CFG.h revision 83754162f698a5dafad93fb89be0953651a604d0
1//===--- CFG.h - Classes for representing and building CFGs------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the CFG and CFGBuilder classes for representing and
11//  building Control-Flow Graphs (CFGs) from ASTs.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CLANG_CFG_H
16#define LLVM_CLANG_CFG_H
17
18#include "llvm/ADT/PointerIntPair.h"
19#include "llvm/ADT/GraphTraits.h"
20#include "llvm/Support/Allocator.h"
21#include "llvm/Support/Casting.h"
22#include "llvm/ADT/OwningPtr.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/BitVector.h"
25#include "clang/AST/Stmt.h"
26#include "clang/Analysis/Support/BumpVector.h"
27#include "clang/Basic/SourceLocation.h"
28#include <cassert>
29#include <iterator>
30
31namespace clang {
32  class CXXDestructorDecl;
33  class Decl;
34  class Stmt;
35  class Expr;
36  class FieldDecl;
37  class VarDecl;
38  class CXXCtorInitializer;
39  class CXXBaseSpecifier;
40  class CXXBindTemporaryExpr;
41  class CFG;
42  class PrinterHelper;
43  class LangOptions;
44  class ASTContext;
45
46/// CFGElement - Represents a top-level expression in a basic block.
47class CFGElement {
48public:
49  enum Kind {
50    // main kind
51    Invalid,
52    Statement,
53    Initializer,
54    // dtor kind
55    AutomaticObjectDtor,
56    BaseDtor,
57    MemberDtor,
58    TemporaryDtor,
59    DTOR_BEGIN = AutomaticObjectDtor,
60    DTOR_END = TemporaryDtor
61  };
62
63protected:
64  // The int bits are used to mark the kind.
65  llvm::PointerIntPair<void *, 2> Data1;
66  llvm::PointerIntPair<void *, 2> Data2;
67
68  CFGElement(Kind kind, const void *Ptr1, const void *Ptr2 = 0)
69    : Data1(const_cast<void*>(Ptr1), ((unsigned) kind) & 0x3),
70      Data2(const_cast<void*>(Ptr2), (((unsigned) kind) >> 2) & 0x3) {}
71
72public:
73  CFGElement() {}
74
75  Kind getKind() const {
76    unsigned x = Data2.getInt();
77    x <<= 2;
78    x |= Data1.getInt();
79    return (Kind) x;
80  }
81
82  bool isValid() const { return getKind() != Invalid; }
83
84  operator bool() const { return isValid(); }
85
86  template<class ElemTy> const ElemTy *getAs() const {
87    if (llvm::isa<ElemTy>(this))
88      return static_cast<const ElemTy*>(this);
89    return 0;
90  }
91
92  static bool classof(const CFGElement *E) { return true; }
93};
94
95class CFGStmt : public CFGElement {
96public:
97  CFGStmt(Stmt *S) : CFGElement(Statement, S) {}
98
99  const Stmt *getStmt() const {
100    return static_cast<const Stmt *>(Data1.getPointer());
101  }
102
103  static bool classof(const CFGElement *E) {
104    return E->getKind() == Statement;
105  }
106};
107
108/// CFGInitializer - Represents C++ base or member initializer from
109/// constructor's initialization list.
110class CFGInitializer : public CFGElement {
111public:
112  CFGInitializer(CXXCtorInitializer *initializer)
113      : CFGElement(Initializer, initializer) {}
114
115  CXXCtorInitializer* getInitializer() const {
116    return static_cast<CXXCtorInitializer*>(Data1.getPointer());
117  }
118
119  static bool classof(const CFGElement *E) {
120    return E->getKind() == Initializer;
121  }
122};
123
124/// CFGImplicitDtor - Represents C++ object destructor implicitly generated
125/// by compiler on various occasions.
126class CFGImplicitDtor : public CFGElement {
127protected:
128  CFGImplicitDtor(Kind kind, const void *data1, const void *data2 = 0)
129    : CFGElement(kind, data1, data2) {
130    assert(kind >= DTOR_BEGIN && kind <= DTOR_END);
131  }
132
133public:
134  const CXXDestructorDecl *getDestructorDecl(ASTContext &astContext) const;
135  bool isNoReturn(ASTContext &astContext) const;
136
137  static bool classof(const CFGElement *E) {
138    Kind kind = E->getKind();
139    return kind >= DTOR_BEGIN && kind <= DTOR_END;
140  }
141};
142
143/// CFGAutomaticObjDtor - Represents C++ object destructor implicitly generated
144/// for automatic object or temporary bound to const reference at the point
145/// of leaving its local scope.
