CFG.h revision 8cc488fefb2fb04bc8d5398da29f0182f97934cf
1//===--- CFG.h - Classes for representing and building CFGs------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the CFG and CFGBuilder classes for representing and
11//  building Control-Flow Graphs (CFGs) from ASTs.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CLANG_CFG_H
16#define LLVM_CLANG_CFG_H
17
18#include "llvm/ADT/PointerIntPair.h"
19#include "llvm/ADT/GraphTraits.h"
20#include "llvm/Support/Allocator.h"
21#include "llvm/Support/Casting.h"
22#include "llvm/ADT/OwningPtr.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/BitVector.h"
25#include "clang/AST/Stmt.h"
26#include "clang/Analysis/Support/BumpVector.h"
27#include "clang/Basic/SourceLocation.h"
28#include <cassert>
29#include <iterator>
30
31namespace llvm {
32  class raw_ostream;
33}
34
35namespace clang {
36  class CXXDestructorDecl;
37  class Decl;
38  class Stmt;
39  class Expr;
40  class FieldDecl;
41  class VarDecl;
42  class CXXCtorInitializer;
43  class CXXBaseSpecifier;
44  class CXXBindTemporaryExpr;
45  class CFG;
46  class PrinterHelper;
47  class LangOptions;
48  class ASTContext;
49
50/// CFGElement - Represents a top-level expression in a basic block.
51class CFGElement {
52public:
53  enum Kind {
54    // main kind
55    Invalid,
56    Statement,
57    Initializer,
58    // dtor kind
59    AutomaticObjectDtor,
60    BaseDtor,
61    MemberDtor,
62    TemporaryDtor,
63    DTOR_BEGIN = AutomaticObjectDtor,
64    DTOR_END = TemporaryDtor
65  };
66
67protected:
68  // The int bits are used to mark the kind.
69  llvm::PointerIntPair<void *, 2> Data1;
70  llvm::PointerIntPair<void *, 2> Data2;
71
72  CFGElement(Kind kind, const void *Ptr1, const void *Ptr2 = 0)
73    : Data1(const_cast<void*>(Ptr1), ((unsigned) kind) & 0x3),
74      Data2(const_cast<void*>(Ptr2), (((unsigned) kind) >> 2) & 0x3) {}
75
76public:
77  CFGElement() {}
78
79  Kind getKind() const {
80    unsigned x = Data2.getInt();
81    x <<= 2;
82    x |= Data1.getInt();
83    return (Kind) x;
84  }
85
86  bool isValid() const { return getKind() != Invalid; }
87
88  operator bool() const { return isValid(); }
89
90  template<class ElemTy> const ElemTy *getAs() const {
91    if (llvm::isa<ElemTy>(this))
92      return static_cast<const ElemTy*>(this);
93    return 0;
94  }
95
96  static bool classof(const CFGElement *E) { return true; }
97};
98
99class CFGStmt : public CFGElement {
100public:
101  CFGStmt(Stmt *S) : CFGElement(Statement, S) {}
102
103  Stmt *getStmt() const { return static_cast<Stmt *>(Data1.getPointer()); }
104
105  static bool classof(const CFGElement *E) {
106    return E->getKind() == Statement;
107  }
108};
109
110/// CFGInitializer - Represents C++ base or member initializer from
111/// constructor's initialization list.
112class CFGInitializer : public CFGElement {
113public:
114  CFGInitializer(CXXCtorInitializer *initializer)
115      : CFGElement(Initializer, initializer) {}
116
117  CXXCtorInitializer* getInitializer() const {
118    return static_cast<CXXCtorInitializer*>(Data1.getPointer());
119  }
120
121  static bool classof(const CFGElement *E) {
122    return E->getKind() == Initializer;
123  }
124};
125
126/// CFGImplicitDtor - Represents C++ object destructor implicitly generated
127/// by compiler on various occasions.
