1//===- ThreadSafetyTIL.h ---------------------------------------*- C++ --*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT in the llvm repository for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a simple Typed Intermediate Language, or TIL, that is used
11// by the thread safety analysis (See ThreadSafety.cpp).  The TIL is intended
12// to be largely independent of clang, in the hope that the analysis can be
13// reused for other non-C++ languages.  All dependencies on clang/llvm should
14// go in ThreadSafetyUtil.h.
15//
16// Thread safety analysis works by comparing mutex expressions, e.g.
17//
18// class A { Mutex mu; int dat GUARDED_BY(this->mu); }
19// class B { A a; }
20//
21// void foo(B* b) {
22//   (*b).a.mu.lock();     // locks (*b).a.mu
23//   b->a.dat = 0;         // substitute &b->a for 'this';
24//                         // requires lock on (&b->a)->mu
25//   (b->a.mu).unlock();   // unlocks (b->a.mu)
26// }
27//
28// As illustrated by the above example, clang Exprs are not well-suited to
29// represent mutex expressions directly, since there is no easy way to compare
30// Exprs for equivalence.  The thread safety analysis thus lowers clang Exprs
31// into a simple intermediate language (IL).  The IL supports:
32//
33// (1) comparisons for semantic equality of expressions
34// (2) SSA renaming of variables
35// (3) wildcards and pattern matching over expressions
36// (4) hash-based expression lookup
37//
38// The TIL is currently very experimental, is intended only for use within
39// the thread safety analysis, and is subject to change without notice.
40// After the API stabilizes and matures, it may be appropriate to make this
41// more generally available to other analyses.
42//
43// UNDER CONSTRUCTION.  USE AT YOUR OWN RISK.
44//
45//===----------------------------------------------------------------------===//
46
47#ifndef LLVM_CLANG_THREAD_SAFETY_TIL_H
48#define LLVM_CLANG_THREAD_SAFETY_TIL_H
49
50// All clang include dependencies for this file must be put in
51// ThreadSafetyUtil.h.
52#include "ThreadSafetyUtil.h"
53
54#include <stdint.h>
55#include <algorithm>
56#include <cassert>
57#include <cstddef>
58#include <utility>
59
60
61namespace clang {
62namespace threadSafety {
63namespace til {
64
65
66enum TIL_Opcode {
67#define TIL_OPCODE_DEF(X) COP_##X,
68#include "ThreadSafetyOps.def"
69#undef TIL_OPCODE_DEF
70};
71
72enum TIL_UnaryOpcode : unsigned char {
73  UOP_Minus,        //  -
74  UOP_BitNot,       //  ~
75  UOP_LogicNot      //  !
76};
77
78enum TIL_BinaryOpcode : unsigned char {
79  BOP_Mul,          //  *
80  BOP_Div,          //  /
81  BOP_Rem,          //  %
82  BOP_Add,          //  +
83  BOP_Sub,          //  -
84  BOP_Shl,          //  <<
85  BOP_Shr,          //  >>
86  BOP_BitAnd,       //  &
87  BOP_BitXor,       //  ^
88  BOP_BitOr,        //  |
89  BOP_Eq,           //  ==
90  BOP_Neq,          //  !=
91  BOP_Lt,           //  <
92  BOP_Leq,          //  <=
93  BOP_LogicAnd,     //  &&
94  BOP_LogicOr       //  ||
95};
96
97enum TIL_CastOpcode : unsigned char {
98  CAST_none = 0,
99  CAST_extendNum,   // extend precision of numeric type
100  CAST_truncNum,    // truncate precision of numeric type
101  CAST_toFloat,     // convert to floating point type
102  CAST_toInt,       // convert to integer type
103};
104
105const TIL_Opcode       COP_Min  = COP_Future;
106const TIL_Opcode       COP_Max  = COP_Branch;
107const TIL_UnaryOpcode  UOP_Min  = UOP_Minus;
108const TIL_UnaryOpcode  UOP_Max  = UOP_LogicNot;
109const TIL_BinaryOpcode BOP_Min  = BOP_Mul;
110const TIL_BinaryOpcode BOP_Max  = BOP_LogicOr;
111const TIL_CastOpcode   CAST_Min = CAST_none;
112const TIL_CastOpcode   CAST_Max = CAST_toInt;
113
114StringRef getUnaryOpcodeString(TIL_UnaryOpcode Op);
115StringRef getBinaryOpcodeString(TIL_BinaryOpcode Op);
116
117
118// ValueTypes are data types that can actually be held in registers.
119// All variables and expressions must have a vBNF_Nonealue type.
120// Pointer types are further subdivided into the various heap-allocated
121// types, such as functions, records, etc.
122// Structured types that are passed by value (e.g. complex numbers)
123// require special handling; they use BT_ValueRef, and size ST_0.
124struct ValueType {
125  enum BaseType : unsigned char {
126    BT_Void = 0,
127    BT_Bool,
128    BT_Int,
129    BT_Float,
130    BT_String,    // String literals
131    BT_Pointer,
132    BT_ValueRef
133  };
134
135  enum SizeType : unsigned char {
136    ST_0 = 0,
137    ST_1,
138    ST_8,
139    ST_16,
140    ST_32,
141    ST_64,
142    ST_128
143  };
144
145  inline static SizeType getSizeType(unsigned nbytes);
146
147  template <class T>
148  inline static ValueType getValueType();
149
150  ValueType(BaseType B, SizeType Sz, bool S, unsigned char VS)
151      : Base(B), Size(Sz), Signed(S), VectSize(VS)
152  { }
153
154  BaseType      Base;
155  SizeType      Size;
156  bool          Signed;
157  unsigned char VectSize;  // 0 for scalar, otherwise num elements in vector
158};
159
160
161inline ValueType::SizeType ValueType::getSizeType(unsigned nbytes) {
162  switch (nbytes) {
163    case 1: return ST_8;
164    case 2: return ST_16;
165    case 4: return ST_32;
166    case 8: return ST_64;
167    case 16: return ST_128;
168    default: return ST_0;
169  }
170}
171
172
173template<>
174inline ValueType ValueType::getValueType<void>() {
175  return ValueType(BT_Void, ST_0, false, 0);
176}
177
178template<>
179inline ValueType ValueType::getValueType<bool>() {
180  return ValueType(BT_Bool, ST_1, false, 0);
181}
182
183template<>
184inline ValueType ValueType::getValueType<int8_t>() {
185  return ValueType(BT_Int, ST_8, true, 0);
186}
187
188template<>
189inline ValueType ValueType::getValueType<uint8_t>() {
190  return ValueType(BT_Int, ST_8, false, 0);
191}
192
193template<>
194inline ValueType ValueType::getValueType<int16_t>() {
195  return ValueType(BT_Int, ST_16, true, 0);
196}
197
198template<>
199inline ValueType ValueType::getValueType<uint16_t>() {
200  return ValueType(BT_Int, ST_16, false, 0);
201}
202
203template<>
204inline ValueType ValueType::getValueType<int32_t>() {
205  return ValueType(BT_Int, ST_32, true, 0);
206}
207
208template<>
209inline ValueType ValueType::getValueType<uint32_t>() {
210  return ValueType(BT_Int, ST_32, false, 0);
211}
212
213template<>
214inline ValueType ValueType::getValueType<int64_t>() {
215  return ValueType(BT_Int, ST_64, true, 0);
216}
217
218template<>
219inline ValueType ValueType::getValueType<uint64_t>() {
220  return ValueType(BT_Int, ST_64, false, 0);
221}
222
223template<>
224inline ValueType ValueType::getValueType<float>() {
225  return ValueType(BT_Float, ST_32, true, 0);
226}
227
228template<>
229inline ValueType ValueType::getValueType<double>() {
230  return ValueType(BT_Float, ST_64, true, 0);
231}
232
233template<>
234inline ValueType ValueType::getValueType<long double>() {
235  return ValueType(BT_Float, ST_128, true, 0);
236}
237
238template<>
239inline ValueType ValueType::getValueType<StringRef>() {
240  return ValueType(BT_String, getSizeType(sizeof(StringRef)), false, 0);
241}
242
243template<>
244inline ValueType ValueType::getValueType<void*>() {
245  return ValueType(BT_Pointer, getSizeType(sizeof(void*)), false, 0);
246}
247
248
249
250// Base class for AST nodes in the typed intermediate language.
251class SExpr {
252public:
253  TIL_Opcode opcode() const { return static_cast<TIL_Opcode>(Opcode); }
254
255  // Subclasses of SExpr must define the following:
256  //
257  // This(const This& E, ...) {
258  //   copy constructor: construct copy of E, with some additional arguments.
