CFG.h revision b43d87b0646aa04951056c7e0d1ab9a58eb09f66
1//===--- CFG.h - Classes for representing and building CFGs------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the CFG and CFGBuilder classes for representing and
11//  building Control-Flow Graphs (CFGs) from ASTs.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CLANG_CFG_H
16#define LLVM_CLANG_CFG_H
17
18#include "llvm/ADT/PointerIntPair.h"
19#include "llvm/ADT/GraphTraits.h"
20#include "llvm/Support/Allocator.h"
21#include "llvm/Support/Casting.h"
22#include "llvm/ADT/OwningPtr.h"
23#include "llvm/ADT/DenseMap.h"
24#include "clang/AST/Stmt.h"
25#include "clang/Analysis/Support/BumpVector.h"
26#include "clang/Basic/SourceLocation.h"
27#include <bitset>
28#include <cassert>
29#include <iterator>
30
31namespace clang {
32  class CXXDestructorDecl;
33  class Decl;
34  class Stmt;
35  class Expr;
36  class FieldDecl;
37  class VarDecl;
38  class CXXCtorInitializer;
39  class CXXBaseSpecifier;
40  class CXXBindTemporaryExpr;
41  class CFG;
42  class PrinterHelper;
43  class LangOptions;
44  class ASTContext;
45
46/// CFGElement - Represents a top-level expression in a basic block.
47class CFGElement {
48public:
49  enum Kind {
50    // main kind
51    Invalid,
52    Statement,
53    Initializer,
54    // dtor kind
55    AutomaticObjectDtor,
56    BaseDtor,
57    MemberDtor,
58    TemporaryDtor,
59    DTOR_BEGIN = AutomaticObjectDtor,
60    DTOR_END = TemporaryDtor
61  };
62
63protected:
64  // The int bits are used to mark the kind.
65  llvm::PointerIntPair<void *, 2> Data1;
66  llvm::PointerIntPair<void *, 2> Data2;
67
68  CFGElement(Kind kind, const void *Ptr1, const void *Ptr2 = 0)
69    : Data1(const_cast<void*>(Ptr1), ((unsigned) kind) & 0x3),
70      Data2(const_cast<void*>(Ptr2), (((unsigned) kind) >> 2) & 0x3) {}
71
72public:
73  CFGElement() {}
74
75  Kind getKind() const {
76    unsigned x = Data2.getInt();
77    x <<= 2;
78    x |= Data1.getInt();
79    return (Kind) x;
80  }
81
82  bool isValid() const { return getKind() != Invalid; }
83
84  operator bool() const { return isValid(); }
85
86  template<class ElemTy> const ElemTy *getAs() const {
87    if (llvm::isa<ElemTy>(this))
88      return static_cast<const ElemTy*>(this);
89    return 0;
90  }
91};
92
93class CFGStmt : public CFGElement {
94public:
95  CFGStmt(Stmt *S) : CFGElement(Statement, S) {}
96
97  const Stmt *getStmt() const {
98    return static_cast<const Stmt *>(Data1.getPointer());
99  }
100
101  static bool classof(const CFGElement *E) {
102    return E->getKind() == Statement;
103  }
104};
105
106/// CFGInitializer - Represents C++ base or member initializer from
107/// constructor's initialization list.
108class CFGInitializer : public CFGElement {
109public:
110  CFGInitializer(CXXCtorInitializer *initializer)
111      : CFGElement(Initializer, initializer) {}
112
113  CXXCtorInitializer* getInitializer() const {
114    return static_cast<CXXCtorInitializer*>(Data1.getPointer());
115  }
116
117  static bool classof(const CFGElement *E) {
118    return E->getKind() == Initializer;
119  }
120};
121
122/// CFGImplicitDtor - Represents C++ object destructor implicitly generated
123/// by compiler on various occasions.
