CFG.h revision 1cff132e48e0ccc253c34e5a2fb12718bd4e7d2e
1//===--- CFG.h - Classes for representing and building CFGs------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the CFG and CFGBuilder classes for representing and
11//  building Control-Flow Graphs (CFGs) from ASTs.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CLANG_CFG_H
16#define LLVM_CLANG_CFG_H
17
18#include "llvm/ADT/PointerIntPair.h"
19#include "llvm/ADT/GraphTraits.h"
20#include "llvm/Support/Allocator.h"
21#include "llvm/Support/Casting.h"
22#include "clang/Analysis/Support/BumpVector.h"
23#include "clang/Basic/SourceLocation.h"
24#include <cassert>
25
26namespace llvm {
27  class raw_ostream;
28}
29
30namespace clang {
31  class Decl;
32  class Stmt;
33  class Expr;
34  class VarDecl;
35  class CXXBaseOrMemberInitializer;
36  class CFG;
37  class PrinterHelper;
38  class LangOptions;
39  class ASTContext;
40
41/// CFGElement - Represents a top-level expression in a basic block.
42class CFGElement {
43public:
44  enum Kind {
45    // main kind
46    Statement,
47    StatementAsLValue,
48    Initializer,
49    Dtor,
50    // dtor kind
51    AutomaticObjectDtor,
52    BaseDtor,
53    MemberDtor,
54    TemporaryDtor,
55    DTOR_BEGIN = AutomaticObjectDtor
56  };
57
58protected:
59  // The int bits are used to mark the main kind.
60  llvm::PointerIntPair<void *, 2> Data1;
61  // The int bits are used to mark the dtor kind.
62  llvm::PointerIntPair<void *, 2> Data2;
63
64  CFGElement(void *Ptr, unsigned Int) : Data1(Ptr, Int) {}
65  CFGElement(void *Ptr1, unsigned Int1, void *Ptr2, unsigned Int2)
66      : Data1(Ptr1, Int1), Data2(Ptr2, Int2) {}
67
68public:
69  CFGElement() {}
70
71  Kind getKind() const { return static_cast<Kind>(Data1.getInt()); }
72
73  Kind getDtorKind() const {
74    assert(getKind() == Dtor);
75    return static_cast<Kind>(Data2.getInt() + DTOR_BEGIN);
76  }
77
78  bool isValid() const { return Data1.getPointer(); }
79
80  operator bool() const { return isValid(); }
81
82  template<class ElemTy> ElemTy getAs() const {
83    if (llvm::isa<ElemTy>(this))
84      return *static_cast<const ElemTy*>(this);
85    return ElemTy();
86  }
87
88  static bool classof(const CFGElement *E) { return true; }
89};
90
91class CFGStmt : public CFGElement {
92public:
93  CFGStmt() {}
94  CFGStmt(Stmt *S, bool asLValue) : CFGElement(S, asLValue) {}
95
96  Stmt *getStmt() const { return static_cast<Stmt *>(Data1.getPointer()); }
97
98  operator Stmt*() const { return getStmt(); }
99
100  bool asLValue() const {
101    return static_cast<Kind>(Data1.getInt()) == StatementAsLValue;
102  }
103
104  static bool classof(const CFGElement *E) {
105    return E->getKind() == Statement || E->getKind() == StatementAsLValue;
106  }
107};
108
109/// CFGInitializer - Represents C++ base or member initializer from
110/// constructor's initialization list.
111class CFGInitializer : public CFGElement {
112public:
113  CFGInitializer() {}
114  CFGInitializer(CXXBaseOrMemberInitializer* I)
115      : CFGElement(I, Initializer) {}
116
117  CXXBaseOrMemberInitializer* getInitializer() const {
118    return static_cast<CXXBaseOrMemberInitializer*>(Data1.getPointer());
119  }
120  operator CXXBaseOrMemberInitializer*() const { return getInitializer(); }
121
122  static bool classof(const CFGElement *E) {
123    return E->getKind() == Initializer;
124  }
125};
126
127/// CFGImplicitDtor - Represents C++ object destructor imlicitly generated
128/// by compiler on various occasions.