259  // }
260  //
261  // template <class V>
262  // typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
263  //   traverse all subexpressions, following the traversal/rewriter interface.
264  // }
265  //
266  // template <class C> typename C::CType compare(CType* E, C& Cmp) {
267  //   compare all subexpressions, following the comparator interface
268  // }
269
270  void *operator new(size_t S, MemRegionRef &R) {
271    return ::operator new(S, R);
272  }
273
274  // SExpr objects cannot be deleted.
275  // This declaration is public to workaround a gcc bug that breaks building
276  // with REQUIRES_EH=1.
277  void operator delete(void *) LLVM_DELETED_FUNCTION;
278
279protected:
280  SExpr(TIL_Opcode Op) : Opcode(Op), Reserved(0), Flags(0) {}
281  SExpr(const SExpr &E) : Opcode(E.Opcode), Reserved(0), Flags(E.Flags) {}
282
283  const unsigned char Opcode;
284  unsigned char Reserved;
285  unsigned short Flags;
286
287private:
288  SExpr() LLVM_DELETED_FUNCTION;
289
290  // SExpr objects must be created in an arena.
291  void *operator new(size_t) LLVM_DELETED_FUNCTION;
292};
293
294
295// Class for owning references to SExprs.
296// Includes attach/detach logic for counting variable references and lazy
297// rewriting strategies.
298class SExprRef {
299public:
300  SExprRef() : Ptr(nullptr) { }
301  SExprRef(std::nullptr_t P) : Ptr(nullptr) { }
302  SExprRef(SExprRef &&R) : Ptr(R.Ptr) { R.Ptr = nullptr; }
303
304  // Defined after Variable and Future, below.
305  inline SExprRef(SExpr *P);
306  inline ~SExprRef();
307
308  SExpr       *get()       { return Ptr; }
309  const SExpr *get() const { return Ptr; }
310
311  SExpr       *operator->()       { return get(); }
312  const SExpr *operator->() const { return get(); }
313
314  SExpr       &operator*()        { return *Ptr; }
315  const SExpr &operator*() const  { return *Ptr; }
316
317  bool operator==(const SExprRef &R) const { return Ptr == R.Ptr; }
318  bool operator!=(const SExprRef &R) const { return !operator==(R); }
319  bool operator==(const SExpr *P)    const { return Ptr == P; }
320  bool operator!=(const SExpr *P)    const { return !operator==(P); }
321  bool operator==(std::nullptr_t)    const { return Ptr == nullptr; }
322  bool operator!=(std::nullptr_t)    const { return Ptr != nullptr; }
323
324  inline void reset(SExpr *E);
325
326private:
327  inline void attach();
328  inline void detach();
329
330  SExpr *Ptr;
331};
332
333
334// Contains various helper functions for SExprs.
335namespace ThreadSafetyTIL {
336  inline bool isTrivial(const SExpr *E) {
337    unsigned Op = E->opcode();
338    return Op == COP_Variable || Op == COP_Literal || Op == COP_LiteralPtr;
339  }
340}
341
342// Nodes which declare variables
343class Function;
344class SFunction;
345class BasicBlock;
346class Let;
347
348
349// A named variable, e.g. "x".
350//
351// There are two distinct places in which a Variable can appear in the AST.
352// A variable declaration introduces a new variable, and can occur in 3 places:
353//   Let-expressions:           (Let (x = t) u)
354//   Functions:                 (Function (x : t) u)
355//   Self-applicable functions  (SFunction (x) t)
356//
357// If a variable occurs in any other location, it is a reference to an existing
358// variable declaration -- e.g. 'x' in (x * y + z). To save space, we don't
359// allocate a separate AST node for variable references; a reference is just a
360// pointer to the original declaration.
361class Variable : public SExpr {
362public:
363  static bool classof(const SExpr *E) { return E->opcode() == COP_Variable; }
364
365  // Let-variable, function parameter, or self-variable
366  enum VariableKind {
367    VK_Let,
368    VK_LetBB,
369    VK_Fun,
370    VK_SFun
371  };
372
373  // These are defined after SExprRef contructor, below
374  inline Variable(SExpr *D, const clang::ValueDecl *Cvd = nullptr);
375  inline Variable(StringRef s, SExpr *D = nullptr);
376  inline Variable(const Variable &Vd, SExpr *D);
377
378  VariableKind kind() const { return static_cast<VariableKind>(Flags); }
379
380  const StringRef name() const { return Name; }
381  const clang::ValueDecl *clangDecl() const { return Cvdecl; }
382
383  // Returns the definition (for let vars) or type (for parameter & self vars)
384  SExpr *definition() { return Definition.get(); }
385  const SExpr *definition() const { return Definition.get(); }
386
387  void attachVar() const { ++NumUses; }
388  void detachVar() const { assert(NumUses > 0); --NumUses; }
389
390  unsigned getID() const { return Id; }
391  unsigned getBlockID() const { return BlockID; }
392
393  void setName(StringRef S) { Name = S; }
394  void setID(unsigned Bid, unsigned I) {
395    BlockID = static_cast<unsigned short>(Bid);
396    Id = static_cast<unsigned short>(I);
397  }
398  void setClangDecl(const clang::ValueDecl *VD) { Cvdecl = VD; }
399  void setDefinition(SExpr *E);
400  void setKind(VariableKind K) { Flags = K; }
401
402  template <class V>
403  typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
404    // This routine is only called for variable references.
405    return Vs.reduceVariableRef(this);
406  }
407
408  template <class C> typename C::CType compare(Variable* E, C& Cmp) {
409    return Cmp.compareVariableRefs(this, E);
410  }
411
412private:
413  friend class Function;
414  friend class SFunction;
415  friend class BasicBlock;
416  friend class Let;
417
418  StringRef Name;                  // The name of the variable.
419  SExprRef  Definition;            // The TIL type or definition
420  const clang::ValueDecl *Cvdecl;  // The clang declaration for this variable.
421
422  unsigned short BlockID;
423  unsigned short Id;
424  mutable unsigned NumUses;
425};
426
427
428// Placeholder for an expression that has not yet been created.
429// Used to implement lazy copy and rewriting strategies.
430class Future : public SExpr {
431public:
432  static bool classof(const SExpr *E) { return E->opcode() == COP_Future; }
433
434  enum FutureStatus {
435    FS_pending,
436    FS_evaluating,
437    FS_done
438  };
439
440  Future() :
441    SExpr(COP_Future), Status(FS_pending), Result(nullptr), Location(nullptr)
442  {}
443private:
444  virtual ~Future() LLVM_DELETED_FUNCTION;
445public:
446
447  // Registers the location in the AST where this future is stored.
448  // Forcing the future will automatically update the AST.
449  static inline void registerLocation(SExprRef *Member) {
450    if (Future *F = dyn_cast_or_null<Future>(Member->get()))
451      F->Location = Member;
452  }
453
454  // A lazy rewriting strategy should subclass Future and override this method.
455  virtual SExpr *create() { return nullptr; }
456
457  // Return the result of this future if it exists, otherwise return null.
458  SExpr *maybeGetResult() {
459    return Result;
460  }
461
462  // Return the result of this future; forcing it if necessary.
463  SExpr *result() {
464    switch (Status) {
465    case FS_pending:
466      force();
467      return Result;
468    case FS_evaluating:
469      return nullptr; // infinite loop; illegal recursion.
470    case FS_done:
471      return Result;
472    }
473  }
474
475  template <class V>
476  typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
477    assert(Result && "Cannot traverse Future that has not been forced.");
478    return Vs.traverse(Result, Ctx);
479  }
480
481  template <class C> typename C::CType compare(Future* E, C& Cmp) {
482    if (!Result || !E->Result)
483      return Cmp.comparePointers(this, E);
484    return Cmp.compare(Result, E->Result);
485  }
486
487private:
488  // Force the future.