124class CFGImplicitDtor : public CFGElement {
125protected:
126  CFGImplicitDtor(Kind kind, const void *data1, const void *data2 = 0)
127    : CFGElement(kind, data1, data2) {
128    assert(kind >= DTOR_BEGIN && kind <= DTOR_END);
129  }
130
131public:
132  const CXXDestructorDecl *getDestructorDecl(ASTContext &astContext) const;
133  bool isNoReturn(ASTContext &astContext) const;
134
135  static bool classof(const CFGElement *E) {
136    Kind kind = E->getKind();
137    return kind >= DTOR_BEGIN && kind <= DTOR_END;
138  }
139};
140
141/// CFGAutomaticObjDtor - Represents C++ object destructor implicitly generated
142/// for automatic object or temporary bound to const reference at the point
143/// of leaving its local scope.
144class CFGAutomaticObjDtor: public CFGImplicitDtor {
145public:
146  CFGAutomaticObjDtor(const VarDecl *var, const Stmt *stmt)
147      : CFGImplicitDtor(AutomaticObjectDtor, var, stmt) {}
148
149  const VarDecl *getVarDecl() const {
150    return static_cast<VarDecl*>(Data1.getPointer());
151  }
152
153  // Get statement end of which triggered the destructor call.
154  const Stmt *getTriggerStmt() const {
155    return static_cast<Stmt*>(Data2.getPointer());
156  }
157
158  static bool classof(const CFGElement *elem) {
159    return elem->getKind() == AutomaticObjectDtor;
160  }
161};
162
163/// CFGBaseDtor - Represents C++ object destructor implicitly generated for
164/// base object in destructor.
165class CFGBaseDtor : public CFGImplicitDtor {
166public:
167  CFGBaseDtor(const CXXBaseSpecifier *base)
168      : CFGImplicitDtor(BaseDtor, base) {}
169
170  const CXXBaseSpecifier *getBaseSpecifier() const {
171    return static_cast<const CXXBaseSpecifier*>(Data1.getPointer());
172  }
173
174  static bool classof(const CFGElement *E) {
175    return E->getKind() == BaseDtor;
176  }
177};
178
179/// CFGMemberDtor - Represents C++ object destructor implicitly generated for
180/// member object in destructor.
181class CFGMemberDtor : public CFGImplicitDtor {
182public:
183  CFGMemberDtor(const FieldDecl *field)
184      : CFGImplicitDtor(MemberDtor, field, 0) {}
185
186  const FieldDecl *getFieldDecl() const {
187    return static_cast<const FieldDecl*>(Data1.getPointer());
188  }
189
190  static bool classof(const CFGElement *E) {
191    return E->getKind() == MemberDtor;
192  }
193};
194
195/// CFGTemporaryDtor - Represents C++ object destructor implicitly generated
196/// at the end of full expression for temporary object.
197class CFGTemporaryDtor : public CFGImplicitDtor {
198public:
199  CFGTemporaryDtor(CXXBindTemporaryExpr *expr)
200      : CFGImplicitDtor(TemporaryDtor, expr, 0) {}
201
202  const CXXBindTemporaryExpr *getBindTemporaryExpr() const {
203    return static_cast<const CXXBindTemporaryExpr *>(Data1.getPointer());
204  }
205
206  static bool classof(const CFGElement *E) {
207    return E->getKind() == TemporaryDtor;
208  }
209};
210
211/// CFGTerminator - Represents CFGBlock terminator statement.
212///
213/// TemporaryDtorsBranch bit is set to true if the terminator marks a branch
214/// in control flow of destructors of temporaries. In this case terminator
215/// statement is the same statement that branches control flow in evaluation
216/// of matching full expression.
217class CFGTerminator {
218  llvm::PointerIntPair<Stmt *, 1> Data;
219public:
220  CFGTerminator() {}
221  CFGTerminator(Stmt *S, bool TemporaryDtorsBranch = false)
222      : Data(S, TemporaryDtorsBranch) {}
223
224  Stmt *getStmt() { return Data.getPointer(); }
225  const Stmt *getStmt() const { return Data.getPointer(); }
226
227  bool isTemporaryDtorsBranch() const { return Data.getInt(); }
228
229  operator Stmt *() { return getStmt(); }
230  operator const Stmt *() const { return getStmt(); }
231
232  Stmt *operator->() { return getStmt(); }
233  const Stmt *operator->() const { return getStmt(); }
234
235  Stmt &operator*() { return *getStmt(); }
236  const Stmt &operator*() const { return *getStmt(); }
237
238  operator bool() const { return getStmt(); }
239};
240
241/// CFGBlock - Represents a single basic block in a source-level CFG.