128class CFGImplicitDtor : public CFGElement {
129protected:
130  CFGImplicitDtor(Kind kind, const void *data1, const void *data2 = 0)
131    : CFGElement(kind, data1, data2) {
132    assert(kind >= DTOR_BEGIN && kind <= DTOR_END);
133  }
134
135public:
136  const CXXDestructorDecl *getDestructorDecl(ASTContext &astContext) const;
137  bool isNoReturn(ASTContext &astContext) const;
138
139  static bool classof(const CFGElement *E) {
140    Kind kind = E->getKind();
141    return kind >= DTOR_BEGIN && kind <= DTOR_END;
142  }
143};
144
145/// CFGAutomaticObjDtor - Represents C++ object destructor implicitly generated
146/// for automatic object or temporary bound to const reference at the point
147/// of leaving its local scope.
148class CFGAutomaticObjDtor: public CFGImplicitDtor {
149public:
150  CFGAutomaticObjDtor(const VarDecl *var, const Stmt *stmt)
151      : CFGImplicitDtor(AutomaticObjectDtor, var, stmt) {}
152
153  const VarDecl *getVarDecl() const {
154    return static_cast<VarDecl*>(Data1.getPointer());
155  }
156
157  // Get statement end of which triggered the destructor call.
158  const Stmt *getTriggerStmt() const {
159    return static_cast<Stmt*>(Data2.getPointer());
160  }
161
162  static bool classof(const CFGElement *elem) {
163    return elem->getKind() == AutomaticObjectDtor;
164  }
165};
166
167/// CFGBaseDtor - Represents C++ object destructor implicitly generated for
168/// base object in destructor.
169class CFGBaseDtor : public CFGImplicitDtor {
170public:
171  CFGBaseDtor(const CXXBaseSpecifier *base)
172      : CFGImplicitDtor(BaseDtor, base) {}
173
174  const CXXBaseSpecifier *getBaseSpecifier() const {
175    return static_cast<const CXXBaseSpecifier*>(Data1.getPointer());
176  }
177
178  static bool classof(const CFGElement *E) {
179    return E->getKind() == BaseDtor;
180  }
181};
182
183/// CFGMemberDtor - Represents C++ object destructor implicitly generated for
184/// member object in destructor.
185class CFGMemberDtor : public CFGImplicitDtor {
186public:
187  CFGMemberDtor(const FieldDecl *field)
188      : CFGImplicitDtor(MemberDtor, field, 0) {}
189
190  const FieldDecl *getFieldDecl() const {
191    return static_cast<const FieldDecl*>(Data1.getPointer());
192  }
193
194  static bool classof(const CFGElement *E) {
195    return E->getKind() == MemberDtor;
196  }
197};
198
199/// CFGTemporaryDtor - Represents C++ object destructor implicitly generated
200/// at the end of full expression for temporary object.
201class CFGTemporaryDtor : public CFGImplicitDtor {
202public:
203  CFGTemporaryDtor(CXXBindTemporaryExpr *expr)
204      : CFGImplicitDtor(TemporaryDtor, expr, 0) {}
205
206  const CXXBindTemporaryExpr *getBindTemporaryExpr() const {
207    return static_cast<const CXXBindTemporaryExpr *>(Data1.getPointer());
208  }
209
210  static bool classof(const CFGElement *E) {
211    return E->getKind() == TemporaryDtor;
212  }
213};
214
215/// CFGTerminator - Represents CFGBlock terminator statement.
216///
217/// TemporaryDtorsBranch bit is set to true if the terminator marks a branch
218/// in control flow of destructors of temporaries. In this case terminator
219/// statement is the same statement that branches control flow in evaluation
220/// of matching full expression.
221class CFGTerminator {
222  llvm::PointerIntPair<Stmt *, 1> Data;
223public:
224  CFGTerminator() {}
225  CFGTerminator(Stmt *S, bool TemporaryDtorsBranch = false)
226      : Data(S, TemporaryDtorsBranch) {}
227
228  Stmt *getStmt() { return Data.getPointer(); }
229  const Stmt *getStmt() const { return Data.getPointer(); }
230
231  bool isTemporaryDtorsBranch() const { return Data.getInt(); }
232
233  operator Stmt *() { return getStmt(); }
234  operator const Stmt *() const { return getStmt(); }
235
236  Stmt *operator->() { return getStmt(); }
237  const Stmt *operator->() const { return getStmt(); }
238
239  Stmt &operator*() { return *getStmt(); }
240  const Stmt &operator*() const { return *getStmt(); }
241
242  operator bool() const { return getStmt(); }
243};
244
245/// CFGBlock - Represents a single basic block in a source-level CFG.
