CFG.h revision 8599e7677e067fd01d3b2ee4c0875747d367fd8e
1//===--- CFG.h - Classes for representing and building CFGs------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the CFG and CFGBuilder classes for representing and
11//  building Control-Flow Graphs (CFGs) from ASTs.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CLANG_CFG_H
16#define LLVM_CLANG_CFG_H
17
18#include "llvm/ADT/PointerIntPair.h"
19#include "llvm/ADT/GraphTraits.h"
20#include "llvm/Support/Allocator.h"
21#include "llvm/Support/Casting.h"
22#include "clang/Analysis/Support/BumpVector.h"
23#include "clang/Basic/SourceLocation.h"
24#include <cassert>
25
26namespace llvm {
27  class raw_ostream;
28}
29
30namespace clang {
31  class Decl;
32  class Stmt;
33  class Expr;
34  class FieldDecl;
35  class VarDecl;
36  class CXXBaseOrMemberInitializer;
37  class CXXBaseSpecifier;
38  class CXXBindTemporaryExpr;
39  class CFG;
40  class PrinterHelper;
41  class LangOptions;
42  class ASTContext;
43
44/// CFGElement - Represents a top-level expression in a basic block.
45class CFGElement {
46public:
47  enum Kind {
48    // main kind
49    Statement,
50    StatementAsLValue,
51    Initializer,
52    Dtor,
53    // dtor kind
54    AutomaticObjectDtor,
55    BaseDtor,
56    MemberDtor,
57    TemporaryDtor,
58    DTOR_BEGIN = AutomaticObjectDtor
59  };
60
61protected:
62  // The int bits are used to mark the main kind.
63  llvm::PointerIntPair<void *, 2> Data1;
64  // The int bits are used to mark the dtor kind.
65  llvm::PointerIntPair<void *, 2> Data2;
66
67  CFGElement(void *Ptr, unsigned Int) : Data1(Ptr, Int) {}
68  CFGElement(void *Ptr1, unsigned Int1, void *Ptr2, unsigned Int2)
69      : Data1(Ptr1, Int1), Data2(Ptr2, Int2) {}
70
71public:
72  CFGElement() {}
73
74  Kind getKind() const { return static_cast<Kind>(Data1.getInt()); }
75
76  Kind getDtorKind() const {
77    assert(getKind() == Dtor);
78    return static_cast<Kind>(Data2.getInt() + DTOR_BEGIN);
79  }
80
81  bool isValid() const { return Data1.getPointer(); }
82
83  operator bool() const { return isValid(); }
84
85  template<class ElemTy> ElemTy getAs() const {
86    if (llvm::isa<ElemTy>(this))
87      return *static_cast<const ElemTy*>(this);
88    return ElemTy();
89  }
90
91  static bool classof(const CFGElement *E) { return true; }
92};
93
94class CFGStmt : public CFGElement {
95public:
96  CFGStmt() {}
97  CFGStmt(Stmt *S, bool asLValue) : CFGElement(S, asLValue) {}
98
99  Stmt *getStmt() const { return static_cast<Stmt *>(Data1.getPointer()); }
100
101  operator Stmt*() const { return getStmt(); }
102
103  bool asLValue() const {
104    return static_cast<Kind>(Data1.getInt()) == StatementAsLValue;
105  }
106
107  static bool classof(const CFGElement *E) {
108    return E->getKind() == Statement || E->getKind() == StatementAsLValue;
109  }
110};
111
112/// CFGInitializer - Represents C++ base or member initializer from
113/// constructor's initialization list.
114class CFGInitializer : public CFGElement {
115public:
116  CFGInitializer() {}
117  CFGInitializer(CXXBaseOrMemberInitializer* I)
118      : CFGElement(I, Initializer) {}
119
120  CXXBaseOrMemberInitializer* getInitializer() const {
121    return static_cast<CXXBaseOrMemberInitializer*>(Data1.getPointer());
122  }
123  operator CXXBaseOrMemberInitializer*() const { return getInitializer(); }
124
125  static bool classof(const CFGElement *E) {
126    return E->getKind() == Initializer;
127  }
128};
129
130/// CFGImplicitDtor - Represents C++ object destructor implicitly generated
131/// by compiler on various occasions.