242///  It consists of:
243///
244///  (1) A set of statements/expressions (which may contain subexpressions).
245///  (2) A "terminator" statement (not in the set of statements).
246///  (3) A list of successors and predecessors.
247///
248/// Terminator: The terminator represents the type of control-flow that occurs
249/// at the end of the basic block.  The terminator is a Stmt* referring to an
250/// AST node that has control-flow: if-statements, breaks, loops, etc.
251/// If the control-flow is conditional, the condition expression will appear
252/// within the set of statements in the block (usually the last statement).
253///
254/// Predecessors: the order in the set of predecessors is arbitrary.
255///
256/// Successors: the order in the set of successors is NOT arbitrary.  We
257///  currently have the following orderings based on the terminator:
258///
259///     Terminator       Successor Ordering
260///  -----------------------------------------------------
261///       if            Then Block;  Else Block
262///     ? operator      LHS expression;  RHS expression
263///     &&, ||          expression that uses result of && or ||, RHS
264///
265/// But note that any of that may be NULL in case of optimized-out edges.
266///
267class CFGBlock {
268  class ElementList {
269    typedef BumpVector<CFGElement> ImplTy;
270    ImplTy Impl;
271  public:
272    ElementList(BumpVectorContext &C) : Impl(C, 4) {}
273
274    typedef std::reverse_iterator<ImplTy::iterator>       iterator;
275    typedef std::reverse_iterator<ImplTy::const_iterator> const_iterator;
276    typedef ImplTy::iterator                              reverse_iterator;
277    typedef ImplTy::const_iterator                       const_reverse_iterator;
278    typedef ImplTy::const_reference                       const_reference;
279
280    void push_back(CFGElement e, BumpVectorContext &C) { Impl.push_back(e, C); }
281    reverse_iterator insert(reverse_iterator I, size_t Cnt, CFGElement E,
282        BumpVectorContext &C) {
283      return Impl.insert(I, Cnt, E, C);
284    }
285
286    const_reference front() const { return Impl.back(); }
287    const_reference back() const { return Impl.front(); }
288
289    iterator begin() { return Impl.rbegin(); }
290    iterator end() { return Impl.rend(); }
291    const_iterator begin() const { return Impl.rbegin(); }
292    const_iterator end() const { return Impl.rend(); }
293    reverse_iterator rbegin() { return Impl.begin(); }
294    reverse_iterator rend() { return Impl.end(); }
295    const_reverse_iterator rbegin() const { return Impl.begin(); }
296    const_reverse_iterator rend() const { return Impl.end(); }
297
298   CFGElement operator[](size_t i) const  {
299     assert(i < Impl.size());
300     return Impl[Impl.size() - 1 - i];
301   }
302
303    size_t size() const { return Impl.size(); }
304    bool empty() const { return Impl.empty(); }
305  };
306
307  /// Stmts - The set of statements in the basic block.
308  ElementList Elements;
309
310  /// Label - An (optional) label that prefixes the executable
311  ///  statements in the block.  When this variable is non-NULL, it is
312  ///  either an instance of LabelStmt, SwitchCase or CXXCatchStmt.
313  Stmt *Label;
314
315  /// Terminator - The terminator for a basic block that
316  ///  indicates the type of control-flow that occurs between a block
317  ///  and its successors.
318  CFGTerminator Terminator;
319
320  /// LoopTarget - Some blocks are used to represent the "loop edge" to
321  ///  the start of a loop from within the loop body.  This Stmt* will be
322  ///  refer to the loop statement for such blocks (and be null otherwise).
323  const Stmt *LoopTarget;
324
325  /// BlockID - A numerical ID assigned to a CFGBlock during construction
326  ///   of the CFG.
327  unsigned BlockID;
328
329  /// Predecessors/Successors - Keep track of the predecessor / successor
330  /// CFG blocks.
