType CanonicalPtr) :
1153    Type(Complex, CanonicalPtr, Element->isDependentType()),
1154    ElementType(Element) {
1155  }
1156  friend class ASTContext;  // ASTContext creates these.
1157
1158protected:
1159  virtual Linkage getLinkageImpl() const;
1160
1161public:
1162  QualType getElementType() const { return ElementType; }
1163
1164  bool isSugared() const { return false; }
1165  QualType desugar() const { return QualType(this, 0); }
1166
1167  void Profile(llvm::FoldingSetNodeID &ID) {
1168    Profile(ID, getElementType());
1169  }
1170  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
1171    ID.AddPointer(Element.getAsOpaquePtr());
1172  }
1173
1174  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
1175  static bool classof(const ComplexType *) { return true; }
1176};
1177
1178/// PointerType - C99 6.7.5.1 - Pointer Declarators.
1179///
1180class PointerType : public Type, public llvm::FoldingSetNode {
1181  QualType PointeeType;
1182
1183  PointerType(QualType Pointee, QualType CanonicalPtr) :
1184    Type(Pointer, CanonicalPtr, Pointee->isDependentType()), PointeeType(Pointee) {
1185  }
1186  friend class ASTContext;  // ASTContext creates these.
1187
1188protected:
1189  virtual Linkage getLinkageImpl() const;
1190
1191public:
1192
1193  QualType getPointeeType() const { return PointeeType; }
1194
1195  bool isSugared() const { return false; }
1196  QualType desugar() const { return QualType(this, 0); }
1197
1198  void Profile(llvm::FoldingSetNodeID &ID) {
1199    Profile(ID, getPointeeType());
1200  }
1201  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1202    ID.AddPointer(Pointee.getAsOpaquePtr());
1203  }
1204
1205  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
1206  static bool classof(const PointerType *) { return true; }
1207};
1208
1209/// BlockPointerType - pointer to a block type.
1210/// This type is to represent types syntactically represented as
1211/// "void (^)(int)", etc. Pointee is required to always be a function type.
1212///
1213class BlockPointerType : public Type, public llvm::FoldingSetNode {
1214  QualType PointeeType;  // Block is some kind of pointer type
1215  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
1216    Type(BlockPointer, CanonicalCls, Pointee->isDependentType()),
1217    PointeeType(Pointee) {
1218  }
1219  friend class ASTContext;  // ASTContext creates these.
1220
1221protected:
1222  virtual Linkage getLinkageImpl() const;
1223
1224public:
1225
1226  // Get the pointee type. Pointee is required to always be a function type.
1227  QualType getPointeeType() const { return PointeeType; }
1228
1229  bool isSugared() const { return false; }
1230  QualType desugar() const { return QualType(this, 0); }
1231
1232  void Profile(llvm::FoldingSetNodeID &ID) {
1233      Profile(ID, getPointeeType());
1234  }
1235  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1236      ID.AddPointer(Pointee.getAsOpaquePtr());
1237  }
1238
1239  static bool classof(const Type *T) {
1240    return T->getTypeClass() == BlockPointer;
1241  }
1242  static bool classof(const BlockPointerType *) { return true; }
1243};
1244
1245/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
1246///
1247class ReferenceType : public Type, public llvm::FoldingSetNode {
1248  QualType PointeeType;
1249
1250  /// True if the type was originally spelled with an lvalue sigil.
1251  /// This is never true of rvalue references but can also be false
1252  /// on lvalue references because of C++0x [dcl.typedef]p9,
1253  /// as follows:
1254  ///
1255  ///   typedef int &ref;    // lvalue, spelled lvalue
1256  ///   typedef int &&rvref; // rvalue
1257  ///   ref &a;              // lvalue, inner ref, spelled lvalue
1258  ///   ref &&a;             // lvalue, inner ref
1259  ///   rvref &a;            // lvalue, inner ref, spelled lvalue
1260  ///   rvref &&a;           // rvalue, inner ref
1261  bool SpelledAsLValue;
1262
1263  /// True if the inner type is a reference type.  This only happens
1264  /// in non-canonical forms.
1265  bool InnerRef;
1266
1267protected:
1268  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
1269                bool SpelledAsLValue) :
1270    Type(tc, CanonicalRef, Referencee->isDependentType()),
1271    PointeeType(Referencee), SpelledAsLValue(SpelledAsLValue),
1272    InnerRef(Referencee->isReferenceType()) {
1273  }
1274
1275  virtual Linkage getLinkageImpl() const;
1276
1277public:
1278  bool isSpelledAsLValue() const { return SpelledAsLValue; }
1279  bool isInnerRef() const { return InnerRef; }
1280
1281  QualType getPointeeTypeAsWritten() const { return PointeeType; }
1282  QualType getPointeeType() const {
1283    // FIXME: this might strip inner qualifiers; okay?
1284    const ReferenceType *T = this;
1285    while (T->InnerRef)
1286      T = T->PointeeType->getAs<ReferenceType>();
1287    return T->PointeeType;
1288  }
1289
1290  void Profile(llvm::FoldingSetNodeID &ID) {
1291    Profile(ID, PointeeType, SpelledAsLValue);
1292  }
1293  static void Profile(llvm::FoldingSetNodeID &ID,
1294                      QualType Referencee,
1295                      bool SpelledAsLValue) {
1296    ID.AddPointer(Referencee.getAsOpaquePtr());
1297    ID.AddBoolean(SpelledAsLValue);
1298  }
1299
1300  static bool classof(const Type *T) {
1301    return T->getTypeClass() == LValueReference ||
1302           T->getTypeClass() == RValueReference;
1303  }
1304  static bool classof(const ReferenceType *) { return true; }
1305};
1306
1307/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
1308///
1309class LValueReferenceType : public ReferenceType {
1310  LValueReferenceType(QualType Referencee, QualType CanonicalRef,
1311                      bool SpelledAsLValue) :
1312    ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
1313  {}
1314  friend class ASTContext; // ASTContext creates these
1315public:
1316  bool isSugared() const { return false; }
1317  QualType desugar() const { return QualType(this, 0); }
1318
1319  static bool classof(const Type *T) {
1320    return T->getTypeClass() == LValueReference;
1321  }
1322  static bool classof(const LValueReferenceType *) { return true; }
1323};
1324
1325/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
1326///
1327class RValueReferenceType : public ReferenceType {
1328  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
1329    ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
1330  }
1331  friend class ASTContext; // ASTContext creates these
1332public:
1333  bool isSugared() const { return false; }
1334  QualType desugar() const { return QualType(this, 0); }
1335
1336  static bool classof(const Type *T) {
1337    return T->getTypeClass() == RValueReference;
1338  }
1339  static bool classof(const RValueReferenceType *) { return true; }
1340};
1341
1342/// MemberPointerType - C++ 8.3.3 - Pointers to members
1343///
1344class MemberPointerType : public Type, public llvm::FoldingSetNode {
1345  QualType PointeeType;
1346  /// The class of which the pointee is a member. Must ultimately be a
1347  /// RecordType, but could be a typedef or a template parameter too.
1348  const Type *Class;
1349
1350  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
1351    Type(MemberPointer, CanonicalPtr,
1352         Cls->isDependentType() || Pointee->isDependentType()),
1353    PointeeType(Pointee), Class(Cls) {
1354  }
1355  friend class ASTContext; // ASTContext creates these.
1356
1357protected:
1358  virtual Linkage getLinkageImpl() const;
1359
1360public:
1361
1362  QualType getPointeeType() const { return PointeeType; }
1363
1364  const Type *getClass() const { return Class; }
1365
1366  bool isSugared() const { return false; }
1367  QualType desugar() const { return QualType(this, 0); }
1368
1369  void Profile(llvm::FoldingSetNodeID &ID) {
1370    Profile(ID, getPointeeType(), getClass());
1371  }
1372  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
1373                      const Type *Class) {
1374    ID.AddPointer(Pointee.getAsOpaquePtr());
1375    ID.AddPointer(Class);
1376  }
1377
1378  static bool classof(const Type *T) {
1379    return T->getTypeClass() == MemberPointer;
1380  }
1381  static bool classof(const MemberPointerType *) { return true; }
1382};
1383
1384/// ArrayType - C99 6.7.5.2 - Array Declarators.
1385///
1386class ArrayType : public Type, public llvm::FoldingSetNode {
1387public:
1388  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
1389  /// an array with a static size (e.g. int X[static 4]), or an array
1390  /// with a star size (e.g. int X[*]).
1391  /// 'static' is only allowed on function parameters.
1392  enum ArraySizeModifier {
1393    Normal, Static, Star
1394  };
1395private:
1396  /// ElementType - The element type of the array.
1397  QualType ElementType;
1398
1399  // NOTE: VC++ treats enums as signed, avoid using the ArraySizeModifier enum
1400  /// NOTE: These fields are packed into the bitfields space in the Type class.
1401  unsigned SizeModifier : 2;
1402
1403  /// IndexTypeQuals - Capture qualifiers in declarations like:
1404  /// 'int X[static restrict 4]'. For function parameters only.
1405  unsigned IndexTypeQuals : 3;
1406
1407protected:
1408  // C++ [temp.dep.type]p1:
1409  //   A type is dependent if it is...
1410  //     - an array type constructed from any dependent type or whose
1411  //       size is specified by a constant expression that is
1412  //       value-dependent,
1413  ArrayType(TypeClass tc, QualType et, QualType can,
1414            ArraySizeModifier sm, unsigned tq)
1415    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray),
1416      ElementType(et), SizeModifier(sm), IndexTypeQuals(tq) {}
1417
1418  friend class ASTContext;  // ASTContext creates these.
1419
1420  virtual Linkage getLinkageImpl() const;
1421
1422public:
1423  QualType getElementType() const { return ElementType; }
1424  ArraySizeModifier getSizeModifier() const {
1425    return ArraySizeModifier(SizeModifier);
1426  }
1427  Qualifiers getIndexTypeQualifiers() const {
1428    return Qualifiers::fromCVRMask(IndexTypeQuals);
1429  }
1430  unsigned getIndexTypeCVRQualifiers() const { return IndexTypeQuals; }
1431
1432  static bool classof(const Type *T) {
1433    return T->getTypeClass() == ConstantArray ||
1434           T->getTypeClass() == VariableArray ||
1435           T->getTypeClass() == IncompleteArray ||
1436           T->getTypeClass() == DependentSizedArray;
1437  }
1438  static bool classof(const ArrayType *) { return true; }
1439};
1440
1441/// ConstantArrayType - This class represents the canonical version of
1442/// C arrays with a specified constant size.  For example, the canonical
1443/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
1444/// type is 'int' and the size is 404.
1445class ConstantArrayType : public ArrayType {
1446  llvm::APInt Size; // Allows us to unique the type.
1447
1448  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
1449                    ArraySizeModifier sm, unsigned tq)
1450    : ArrayType(ConstantArray, et, can, sm, tq),
1451      Size(size) {}
1452protected:
1453  ConstantArrayType(TypeClass tc, QualType et, QualType can,
1454                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
1455    : ArrayType(tc, et, can, sm, tq), Size(size) {}
1456  friend class ASTContext;  // ASTContext creates these.
1457public:
1458  const llvm::APInt &getSize() const { return Size; }
1459  bool isSugared() const { return false; }
1460  QualType desugar() const { return QualType(this, 0); }
1461
1462
1463  /// \brief Determine the number of bits required to address a member of
1464  // an array with the given element type and number of elements.
1465  static unsigned getNumAddressingBits(ASTContext &Context,
1466                                       QualType ElementType,
1467                                       const llvm::APInt &NumElements);
1468
1469  /// \brief Determine the maximum number of active bits that an array's size
1470  /// can require, which limits the maximum size of the array.
