CFG.h revision 9c378f705405d37f49795d5e915989de774fe11f
1//===--- CFG.h - Classes for representing and building CFGs------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the CFG and CFGBuilder classes for representing and
11//  building Control-Flow Graphs (CFGs) from ASTs.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CLANG_CFG_H
16#define LLVM_CLANG_CFG_H
17
18#include "llvm/ADT/PointerIntPair.h"
19#include "llvm/ADT/GraphTraits.h"
20#include "llvm/Support/Allocator.h"
21#include "llvm/Support/Casting.h"
22#include "llvm/ADT/OwningPtr.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/BitVector.h"
25#include "clang/AST/Stmt.h"
26#include "clang/Analysis/Support/BumpVector.h"
27#include "clang/Basic/SourceLocation.h"
28#include <cassert>
29#include <iterator>
30
31namespace clang {
32  class CXXDestructorDecl;
33  class Decl;
34  class Stmt;
35  class Expr;
36  class FieldDecl;
37  class VarDecl;
38  class CXXCtorInitializer;
39  class CXXBaseSpecifier;
40  class CXXBindTemporaryExpr;
41  class CFG;
42  class PrinterHelper;
43  class LangOptions;
44  class ASTContext;
45
46/// CFGElement - Represents a top-level expression in a basic block.
47class CFGElement {
48public:
49  enum Kind {
50    // main kind
51    Invalid,
52    Statement,
53    Initializer,
54    // dtor kind
55    AutomaticObjectDtor,
56    BaseDtor,
57    MemberDtor,
58    TemporaryDtor,
59    DTOR_BEGIN = AutomaticObjectDtor,
60    DTOR_END = TemporaryDtor
61  };
62
63protected:
64  // The int bits are used to mark the kind.
65  llvm::PointerIntPair<void *, 2> Data1;
66  llvm::PointerIntPair<void *, 2> Data2;
67
68  CFGElement(Kind kind, const void *Ptr1, const void *Ptr2 = 0)
69    : Data1(const_cast<void*>(Ptr1), ((unsigned) kind) & 0x3),
70      Data2(const_cast<void*>(Ptr2), (((unsigned) kind) >> 2) & 0x3) {}
71
72public:
73  CFGElement() {}
74
75  Kind getKind() const {
76    unsigned x = Data2.getInt();
77    x <<= 2;
78    x |= Data1.getInt();
79    return (Kind) x;
80  }
81
82  bool isValid() const { return getKind() != Invalid; }
83
84  operator bool() const { return isValid(); }
85
86  template<class ElemTy> const ElemTy *getAs() const {
87    if (llvm::isa<ElemTy>(this))
88      return static_cast<const ElemTy*>(this);
89    return 0;
90  }
91
92  static bool classof(const CFGElement *E) { return true; }
93};
94
95class CFGStmt : public CFGElement {
96public:
97  CFGStmt(Stmt *S) : CFGElement(Statement, S) {}
98
99  Stmt *getStmt() const { return static_cast<Stmt *>(Data1.getPointer()); }
100
101  static bool classof(const CFGElement *E) {
102    return E->getKind() == Statement;
103  }
104};
105
106/// CFGInitializer - Represents C++ base or member initializer from
107/// constructor's initialization list.
108class CFGInitializer : public CFGElement {
109public:
110  CFGInitializer(CXXCtorInitializer *initializer)
111      : CFGElement(Initializer, initializer) {}
112
113  CXXCtorInitializer* getInitializer() const {
114    return static_cast<CXXCtorInitializer*>(Data1.getPointer());
115  }
116
117  static bool classof(const CFGElement *E) {
118    return E->getKind() == Initializer;
119  }
120};
121
122/// CFGImplicitDtor - Represents C++ object destructor implicitly generated
123/// by compiler on various occasions.