246///  It consists of:
247///
248///  (1) A set of statements/expressions (which may contain subexpressions).
249///  (2) A "terminator" statement (not in the set of statements).
250///  (3) A list of successors and predecessors.
251///
252/// Terminator: The terminator represents the type of control-flow that occurs
253/// at the end of the basic block.  The terminator is a Stmt* referring to an
254/// AST node that has control-flow: if-statements, breaks, loops, etc.
255/// If the control-flow is conditional, the condition expression will appear
256/// within the set of statements in the block (usually the last statement).
257///
258/// Predecessors: the order in the set of predecessors is arbitrary.
259///
260/// Successors: the order in the set of successors is NOT arbitrary.  We
261///  currently have the following orderings based on the terminator:
262///
263///     Terminator       Successor Ordering
264///  -----------------------------------------------------
265///       if            Then Block;  Else Block
266///     ? operator      LHS expression;  RHS expression
267///     &&, ||          expression that uses result of && or ||, RHS
268///
269/// But note that any of that may be NULL in case of optimized-out edges.
270///
271class CFGBlock {
272  class ElementList {
273    typedef BumpVector<CFGElement> ImplTy;
274    ImplTy Impl;
275  public:
276    ElementList(BumpVectorContext &C) : Impl(C, 4) {}
277
278    typedef std::reverse_iterator<ImplTy::iterator>       iterator;
279    typedef std::reverse_iterator<ImplTy::const_iterator> const_iterator;
280    typedef ImplTy::iterator                              reverse_iterator;
281    typedef ImplTy::const_iterator                        const_reverse_iterator;
282
283    void push_back(CFGElement e, BumpVectorContext &C) { Impl.push_back(e, C); }
284    reverse_iterator insert(reverse_iterator I, size_t Cnt, CFGElement E,
285        BumpVectorContext& C) {
286      return Impl.insert(I, Cnt, E, C);
287    }
288
289    CFGElement front() const { return Impl.back(); }
290    CFGElement back() const { return Impl.front(); }
291
292    iterator begin() { return Impl.rbegin(); }
293    iterator end() { return Impl.rend(); }
294    const_iterator begin() const { return Impl.rbegin(); }
295    const_iterator end() const { return Impl.rend(); }
296    reverse_iterator rbegin() { return Impl.begin(); }
297    reverse_iterator rend() { return Impl.end(); }
298    const_reverse_iterator rbegin() const { return Impl.begin(); }
299    const_reverse_iterator rend() const { return Impl.end(); }
300
301   CFGElement operator[](size_t i) const  {
302     assert(i < Impl.size());
303     return Impl[Impl.size() - 1 - i];
304   }
305
306    size_t size() const { return Impl.size(); }
307    bool empty() const { return Impl.empty(); }
308  };
309
310  /// Stmts - The set of statements in the basic block.
311  ElementList Elements;
312
313  /// Label - An (optional) label that prefixes the executable
314  ///  statements in the block.  When this variable is non-NULL, it is
315  ///  either an instance of LabelStmt, SwitchCase or CXXCatchStmt.
316  Stmt *Label;
317
318  /// Terminator - The terminator for a basic block that
319  ///  indicates the type of control-flow that occurs between a block
320  ///  and its successors.
321  CFGTerminator Terminator;
322
323  /// LoopTarget - Some blocks are used to represent the "loop edge" to
324  ///  the start of a loop from within the loop body.  This Stmt* will be
325  ///  refer to the loop statement for such blocks (and be null otherwise).
326  const Stmt *LoopTarget;
327
328  /// BlockID - A numerical ID assigned to a CFGBlock during construction
329  ///   of the CFG.
330  unsigned BlockID;
331
332  /// Predecessors/Successors - Keep track of the predecessor / successor
333  /// CFG blocks.