1471  static unsigned getMaxSizeBits(ASTContext &Context);
1472
1473  void Profile(llvm::FoldingSetNodeID &ID) {
1474    Profile(ID, getElementType(), getSize(),
1475            getSizeModifier(), getIndexTypeCVRQualifiers());
1476  }
1477  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1478                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
1479                      unsigned TypeQuals) {
1480    ID.AddPointer(ET.getAsOpaquePtr());
1481    ID.AddInteger(ArraySize.getZExtValue());
1482    ID.AddInteger(SizeMod);
1483    ID.AddInteger(TypeQuals);
1484  }
1485  static bool classof(const Type *T) {
1486    return T->getTypeClass() == ConstantArray;
1487  }
1488  static bool classof(const ConstantArrayType *) { return true; }
1489};
1490
1491/// IncompleteArrayType - This class represents C arrays with an unspecified
1492/// size.  For example 'int A[]' has an IncompleteArrayType where the element
1493/// type is 'int' and the size is unspecified.
1494class IncompleteArrayType : public ArrayType {
1495
1496  IncompleteArrayType(QualType et, QualType can,
1497                      ArraySizeModifier sm, unsigned tq)
1498    : ArrayType(IncompleteArray, et, can, sm, tq) {}
1499  friend class ASTContext;  // ASTContext creates these.
1500public:
1501  bool isSugared() const { return false; }
1502  QualType desugar() const { return QualType(this, 0); }
1503
1504  static bool classof(const Type *T) {
1505    return T->getTypeClass() == IncompleteArray;
1506  }
1507  static bool classof(const IncompleteArrayType *) { return true; }
1508
1509  friend class StmtIteratorBase;
1510
1511  void Profile(llvm::FoldingSetNodeID &ID) {
1512    Profile(ID, getElementType(), getSizeModifier(),
1513            getIndexTypeCVRQualifiers());
1514  }
1515
1516  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1517                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
1518    ID.AddPointer(ET.getAsOpaquePtr());
1519    ID.AddInteger(SizeMod);
1520    ID.AddInteger(TypeQuals);
1521  }
1522};
1523
1524/// VariableArrayType - This class represents C arrays with a specified size
1525/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
1526/// Since the size expression is an arbitrary expression, we store it as such.
1527///
1528/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
1529/// should not be: two lexically equivalent variable array types could mean
1530/// different things, for example, these variables do not have the same type
1531/// dynamically:
1532///
1533/// void foo(int x) {
1534///   int Y[x];
1535///   ++x;
1536///   int Z[x];
1537/// }
1538///
1539class VariableArrayType : public ArrayType {
1540  /// SizeExpr - An assignment expression. VLA's are only permitted within
1541  /// a function block.
1542  Stmt *SizeExpr;
1543  /// Brackets - The left and right array brackets.
1544  SourceRange Brackets;
1545
1546  VariableArrayType(QualType et, QualType can, Expr *e,
1547                    ArraySizeModifier sm, unsigned tq,
1548                    SourceRange brackets)
1549    : ArrayType(VariableArray, et, can, sm, tq),
1550      SizeExpr((Stmt*) e), Brackets(brackets) {}
1551  friend class ASTContext;  // ASTContext creates these.
1552
1553public:
1554  Expr *getSizeExpr() const {
1555    // We use C-style casts instead of cast<> here because we do not wish
1556    // to have a dependency of Type.h on Stmt.h/Expr.h.
1557    return (Expr*) SizeExpr;
1558  }
1559  SourceRange getBracketsRange() const { return Brackets; }
1560  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1561  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1562
1563  bool isSugared() const { return false; }
1564  QualType desugar() const { return QualType(this, 0); }
1565
1566  static bool classof(const Type *T) {
1567    return T->getTypeClass() == VariableArray;
1568  }
1569  static bool classof(const VariableArrayType *) { return true; }
1570
1571  friend class StmtIteratorBase;
1572
1573  void Profile(llvm::FoldingSetNodeID &ID) {
1574    assert(0 && "Cannnot unique VariableArrayTypes.");
1575  }
1576};
1577
1578/// DependentSizedArrayType - This type represents an array type in
1579/// C++ whose size is a value-dependent expression. For example:
1580///
1581/// \code
1582/// template<typename T, int Size>
1583/// class array {
1584///   T data[Size];
1585/// };
1586/// \endcode
1587///
1588/// For these types, we won't actually know what the array bound is
1589/// until template instantiation occurs, at which point this will
1590/// become either a ConstantArrayType or a VariableArrayType.
1591class DependentSizedArrayType : public ArrayType {
1592  ASTContext &Context;
1593
1594  /// \brief An assignment expression that will instantiate to the
1595  /// size of the array.
1596  ///
1597  /// The expression itself might be NULL, in which case the array
1598  /// type will have its size deduced from an initializer.
1599  Stmt *SizeExpr;
1600
1601  /// Brackets - The left and right array brackets.
1602  SourceRange Brackets;
1603
1604  DependentSizedArrayType(ASTContext &Context, QualType et, QualType can,
1605                          Expr *e, ArraySizeModifier sm, unsigned tq,
1606                          SourceRange brackets)
1607    : ArrayType(DependentSizedArray, et, can, sm, tq),
1608      Context(Context), SizeExpr((Stmt*) e), Brackets(brackets) {}
1609  friend class ASTContext;  // ASTContext creates these.
1610
1611public:
1612  Expr *getSizeExpr() const {
1613    // We use C-style casts instead of cast<> here because we do not wish
1614    // to have a dependency of Type.h on Stmt.h/Expr.h.
1615    return (Expr*) SizeExpr;
1616  }
1617  SourceRange getBracketsRange() const { return Brackets; }
1618  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1619  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1620
1621  bool isSugared() const { return false; }
1622  QualType desugar() const { return QualType(this, 0); }
1623
1624  static bool classof(const Type *T) {
1625    return T->getTypeClass() == DependentSizedArray;
1626  }
1627  static bool classof(const DependentSizedArrayType *) { return true; }
1628
1629  friend class StmtIteratorBase;
1630
1631
1632  void Profile(llvm::FoldingSetNodeID &ID) {
1633    Profile(ID, Context, getElementType(),
1634            getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
1635  }
1636
1637  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1638                      QualType ET, ArraySizeModifier SizeMod,
1639                      unsigned TypeQuals, Expr *E);
1640};
1641
1642/// DependentSizedExtVectorType - This type represent an extended vector type
1643/// where either the type or size is dependent. For example:
1644/// @code
1645/// template<typename T, int Size>
1646/// class vector {
1647///   typedef T __attribute__((ext_vector_type(Size))) type;
1648/// }
1649/// @endcode
1650class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
1651  ASTContext &Context;
1652  Expr *SizeExpr;
1653  /// ElementType - The element type of the array.
1654  QualType ElementType;
1655  SourceLocation loc;
1656
1657  DependentSizedExtVectorType(ASTContext &Context, QualType ElementType,
1658                              QualType can, Expr *SizeExpr, SourceLocation loc)
1659    : Type (DependentSizedExtVector, can, true),
1660      Context(Context), SizeExpr(SizeExpr), ElementType(ElementType),
1661      loc(loc) {}
1662  friend class ASTContext;
1663
1664public:
1665  Expr *getSizeExpr() const { return SizeExpr; }
1666  QualType getElementType() const { return ElementType; }
1667  SourceLocation getAttributeLoc() const { return loc; }
1668
1669  bool isSugared() const { return false; }
1670  QualType desugar() const { return QualType(this, 0); }
1671
1672  static bool classof(const Type *T) {
1673    return T->getTypeClass() == DependentSizedExtVector;
1674  }
1675  static bool classof(const DependentSizedExtVectorType *) { return true; }
1676
1677  void Profile(llvm::FoldingSetNodeID &ID) {
1678    Profile(ID, Context, getElementType(), getSizeExpr());
1679  }
1680
1681  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1682                      QualType ElementType, Expr *SizeExpr);
1683};
1684
1685
1686/// VectorType - GCC generic vector type. This type is created using
1687/// __attribute__((vector_size(n)), where "n" specifies the vector size in
1688/// bytes; or from an Altivec __vector or vector declaration.
1689/// Since the constructor takes the number of vector elements, the
1690/// client is responsible for converting the size into the number of elements.
1691class VectorType : public Type, public llvm::FoldingSetNode {
1692public:
1693  enum AltiVecSpecific {
1694    NotAltiVec,  // is not AltiVec vector
1695    AltiVec,     // is AltiVec vector
1696    Pixel,       // is AltiVec 'vector Pixel'
1697    Bool         // is AltiVec 'vector bool ...'
1698  };
1699protected:
1700  /// ElementType - The element type of the vector.
1701  QualType ElementType;
1702
1703  /// NumElements - The number of elements in the vector.
1704  unsigned NumElements;
1705
1706  AltiVecSpecific AltiVecSpec;
1707
1708  VectorType(QualType vecType, unsigned nElements, QualType canonType,
1709      AltiVecSpecific altiVecSpec) :
1710    Type(Vector, canonType, vecType->isDependentType()),
1711    ElementType(vecType), NumElements(nElements), AltiVecSpec(altiVecSpec) {}
1712  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
1713             QualType canonType, AltiVecSpecific altiVecSpec)
1714    : Type(tc, canonType, vecType->isDependentType()), ElementType(vecType),
1715      NumElements(nElements), AltiVecSpec(altiVecSpec) {}
1716  friend class ASTContext;  // ASTContext creates these.
1717
1718  virtual Linkage getLinkageImpl() const;
1719
1720public:
1721
1722  QualType getElementType() const { return ElementType; }
1723  unsigned getNumElements() const { return NumElements; }
1724
1725  bool isSugared() const { return false; }
1726  QualType desugar() const { return QualType(this, 0); }
1727
1728  AltiVecSpecific getAltiVecSpecific() const { return AltiVecSpec; }
1729
1730  void Profile(llvm::FoldingSetNodeID &ID) {
1731    Profile(ID, getElementType(), getNumElements(), getTypeClass(), AltiVecSpec);
1732  }
1733  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
1734                      unsigned NumElements, TypeClass TypeClass,
1735                      unsigned AltiVecSpec) {
1736    ID.AddPointer(ElementType.getAsOpaquePtr());
1737    ID.AddInteger(NumElements);
1738    ID.AddInteger(TypeClass);
1739    ID.AddInteger(AltiVecSpec);
1740  }
1741
1742  static bool classof(const Type *T) {
1743    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
1744  }
1745  static bool classof(const VectorType *) { return true; }
1746};
1747
1748/// ExtVectorType - Extended vector type. This type is created using
1749/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
1750/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
1751/// class enables syntactic extensions, like Vector Components for accessing
1752/// points, colors, and textures (modeled after OpenGL Shading Language).
1753class ExtVectorType : public VectorType {
1754  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
1755    VectorType(ExtVector, vecType, nElements, canonType, NotAltiVec) {}
1756  friend class ASTContext;  // ASTContext creates these.