124class CFGImplicitDtor : public CFGElement {
125protected:
126  CFGImplicitDtor(Kind kind, const void *data1, const void *data2 = 0)
127    : CFGElement(kind, data1, data2) {
128    assert(kind >= DTOR_BEGIN && kind <= DTOR_END);
129  }
130
131public:
132  const CXXDestructorDecl *getDestructorDecl(ASTContext &astContext) const;
133  bool isNoReturn(ASTContext &astContext) const;
134
135  static bool classof(const CFGElement *E) {
136    Kind kind = E->getKind();
137    return kind >= DTOR_BEGIN && kind <= DTOR_END;
138  }
139};
140
141/// CFGAutomaticObjDtor - Represents C++ object destructor implicitly generated
142/// for automatic object or temporary bound to const reference at the point
143/// of leaving its local scope.
144class CFGAutomaticObjDtor: public CFGImplicitDtor {
145public:
146  CFGAutomaticObjDtor(const VarDecl *var, const Stmt *stmt)
147      : CFGImplicitDtor(AutomaticObjectDtor, var, stmt) {}
148
149  const VarDecl *getVarDecl() const {
150    return static_cast<VarDecl*>(Data1.getPointer());
151  }
152
153  // Get statement end of which triggered the destructor call.
154  const Stmt *getTriggerStmt() const {
155    return static_cast<Stmt*>(Data2.getPointer());
156  }
157
158  static bool classof(const CFGElement *elem) {
159    return elem->getKind() == AutomaticObjectDtor;
160  }
161};
162
163/// CFGBaseDtor - Represents C++ object destructor implicitly generated for
164/// base object in destructor.
165class CFGBaseDtor : public CFGImplicitDtor {
166public:
167  CFGBaseDtor(const CXXBaseSpecifier *base)
168      : CFGImplicitDtor(BaseDtor, base) {}
169
170  const CXXBaseSpecifier *getBaseSpecifier() const {
171    return static_cast<const CXXBaseSpecifier*>(Data1.getPointer());
172  }
173
174  static bool classof(const CFGElement *E) {
175    return E->getKind() == BaseDtor;
176  }
177};
178
179/// CFGMemberDtor - Represents C++ object destructor implicitly generated for
180/// member object in destructor.
181class CFGMemberDtor : public CFGImplicitDtor {
182public:
183  CFGMemberDtor(const FieldDecl *field)
184      : CFGImplicitDtor(MemberDtor, field, 0) {}
185
186  const FieldDecl *getFieldDecl() const {
187    return static_cast<const FieldDecl*>(Data1.getPointer());
188  }
189
190  static bool classof(const CFGElement *E) {
191    return E->getKind() == MemberDtor;
192  }
193};
194
195/// CFGTemporaryDtor - Represents C++ object destructor implicitly generated
196/// at the end of full expression for temporary object.
197class CFGTemporaryDtor : public CFGImplicitDtor {
198public:
199  CFGTemporaryDtor(CXXBindTemporaryExpr *expr)
200      : CFGImplicitDtor(TemporaryDtor, expr, 0) {}
201
202  const CXXBindTemporaryExpr *getBindTemporaryExpr() const {
203    return static_cast<const CXXBindTemporaryExpr *>(Data1.getPointer());
204  }
205
206  static bool classof(const CFGElement *E) {
207    return E->getKind() == TemporaryDtor;
208  }
209};
210
211/// CFGTerminator - Represents CFGBlock terminator statement.
212///
213/// TemporaryDtorsBranch bit is set to true if the terminator marks a branch
214/// in control flow of destructors of temporaries. In this case terminator
215/// statement is the same statement that branches control flow in evaluation
216/// of matching full expression.
217class CFGTerminator {
218  llvm::PointerIntPair<Stmt *, 1> Data;
219public:
220  CFGTerminator() {}
221  CFGTerminator(Stmt *S, bool TemporaryDtorsBranch = false)
222      : Data(S, TemporaryDtorsBranch) {}
223
224  Stmt *getStmt() { return Data.getPointer(); }
225  const Stmt *getStmt() const { return Data.getPointer(); }
226
227  bool isTemporaryDtorsBranch() const { return Data.getInt(); }
228
229  operator Stmt *() { return getStmt(); }
230  operator const Stmt *() const { return getStmt(); }
231
232  Stmt *operator->() { return getStmt(); }
233  const Stmt *operator->() const { return getStmt(); }
234
235  Stmt &operator*() { return *getStmt(); }
236  const Stmt &operator*() const { return *getStmt(); }
237
238  operator bool() const { return getStmt(); }
239};
240
241/// CFGBlock - Represents a single basic block in a source-level CFG.