334  typedef BumpVector<CFGBlock*> AdjacentBlocks;
335  AdjacentBlocks Preds;
336  AdjacentBlocks Succs;
337
338public:
339  explicit CFGBlock(unsigned blockid, BumpVectorContext &C)
340    : Elements(C), Label(NULL), Terminator(NULL), LoopTarget(NULL),
341      BlockID(blockid), Preds(C, 1), Succs(C, 1) {}
342  ~CFGBlock() {}
343
344  // Statement iterators
345  typedef ElementList::iterator                      iterator;
346  typedef ElementList::const_iterator                const_iterator;
347  typedef ElementList::reverse_iterator              reverse_iterator;
348  typedef ElementList::const_reverse_iterator        const_reverse_iterator;
349
350  CFGElement                 front()       const { return Elements.front();   }
351  CFGElement                 back()        const { return Elements.back();    }
352
353  iterator                   begin()             { return Elements.begin();   }
354  iterator                   end()               { return Elements.end();     }
355  const_iterator             begin()       const { return Elements.begin();   }
356  const_iterator             end()         const { return Elements.end();     }
357
358  reverse_iterator           rbegin()            { return Elements.rbegin();  }
359  reverse_iterator           rend()              { return Elements.rend();    }
360  const_reverse_iterator     rbegin()      const { return Elements.rbegin();  }
361  const_reverse_iterator     rend()        const { return Elements.rend();    }
362
363  unsigned                   size()        const { return Elements.size();    }
364  bool                       empty()       const { return Elements.empty();   }
365
366  CFGElement operator[](size_t i) const  { return Elements[i]; }
367
368  // CFG iterators
369  typedef AdjacentBlocks::iterator                              pred_iterator;
370  typedef AdjacentBlocks::const_iterator                  const_pred_iterator;
371  typedef AdjacentBlocks::reverse_iterator              pred_reverse_iterator;
372  typedef AdjacentBlocks::const_reverse_iterator  const_pred_reverse_iterator;
373
374  typedef AdjacentBlocks::iterator                              succ_iterator;
375  typedef AdjacentBlocks::const_iterator                  const_succ_iterator;
376  typedef AdjacentBlocks::reverse_iterator              succ_reverse_iterator;
377  typedef AdjacentBlocks::const_reverse_iterator  const_succ_reverse_iterator;
378
379  pred_iterator                pred_begin()        { return Preds.begin();   }
380  pred_iterator                pred_end()          { return Preds.end();     }
381  const_pred_iterator          pred_begin()  const { return Preds.begin();   }
382  const_pred_iterator          pred_end()    const { return Preds.end();     }
383
384  pred_reverse_iterator        pred_rbegin()       { return Preds.rbegin();  }
385  pred_reverse_iterator        pred_rend()         { return Preds.rend();    }
386  const_pred_reverse_iterator  pred_rbegin() const { return Preds.rbegin();  }
387  const_pred_reverse_iterator  pred_rend()   const { return Preds.rend();    }
388
389  succ_iterator                succ_begin()        { return Succs.begin();   }
390  succ_iterator                succ_end()          { return Succs.end();     }
391  const_succ_iterator          succ_begin()  const { return Succs.begin();   }
392  const_succ_iterator          succ_end()    const { return Succs.end();     }
393
394  succ_reverse_iterator        succ_rbegin()       { return Succs.rbegin();  }
395  succ_reverse_iterator        succ_rend()         { return Succs.rend();    }
396  const_succ_reverse_iterator  succ_rbegin() const { return Succs.rbegin();  }
397  const_succ_reverse_iterator  succ_rend()   const { return Succs.rend();    }
398
399  unsigned                     succ_size()   const { return Succs.size();    }
400  bool                         succ_empty()  const { return Succs.empty();   }