1757public:
1758  static int getPointAccessorIdx(char c) {
1759    switch (c) {
1760    default: return -1;
1761    case 'x': return 0;
1762    case 'y': return 1;
1763    case 'z': return 2;
1764    case 'w': return 3;
1765    }
1766  }
1767  static int getNumericAccessorIdx(char c) {
1768    switch (c) {
1769      default: return -1;
1770      case '0': return 0;
1771      case '1': return 1;
1772      case '2': return 2;
1773      case '3': return 3;
1774      case '4': return 4;
1775      case '5': return 5;
1776      case '6': return 6;
1777      case '7': return 7;
1778      case '8': return 8;
1779      case '9': return 9;
1780      case 'A':
1781      case 'a': return 10;
1782      case 'B':
1783      case 'b': return 11;
1784      case 'C':
1785      case 'c': return 12;
1786      case 'D':
1787      case 'd': return 13;
1788      case 'E':
1789      case 'e': return 14;
1790      case 'F':
1791      case 'f': return 15;
1792    }
1793  }
1794
1795  static int getAccessorIdx(char c) {
1796    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
1797    return getNumericAccessorIdx(c);
1798  }
1799
1800  bool isAccessorWithinNumElements(char c) const {
1801    if (int idx = getAccessorIdx(c)+1)
1802      return unsigned(idx-1) < NumElements;
1803    return false;
1804  }
1805  bool isSugared() const { return false; }
1806  QualType desugar() const { return QualType(this, 0); }
1807
1808  static bool classof(const Type *T) {
1809    return T->getTypeClass() == ExtVector;
1810  }
1811  static bool classof(const ExtVectorType *) { return true; }
1812};
1813
1814/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
1815/// class of FunctionNoProtoType and FunctionProtoType.
1816///
1817class FunctionType : public Type {
1818  virtual void ANCHOR(); // Key function for FunctionType.
1819
1820  /// SubClassData - This field is owned by the subclass, put here to pack
1821  /// tightly with the ivars in Type.
1822  bool SubClassData : 1;
1823
1824  /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
1825  /// other bitfields.
1826  /// The qualifiers are part of FunctionProtoType because...
1827  ///
1828  /// C++ 8.3.5p4: The return type, the parameter type list and the
1829  /// cv-qualifier-seq, [...], are part of the function type.
1830  ///
1831  unsigned TypeQuals : 3;
1832
1833  /// NoReturn - Indicates if the function type is attribute noreturn.
1834  unsigned NoReturn : 1;
1835
1836  /// RegParm - How many arguments to pass inreg.
1837  unsigned RegParm : 3;
1838
1839  /// CallConv - The calling convention used by the function.
1840  unsigned CallConv : 3;
1841
1842  // The type returned by the function.
1843  QualType ResultType;
1844
1845 public:
1846  // This class is used for passing arround the information needed to
1847  // construct a call. It is not actually used for storage, just for
1848  // factoring together common arguments.
1849  // If you add a field (say Foo), other than the obvious places (both, constructors,
1850  // compile failures), what you need to update is
1851  // * Operetor==
1852  // * getFoo
1853  // * withFoo
1854  // * functionType. Add Foo, getFoo.
1855  // * ASTContext::getFooType
1856  // * ASTContext::mergeFunctionTypes
1857  // * FunctionNoProtoType::Profile
1858  // * FunctionProtoType::Profile
1859  // * TypePrinter::PrintFunctionProto
1860  // * AST read and write
1861  // * Codegen
1862
1863  class ExtInfo {
1864   public:
1865    // Constructor with no defaults. Use this when you know that you
1866    // have all the elements (when reading an AST file for example).
1867    ExtInfo(bool noReturn, unsigned regParm, CallingConv cc) :
1868        NoReturn(noReturn), RegParm(regParm), CC(cc) {}
1869
1870    // Constructor with all defaults. Use when for example creating a
1871    // function know to use defaults.
1872    ExtInfo() : NoReturn(false), RegParm(0), CC(CC_Default) {}
1873
1874    bool getNoReturn() const { return NoReturn; }
1875    unsigned getRegParm() const { return RegParm; }
1876    CallingConv getCC() const { return CC; }
1877
1878    bool operator==(const ExtInfo &Other) const {
1879      return getNoReturn() == Other.getNoReturn() &&
1880          getRegParm() == Other.getRegParm() &&
1881          getCC() == Other.getCC();
1882    }
1883    bool operator!=(const ExtInfo &Other) const {
1884      return !(*this == Other);
1885    }
1886
1887    // Note that we don't have setters. That is by design, use
1888    // the following with methods instead of mutating these objects.
1889
1890    ExtInfo withNoReturn(bool noReturn) const {
1891      return ExtInfo(noReturn, getRegParm(), getCC());
1892    }
1893
1894    ExtInfo withRegParm(unsigned RegParm) const {
1895      return ExtInfo(getNoReturn(), RegParm, getCC());
1896    }
1897
1898    ExtInfo withCallingConv(CallingConv cc) const {
1899      return ExtInfo(getNoReturn(), getRegParm(), cc);
1900    }
1901
1902   private:
1903    // True if we have __attribute__((noreturn))
1904    bool NoReturn;
1905    // The value passed to __attribute__((regparm(x)))
1906    unsigned RegParm;
1907    // The calling convention as specified via
1908    // __attribute__((cdecl|stdcall|fastcall|thiscall))
1909    CallingConv CC;
1910  };
1911
1912protected:
1913  FunctionType(TypeClass tc, QualType res, bool SubclassInfo,
1914               unsigned typeQuals, QualType Canonical, bool Dependent,
1915               const ExtInfo &Info)
1916    : Type(tc, Canonical, Dependent),
1917      SubClassData(SubclassInfo), TypeQuals(typeQuals),
1918      NoReturn(Info.getNoReturn()),
1919      RegParm(Info.getRegParm()), CallConv(Info.getCC()), ResultType(res) {}
1920  bool getSubClassData() const { return SubClassData; }
1921  unsigned getTypeQuals() const { return TypeQuals; }
1922public:
1923
1924  QualType getResultType() const { return ResultType; }
1925
1926  unsigned getRegParmType() const { return RegParm; }
1927  bool getNoReturnAttr() const { return NoReturn; }
1928  CallingConv getCallConv() const { return (CallingConv)CallConv; }
1929  ExtInfo getExtInfo() const {
1930    return ExtInfo(NoReturn, RegParm, (CallingConv)CallConv);
1931  }
1932
1933  /// \brief Determine the type of an expression that calls a function of
1934  /// this type.
1935  QualType getCallResultType(ASTContext &Context) const {
1936    return getResultType().getNonLValueExprType(Context);
1937  }
1938
1939  static llvm::StringRef getNameForCallConv(CallingConv CC);
1940
1941  static bool classof(const Type *T) {
1942    return T->getTypeClass() == FunctionNoProto ||
1943           T->getTypeClass() == FunctionProto;
1944  }
1945  static bool classof(const FunctionType *) { return true; }
1946};
1947
1948/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
1949/// no information available about its arguments.
1950class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
1951  FunctionNoProtoType(QualType Result, QualType Canonical,
1952                      const ExtInfo &Info)
1953    : FunctionType(FunctionNoProto, Result, false, 0, Canonical,
1954                   /*Dependent=*/false, Info) {}
1955  friend class ASTContext;  // ASTContext creates these.
1956
1957protected:
1958  virtual Linkage getLinkageImpl() const;
1959
1960public:
1961  // No additional state past what FunctionType provides.
1962
1963  bool isSugared() const { return false; }
1964  QualType desugar() const { return QualType(this, 0); }
1965
1966  void Profile(llvm::FoldingSetNodeID &ID) {
1967    Profile(ID, getResultType(), getExtInfo());
1968  }
1969  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
1970                      const ExtInfo &Info) {
1971    ID.AddInteger(Info.getCC());
1972    ID.AddInteger(Info.getRegParm());
1973    ID.AddInteger(Info.getNoReturn());
1974    ID.AddPointer(ResultType.getAsOpaquePtr());
1975  }
1976
1977  static bool classof(const Type *T) {
1978    return T->getTypeClass() == FunctionNoProto;
1979  }
1980  static bool classof(const FunctionNoProtoType *) { return true; }
1981};
1982
1983/// FunctionProtoType - Represents a prototype with argument type info, e.g.
1984/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
1985/// arguments, not as having a single void argument. Such a type can have an
1986/// exception specification, but this specification is not part of the canonical
1987/// type.
1988class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
1989  /// hasAnyDependentType - Determine whether there are any dependent
1990  /// types within the arguments passed in.
1991  static bool hasAnyDependentType(const QualType *ArgArray, unsigned numArgs) {
1992    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
1993      if (ArgArray[Idx]->isDependentType())
1994    return true;
1995
1996    return false;
1997  }
1998
1999  FunctionProtoType(QualType Result, const QualType *ArgArray, unsigned numArgs,
2000                    bool isVariadic, unsigned typeQuals, bool hasExs,
2001                    bool hasAnyExs, const QualType *ExArray,
2002                    unsigned numExs, QualType Canonical,
2003                    const ExtInfo &Info)
2004    : FunctionType(FunctionProto, Result, isVariadic, typeQuals, Canonical,
2005                   (Result->isDependentType() ||
2006                    hasAnyDependentType(ArgArray, numArgs)),
2007                   Info),
2008      NumArgs(numArgs), NumExceptions(numExs), HasExceptionSpec(hasExs),
2009      AnyExceptionSpec(hasAnyExs) {
2010    // Fill in the trailing argument array.
2011    QualType *ArgInfo = reinterpret_cast<QualType*>(this+1);
2012    for (unsigned i = 0; i != numArgs; ++i)
2013      ArgInfo[i] = ArgArray[i];
2014    // Fill in the exception array.
2015    QualType *Ex = ArgInfo + numArgs;
2016    for (unsigned i = 0; i != numExs; ++i)
2017      Ex[i] = ExArray[i];
2018  }
2019
2020  /// NumArgs - The number of arguments this function has, not counting '...'.
2021  unsigned NumArgs : 20;
2022
2023  /// NumExceptions - The number of types in the exception spec, if any.
2024  unsigned NumExceptions : 10;
2025
2026  /// HasExceptionSpec - Whether this function has an exception spec at all.
2027  bool HasExceptionSpec : 1;
2028
2029  /// AnyExceptionSpec - Whether this function has a throw(...) spec.
2030  bool AnyExceptionSpec : 1;
2031
2032  /// ArgInfo - There is an variable size array after the class in memory that
2033  /// holds the argument types.
2034
2035  /// Exceptions - There is another variable size array after ArgInfo that
2036  /// holds the exception types.
2037
2038  friend class ASTContext;  // ASTContext creates these.
2039
2040protected:
2041  virtual Linkage getLinkageImpl() const;
2042
2043public:
2044  unsigned getNumArgs() const { return NumArgs; }
2045  QualType getArgType(unsigned i) const {
2046    assert(i < NumArgs && "Invalid argument number!");
2047    return arg_type_begin()[i];
2048  }
2049
2050  bool hasExceptionSpec() const { return HasExceptionSpec; }
2051  bool hasAnyExceptionSpec() const { return AnyExceptionSpec; }
2052  unsigned getNumExceptions() const { return NumExceptions; }
2053  QualType getExceptionType(unsigned i) const {
2054    assert(i < NumExceptions && "Invalid exception number!");
2055    return exception_begin()[i];
2056  }
2057  bool hasEmptyExceptionSpec() const {
2058    return hasExceptionSpec() && !hasAnyExceptionSpec() &&
2059      getNumExceptions() == 0;
2060  }
2061
2062  bool isVariadic() const { return getSubClassData(); }
2063  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
2064
2065  typedef const QualType *arg_type_iterator;
2066  arg_type_iterator arg_type_begin() const {
2067    return reinterpret_cast<const QualType *>(this+1);
2068  }
2069  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
2070
2071  typedef const QualType *exception_iterator;
2072  exception_iterator exception_begin() const {
2073    // exceptions begin where arguments end
2074    return arg_type_end();
2075  }
2076  exception_iterator exception_end() const {
2077    return exception_begin() + NumExceptions;
2078  }
2079
2080  bool isSugared() const { return false; }
2081  QualType desugar() const { return QualType(this, 0); }
2082
2083  static bool classof(const Type *T) {
2084    return T->getTypeClass() == FunctionProto;
2085  }
2086  static bool classof(const FunctionProtoType *) { return true; }
2087
2088  void Profile(llvm::FoldingSetNodeID &ID);
2089  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
2090                      arg_type_iterator ArgTys, unsigned NumArgs,
2091                      bool isVariadic, unsigned TypeQuals,
2092                      bool hasExceptionSpec, bool anyExceptionSpec,
2093                      unsigned NumExceptions, exception_iterator Exs,
2094                      const ExtInfo &ExtInfo);
2095};
2096
2097
2098/// \brief Represents the dependent type named by a dependently-scoped
2099/// typename using declaration, e.g.