132class CFGImplicitDtor : public CFGElement {
133protected:
134  CFGImplicitDtor(unsigned K, void* P, void* S)
135      : CFGElement(P, Dtor, S, K - DTOR_BEGIN) {}
136
137public:
138  CFGImplicitDtor() {}
139
140  static bool classof(const CFGElement *E) {
141    return E->getKind() == Dtor;
142  }
143};
144
145/// CFGAutomaticObjDtor - Represents C++ object destructor implicitly generated
146/// for automatic object or temporary bound to const reference at the point
147/// of leaving its local scope.
148class CFGAutomaticObjDtor: public CFGImplicitDtor {
149public:
150  CFGAutomaticObjDtor() {}
151  CFGAutomaticObjDtor(VarDecl* VD, Stmt* S)
152      : CFGImplicitDtor(AutomaticObjectDtor, VD, S) {}
153
154  VarDecl* getVarDecl() const {
155    return static_cast<VarDecl*>(Data1.getPointer());
156  }
157
158  // Get statement end of which triggered the destructor call.
159  Stmt* getTriggerStmt() const {
160    return static_cast<Stmt*>(Data2.getPointer());
161  }
162
163  static bool classof(const CFGElement *E) {
164    return E->getKind() == Dtor && E->getDtorKind() == AutomaticObjectDtor;
165  }
166};
167
168/// CFGBaseDtor - Represents C++ object destructor implicitly generated for
169/// base object in destructor.
170class CFGBaseDtor : public CFGImplicitDtor {
171public:
172  CFGBaseDtor() {}
173  CFGBaseDtor(const CXXBaseSpecifier *BS)
174      : CFGImplicitDtor(BaseDtor, const_cast<CXXBaseSpecifier*>(BS), NULL) {}
175
176  const CXXBaseSpecifier *getBaseSpecifier() const {
177    return static_cast<const CXXBaseSpecifier*>(Data1.getPointer());
178  }
179
180  static bool classof(const CFGElement *E) {
181    return E->getKind() == Dtor && E->getDtorKind() == BaseDtor;
182  }
183};
184
185/// CFGMemberDtor - Represents C++ object destructor implicitly generated for
186/// member object in destructor.
187class CFGMemberDtor : public CFGImplicitDtor {
188public:
189  CFGMemberDtor() {}
190  CFGMemberDtor(FieldDecl *FD)
191      : CFGImplicitDtor(MemberDtor, FD, NULL) {}
192
193  FieldDecl *getFieldDecl() const {
194    return static_cast<FieldDecl*>(Data1.getPointer());
195  }
196
197  static bool classof(const CFGElement *E) {
198    return E->getKind() == Dtor && E->getDtorKind() == MemberDtor;
199  }
200};
201
202/// CFGTemporaryDtor - Represents C++ object destructor implicitly generated
203/// at the end of full expression for temporary object.
204class CFGTemporaryDtor : public CFGImplicitDtor {
205public:
206  CFGTemporaryDtor() {}
207  CFGTemporaryDtor(CXXBindTemporaryExpr *E)
208      : CFGImplicitDtor(TemporaryDtor, E, NULL) {}
209
210  CXXBindTemporaryExpr *getBindTemporaryExpr() const {
211    return static_cast<CXXBindTemporaryExpr *>(Data1.getPointer());
212  }
213
214  static bool classof(const CFGElement *E) {
215    return E->getKind() == Dtor && E->getDtorKind() == TemporaryDtor;
216  }
217};
218
219/// CFGTerminator - Represents CFGBlock terminator statement.
220///
221/// TemporaryDtorsBranch bit is set to true if the terminator marks a branch
222/// in control flow of destructors of temporaries. In this case terminator
223/// statement is the same statement that branches control flow in evaluation
224/// of matching full expression.