401
402  unsigned                     pred_size()   const { return Preds.size();    }
403  bool                         pred_empty()  const { return Preds.empty();   }
404
405
406  class FilterOptions {
407  public:
408    FilterOptions() {
409      IgnoreDefaultsWithCoveredEnums = 0;
410    }
411
412    unsigned IgnoreDefaultsWithCoveredEnums : 1;
413  };
414
415  static bool FilterEdge(const FilterOptions &F, const CFGBlock *Src,
416       const CFGBlock *Dst);
417
418  template <typename IMPL, bool IsPred>
419  class FilteredCFGBlockIterator {
420  private:
421    IMPL I, E;
422    const FilterOptions F;
423    const CFGBlock *From;
424   public:
425    explicit FilteredCFGBlockIterator(const IMPL &i, const IMPL &e,
426              const CFGBlock *from,
427              const FilterOptions &f)
428      : I(i), E(e), F(f), From(from) {}
429
430    bool hasMore() const { return I != E; }
431
432    FilteredCFGBlockIterator &operator++() {
433      do { ++I; } while (hasMore() && Filter(*I));
434      return *this;
435    }
436
437    const CFGBlock *operator*() const { return *I; }
438  private:
439    bool Filter(const CFGBlock *To) {
440      return IsPred ? FilterEdge(F, To, From) : FilterEdge(F, From, To);
441    }
442  };
443
444  typedef FilteredCFGBlockIterator<const_pred_iterator, true>
445          filtered_pred_iterator;
446
447  typedef FilteredCFGBlockIterator<const_succ_iterator, false>
448          filtered_succ_iterator;
449
450  filtered_pred_iterator filtered_pred_start_end(const FilterOptions &f) const {
451    return filtered_pred_iterator(pred_begin(), pred_end(), this, f);
452  }
453
454  filtered_succ_iterator filtered_succ_start_end(const FilterOptions &f) const {
455    return filtered_succ_iterator(succ_begin(), succ_end(), this, f);
456  }
457
458  // Manipulation of block contents
459
460  void setTerminator(Stmt* Statement) { Terminator = Statement; }
461  void setLabel(Stmt* Statement) { Label = Statement; }
462  void setLoopTarget(const Stmt *loopTarget) { LoopTarget = loopTarget; }
463
464  CFGTerminator getTerminator() { return Terminator; }
465  const CFGTerminator getTerminator() const { return Terminator; }
466
467  Stmt* getTerminatorCondition();
468
469  const Stmt* getTerminatorCondition() const {
470    return const_cast<CFGBlock*>(this)->getTerminatorCondition();
471  }
472
473  const Stmt *getLoopTarget() const { return LoopTarget; }
474
475  Stmt* getLabel() { return Label; }
476  const Stmt* getLabel() const { return Label; }
477
478  unsigned getBlockID() const { return BlockID; }
479
480  void dump(const CFG *cfg, const LangOptions &LO) const;
481  void print(raw_ostream &OS, const CFG* cfg, const LangOptions &LO) const;
482  void printTerminator(raw_ostream &OS, const LangOptions &LO) const;
483
484  void addSuccessor(CFGBlock* Block, BumpVectorContext &C) {
485    if (Block)
486      Block->Preds.push_back(this, C);
487    Succs.push_back(Block, C);
488  }
489
490  void appendStmt(Stmt* statement, BumpVectorContext &C) {
491    Elements.push_back(CFGStmt(statement), C);
492  }
493
494  void appendInitializer(CXXCtorInitializer *initializer,
495                        BumpVectorContext& C) {
496    Elements.push_back(CFGInitializer(initializer), C);
497  }
498
499  void appendBaseDtor(const CXXBaseSpecifier *BS, BumpVectorContext &C) {
500    Elements.push_back(CFGBaseDtor(BS), C);
501  }
502
503  void appendMemberDtor(FieldDecl *FD, BumpVectorContext &C) {
504    Elements.push_back(CFGMemberDtor(FD), C);
505  }
506
507  void appendTemporaryDtor(CXXBindTemporaryExpr *E, BumpVectorContext &C) {
508    Elements.push_back(CFGTemporaryDtor(E), C);
509  }
510
511  // Destructors must be inserted in reversed order. So insertion is in two
512  // steps. First we prepare space for some number of elements, then we insert
513  // the elements beginning at the last position in prepared space.