2100///   using typename Base<T>::foo;
2101/// Template instantiation turns these into the underlying type.
2102class UnresolvedUsingType : public Type {
2103  UnresolvedUsingTypenameDecl *Decl;
2104
2105  UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
2106    : Type(UnresolvedUsing, QualType(), true),
2107      Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
2108  friend class ASTContext; // ASTContext creates these.
2109public:
2110
2111  UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
2112
2113  bool isSugared() const { return false; }
2114  QualType desugar() const { return QualType(this, 0); }
2115
2116  static bool classof(const Type *T) {
2117    return T->getTypeClass() == UnresolvedUsing;
2118  }
2119  static bool classof(const UnresolvedUsingType *) { return true; }
2120
2121  void Profile(llvm::FoldingSetNodeID &ID) {
2122    return Profile(ID, Decl);
2123  }
2124  static void Profile(llvm::FoldingSetNodeID &ID,
2125                      UnresolvedUsingTypenameDecl *D) {
2126    ID.AddPointer(D);
2127  }
2128};
2129
2130
2131class TypedefType : public Type {
2132  TypedefDecl *Decl;
2133protected:
2134  TypedefType(TypeClass tc, const TypedefDecl *D, QualType can)
2135    : Type(tc, can, can->isDependentType()),
2136      Decl(const_cast<TypedefDecl*>(D)) {
2137    assert(!isa<TypedefType>(can) && "Invalid canonical type");
2138  }
2139  friend class ASTContext;  // ASTContext creates these.
2140public:
2141
2142  TypedefDecl *getDecl() const { return Decl; }
2143
2144  /// LookThroughTypedefs - Return the ultimate type this typedef corresponds to
2145  /// potentially looking through *all* consecutive typedefs.  This returns the
2146  /// sum of the type qualifiers, so if you have:
2147  ///   typedef const int A;
2148  ///   typedef volatile A B;
2149  /// looking through the typedefs for B will give you "const volatile A".
2150  QualType LookThroughTypedefs() const;
2151
2152  bool isSugared() const { return true; }
2153  QualType desugar() const;
2154
2155  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
2156  static bool classof(const TypedefType *) { return true; }
2157};
2158
2159/// TypeOfExprType (GCC extension).
2160class TypeOfExprType : public Type {
2161  Expr *TOExpr;
2162
2163protected:
2164  TypeOfExprType(Expr *E, QualType can = QualType());
2165  friend class ASTContext;  // ASTContext creates these.
2166public:
2167  Expr *getUnderlyingExpr() const { return TOExpr; }
2168
2169  /// \brief Remove a single level of sugar.
2170  QualType desugar() const;
2171
2172  /// \brief Returns whether this type directly provides sugar.
2173  bool isSugared() const { return true; }
2174
2175  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
2176  static bool classof(const TypeOfExprType *) { return true; }
2177};
2178
2179/// \brief Internal representation of canonical, dependent
2180/// typeof(expr) types.
2181///
2182/// This class is used internally by the ASTContext to manage
2183/// canonical, dependent types, only. Clients will only see instances
2184/// of this class via TypeOfExprType nodes.
2185class DependentTypeOfExprType
2186  : public TypeOfExprType, public llvm::FoldingSetNode {
2187  ASTContext &Context;
2188
2189public:
2190  DependentTypeOfExprType(ASTContext &Context, Expr *E)
2191    : TypeOfExprType(E), Context(Context) { }
2192
2193  bool isSugared() const { return false; }
2194  QualType desugar() const { return QualType(this, 0); }
2195
2196  void Profile(llvm::FoldingSetNodeID &ID) {
2197    Profile(ID, Context, getUnderlyingExpr());
2198  }
2199
2200  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
2201                      Expr *E);
2202};
2203
2204/// TypeOfType (GCC extension).
2205class TypeOfType : public Type {
2206  QualType TOType;
2207  TypeOfType(QualType T, QualType can)
2208    : Type(TypeOf, can, T->isDependentType()), TOType(T) {
2209    assert(!isa<TypedefType>(can) && "Invalid canonical type");
2210  }
2211  friend class ASTContext;  // ASTContext creates these.
2212public:
2213  QualType getUnderlyingType() const { return TOType; }
2214
2215  /// \brief Remove a single level of sugar.
2216  QualType desugar() const { return getUnderlyingType(); }
2217
2218  /// \brief Returns whether this type directly provides sugar.
2219  bool isSugared() const { return true; }
2220
2221  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
2222  static bool classof(const TypeOfType *) { return true; }
2223};
2224
2225/// DecltypeType (C++0x)
2226class DecltypeType : public Type {
2227  Expr *E;
2228
2229  // FIXME: We could get rid of UnderlyingType if we wanted to: We would have to
2230  // Move getDesugaredType to ASTContext so that it can call getDecltypeForExpr
2231  // from it.
2232  QualType UnderlyingType;
2233
2234protected:
2235  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
2236  friend class ASTContext;  // ASTContext creates these.
2237public:
2238  Expr *getUnderlyingExpr() const { return E; }
2239  QualType getUnderlyingType() const { return UnderlyingType; }
2240
2241  /// \brief Remove a single level of sugar.
2242  QualType desugar() const { return getUnderlyingType(); }
2243
2244  /// \brief Returns whether this type directly provides sugar.
2245  bool isSugared() const { return !isDependentType(); }
2246
2247  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
2248  static bool classof(const DecltypeType *) { return true; }
2249};
2250
2251/// \brief Internal representation of canonical, dependent
2252/// decltype(expr) types.
2253///
2254/// This class is used internally by the ASTContext to manage
2255/// canonical, dependent types, only. Clients will only see instances
2256/// of this class via DecltypeType nodes.
2257class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
2258  ASTContext &Context;
2259
2260public:
2261  DependentDecltypeType(ASTContext &Context, Expr *E);
2262
2263  bool isSugared() const { return false; }
2264  QualType desugar() const { return QualType(this, 0); }
2265
2266  void Profile(llvm::FoldingSetNodeID &ID) {
2267    Profile(ID, Context, getUnderlyingExpr());
2268  }
2269
2270  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
2271                      Expr *E);
2272};
2273
2274class TagType : public Type {
2275  /// Stores the TagDecl associated with this type. The decl may point to any
2276  /// TagDecl that declares the entity.
2277  TagDecl * decl;
2278
2279protected:
2280  TagType(TypeClass TC, const TagDecl *D, QualType can);
2281
2282  virtual Linkage getLinkageImpl() const;
2283
2284public:
2285  TagDecl *getDecl() const;
2286
2287  /// @brief Determines whether this type is in the process of being
2288  /// defined.
2289  bool isBeingDefined() const;
2290
2291  static bool classof(const Type *T) {
2292    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
2293  }
2294  static bool classof(const TagType *) { return true; }
2295  static bool classof(const RecordType *) { return true; }
2296  static bool classof(const EnumType *) { return true; }
2297};
2298
2299/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
2300/// to detect TagType objects of structs/unions/classes.
2301class RecordType : public TagType {
2302protected:
2303  explicit RecordType(const RecordDecl *D)
2304    : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2305  explicit RecordType(TypeClass TC, RecordDecl *D)
2306    : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2307  friend class ASTContext;   // ASTContext creates these.
2308public:
2309
2310  RecordDecl *getDecl() const {
2311    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
2312  }
2313
2314  // FIXME: This predicate is a helper to QualType/Type. It needs to
2315  // recursively check all fields for const-ness. If any field is declared
2316  // const, it needs to return false.
2317  bool hasConstFields() const { return false; }
2318
2319  // FIXME: RecordType needs to check when it is created that all fields are in
2320  // the same address space, and return that.
2321  unsigned getAddressSpace() const { return 0; }
2322
2323  bool isSugared() const { return false; }
2324  QualType desugar() const { return QualType(this, 0); }
2325
2326  static bool classof(const TagType *T);
2327  static bool classof(const Type *T) {
2328    return isa<TagType>(T) && classof(cast<TagType>(T));
2329  }
2330  static bool classof(const RecordType *) { return true; }
2331};
2332
2333/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
2334/// to detect TagType objects of enums.
2335class EnumType : public TagType {
2336  explicit EnumType(const EnumDecl *D)
2337    : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
2338  friend class ASTContext;   // ASTContext creates these.
2339public:
2340
2341  EnumDecl *getDecl() const {
2342    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
2343  }
2344
2345  bool isSugared() const { return false; }
2346  QualType desugar() const { return QualType(this, 0); }
2347
2348  static bool classof(const TagType *T);
2349  static bool classof(const Type *T) {
2350    return isa<TagType>(T) && classof(cast<TagType>(T));
2351  }
2352  static bool classof(const EnumType *) { return true; }
2353};
2354
2355class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2356  unsigned Depth : 15;
2357  unsigned Index : 16;
2358  unsigned ParameterPack : 1;
2359  IdentifierInfo *Name;
2360
2361  TemplateTypeParmType(unsigned D, unsigned I, bool PP, IdentifierInfo *N,
2362                       QualType Canon)
2363    : Type(TemplateTypeParm, Canon, /*Dependent=*/true),
2364      Depth(D), Index(I), ParameterPack(PP), Name(N) { }
2365
2366  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
2367    : Type(TemplateTypeParm, QualType(this, 0), /*Dependent=*/true),
2368      Depth(D), Index(I), ParameterPack(PP), Name(0) { }
2369
2370  friend class ASTContext;  // ASTContext creates these
2371
2372public:
2373  unsigned getDepth() const { return Depth; }
2374  unsigned getIndex() const { return Index; }
2375  bool isParameterPack() const { return ParameterPack; }
2376  IdentifierInfo *getName() const { return Name; }
2377
2378  bool isSugared() const { return false; }
2379  QualType desugar() const { return QualType(this, 0); }
2380
2381  void Profile(llvm::FoldingSetNodeID &ID) {
2382    Profile(ID, Depth, Index, ParameterPack, Name);
2383  }
2384
2385  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
2386                      unsigned Index, bool ParameterPack,
2387                      IdentifierInfo *Name) {
2388    ID.AddInteger(Depth);
2389    ID.AddInteger(Index);
2390    ID.AddBoolean(ParameterPack);
2391    ID.AddPointer(Name);
2392  }
2393
2394  static bool classof(const Type *T) {
2395    return T->getTypeClass() == TemplateTypeParm;
2396  }
2397  static bool classof(const TemplateTypeParmType *T) { return true; }
2398};
2399
2400/// \brief Represents the result of substituting a type for a template
2401/// type parameter.
2402///
2403/// Within an instantiated template, all template type parameters have
2404/// been replaced with these.  They are used solely to record that a
2405/// type was originally written as a template type parameter;
2406/// therefore they are never canonical.
2407class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2408  // The original type parameter.
2409  const TemplateTypeParmType *Replaced;
2410
2411  SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
2412    : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType()),
2413      Replaced(Param) { }
2414
2415  friend class ASTContext;
2416
2417public:
2418  IdentifierInfo *getName() const { return Replaced->getName(); }
2419
2420  /// Gets the template parameter that was substituted for.
2421  const TemplateTypeParmType *getReplacedParameter() const {
2422    return Replaced;
2423  }
2424
2425  /// Gets the type that was substituted for the template
2426  /// parameter.