225class CFGTerminator {
226  llvm::PointerIntPair<Stmt *, 1> Data;
227public:
228  CFGTerminator() {}
229  CFGTerminator(Stmt *S, bool TemporaryDtorsBranch = false)
230      : Data(S, TemporaryDtorsBranch) {}
231
232  Stmt *getStmt() { return Data.getPointer(); }
233  const Stmt *getStmt() const { return Data.getPointer(); }
234
235  bool isTemporaryDtorsBranch() const { return Data.getInt(); }
236
237  operator Stmt *() { return getStmt(); }
238  operator const Stmt *() const { return getStmt(); }
239
240  Stmt *operator->() { return getStmt(); }
241  const Stmt *operator->() const { return getStmt(); }
242
243  Stmt &operator*() { return *getStmt(); }
244  const Stmt &operator*() const { return *getStmt(); }
245
246  operator bool() const { return getStmt(); }
247};
248
249/// CFGBlock - Represents a single basic block in a source-level CFG.
250///  It consists of:
251///
252///  (1) A set of statements/expressions (which may contain subexpressions).
253///  (2) A "terminator" statement (not in the set of statements).
254///  (3) A list of successors and predecessors.
255///
256/// Terminator: The terminator represents the type of control-flow that occurs
257/// at the end of the basic block.  The terminator is a Stmt* referring to an
258/// AST node that has control-flow: if-statements, breaks, loops, etc.
259/// If the control-flow is conditional, the condition expression will appear
260/// within the set of statements in the block (usually the last statement).
261///
262/// Predecessors: the order in the set of predecessors is arbitrary.
263///
264/// Successors: the order in the set of successors is NOT arbitrary.  We
265///  currently have the following orderings based on the terminator:
266///
267///     Terminator       Successor Ordering
268///  -----------------------------------------------------
269///       if            Then Block;  Else Block
270///     ? operator      LHS expression;  RHS expression
271///     &&, ||          expression that uses result of && or ||, RHS
272///
273class CFGBlock {
274  class ElementList {
275    typedef BumpVector<CFGElement> ImplTy;
276    ImplTy Impl;
277  public:
278    ElementList(BumpVectorContext &C) : Impl(C, 4) {}
279
280    typedef std::reverse_iterator<ImplTy::iterator>       iterator;
281    typedef std::reverse_iterator<ImplTy::const_iterator> const_iterator;
282    typedef ImplTy::iterator                              reverse_iterator;
283    typedef ImplTy::const_iterator                        const_reverse_iterator;
284
285    void push_back(CFGElement e, BumpVectorContext &C) { Impl.push_back(e, C); }
286    reverse_iterator insert(reverse_iterator I, size_t Cnt, CFGElement E,
287        BumpVectorContext& C) {
288      return Impl.insert(I, Cnt, E, C);
289    }
290
291    CFGElement front() const { return Impl.back(); }
292    CFGElement back() const { return Impl.front(); }
293
294    iterator begin() { return Impl.rbegin(); }
295    iterator end() { return Impl.rend(); }
296    const_iterator begin() const { return Impl.rbegin(); }
297    const_iterator end() const { return Impl.rend(); }
298    reverse_iterator rbegin() { return Impl.begin(); }
299    reverse_iterator rend() { return Impl.end(); }
300    const_reverse_iterator rbegin() const { return Impl.begin(); }
301    const_reverse_iterator rend() const { return Impl.end(); }
302
303   CFGElement operator[](size_t i) const  {
304     assert(i < Impl.size());
305     return Impl[Impl.size() - 1 - i];
306   }
307
308    size_t size() const { return Impl.size(); }
309    bool empty() const { return Impl.empty(); }
310  };
311
312  /// Stmts - The set of statements in the basic block.
313  ElementList Elements;
314
315  /// Label - An (optional) label that prefixes the executable
316  ///  statements in the block.  When this variable is non-NULL, it is
317  ///  either an instance of LabelStmt, SwitchCase or CXXCatchStmt.
318  Stmt *Label;
319
320  /// Terminator - The terminator for a basic block that
321  ///  indicates the type of control-flow that occurs between a block
322  ///  and its successors.