129class CFGImplicitDtor : public CFGElement {
130protected:
131  CFGImplicitDtor(unsigned K, void* P, void* S)
132      : CFGElement(P, Dtor, S, K - DTOR_BEGIN) {}
133
134public:
135  CFGImplicitDtor() {}
136
137  static bool classof(const CFGElement *E) {
138    return E->getKind() == Dtor;
139  }
140};
141
142/// CFGAutomaticObjDtor - Represents C++ object destructor implicit generated
143/// for automatic object or temporary bound to const reference at the point
144/// of leaving its local scope.
145class CFGAutomaticObjDtor: public CFGImplicitDtor {
146public:
147  CFGAutomaticObjDtor() {}
148  CFGAutomaticObjDtor(VarDecl* VD, Stmt* S)
149      : CFGImplicitDtor(AutomaticObjectDtor, VD, S) {}
150
151  VarDecl* getVarDecl() const {
152    return static_cast<VarDecl*>(Data1.getPointer());
153  }
154
155  // Get statement end of which triggered the destructor call.
156  Stmt* getTriggerStmt() const {
157    return static_cast<Stmt*>(Data2.getPointer());
158  }
159
160  static bool classof(const CFGElement *E) {
161    return E->getKind() == Dtor && E->getDtorKind() == AutomaticObjectDtor;
162  }
163};
164
165class CFGBaseDtor : public CFGImplicitDtor {
166public:
167  static bool classof(const CFGElement *E) {
168    return E->getKind() == Dtor && E->getDtorKind() == BaseDtor;
169  }
170};
171
172class CFGMemberDtor : public CFGImplicitDtor {
173public:
174  static bool classof(const CFGElement *E) {
175    return E->getKind() == Dtor && E->getDtorKind() == MemberDtor;
176  }
177
178};
179
180class CFGTemporaryDtor : public CFGImplicitDtor {
181public:
182  static bool classof(const CFGElement *E) {
183    return E->getKind() == Dtor && E->getDtorKind() == TemporaryDtor;
184  }
185};
186
187/// CFGBlock - Represents a single basic block in a source-level CFG.
188///  It consists of:
189///
190///  (1) A set of statements/expressions (which may contain subexpressions).
191///  (2) A "terminator" statement (not in the set of statements).
192///  (3) A list of successors and predecessors.
193///
194/// Terminator: The terminator represents the type of control-flow that occurs
195/// at the end of the basic block.  The terminator is a Stmt* referring to an
196/// AST node that has control-flow: if-statements, breaks, loops, etc.
197/// If the control-flow is conditional, the condition expression will appear
198/// within the set of statements in the block (usually the last statement).
199///
200/// Predecessors: the order in the set of predecessors is arbitrary.
201///
202/// Successors: the order in the set of successors is NOT arbitrary.  We
203///  currently have the following orderings based on the terminator:
204///
205///     Terminator       Successor Ordering
206///  -----------------------------------------------------
207///       if            Then Block;  Else Block
208///     ? operator      LHS expression;  RHS expression
209///     &&, ||          expression that uses result of && or ||, RHS
210///
211class CFGBlock {
212  class ElementList {
213    typedef BumpVector<CFGElement> ImplTy;
214    ImplTy Impl;
215  public:
216    ElementList(BumpVectorContext &C) : Impl(C, 4) {}
217
218    typedef std::reverse_iterator<ImplTy::iterator>       iterator;
219    typedef std::reverse_iterator<ImplTy::const_iterator> const_iterator;
220    typedef ImplTy::iterator                              reverse_iterator;
221    typedef ImplTy::const_iterator                        const_reverse_iterator;
222
223    void push_back(CFGElement e, BumpVectorContext &C) { Impl.push_back(e, C); }
224    CFGElement front() const { return Impl.back(); }
225    CFGElement back() const { return Impl.front(); }
226
227    iterator begin() { return Impl.rbegin(); }
228    iterator end() { return Impl.rend(); }
229    const_iterator begin() const { return Impl.rbegin(); }
230    const_iterator end() const { return Impl.rend(); }
231    reverse_iterator rbegin() { return Impl.begin(); }
232    reverse_iterator rend() { return Impl.end(); }
233    const_reverse_iterator rbegin() const { return Impl.begin(); }
234    const_reverse_iterator rend() const { return Impl.end(); }
235
236   CFGElement operator[](size_t i) const  {
237     assert(i < Impl.size());
238     return Impl[Impl.size() - 1 - i];
239   }
240
241    size_t size() const { return Impl.size(); }
242    bool empty() const { return Impl.empty(); }
243  };
244
245  /// Stmts - The set of statements in the basic block.