2427  QualType getReplacementType() const {
2428    return getCanonicalTypeInternal();
2429  }
2430
2431  bool isSugared() const { return true; }
2432  QualType desugar() const { return getReplacementType(); }
2433
2434  void Profile(llvm::FoldingSetNodeID &ID) {
2435    Profile(ID, getReplacedParameter(), getReplacementType());
2436  }
2437  static void Profile(llvm::FoldingSetNodeID &ID,
2438                      const TemplateTypeParmType *Replaced,
2439                      QualType Replacement) {
2440    ID.AddPointer(Replaced);
2441    ID.AddPointer(Replacement.getAsOpaquePtr());
2442  }
2443
2444  static bool classof(const Type *T) {
2445    return T->getTypeClass() == SubstTemplateTypeParm;
2446  }
2447  static bool classof(const SubstTemplateTypeParmType *T) { return true; }
2448};
2449
2450/// \brief Represents the type of a template specialization as written
2451/// in the source code.
2452///
2453/// Template specialization types represent the syntactic form of a
2454/// template-id that refers to a type, e.g., @c vector<int>. Some
2455/// template specialization types are syntactic sugar, whose canonical
2456/// type will point to some other type node that represents the
2457/// instantiation or class template specialization. For example, a
2458/// class template specialization type of @c vector<int> will refer to
2459/// a tag type for the instantiation
2460/// @c std::vector<int, std::allocator<int>>.
2461///
2462/// Other template specialization types, for which the template name
2463/// is dependent, may be canonical types. These types are always
2464/// dependent.
2465class TemplateSpecializationType
2466  : public Type, public llvm::FoldingSetNode {
2467  /// \brief The name of the template being specialized.
2468  TemplateName Template;
2469
2470  /// \brief - The number of template arguments named in this class
2471  /// template specialization.
2472  unsigned NumArgs;
2473
2474  TemplateSpecializationType(TemplateName T,
2475                             const TemplateArgument *Args,
2476                             unsigned NumArgs, QualType Canon);
2477
2478  friend class ASTContext;  // ASTContext creates these
2479
2480public:
2481  /// \brief Determine whether any of the given template arguments are
2482  /// dependent.
2483  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
2484                                            unsigned NumArgs);
2485
2486  static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
2487                                            unsigned NumArgs);
2488
2489  static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &);
2490
2491  /// \brief Print a template argument list, including the '<' and '>'
2492  /// enclosing the template arguments.
2493  static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
2494                                               unsigned NumArgs,
2495                                               const PrintingPolicy &Policy);
2496
2497  static std::string PrintTemplateArgumentList(const TemplateArgumentLoc *Args,
2498                                               unsigned NumArgs,
2499                                               const PrintingPolicy &Policy);
2500
2501  static std::string PrintTemplateArgumentList(const TemplateArgumentListInfo &,
2502                                               const PrintingPolicy &Policy);
2503
2504  /// True if this template specialization type matches a current
2505  /// instantiation in the context in which it is found.
2506  bool isCurrentInstantiation() const {
2507    return isa<InjectedClassNameType>(getCanonicalTypeInternal());
2508  }
2509
2510  typedef const TemplateArgument * iterator;
2511
2512  iterator begin() const { return getArgs(); }
2513  iterator end() const; // defined inline in TemplateBase.h
2514
2515  /// \brief Retrieve the name of the template that we are specializing.
2516  TemplateName getTemplateName() const { return Template; }
2517
2518  /// \brief Retrieve the template arguments.
2519  const TemplateArgument *getArgs() const {
2520    return reinterpret_cast<const TemplateArgument *>(this + 1);
2521  }
2522
2523  /// \brief Retrieve the number of template arguments.
2524  unsigned getNumArgs() const { return NumArgs; }
2525
2526  /// \brief Retrieve a specific template argument as a type.
2527  /// \precondition @c isArgType(Arg)
2528  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
2529
2530  bool isSugared() const {
2531    return !isDependentType() || isCurrentInstantiation();
2532  }
2533  QualType desugar() const { return getCanonicalTypeInternal(); }
2534
2535  void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Ctx) {
2536    Profile(ID, Template, getArgs(), NumArgs, Ctx);
2537  }
2538
2539  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
2540                      const TemplateArgument *Args,
2541                      unsigned NumArgs,
2542                      ASTContext &Context);
2543
2544  static bool classof(const Type *T) {
2545    return T->getTypeClass() == TemplateSpecialization;
2546  }
2547  static bool classof(const TemplateSpecializationType *T) { return true; }
2548};
2549
2550/// \brief The injected class name of a C++ class template or class
2551/// template partial specialization.  Used to record that a type was
2552/// spelled with a bare identifier rather than as a template-id; the
2553/// equivalent for non-templated classes is just RecordType.
2554///
2555/// Injected class name types are always dependent.  Template
2556/// instantiation turns these into RecordTypes.
2557///
2558/// Injected class name types are always canonical.  This works
2559/// because it is impossible to compare an injected class name type
2560/// with the corresponding non-injected template type, for the same
2561/// reason that it is impossible to directly compare template
2562/// parameters from different dependent contexts: injected class name
2563/// types can only occur within the scope of a particular templated
2564/// declaration, and within that scope every template specialization
2565/// will canonicalize to the injected class name (when appropriate
2566/// according to the rules of the language).
2567class InjectedClassNameType : public Type {
2568  CXXRecordDecl *Decl;
2569
2570  /// The template specialization which this type represents.
2571  /// For example, in
2572  ///   template <class T> class A { ... };
2573  /// this is A<T>, whereas in
2574  ///   template <class X, class Y> class A<B<X,Y> > { ... };
2575  /// this is A<B<X,Y> >.
2576  ///
2577  /// It is always unqualified, always a template specialization type,
2578  /// and always dependent.
2579  QualType InjectedType;
2580
2581  friend class ASTContext; // ASTContext creates these.
2582  friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
2583                          // currently suitable for AST reading, too much
2584                          // interdependencies.
2585  InjectedClassNameType(CXXRecordDecl *D, QualType TST)
2586    : Type(InjectedClassName, QualType(), true),
2587      Decl(D), InjectedType(TST) {
2588    assert(isa<TemplateSpecializationType>(TST));
2589    assert(!TST.hasQualifiers());
2590    assert(TST->isDependentType());
2591  }
2592
2593public:
2594  QualType getInjectedSpecializationType() const { return InjectedType; }
2595  const TemplateSpecializationType *getInjectedTST() const {
2596    return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
2597  }
2598
2599  CXXRecordDecl *getDecl() const;
2600
2601  bool isSugared() const { return false; }
2602  QualType desugar() const { return QualType(this, 0); }
2603
2604  static bool classof(const Type *T) {
2605    return T->getTypeClass() == InjectedClassName;
2606  }
2607  static bool classof(const InjectedClassNameType *T) { return true; }
2608};
2609
2610/// \brief The kind of a tag type.
2611enum TagTypeKind {
2612  /// \brief The "struct" keyword.
2613  TTK_Struct,
2614  /// \brief The "union" keyword.
2615  TTK_Union,
2616  /// \brief The "class" keyword.
2617  TTK_Class,
2618  /// \brief The "enum" keyword.
2619  TTK_Enum
2620};
2621
2622/// \brief The elaboration keyword that precedes a qualified type name or
2623/// introduces an elaborated-type-specifier.
2624enum ElaboratedTypeKeyword {
2625  /// \brief The "struct" keyword introduces the elaborated-type-specifier.
2626  ETK_Struct,
2627  /// \brief The "union" keyword introduces the elaborated-type-specifier.
2628  ETK_Union,
2629  /// \brief The "class" keyword introduces the elaborated-type-specifier.
2630  ETK_Class,
2631  /// \brief The "enum" keyword introduces the elaborated-type-specifier.
2632  ETK_Enum,
2633  /// \brief The "typename" keyword precedes the qualified type name, e.g.,
2634  /// \c typename T::type.
2635  ETK_Typename,
2636  /// \brief No keyword precedes the qualified type name.
2637  ETK_None
2638};
2639
2640/// A helper class for Type nodes having an ElaboratedTypeKeyword.
2641/// The keyword in stored in the free bits of the base class.
2642/// Also provides a few static helpers for converting and printing
2643/// elaborated type keyword and tag type kind enumerations.
2644class TypeWithKeyword : public Type {
2645  /// Keyword - Encodes an ElaboratedTypeKeyword enumeration constant.
2646  unsigned Keyword : 3;
2647
2648protected:
2649  TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
2650                  QualType Canonical, bool dependent)
2651    : Type(tc, Canonical, dependent), Keyword(Keyword) {}
2652
2653public:
2654  virtual ~TypeWithKeyword(); // pin vtable to Type.cpp
2655
2656  ElaboratedTypeKeyword getKeyword() const {
2657    return static_cast<ElaboratedTypeKeyword>(Keyword);
2658  }
2659
2660  /// getKeywordForTypeSpec - Converts a type specifier (DeclSpec::TST)
2661  /// into an elaborated type keyword.
2662  static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
2663
2664  /// getTagTypeKindForTypeSpec - Converts a type specifier (DeclSpec::TST)
2665  /// into a tag type kind.  It is an error to provide a type specifier
2666  /// which *isn't* a tag kind here.
2667  static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
2668
2669  /// getKeywordForTagDeclKind - Converts a TagTypeKind into an
2670  /// elaborated type keyword.
2671  static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
2672
2673  /// getTagTypeKindForKeyword - Converts an elaborated type keyword into
2674  // a TagTypeKind. It is an error to provide an elaborated type keyword
2675  /// which *isn't* a tag kind here.
2676  static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
2677
2678  static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
2679
2680  static const char *getKeywordName(ElaboratedTypeKeyword Keyword);
2681
2682  static const char *getTagTypeKindName(TagTypeKind Kind) {
2683    return getKeywordName(getKeywordForTagTypeKind(Kind));
2684  }
2685
2686  class CannotCastToThisType {};
2687  static CannotCastToThisType classof(const Type *);
2688};
2689
2690/// \brief Represents a type that was referred to using an elaborated type
2691/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
2692/// or both.
2693///
2694/// This type is used to keep track of a type name as written in the
2695/// source code, including tag keywords and any nested-name-specifiers.
2696/// The type itself is always "sugar", used to express what was written
2697/// in the source code but containing no additional semantic information.
2698class ElaboratedType : public TypeWithKeyword, public llvm::FoldingSetNode {
2699
2700  /// \brief The nested name specifier containing the qualifier.
2701  NestedNameSpecifier *NNS;
2702
2703  /// \brief The type that this qualified name refers to.
2704  QualType NamedType;
2705
2706  ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
2707                 QualType NamedType, QualType CanonType)
2708    : TypeWithKeyword(Keyword, Elaborated, CanonType,
2709                      NamedType->isDependentType()),
2710      NNS(NNS), NamedType(NamedType) {
2711    assert(!(Keyword == ETK_None && NNS == 0) &&
2712           "ElaboratedType cannot have elaborated type keyword "
2713           "and name qualifier both null.");
2714  }
2715
2716  friend class ASTContext;  // ASTContext creates these
2717
2718public:
2719  ~ElaboratedType();
2720
2721  /// \brief Retrieve the qualification on this type.
2722  NestedNameSpecifier *getQualifier() const { return NNS; }
2723
2724  /// \brief Retrieve the type named by the qualified-id.
2725  QualType getNamedType() const { return NamedType; }
2726
2727  /// \brief Remove a single level of sugar.
2728  QualType desugar() const { return getNamedType(); }
2729
2730  /// \brief Returns whether this type directly provides sugar.