489  inline void force();
490
491  FutureStatus Status;
492  SExpr *Result;
493  SExprRef *Location;
494};
495
496
497inline void SExprRef::attach() {
498  if (!Ptr)
499    return;
500
501  TIL_Opcode Op = Ptr->opcode();
502  if (Op == COP_Variable) {
503    cast<Variable>(Ptr)->attachVar();
504  } else if (Op == COP_Future) {
505    cast<Future>(Ptr)->registerLocation(this);
506  }
507}
508
509inline void SExprRef::detach() {
510  if (Ptr && Ptr->opcode() == COP_Variable) {
511    cast<Variable>(Ptr)->detachVar();
512  }
513}
514
515inline SExprRef::SExprRef(SExpr *P) : Ptr(P) {
516  attach();
517}
518
519inline SExprRef::~SExprRef() {
520  detach();
521}
522
523inline void SExprRef::reset(SExpr *P) {
524  detach();
525  Ptr = P;
526  attach();
527}
528
529
530inline Variable::Variable(StringRef s, SExpr *D)
531    : SExpr(COP_Variable), Name(s), Definition(D), Cvdecl(nullptr),
532      BlockID(0), Id(0), NumUses(0) {
533  Flags = VK_Let;
534}
535
536inline Variable::Variable(SExpr *D, const clang::ValueDecl *Cvd)
537    : SExpr(COP_Variable), Name(Cvd ? Cvd->getName() : "_x"),
538      Definition(D), Cvdecl(Cvd), BlockID(0), Id(0), NumUses(0) {
539  Flags = VK_Let;
540}
541
542inline Variable::Variable(const Variable &Vd, SExpr *D) // rewrite constructor
543    : SExpr(Vd), Name(Vd.Name), Definition(D), Cvdecl(Vd.Cvdecl),
544      BlockID(0), Id(0), NumUses(0) {
545  Flags = Vd.kind();
546}
547
548inline void Variable::setDefinition(SExpr *E) {
549  Definition.reset(E);
550}
551
552void Future::force() {
553  Status = FS_evaluating;
554  SExpr *R = create();
555  Result = R;
556  if (Location)
557    Location->reset(R);
558  Status = FS_done;
559}
560
561
562// Placeholder for C++ expressions that cannot be represented in the TIL.
563class Undefined : public SExpr {
564public:
565  static bool classof(const SExpr *E) { return E->opcode() == COP_Undefined; }
566
567  Undefined(const clang::Stmt *S = nullptr) : SExpr(COP_Undefined), Cstmt(S) {}
568  Undefined(const Undefined &U) : SExpr(U), Cstmt(U.Cstmt) {}
569
570  template <class V>
571  typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
572    return Vs.reduceUndefined(*this);
573  }
574
575  template <class C> typename C::CType compare(Undefined* E, C& Cmp) {
576    return Cmp.comparePointers(Cstmt, E->Cstmt);
577  }
578
579private:
580  const clang::Stmt *Cstmt;
581};
582
583
584// Placeholder for a wildcard that matches any other expression.
585class Wildcard : public SExpr {
586public:
587  static bool classof(const SExpr *E) { return E->opcode() == COP_Wildcard; }
588
589  Wildcard() : SExpr(COP_Wildcard) {}
590  Wildcard(const Wildcard &W) : SExpr(W) {}
591
592  template <class V> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
593    return Vs.reduceWildcard(*this);
594  }
595
596  template <class C> typename C::CType compare(Wildcard* E, C& Cmp) {
597    return Cmp.trueResult();
598  }
599};
600
601
602template <class T> class LiteralT;
603
604// Base class for literal values.
605class Literal : public SExpr {
606public:
607  static bool classof(const SExpr *E) { return E->opcode() == COP_Literal; }
608
609  Literal(const clang::Expr *C)
610     : SExpr(COP_Literal), ValType(ValueType::getValueType<void>()), Cexpr(C)
611  { }
612  Literal(ValueType VT) : SExpr(COP_Literal), ValType(VT), Cexpr(nullptr) {}
613  Literal(const Literal &L) : SExpr(L), ValType(L.ValType), Cexpr(L.Cexpr) {}
614
615  // The clang expression for this literal.
616  const clang::Expr *clangExpr() const { return Cexpr; }
617
618  ValueType valueType() const { return ValType; }
619
620  template<class T> const LiteralT<T>& as() const {
621    return *static_cast<const LiteralT<T>*>(this);
622  }
623  template<class T> LiteralT<T>& as() {
624    return *static_cast<LiteralT<T>*>(this);
625  }
626
627  template <class V> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx);
628
629  template <class C> typename C::CType compare(Literal* E, C& Cmp) {
630    // TODO -- use value, not pointer equality
631    return Cmp.comparePointers(Cexpr, E->Cexpr);
632  }
633
634private:
635  const ValueType ValType;
636  const clang::Expr *Cexpr;
637};
638
639
640// Derived class for literal values, which stores the actual value.
641template<class T>
642class LiteralT : public Literal {
643public:
644  LiteralT(T Dat) : Literal(ValueType::getValueType<T>()), Val(Dat) { }
645  LiteralT(const LiteralT<T> &L) : Literal(L), Val(L.Val) { }
646
647  T  value() const { return Val;}
648  T& value() { return Val; }
649
650private:
651  T Val;
652};
653
654
655
656template <class V>
657typename V::R_SExpr Literal::traverse(V &Vs, typename V::R_Ctx Ctx) {
658  if (Cexpr)
659    return Vs.reduceLiteral(*this);
660
661  switch (ValType.Base) {
662  case ValueType::BT_Void:
663    break;
664  case ValueType::BT_Bool:
665    return Vs.reduceLiteralT(as<bool>());
666  case ValueType::BT_Int: {
667    switch (ValType.Size) {
668    case ValueType::ST_8:
669      if (ValType.Signed)
670        return Vs.reduceLiteralT(as<int8_t>());
671      else
672        return Vs.reduceLiteralT(as<uint8_t>());
673    case ValueType::ST_16:
674      if (ValType.Signed)
675        return Vs.reduceLiteralT(as<int16_t>());
676      else
677        return Vs.reduceLiteralT(as<uint16_t>());
678    case ValueType::ST_32:
679      if (ValType.Signed)
680        return Vs.reduceLiteralT(as<int32_t>());
681      else
682        return Vs.reduceLiteralT(as<uint32_t>());
683    case ValueType::ST_64:
684      if (ValType.Signed)
685        return Vs.reduceLiteralT(as<int64_t>());
686      else
687        return Vs.reduceLiteralT(as<uint64_t>());
688    default:
689      break;
690    }
691  }
692  case ValueType::BT_Float: {
693    switch (ValType.Size) {
694    case ValueType::ST_32:
695      return Vs.reduceLiteralT(as<float>());
696    case ValueType::ST_64:
697      return Vs.reduceLiteralT(as<double>());
698    default:
699      break;
700    }
701  }
702  case ValueType::BT_String:
703    return Vs.reduceLiteralT(as<StringRef>());
704  case ValueType::BT_Pointer:
705    return Vs.reduceLiteralT(as<void*>());
706  case ValueType::BT_ValueRef:
707    break;
708  }
709  return Vs.reduceLiteral(*this);
710}
711
712
713// Literal pointer to an object allocated in memory.
714// At compile time, pointer literals are represented by symbolic names.
715class LiteralPtr : public SExpr {
716public:
717  static bool classof(const SExpr *E) { return E->opcode() == COP_LiteralPtr; }
718
719  LiteralPtr(const clang::ValueDecl *D) : SExpr(COP_LiteralPtr), Cvdecl(D) {}
720  LiteralPtr(const LiteralPtr &R) : SExpr(R), Cvdecl(R.Cvdecl) {}
721
722  // The clang declaration for the value that this pointer points to.
723  const clang::ValueDecl *clangDecl() const { return Cvdecl; }
724
725  template <class V>
726  typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
727    return Vs.reduceLiteralPtr(*this);
728  }
729
730  template <class C> typename C::CType compare(LiteralPtr* E, C& Cmp) {
731    return Cmp.comparePointers(Cvdecl, E->Cvdecl);
732  }
733
734private:
735  const clang::ValueDecl *Cvdecl;
736};
737
738
739// A function -- a.k.a. lambda abstraction.
740// Functions with multiple arguments are created by currying,
741// e.g. (function (x: Int) (function (y: Int) (add x y)))
742class Function : public SExpr {
743public:
744  static bool classof(const SExpr *E) { return E->opcode() == COP_Function; }
745
746  Function(Variable *Vd, SExpr *Bd)
747      : SExpr(COP_Function), VarDecl(Vd), Body(Bd) {
748    Vd->setKind(Variable::VK_Fun);
749  }
750  Function(const Function &F, Variable *Vd, SExpr *Bd) // rewrite constructor
751      : SExpr(F), VarDecl(Vd), Body(Bd) {
752    Vd->setKind(Variable::VK_Fun);
753  }
754
755  Variable *variableDecl()  { return VarDecl; }
756  const Variable *variableDecl() const { return VarDecl; }
757
758  SExpr *body() { return Body.get(); }
759  const SExpr *body() const { return Body.get(); }
760
761  template <class V>
762  typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
763    // This is a variable declaration, so traverse the definition.
764    auto E0 = Vs.traverse(VarDecl->Definition, Vs.typeCtx(Ctx));
765    // Tell the rewriter to enter the scope of the function.