242///  It consists of:
243///
244///  (1) A set of statements/expressions (which may contain subexpressions).
245///  (2) A "terminator" statement (not in the set of statements).
246///  (3) A list of successors and predecessors.
247///
248/// Terminator: The terminator represents the type of control-flow that occurs
249/// at the end of the basic block.  The terminator is a Stmt* referring to an
250/// AST node that has control-flow: if-statements, breaks, loops, etc.
251/// If the control-flow is conditional, the condition expression will appear
252/// within the set of statements in the block (usually the last statement).
253///
254/// Predecessors: the order in the set of predecessors is arbitrary.
255///
256/// Successors: the order in the set of successors is NOT arbitrary.  We
257///  currently have the following orderings based on the terminator:
258///
259///     Terminator       Successor Ordering
260///  -----------------------------------------------------
261///       if            Then Block;  Else Block
262///     ? operator      LHS expression;  RHS expression
263///     &&, ||          expression that uses result of && or ||, RHS
264///
265/// But note that any of that may be NULL in case of optimized-out edges.
266///
267class CFGBlock {
268  class ElementList {
269    typedef BumpVector<CFGElement> ImplTy;
270    ImplTy Impl;
271  public:
272    ElementList(BumpVectorContext &C) : Impl(C, 4) {}
273
274    typedef std::reverse_iterator<ImplTy::iterator>       iterator;
275    typedef std::reverse_iterator<ImplTy::const_iterator> const_iterator;
276    typedef ImplTy::iterator                              reverse_iterator;
277    typedef ImplTy::const_iterator                        const_reverse_iterator;
278
279    void push_back(CFGElement e, BumpVectorContext &C) { Impl.push_back(e, C); }
280    reverse_iterator insert(reverse_iterator I, size_t Cnt, CFGElement E,
281        BumpVectorContext &C) {
282      return Impl.insert(I, Cnt, E, C);
283    }
284
285    CFGElement front() const { return Impl.back(); }
286    CFGElement back() const { return Impl.front(); }
287
288    iterator begin() { return Impl.rbegin(); }
289    iterator end() { return Impl.rend(); }
290    const_iterator begin() const { return Impl.rbegin(); }
291    const_iterator end() const { return Impl.rend(); }
292    reverse_iterator rbegin() { return Impl.begin(); }
293    reverse_iterator rend() { return Impl.end(); }
294    const_reverse_iterator rbegin() const { return Impl.begin(); }
295    const_reverse_iterator rend() const { return Impl.end(); }
296
297   CFGElement operator[](size_t i) const  {
298     assert(i < Impl.size());
299     return Impl[Impl.size() - 1 - i];
300   }
301
302    size_t size() const { return Impl.size(); }
303    bool empty() const { return Impl.empty(); }
304  };
305
306  /// Stmts - The set of statements in the basic block.
307  ElementList Elements;
308
309  /// Label - An (optional) label that prefixes the executable
310  ///  statements in the block.  When this variable is non-NULL, it is
311  ///  either an instance of LabelStmt, SwitchCase or CXXCatchStmt.
312  Stmt *Label;
313
314  /// Terminator - The terminator for a basic block that
315  ///  indicates the type of control-flow that occurs between a block
316  ///  and its successors.
317  CFGTerminator Terminator;
318
319  /// LoopTarget - Some blocks are used to represent the "loop edge" to
320  ///  the start of a loop from within the loop body.  This Stmt* will be
321  ///  refer to the loop statement for such blocks (and be null otherwise).
322  const Stmt *LoopTarget;
323
324  /// BlockID - A numerical ID assigned to a CFGBlock during construction
325  ///   of the CFG.
326  unsigned BlockID;
327
328  /// Predecessors/Successors - Keep track of the predecessor / successor
329  /// CFG blocks.