323  CFGTerminator Terminator;
324
325  /// LoopTarget - Some blocks are used to represent the "loop edge" to
326  ///  the start of a loop from within the loop body.  This Stmt* will be
327  ///  refer to the loop statement for such blocks (and be null otherwise).
328  const Stmt *LoopTarget;
329
330  /// BlockID - A numerical ID assigned to a CFGBlock during construction
331  ///   of the CFG.
332  unsigned BlockID;
333
334  /// Predecessors/Successors - Keep track of the predecessor / successor
335  /// CFG blocks.
336  typedef BumpVector<CFGBlock*> AdjacentBlocks;
337  AdjacentBlocks Preds;
338  AdjacentBlocks Succs;
339
340public:
341  explicit CFGBlock(unsigned blockid, BumpVectorContext &C)
342    : Elements(C), Label(NULL), Terminator(NULL), LoopTarget(NULL),
343      BlockID(blockid), Preds(C, 1), Succs(C, 1) {}
344  ~CFGBlock() {}
345
346  // Statement iterators
347  typedef ElementList::iterator                      iterator;
348  typedef ElementList::const_iterator                const_iterator;
349  typedef ElementList::reverse_iterator              reverse_iterator;
350  typedef ElementList::const_reverse_iterator        const_reverse_iterator;
351
352  CFGElement                 front()       const { return Elements.front();   }
353  CFGElement                 back()        const { return Elements.back();    }
354
355  iterator                   begin()             { return Elements.begin();   }
356  iterator                   end()               { return Elements.end();     }
357  const_iterator             begin()       const { return Elements.begin();   }
358  const_iterator             end()         const { return Elements.end();     }
359
360  reverse_iterator           rbegin()            { return Elements.rbegin();  }
361  reverse_iterator           rend()              { return Elements.rend();    }
362  const_reverse_iterator     rbegin()      const { return Elements.rbegin();  }
363  const_reverse_iterator     rend()        const { return Elements.rend();    }
364
365  unsigned                   size()        const { return Elements.size();    }
366  bool                       empty()       const { return Elements.empty();   }
367
368  CFGElement operator[](size_t i) const  { return Elements[i]; }
369
370  // CFG iterators
371  typedef AdjacentBlocks::iterator                              pred_iterator;
372  typedef AdjacentBlocks::const_iterator                  const_pred_iterator;
373  typedef AdjacentBlocks::reverse_iterator              pred_reverse_iterator;
374  typedef AdjacentBlocks::const_reverse_iterator  const_pred_reverse_iterator;
375
376  typedef AdjacentBlocks::iterator                              succ_iterator;
377  typedef AdjacentBlocks::const_iterator                  const_succ_iterator;
378  typedef AdjacentBlocks::reverse_iterator              succ_reverse_iterator;
379  typedef AdjacentBlocks::const_reverse_iterator  const_succ_reverse_iterator;
380
381  pred_iterator                pred_begin()        { return Preds.begin();   }
382  pred_iterator                pred_end()          { return Preds.end();     }
383  const_pred_iterator          pred_begin()  const { return Preds.begin();   }
384  const_pred_iterator          pred_end()    const { return Preds.end();     }
385
386  pred_reverse_iterator        pred_rbegin()       { return Preds.rbegin();  }
387  pred_reverse_iterator        pred_rend()         { return Preds.rend();    }
388  const_pred_reverse_iterator  pred_rbegin() const { return Preds.rbegin();  }
389  const_pred_reverse_iterator  pred_rend()   const { return Preds.rend();    }
390
391  succ_iterator                succ_begin()        { return Succs.begin();   }
392  succ_iterator                succ_end()          { return Succs.end();     }
393  const_succ_iterator          succ_begin()  const { return Succs.begin();   }
394  const_succ_iterator          succ_end()    const { return Succs.end();     }
395
396  succ_reverse_iterator        succ_rbegin()       { return Succs.rbegin();  }
397  succ_reverse_iterator        succ_rend()         { return Succs.rend();    }
398  const_succ_reverse_iterator  succ_rbegin() const { return Succs.rbegin();  }