766    Variable *Nvd = Vs.enterScope(*VarDecl, E0);
767    auto E1 = Vs.traverse(Body, Vs.declCtx(Ctx));
768    Vs.exitScope(*VarDecl);
769    return Vs.reduceFunction(*this, Nvd, E1);
770  }
771
772  template <class C> typename C::CType compare(Function* E, C& Cmp) {
773    typename C::CType Ct =
774      Cmp.compare(VarDecl->definition(), E->VarDecl->definition());
775    if (Cmp.notTrue(Ct))
776      return Ct;
777    Cmp.enterScope(variableDecl(), E->variableDecl());
778    Ct = Cmp.compare(body(), E->body());
779    Cmp.leaveScope();
780    return Ct;
781  }
782
783private:
784  Variable *VarDecl;
785  SExprRef Body;
786};
787
788
789// A self-applicable function.
790// A self-applicable function can be applied to itself.  It's useful for
791// implementing objects and late binding
792class SFunction : public SExpr {
793public:
794  static bool classof(const SExpr *E) { return E->opcode() == COP_SFunction; }
795
796  SFunction(Variable *Vd, SExpr *B)
797      : SExpr(COP_SFunction), VarDecl(Vd), Body(B) {
798    assert(Vd->Definition == nullptr);
799    Vd->setKind(Variable::VK_SFun);
800    Vd->Definition.reset(this);
801  }
802  SFunction(const SFunction &F, Variable *Vd, SExpr *B) // rewrite constructor
803      : SExpr(F), VarDecl(Vd), Body(B) {
804    assert(Vd->Definition == nullptr);
805    Vd->setKind(Variable::VK_SFun);
806    Vd->Definition.reset(this);
807  }
808
809  Variable *variableDecl() { return VarDecl; }
810  const Variable *variableDecl() const { return VarDecl; }
811
812  SExpr *body() { return Body.get(); }
813  const SExpr *body() const { return Body.get(); }
814
815  template <class V>
816  typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
817    // A self-variable points to the SFunction itself.
818    // A rewrite must introduce the variable with a null definition, and update
819    // it after 'this' has been rewritten.
820    Variable *Nvd = Vs.enterScope(*VarDecl, nullptr);
821    auto E1 = Vs.traverse(Body, Vs.declCtx(Ctx));
822    Vs.exitScope(*VarDecl);
823    // A rewrite operation will call SFun constructor to set Vvd->Definition.
824    return Vs.reduceSFunction(*this, Nvd, E1);
825  }
826
827  template <class C> typename C::CType compare(SFunction* E, C& Cmp) {
828    Cmp.enterScope(variableDecl(), E->variableDecl());
829    typename C::CType Ct = Cmp.compare(body(), E->body());
830    Cmp.leaveScope();
831    return Ct;
832  }
833
834private:
835  Variable *VarDecl;
836  SExprRef Body;
837};
838
839
840// A block of code -- e.g. the body of a function.
841class Code : public SExpr {
842public:
843  static bool classof(const SExpr *E) { return E->opcode() == COP_Code; }
844
845  Code(SExpr *T, SExpr *B) : SExpr(COP_Code), ReturnType(T), Body(B) {}
846  Code(const Code &C, SExpr *T, SExpr *B) // rewrite constructor
847      : SExpr(C), ReturnType(T), Body(B) {}
848
849  SExpr *returnType() { return ReturnType.get(); }
850  const SExpr *returnType() const { return ReturnType.get(); }
851
852  SExpr *body() { return Body.get(); }
853  const SExpr *body() const { return Body.get(); }
854
855  template <class V>
856  typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
857    auto Nt = Vs.traverse(ReturnType, Vs.typeCtx(Ctx));
858    auto Nb = Vs.traverse(Body,       Vs.lazyCtx(Ctx));
859    return Vs.reduceCode(*this, Nt, Nb);
860  }
861
862  template <class C> typename C::CType compare(Code* E, C& Cmp) {
863    typename C::CType Ct = Cmp.compare(returnType(), E->returnType());
864    if (Cmp.notTrue(Ct))
865      return Ct;
866    return Cmp.compare(body(), E->body());
867  }
868
869private:
870  SExprRef ReturnType;
871  SExprRef Body;
872};
873
874
875// A typed, writable location in memory
876class Field : public SExpr {
877public:
878  static bool classof(const SExpr *E) { return E->opcode() == COP_Field; }
879
880  Field(SExpr *R, SExpr *B) : SExpr(COP_Field), Range(R), Body(B) {}
881  Field(const Field &C, SExpr *R, SExpr *B) // rewrite constructor
882      : SExpr(C), Range(R), Body(B) {}
883
884  SExpr *range() { return Range.get(); }
885  const SExpr *range() const { return Range.get(); }
886
887  SExpr *body() { return Body.get(); }
888  const SExpr *body() const { return Body.get(); }
889
890  template <class V>
891  typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
892    auto Nr = Vs.traverse(Range, Vs.typeCtx(Ctx));
893    auto Nb = Vs.traverse(Body,  Vs.lazyCtx(Ctx));
894    return Vs.reduceField(*this, Nr, Nb);
895  }
896
897  template <class C> typename C::CType compare(Field* E, C& Cmp) {
898    typename C::CType Ct = Cmp.compare(range(), E->range());
899    if (Cmp.notTrue(Ct))
900      return Ct;
901    return Cmp.compare(body(), E->body());
902  }
903
904private:
905  SExprRef Range;
906  SExprRef Body;
907};
908
909
910// Apply an argument to a function
911class Apply : public SExpr {
912public:
913  static bool classof(const SExpr *E) { return E->opcode() == COP_Apply; }
914
915  Apply(SExpr *F, SExpr *A) : SExpr(COP_Apply), Fun(F), Arg(A) {}
916  Apply(const Apply &A, SExpr *F, SExpr *Ar)  // rewrite constructor
917      : SExpr(A), Fun(F), Arg(Ar)
918  {}
919
920  SExpr *fun() { return Fun.get(); }
921  const SExpr *fun() const { return Fun.get(); }
922
923  SExpr *arg() { return Arg.get(); }
924  const SExpr *arg() const { return Arg.get(); }
925
926  template <class V>
927  typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
928    auto Nf = Vs.traverse(Fun, Vs.subExprCtx(Ctx));
929    auto Na = Vs.traverse(Arg, Vs.subExprCtx(Ctx));
930    return Vs.reduceApply(*this, Nf, Na);
931  }
932
933  template <class C> typename C::CType compare(Apply* E, C& Cmp) {
934    typename C::CType Ct = Cmp.compare(fun(), E->fun());
935    if (Cmp.notTrue(Ct))
936      return Ct;
937    return Cmp.compare(arg(), E->arg());
938  }
939
940private:
941  SExprRef Fun;
942  SExprRef Arg;
943};
944
945
946// Apply a self-argument to a self-applicable function
947class SApply : public SExpr {
948public:
949  static bool classof(const SExpr *E) { return E->opcode() == COP_SApply; }
950
951  SApply(SExpr *Sf, SExpr *A = nullptr) : SExpr(COP_SApply), Sfun(Sf), Arg(A) {}
952  SApply(SApply &A, SExpr *Sf, SExpr *Ar = nullptr) // rewrite constructor
953      : SExpr(A), Sfun(Sf), Arg(Ar) {}
954
955  SExpr *sfun() { return Sfun.get(); }
956  const SExpr *sfun() const { return Sfun.get(); }
957
958  SExpr *arg() { return Arg.get() ? Arg.get() : Sfun.get(); }
959  const SExpr *arg() const { return Arg.get() ? Arg.get() : Sfun.get(); }
960
961  bool isDelegation() const { return Arg == nullptr; }
962
963  template <class V>
964  typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
965    auto Nf = Vs.traverse(Sfun, Vs.subExprCtx(Ctx));
966    typename V::R_SExpr Na = Arg.get() ? Vs.traverse(Arg, Vs.subExprCtx(Ctx))
967                                       : nullptr;
968    return Vs.reduceSApply(*this, Nf, Na);
969  }
970
971  template <class C> typename C::CType compare(SApply* E, C& Cmp) {
972    typename C::CType Ct = Cmp.compare(sfun(), E->sfun());
973    if (Cmp.notTrue(Ct) || (!arg() && !E->arg()))
974      return Ct;
975    return Cmp.compare(arg(), E->arg());
976  }
977
978private:
979  SExprRef Sfun;
980  SExprRef Arg;
981};
982
983
984// Project a named slot from a C++ struct or class.