330  typedef BumpVector<CFGBlock*> AdjacentBlocks;
331  AdjacentBlocks Preds;
332  AdjacentBlocks Succs;
333
334public:
335  explicit CFGBlock(unsigned blockid, BumpVectorContext &C)
336    : Elements(C), Label(NULL), Terminator(NULL), LoopTarget(NULL),
337      BlockID(blockid), Preds(C, 1), Succs(C, 1) {}
338  ~CFGBlock() {}
339
340  // Statement iterators
341  typedef ElementList::iterator                      iterator;
342  typedef ElementList::const_iterator                const_iterator;
343  typedef ElementList::reverse_iterator              reverse_iterator;
344  typedef ElementList::const_reverse_iterator        const_reverse_iterator;
345
346  CFGElement                 front()       const { return Elements.front();   }
347  CFGElement                 back()        const { return Elements.back();    }
348
349  iterator                   begin()             { return Elements.begin();   }
350  iterator                   end()               { return Elements.end();     }
351  const_iterator             begin()       const { return Elements.begin();   }
352  const_iterator             end()         const { return Elements.end();     }
353
354  reverse_iterator           rbegin()            { return Elements.rbegin();  }
355  reverse_iterator           rend()              { return Elements.rend();    }
356  const_reverse_iterator     rbegin()      const { return Elements.rbegin();  }
357  const_reverse_iterator     rend()        const { return Elements.rend();    }
358
359  unsigned                   size()        const { return Elements.size();    }
360  bool                       empty()       const { return Elements.empty();   }
361
362  CFGElement operator[](size_t i) const  { return Elements[i]; }
363
364  // CFG iterators
365  typedef AdjacentBlocks::iterator                              pred_iterator;
366  typedef AdjacentBlocks::const_iterator                  const_pred_iterator;
367  typedef AdjacentBlocks::reverse_iterator              pred_reverse_iterator;
368  typedef AdjacentBlocks::const_reverse_iterator  const_pred_reverse_iterator;
369
370  typedef AdjacentBlocks::iterator                              succ_iterator;
371  typedef AdjacentBlocks::const_iterator                  const_succ_iterator;
372  typedef AdjacentBlocks::reverse_iterator              succ_reverse_iterator;
373  typedef AdjacentBlocks::const_reverse_iterator  const_succ_reverse_iterator;
374
375  pred_iterator                pred_begin()        { return Preds.begin();   }
376  pred_iterator                pred_end()          { return Preds.end();     }
377  const_pred_iterator          pred_begin()  const { return Preds.begin();   }
378  const_pred_iterator          pred_end()    const { return Preds.end();     }
379
380  pred_reverse_iterator        pred_rbegin()       { return Preds.rbegin();  }
381  pred_reverse_iterator        pred_rend()         { return Preds.rend();    }
382  const_pred_reverse_iterator  pred_rbegin() const { return Preds.rbegin();  }
383  const_pred_reverse_iterator  pred_rend()   const { return Preds.rend();    }
384
385  succ_iterator                succ_begin()        { return Succs.begin();   }
386  succ_iterator                succ_end()          { return Succs.end();     }
387  const_succ_iterator          succ_begin()  const { return Succs.begin();   }
388  const_succ_iterator          succ_end()    const { return Succs.end();     }
389
390  succ_reverse_iterator        succ_rbegin()       { return Succs.rbegin();  }
391  succ_reverse_iterator        succ_rend()         { return Succs.rend();    }
392  const_succ_reverse_iterator  succ_rbegin() const { return Succs.rbegin();  }
393  const_succ_reverse_iterator  succ_rend()   const { return Succs.rend();    }
394
395  unsigned                     succ_size()   const { return Succs.size();    }
396  bool                         succ_empty()  const { return Succs.empty();   }
