CFG.h revision 4ba72a0b28135209c435630682febe1f854ccfa6
1//===--- CFG.h - Classes for representing and building CFGs------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the CFG and CFGBuilder classes for representing and
11//  building Control-Flow Graphs (CFGs) from ASTs.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CLANG_CFG_H
16#define LLVM_CLANG_CFG_H
17
18#include "llvm/ADT/PointerIntPair.h"
19#include "llvm/ADT/GraphTraits.h"
20#include "llvm/Support/Allocator.h"
21#include "llvm/Support/Casting.h"
22#include "clang/Analysis/Support/BumpVector.h"
23#include "clang/Basic/SourceLocation.h"
24#include <cassert>
25
26namespace llvm {
27  class raw_ostream;
28}
29
30namespace clang {
31  class Decl;
32  class Stmt;
33  class Expr;
34  class FieldDecl;
35  class VarDecl;
36  class CXXBaseOrMemberInitializer;
37  class CXXBaseSpecifier;
38  class CFG;
39  class PrinterHelper;
40  class LangOptions;
41  class ASTContext;
42
43/// CFGElement - Represents a top-level expression in a basic block.
44class CFGElement {
45public:
46  enum Kind {
47    // main kind
48    Statement,
49    StatementAsLValue,
50    Initializer,
51    Dtor,
52    // dtor kind
53    AutomaticObjectDtor,
54    BaseDtor,
55    MemberDtor,
56    TemporaryDtor,
57    DTOR_BEGIN = AutomaticObjectDtor
58  };
59
60protected:
61  // The int bits are used to mark the main kind.
62  llvm::PointerIntPair<void *, 2> Data1;
63  // The int bits are used to mark the dtor kind.
64  llvm::PointerIntPair<void *, 2> Data2;
65
66  CFGElement(void *Ptr, unsigned Int) : Data1(Ptr, Int) {}
67  CFGElement(void *Ptr1, unsigned Int1, void *Ptr2, unsigned Int2)
68      : Data1(Ptr1, Int1), Data2(Ptr2, Int2) {}
69
70public:
71  CFGElement() {}
72
73  Kind getKind() const { return static_cast<Kind>(Data1.getInt()); }
74
75  Kind getDtorKind() const {
76    assert(getKind() == Dtor);
77    return static_cast<Kind>(Data2.getInt() + DTOR_BEGIN);
78  }
79
80  bool isValid() const { return Data1.getPointer(); }
81
82  operator bool() const { return isValid(); }
83
84  template<class ElemTy> ElemTy getAs() const {
85    if (llvm::isa<ElemTy>(this))
86      return *static_cast<const ElemTy*>(this);
87    return ElemTy();
88  }
89
90  static bool classof(const CFGElement *E) { return true; }
91};
92
93class CFGStmt : public CFGElement {
94public:
95  CFGStmt() {}
96  CFGStmt(Stmt *S, bool asLValue) : CFGElement(S, asLValue) {}
97
98  Stmt *getStmt() const { return static_cast<Stmt *>(Data1.getPointer()); }
99
100  operator Stmt*() const { return getStmt(); }
101
102  bool asLValue() const {
103    return static_cast<Kind>(Data1.getInt()) == StatementAsLValue;
104  }
105
106  static bool classof(const CFGElement *E) {
107    return E->getKind() == Statement || E->getKind() == StatementAsLValue;
108  }
109};
110
111/// CFGInitializer - Represents C++ base or member initializer from
112/// constructor's initialization list.
113class CFGInitializer : public CFGElement {
114public:
115  CFGInitializer() {}
116  CFGInitializer(CXXBaseOrMemberInitializer* I)
117      : CFGElement(I, Initializer) {}
118
119  CXXBaseOrMemberInitializer* getInitializer() const {
120    return static_cast<CXXBaseOrMemberInitializer*>(Data1.getPointer());
121  }
122  operator CXXBaseOrMemberInitializer*() const { return getInitializer(); }
123
124  static bool classof(const CFGElement *E) {
125    return E->getKind() == Initializer;
126  }
127};
128
129/// CFGImplicitDtor - Represents C++ object destructor implicitly generated
130/// by compiler on various occasions.