146class CFGAutomaticObjDtor: public CFGImplicitDtor {
147public:
148  CFGAutomaticObjDtor(const VarDecl *var, const Stmt *stmt)
149      : CFGImplicitDtor(AutomaticObjectDtor, var, stmt) {}
150
151  const VarDecl *getVarDecl() const {
152    return static_cast<VarDecl*>(Data1.getPointer());
153  }
154
155  // Get statement end of which triggered the destructor call.
156  const Stmt *getTriggerStmt() const {
157    return static_cast<Stmt*>(Data2.getPointer());
158  }
159
160  static bool classof(const CFGElement *elem) {
161    return elem->getKind() == AutomaticObjectDtor;
162  }
163};
164
165/// CFGBaseDtor - Represents C++ object destructor implicitly generated for
166/// base object in destructor.
167class CFGBaseDtor : public CFGImplicitDtor {
168public:
169  CFGBaseDtor(const CXXBaseSpecifier *base)
170      : CFGImplicitDtor(BaseDtor, base) {}
171
172  const CXXBaseSpecifier *getBaseSpecifier() const {
173    return static_cast<const CXXBaseSpecifier*>(Data1.getPointer());
174  }
175
176  static bool classof(const CFGElement *E) {
177    return E->getKind() == BaseDtor;
178  }
179};
180
181/// CFGMemberDtor - Represents C++ object destructor implicitly generated for
182/// member object in destructor.
183class CFGMemberDtor : public CFGImplicitDtor {
184public:
185  CFGMemberDtor(const FieldDecl *field)
186      : CFGImplicitDtor(MemberDtor, field, 0) {}
187
188  const FieldDecl *getFieldDecl() const {
189    return static_cast<const FieldDecl*>(Data1.getPointer());
190  }
191
192  static bool classof(const CFGElement *E) {
193    return E->getKind() == MemberDtor;
194  }
195};
196
197/// CFGTemporaryDtor - Represents C++ object destructor implicitly generated
198/// at the end of full expression for temporary object.
199class CFGTemporaryDtor : public CFGImplicitDtor {
200public:
201  CFGTemporaryDtor(CXXBindTemporaryExpr *expr)
202      : CFGImplicitDtor(TemporaryDtor, expr, 0) {}
203
204  const CXXBindTemporaryExpr *getBindTemporaryExpr() const {
205    return static_cast<const CXXBindTemporaryExpr *>(Data1.getPointer());
206  }
207
208  static bool classof(const CFGElement *E) {
209    return E->getKind() == TemporaryDtor;
210  }
211};
212
213/// CFGTerminator - Represents CFGBlock terminator statement.
214///
215/// TemporaryDtorsBranch bit is set to true if the terminator marks a branch
216/// in control flow of destructors of temporaries. In this case terminator
217/// statement is the same statement that branches control flow in evaluation
218/// of matching full expression.
219class CFGTerminator {
220  llvm::PointerIntPair<Stmt *, 1> Data;
221public:
222  CFGTerminator() {}
223  CFGTerminator(Stmt *S, bool TemporaryDtorsBranch = false)
224      : Data(S, TemporaryDtorsBranch) {}
225
226  Stmt *getStmt() { return Data.getPointer(); }
227  const Stmt *getStmt() const { return Data.getPointer(); }
228
229  bool isTemporaryDtorsBranch() const { return Data.getInt(); }
230
231  operator Stmt *() { return getStmt(); }
232  operator const Stmt *() const { return getStmt(); }
233
234  Stmt *operator->() { return getStmt(); }
235  const Stmt *operator->() const { return getStmt(); }
236
237  Stmt &operator*() { return *getStmt(); }
238  const Stmt &operator*() const { return *getStmt(); }
239
240  operator bool() const { return getStmt(); }
241};
242
243/// CFGBlock - Represents a single basic block in a source-level CFG.
244///  It consists of:
245///
246///  (1) A set of statements/expressions (which may contain subexpressions).