397
398  unsigned                     pred_size()   const { return Preds.size();    }
399  bool                         pred_empty()  const { return Preds.empty();   }
400
401
402  class FilterOptions {
403  public:
404    FilterOptions() {
405      IgnoreDefaultsWithCoveredEnums = 0;
406    }
407
408    unsigned IgnoreDefaultsWithCoveredEnums : 1;
409  };
410
411  static bool FilterEdge(const FilterOptions &F, const CFGBlock *Src,
412       const CFGBlock *Dst);
413
414  template <typename IMPL, bool IsPred>
415  class FilteredCFGBlockIterator {
416  private:
417    IMPL I, E;
418    const FilterOptions F;
419    const CFGBlock *From;
420   public:
421    explicit FilteredCFGBlockIterator(const IMPL &i, const IMPL &e,
422              const CFGBlock *from,
423              const FilterOptions &f)
424      : I(i), E(e), F(f), From(from) {}
425
426    bool hasMore() const { return I != E; }
427
428    FilteredCFGBlockIterator &operator++() {
429      do { ++I; } while (hasMore() && Filter(*I));
430      return *this;
431    }
432
433    const CFGBlock *operator*() const { return *I; }
434  private:
435    bool Filter(const CFGBlock *To) {
436      return IsPred ? FilterEdge(F, To, From) : FilterEdge(F, From, To);
437    }
438  };
439
440  typedef FilteredCFGBlockIterator<const_pred_iterator, true>
441          filtered_pred_iterator;
442
443  typedef FilteredCFGBlockIterator<const_succ_iterator, false>
444          filtered_succ_iterator;
445
446  filtered_pred_iterator filtered_pred_start_end(const FilterOptions &f) const {
447    return filtered_pred_iterator(pred_begin(), pred_end(), this, f);
448  }
449
450  filtered_succ_iterator filtered_succ_start_end(const FilterOptions &f) const {
451    return filtered_succ_iterator(succ_begin(), succ_end(), this, f);
452  }
453
454  // Manipulation of block contents
455
456  void setTerminator(Stmt *Statement) { Terminator = Statement; }
457  void setLabel(Stmt *Statement) { Label = Statement; }
458  void setLoopTarget(const Stmt *loopTarget) { LoopTarget = loopTarget; }
459
460  CFGTerminator getTerminator() { return Terminator; }
461  const CFGTerminator getTerminator() const { return Terminator; }
462
463  Stmt *getTerminatorCondition();
464
465  const Stmt *getTerminatorCondition() const {
466    return const_cast<CFGBlock*>(this)->getTerminatorCondition();
467  }
468
469  const Stmt *getLoopTarget() const { return LoopTarget; }
470
471  Stmt *getLabel() { return Label; }
472  const Stmt *getLabel() const { return Label; }
473
474  unsigned getBlockID() const { return BlockID; }
475
476  void dump(const CFG *cfg, const LangOptions &LO) const;
477  void print(raw_ostream &OS, const CFG* cfg, const LangOptions &LO) const;
478  void printTerminator(raw_ostream &OS, const LangOptions &LO) const;
479
480  void addSuccessor(CFGBlock *Block, BumpVectorContext &C) {
481    if (Block)
482      Block->Preds.push_back(this, C);
483    Succs.push_back(Block, C);
484  }
485
486  void appendStmt(Stmt *statement, BumpVectorContext &C) {
487    Elements.push_back(CFGStmt(statement), C);
488  }
489
490  void appendInitializer(CXXCtorInitializer *initializer,
491                        BumpVectorContext &C) {
492    Elements.push_back(CFGInitializer(initializer), C);
493  }
494
495  void appendBaseDtor(const CXXBaseSpecifier *BS, BumpVectorContext &C) {
496    Elements.push_back(CFGBaseDtor(BS), C);
497  }
498
499  void appendMemberDtor(FieldDecl *FD, BumpVectorContext &C) {
500    Elements.push_back(CFGMemberDtor(FD), C);
501  }
502
503  void appendTemporaryDtor(CXXBindTemporaryExpr *E, BumpVectorContext &C) {
504    Elements.push_back(CFGTemporaryDtor(E), C);
505  }
506
507  // Destructors must be inserted in reversed order. So insertion is in two
508  // steps. First we prepare space for some number of elements, then we insert
509  // the elements beginning at the last position in prepared space.