131class CFGImplicitDtor : public CFGElement {
132protected:
133  CFGImplicitDtor(unsigned K, void* P, void* S)
134      : CFGElement(P, Dtor, S, K - DTOR_BEGIN) {}
135
136public:
137  CFGImplicitDtor() {}
138
139  static bool classof(const CFGElement *E) {
140    return E->getKind() == Dtor;
141  }
142};
143
144/// CFGAutomaticObjDtor - Represents C++ object destructor implicitly generated
145/// for automatic object or temporary bound to const reference at the point
146/// of leaving its local scope.
147class CFGAutomaticObjDtor: public CFGImplicitDtor {
148public:
149  CFGAutomaticObjDtor() {}
150  CFGAutomaticObjDtor(VarDecl* VD, Stmt* S)
151      : CFGImplicitDtor(AutomaticObjectDtor, VD, S) {}
152
153  VarDecl* getVarDecl() const {
154    return static_cast<VarDecl*>(Data1.getPointer());
155  }
156
157  // Get statement end of which triggered the destructor call.
158  Stmt* getTriggerStmt() const {
159    return static_cast<Stmt*>(Data2.getPointer());
160  }
161
162  static bool classof(const CFGElement *E) {
163    return E->getKind() == Dtor && E->getDtorKind() == AutomaticObjectDtor;
164  }
165};
166
167/// CFGBaseDtor - Represents C++ object destructor implicitly generated for
168/// base object in destructor.
169class CFGBaseDtor : public CFGImplicitDtor {
170public:
171  CFGBaseDtor() {}
172  CFGBaseDtor(const CXXBaseSpecifier *BS)
173      : CFGImplicitDtor(BaseDtor, const_cast<CXXBaseSpecifier*>(BS), NULL) {}
174
175  const CXXBaseSpecifier *getBaseSpecifier() const {
176    return static_cast<const CXXBaseSpecifier*>(Data1.getPointer());
177  }
178
179  static bool classof(const CFGElement *E) {
180    return E->getKind() == Dtor && E->getDtorKind() == BaseDtor;
181  }
182};
183
184/// CFGMemberDtor - Represents C++ object destructor implicitly generated for
185/// member object in destructor.
186class CFGMemberDtor : public CFGImplicitDtor {
187public:
188  CFGMemberDtor() {}
189  CFGMemberDtor(FieldDecl *FD)
190      : CFGImplicitDtor(MemberDtor, FD, NULL) {}
191
192  FieldDecl *getFieldDecl() const {
193    return static_cast<FieldDecl*>(Data1.getPointer());
194  }
195
196  static bool classof(const CFGElement *E) {
197    return E->getKind() == Dtor && E->getDtorKind() == MemberDtor;
198  }
199};
200
201class CFGTemporaryDtor : public CFGImplicitDtor {
202public:
203  static bool classof(const CFGElement *E) {
204    return E->getKind() == Dtor && E->getDtorKind() == TemporaryDtor;
205  }
206};
207
208/// CFGTerminator - Represents CFGBlock terminator statement.
209///
210/// TemporaryDtorsBranch bit is set to true if the terminator marks a branch
211/// in control flow of destructors of temporaries. In this case terminator
212/// statement is the same statement that branches control flow in evaluation
213/// of matching full expression.