247///  (2) A "terminator" statement (not in the set of statements).
248///  (3) A list of successors and predecessors.
249///
250/// Terminator: The terminator represents the type of control-flow that occurs
251/// at the end of the basic block.  The terminator is a Stmt* referring to an
252/// AST node that has control-flow: if-statements, breaks, loops, etc.
253/// If the control-flow is conditional, the condition expression will appear
254/// within the set of statements in the block (usually the last statement).
255///
256/// Predecessors: the order in the set of predecessors is arbitrary.
257///
258/// Successors: the order in the set of successors is NOT arbitrary.  We
259///  currently have the following orderings based on the terminator:
260///
261///     Terminator       Successor Ordering
262///  -----------------------------------------------------
263///       if            Then Block;  Else Block
264///     ? operator      LHS expression;  RHS expression
265///     &&, ||          expression that uses result of && or ||, RHS
266///
267/// But note that any of that may be NULL in case of optimized-out edges.
268///
269class CFGBlock {
270  class ElementList {
271    typedef BumpVector<CFGElement> ImplTy;
272    ImplTy Impl;
273  public:
274    ElementList(BumpVectorContext &C) : Impl(C, 4) {}
275
276    typedef std::reverse_iterator<ImplTy::iterator>       iterator;
277    typedef std::reverse_iterator<ImplTy::const_iterator> const_iterator;
278    typedef ImplTy::iterator                              reverse_iterator;
279    typedef ImplTy::const_iterator                        const_reverse_iterator;
280
281    void push_back(CFGElement e, BumpVectorContext &C) { Impl.push_back(e, C); }
282    reverse_iterator insert(reverse_iterator I, size_t Cnt, CFGElement E,
283        BumpVectorContext &C) {
284      return Impl.insert(I, Cnt, E, C);
285    }
286
287    CFGElement front() const { return Impl.back(); }
288    CFGElement back() const { return Impl.front(); }
289
290    iterator begin() { return Impl.rbegin(); }
291    iterator end() { return Impl.rend(); }
292    const_iterator begin() const { return Impl.rbegin(); }
293    const_iterator end() const { return Impl.rend(); }
294    reverse_iterator rbegin() { return Impl.begin(); }
295    reverse_iterator rend() { return Impl.end(); }
296    const_reverse_iterator rbegin() const { return Impl.begin(); }
297    const_reverse_iterator rend() const { return Impl.end(); }
298
299   CFGElement operator[](size_t i) const  {
300     assert(i < Impl.size());
301     return Impl[Impl.size() - 1 - i];
302   }
303
304    size_t size() const { return Impl.size(); }
305    bool empty() const { return Impl.empty(); }
306  };
307
308  /// Stmts - The set of statements in the basic block.
309  ElementList Elements;
310
311  /// Label - An (optional) label that prefixes the executable
312  ///  statements in the block.  When this variable is non-NULL, it is
313  ///  either an instance of LabelStmt, SwitchCase or CXXCatchStmt.
314  Stmt *Label;
315
316  /// Terminator - The terminator for a basic block that
317  ///  indicates the type of control-flow that occurs between a block
318  ///  and its successors.
319  CFGTerminator Terminator;
320
321  /// LoopTarget - Some blocks are used to represent the "loop edge" to
322  ///  the start of a loop from within the loop body.  This Stmt* will be
323  ///  refer to the loop statement for such blocks (and be null otherwise).
324  const Stmt *LoopTarget;
325
326  /// BlockID - A numerical ID assigned to a CFGBlock during construction
327  ///   of the CFG.
328  unsigned BlockID;
329
330  /// Predecessors/Successors - Keep track of the predecessor / successor
331  /// CFG blocks.
332  typedef BumpVector<CFGBlock*> AdjacentBlocks;
333  AdjacentBlocks Preds;
334  AdjacentBlocks Succs;
335
336  /// NoReturn - This bit is set when the basic block contains a function call
337  /// or implicit destructor that is attributed as 'noreturn'. In that case,
338  /// control cannot technically ever proceed past this block. All such blocks
339  /// will have a single immediate successor: the exit block. This allows them
340  /// to be easily reached from the exit block and using this bit quickly
341  /// recognized without scanning the contents of the block.
342  ///
343  /// Optimization Note: This bit could be profitably folded with Terminator's
344  /// storage if the memory usage of CFGBlock becomes an issue.