985class Project : public SExpr {
986public:
987  static bool classof(const SExpr *E) { return E->opcode() == COP_Project; }
988
989  Project(SExpr *R, StringRef SName)
990      : SExpr(COP_Project), Rec(R), SlotName(SName), Cvdecl(nullptr)
991  { }
992  Project(SExpr *R, clang::ValueDecl *Cvd)
993      : SExpr(COP_Project), Rec(R), SlotName(Cvd->getName()), Cvdecl(Cvd)
994  { }
995  Project(const Project &P, SExpr *R)
996      : SExpr(P), Rec(R), SlotName(P.SlotName), Cvdecl(P.Cvdecl)
997  { }
998
999  SExpr *record() { return Rec.get(); }
1000  const SExpr *record() const { return Rec.get(); }
1001
1002  const clang::ValueDecl *clangValueDecl() const { return Cvdecl; }
1003
1004  StringRef slotName() const {
1005    if (Cvdecl)
1006      return Cvdecl->getName();
1007    else
1008      return SlotName;
1009  }
1010
1011  template <class V>
1012  typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1013    auto Nr = Vs.traverse(Rec, Vs.subExprCtx(Ctx));
1014    return Vs.reduceProject(*this, Nr);
1015  }
1016
1017  template <class C> typename C::CType compare(Project* E, C& Cmp) {
1018    typename C::CType Ct = Cmp.compare(record(), E->record());
1019    if (Cmp.notTrue(Ct))
1020      return Ct;
1021    return Cmp.comparePointers(Cvdecl, E->Cvdecl);
1022  }
1023
1024private:
1025  SExprRef Rec;
1026  StringRef SlotName;
1027  clang::ValueDecl *Cvdecl;
1028};
1029
1030
1031// Call a function (after all arguments have been applied).
1032class Call : public SExpr {
1033public:
1034  static bool classof(const SExpr *E) { return E->opcode() == COP_Call; }
1035
1036  Call(SExpr *T, const clang::CallExpr *Ce = nullptr)
1037      : SExpr(COP_Call), Target(T), Cexpr(Ce) {}
1038  Call(const Call &C, SExpr *T) : SExpr(C), Target(T), Cexpr(C.Cexpr) {}
1039
1040  SExpr *target() { return Target.get(); }
1041  const SExpr *target() const { return Target.get(); }
1042
1043  const clang::CallExpr *clangCallExpr() const { return Cexpr; }
1044
1045  template <class V>
1046  typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1047    auto Nt = Vs.traverse(Target, Vs.subExprCtx(Ctx));
1048    return Vs.reduceCall(*this, Nt);
1049  }
1050
1051  template <class C> typename C::CType compare(Call* E, C& Cmp) {
1052    return Cmp.compare(target(), E->target());
1053  }
1054
1055private:
1056  SExprRef Target;
1057  const clang::CallExpr *Cexpr;
1058};
1059
1060
1061// Allocate memory for a new value on the heap or stack.
1062class Alloc : public SExpr {
1063public:
1064  static bool classof(const SExpr *E) { return E->opcode() == COP_Call; }
1065
1066  enum AllocKind {
1067    AK_Stack,
1068    AK_Heap
1069  };
1070
1071  Alloc(SExpr *D, AllocKind K) : SExpr(COP_Alloc), Dtype(D) { Flags = K; }
1072  Alloc(const Alloc &A, SExpr *Dt) : SExpr(A), Dtype(Dt) { Flags = A.kind(); }
1073
1074  AllocKind kind() const { return static_cast<AllocKind>(Flags); }
1075
1076  SExpr *dataType() { return Dtype.get(); }
1077  const SExpr *dataType() const { return Dtype.get(); }
1078
1079  template <class V>
1080  typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1081    auto Nd = Vs.traverse(Dtype, Vs.declCtx(Ctx));
1082    return Vs.reduceAlloc(*this, Nd);
1083  }
1084
1085  template <class C> typename C::CType compare(Alloc* E, C& Cmp) {
1086    typename C::CType Ct = Cmp.compareIntegers(kind(), E->kind());
1087    if (Cmp.notTrue(Ct))
1088      return Ct;
1089    return Cmp.compare(dataType(), E->dataType());
1090  }
1091
1092private:
1093  SExprRef Dtype;
1094};
1095
1096
1097// Load a value from memory.
1098class Load : public SExpr {
1099public:
1100  static bool classof(const SExpr *E) { return E->opcode() == COP_Load; }
1101
1102  Load(SExpr *P) : SExpr(COP_Load), Ptr(P) {}
1103  Load(const Load &L, SExpr *P) : SExpr(L), Ptr(P) {}
1104
1105  SExpr *pointer() { return Ptr.get(); }
1106  const SExpr *pointer() const { return Ptr.get(); }
1107
1108  template <class V>
1109  typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1110    auto Np = Vs.traverse(Ptr, Vs.subExprCtx(Ctx));
1111    return Vs.reduceLoad(*this, Np);
1112  }
1113
1114  template <class C> typename C::CType compare(Load* E, C& Cmp) {
1115    return Cmp.compare(pointer(), E->pointer());
1116  }
1117
1118private:
1119  SExprRef Ptr;
1120};
1121
1122
1123// Store a value to memory.
1124// Source is a pointer, destination is the value to store.
1125class Store : public SExpr {
1126public:
1127  static bool classof(const SExpr *E) { return E->opcode() == COP_Store; }
1128
1129  Store(SExpr *P, SExpr *V) : SExpr(COP_Store), Dest(P), Source(V) {}
1130  Store(const Store &S, SExpr *P, SExpr *V) : SExpr(S), Dest(P), Source(V) {}
1131
1132  SExpr *destination() { return Dest.get(); }  // Address to store to
1133  const SExpr *destination() const { return Dest.get(); }
1134
1135  SExpr *source() { return Source.get(); }     // Value to store
1136  const SExpr *source() const { return Source.get(); }
1137
1138  template <class V>
1139  typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1140    auto Np = Vs.traverse(Dest,   Vs.subExprCtx(Ctx));
1141    auto Nv = Vs.traverse(Source, Vs.subExprCtx(Ctx));
1142    return Vs.reduceStore(*this, Np, Nv);
1143  }
1144
1145  template <class C> typename C::CType compare(Store* E, C& Cmp) {
1146    typename C::CType Ct = Cmp.compare(destination(), E->destination());
1147    if (Cmp.notTrue(Ct))
1148      return Ct;
1149    return Cmp.compare(source(), E->source());
1150  }
1151
1152private:
1153  SExprRef Dest;
1154  SExprRef Source;
1155};
1156
1157
1158// If p is a reference to an array, then first(p) is a reference to the first
1159// element.  The usual array notation p[i]  becomes first(p + i).
1160class ArrayIndex : public SExpr {
1161public:
1162  static bool classof(const SExpr *E) { return E->opcode() == COP_ArrayIndex; }
1163
1164  ArrayIndex(SExpr *A, SExpr *N) : SExpr(COP_ArrayIndex), Array(A), Index(N) {}
1165  ArrayIndex(const ArrayIndex &E, SExpr *A, SExpr *N)
1166    : SExpr(E), Array(A), Index(N) {}
1167
1168  SExpr *array() { return Array.get(); }
1169  const SExpr *array() const { return Array.get(); }
1170
1171  SExpr *index() { return Index.get(); }
1172  const SExpr *index() const { return Index.get(); }
1173
1174  template <class V>
1175  typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1176    auto Na = Vs.traverse(Array, Vs.subExprCtx(Ctx));
1177    auto Ni = Vs.traverse(Index, Vs.subExprCtx(Ctx));
1178    return Vs.reduceArrayIndex(*this, Na, Ni);
1179  }
1180
1181  template <class C> typename C::CType compare(ArrayIndex* E, C& Cmp) {
1182    typename C::CType Ct = Cmp.compare(array(), E->array());
1183    if (Cmp.notTrue(Ct))
1184      return Ct;
1185    return Cmp.compare(index(), E->index());
1186  }
1187
1188private:
1189  SExprRef Array;
1190  SExprRef Index;
1191};
1192
1193
1194// Pointer arithmetic, restricted to arrays only.
1195// If p is a reference to an array, then p + n, where n is an integer, is
1196// a reference to a subarray.