399  const_succ_reverse_iterator  succ_rend()   const { return Succs.rend();    }
400
401  unsigned                     succ_size()   const { return Succs.size();    }
402  bool                         succ_empty()  const { return Succs.empty();   }
403
404  unsigned                     pred_size()   const { return Preds.size();    }
405  bool                         pred_empty()  const { return Preds.empty();   }
406
407
408  class FilterOptions {
409  public:
410    FilterOptions() {
411      IgnoreDefaultsWithCoveredEnums = 0;
412    }
413
414    unsigned IgnoreDefaultsWithCoveredEnums : 1;
415  };
416
417  static bool FilterEdge(const FilterOptions &F, const CFGBlock *Src,
418       const CFGBlock *Dst);
419
420  template <typename IMPL, bool IsPred>
421  class FilteredCFGBlockIterator {
422  private:
423    IMPL I, E;
424    const FilterOptions F;
425    const CFGBlock *From;
426   public:
427    explicit FilteredCFGBlockIterator(const IMPL &i, const IMPL &e,
428              const CFGBlock *from,
429              const FilterOptions &f)
430      : I(i), E(e), F(f), From(from) {}
431
432    bool hasMore() const { return I != E; }
433
434    FilteredCFGBlockIterator &operator++() {
435      do { ++I; } while (hasMore() && Filter(*I));
436      return *this;
437    }
438
439    const CFGBlock *operator*() const { return *I; }
440  private:
441    bool Filter(const CFGBlock *To) {
442      return IsPred ? FilterEdge(F, To, From) : FilterEdge(F, From, To);
443    }
444  };
445
446  typedef FilteredCFGBlockIterator<const_pred_iterator, true>
447          filtered_pred_iterator;
448
449  typedef FilteredCFGBlockIterator<const_succ_iterator, false>
450          filtered_succ_iterator;
451
452  filtered_pred_iterator filtered_pred_start_end(const FilterOptions &f) const {
453    return filtered_pred_iterator(pred_begin(), pred_end(), this, f);
454  }
455
456  filtered_succ_iterator filtered_succ_start_end(const FilterOptions &f) const {
457    return filtered_succ_iterator(succ_begin(), succ_end(), this, f);
458  }
459
460  // Manipulation of block contents
461
462  void setTerminator(Stmt* Statement) { Terminator = Statement; }
463  void setLabel(Stmt* Statement) { Label = Statement; }
464  void setLoopTarget(const Stmt *loopTarget) { LoopTarget = loopTarget; }
465
466  CFGTerminator getTerminator() { return Terminator; }
467  const CFGTerminator getTerminator() const { return Terminator; }
468
469  Stmt* getTerminatorCondition();
470
471  const Stmt* getTerminatorCondition() const {
472    return const_cast<CFGBlock*>(this)->getTerminatorCondition();
473  }
474
475  const Stmt *getLoopTarget() const { return LoopTarget; }
476
477  bool hasBinaryBranchTerminator() const;
478
479  Stmt* getLabel() { return Label; }
480  const Stmt* getLabel() const { return Label; }
481
482  unsigned getBlockID() const { return BlockID; }
483
484  void dump(const CFG *cfg, const LangOptions &LO) const;
485  void print(llvm::raw_ostream &OS, const CFG* cfg, const LangOptions &LO) const;
486  void printTerminator(llvm::raw_ostream &OS, const LangOptions &LO) const;
487
488  void addSuccessor(CFGBlock* Block, BumpVectorContext &C) {
489    if (Block)
490      Block->Preds.push_back(this, C);
491    Succs.push_back(Block, C);
492  }
493
494  void appendStmt(Stmt* Statement, BumpVectorContext &C, bool asLValue) {
495    Elements.push_back(CFGStmt(Statement, asLValue), C);
496  }
497
498  void appendInitializer(CXXBaseOrMemberInitializer *I, BumpVectorContext& C) {
499    Elements.push_back(CFGInitializer(I), C);
500  }
501
502  void appendBaseDtor(const CXXBaseSpecifier *BS, BumpVectorContext &C) {
503    Elements.push_back(CFGBaseDtor(BS), C);
504  }
505
506  void appendMemberDtor(FieldDecl *FD, BumpVectorContext &C) {
507    Elements.push_back(CFGMemberDtor(FD), C);
508  }
509
510  void appendTemporaryDtor(CXXBindTemporaryExpr *E, BumpVectorContext &C) {
511    Elements.push_back(CFGTemporaryDtor(E), C);
512  }
513
514  // Destructors must be inserted in reversed order. So insertion is in two
515  // steps. First we prepare space for some number of elements, then we insert
516  // the elements beginning at the last position in prepared space.