345  unsigned HasNoReturnElement : 1;
346
347public:
348  explicit CFGBlock(unsigned blockid, BumpVectorContext &C)
349    : Elements(C), Label(NULL), Terminator(NULL), LoopTarget(NULL),
350      BlockID(blockid), Preds(C, 1), Succs(C, 1), HasNoReturnElement(false) {}
351  ~CFGBlock() {}
352
353  // Statement iterators
354  typedef ElementList::iterator                      iterator;
355  typedef ElementList::const_iterator                const_iterator;
356  typedef ElementList::reverse_iterator              reverse_iterator;
357  typedef ElementList::const_reverse_iterator        const_reverse_iterator;
358
359  CFGElement                 front()       const { return Elements.front();   }
360  CFGElement                 back()        const { return Elements.back();    }
361
362  iterator                   begin()             { return Elements.begin();   }
363  iterator                   end()               { return Elements.end();     }
364  const_iterator             begin()       const { return Elements.begin();   }
365  const_iterator             end()         const { return Elements.end();     }
366
367  reverse_iterator           rbegin()            { return Elements.rbegin();  }
368  reverse_iterator           rend()              { return Elements.rend();    }
369  const_reverse_iterator     rbegin()      const { return Elements.rbegin();  }
370  const_reverse_iterator     rend()        const { return Elements.rend();    }
371
372  unsigned                   size()        const { return Elements.size();    }
373  bool                       empty()       const { return Elements.empty();   }
374
375  CFGElement operator[](size_t i) const  { return Elements[i]; }
376
377  // CFG iterators
378  typedef AdjacentBlocks::iterator                              pred_iterator;
379  typedef AdjacentBlocks::const_iterator                  const_pred_iterator;
380  typedef AdjacentBlocks::reverse_iterator              pred_reverse_iterator;
381  typedef AdjacentBlocks::const_reverse_iterator  const_pred_reverse_iterator;
382
383  typedef AdjacentBlocks::iterator                              succ_iterator;
384  typedef AdjacentBlocks::const_iterator                  const_succ_iterator;
385  typedef AdjacentBlocks::reverse_iterator              succ_reverse_iterator;
386  typedef AdjacentBlocks::const_reverse_iterator  const_succ_reverse_iterator;
387
388  pred_iterator                pred_begin()        { return Preds.begin();   }
389  pred_iterator                pred_end()          { return Preds.end();     }
390  const_pred_iterator          pred_begin()  const { return Preds.begin();   }
391  const_pred_iterator          pred_end()    const { return Preds.end();     }
392
393  pred_reverse_iterator        pred_rbegin()       { return Preds.rbegin();  }
394  pred_reverse_iterator        pred_rend()         { return Preds.rend();    }
395  const_pred_reverse_iterator  pred_rbegin() const { return Preds.rbegin();  }
396  const_pred_reverse_iterator  pred_rend()   const { return Preds.rend();    }
397
398  succ_iterator                succ_begin()        { return Succs.begin();   }
399  succ_iterator                succ_end()          { return Succs.end();     }
400  const_succ_iterator          succ_begin()  const { return Succs.begin();   }
401  const_succ_iterator          succ_end()    const { return Succs.end();     }
402
403  succ_reverse_iterator        succ_rbegin()       { return Succs.rbegin();  }
404  succ_reverse_iterator        succ_rend()         { return Succs.rend();    }
405  const_succ_reverse_iterator  succ_rbegin() const { return Succs.rbegin();  }
406  const_succ_reverse_iterator  succ_rend()   const { return Succs.rend();    }
407
408  unsigned                     succ_size()   const { return Succs.size();    }
409  bool                         succ_empty()  const { return Succs.empty();   }
410
411  unsigned                     pred_size()   const { return Preds.size();    }
412  bool                         pred_empty()  const { return Preds.empty();   }