214class CFGTerminator {
215  llvm::PointerIntPair<Stmt *, 1> Data;
216public:
217  CFGTerminator() {}
218  CFGTerminator(Stmt *S, bool TemporaryDtorsBranch = false)
219      : Data(S, TemporaryDtorsBranch) {}
220
221  Stmt *getStmt() { return Data.getPointer(); }
222  const Stmt *getStmt() const { return Data.getPointer(); }
223
224  bool isTemporaryDtorsBranch() const { return Data.getInt(); }
225
226  operator Stmt *() { return getStmt(); }
227  operator const Stmt *() const { return getStmt(); }
228
229  Stmt *operator->() { return getStmt(); }
230  const Stmt *operator->() const { return getStmt(); }
231
232  Stmt &operator*() { return *getStmt(); }
233  const Stmt &operator*() const { return *getStmt(); }
234
235  operator bool() const { return getStmt(); }
236};
237
238/// CFGBlock - Represents a single basic block in a source-level CFG.
239///  It consists of:
240///
241///  (1) A set of statements/expressions (which may contain subexpressions).
242///  (2) A "terminator" statement (not in the set of statements).
243///  (3) A list of successors and predecessors.
244///
245/// Terminator: The terminator represents the type of control-flow that occurs
246/// at the end of the basic block.  The terminator is a Stmt* referring to an
247/// AST node that has control-flow: if-statements, breaks, loops, etc.
248/// If the control-flow is conditional, the condition expression will appear
249/// within the set of statements in the block (usually the last statement).
250///
251/// Predecessors: the order in the set of predecessors is arbitrary.
252///
253/// Successors: the order in the set of successors is NOT arbitrary.  We
254///  currently have the following orderings based on the terminator:
255///
256///     Terminator       Successor Ordering
257///  -----------------------------------------------------
258///       if            Then Block;  Else Block
259///     ? operator      LHS expression;  RHS expression
260///     &&, ||          expression that uses result of && or ||, RHS
261///
262class CFGBlock {
263  class ElementList {
264    typedef BumpVector<CFGElement> ImplTy;
265    ImplTy Impl;
266  public:
267    ElementList(BumpVectorContext &C) : Impl(C, 4) {}
268
269    typedef std::reverse_iterator<ImplTy::iterator>       iterator;
270    typedef std::reverse_iterator<ImplTy::const_iterator> const_iterator;
271    typedef ImplTy::iterator                              reverse_iterator;
272    typedef ImplTy::const_iterator                        const_reverse_iterator;
273
274    void push_back(CFGElement e, BumpVectorContext &C) { Impl.push_back(e, C); }
275    reverse_iterator insert(reverse_iterator I, size_t Cnt, CFGElement E,
276        BumpVectorContext& C) {
277      return Impl.insert(I, Cnt, E, C);
278    }
279
280    CFGElement front() const { return Impl.back(); }
281    CFGElement back() const { return Impl.front(); }
282
283    iterator begin() { return Impl.rbegin(); }
284    iterator end() { return Impl.rend(); }
285    const_iterator begin() const { return Impl.rbegin(); }
286    const_iterator end() const { return Impl.rend(); }
287    reverse_iterator rbegin() { return Impl.begin(); }
288    reverse_iterator rend() { return Impl.end(); }
289    const_reverse_iterator rbegin() const { return Impl.begin(); }
290    const_reverse_iterator rend() const { return Impl.end(); }
291
292   CFGElement operator[](size_t i) const  {
293     assert(i < Impl.size());
294     return Impl[Impl.size() - 1 - i];
295   }
296
297    size_t size() const { return Impl.size(); }
298    bool empty() const { return Impl.empty(); }
299  };
300
301  /// Stmts - The set of statements in the basic block.
302  ElementList Elements;
303
304  /// Label - An (optional) label that prefixes the executable
305  ///  statements in the block.  When this variable is non-NULL, it is
306  ///  either an instance of LabelStmt, SwitchCase or CXXCatchStmt.
307  Stmt *Label;
308
309  /// Terminator - The terminator for a basic block that
310  ///  indicates the type of control-flow that occurs between a block
311  ///  and its successors.
312  CFGTerminator Terminator;
313
314  /// LoopTarget - Some blocks are used to represent the "loop edge" to
315  ///  the start of a loop from within the loop body.  This Stmt* will be
316  ///  refer to the loop statement for such blocks (and be null otherwise).