2731  bool isSugared() const { return true; }
2732
2733  void Profile(llvm::FoldingSetNodeID &ID) {
2734    Profile(ID, getKeyword(), NNS, NamedType);
2735  }
2736
2737  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
2738                      NestedNameSpecifier *NNS, QualType NamedType) {
2739    ID.AddInteger(Keyword);
2740    ID.AddPointer(NNS);
2741    NamedType.Profile(ID);
2742  }
2743
2744  static bool classof(const Type *T) {
2745    return T->getTypeClass() == Elaborated;
2746  }
2747  static bool classof(const ElaboratedType *T) { return true; }
2748};
2749
2750/// \brief Represents a qualified type name for which the type name is
2751/// dependent.
2752///
2753/// DependentNameType represents a class of dependent types that involve a
2754/// dependent nested-name-specifier (e.g., "T::") followed by a (dependent)
2755/// name of a type. The DependentNameType may start with a "typename" (for a
2756/// typename-specifier), "class", "struct", "union", or "enum" (for a
2757/// dependent elaborated-type-specifier), or nothing (in contexts where we
2758/// know that we must be referring to a type, e.g., in a base class specifier).
2759class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
2760
2761  /// \brief The nested name specifier containing the qualifier.
2762  NestedNameSpecifier *NNS;
2763
2764  /// \brief The type that this typename specifier refers to.
2765  const IdentifierInfo *Name;
2766
2767  DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
2768                    const IdentifierInfo *Name, QualType CanonType)
2769    : TypeWithKeyword(Keyword, DependentName, CanonType, true),
2770      NNS(NNS), Name(Name) {
2771    assert(NNS->isDependent() &&
2772           "DependentNameType requires a dependent nested-name-specifier");
2773  }
2774
2775  friend class ASTContext;  // ASTContext creates these
2776
2777public:
2778  virtual ~DependentNameType();
2779
2780  /// \brief Retrieve the qualification on this type.
2781  NestedNameSpecifier *getQualifier() const { return NNS; }
2782
2783  /// \brief Retrieve the type named by the typename specifier as an
2784  /// identifier.
2785  ///
2786  /// This routine will return a non-NULL identifier pointer when the
2787  /// form of the original typename was terminated by an identifier,
2788  /// e.g., "typename T::type".
2789  const IdentifierInfo *getIdentifier() const {
2790    return Name;
2791  }
2792
2793  bool isSugared() const { return false; }
2794  QualType desugar() const { return QualType(this, 0); }
2795
2796  void Profile(llvm::FoldingSetNodeID &ID) {
2797    Profile(ID, getKeyword(), NNS, Name);
2798  }
2799
2800  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
2801                      NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
2802    ID.AddInteger(Keyword);
2803    ID.AddPointer(NNS);
2804    ID.AddPointer(Name);
2805  }
2806
2807  static bool classof(const Type *T) {
2808    return T->getTypeClass() == DependentName;
2809  }
2810  static bool classof(const DependentNameType *T) { return true; }
2811};
2812
2813/// DependentTemplateSpecializationType - Represents a template
2814/// specialization type whose template cannot be resolved, e.g.
2815///   A<T>::template B<T>
2816class DependentTemplateSpecializationType :
2817  public TypeWithKeyword, public llvm::FoldingSetNode {
2818
2819  /// \brief The nested name specifier containing the qualifier.
2820  NestedNameSpecifier *NNS;
2821
2822  /// \brief The identifier of the template.
2823  const IdentifierInfo *Name;
2824
2825  /// \brief - The number of template arguments named in this class
2826  /// template specialization.
2827  unsigned NumArgs;
2828
2829  const TemplateArgument *getArgBuffer() const {
2830    return reinterpret_cast<const TemplateArgument*>(this+1);
2831  }
2832  TemplateArgument *getArgBuffer() {
2833    return reinterpret_cast<TemplateArgument*>(this+1);
2834  }
2835
2836  DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
2837                                      NestedNameSpecifier *NNS,
2838                                      const IdentifierInfo *Name,
2839                                      unsigned NumArgs,
2840                                      const TemplateArgument *Args,
2841                                      QualType Canon);
2842
2843  friend class ASTContext;  // ASTContext creates these
2844
2845public:
2846  virtual ~DependentTemplateSpecializationType();
2847
2848  NestedNameSpecifier *getQualifier() const { return NNS; }
2849  const IdentifierInfo *getIdentifier() const { return Name; }
2850
2851  /// \brief Retrieve the template arguments.
2852  const TemplateArgument *getArgs() const {
2853    return getArgBuffer();
2854  }
2855
2856  /// \brief Retrieve the number of template arguments.
2857  unsigned getNumArgs() const { return NumArgs; }
2858
2859  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
2860
2861  typedef const TemplateArgument * iterator;
2862  iterator begin() const { return getArgs(); }
2863  iterator end() const; // inline in TemplateBase.h
2864
2865  bool isSugared() const { return false; }
2866  QualType desugar() const { return QualType(this, 0); }
2867
2868  void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context) {
2869    Profile(ID, Context, getKeyword(), NNS, Name, NumArgs, getArgs());
2870  }
2871
2872  static void Profile(llvm::FoldingSetNodeID &ID,
2873                      ASTContext &Context,
2874                      ElaboratedTypeKeyword Keyword,
2875                      NestedNameSpecifier *Qualifier,
2876                      const IdentifierInfo *Name,
2877                      unsigned NumArgs,
2878                      const TemplateArgument *Args);
2879
2880  static bool classof(const Type *T) {
2881    return T->getTypeClass() == DependentTemplateSpecialization;
2882  }
2883  static bool classof(const DependentTemplateSpecializationType *T) {
2884    return true;
2885  }
2886};
2887
2888/// ObjCObjectType - Represents a class type in Objective C.
2889/// Every Objective C type is a combination of a base type and a
2890/// list of protocols.
2891///
2892/// Given the following declarations:
2893///   @class C;
2894///   @protocol P;
2895///
2896/// 'C' is an ObjCInterfaceType C.  It is sugar for an ObjCObjectType
2897/// with base C and no protocols.
2898///
2899/// 'C<P>' is an ObjCObjectType with base C and protocol list [P].
2900///
2901/// 'id' is a TypedefType which is sugar for an ObjCPointerType whose
2902/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
2903/// and no protocols.
2904///
2905/// 'id<P>' is an ObjCPointerType whose pointee is an ObjCObjecType
2906/// with base BuiltinType::ObjCIdType and protocol list [P].  Eventually
2907/// this should get its own sugar class to better represent the source.
2908class ObjCObjectType : public Type {
2909  // Pad the bit count up so that NumProtocols is 2-byte aligned
2910  unsigned : BitsRemainingInType - 16;
2911
2912  /// \brief The number of protocols stored after the
2913  /// ObjCObjectPointerType node.
2914  ///
2915  /// These protocols are those written directly on the type.  If
2916  /// protocol qualifiers ever become additive, the iterators will
2917  /// get kindof complicated.
2918  ///
2919  /// In the canonical object type, these are sorted alphabetically
2920  /// and uniqued.
2921  unsigned NumProtocols : 16;
2922
2923  /// Either a BuiltinType or an InterfaceType or sugar for either.
2924  QualType BaseType;
2925
2926  ObjCProtocolDecl * const *getProtocolStorage() const {
2927    return const_cast<ObjCObjectType*>(this)->getProtocolStorage();
2928  }
2929
2930  ObjCProtocolDecl **getProtocolStorage();
2931
2932protected:
2933  ObjCObjectType(QualType Canonical, QualType Base,
2934                 ObjCProtocolDecl * const *Protocols, unsigned NumProtocols);
2935
2936  enum Nonce_ObjCInterface { Nonce_ObjCInterface };
2937  ObjCObjectType(enum Nonce_ObjCInterface)
2938    : Type(ObjCInterface, QualType(), false),
2939      NumProtocols(0),
2940      BaseType(QualType(this_(), 0)) {}
2941
2942protected:
2943  Linkage getLinkageImpl() const; // key function
2944
2945public:
2946  /// getBaseType - Gets the base type of this object type.  This is
2947  /// always (possibly sugar for) one of:
2948  ///  - the 'id' builtin type (as opposed to the 'id' type visible to the
2949  ///    user, which is a typedef for an ObjCPointerType)
2950  ///  - the 'Class' builtin type (same caveat)
2951  ///  - an ObjCObjectType (currently always an ObjCInterfaceType)
2952  QualType getBaseType() const { return BaseType; }
2953
2954  bool isObjCId() const {
2955    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
2956  }
2957  bool isObjCClass() const {
2958    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
2959  }
2960  bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
2961  bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
2962  bool isObjCUnqualifiedIdOrClass() const {
2963    if (!qual_empty()) return false;
2964    if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
2965      return T->getKind() == BuiltinType::ObjCId ||
2966             T->getKind() == BuiltinType::ObjCClass;
2967    return false;
2968  }
2969  bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
2970  bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
2971
2972  /// Gets the interface declaration for this object type, if the base type
2973  /// really is an interface.
2974  ObjCInterfaceDecl *getInterface() const;
2975
2976  typedef ObjCProtocolDecl * const *qual_iterator;
2977
2978  qual_iterator qual_begin() const { return getProtocolStorage(); }
2979  qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
2980
2981  bool qual_empty() const { return getNumProtocols() == 0; }
2982
2983  /// getNumProtocols - Return the number of qualifying protocols in this
2984  /// interface type, or 0 if there are none.
2985  unsigned getNumProtocols() const { return NumProtocols; }
2986
2987  /// \brief Fetch a protocol by index.
2988  ObjCProtocolDecl *getProtocol(unsigned I) const {
2989    assert(I < getNumProtocols() && "Out-of-range protocol access");
2990    return qual_begin()[I];
2991  }
2992
2993  bool isSugared() const { return false; }
2994  QualType desugar() const { return QualType(this, 0); }
2995
2996  static bool classof(const Type *T) {
2997    return T->getTypeClass() == ObjCObject ||
2998           T->getTypeClass() == ObjCInterface;
2999  }
3000  static bool classof(const ObjCObjectType *) { return true; }
3001};
3002
3003/// ObjCObjectTypeImpl - A class providing a concrete implementation
3004/// of ObjCObjectType, so as to not increase the footprint of
3005/// ObjCInterfaceType.  Code outside of ASTContext and the core type
3006/// system should not reference this type.
3007class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
3008  friend class ASTContext;
3009
3010  // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
3011  // will need to be modified.
3012
3013  ObjCObjectTypeImpl(QualType Canonical, QualType Base,
3014                     ObjCProtocolDecl * const *Protocols,
3015                     unsigned NumProtocols)
3016    : ObjCObjectType(Canonical, Base, Protocols, NumProtocols) {}
3017
3018public:
3019  void Profile(llvm::FoldingSetNodeID &ID);
3020  static void Profile(llvm::FoldingSetNodeID &ID,
3021                      QualType Base,
3022                      ObjCProtocolDecl *const *protocols,
3023                      unsigned NumProtocols);
3024};
3025
3026inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorage() {
3027  return reinterpret_cast<ObjCProtocolDecl**>(
3028            static_cast<ObjCObjectTypeImpl*>(this) + 1);
3029}
3030
3031/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
3032/// object oriented design.  They basically correspond to C++ classes.  There
3033/// are two kinds of interface types, normal interfaces like "NSString" and
3034/// qualified interfaces, which are qualified with a protocol list like
3035/// "NSString<NSCopyable, NSAmazing>".
3036///
3037/// ObjCInterfaceType guarantees the following properties when considered
3038/// as a subtype of its superclass, ObjCObjectType:
3039///   - There are no protocol qualifiers.  To reinforce this, code which
3040///     tries to invoke the protocol methods via an ObjCInterfaceType will
3041///     fail to compile.