246  ElementList Elements;
247
248  /// Label - An (optional) label that prefixes the executable
249  ///  statements in the block.  When this variable is non-NULL, it is
250  ///  either an instance of LabelStmt, SwitchCase or CXXCatchStmt.
251  Stmt *Label;
252
253  /// Terminator - The terminator for a basic block that
254  ///  indicates the type of control-flow that occurs between a block
255  ///  and its successors.
256  Stmt *Terminator;
257
258  /// LoopTarget - Some blocks are used to represent the "loop edge" to
259  ///  the start of a loop from within the loop body.  This Stmt* will be
260  ///  refer to the loop statement for such blocks (and be null otherwise).
261  const Stmt *LoopTarget;
262
263  /// BlockID - A numerical ID assigned to a CFGBlock during construction
264  ///   of the CFG.
265  unsigned BlockID;
266
267  /// Predecessors/Successors - Keep track of the predecessor / successor
268  /// CFG blocks.
269  typedef BumpVector<CFGBlock*> AdjacentBlocks;
270  AdjacentBlocks Preds;
271  AdjacentBlocks Succs;
272
273public:
274  explicit CFGBlock(unsigned blockid, BumpVectorContext &C)
275    : Elements(C), Label(NULL), Terminator(NULL), LoopTarget(NULL),
276      BlockID(blockid), Preds(C, 1), Succs(C, 1) {}
277  ~CFGBlock() {}
278
279  // Statement iterators
280  typedef ElementList::iterator                      iterator;
281  typedef ElementList::const_iterator                const_iterator;
282  typedef ElementList::reverse_iterator              reverse_iterator;
283  typedef ElementList::const_reverse_iterator        const_reverse_iterator;
284
285  CFGElement                 front()       const { return Elements.front();   }
286  CFGElement                 back()        const { return Elements.back();    }
287
288  iterator                   begin()             { return Elements.begin();   }
289  iterator                   end()               { return Elements.end();     }
290  const_iterator             begin()       const { return Elements.begin();   }
291  const_iterator             end()         const { return Elements.end();     }
292
293  reverse_iterator           rbegin()            { return Elements.rbegin();  }
294  reverse_iterator           rend()              { return Elements.rend();    }
295  const_reverse_iterator     rbegin()      const { return Elements.rbegin();  }
296  const_reverse_iterator     rend()        const { return Elements.rend();    }
297
298  unsigned                   size()        const { return Elements.size();    }
299  bool                       empty()       const { return Elements.empty();   }
300
301  CFGElement operator[](size_t i) const  { return Elements[i]; }
302
303  // CFG iterators
304  typedef AdjacentBlocks::iterator                              pred_iterator;
305  typedef AdjacentBlocks::const_iterator                  const_pred_iterator;
306  typedef AdjacentBlocks::reverse_iterator              pred_reverse_iterator;
307  typedef AdjacentBlocks::const_reverse_iterator  const_pred_reverse_iterator;
308
309  typedef AdjacentBlocks::iterator                              succ_iterator;
310  typedef AdjacentBlocks::const_iterator                  const_succ_iterator;
311  typedef AdjacentBlocks::reverse_iterator              succ_reverse_iterator;