317  const Stmt *LoopTarget;
318
319  /// BlockID - A numerical ID assigned to a CFGBlock during construction
320  ///   of the CFG.
321  unsigned BlockID;
322
323  /// Predecessors/Successors - Keep track of the predecessor / successor
324  /// CFG blocks.
325  typedef BumpVector<CFGBlock*> AdjacentBlocks;
326  AdjacentBlocks Preds;
327  AdjacentBlocks Succs;
328
329public:
330  explicit CFGBlock(unsigned blockid, BumpVectorContext &C)
331    : Elements(C), Label(NULL), Terminator(NULL), LoopTarget(NULL),
332      BlockID(blockid), Preds(C, 1), Succs(C, 1) {}
333  ~CFGBlock() {}
334
335  // Statement iterators
336  typedef ElementList::iterator                      iterator;
337  typedef ElementList::const_iterator                const_iterator;
338  typedef ElementList::reverse_iterator              reverse_iterator;
339  typedef ElementList::const_reverse_iterator        const_reverse_iterator;
340
341  CFGElement                 front()       const { return Elements.front();   }
342  CFGElement                 back()        const { return Elements.back();    }
343
344  iterator                   begin()             { return Elements.begin();   }
345  iterator                   end()               { return Elements.end();     }
346  const_iterator             begin()       const { return Elements.begin();   }
347  const_iterator             end()         const { return Elements.end();     }
348
349  reverse_iterator           rbegin()            { return Elements.rbegin();  }
350  reverse_iterator           rend()              { return Elements.rend();    }
351  const_reverse_iterator     rbegin()      const { return Elements.rbegin();  }
352  const_reverse_iterator     rend()        const { return Elements.rend();    }
353
354  unsigned                   size()        const { return Elements.size();    }
355  bool                       empty()       const { return Elements.empty();   }
356
357  CFGElement operator[](size_t i) const  { return Elements[i]; }
358
359  // CFG iterators
360  typedef AdjacentBlocks::iterator                              pred_iterator;
361  typedef AdjacentBlocks::const_iterator                  const_pred_iterator;
362  typedef AdjacentBlocks::reverse_iterator              pred_reverse_iterator;
363  typedef AdjacentBlocks::const_reverse_iterator  const_pred_reverse_iterator;
364
365  typedef AdjacentBlocks::iterator                              succ_iterator;
366  typedef AdjacentBlocks::const_iterator                  const_succ_iterator;
367  typedef AdjacentBlocks::reverse_iterator              succ_reverse_iterator;
368  typedef AdjacentBlocks::const_reverse_iterator  const_succ_reverse_iterator;
369
370  pred_iterator                pred_begin()        { return Preds.begin();   }
371  pred_iterator                pred_end()          { return Preds.end();     }
372  const_pred_iterator          pred_begin()  const { return Preds.begin();   }
373  const_pred_iterator          pred_end()    const { return Preds.end();     }
374
375  pred_reverse_iterator        pred_rbegin()       { return Preds.rbegin();  }
376  pred_reverse_iterator        pred_rend()         { return Preds.rend();    }
377  const_pred_reverse_iterator  pred_rbegin() const { return Preds.rbegin();  }
378  const_pred_reverse_iterator  pred_rend()   const { return Preds.rend();    }
379
380  succ_iterator                succ_begin()        { return Succs.begin();   }
381  succ_iterator                succ_end()          { return Succs.end();     }
382  const_succ_iterator          succ_begin()  const { return Succs.begin();   }
383  const_succ_iterator          succ_end()    const { return Succs.end();     }
384
385  succ_reverse_iterator        succ_rbegin()       { return Succs.rbegin();  }
386  succ_reverse_iterator        succ_rend()         { return Succs.rend();    }
387  const_succ_reverse_iterator  succ_rbegin() const { return Succs.rbegin();  }
388  const_succ_reverse_iterator  succ_rend()   const { return Succs.rend();    }