3042///   - It is its own base type.  That is, if T is an ObjCInterfaceType*,
3043///     T->getBaseType() == QualType(T, 0).
3044class ObjCInterfaceType : public ObjCObjectType {
3045  ObjCInterfaceDecl *Decl;
3046
3047  ObjCInterfaceType(const ObjCInterfaceDecl *D)
3048    : ObjCObjectType(Nonce_ObjCInterface),
3049      Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
3050  friend class ASTContext;  // ASTContext creates these.
3051public:
3052  /// getDecl - Get the declaration of this interface.
3053  ObjCInterfaceDecl *getDecl() const { return Decl; }
3054
3055  bool isSugared() const { return false; }
3056  QualType desugar() const { return QualType(this, 0); }
3057
3058  static bool classof(const Type *T) {
3059    return T->getTypeClass() == ObjCInterface;
3060  }
3061  static bool classof(const ObjCInterfaceType *) { return true; }
3062
3063  // Nonsense to "hide" certain members of ObjCObjectType within this
3064  // class.  People asking for protocols on an ObjCInterfaceType are
3065  // not going to get what they want: ObjCInterfaceTypes are
3066  // guaranteed to have no protocols.
3067  enum {
3068    qual_iterator,
3069    qual_begin,
3070    qual_end,
3071    getNumProtocols,
3072    getProtocol
3073  };
3074};
3075
3076inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
3077  if (const ObjCInterfaceType *T =
3078        getBaseType()->getAs<ObjCInterfaceType>())
3079    return T->getDecl();
3080  return 0;
3081}
3082
3083/// ObjCObjectPointerType - Used to represent a pointer to an
3084/// Objective C object.  These are constructed from pointer
3085/// declarators when the pointee type is an ObjCObjectType (or sugar
3086/// for one).  In addition, the 'id' and 'Class' types are typedefs
3087/// for these, and the protocol-qualified types 'id<P>' and 'Class<P>'
3088/// are translated into these.
3089///
3090/// Pointers to pointers to Objective C objects are still PointerTypes;
3091/// only the first level of pointer gets it own type implementation.
3092class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
3093  QualType PointeeType;
3094
3095  ObjCObjectPointerType(QualType Canonical, QualType Pointee)
3096    : Type(ObjCObjectPointer, Canonical, false),
3097      PointeeType(Pointee) {}
3098  friend class ASTContext;  // ASTContext creates these.
3099
3100protected:
3101  virtual Linkage getLinkageImpl() const;
3102
3103public:
3104  /// getPointeeType - Gets the type pointed to by this ObjC pointer.
3105  /// The result will always be an ObjCObjectType or sugar thereof.
3106  QualType getPointeeType() const { return PointeeType; }
3107
3108  /// getObjCObjectType - Gets the type pointed to by this ObjC
3109  /// pointer.  This method always returns non-null.
3110  ///
3111  /// This method is equivalent to getPointeeType() except that
3112  /// it discards any typedefs (or other sugar) between this
3113  /// type and the "outermost" object type.  So for:
3114  ///   @class A; @protocol P; @protocol Q;
3115  ///   typedef A<P> AP;
3116  ///   typedef A A1;
3117  ///   typedef A1<P> A1P;
3118  ///   typedef A1P<Q> A1PQ;
3119  /// For 'A*', getObjectType() will return 'A'.
3120  /// For 'A<P>*', getObjectType() will return 'A<P>'.
3121  /// For 'AP*', getObjectType() will return 'A<P>'.
3122  /// For 'A1*', getObjectType() will return 'A'.
3123  /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
3124  /// For 'A1P*', getObjectType() will return 'A1<P>'.
3125  /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
3126  ///   adding protocols to a protocol-qualified base discards the
3127  ///   old qualifiers (for now).  But if it didn't, getObjectType()
3128  ///   would return 'A1P<Q>' (and we'd have to make iterating over
3129  ///   qualifiers more complicated).
3130  const ObjCObjectType *getObjectType() const {
3131    return PointeeType->getAs<ObjCObjectType>();
3132  }
3133
3134  /// getInterfaceType - If this pointer points to an Objective C
3135  /// @interface type, gets the type for that interface.  Any protocol
3136  /// qualifiers on the interface are ignored.
3137  ///
3138  /// \return null if the base type for this pointer is 'id' or 'Class'
3139  const ObjCInterfaceType *getInterfaceType() const {
3140    return getObjectType()->getBaseType()->getAs<ObjCInterfaceType>();
3141  }
3142
3143  /// getInterfaceDecl - If this pointer points to an Objective @interface
3144  /// type, gets the declaration for that interface.
3145  ///
3146  /// \return null if the base type for this pointer is 'id' or 'Class'
3147  ObjCInterfaceDecl *getInterfaceDecl() const {
3148    return getObjectType()->getInterface();
3149  }
3150
3151  /// isObjCIdType - True if this is equivalent to the 'id' type, i.e. if
3152  /// its object type is the primitive 'id' type with no protocols.
3153  bool isObjCIdType() const {
3154    return getObjectType()->isObjCUnqualifiedId();
3155  }
3156
3157  /// isObjCClassType - True if this is equivalent to the 'Class' type,
3158  /// i.e. if its object tive is the primitive 'Class' type with no protocols.
3159  bool isObjCClassType() const {
3160    return getObjectType()->isObjCUnqualifiedClass();
3161  }
3162
3163  /// isObjCQualifiedIdType - True if this is equivalent to 'id<P>' for some
3164  /// non-empty set of protocols.
3165  bool isObjCQualifiedIdType() const {
3166    return getObjectType()->isObjCQualifiedId();
3167  }
3168
3169  /// isObjCQualifiedClassType - True if this is equivalent to 'Class<P>' for
3170  /// some non-empty set of protocols.
3171  bool isObjCQualifiedClassType() const {
3172    return getObjectType()->isObjCQualifiedClass();
3173  }
3174
3175  /// An iterator over the qualifiers on the object type.  Provided
3176  /// for convenience.  This will always iterate over the full set of
3177  /// protocols on a type, not just those provided directly.
3178  typedef ObjCObjectType::qual_iterator qual_iterator;
3179
3180  qual_iterator qual_begin() const {
3181    return getObjectType()->qual_begin();
3182  }
3183  qual_iterator qual_end() const {
3184    return getObjectType()->qual_end();
3185  }
3186  bool qual_empty() const { return getObjectType()->qual_empty(); }
3187
3188  /// getNumProtocols - Return the number of qualifying protocols on
3189  /// the object type.
3190  unsigned getNumProtocols() const {
3191    return getObjectType()->getNumProtocols();
3192  }
3193
3194  /// \brief Retrieve a qualifying protocol by index on the object
3195  /// type.
3196  ObjCProtocolDecl *getProtocol(unsigned I) const {
3197    return getObjectType()->getProtocol(I);
3198  }
3199
3200  bool isSugared() const { return false; }
3201  QualType desugar() const { return QualType(this, 0); }
3202
3203  void Profile(llvm::FoldingSetNodeID &ID) {
3204    Profile(ID, getPointeeType());
3205  }
3206  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
3207    ID.AddPointer(T.getAsOpaquePtr());
3208  }
3209  static bool classof(const Type *T) {
3210    return T->getTypeClass() == ObjCObjectPointer;
3211  }
3212  static bool classof(const ObjCObjectPointerType *) { return true; }
3213};
3214
3215/// A qualifier set is used to build a set of qualifiers.
3216class QualifierCollector : public Qualifiers {
3217  ASTContext *Context;
3218
3219public:
3220  QualifierCollector(Qualifiers Qs = Qualifiers())
3221    : Qualifiers(Qs), Context(0) {}
3222  QualifierCollector(ASTContext &Context, Qualifiers Qs = Qualifiers())
3223    : Qualifiers(Qs), Context(&Context) {}
3224
3225  void setContext(ASTContext &C) { Context = &C; }
3226
3227  /// Collect any qualifiers on the given type and return an
3228  /// unqualified type.
3229  const Type *strip(QualType QT) {
3230    addFastQualifiers(QT.getLocalFastQualifiers());
3231    if (QT.hasLocalNonFastQualifiers()) {
3232      const ExtQuals *EQ = QT.getExtQualsUnsafe();
3233      Context = &EQ->getContext();
3234      addQualifiers(EQ->getQualifiers());
3235      return EQ->getBaseType();
3236    }
3237    return QT.getTypePtrUnsafe();
3238  }
3239
3240  /// Apply the collected qualifiers to the given type.
3241  QualType apply(QualType QT) const;
3242
3243  /// Apply the collected qualifiers to the given type.
3244  QualType apply(const Type* T) const;
3245
3246};
3247
3248
3249// Inline function definitions.
3250
3251inline bool QualType::isCanonical() const {
3252  const Type *T = getTypePtr();
3253  if (hasLocalQualifiers())
3254    return T->isCanonicalUnqualified() && !isa<ArrayType>(T);
3255  return T->isCanonicalUnqualified();
3256}
3257
3258inline bool QualType::isCanonicalAsParam() const {
3259  if (hasLocalQualifiers()) return false;
3260  const Type *T = getTypePtr();
3261  return T->isCanonicalUnqualified() &&
3262           !isa<FunctionType>(T) && !isa<ArrayType>(T);
3263}
3264
3265inline bool QualType::isConstQualified() const {
3266  return isLocalConstQualified() ||
3267              getTypePtr()->getCanonicalTypeInternal().isLocalConstQualified();
3268}
3269
3270inline bool QualType::isRestrictQualified() const {
3271  return isLocalRestrictQualified() ||
3272            getTypePtr()->getCanonicalTypeInternal().isLocalRestrictQualified();
3273}
3274
3275
3276inline bool QualType::isVolatileQualified() const {
3277  return isLocalVolatileQualified() ||
3278  getTypePtr()->getCanonicalTypeInternal().isLocalVolatileQualified();
3279}
3280
3281inline bool QualType::hasQualifiers() const {
3282  return hasLocalQualifiers() ||
3283                  getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers();
3284}
3285
3286inline Qualifiers QualType::getQualifiers() const {
3287  Qualifiers Quals = getLocalQualifiers();
3288  Quals.addQualifiers(
3289                 getTypePtr()->getCanonicalTypeInternal().getLocalQualifiers());
3290  return Quals;
3291}
3292
3293inline unsigned QualType::getCVRQualifiers() const {
3294  return getLocalCVRQualifiers() |
3295              getTypePtr()->getCanonicalTypeInternal().getLocalCVRQualifiers();
3296}
3297
3298/// getCVRQualifiersThroughArrayTypes - If there are CVR qualifiers for this
3299/// type, returns them. Otherwise, if this is an array type, recurses
3300/// on the element type until some qualifiers have been found or a non-array
3301/// type reached.
3302inline unsigned QualType::getCVRQualifiersThroughArrayTypes() const {
3303  if (unsigned Quals = getCVRQualifiers())
3304    return Quals;
3305  QualType CT = getTypePtr()->getCanonicalTypeInternal();
3306  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
3307    return AT->getElementType().getCVRQualifiersThroughArrayTypes();
3308  return 0;
3309}
3310
3311inline void QualType::removeConst() {
3312  removeFastQualifiers(Qualifiers::Const);
3313}
3314
3315inline void QualType::removeRestrict() {
3316  removeFastQualifiers(Qualifiers::Restrict);
3317}
3318
3319inline void QualType::removeVolatile() {
3320  QualifierCollector Qc;
3321  const Type *Ty = Qc.strip(*this);
3322  if (Qc.hasVolatile()) {
3323    Qc.removeVolatile();
3324    *this = Qc.apply(Ty);
3325  }
3326}
3327
3328inline void QualType::removeCVRQualifiers(unsigned Mask) {
3329  assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
3330
3331  // Fast path: we don't need to touch the slow qualifiers.