517  iterator beginAutomaticObjDtorsInsert(iterator I, size_t Cnt,
518      BumpVectorContext& C) {
519    return iterator(Elements.insert(I.base(), Cnt, CFGElement(), C));
520  }
521  iterator insertAutomaticObjDtor(iterator I, VarDecl* VD, Stmt* S) {
522    *I = CFGAutomaticObjDtor(VD, S);
523    return ++I;
524  }
525};
526
527/// CFG - Represents a source-level, intra-procedural CFG that represents the
528///  control-flow of a Stmt.  The Stmt can represent an entire function body,
529///  or a single expression.  A CFG will always contain one empty block that
530///  represents the Exit point of the CFG.  A CFG will also contain a designated
531///  Entry block.  The CFG solely represents control-flow; it consists of
532///  CFGBlocks which are simply containers of Stmt*'s in the AST the CFG
533///  was constructed from.
534class CFG {
535public:
536  //===--------------------------------------------------------------------===//
537  // CFG Construction & Manipulation.
538  //===--------------------------------------------------------------------===//
539
540  class BuildOptions {
541  public:
542    bool PruneTriviallyFalseEdges:1;
543    bool AddEHEdges:1;
544    bool AddInitializers:1;
545    bool AddImplicitDtors:1;
546
547    BuildOptions()
548        : PruneTriviallyFalseEdges(true)
549        , AddEHEdges(false)
550        , AddInitializers(false)
551        , AddImplicitDtors(false) {}
552  };
553
554  /// buildCFG - Builds a CFG from an AST.  The responsibility to free the
555  ///   constructed CFG belongs to the caller.
556  static CFG* buildCFG(const Decl *D, Stmt* AST, ASTContext *C,
557      BuildOptions BO = BuildOptions());
558
559  /// createBlock - Create a new block in the CFG.  The CFG owns the block;
560  ///  the caller should not directly free it.
561  CFGBlock* createBlock();
562
563  /// setEntry - Set the entry block of the CFG.  This is typically used
564  ///  only during CFG construction.  Most CFG clients expect that the
565  ///  entry block has no predecessors and contains no statements.
566  void setEntry(CFGBlock *B) { Entry = B; }
567
568  /// setIndirectGotoBlock - Set the block used for indirect goto jumps.
569  ///  This is typically used only during CFG construction.
570  void setIndirectGotoBlock(CFGBlock* B) { IndirectGotoBlock = B; }
571
572  //===--------------------------------------------------------------------===//
573  // Block Iterators
574  //===--------------------------------------------------------------------===//
575
576  typedef BumpVector<CFGBlock*>                    CFGBlockListTy;
577  typedef CFGBlockListTy::iterator                 iterator;
578  typedef CFGBlockListTy::const_iterator           const_iterator;
579  typedef std::reverse_iterator<iterator>          reverse_iterator;
580  typedef std::reverse_iterator<const_iterator>    const_reverse_iterator;
581
582  CFGBlock&                 front()                { return *Blocks.front(); }
583  CFGBlock&                 back()                 { return *Blocks.back(); }
584
585  iterator                  begin()                { return Blocks.begin(); }
586  iterator                  end()                  { return Blocks.end(); }
587  const_iterator            begin()       const    { return Blocks.begin(); }
588  const_iterator            end()         const    { return Blocks.end(); }
589
590  reverse_iterator          rbegin()               { return Blocks.rbegin(); }
591  reverse_iterator          rend()                 { return Blocks.rend(); }
592  const_reverse_iterator    rbegin()      const    { return Blocks.rbegin(); }
593  const_reverse_iterator    rend()        const    { return Blocks.rend(); }
594
595  CFGBlock&                 getEntry()             { return *Entry; }
596  const CFGBlock&           getEntry()    const    { return *Entry; }
597  CFGBlock&                 getExit()              { return *Exit; }
598  const CFGBlock&           getExit()     const    { return *Exit; }
599
600  CFGBlock*        getIndirectGotoBlock() { return IndirectGotoBlock; }
601  const CFGBlock*  getIndirectGotoBlock() const { return IndirectGotoBlock; }
602
603  //===--------------------------------------------------------------------===//
604  // Member templates useful for various batch operations over CFGs.