389
390  unsigned                     succ_size()   const { return Succs.size();    }
391  bool                         succ_empty()  const { return Succs.empty();   }
392
393  unsigned                     pred_size()   const { return Preds.size();    }
394  bool                         pred_empty()  const { return Preds.empty();   }
395
396
397  class FilterOptions {
398  public:
399    FilterOptions() {
400      IgnoreDefaultsWithCoveredEnums = 0;
401    }
402
403    unsigned IgnoreDefaultsWithCoveredEnums : 1;
404  };
405
406  static bool FilterEdge(const FilterOptions &F, const CFGBlock *Src,
407       const CFGBlock *Dst);
408
409  template <typename IMPL, bool IsPred>
410  class FilteredCFGBlockIterator {
411  private:
412    IMPL I, E;
413    const FilterOptions F;
414    const CFGBlock *From;
415   public:
416    explicit FilteredCFGBlockIterator(const IMPL &i, const IMPL &e,
417              const CFGBlock *from,
418              const FilterOptions &f)
419      : I(i), E(e), F(f), From(from) {}
420
421    bool hasMore() const { return I != E; }
422
423    FilteredCFGBlockIterator &operator++() {
424      do { ++I; } while (hasMore() && Filter(*I));
425      return *this;
426    }
427
428    const CFGBlock *operator*() const { return *I; }
429  private:
430    bool Filter(const CFGBlock *To) {
431      return IsPred ? FilterEdge(F, To, From) : FilterEdge(F, From, To);
432    }
433  };
434
435  typedef FilteredCFGBlockIterator<const_pred_iterator, true>
436          filtered_pred_iterator;
437
438  typedef FilteredCFGBlockIterator<const_succ_iterator, false>
439          filtered_succ_iterator;
440
441  filtered_pred_iterator filtered_pred_start_end(const FilterOptions &f) const {
442    return filtered_pred_iterator(pred_begin(), pred_end(), this, f);
443  }
444
445  filtered_succ_iterator filtered_succ_start_end(const FilterOptions &f) const {
446    return filtered_succ_iterator(succ_begin(), succ_end(), this, f);
447  }
448
449  // Manipulation of block contents
450
451  void setTerminator(Stmt* Statement) { Terminator = Statement; }
452  void setLabel(Stmt* Statement) { Label = Statement; }
453  void setLoopTarget(const Stmt *loopTarget) { LoopTarget = loopTarget; }
454
455  CFGTerminator getTerminator() { return Terminator; }
456  const CFGTerminator getTerminator() const { return Terminator; }
457
458  Stmt* getTerminatorCondition();
459
460  const Stmt* getTerminatorCondition() const {
461    return const_cast<CFGBlock*>(this)->getTerminatorCondition();
462  }
463
464  const Stmt *getLoopTarget() const { return LoopTarget; }
465
466  bool hasBinaryBranchTerminator() const;
467
468  Stmt* getLabel() { return Label; }
469  const Stmt* getLabel() const { return Label; }
470
471  unsigned getBlockID() const { return BlockID; }
472
473  void dump(const CFG *cfg, const LangOptions &LO) const;
474  void print(llvm::raw_ostream &OS, const CFG* cfg, const LangOptions &LO) const;
475  void printTerminator(llvm::raw_ostream &OS, const LangOptions &LO) const;
476
477  void addSuccessor(CFGBlock* Block, BumpVectorContext &C) {
478    if (Block)
479      Block->Preds.push_back(this, C);
480    Succs.push_back(Block, C);
481  }
482
483  void appendStmt(Stmt* Statement, BumpVectorContext &C, bool asLValue) {
484    Elements.push_back(CFGStmt(Statement, asLValue), C);
485  }
486
487  void appendInitializer(CXXBaseOrMemberInitializer *I, BumpVectorContext& C) {
488    Elements.push_back(CFGInitializer(I), C);
489  }
490
491  void appendBaseDtor(const CXXBaseSpecifier *BS, BumpVectorContext &C) {
492    Elements.push_back(CFGBaseDtor(BS), C);
493  }
494
495  void appendMemberDtor(FieldDecl *FD, BumpVectorContext &C) {
496    Elements.push_back(CFGMemberDtor(FD), C);
497  }
498
499  // Destructors must be inserted in reversed order. So insertion is in two
500  // steps. First we prepare space for some number of elements, then we insert
501  // the elements beginning at the last position in prepared space.