1197class ArrayAdd : public SExpr {
1198public:
1199  static bool classof(const SExpr *E) { return E->opcode() == COP_ArrayAdd; }
1200
1201  ArrayAdd(SExpr *A, SExpr *N) : SExpr(COP_ArrayAdd), Array(A), Index(N) {}
1202  ArrayAdd(const ArrayAdd &E, SExpr *A, SExpr *N)
1203    : SExpr(E), Array(A), Index(N) {}
1204
1205  SExpr *array() { return Array.get(); }
1206  const SExpr *array() const { return Array.get(); }
1207
1208  SExpr *index() { return Index.get(); }
1209  const SExpr *index() const { return Index.get(); }
1210
1211  template <class V>
1212  typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1213    auto Na = Vs.traverse(Array, Vs.subExprCtx(Ctx));
1214    auto Ni = Vs.traverse(Index, Vs.subExprCtx(Ctx));
1215    return Vs.reduceArrayAdd(*this, Na, Ni);
1216  }
1217
1218  template <class C> typename C::CType compare(ArrayAdd* E, C& Cmp) {
1219    typename C::CType Ct = Cmp.compare(array(), E->array());
1220    if (Cmp.notTrue(Ct))
1221      return Ct;
1222    return Cmp.compare(index(), E->index());
1223  }
1224
1225private:
1226  SExprRef Array;
1227  SExprRef Index;
1228};
1229
1230
1231// Simple unary operation -- e.g. !, ~, etc.
1232class UnaryOp : public SExpr {
1233public:
1234  static bool classof(const SExpr *E) { return E->opcode() == COP_UnaryOp; }
1235
1236  UnaryOp(TIL_UnaryOpcode Op, SExpr *E) : SExpr(COP_UnaryOp), Expr0(E) {
1237    Flags = Op;
1238  }
1239  UnaryOp(const UnaryOp &U, SExpr *E) : SExpr(U), Expr0(E) { Flags = U.Flags; }
1240
1241  TIL_UnaryOpcode unaryOpcode() const {
1242    return static_cast<TIL_UnaryOpcode>(Flags);
1243  }
1244
1245  SExpr *expr() { return Expr0.get(); }
1246  const SExpr *expr() const { return Expr0.get(); }
1247
1248  template <class V>
1249  typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1250    auto Ne = Vs.traverse(Expr0, Vs.subExprCtx(Ctx));
1251    return Vs.reduceUnaryOp(*this, Ne);
1252  }
1253
1254  template <class C> typename C::CType compare(UnaryOp* E, C& Cmp) {
1255    typename C::CType Ct =
1256      Cmp.compareIntegers(unaryOpcode(), E->unaryOpcode());
1257    if (Cmp.notTrue(Ct))
1258      return Ct;
1259    return Cmp.compare(expr(), E->expr());
1260  }
1261
1262private:
1263  SExprRef Expr0;
1264};
1265
1266
1267// Simple binary operation -- e.g. +, -, etc.
1268class BinaryOp : public SExpr {
1269public:
1270  static bool classof(const SExpr *E) { return E->opcode() == COP_BinaryOp; }
1271
1272  BinaryOp(TIL_BinaryOpcode Op, SExpr *E0, SExpr *E1)
1273      : SExpr(COP_BinaryOp), Expr0(E0), Expr1(E1) {
1274    Flags = Op;
1275  }
1276  BinaryOp(const BinaryOp &B, SExpr *E0, SExpr *E1)
1277      : SExpr(B), Expr0(E0), Expr1(E1) {
1278    Flags = B.Flags;
1279  }
1280
1281  TIL_BinaryOpcode binaryOpcode() const {
1282    return static_cast<TIL_BinaryOpcode>(Flags);
1283  }
1284
1285  SExpr *expr0() { return Expr0.get(); }
1286  const SExpr *expr0() const { return Expr0.get(); }
1287
1288  SExpr *expr1() { return Expr1.get(); }
1289  const SExpr *expr1() const { return Expr1.get(); }
1290
1291  template <class V>
1292  typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1293    auto Ne0 = Vs.traverse(Expr0, Vs.subExprCtx(Ctx));
1294    auto Ne1 = Vs.traverse(Expr1, Vs.subExprCtx(Ctx));
1295    return Vs.reduceBinaryOp(*this, Ne0, Ne1);
1296  }
1297
1298  template <class C> typename C::CType compare(BinaryOp* E, C& Cmp) {
1299    typename C::CType Ct =
1300      Cmp.compareIntegers(binaryOpcode(), E->binaryOpcode());
1301    if (Cmp.notTrue(Ct))
1302      return Ct;
1303    Ct = Cmp.compare(expr0(), E->expr0());
1304    if (Cmp.notTrue(Ct))
1305      return Ct;
1306    return Cmp.compare(expr1(), E->expr1());
1307  }
1308
1309private:
1310  SExprRef Expr0;
1311  SExprRef Expr1;
1312};
1313
1314
1315// Cast expression
1316class Cast : public SExpr {
1317public:
1318  static bool classof(const SExpr *E) { return E->opcode() == COP_Cast; }
1319
1320  Cast(TIL_CastOpcode Op, SExpr *E) : SExpr(COP_Cast), Expr0(E) { Flags = Op; }
1321  Cast(const Cast &C, SExpr *E) : SExpr(C), Expr0(E) { Flags = C.Flags; }
1322
1323  TIL_CastOpcode castOpcode() const {
1324    return static_cast<TIL_CastOpcode>(Flags);
1325  }
1326
1327  SExpr *expr() { return Expr0.get(); }
1328  const SExpr *expr() const { return Expr0.get(); }
1329
1330  template <class V>
1331  typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1332    auto Ne = Vs.traverse(Expr0, Vs.subExprCtx(Ctx));
1333    return Vs.reduceCast(*this, Ne);
1334  }
1335
1336  template <class C> typename C::CType compare(Cast* E, C& Cmp) {
1337    typename C::CType Ct =
1338      Cmp.compareIntegers(castOpcode(), E->castOpcode());
1339    if (Cmp.notTrue(Ct))
1340      return Ct;
1341    return Cmp.compare(expr(), E->expr());
1342  }
1343
1344private:
1345  SExprRef Expr0;
1346};
1347
1348
1349class SCFG;
1350
1351
1352class Phi : public SExpr {
1353public:
1354  // TODO: change to SExprRef
1355  typedef SimpleArray<SExpr *> ValArray;
1356
1357  // In minimal SSA form, all Phi nodes are MultiVal.
1358  // During conversion to SSA, incomplete Phi nodes may be introduced, which
1359  // are later determined to be SingleVal, and are thus redundant.
1360  enum Status {
1361    PH_MultiVal = 0, // Phi node has multiple distinct values.  (Normal)
1362    PH_SingleVal,    // Phi node has one distinct value, and can be eliminated
1363    PH_Incomplete    // Phi node is incomplete
1364  };
1365
1366  static bool classof(const SExpr *E) { return E->opcode() == COP_Phi; }
1367
1368  Phi() : SExpr(COP_Phi) {}
1369  Phi(MemRegionRef A, unsigned Nvals) : SExpr(COP_Phi), Values(A, Nvals) {}
1370  Phi(const Phi &P, ValArray &&Vs)    : SExpr(P), Values(std::move(Vs)) {}
1371
1372  const ValArray &values() const { return Values; }
1373  ValArray &values() { return Values; }
1374
1375  Status status() const { return static_cast<Status>(Flags); }
1376  void setStatus(Status s) { Flags = s; }
1377
1378  template <class V>
1379  typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1380    typename V::template Container<typename V::R_SExpr>
1381      Nvs(Vs, Values.size());
1382
1383    for (auto *Val : Values) {
1384      Nvs.push_back( Vs.traverse(Val, Vs.subExprCtx(Ctx)) );
1385    }
1386    return Vs.reducePhi(*this, Nvs);
1387  }
1388
1389  template <class C> typename C::CType compare(Phi *E, C &Cmp) {
1390    // TODO: implement CFG comparisons
1391    return Cmp.comparePointers(this, E);
1392  }
1393
1394private:
1395  ValArray Values;
1396};
1397
1398
1399// A basic block is part of an SCFG, and can be treated as a function in
1400// continuation passing style.  It consists of a sequence of phi nodes, which
1401// are "arguments" to the function, followed by a sequence of instructions.
1402// Both arguments and instructions define new variables.  It ends with a
1403// branch or goto to another basic block in the same SCFG.