605  //===--------------------------------------------------------------------===//
606
607  template <typename CALLBACK>
608  void VisitBlockStmts(CALLBACK& O) const {
609    for (const_iterator I=begin(), E=end(); I != E; ++I)
610      for (CFGBlock::const_iterator BI=(*I)->begin(), BE=(*I)->end();
611           BI != BE; ++BI) {
612        if (CFGStmt S = BI->getAs<CFGStmt>())
613          O(S);
614      }
615  }
616
617  //===--------------------------------------------------------------------===//
618  // CFG Introspection.
619  //===--------------------------------------------------------------------===//
620
621  struct   BlkExprNumTy {
622    const signed Idx;
623    explicit BlkExprNumTy(signed idx) : Idx(idx) {}
624    explicit BlkExprNumTy() : Idx(-1) {}
625    operator bool() const { return Idx >= 0; }
626    operator unsigned() const { assert(Idx >=0); return (unsigned) Idx; }
627  };
628
629  bool          isBlkExpr(const Stmt* S) { return getBlkExprNum(S); }
630  BlkExprNumTy  getBlkExprNum(const Stmt* S);
631  unsigned      getNumBlkExprs();
632
633  /// getNumBlockIDs - Returns the total number of BlockIDs allocated (which
634  /// start at 0).
635  unsigned getNumBlockIDs() const { return NumBlockIDs; }
636
637  //===--------------------------------------------------------------------===//
638  // CFG Debugging: Pretty-Printing and Visualization.
639  //===--------------------------------------------------------------------===//
640
641  void viewCFG(const LangOptions &LO) const;
642  void print(llvm::raw_ostream& OS, const LangOptions &LO) const;
643  void dump(const LangOptions &LO) const;
644
645  //===--------------------------------------------------------------------===//
646  // Internal: constructors and data.
647  //===--------------------------------------------------------------------===//
648
649  CFG() : Entry(NULL), Exit(NULL), IndirectGotoBlock(NULL), NumBlockIDs(0),
650          BlkExprMap(NULL), Blocks(BlkBVC, 10) {}
651
652  ~CFG();
653
654  llvm::BumpPtrAllocator& getAllocator() {
655    return BlkBVC.getAllocator();
656  }
657
658  BumpVectorContext &getBumpVectorContext() {
659    return BlkBVC;
660  }
661
662private:
663  CFGBlock* Entry;
664  CFGBlock* Exit;
665  CFGBlock* IndirectGotoBlock;  // Special block to contain collective dispatch
666                                // for indirect gotos
667  unsigned  NumBlockIDs;
668
669  // BlkExprMap - An opaque pointer to prevent inclusion of DenseMap.h.
670  //  It represents a map from Expr* to integers to record the set of
671  //  block-level expressions and their "statement number" in the CFG.
672  void*     BlkExprMap;
673
674  BumpVectorContext BlkBVC;
675
676  CFGBlockListTy Blocks;
677
678};
679} // end namespace clang
680
681//===----------------------------------------------------------------------===//
682// GraphTraits specializations for CFG basic block graphs (source-level CFGs)
683//===----------------------------------------------------------------------===//
684
685namespace llvm {
686
687/// Implement simplify_type for CFGTerminator, so that we can dyn_cast from
688/// CFGTerminator to a specific Stmt class.