502  iterator beginAutomaticObjDtorsInsert(iterator I, size_t Cnt,
503      BumpVectorContext& C) {
504    return iterator(Elements.insert(I.base(), Cnt, CFGElement(), C));
505  }
506  iterator insertAutomaticObjDtor(iterator I, VarDecl* VD, Stmt* S) {
507    *I = CFGAutomaticObjDtor(VD, S);
508    return ++I;
509  }
510};
511
512/// CFG - Represents a source-level, intra-procedural CFG that represents the
513///  control-flow of a Stmt.  The Stmt can represent an entire function body,
514///  or a single expression.  A CFG will always contain one empty block that
515///  represents the Exit point of the CFG.  A CFG will also contain a designated
516///  Entry block.  The CFG solely represents control-flow; it consists of
517///  CFGBlocks which are simply containers of Stmt*'s in the AST the CFG
518///  was constructed from.
519class CFG {
520public:
521  //===--------------------------------------------------------------------===//
522  // CFG Construction & Manipulation.
523  //===--------------------------------------------------------------------===//
524
525  class BuildOptions {
526  public:
527    bool PruneTriviallyFalseEdges:1;
528    bool AddEHEdges:1;
529    bool AddInitializers:1;
530    bool AddImplicitDtors:1;
531
532    BuildOptions()
533        : PruneTriviallyFalseEdges(true)
534        , AddEHEdges(false)
535        , AddInitializers(false)
536        , AddImplicitDtors(false) {}
537  };
538
539  /// buildCFG - Builds a CFG from an AST.  The responsibility to free the
540  ///   constructed CFG belongs to the caller.
541  static CFG* buildCFG(const Decl *D, Stmt* AST, ASTContext *C,
542      BuildOptions BO = BuildOptions());
543
544  /// createBlock - Create a new block in the CFG.  The CFG owns the block;
545  ///  the caller should not directly free it.
546  CFGBlock* createBlock();
547
548  /// setEntry - Set the entry block of the CFG.  This is typically used
549  ///  only during CFG construction.  Most CFG clients expect that the
550  ///  entry block has no predecessors and contains no statements.
551  void setEntry(CFGBlock *B) { Entry = B; }
552
553  /// setIndirectGotoBlock - Set the block used for indirect goto jumps.
554  ///  This is typically used only during CFG construction.
555  void setIndirectGotoBlock(CFGBlock* B) { IndirectGotoBlock = B; }
556
557  //===--------------------------------------------------------------------===//
558  // Block Iterators
559  //===--------------------------------------------------------------------===//
560
561  typedef BumpVector<CFGBlock*>                    CFGBlockListTy;
562  typedef CFGBlockListTy::iterator                 iterator;
563  typedef CFGBlockListTy::const_iterator           const_iterator;
564  typedef std::reverse_iterator<iterator>          reverse_iterator;
565  typedef std::reverse_iterator<const_iterator>    const_reverse_iterator;
566
567  CFGBlock&                 front()                { return *Blocks.front(); }
568  CFGBlock&                 back()                 { return *Blocks.back(); }
569
570  iterator                  begin()                { return Blocks.begin(); }
571  iterator                  end()                  { return Blocks.end(); }
572  const_iterator            begin()       const    { return Blocks.begin(); }
573  const_iterator            end()         const    { return Blocks.end(); }
574
575  reverse_iterator          rbegin()               { return Blocks.rbegin(); }
576  reverse_iterator          rend()                 { return Blocks.rend(); }
577  const_reverse_iterator    rbegin()      const    { return Blocks.rbegin(); }
578  const_reverse_iterator    rend()        const    { return Blocks.rend(); }
579
580  CFGBlock&                 getEntry()             { return *Entry; }
581  const CFGBlock&           getEntry()    const    { return *Entry; }
582  CFGBlock&                 getExit()              { return *Exit; }
583  const CFGBlock&           getExit()     const    { return *Exit; }
584
585  CFGBlock*        getIndirectGotoBlock() { return IndirectGotoBlock; }
586  const CFGBlock*  getIndirectGotoBlock() const { return IndirectGotoBlock; }
587
588  //===--------------------------------------------------------------------===//
589  // Member templates useful for various batch operations over CFGs.