413
414
415  class FilterOptions {
416  public:
417    FilterOptions() {
418      IgnoreDefaultsWithCoveredEnums = 0;
419    }
420
421    unsigned IgnoreDefaultsWithCoveredEnums : 1;
422  };
423
424  static bool FilterEdge(const FilterOptions &F, const CFGBlock *Src,
425       const CFGBlock *Dst);
426
427  template <typename IMPL, bool IsPred>
428  class FilteredCFGBlockIterator {
429  private:
430    IMPL I, E;
431    const FilterOptions F;
432    const CFGBlock *From;
433   public:
434    explicit FilteredCFGBlockIterator(const IMPL &i, const IMPL &e,
435              const CFGBlock *from,
436              const FilterOptions &f)
437      : I(i), E(e), F(f), From(from) {}
438
439    bool hasMore() const { return I != E; }
440
441    FilteredCFGBlockIterator &operator++() {
442      do { ++I; } while (hasMore() && Filter(*I));
443      return *this;
444    }
445
446    const CFGBlock *operator*() const { return *I; }
447  private:
448    bool Filter(const CFGBlock *To) {
449      return IsPred ? FilterEdge(F, To, From) : FilterEdge(F, From, To);
450    }
451  };
452
453  typedef FilteredCFGBlockIterator<const_pred_iterator, true>
454          filtered_pred_iterator;
455
456  typedef FilteredCFGBlockIterator<const_succ_iterator, false>
457          filtered_succ_iterator;
458
459  filtered_pred_iterator filtered_pred_start_end(const FilterOptions &f) const {
460    return filtered_pred_iterator(pred_begin(), pred_end(), this, f);
461  }
462
463  filtered_succ_iterator filtered_succ_start_end(const FilterOptions &f) const {
464    return filtered_succ_iterator(succ_begin(), succ_end(), this, f);
465  }
466
467  // Manipulation of block contents
468
469  void setTerminator(Stmt *Statement) { Terminator = Statement; }
470  void setLabel(Stmt *Statement) { Label = Statement; }
471  void setLoopTarget(const Stmt *loopTarget) { LoopTarget = loopTarget; }
472  void setHasNoReturnElement() { HasNoReturnElement = true; }
473
474  CFGTerminator getTerminator() { return Terminator; }
475  const CFGTerminator getTerminator() const { return Terminator; }
476
477  Stmt *getTerminatorCondition();
478
479  const Stmt *getTerminatorCondition() const {
480    return const_cast<CFGBlock*>(this)->getTerminatorCondition();
481  }
482
483  const Stmt *getLoopTarget() const { return LoopTarget; }
484
485  Stmt *getLabel() { return Label; }
486  const Stmt *getLabel() const { return Label; }
487
488  bool hasNoReturnElement() const { return HasNoReturnElement; }
489
490  unsigned getBlockID() const { return BlockID; }
491
492  void dump(const CFG *cfg, const LangOptions &LO) const;
493  void print(raw_ostream &OS, const CFG* cfg, const LangOptions &LO) const;
494  void printTerminator(raw_ostream &OS, const LangOptions &LO) const;
495
496  void addSuccessor(CFGBlock *Block, BumpVectorContext &C) {
497    if (Block)
498      Block->Preds.push_back(this, C);
499    Succs.push_back(Block, C);
500  }
501
502  void appendStmt(Stmt *statement, BumpVectorContext &C) {
503    Elements.push_back(CFGStmt(statement), C);
504  }
505
506  void appendInitializer(CXXCtorInitializer *initializer,
507                        BumpVectorContext &C) {
508    Elements.push_back(CFGInitializer(initializer), C);
509  }
510
511  void appendBaseDtor(const CXXBaseSpecifier *BS, BumpVectorContext &C) {
512    Elements.push_back(CFGBaseDtor(BS), C);
513  }
514
515  void appendMemberDtor(FieldDecl *FD, BumpVectorContext &C) {
516    Elements.push_back(CFGMemberDtor(FD), C);
517  }
518
519  void appendTemporaryDtor(CXXBindTemporaryExpr *E, BumpVectorContext &C) {
520    Elements.push_back(CFGTemporaryDtor(E), C);
521  }
522
523  void appendAutomaticObjDtor(VarDecl *VD, Stmt *S, BumpVectorContext &C) {
524    Elements.push_back(CFGAutomaticObjDtor(VD, S), C);
525  }
526
527  // Destructors must be inserted in reversed order. So insertion is in two
528  // steps. First we prepare space for some number of elements, then we insert
529  // the elements beginning at the last position in prepared space.