514  iterator beginAutomaticObjDtorsInsert(iterator I, size_t Cnt,
515      BumpVectorContext& C) {
516    return iterator(Elements.insert(I.base(), Cnt, CFGElement(), C));
517  }
518  iterator insertAutomaticObjDtor(iterator I, VarDecl* VD, Stmt* S) {
519    *I = CFGAutomaticObjDtor(VD, S);
520    return ++I;
521  }
522};
523
524/// CFG - Represents a source-level, intra-procedural CFG that represents the
525///  control-flow of a Stmt.  The Stmt can represent an entire function body,
526///  or a single expression.  A CFG will always contain one empty block that
527///  represents the Exit point of the CFG.  A CFG will also contain a designated
528///  Entry block.  The CFG solely represents control-flow; it consists of
529///  CFGBlocks which are simply containers of Stmt*'s in the AST the CFG
530///  was constructed from.
531class CFG {
532public:
533  //===--------------------------------------------------------------------===//
534  // CFG Construction & Manipulation.
535  //===--------------------------------------------------------------------===//
536
537  class BuildOptions {
538    llvm::BitVector alwaysAddMask;
539  public:
540    typedef llvm::DenseMap<const Stmt *, const CFGBlock*> ForcedBlkExprs;
541    ForcedBlkExprs **forcedBlkExprs;
542
543    bool PruneTriviallyFalseEdges:1;
544    bool AddEHEdges:1;
545    bool AddInitializers:1;
546    bool AddImplicitDtors:1;
547
548    bool alwaysAdd(const Stmt *stmt) const {
549      return alwaysAddMask[stmt->getStmtClass()];
550    }
551
552    void setAlwaysAdd(Stmt::StmtClass stmtClass) {
553      alwaysAddMask[stmtClass] = true;
554    }
555
556    BuildOptions()
557    : alwaysAddMask(Stmt::lastStmtConstant, false)
558      ,forcedBlkExprs(0), PruneTriviallyFalseEdges(true)
559      ,AddEHEdges(false)
560      ,AddInitializers(false)
561      ,AddImplicitDtors(false) {}
562  };
563
564  /// buildCFG - Builds a CFG from an AST.  The responsibility to free the
565  ///   constructed CFG belongs to the caller.
566  static CFG* buildCFG(const Decl *D, Stmt* AST, ASTContext *C,
567                       const BuildOptions &BO);
568
569  /// createBlock - Create a new block in the CFG.  The CFG owns the block;
570  ///  the caller should not directly free it.
571  CFGBlock* createBlock();
572
573  /// setEntry - Set the entry block of the CFG.  This is typically used
574  ///  only during CFG construction.  Most CFG clients expect that the
575  ///  entry block has no predecessors and contains no statements.
576  void setEntry(CFGBlock *B) { Entry = B; }
577
578  /// setIndirectGotoBlock - Set the block used for indirect goto jumps.
579  ///  This is typically used only during CFG construction.
580  void setIndirectGotoBlock(CFGBlock* B) { IndirectGotoBlock = B; }
581
582  //===--------------------------------------------------------------------===//
583  // Block Iterators
584  //===--------------------------------------------------------------------===//
585
586  typedef BumpVector<CFGBlock*>                    CFGBlockListTy;
587  typedef CFGBlockListTy::iterator                 iterator;
588  typedef CFGBlockListTy::const_iterator           const_iterator;
589  typedef std::reverse_iterator<iterator>          reverse_iterator;
590  typedef std::reverse_iterator<const_iterator>    const_reverse_iterator;
591
592  CFGBlock&                 front()                { return *Blocks.front(); }
593  CFGBlock&                 back()                 { return *Blocks.back(); }
594
595  iterator                  begin()                { return Blocks.begin(); }
596  iterator                  end()                  { return Blocks.end(); }
597  const_iterator            begin()       const    { return Blocks.begin(); }
598  const_iterator            end()         const    { return Blocks.end(); }
599
600  reverse_iterator          rbegin()               { return Blocks.rbegin(); }
601  reverse_iterator          rend()                 { return Blocks.rend(); }
602  const_reverse_iterator    rbegin()      const    { return Blocks.rbegin(); }
603  const_reverse_iterator    rend()        const    { return Blocks.rend(); }
604
605  CFGBlock&                 getEntry()             { return *Entry; }
606  const CFGBlock&           getEntry()    const    { return *Entry; }
607  CFGBlock&                 getExit()              { return *Exit; }
608  const CFGBlock&           getExit()     const    { return *Exit; }
609
610  CFGBlock*        getIndirectGotoBlock() { return IndirectGotoBlock; }
611  const CFGBlock*  getIndirectGotoBlock() const { return IndirectGotoBlock; }
612
613  //===--------------------------------------------------------------------===//
614  // Member templates useful for various batch operations over CFGs.