590  //===--------------------------------------------------------------------===//
591
592  template <typename CALLBACK>
593  void VisitBlockStmts(CALLBACK& O) const {
594    for (const_iterator I=begin(), E=end(); I != E; ++I)
595      for (CFGBlock::const_iterator BI=(*I)->begin(), BE=(*I)->end();
596           BI != BE; ++BI) {
597        if (CFGStmt S = BI->getAs<CFGStmt>())
598          O(S);
599      }
600  }
601
602  //===--------------------------------------------------------------------===//
603  // CFG Introspection.
604  //===--------------------------------------------------------------------===//
605
606  struct   BlkExprNumTy {
607    const signed Idx;
608    explicit BlkExprNumTy(signed idx) : Idx(idx) {}
609    explicit BlkExprNumTy() : Idx(-1) {}
610    operator bool() const { return Idx >= 0; }
611    operator unsigned() const { assert(Idx >=0); return (unsigned) Idx; }
612  };
613
614  bool          isBlkExpr(const Stmt* S) { return getBlkExprNum(S); }
615  BlkExprNumTy  getBlkExprNum(const Stmt* S);
616  unsigned      getNumBlkExprs();
617
618  /// getNumBlockIDs - Returns the total number of BlockIDs allocated (which
619  /// start at 0).
620  unsigned getNumBlockIDs() const { return NumBlockIDs; }
621
622  //===--------------------------------------------------------------------===//
623  // CFG Debugging: Pretty-Printing and Visualization.
624  //===--------------------------------------------------------------------===//
625
626  void viewCFG(const LangOptions &LO) const;
627  void print(llvm::raw_ostream& OS, const LangOptions &LO) const;
628  void dump(const LangOptions &LO) const;
629
630  //===--------------------------------------------------------------------===//
631  // Internal: constructors and data.
632  //===--------------------------------------------------------------------===//
633
634  CFG() : Entry(NULL), Exit(NULL), IndirectGotoBlock(NULL), NumBlockIDs(0),
635          BlkExprMap(NULL), Blocks(BlkBVC, 10) {}
636
637  ~CFG();
638
639  llvm::BumpPtrAllocator& getAllocator() {
640    return BlkBVC.getAllocator();
641  }
642
643  BumpVectorContext &getBumpVectorContext() {
644    return BlkBVC;
645  }
646
647private:
648  CFGBlock* Entry;
649  CFGBlock* Exit;
650  CFGBlock* IndirectGotoBlock;  // Special block to contain collective dispatch
651                                // for indirect gotos
652  unsigned  NumBlockIDs;
653
654  // BlkExprMap - An opaque pointer to prevent inclusion of DenseMap.h.
655  //  It represents a map from Expr* to integers to record the set of
656  //  block-level expressions and their "statement number" in the CFG.
657  void*     BlkExprMap;
658
659  BumpVectorContext BlkBVC;
660
661  CFGBlockListTy Blocks;
662
663};
664} // end namespace clang
665
666//===----------------------------------------------------------------------===//
667// GraphTraits specializations for CFG basic block graphs (source-level CFGs)
668//===----------------------------------------------------------------------===//
669
670namespace llvm {
671
672/// Implement simplify_type for CFGTerminator, so that we can dyn_cast from
673/// CFGTerminator to a specific Stmt class.