331  typedef BumpVector<CFGBlock*> AdjacentBlocks;
332  AdjacentBlocks Preds;
333  AdjacentBlocks Succs;
334
335  /// NoReturn - This bit is set when the basic block contains a function call
336  /// or implicit destructor that is attributed as 'noreturn'. In that case,
337  /// control cannot technically ever proceed past this block. All such blocks
338  /// will have a single immediate successor: the exit block. This allows them
339  /// to be easily reached from the exit block and using this bit quickly
340  /// recognized without scanning the contents of the block.
341  ///
342  /// Optimization Note: This bit could be profitably folded with Terminator's
343  /// storage if the memory usage of CFGBlock becomes an issue.
344  unsigned HasNoReturnElement : 1;
345
346  /// Parent - The parent CFG that owns this CFGBlock.
347  CFG *Parent;
348
349public:
350  explicit CFGBlock(unsigned blockid, BumpVectorContext &C, CFG *parent)
351    : Elements(C), Label(NULL), Terminator(NULL), LoopTarget(NULL),
352      BlockID(blockid), Preds(C, 1), Succs(C, 1), HasNoReturnElement(false),
353      Parent(parent) {}
354  ~CFGBlock() {}
355
356  // Statement iterators
357  typedef ElementList::iterator                      iterator;
358  typedef ElementList::const_iterator                const_iterator;
359  typedef ElementList::reverse_iterator              reverse_iterator;
360  typedef ElementList::const_reverse_iterator        const_reverse_iterator;
361
362  CFGElement                 front()       const { return Elements.front();   }
363  CFGElement                 back()        const { return Elements.back();    }
364
365  iterator                   begin()             { return Elements.begin();   }
366  iterator                   end()               { return Elements.end();     }
367  const_iterator             begin()       const { return Elements.begin();   }
368  const_iterator             end()         const { return Elements.end();     }
369
370  reverse_iterator           rbegin()            { return Elements.rbegin();  }
371  reverse_iterator           rend()              { return Elements.rend();    }
372  const_reverse_iterator     rbegin()      const { return Elements.rbegin();  }
373  const_reverse_iterator     rend()        const { return Elements.rend();    }
374
375  unsigned                   size()        const { return Elements.size();    }
376  bool                       empty()       const { return Elements.empty();   }
377
378  CFGElement operator[](size_t i) const  { return Elements[i]; }
379
380  // CFG iterators
381  typedef AdjacentBlocks::iterator                              pred_iterator;
382  typedef AdjacentBlocks::const_iterator                  const_pred_iterator;
383  typedef AdjacentBlocks::reverse_iterator              pred_reverse_iterator;
384  typedef AdjacentBlocks::const_reverse_iterator  const_pred_reverse_iterator;
385
386  typedef AdjacentBlocks::iterator                              succ_iterator;
387  typedef AdjacentBlocks::const_iterator                  const_succ_iterator;
388  typedef AdjacentBlocks::reverse_iterator              succ_reverse_iterator;
389  typedef AdjacentBlocks::const_reverse_iterator  const_succ_reverse_iterator;
390
391  pred_iterator                pred_begin()        { return Preds.begin();   }
392  pred_iterator                pred_end()          { return Preds.end();     }
393  const_pred_iterator          pred_begin()  const { return Preds.begin();   }
394  const_pred_iterator          pred_end()    const { return Preds.end();     }
395
396  pred_reverse_iterator        pred_rbegin()       { return Preds.rbegin();  }
397  pred_reverse_iterator        pred_rend()         { return Preds.rend();    }
398  const_pred_reverse_iterator  pred_rbegin() const { return Preds.rbegin();  }
399  const_pred_reverse_iterator  pred_rend()   const { return Preds.rend();    }
400
401  succ_iterator                succ_begin()        { return Succs.begin();   }
402  succ_iterator                succ_end()          { return Succs.end();     }
403  const_succ_iterator          succ_begin()  const { return Succs.begin();   }
404  const_succ_iterator          succ_end()    const { return Succs.end();     }
405
406  succ_reverse_iterator        succ_rbegin()       { return Succs.rbegin();  }
407  succ_reverse_iterator        succ_rend()         { return Succs.rend();    }
408  const_succ_reverse_iterator  succ_rbegin() const { return Succs.rbegin();  }