1404class BasicBlock : public SExpr {
1405public:
1406  typedef SimpleArray<Variable*>   VarArray;
1407  typedef SimpleArray<BasicBlock*> BlockArray;
1408
1409  static bool classof(const SExpr *E) { return E->opcode() == COP_BasicBlock; }
1410
1411  explicit BasicBlock(MemRegionRef A, BasicBlock* P = nullptr)
1412      : SExpr(COP_BasicBlock), Arena(A), CFGPtr(nullptr), BlockID(0),
1413        Parent(P), Terminator(nullptr)
1414  { }
1415  BasicBlock(BasicBlock &B, VarArray &&As, VarArray &&Is, SExpr *T)
1416      : SExpr(COP_BasicBlock), Arena(B.Arena), CFGPtr(nullptr), BlockID(0),
1417        Parent(nullptr), Args(std::move(As)), Instrs(std::move(Is)),
1418        Terminator(T)
1419  { }
1420
1421  unsigned blockID() const { return BlockID; }
1422  unsigned numPredecessors() const { return Predecessors.size(); }
1423
1424  const SCFG* cfg() const { return CFGPtr; }
1425  SCFG* cfg() { return CFGPtr; }
1426
1427  const BasicBlock *parent() const { return Parent; }
1428  BasicBlock *parent() { return Parent; }
1429
1430  const VarArray &arguments() const { return Args; }
1431  VarArray &arguments() { return Args; }
1432
1433  const VarArray &instructions() const { return Instrs; }
1434  VarArray &instructions() { return Instrs; }
1435
1436  const BlockArray &predecessors() const { return Predecessors; }
1437  BlockArray &predecessors() { return Predecessors; }
1438
1439  const SExpr *terminator() const { return Terminator.get(); }
1440  SExpr *terminator() { return Terminator.get(); }
1441
1442  void setBlockID(unsigned i)   { BlockID = i; }
1443  void setParent(BasicBlock *P) { Parent = P;  }
1444  void setTerminator(SExpr *E)  { Terminator.reset(E); }
1445
1446  // Add a new argument.  V must define a phi-node.
1447  void addArgument(Variable *V) {
1448    V->setKind(Variable::VK_LetBB);
1449    Args.reserveCheck(1, Arena);
1450    Args.push_back(V);
1451  }
1452  // Add a new instruction.
1453  void addInstruction(Variable *V) {
1454    V->setKind(Variable::VK_LetBB);
1455    Instrs.reserveCheck(1, Arena);
1456    Instrs.push_back(V);
1457  }
1458  // Add a new predecessor, and return the phi-node index for it.
1459  // Will add an argument to all phi-nodes, initialized to nullptr.
1460  unsigned addPredecessor(BasicBlock *Pred);
1461
1462  // Reserve space for Nargs arguments.
1463  void reserveArguments(unsigned Nargs)   { Args.reserve(Nargs, Arena); }
1464
1465  // Reserve space for Nins instructions.
1466  void reserveInstructions(unsigned Nins) { Instrs.reserve(Nins, Arena); }
1467
1468  // Reserve space for NumPreds predecessors, including space in phi nodes.
1469  void reservePredecessors(unsigned NumPreds);
1470
1471  // Return the index of BB, or Predecessors.size if BB is not a predecessor.
1472  unsigned findPredecessorIndex(const BasicBlock *BB) const {
1473    auto I = std::find(Predecessors.cbegin(), Predecessors.cend(), BB);
1474    return std::distance(Predecessors.cbegin(), I);
1475  }
1476
1477  // Set id numbers for variables.
1478  void renumberVars();
1479
1480  template <class V>
1481  typename V::R_BasicBlock traverse(V &Vs, typename V::R_Ctx Ctx) {
1482    typename V::template Container<Variable*> Nas(Vs, Args.size());
1483    typename V::template Container<Variable*> Nis(Vs, Instrs.size());
1484
1485    // Entering the basic block should do any scope initialization.
1486    Vs.enterBasicBlock(*this);
1487
1488    for (auto *A : Args) {
1489      auto Ne = Vs.traverse(A->Definition, Vs.subExprCtx(Ctx));
1490      Variable *Nvd = Vs.enterScope(*A, Ne);
1491      Nas.push_back(Nvd);
1492    }
1493    for (auto *I : Instrs) {
1494      auto Ne = Vs.traverse(I->Definition, Vs.subExprCtx(Ctx));
1495      Variable *Nvd = Vs.enterScope(*I, Ne);
1496      Nis.push_back(Nvd);
1497    }
1498    auto Nt = Vs.traverse(Terminator, Ctx);
1499
1500    // Exiting the basic block should handle any scope cleanup.
1501    Vs.exitBasicBlock(*this);
1502
1503    return Vs.reduceBasicBlock(*this, Nas, Nis, Nt);
1504  }
1505
1506  template <class C> typename C::CType compare(BasicBlock *E, C &Cmp) {
1507    // TODO: implement CFG comparisons
1508    return Cmp.comparePointers(this, E);
1509  }
1510
1511private:
1512  friend class SCFG;
1513
1514  MemRegionRef Arena;
1515
1516  SCFG       *CFGPtr;       // The CFG that contains this block.
1517  unsigned   BlockID;       // unique id for this BB in the containing CFG
1518  BasicBlock *Parent;       // The parent block is the enclosing lexical scope.
1519                            // The parent dominates this block.
1520  BlockArray Predecessors;  // Predecessor blocks in the CFG.
1521  VarArray   Args;          // Phi nodes.  One argument per predecessor.
1522  VarArray   Instrs;        // Instructions.
1523  SExprRef   Terminator;    // Branch or Goto
1524};
1525
1526
1527// An SCFG is a control-flow graph.  It consists of a set of basic blocks, each
1528// of which terminates in a branch to another basic block.  There is one
1529// entry point, and one exit point.
1530class SCFG : public SExpr {
1531public:
1532  typedef SimpleArray<BasicBlock *> BlockArray;
1533  typedef BlockArray::iterator iterator;
1534  typedef BlockArray::const_iterator const_iterator;
1535
1536  static bool classof(const SExpr *E) { return E->opcode() == COP_SCFG; }
1537
1538  SCFG(MemRegionRef A, unsigned Nblocks)
1539    : SExpr(COP_SCFG), Arena(A), Blocks(A, Nblocks),
1540      Entry(nullptr), Exit(nullptr) {
1541    Entry = new (A) BasicBlock(A, nullptr);
1542    Exit  = new (A) BasicBlock(A, Entry);
1543    auto *V = new (A) Variable(new (A) Phi());
1544    Exit->addArgument(V);
1545    add(Entry);
1546    add(Exit);
1547  }
1548  SCFG(const SCFG &Cfg, BlockArray &&Ba) // steals memory from Ba
1549      : SExpr(COP_SCFG), Arena(Cfg.Arena), Blocks(std::move(Ba)),
1550        Entry(nullptr), Exit(nullptr) {
1551    // TODO: set entry and exit!
1552  }
1553
1554  iterator begin() { return Blocks.begin(); }
1555  iterator end() { return Blocks.end(); }
1556
1557  const_iterator begin() const { return cbegin(); }
1558  const_iterator end() const { return cend(); }
1559
1560  const_iterator cbegin() const { return Blocks.cbegin(); }
1561  const_iterator cend() const { return Blocks.cend(); }
1562
1563  const BasicBlock *entry() const { return Entry; }
1564  BasicBlock *entry() { return Entry; }
1565  const BasicBlock *exit() const { return Exit; }
1566  BasicBlock *exit() { return Exit; }
1567
1568  inline void add(BasicBlock *BB) {
1569    assert(BB->CFGPtr == nullptr || BB->CFGPtr == this);
1570    BB->setBlockID(Blocks.size());
1571    BB->CFGPtr = this;
1572    Blocks.reserveCheck(1, Arena);
1573    Blocks.push_back(BB);
1574  }
1575
1576  void setEntry(BasicBlock *BB) { Entry = BB; }
1577  void setExit(BasicBlock *BB)  { Exit = BB;  }
1578
1579  // Set varable ids in all blocks.
1580  void renumberVars();
1581
1582  template <class V>
1583  typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1584    Vs.enterCFG(*this);
1585    typename V::template Container<BasicBlock *> Bbs(Vs, Blocks.size());
1586    for (auto *B : Blocks) {
1587      Bbs.push_back( B->traverse(Vs, Vs.subExprCtx(Ctx)) );
1588    }
1589    Vs.exitCFG(*this);
1590    return Vs.reduceSCFG(*this, Bbs);
1591  }
1592
1593  template <class C> typename C::CType compare(SCFG *E, C &Cmp) {
1594    // TODO -- implement CFG comparisons
1595    return Cmp.comparePointers(this, E);
1596  }
1597
1598private:
1599  MemRegionRef Arena;
1600  BlockArray   Blocks;
1601  BasicBlock   *Entry;
1602  BasicBlock   *Exit;
1603};
1604
1605
1606class Goto : public SExpr {
1607public:
1608  static bool classof(const SExpr *E) { return E->opcode() == COP_Goto; }
1609
1610  Goto(BasicBlock *B, unsigned I)
1611      : SExpr(COP_Goto), TargetBlock(B), Index(I) {}
1612  Goto(const Goto &G, BasicBlock *B, unsigned I)
1613      : SExpr(COP_Goto), TargetBlock(B), Index(I) {}
1614
1615  const BasicBlock *targetBlock() const { return TargetBlock; }
1616  BasicBlock *targetBlock() { return TargetBlock; }
1617
1618  unsigned index() const { return Index; }
1619
1620  template <class V>
1621  typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1622    BasicBlock *Ntb = Vs.reduceBasicBlockRef(TargetBlock);
1623    return Vs.reduceGoto(*this, Ntb);
1624  }
1625
1626  template <class C> typename C::CType compare(Goto *E, C &Cmp) {
1627    // TODO -- implement CFG comparisons
1628    return Cmp.comparePointers(this, E);
1629  }
1630
1631private:
1632  BasicBlock *TargetBlock;
1633  unsigned Index;   // Index into Phi nodes of target block.