674template <> struct simplify_type<const ::clang::CFGTerminator> {
675  typedef const ::clang::Stmt *SimpleType;
676  static SimpleType getSimplifiedValue(const ::clang::CFGTerminator &Val) {
677    return Val.getStmt();
678  }
679};
680
681template <> struct simplify_type< ::clang::CFGTerminator> {
682  typedef ::clang::Stmt *SimpleType;
683  static SimpleType getSimplifiedValue(const ::clang::CFGTerminator &Val) {
684    return const_cast<SimpleType>(Val.getStmt());
685  }
686};
687
688// Traits for: CFGBlock
689
690template <> struct GraphTraits< ::clang::CFGBlock* > {
691  typedef ::clang::CFGBlock NodeType;
692  typedef ::clang::CFGBlock::succ_iterator ChildIteratorType;
693
694  static NodeType* getEntryNode(::clang::CFGBlock* BB)
695  { return BB; }
696
697  static inline ChildIteratorType child_begin(NodeType* N)
698  { return N->succ_begin(); }
699
700  static inline ChildIteratorType child_end(NodeType* N)
701  { return N->succ_end(); }
702};
703
704template <> struct GraphTraits< const ::clang::CFGBlock* > {
705  typedef const ::clang::CFGBlock NodeType;
706  typedef ::clang::CFGBlock::const_succ_iterator ChildIteratorType;
707
708  static NodeType* getEntryNode(const clang::CFGBlock* BB)
709  { return BB; }
710
711  static inline ChildIteratorType child_begin(NodeType* N)
712  { return N->succ_begin(); }
713
714  static inline ChildIteratorType child_end(NodeType* N)
715  { return N->succ_end(); }
716};
717
718template <> struct GraphTraits<Inverse<const ::clang::CFGBlock*> > {
719  typedef const ::clang::CFGBlock NodeType;
720  typedef ::clang::CFGBlock::const_pred_iterator ChildIteratorType;
721
722  static NodeType *getEntryNode(Inverse<const ::clang::CFGBlock*> G)
723  { return G.Graph; }
724
725  static inline ChildIteratorType child_begin(NodeType* N)
726  { return N->pred_begin(); }
727
728  static inline ChildIteratorType child_end(NodeType* N)
729  { return N->pred_end(); }
730};
731
732// Traits for: CFG
733
734template <> struct GraphTraits< ::clang::CFG* >
735    : public GraphTraits< ::clang::CFGBlock* >  {
736
737  typedef ::clang::CFG::iterator nodes_iterator;
738
739  static NodeType *getEntryNode(::clang::CFG* F) { return &F->getEntry(); }
740  static nodes_iterator nodes_begin(::clang::CFG* F) { return F->begin(); }
741  static nodes_iterator nodes_end(::clang::CFG* F) { return F->end(); }
742};
743
744template <> struct GraphTraits<const ::clang::CFG* >
745    : public GraphTraits<const ::clang::CFGBlock* >  {
746
747  typedef ::clang::CFG::const_iterator nodes_iterator;
748
749  static NodeType *getEntryNode( const ::clang::CFG* F) {
750    return &F->getEntry();
751  }
752  static nodes_iterator nodes_begin( const ::clang::CFG* F) {
753    return F->begin();
754  }
755  static nodes_iterator nodes_end( const ::clang::CFG* F) {
756    return F->end();
757  }
758};
759
760template <> struct GraphTraits<Inverse<const ::clang::CFG*> >
761  : public GraphTraits<Inverse<const ::clang::CFGBlock*> > {
762
763  typedef ::clang::CFG::const_iterator nodes_iterator;
764
765  static NodeType *getEntryNode(const ::clang::CFG* F) { return &F->getExit(); }
766  static nodes_iterator nodes_begin(const ::clang::CFG* F) { return F->begin();}
767  static nodes_iterator nodes_end(const ::clang::CFG* F) { return F->end(); }
768};
769} // end llvm namespace
770#endif
771