689template <> struct simplify_type<const ::clang::CFGTerminator> {
690  typedef const ::clang::Stmt *SimpleType;
691  static SimpleType getSimplifiedValue(const ::clang::CFGTerminator &Val) {
692    return Val.getStmt();
693  }
694};
695
696template <> struct simplify_type< ::clang::CFGTerminator> {
697  typedef ::clang::Stmt *SimpleType;
698  static SimpleType getSimplifiedValue(const ::clang::CFGTerminator &Val) {
699    return const_cast<SimpleType>(Val.getStmt());
700  }
701};
702
703// Traits for: CFGBlock
704
705template <> struct GraphTraits< ::clang::CFGBlock* > {
706  typedef ::clang::CFGBlock NodeType;
707  typedef ::clang::CFGBlock::succ_iterator ChildIteratorType;
708
709  static NodeType* getEntryNode(::clang::CFGBlock* BB)
710  { return BB; }
711
712  static inline ChildIteratorType child_begin(NodeType* N)
713  { return N->succ_begin(); }
714
715  static inline ChildIteratorType child_end(NodeType* N)
716  { return N->succ_end(); }
717};
718
719template <> struct GraphTraits< const ::clang::CFGBlock* > {
720  typedef const ::clang::CFGBlock NodeType;
721  typedef ::clang::CFGBlock::const_succ_iterator ChildIteratorType;
722
723  static NodeType* getEntryNode(const clang::CFGBlock* BB)
724  { return BB; }
725
726  static inline ChildIteratorType child_begin(NodeType* N)
727  { return N->succ_begin(); }
728
729  static inline ChildIteratorType child_end(NodeType* N)
730  { return N->succ_end(); }
731};
732
733template <> struct GraphTraits<Inverse<const ::clang::CFGBlock*> > {
734  typedef const ::clang::CFGBlock NodeType;
735  typedef ::clang::CFGBlock::const_pred_iterator ChildIteratorType;
736
737  static NodeType *getEntryNode(Inverse<const ::clang::CFGBlock*> G)
738  { return G.Graph; }
739
740  static inline ChildIteratorType child_begin(NodeType* N)
741  { return N->pred_begin(); }
742
743  static inline ChildIteratorType child_end(NodeType* N)
744  { return N->pred_end(); }
745};
746
747// Traits for: CFG
748
749template <> struct GraphTraits< ::clang::CFG* >
750    : public GraphTraits< ::clang::CFGBlock* >  {
751
752  typedef ::clang::CFG::iterator nodes_iterator;
753
754  static NodeType *getEntryNode(::clang::CFG* F) { return &F->getEntry(); }
755  static nodes_iterator nodes_begin(::clang::CFG* F) { return F->begin(); }
756  static nodes_iterator nodes_end(::clang::CFG* F) { return F->end(); }
757};
758
759template <> struct GraphTraits<const ::clang::CFG* >
760    : public GraphTraits<const ::clang::CFGBlock* >  {
761
762  typedef ::clang::CFG::const_iterator nodes_iterator;
763
764  static NodeType *getEntryNode( const ::clang::CFG* F) {
765    return &F->getEntry();
766  }
767  static nodes_iterator nodes_begin( const ::clang::CFG* F) {
768    return F->begin();
769  }
770  static nodes_iterator nodes_end( const ::clang::CFG* F) {
771    return F->end();
772  }
773};
774
775template <> struct GraphTraits<Inverse<const ::clang::CFG*> >
776  : public GraphTraits<Inverse<const ::clang::CFGBlock*> > {
777
778  typedef ::clang::CFG::const_iterator nodes_iterator;
779
780  static NodeType *getEntryNode(const ::clang::CFG* F) { return &F->getExit(); }
781  static nodes_iterator nodes_begin(const ::clang::CFG* F) { return F->begin();}
782  static nodes_iterator nodes_end(const ::clang::CFG* F) { return F->end(); }
783};
784} // end llvm namespace
785#endif
786