510  iterator beginAutomaticObjDtorsInsert(iterator I, size_t Cnt,
511      BumpVectorContext &C) {
512    return iterator(Elements.insert(I.base(), Cnt, CFGElement(), C));
513  }
514  iterator insertAutomaticObjDtor(iterator I, VarDecl *VD, Stmt *S) {
515    *I = CFGAutomaticObjDtor(VD, S);
516    return ++I;
517  }
518};
519
520/// CFG - Represents a source-level, intra-procedural CFG that represents the
521///  control-flow of a Stmt.  The Stmt can represent an entire function body,
522///  or a single expression.  A CFG will always contain one empty block that
523///  represents the Exit point of the CFG.  A CFG will also contain a designated
524///  Entry block.  The CFG solely represents control-flow; it consists of
525///  CFGBlocks which are simply containers of Stmt*'s in the AST the CFG
526///  was constructed from.
527class CFG {
528public:
529  //===--------------------------------------------------------------------===//
530  // CFG Construction & Manipulation.
531  //===--------------------------------------------------------------------===//
532
533  class BuildOptions {
534    llvm::BitVector alwaysAddMask;
535  public:
536    typedef llvm::DenseMap<const Stmt *, const CFGBlock*> ForcedBlkExprs;
537    ForcedBlkExprs **forcedBlkExprs;
538
539    bool PruneTriviallyFalseEdges;
540    bool AddEHEdges;
541    bool AddInitializers;
542    bool AddImplicitDtors;
543
544    bool alwaysAdd(const Stmt *stmt) const {
545      return alwaysAddMask[stmt->getStmtClass()];
546    }
547
548    BuildOptions &setAlwaysAdd(Stmt::StmtClass stmtClass, bool val = true) {
549      alwaysAddMask[stmtClass] = val;
550      return *this;
551    }
552
553    BuildOptions &setAllAlwaysAdd() {
554      alwaysAddMask.set();
555      return *this;
556    }
557
558    BuildOptions()
559    : alwaysAddMask(Stmt::lastStmtConstant, false)
560      ,forcedBlkExprs(0), PruneTriviallyFalseEdges(true)
561      ,AddEHEdges(false)
562      ,AddInitializers(false)
563      ,AddImplicitDtors(false) {}
564  };
565
566  /// buildCFG - Builds a CFG from an AST.  The responsibility to free the
567  ///   constructed CFG belongs to the caller.
568  static CFG* buildCFG(const Decl *D, Stmt *AST, ASTContext *C,
569                       const BuildOptions &BO);
570
571  /// createBlock - Create a new block in the CFG.  The CFG owns the block;
572  ///  the caller should not directly free it.
573  CFGBlock *createBlock();
574
575  /// setEntry - Set the entry block of the CFG.  This is typically used
576  ///  only during CFG construction.  Most CFG clients expect that the
577  ///  entry block has no predecessors and contains no statements.
578  void setEntry(CFGBlock *B) { Entry = B; }
579
580  /// setIndirectGotoBlock - Set the block used for indirect goto jumps.
581  ///  This is typically used only during CFG construction.
582  void setIndirectGotoBlock(CFGBlock *B) { IndirectGotoBlock = B; }
583
584  //===--------------------------------------------------------------------===//
585  // Block Iterators
586  //===--------------------------------------------------------------------===//
587
588  typedef BumpVector<CFGBlock*>                    CFGBlockListTy;
589  typedef CFGBlockListTy::iterator                 iterator;
590  typedef CFGBlockListTy::const_iterator           const_iterator;
591  typedef std::reverse_iterator<iterator>          reverse_iterator;
592  typedef std::reverse_iterator<const_iterator>    const_reverse_iterator;
593
594  CFGBlock &                front()                { return *Blocks.front(); }
595  CFGBlock &                back()                 { return *Blocks.back(); }
596
597  iterator                  begin()                { return Blocks.begin(); }
598  iterator                  end()                  { return Blocks.end(); }
599  const_iterator            begin()       const    { return Blocks.begin(); }
600  const_iterator            end()         const    { return Blocks.end(); }
601
602  reverse_iterator          rbegin()               { return Blocks.rbegin(); }
603  reverse_iterator          rend()                 { return Blocks.rend(); }
604  const_reverse_iterator    rbegin()      const    { return Blocks.rbegin(); }
605  const_reverse_iterator    rend()        const    { return Blocks.rend(); }
606
607  CFGBlock &                getEntry()             { return *Entry; }
608  const CFGBlock &          getEntry()    const    { return *Entry; }
609  CFGBlock &                getExit()              { return *Exit; }
610  const CFGBlock &          getExit()     const    { return *Exit; }
611
612  CFGBlock *       getIndirectGotoBlock() { return IndirectGotoBlock; }
613  const CFGBlock * getIndirectGotoBlock() const { return IndirectGotoBlock; }
614
615  //===--------------------------------------------------------------------===//
616  // Member templates useful for various batch operations over CFGs.