312  typedef AdjacentBlocks::const_reverse_iterator  const_succ_reverse_iterator;
313
314  pred_iterator                pred_begin()        { return Preds.begin();   }
315  pred_iterator                pred_end()          { return Preds.end();     }
316  const_pred_iterator          pred_begin()  const { return Preds.begin();   }
317  const_pred_iterator          pred_end()    const { return Preds.end();     }
318
319  pred_reverse_iterator        pred_rbegin()       { return Preds.rbegin();  }
320  pred_reverse_iterator        pred_rend()         { return Preds.rend();    }
321  const_pred_reverse_iterator  pred_rbegin() const { return Preds.rbegin();  }
322  const_pred_reverse_iterator  pred_rend()   const { return Preds.rend();    }
323
324  succ_iterator                succ_begin()        { return Succs.begin();   }
325  succ_iterator                succ_end()          { return Succs.end();     }
326  const_succ_iterator          succ_begin()  const { return Succs.begin();   }
327  const_succ_iterator          succ_end()    const { return Succs.end();     }
328
329  succ_reverse_iterator        succ_rbegin()       { return Succs.rbegin();  }
330  succ_reverse_iterator        succ_rend()         { return Succs.rend();    }
331  const_succ_reverse_iterator  succ_rbegin() const { return Succs.rbegin();  }
332  const_succ_reverse_iterator  succ_rend()   const { return Succs.rend();    }
333
334  unsigned                     succ_size()   const { return Succs.size();    }
335  bool                         succ_empty()  const { return Succs.empty();   }
336
337  unsigned                     pred_size()   const { return Preds.size();    }
338  bool                         pred_empty()  const { return Preds.empty();   }
339
340
341  class FilterOptions {
342  public:
343    FilterOptions() {
344      IgnoreDefaultsWithCoveredEnums = 0;
345    }
346
347    unsigned IgnoreDefaultsWithCoveredEnums : 1;
348  };
349
350  static bool FilterEdge(const FilterOptions &F, const CFGBlock *Src,
351       const CFGBlock *Dst);
352
353  template <typename IMPL, bool IsPred>
354  class FilteredCFGBlockIterator {
355  private:
356    IMPL I, E;
357    const FilterOptions F;
358    const CFGBlock *From;
359   public:
360    explicit FilteredCFGBlockIterator(const IMPL &i, const IMPL &e,
361              const CFGBlock *from,
362              const FilterOptions &f)
363      : I(i), E(e), F(f), From(from) {}
364
365    bool hasMore() const { return I != E; }
366
367    FilteredCFGBlockIterator &operator++() {
368      do { ++I; } while (hasMore() && Filter(*I));
369      return *this;
370    }
371
372    const CFGBlock *operator*() const { return *I; }
373  private:
374    bool Filter(const CFGBlock *To) {
375      return IsPred ? FilterEdge(F, To, From) : FilterEdge(F, From, To);
376    }
377  };
378
379  typedef FilteredCFGBlockIterator<const_pred_iterator, true>
380          filtered_pred_iterator;
381
382  typedef FilteredCFGBlockIterator<const_succ_iterator, false>
383          filtered_succ_iterator;
384
385  filtered_pred_iterator filtered_pred_start_end(const FilterOptions &f) const {
386    return filtered_pred_iterator(pred_begin(), pred_end(), this, f);
387  }
388
389  filtered_succ_iterator filtered_succ_start_end(const FilterOptions &f) const {
390    return filtered_succ_iterator(succ_begin(), succ_end(), this, f);