615  //===--------------------------------------------------------------------===//
616
617  template <typename CALLBACK>
618  void VisitBlockStmts(CALLBACK& O) const {
619    for (const_iterator I=begin(), E=end(); I != E; ++I)
620      for (CFGBlock::const_iterator BI=(*I)->begin(), BE=(*I)->end();
621           BI != BE; ++BI) {
622        if (const CFGStmt *stmt = BI->getAs<CFGStmt>())
623          O(stmt->getStmt());
624      }
625  }
626
627  //===--------------------------------------------------------------------===//
628  // CFG Introspection.
629  //===--------------------------------------------------------------------===//
630
631  struct   BlkExprNumTy {
632    const signed Idx;
633    explicit BlkExprNumTy(signed idx) : Idx(idx) {}
634    explicit BlkExprNumTy() : Idx(-1) {}
635    operator bool() const { return Idx >= 0; }
636    operator unsigned() const { assert(Idx >=0); return (unsigned) Idx; }
637  };
638
639  bool isBlkExpr(const Stmt* S) { return getBlkExprNum(S); }
640  bool isBlkExpr(const Stmt *S) const {
641    return const_cast<CFG*>(this)->isBlkExpr(S);
642  }
643  BlkExprNumTy  getBlkExprNum(const Stmt* S);
644  unsigned      getNumBlkExprs();
645
646  /// getNumBlockIDs - Returns the total number of BlockIDs allocated (which
647  /// start at 0).
648  unsigned getNumBlockIDs() const { return NumBlockIDs; }
649
650  //===--------------------------------------------------------------------===//
651  // CFG Debugging: Pretty-Printing and Visualization.
652  //===--------------------------------------------------------------------===//
653
654  void viewCFG(const LangOptions &LO) const;
655  void print(raw_ostream& OS, const LangOptions &LO) const;
656  void dump(const LangOptions &LO) const;
657
658  //===--------------------------------------------------------------------===//
659  // Internal: constructors and data.
660  //===--------------------------------------------------------------------===//
661
662  CFG() : Entry(NULL), Exit(NULL), IndirectGotoBlock(NULL), NumBlockIDs(0),
663          BlkExprMap(NULL), Blocks(BlkBVC, 10) {}
664
665  ~CFG();
666
667  llvm::BumpPtrAllocator& getAllocator() {
668    return BlkBVC.getAllocator();
669  }
670
671  BumpVectorContext &getBumpVectorContext() {
672    return BlkBVC;
673  }
674
675private:
676  CFGBlock* Entry;
677  CFGBlock* Exit;
678  CFGBlock* IndirectGotoBlock;  // Special block to contain collective dispatch
679                                // for indirect gotos
680  unsigned  NumBlockIDs;
681
682  // BlkExprMap - An opaque pointer to prevent inclusion of DenseMap.h.
683  //  It represents a map from Expr* to integers to record the set of
684  //  block-level expressions and their "statement number" in the CFG.
685  void*     BlkExprMap;
686
687  BumpVectorContext BlkBVC;
688
689  CFGBlockListTy Blocks;
690
691};
692} // end namespace clang
693
694//===----------------------------------------------------------------------===//
695// GraphTraits specializations for CFG basic block graphs (source-level CFGs)
696//===----------------------------------------------------------------------===//
697
698namespace llvm {
699
700/// Implement simplify_type for CFGTerminator, so that we can dyn_cast from
701/// CFGTerminator to a specific Stmt class.