3332  if (!(Mask & ~Qualifiers::FastMask)) {
3333    removeFastQualifiers(Mask);
3334    return;
3335  }
3336
3337  QualifierCollector Qc;
3338  const Type *Ty = Qc.strip(*this);
3339  Qc.removeCVRQualifiers(Mask);
3340  *this = Qc.apply(Ty);
3341}
3342
3343/// getAddressSpace - Return the address space of this type.
3344inline unsigned QualType::getAddressSpace() const {
3345  if (hasLocalNonFastQualifiers()) {
3346    const ExtQuals *EQ = getExtQualsUnsafe();
3347    if (EQ->hasAddressSpace())
3348      return EQ->getAddressSpace();
3349  }
3350
3351  QualType CT = getTypePtr()->getCanonicalTypeInternal();
3352  if (CT.hasLocalNonFastQualifiers()) {
3353    const ExtQuals *EQ = CT.getExtQualsUnsafe();
3354    if (EQ->hasAddressSpace())
3355      return EQ->getAddressSpace();
3356  }
3357
3358  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
3359    return AT->getElementType().getAddressSpace();
3360  if (const RecordType *RT = dyn_cast<RecordType>(CT))
3361    return RT->getAddressSpace();
3362  return 0;
3363}
3364
3365/// getObjCGCAttr - Return the gc attribute of this type.
3366inline Qualifiers::GC QualType::getObjCGCAttr() const {
3367  if (hasLocalNonFastQualifiers()) {
3368    const ExtQuals *EQ = getExtQualsUnsafe();
3369    if (EQ->hasObjCGCAttr())
3370      return EQ->getObjCGCAttr();
3371  }
3372
3373  QualType CT = getTypePtr()->getCanonicalTypeInternal();
3374  if (CT.hasLocalNonFastQualifiers()) {
3375    const ExtQuals *EQ = CT.getExtQualsUnsafe();
3376    if (EQ->hasObjCGCAttr())
3377      return EQ->getObjCGCAttr();
3378  }
3379
3380  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
3381      return AT->getElementType().getObjCGCAttr();
3382  if (const ObjCObjectPointerType *PT = CT->getAs<ObjCObjectPointerType>())
3383    return PT->getPointeeType().getObjCGCAttr();
3384  // We most look at all pointer types, not just pointer to interface types.
3385  if (const PointerType *PT = CT->getAs<PointerType>())
3386    return PT->getPointeeType().getObjCGCAttr();
3387  return Qualifiers::GCNone;
3388}
3389
3390inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
3391  if (const PointerType *PT = t.getAs<PointerType>()) {
3392    if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
3393      return FT->getExtInfo();
3394  } else if (const FunctionType *FT = t.getAs<FunctionType>())
3395    return FT->getExtInfo();
3396
3397  return FunctionType::ExtInfo();
3398}
3399
3400inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
3401  return getFunctionExtInfo(*t);
3402}
3403
3404/// \brief Determine whether this set of qualifiers is a superset of the given
3405/// set of qualifiers.
3406inline bool Qualifiers::isSupersetOf(Qualifiers Other) const {
3407  return Mask != Other.Mask && (Mask | Other.Mask) == Mask;
3408}
3409
3410/// isMoreQualifiedThan - Determine whether this type is more
3411/// qualified than the Other type. For example, "const volatile int"
3412/// is more qualified than "const int", "volatile int", and
3413/// "int". However, it is not more qualified than "const volatile
3414/// int".
3415inline bool QualType::isMoreQualifiedThan(QualType Other) const {
3416  // FIXME: work on arbitrary qualifiers
3417  unsigned MyQuals = this->getCVRQualifiersThroughArrayTypes();
3418  unsigned OtherQuals = Other.getCVRQualifiersThroughArrayTypes();
3419  if (getAddressSpace() != Other.getAddressSpace())
3420    return false;
3421  return MyQuals != OtherQuals && (MyQuals | OtherQuals) == MyQuals;
3422}
3423
3424/// isAtLeastAsQualifiedAs - Determine whether this type is at last
3425/// as qualified as the Other type. For example, "const volatile
3426/// int" is at least as qualified as "const int", "volatile int",
3427/// "int", and "const volatile int".
3428inline bool QualType::isAtLeastAsQualifiedAs(QualType Other) const {
3429  // FIXME: work on arbitrary qualifiers
3430  unsigned MyQuals = this->getCVRQualifiersThroughArrayTypes();
3431  unsigned OtherQuals = Other.getCVRQualifiersThroughArrayTypes();
3432  if (getAddressSpace() != Other.getAddressSpace())
3433    return false;
3434  return (MyQuals | OtherQuals) == MyQuals;
3435}
3436
3437/// getNonReferenceType - If Type is a reference type (e.g., const
3438/// int&), returns the type that the reference refers to ("const
3439/// int"). Otherwise, returns the type itself. This routine is used
3440/// throughout Sema to implement C++ 5p6:
3441///
3442///   If an expression initially has the type "reference to T" (8.3.2,
3443///   8.5.3), the type is adjusted to "T" prior to any further
3444///   analysis, the expression designates the object or function
3445///   denoted by the reference, and the expression is an lvalue.
3446inline QualType QualType::getNonReferenceType() const {
3447  if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
3448    return RefType->getPointeeType();
3449  else
3450    return *this;
3451}
3452
3453inline bool Type::isFunctionType() const {
3454  return isa<FunctionType>(CanonicalType);
3455}
3456inline bool Type::isPointerType() const {
3457  return isa<PointerType>(CanonicalType);
3458}
3459inline bool Type::isAnyPointerType() const {
3460  return isPointerType() || isObjCObjectPointerType();
3461}
3462inline bool Type::isBlockPointerType() const {
3463  return isa<BlockPointerType>(CanonicalType);
3464}
3465inline bool Type::isReferenceType() const {
3466  return isa<ReferenceType>(CanonicalType);
3467}
3468inline bool Type::isLValueReferenceType() const {
3469  return isa<LValueReferenceType>(CanonicalType);
3470}
3471inline bool Type::isRValueReferenceType() const {
3472  return isa<RValueReferenceType>(CanonicalType);
3473}
3474inline bool Type::isFunctionPointerType() const {
3475  if (const PointerType* T = getAs<PointerType>())
3476    return T->getPointeeType()->isFunctionType();
3477  else
3478    return false;
3479}
3480inline bool Type::isMemberPointerType() const {
3481  return isa<MemberPointerType>(CanonicalType);
3482}
3483inline bool Type::isMemberFunctionPointerType() const {
3484  if (const MemberPointerType* T = getAs<MemberPointerType>())
3485    return T->getPointeeType()->isFunctionType();
3486  else
3487    return false;
3488}
3489inline bool Type::isArrayType() const {
3490  return isa<ArrayType>(CanonicalType);
3491}
3492inline bool Type::isConstantArrayType() const {
3493  return isa<ConstantArrayType>(CanonicalType);
3494}
3495inline bool Type::isIncompleteArrayType() const {
3496  return isa<IncompleteArrayType>(CanonicalType);
3497}
3498inline bool Type::isVariableArrayType() const {
3499  return isa<VariableArrayType>(CanonicalType);
3500}
3501inline bool Type::isDependentSizedArrayType() const {
3502  return isa<DependentSizedArrayType>(CanonicalType);
3503}
3504inline bool Type::isRecordType() const {
3505  return isa<RecordType>(CanonicalType);
3506}
3507inline bool Type::isAnyComplexType() const {
3508  return isa<ComplexType>(CanonicalType);
3509}
3510inline bool Type::isVectorType() const {
3511  return isa<VectorType>(CanonicalType);
3512}
3513inline bool Type::isExtVectorType() const {
3514  return isa<ExtVectorType>(CanonicalType);
3515}
3516inline bool Type::isObjCObjectPointerType() const {
3517  return isa<ObjCObjectPointerType>(CanonicalType);
3518}
3519inline bool Type::isObjCObjectType() const {
3520  return isa<ObjCObjectType>(CanonicalType);
3521}
3522inline bool Type::isObjCObjectOrInterfaceType() const {
3523  return isa<ObjCInterfaceType>(CanonicalType) ||
3524    isa<ObjCObjectType>(CanonicalType);
3525}
3526
3527inline bool Type::isObjCQualifiedIdType() const {
3528  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3529    return OPT->isObjCQualifiedIdType();
3530  return false;
3531}
3532inline bool Type::isObjCQualifiedClassType() const {
3533  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3534    return OPT->isObjCQualifiedClassType();
3535  return false;
3536}
3537inline bool Type::isObjCIdType() const {
3538  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3539    return OPT->isObjCIdType();
3540  return false;
3541}
3542inline bool Type::isObjCClassType() const {
3543  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
3544    return OPT->isObjCClassType();
3545  return false;
3546}
3547inline bool Type::isObjCSelType() const {
3548  if (const PointerType *OPT = getAs<PointerType>())
3549    return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
3550  return false;
3551}
3552inline bool Type::isObjCBuiltinType() const {
3553  return isObjCIdType() || isObjCClassType() || isObjCSelType();
3554}
3555inline bool Type::isTemplateTypeParmType() const {
3556  return isa<TemplateTypeParmType>(CanonicalType);
3557}
3558
3559inline bool Type::isBuiltinType() const {
3560  return getAs<BuiltinType>();
3561}
3562
3563inline bool Type::isSpecificBuiltinType(unsigned K) const {
3564  if (const BuiltinType *BT = getAs<BuiltinType>())
3565    if (BT->getKind() == (BuiltinType::Kind) K)
3566      return true;
3567  return false;
3568}
3569
3570/// \brief Determines whether this is a type for which one can define
3571/// an overloaded operator.
3572inline bool Type::isOverloadableType() const {
3573  return isDependentType() || isRecordType() || isEnumeralType();
3574}
3575
3576inline bool Type::hasPointerRepresentation() const {
3577  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
3578          isObjCObjectPointerType() || isNullPtrType());
3579}
3580
3581inline bool Type::hasObjCPointerRepresentation() const {
3582  return isObjCObjectPointerType();
3583}
3584
3585/// Insertion operator for diagnostics.  This allows sending QualType's into a
3586/// diagnostic with <<.
3587inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
3588                                           QualType T) {
3589  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
3590                  Diagnostic::ak_qualtype);
3591  return DB;
3592}
3593
3594/// Insertion operator for partial diagnostics.  This allows sending QualType's
3595/// into a diagnostic with <<.
3596inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
3597                                           QualType T) {
3598  PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
3599                  Diagnostic::ak_qualtype);
3600  return PD;
3601}
3602
3603// Helper class template that is used by Type::getAs to ensure that one does
3604// not try to look through a qualified type to get to an array type.
3605template<typename T,
3606         bool isArrayType = (llvm::is_same<T, ArrayType>::value ||
3607                             llvm::is_base_of<ArrayType, T>::value)>
3608struct ArrayType_cannot_be_used_with_getAs { };
3609
3610template<typename T>
3611struct ArrayType_cannot_be_used_with_getAs<T, true>;
3612
3613/// Member-template getAs<specific type>'.
3614template <typename T> const T *Type::getAs() const {
3615  ArrayType_cannot_be_used_with_getAs<T> at;
3616  (void)at;
3617
3618  // If this is directly a T type, return it.
3619  if (const T *Ty = dyn_cast<T>(this))
3620    return Ty;
3621
3622  // If the canonical form of this type isn't the right kind, reject it.
3623  if (!isa<T>(CanonicalType))
3624    return 0;
3625
3626  // If this is a typedef for the type, strip the typedef off without
3627  // losing all typedef information.
3628  return cast<T>(getUnqualifiedDesugaredType());
3629}
3630
3631}  // end namespace clang
3632
3633#endif
3634