530  iterator beginAutomaticObjDtorsInsert(iterator I, size_t Cnt,
531      BumpVectorContext &C) {
532    return iterator(Elements.insert(I.base(), Cnt, CFGElement(), C));
533  }
534  iterator insertAutomaticObjDtor(iterator I, VarDecl *VD, Stmt *S) {
535    *I = CFGAutomaticObjDtor(VD, S);
536    return ++I;
537  }
538};
539
540/// CFG - Represents a source-level, intra-procedural CFG that represents the
541///  control-flow of a Stmt.  The Stmt can represent an entire function body,
542///  or a single expression.  A CFG will always contain one empty block that
543///  represents the Exit point of the CFG.  A CFG will also contain a designated
544///  Entry block.  The CFG solely represents control-flow; it consists of
545///  CFGBlocks which are simply containers of Stmt*'s in the AST the CFG
546///  was constructed from.
547class CFG {
548public:
549  //===--------------------------------------------------------------------===//
550  // CFG Construction & Manipulation.
551  //===--------------------------------------------------------------------===//
552
553  class BuildOptions {
554    llvm::BitVector alwaysAddMask;
555  public:
556    typedef llvm::DenseMap<const Stmt *, const CFGBlock*> ForcedBlkExprs;
557    ForcedBlkExprs **forcedBlkExprs;
558
559    bool PruneTriviallyFalseEdges;
560    bool AddEHEdges;
561    bool AddInitializers;
562    bool AddImplicitDtors;
563
564    bool alwaysAdd(const Stmt *stmt) const {
565      return alwaysAddMask[stmt->getStmtClass()];
566    }
567
568    BuildOptions &setAlwaysAdd(Stmt::StmtClass stmtClass, bool val = true) {
569      alwaysAddMask[stmtClass] = val;
570      return *this;
571    }
572
573    BuildOptions &setAllAlwaysAdd() {
574      alwaysAddMask.set();
575      return *this;
576    }
577
578    BuildOptions()
579    : alwaysAddMask(Stmt::lastStmtConstant, false)
580      ,forcedBlkExprs(0), PruneTriviallyFalseEdges(true)
581      ,AddEHEdges(false)
582      ,AddInitializers(false)
583      ,AddImplicitDtors(false) {}
584  };
585
586  /// buildCFG - Builds a CFG from an AST.  The responsibility to free the
587  ///   constructed CFG belongs to the caller.
588  static CFG* buildCFG(const Decl *D, Stmt *AST, ASTContext *C,
589                       const BuildOptions &BO);
590
591  /// createBlock - Create a new block in the CFG.  The CFG owns the block;
592  ///  the caller should not directly free it.
593  CFGBlock *createBlock();
594
595  /// setEntry - Set the entry block of the CFG.  This is typically used
596  ///  only during CFG construction.  Most CFG clients expect that the
597  ///  entry block has no predecessors and contains no statements.
598  void setEntry(CFGBlock *B) { Entry = B; }
599
600  /// setIndirectGotoBlock - Set the block used for indirect goto jumps.
601  ///  This is typically used only during CFG construction.
602  void setIndirectGotoBlock(CFGBlock *B) { IndirectGotoBlock = B; }
603
604  //===--------------------------------------------------------------------===//
605  // Block Iterators
606  //===--------------------------------------------------------------------===//
607
608  typedef BumpVector<CFGBlock*>                    CFGBlockListTy;
609  typedef CFGBlockListTy::iterator                 iterator;
610  typedef CFGBlockListTy::const_iterator           const_iterator;
611  typedef std::reverse_iterator<iterator>          reverse_iterator;
612  typedef std::reverse_iterator<const_iterator>    const_reverse_iterator;
613
614  CFGBlock &                front()                { return *Blocks.front(); }
615  CFGBlock &                back()                 { return *Blocks.back(); }
616
617  iterator                  begin()                { return Blocks.begin(); }
618  iterator                  end()                  { return Blocks.end(); }
619  const_iterator            begin()       const    { return Blocks.begin(); }
620  const_iterator            end()         const    { return Blocks.end(); }
621
622  reverse_iterator          rbegin()               { return Blocks.rbegin(); }
623  reverse_iterator          rend()                 { return Blocks.rend(); }
624  const_reverse_iterator    rbegin()      const    { return Blocks.rbegin(); }
625  const_reverse_iterator    rend()        const    { return Blocks.rend(); }
626
627  CFGBlock &                getEntry()             { return *Entry; }
628  const CFGBlock &          getEntry()    const    { return *Entry; }
629  CFGBlock &                getExit()              { return *Exit; }
630  const CFGBlock &          getExit()     const    { return *Exit; }
631
632  CFGBlock *       getIndirectGotoBlock() { return IndirectGotoBlock; }
633  const CFGBlock * getIndirectGotoBlock() const { return IndirectGotoBlock; }
634
635  typedef std::vector<const CFGBlock*>::const_iterator try_block_iterator;
636  try_block_iterator try_blocks_begin() const {
637    return TryDispatchBlocks.begin();
638  }
639  try_block_iterator try_blocks_end() const {
640    return TryDispatchBlocks.end();
641  }
642
643  void addTryDispatchBlock(const CFGBlock *block) {
644    TryDispatchBlocks.push_back(block);
645  }
646
647  //===--------------------------------------------------------------------===//
648  // Member templates useful for various batch operations over CFGs.