391  }
392
393  // Manipulation of block contents
394
395  void setTerminator(Stmt* Statement) { Terminator = Statement; }
396  void setLabel(Stmt* Statement) { Label = Statement; }
397  void setLoopTarget(const Stmt *loopTarget) { LoopTarget = loopTarget; }
398
399  Stmt* getTerminator() { return Terminator; }
400  const Stmt* getTerminator() const { return Terminator; }
401
402  Stmt* getTerminatorCondition();
403
404  const Stmt* getTerminatorCondition() const {
405    return const_cast<CFGBlock*>(this)->getTerminatorCondition();
406  }
407
408  const Stmt *getLoopTarget() const { return LoopTarget; }
409
410  bool hasBinaryBranchTerminator() const;
411
412  Stmt* getLabel() { return Label; }
413  const Stmt* getLabel() const { return Label; }
414
415  unsigned getBlockID() const { return BlockID; }
416
417  void dump(const CFG *cfg, const LangOptions &LO) const;
418  void print(llvm::raw_ostream &OS, const CFG* cfg, const LangOptions &LO) const;
419  void printTerminator(llvm::raw_ostream &OS, const LangOptions &LO) const;
420
421  void addSuccessor(CFGBlock* Block, BumpVectorContext &C) {
422    if (Block)
423      Block->Preds.push_back(this, C);
424    Succs.push_back(Block, C);
425  }
426
427  void appendStmt(Stmt* Statement, BumpVectorContext &C, bool asLValue) {
428    Elements.push_back(CFGStmt(Statement, asLValue), C);
429  }
430};
431
432/// CFG - Represents a source-level, intra-procedural CFG that represents the
433///  control-flow of a Stmt.  The Stmt can represent an entire function body,
434///  or a single expression.  A CFG will always contain one empty block that
435///  represents the Exit point of the CFG.  A CFG will also contain a designated
436///  Entry block.  The CFG solely represents control-flow; it consists of
437///  CFGBlocks which are simply containers of Stmt*'s in the AST the CFG
438///  was constructed from.
439class CFG {
440public:
441  //===--------------------------------------------------------------------===//
442  // CFG Construction & Manipulation.
443  //===--------------------------------------------------------------------===//
444
445  class BuildOptions {
446  public:
447    bool PruneTriviallyFalseEdges:1;
448    bool AddEHEdges:1;
449    bool AddInitializers:1;
450    bool AddImplicitDtors:1;
451
452    BuildOptions()
453        : PruneTriviallyFalseEdges(true)
454        , AddEHEdges(false)
455        , AddInitializers(false)
456        , AddImplicitDtors(false) {}
457  };
458
459  /// buildCFG - Builds a CFG from an AST.  The responsibility to free the
460  ///   constructed CFG belongs to the caller.
461  static CFG* buildCFG(const Decl *D, Stmt* AST, ASTContext *C,
462      BuildOptions BO = BuildOptions());
463
464  /// createBlock - Create a new block in the CFG.  The CFG owns the block;
465  ///  the caller should not directly free it.
466  CFGBlock* createBlock();
467
468  /// setEntry - Set the entry block of the CFG.  This is typically used
469  ///  only during CFG construction.  Most CFG clients expect that the
470  ///  entry block has no predecessors and contains no statements.
471  void setEntry(CFGBlock *B) { Entry = B; }
472
473  /// setIndirectGotoBlock - Set the block used for indirect goto jumps.
474  ///  This is typically used only during CFG construction.