409  const_succ_reverse_iterator  succ_rend()   const { return Succs.rend();    }
410
411  unsigned                     succ_size()   const { return Succs.size();    }
412  bool                         succ_empty()  const { return Succs.empty();   }
413
414  unsigned                     pred_size()   const { return Preds.size();    }
415  bool                         pred_empty()  const { return Preds.empty();   }
416
417
418  class FilterOptions {
419  public:
420    FilterOptions() {
421      IgnoreDefaultsWithCoveredEnums = 0;
422    }
423
424    unsigned IgnoreDefaultsWithCoveredEnums : 1;
425  };
426
427  static bool FilterEdge(const FilterOptions &F, const CFGBlock *Src,
428       const CFGBlock *Dst);
429
430  template <typename IMPL, bool IsPred>
431  class FilteredCFGBlockIterator {
432  private:
433    IMPL I, E;
434    const FilterOptions F;
435    const CFGBlock *From;
436   public:
437    explicit FilteredCFGBlockIterator(const IMPL &i, const IMPL &e,
438              const CFGBlock *from,
439              const FilterOptions &f)
440      : I(i), E(e), F(f), From(from) {}
441
442    bool hasMore() const { return I != E; }
443
444    FilteredCFGBlockIterator &operator++() {
445      do { ++I; } while (hasMore() && Filter(*I));
446      return *this;
447    }
448
449    const CFGBlock *operator*() const { return *I; }
450  private:
451    bool Filter(const CFGBlock *To) {
452      return IsPred ? FilterEdge(F, To, From) : FilterEdge(F, From, To);
453    }
454  };
455
456  typedef FilteredCFGBlockIterator<const_pred_iterator, true>
457          filtered_pred_iterator;
458
459  typedef FilteredCFGBlockIterator<const_succ_iterator, false>
460          filtered_succ_iterator;
461
462  filtered_pred_iterator filtered_pred_start_end(const FilterOptions &f) const {
463    return filtered_pred_iterator(pred_begin(), pred_end(), this, f);
464  }
465
466  filtered_succ_iterator filtered_succ_start_end(const FilterOptions &f) const {
467    return filtered_succ_iterator(succ_begin(), succ_end(), this, f);
468  }
469
470  // Manipulation of block contents
471
472  void setTerminator(Stmt *Statement) { Terminator = Statement; }
473  void setLabel(Stmt *Statement) { Label = Statement; }
474  void setLoopTarget(const Stmt *loopTarget) { LoopTarget = loopTarget; }
475  void setHasNoReturnElement() { HasNoReturnElement = true; }
476
477  CFGTerminator getTerminator() { return Terminator; }
478  const CFGTerminator getTerminator() const { return Terminator; }
479
480  Stmt *getTerminatorCondition();
481
482  const Stmt *getTerminatorCondition() const {
483    return const_cast<CFGBlock*>(this)->getTerminatorCondition();
484  }
485
486  const Stmt *getLoopTarget() const { return LoopTarget; }
487
488  Stmt *getLabel() { return Label; }
489  const Stmt *getLabel() const { return Label; }
490
491  bool hasNoReturnElement() const { return HasNoReturnElement; }
492
493  unsigned getBlockID() const { return BlockID; }
494
495  CFG *getParent() const { return Parent; }
496
497  void dump(const CFG *cfg, const LangOptions &LO, bool ShowColors = false) const;
498  void print(raw_ostream &OS, const CFG* cfg, const LangOptions &LO,
499             bool ShowColors) const;
500  void printTerminator(raw_ostream &OS, const LangOptions &LO) const;
501
502  void addSuccessor(CFGBlock *Block, BumpVectorContext &C) {
503    if (Block)
504      Block->Preds.push_back(this, C);
505    Succs.push_back(Block, C);
506  }
507
508  void appendStmt(Stmt *statement, BumpVectorContext &C) {
509    Elements.push_back(CFGStmt(statement), C);
510  }
511
512  void appendInitializer(CXXCtorInitializer *initializer,
513                        BumpVectorContext &C) {
514    Elements.push_back(CFGInitializer(initializer), C);
515  }
516
517  void appendBaseDtor(const CXXBaseSpecifier *BS, BumpVectorContext &C) {
518    Elements.push_back(CFGBaseDtor(BS), C);
519  }
520
521  void appendMemberDtor(FieldDecl *FD, BumpVectorContext &C) {
522    Elements.push_back(CFGMemberDtor(FD), C);
523  }
524
525  void appendTemporaryDtor(CXXBindTemporaryExpr *E, BumpVectorContext &C) {
526    Elements.push_back(CFGTemporaryDtor(E), C);
527  }
528
529  void appendAutomaticObjDtor(VarDecl *VD, Stmt *S, BumpVectorContext &C) {
530    Elements.push_back(CFGAutomaticObjDtor(VD, S), C);
531  }
532
533  // Destructors must be inserted in reversed order. So insertion is in two
534  // steps. First we prepare space for some number of elements, then we insert
535  // the elements beginning at the last position in prepared space.