1634};
1635
1636
1637class Branch : public SExpr {
1638public:
1639  static bool classof(const SExpr *E) { return E->opcode() == COP_Branch; }
1640
1641  Branch(SExpr *C, BasicBlock *T, BasicBlock *E, unsigned TI, unsigned EI)
1642      : SExpr(COP_Branch), Condition(C), ThenBlock(T), ElseBlock(E),
1643        ThenIndex(TI), ElseIndex(EI)
1644  {}
1645  Branch(const Branch &Br, SExpr *C, BasicBlock *T, BasicBlock *E,
1646         unsigned TI, unsigned EI)
1647      : SExpr(COP_Branch), Condition(C), ThenBlock(T), ElseBlock(E),
1648        ThenIndex(TI), ElseIndex(EI)
1649  {}
1650
1651  const SExpr *condition() const { return Condition; }
1652  SExpr *condition() { return Condition; }
1653
1654  const BasicBlock *thenBlock() const { return ThenBlock; }
1655  BasicBlock *thenBlock() { return ThenBlock; }
1656
1657  const BasicBlock *elseBlock() const { return ElseBlock; }
1658  BasicBlock *elseBlock() { return ElseBlock; }
1659
1660  unsigned thenIndex() const { return ThenIndex; }
1661  unsigned elseIndex() const { return ElseIndex; }
1662
1663  template <class V>
1664  typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1665    auto Nc = Vs.traverse(Condition, Vs.subExprCtx(Ctx));
1666    BasicBlock *Ntb = Vs.reduceBasicBlockRef(ThenBlock);
1667    BasicBlock *Nte = Vs.reduceBasicBlockRef(ElseBlock);
1668    return Vs.reduceBranch(*this, Nc, Ntb, Nte);
1669  }
1670
1671  template <class C> typename C::CType compare(Branch *E, C &Cmp) {
1672    // TODO -- implement CFG comparisons
1673    return Cmp.comparePointers(this, E);
1674  }
1675
1676private:
1677  SExpr *Condition;
1678  BasicBlock *ThenBlock;
1679  BasicBlock *ElseBlock;
1680  unsigned ThenIndex;
1681  unsigned ElseIndex;
1682};
1683
1684
1685// An identifier, e.g. 'foo' or 'x'.
1686// This is a pseduo-term; it will be lowered to a variable or projection.
1687class Identifier : public SExpr {
1688public:
1689  static bool classof(const SExpr *E) { return E->opcode() == COP_Identifier; }
1690
1691  Identifier(StringRef Id): SExpr(COP_Identifier), Name(Id) { }
1692  Identifier(const Identifier& I) : SExpr(I), Name(I.Name)  { }
1693
1694  StringRef name() const { return Name; }
1695
1696  template <class V>
1697  typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1698    return Vs.reduceIdentifier(*this);
1699  }
1700
1701  template <class C> typename C::CType compare(Identifier* E, C& Cmp) {
1702    return Cmp.compareStrings(name(), E->name());
1703  }
1704
1705private:
1706  StringRef Name;
1707};
1708
1709
1710// An if-then-else expression.
1711// This is a pseduo-term; it will be lowered to a branch in a CFG.
1712class IfThenElse : public SExpr {
1713public:
1714  static bool classof(const SExpr *E) { return E->opcode() == COP_IfThenElse; }
1715
1716  IfThenElse(SExpr *C, SExpr *T, SExpr *E)
1717    : SExpr(COP_IfThenElse), Condition(C), ThenExpr(T), ElseExpr(E)
1718  { }
1719  IfThenElse(const IfThenElse &I, SExpr *C, SExpr *T, SExpr *E)
1720    : SExpr(I), Condition(C), ThenExpr(T), ElseExpr(E)
1721  { }
1722
1723  SExpr *condition() { return Condition.get(); }   // Address to store to
1724  const SExpr *condition() const { return Condition.get(); }
1725
1726  SExpr *thenExpr() { return ThenExpr.get(); }     // Value to store
1727  const SExpr *thenExpr() const { return ThenExpr.get(); }
1728
1729  SExpr *elseExpr() { return ElseExpr.get(); }     // Value to store
1730  const SExpr *elseExpr() const { return ElseExpr.get(); }
1731
1732  template <class V>
1733  typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1734    auto Nc = Vs.traverse(Condition, Vs.subExprCtx(Ctx));
1735    auto Nt = Vs.traverse(ThenExpr,  Vs.subExprCtx(Ctx));
1736    auto Ne = Vs.traverse(ElseExpr,  Vs.subExprCtx(Ctx));
1737    return Vs.reduceIfThenElse(*this, Nc, Nt, Ne);
1738  }
1739
1740  template <class C> typename C::CType compare(IfThenElse* E, C& Cmp) {
1741    typename C::CType Ct = Cmp.compare(condition(), E->condition());
1742    if (Cmp.notTrue(Ct))
1743      return Ct;
1744    Ct = Cmp.compare(thenExpr(), E->thenExpr());
1745    if (Cmp.notTrue(Ct))
1746      return Ct;
1747    return Cmp.compare(elseExpr(), E->elseExpr());
1748  }
1749
1750private:
1751  SExprRef Condition;
1752  SExprRef ThenExpr;
1753  SExprRef ElseExpr;
1754};
1755
1756
1757// A let-expression,  e.g.  let x=t; u.
1758// This is a pseduo-term; it will be lowered to instructions in a CFG.
1759class Let : public SExpr {
1760public:
1761  static bool classof(const SExpr *E) { return E->opcode() == COP_Let; }
1762
1763  Let(Variable *Vd, SExpr *Bd) : SExpr(COP_Let), VarDecl(Vd), Body(Bd) {
1764    Vd->setKind(Variable::VK_Let);
1765  }
1766  Let(const Let &L, Variable *Vd, SExpr *Bd) : SExpr(L), VarDecl(Vd), Body(Bd) {
1767    Vd->setKind(Variable::VK_Let);
1768  }
1769
1770  Variable *variableDecl()  { return VarDecl; }
1771  const Variable *variableDecl() const { return VarDecl; }
1772
1773  SExpr *body() { return Body.get(); }
1774  const SExpr *body() const { return Body.get(); }
1775
1776  template <class V>
1777  typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1778    // This is a variable declaration, so traverse the definition.
1779    auto E0 = Vs.traverse(VarDecl->Definition, Vs.subExprCtx(Ctx));
1780    // Tell the rewriter to enter the scope of the let variable.
1781    Variable *Nvd = Vs.enterScope(*VarDecl, E0);
1782    auto E1 = Vs.traverse(Body, Ctx);
1783    Vs.exitScope(*VarDecl);
1784    return Vs.reduceLet(*this, Nvd, E1);
1785  }
1786
1787  template <class C> typename C::CType compare(Let* E, C& Cmp) {
1788    typename C::CType Ct =
1789      Cmp.compare(VarDecl->definition(), E->VarDecl->definition());
1790    if (Cmp.notTrue(Ct))
1791      return Ct;
1792    Cmp.enterScope(variableDecl(), E->variableDecl());
1793    Ct = Cmp.compare(body(), E->body());
1794    Cmp.leaveScope();
1795    return Ct;
1796  }
1797
1798private:
1799  Variable *VarDecl;
1800  SExprRef Body;
1801};
1802
1803
1804
1805SExpr *getCanonicalVal(SExpr *E);
1806void simplifyIncompleteArg(Variable *V, til::Phi *Ph);
1807
1808
1809} // end namespace til
1810} // end namespace threadSafety
1811} // end namespace clang
1812
1813#endif // LLVM_CLANG_THREAD_SAFETY_TIL_H
1814