617  //===--------------------------------------------------------------------===//
618
619  template <typename CALLBACK>
620  void VisitBlockStmts(CALLBACK& O) const {
621    for (const_iterator I=begin(), E=end(); I != E; ++I)
622      for (CFGBlock::const_iterator BI=(*I)->begin(), BE=(*I)->end();
623           BI != BE; ++BI) {
624        if (const CFGStmt *stmt = BI->getAs<CFGStmt>())
625          O(stmt->getStmt());
626      }
627  }
628
629  //===--------------------------------------------------------------------===//
630  // CFG Introspection.
631  //===--------------------------------------------------------------------===//
632
633  struct   BlkExprNumTy {
634    const signed Idx;
635    explicit BlkExprNumTy(signed idx) : Idx(idx) {}
636    explicit BlkExprNumTy() : Idx(-1) {}
637    operator bool() const { return Idx >= 0; }
638    operator unsigned() const { assert(Idx >=0); return (unsigned) Idx; }
639  };
640
641  bool isBlkExpr(const Stmt *S) { return getBlkExprNum(S); }
642  bool isBlkExpr(const Stmt *S) const {
643    return const_cast<CFG*>(this)->isBlkExpr(S);
644  }
645  BlkExprNumTy  getBlkExprNum(const Stmt *S);
646  unsigned      getNumBlkExprs();
647
648  /// getNumBlockIDs - Returns the total number of BlockIDs allocated (which
649  /// start at 0).
650  unsigned getNumBlockIDs() const { return NumBlockIDs; }
651
652  //===--------------------------------------------------------------------===//
653  // CFG Debugging: Pretty-Printing and Visualization.
654  //===--------------------------------------------------------------------===//
655
656  void viewCFG(const LangOptions &LO) const;
657  void print(raw_ostream &OS, const LangOptions &LO) const;
658  void dump(const LangOptions &LO) const;
659
660  //===--------------------------------------------------------------------===//
661  // Internal: constructors and data.
662  //===--------------------------------------------------------------------===//
663
664  CFG() : Entry(NULL), Exit(NULL), IndirectGotoBlock(NULL), NumBlockIDs(0),
665          BlkExprMap(NULL), Blocks(BlkBVC, 10) {}
666
667  ~CFG();
668
669  llvm::BumpPtrAllocator& getAllocator() {
670    return BlkBVC.getAllocator();
671  }
672
673  BumpVectorContext &getBumpVectorContext() {
674    return BlkBVC;
675  }
676
677private:
678  CFGBlock *Entry;
679  CFGBlock *Exit;
680  CFGBlock* IndirectGotoBlock;  // Special block to contain collective dispatch
681                                // for indirect gotos
682  unsigned  NumBlockIDs;
683
684  // BlkExprMap - An opaque pointer to prevent inclusion of DenseMap.h.
685  //  It represents a map from Expr* to integers to record the set of
686  //  block-level expressions and their "statement number" in the CFG.
687  void *    BlkExprMap;
688
689  BumpVectorContext BlkBVC;
690
691  CFGBlockListTy Blocks;
692
693};
694} // end namespace clang
695
696//===----------------------------------------------------------------------===//
697// GraphTraits specializations for CFG basic block graphs (source-level CFGs)
698//===----------------------------------------------------------------------===//
699
700namespace llvm {
701
702/// Implement simplify_type for CFGTerminator, so that we can dyn_cast from
703/// CFGTerminator to a specific Stmt class.