649  //===--------------------------------------------------------------------===//
650
651  template <typename CALLBACK>
652  void VisitBlockStmts(CALLBACK& O) const {
653    for (const_iterator I=begin(), E=end(); I != E; ++I)
654      for (CFGBlock::const_iterator BI=(*I)->begin(), BE=(*I)->end();
655           BI != BE; ++BI) {
656        if (const CFGStmt *stmt = BI->getAs<CFGStmt>())
657          O(const_cast<Stmt*>(stmt->getStmt()));
658      }
659  }
660
661  //===--------------------------------------------------------------------===//
662  // CFG Introspection.
663  //===--------------------------------------------------------------------===//
664
665  struct   BlkExprNumTy {
666    const signed Idx;
667    explicit BlkExprNumTy(signed idx) : Idx(idx) {}
668    explicit BlkExprNumTy() : Idx(-1) {}
669    operator bool() const { return Idx >= 0; }
670    operator unsigned() const { assert(Idx >=0); return (unsigned) Idx; }
671  };
672
673  bool isBlkExpr(const Stmt *S) { return getBlkExprNum(S); }
674  bool isBlkExpr(const Stmt *S) const {
675    return const_cast<CFG*>(this)->isBlkExpr(S);
676  }
677  BlkExprNumTy  getBlkExprNum(const Stmt *S);
678  unsigned      getNumBlkExprs();
679
680  /// getNumBlockIDs - Returns the total number of BlockIDs allocated (which
681  /// start at 0).
682  unsigned getNumBlockIDs() const { return NumBlockIDs; }
683
684  //===--------------------------------------------------------------------===//
685  // CFG Debugging: Pretty-Printing and Visualization.
686  //===--------------------------------------------------------------------===//
687
688  void viewCFG(const LangOptions &LO) const;
689  void print(raw_ostream &OS, const LangOptions &LO) const;
690  void dump(const LangOptions &LO) const;
691
692  //===--------------------------------------------------------------------===//
693  // Internal: constructors and data.
694  //===--------------------------------------------------------------------===//
695
696  CFG() : Entry(NULL), Exit(NULL), IndirectGotoBlock(NULL), NumBlockIDs(0),
697          BlkExprMap(NULL), Blocks(BlkBVC, 10) {}
698
699  ~CFG();
700
701  llvm::BumpPtrAllocator& getAllocator() {
702    return BlkBVC.getAllocator();
703  }
704
705  BumpVectorContext &getBumpVectorContext() {
706    return BlkBVC;
707  }
708
709private:
710  CFGBlock *Entry;
711  CFGBlock *Exit;
712  CFGBlock* IndirectGotoBlock;  // Special block to contain collective dispatch
713                                // for indirect gotos
714  unsigned  NumBlockIDs;
715
716  // BlkExprMap - An opaque pointer to prevent inclusion of DenseMap.h.
717  //  It represents a map from Expr* to integers to record the set of
718  //  block-level expressions and their "statement number" in the CFG.
719  void *    BlkExprMap;
720
721  BumpVectorContext BlkBVC;
722
723  CFGBlockListTy Blocks;
724
725  /// C++ 'try' statements are modeled with an indirect dispatch block.
726  /// This is the collection of such blocks present in the CFG.