475  void setIndirectGotoBlock(CFGBlock* B) { IndirectGotoBlock = B; }
476
477  //===--------------------------------------------------------------------===//
478  // Block Iterators
479  //===--------------------------------------------------------------------===//
480
481  typedef BumpVector<CFGBlock*>                    CFGBlockListTy;
482  typedef CFGBlockListTy::iterator                 iterator;
483  typedef CFGBlockListTy::const_iterator           const_iterator;
484  typedef std::reverse_iterator<iterator>          reverse_iterator;
485  typedef std::reverse_iterator<const_iterator>    const_reverse_iterator;
486
487  CFGBlock&                 front()                { return *Blocks.front(); }
488  CFGBlock&                 back()                 { return *Blocks.back(); }
489
490  iterator                  begin()                { return Blocks.begin(); }
491  iterator                  end()                  { return Blocks.end(); }
492  const_iterator            begin()       const    { return Blocks.begin(); }
493  const_iterator            end()         const    { return Blocks.end(); }
494
495  reverse_iterator          rbegin()               { return Blocks.rbegin(); }
496  reverse_iterator          rend()                 { return Blocks.rend(); }
497  const_reverse_iterator    rbegin()      const    { return Blocks.rbegin(); }
498  const_reverse_iterator    rend()        const    { return Blocks.rend(); }
499
500  CFGBlock&                 getEntry()             { return *Entry; }
501  const CFGBlock&           getEntry()    const    { return *Entry; }
502  CFGBlock&                 getExit()              { return *Exit; }
503  const CFGBlock&           getExit()     const    { return *Exit; }
504
505  CFGBlock*        getIndirectGotoBlock() { return IndirectGotoBlock; }
506  const CFGBlock*  getIndirectGotoBlock() const { return IndirectGotoBlock; }
507
508  //===--------------------------------------------------------------------===//
509  // Member templates useful for various batch operations over CFGs.
510  //===--------------------------------------------------------------------===//
511
512  template <typename CALLBACK>
513  void VisitBlockStmts(CALLBACK& O) const {
514    for (const_iterator I=begin(), E=end(); I != E; ++I)
515      for (CFGBlock::const_iterator BI=(*I)->begin(), BE=(*I)->end();
516           BI != BE; ++BI) {
517        if (CFGStmt S = BI->getAs<CFGStmt>())
518          O(S);
519      }
520  }
521
522  //===--------------------------------------------------------------------===//
523  // CFG Introspection.
524  //===--------------------------------------------------------------------===//
525
526  struct   BlkExprNumTy {
527    const signed Idx;
528    explicit BlkExprNumTy(signed idx) : Idx(idx) {}
529    explicit BlkExprNumTy() : Idx(-1) {}
530    operator bool() const { return Idx >= 0; }
531    operator unsigned() const { assert(Idx >=0); return (unsigned) Idx; }
532  };
533
534  bool          isBlkExpr(const Stmt* S) { return getBlkExprNum(S); }
535  BlkExprNumTy  getBlkExprNum(const Stmt* S);
536  unsigned      getNumBlkExprs();
537
538  /// getNumBlockIDs - Returns the total number of BlockIDs allocated (which
539  /// start at 0).
540  unsigned getNumBlockIDs() const { return NumBlockIDs; }
541
542  //===--------------------------------------------------------------------===//
543  // CFG Debugging: Pretty-Printing and Visualization.
544  //===--------------------------------------------------------------------===//
545
546  void viewCFG(const LangOptions &LO) const;
547  void print(llvm::raw_ostream& OS, const LangOptions &LO) const;
548  void dump(const LangOptions &LO) const;
549
550  //===--------------------------------------------------------------------===//
551  // Internal: constructors and data.
552  //===--------------------------------------------------------------------===//
553
554  CFG() : Entry(NULL), Exit(NULL), IndirectGotoBlock(NULL), NumBlockIDs(0),
555          BlkExprMap(NULL), Blocks(BlkBVC, 10) {}
556
557  ~CFG();
558
559  llvm::BumpPtrAllocator& getAllocator() {
560    return BlkBVC.getAllocator();
561  }
562
563  BumpVectorContext &getBumpVectorContext() {
564    return BlkBVC;
565  }
566
567private:
568  CFGBlock* Entry;
569  CFGBlock* Exit;
570  CFGBlock* IndirectGotoBlock;  // Special block to contain collective dispatch
571                                // for indirect gotos
572  unsigned  NumBlockIDs;
573
574  // BlkExprMap - An opaque pointer to prevent inclusion of DenseMap.h.