704template <> struct simplify_type<const ::clang::CFGTerminator> {
705  typedef const ::clang::Stmt *SimpleType;
706  static SimpleType getSimplifiedValue(const ::clang::CFGTerminator &Val) {
707    return Val.getStmt();
708  }
709};
710
711template <> struct simplify_type< ::clang::CFGTerminator> {
712  typedef ::clang::Stmt *SimpleType;
713  static SimpleType getSimplifiedValue(const ::clang::CFGTerminator &Val) {
714    return const_cast<SimpleType>(Val.getStmt());
715  }
716};
717
718// Traits for: CFGBlock
719
720template <> struct GraphTraits< ::clang::CFGBlock *> {
721  typedef ::clang::CFGBlock NodeType;
722  typedef ::clang::CFGBlock::succ_iterator ChildIteratorType;
723
724  static NodeType* getEntryNode(::clang::CFGBlock *BB)
725  { return BB; }
726
727  static inline ChildIteratorType child_begin(NodeType* N)
728  { return N->succ_begin(); }
729
730  static inline ChildIteratorType child_end(NodeType* N)
731  { return N->succ_end(); }
732};
733
734template <> struct GraphTraits< const ::clang::CFGBlock *> {
735  typedef const ::clang::CFGBlock NodeType;
736  typedef ::clang::CFGBlock::const_succ_iterator ChildIteratorType;
737
738  static NodeType* getEntryNode(const clang::CFGBlock *BB)
739  { return BB; }
740
741  static inline ChildIteratorType child_begin(NodeType* N)
742  { return N->succ_begin(); }
743
744  static inline ChildIteratorType child_end(NodeType* N)
745  { return N->succ_end(); }
746};
747
748template <> struct GraphTraits<Inverse<const ::clang::CFGBlock*> > {
749  typedef const ::clang::CFGBlock NodeType;
750  typedef ::clang::CFGBlock::const_pred_iterator ChildIteratorType;
751
752  static NodeType *getEntryNode(Inverse<const ::clang::CFGBlock*> G)
753  { return G.Graph; }
754
755  static inline ChildIteratorType child_begin(NodeType* N)
756  { return N->pred_begin(); }
757
758  static inline ChildIteratorType child_end(NodeType* N)
759  { return N->pred_end(); }
760};
761
762// Traits for: CFG
763
764template <> struct GraphTraits< ::clang::CFG* >
765    : public GraphTraits< ::clang::CFGBlock *>  {
766
767  typedef ::clang::CFG::iterator nodes_iterator;
768
769  static NodeType *getEntryNode(::clang::CFG* F) { return &F->getEntry(); }
770  static nodes_iterator nodes_begin(::clang::CFG* F) { return F->begin(); }
771  static nodes_iterator nodes_end(::clang::CFG* F) { return F->end(); }
772};
773
774template <> struct GraphTraits<const ::clang::CFG* >
775    : public GraphTraits<const ::clang::CFGBlock *>  {
776
777  typedef ::clang::CFG::const_iterator nodes_iterator;
778
779  static NodeType *getEntryNode( const ::clang::CFG* F) {
780    return &F->getEntry();
781  }
782  static nodes_iterator nodes_begin( const ::clang::CFG* F) {
783    return F->begin();
784  }
785  static nodes_iterator nodes_end( const ::clang::CFG* F) {
786    return F->end();
787  }
788};
789
790template <> struct GraphTraits<Inverse<const ::clang::CFG*> >
791  : public GraphTraits<Inverse<const ::clang::CFGBlock*> > {
792
793  typedef ::clang::CFG::const_iterator nodes_iterator;
794
795  static NodeType *getEntryNode(const ::clang::CFG* F) { return &F->getExit(); }
796  static nodes_iterator nodes_begin(const ::clang::CFG* F) { return F->begin();}
797  static nodes_iterator nodes_end(const ::clang::CFG* F) { return F->end(); }
798};
799} // end llvm namespace
800#endif
801