702template <> struct simplify_type<const ::clang::CFGTerminator> {
703  typedef const ::clang::Stmt *SimpleType;
704  static SimpleType getSimplifiedValue(const ::clang::CFGTerminator &Val) {
705    return Val.getStmt();
706  }
707};
708
709template <> struct simplify_type< ::clang::CFGTerminator> {
710  typedef ::clang::Stmt *SimpleType;
711  static SimpleType getSimplifiedValue(const ::clang::CFGTerminator &Val) {
712    return const_cast<SimpleType>(Val.getStmt());
713  }
714};
715
716// Traits for: CFGBlock
717
718template <> struct GraphTraits< ::clang::CFGBlock* > {
719  typedef ::clang::CFGBlock NodeType;
720  typedef ::clang::CFGBlock::succ_iterator ChildIteratorType;
721
722  static NodeType* getEntryNode(::clang::CFGBlock* BB)
723  { return BB; }
724
725  static inline ChildIteratorType child_begin(NodeType* N)
726  { return N->succ_begin(); }
727
728  static inline ChildIteratorType child_end(NodeType* N)
729  { return N->succ_end(); }
730};
731
732template <> struct GraphTraits< const ::clang::CFGBlock* > {
733  typedef const ::clang::CFGBlock NodeType;
734  typedef ::clang::CFGBlock::const_succ_iterator ChildIteratorType;
735
736  static NodeType* getEntryNode(const clang::CFGBlock* BB)
737  { return BB; }
738
739  static inline ChildIteratorType child_begin(NodeType* N)
740  { return N->succ_begin(); }
741
742  static inline ChildIteratorType child_end(NodeType* N)
743  { return N->succ_end(); }
744};
745
746template <> struct GraphTraits<Inverse<const ::clang::CFGBlock*> > {
747  typedef const ::clang::CFGBlock NodeType;
748  typedef ::clang::CFGBlock::const_pred_iterator ChildIteratorType;
749
750  static NodeType *getEntryNode(Inverse<const ::clang::CFGBlock*> G)
751  { return G.Graph; }
752
753  static inline ChildIteratorType child_begin(NodeType* N)
754  { return N->pred_begin(); }
755
756  static inline ChildIteratorType child_end(NodeType* N)
757  { return N->pred_end(); }
758};
759
760// Traits for: CFG
761
762template <> struct GraphTraits< ::clang::CFG* >
763    : public GraphTraits< ::clang::CFGBlock* >  {
764
765  typedef ::clang::CFG::iterator nodes_iterator;
766
767  static NodeType *getEntryNode(::clang::CFG* F) { return &F->getEntry(); }
768  static nodes_iterator nodes_begin(::clang::CFG* F) { return F->begin(); }
769  static nodes_iterator nodes_end(::clang::CFG* F) { return F->end(); }
770};
771
772template <> struct GraphTraits<const ::clang::CFG* >
773    : public GraphTraits<const ::clang::CFGBlock* >  {
774
775  typedef ::clang::CFG::const_iterator nodes_iterator;
776
777  static NodeType *getEntryNode( const ::clang::CFG* F) {
778    return &F->getEntry();
779  }
780  static nodes_iterator nodes_begin( const ::clang::CFG* F) {
781    return F->begin();
782  }
783  static nodes_iterator nodes_end( const ::clang::CFG* F) {
784    return F->end();
785  }
786};
787
788template <> struct GraphTraits<Inverse<const ::clang::CFG*> >
789  : public GraphTraits<Inverse<const ::clang::CFGBlock*> > {
790
791  typedef ::clang::CFG::const_iterator nodes_iterator;
792
793  static NodeType *getEntryNode(const ::clang::CFG* F) { return &F->getExit(); }
794  static nodes_iterator nodes_begin(const ::clang::CFG* F) { return F->begin();}
795  static nodes_iterator nodes_end(const ::clang::CFG* F) { return F->end(); }
796};
797} // end llvm namespace
798#endif
799