575  //  It represents a map from Expr* to integers to record the set of
576  //  block-level expressions and their "statement number" in the CFG.
577  void*     BlkExprMap;
578
579  BumpVectorContext BlkBVC;
580
581  CFGBlockListTy Blocks;
582
583};
584} // end namespace clang
585
586//===----------------------------------------------------------------------===//
587// GraphTraits specializations for CFG basic block graphs (source-level CFGs)
588//===----------------------------------------------------------------------===//
589
590namespace llvm {
591
592// Traits for: CFGBlock
593
594template <> struct GraphTraits< ::clang::CFGBlock* > {
595  typedef ::clang::CFGBlock NodeType;
596  typedef ::clang::CFGBlock::succ_iterator ChildIteratorType;
597
598  static NodeType* getEntryNode(::clang::CFGBlock* BB)
599  { return BB; }
600
601  static inline ChildIteratorType child_begin(NodeType* N)
602  { return N->succ_begin(); }
603
604  static inline ChildIteratorType child_end(NodeType* N)
605  { return N->succ_end(); }
606};
607
608template <> struct GraphTraits< const ::clang::CFGBlock* > {
609  typedef const ::clang::CFGBlock NodeType;
610  typedef ::clang::CFGBlock::const_succ_iterator ChildIteratorType;
611
612  static NodeType* getEntryNode(const clang::CFGBlock* BB)
613  { return BB; }
614
615  static inline ChildIteratorType child_begin(NodeType* N)
616  { return N->succ_begin(); }
617
618  static inline ChildIteratorType child_end(NodeType* N)
619  { return N->succ_end(); }
620};
621
622template <> struct GraphTraits<Inverse<const ::clang::CFGBlock*> > {
623  typedef const ::clang::CFGBlock NodeType;
624  typedef ::clang::CFGBlock::const_pred_iterator ChildIteratorType;
625
626  static NodeType *getEntryNode(Inverse<const ::clang::CFGBlock*> G)
627  { return G.Graph; }
628
629  static inline ChildIteratorType child_begin(NodeType* N)
630  { return N->pred_begin(); }
631
632  static inline ChildIteratorType child_end(NodeType* N)
633  { return N->pred_end(); }
634};
635
636// Traits for: CFG
637
638template <> struct GraphTraits< ::clang::CFG* >
639    : public GraphTraits< ::clang::CFGBlock* >  {
640
641  typedef ::clang::CFG::iterator nodes_iterator;
642
643  static NodeType *getEntryNode(::clang::CFG* F) { return &F->getEntry(); }
644  static nodes_iterator nodes_begin(::clang::CFG* F) { return F->begin(); }
645  static nodes_iterator nodes_end(::clang::CFG* F) { return F->end(); }
646};
647
648template <> struct GraphTraits<const ::clang::CFG* >
649    : public GraphTraits<const ::clang::CFGBlock* >  {
650
651  typedef ::clang::CFG::const_iterator nodes_iterator;
652
653  static NodeType *getEntryNode( const ::clang::CFG* F) {
654    return &F->getEntry();
655  }
656  static nodes_iterator nodes_begin( const ::clang::CFG* F) {
657    return F->begin();
658  }
659  static nodes_iterator nodes_end( const ::clang::CFG* F) {
660    return F->end();
661  }
662};
663
664template <> struct GraphTraits<Inverse<const ::clang::CFG*> >
665  : public GraphTraits<Inverse<const ::clang::CFGBlock*> > {
666
667  typedef ::clang::CFG::const_iterator nodes_iterator;
668
669  static NodeType *getEntryNode(const ::clang::CFG* F) { return &F->getExit(); }
670  static nodes_iterator nodes_begin(const ::clang::CFG* F) { return F->begin();}
671  static nodes_iterator nodes_end(const ::clang::CFG* F) { return F->end(); }
672};
673} // end llvm namespace
674#endif
675