727  std::vector<const CFGBlock *> TryDispatchBlocks;
728
729};
730} // end namespace clang
731
732//===----------------------------------------------------------------------===//
733// GraphTraits specializations for CFG basic block graphs (source-level CFGs)
734//===----------------------------------------------------------------------===//
735
736namespace llvm {
737
738/// Implement simplify_type for CFGTerminator, so that we can dyn_cast from
739/// CFGTerminator to a specific Stmt class.
740template <> struct simplify_type<const ::clang::CFGTerminator> {
741  typedef const ::clang::Stmt *SimpleType;
742  static SimpleType getSimplifiedValue(const ::clang::CFGTerminator &Val) {
743    return Val.getStmt();
744  }
745};
746
747template <> struct simplify_type< ::clang::CFGTerminator> {
748  typedef ::clang::Stmt *SimpleType;
749  static SimpleType getSimplifiedValue(const ::clang::CFGTerminator &Val) {
750    return const_cast<SimpleType>(Val.getStmt());
751  }
752};
753
754// Traits for: CFGBlock
755
756template <> struct GraphTraits< ::clang::CFGBlock *> {
757  typedef ::clang::CFGBlock NodeType;
758  typedef ::clang::CFGBlock::succ_iterator ChildIteratorType;
759
760  static NodeType* getEntryNode(::clang::CFGBlock *BB)
761  { return BB; }
762
763  static inline ChildIteratorType child_begin(NodeType* N)
764  { return N->succ_begin(); }
765
766  static inline ChildIteratorType child_end(NodeType* N)
767  { return N->succ_end(); }
768};
769
770template <> struct GraphTraits< const ::clang::CFGBlock *> {
771  typedef const ::clang::CFGBlock NodeType;
772  typedef ::clang::CFGBlock::const_succ_iterator ChildIteratorType;
773
774  static NodeType* getEntryNode(const clang::CFGBlock *BB)
775  { return BB; }
776
777  static inline ChildIteratorType child_begin(NodeType* N)
778  { return N->succ_begin(); }
779
780  static inline ChildIteratorType child_end(NodeType* N)
781  { return N->succ_end(); }
782};
783
784template <> struct GraphTraits<Inverse<const ::clang::CFGBlock*> > {
785  typedef const ::clang::CFGBlock NodeType;
786  typedef ::clang::CFGBlock::const_pred_iterator ChildIteratorType;
787
788  static NodeType *getEntryNode(Inverse<const ::clang::CFGBlock*> G)
789  { return G.Graph; }
790
791  static inline ChildIteratorType child_begin(NodeType* N)
792  { return N->pred_begin(); }
793
794  static inline ChildIteratorType child_end(NodeType* N)
795  { return N->pred_end(); }
796};
797
798// Traits for: CFG
799
800template <> struct GraphTraits< ::clang::CFG* >
801    : public GraphTraits< ::clang::CFGBlock *>  {
802
803  typedef ::clang::CFG::iterator nodes_iterator;
804
805  static NodeType *getEntryNode(::clang::CFG* F) { return &F->getEntry(); }
806  static nodes_iterator nodes_begin(::clang::CFG* F) { return F->begin(); }
807  static nodes_iterator nodes_end(::clang::CFG* F) { return F->end(); }
808};
809
810template <> struct GraphTraits<const ::clang::CFG* >
811    : public GraphTraits<const ::clang::CFGBlock *>  {
812
813  typedef ::clang::CFG::const_iterator nodes_iterator;
814
815  static NodeType *getEntryNode( const ::clang::CFG* F) {
816    return &F->getEntry();
817  }
818  static nodes_iterator nodes_begin( const ::clang::CFG* F) {
819    return F->begin();
820  }
821  static nodes_iterator nodes_end( const ::clang::CFG* F) {
822    return F->end();
823  }
824};
825
826template <> struct GraphTraits<Inverse<const ::clang::CFG*> >
827  : public GraphTraits<Inverse<const ::clang::CFGBlock*> > {
828
829  typedef ::clang::CFG::const_iterator nodes_iterator;
830
831  static NodeType *getEntryNode(const ::clang::CFG* F) { return &F->getExit(); }
832  static nodes_iterator nodes_begin(const ::clang::CFG* F) { return F->begin();}
833  static nodes_iterator nodes_end(const ::clang::CFG* F) { return F->end(); }
834};
835} // end llvm namespace
836#endif
837