536  iterator beginAutomaticObjDtorsInsert(iterator I, size_t Cnt,
537      BumpVectorContext &C) {
538    return iterator(Elements.insert(I.base(), Cnt, CFGElement(), C));
539  }
540  iterator insertAutomaticObjDtor(iterator I, VarDecl *VD, Stmt *S) {
541    *I = CFGAutomaticObjDtor(VD, S);
542    return ++I;
543  }
544};
545
546/// CFG - Represents a source-level, intra-procedural CFG that represents the
547///  control-flow of a Stmt.  The Stmt can represent an entire function body,
548///  or a single expression.  A CFG will always contain one empty block that
549///  represents the Exit point of the CFG.  A CFG will also contain a designated
550///  Entry block.  The CFG solely represents control-flow; it consists of
551///  CFGBlocks which are simply containers of Stmt*'s in the AST the CFG
552///  was constructed from.
553class CFG {
554public:
555  //===--------------------------------------------------------------------===//
556  // CFG Construction & Manipulation.
557  //===--------------------------------------------------------------------===//
558
559  class BuildOptions {
560    std::bitset<Stmt::lastStmtConstant> alwaysAddMask;
561  public:
562    typedef llvm::DenseMap<const Stmt *, const CFGBlock*> ForcedBlkExprs;
563    ForcedBlkExprs **forcedBlkExprs;
564
565    bool PruneTriviallyFalseEdges;
566    bool AddEHEdges;
567    bool AddInitializers;
568    bool AddImplicitDtors;
569    bool AddTemporaryDtors;
570
571    bool alwaysAdd(const Stmt *stmt) const {
572      return alwaysAddMask[stmt->getStmtClass()];
573    }
574
575    BuildOptions &setAlwaysAdd(Stmt::StmtClass stmtClass, bool val = true) {
576      alwaysAddMask[stmtClass] = val;
577      return *this;
578    }
579
580    BuildOptions &setAllAlwaysAdd() {
581      alwaysAddMask.set();
582      return *this;
583    }
584
585    BuildOptions()
586    : forcedBlkExprs(0), PruneTriviallyFalseEdges(true)
587      ,AddEHEdges(false)
588      ,AddInitializers(false)
589      ,AddImplicitDtors(false)
590      ,AddTemporaryDtors(false) {}
591  };
592
593  /// \brief Provides a custom implementation of the iterator class to have the
594  /// same interface as Function::iterator - iterator returns CFGBlock
595  /// (not a pointer to CFGBlock).
596  class graph_iterator {
597  public:
598    typedef const CFGBlock                  value_type;
599    typedef value_type&                     reference;
600    typedef value_type*                     pointer;
601    typedef BumpVector<CFGBlock*>::iterator ImplTy;
602
603    graph_iterator(const ImplTy &i) : I(i) {}
604
605    bool operator==(const graph_iterator &X) const { return I == X.I; }
606    bool operator!=(const graph_iterator &X) const { return I != X.I; }
607
608    reference operator*()    const { return **I; }
609    pointer operator->()     const { return  *I; }
610    operator CFGBlock* ()          { return  *I; }
611
612    graph_iterator &operator++() { ++I; return *this; }
613    graph_iterator &operator--() { --I; return *this; }
614
615  private:
616    ImplTy I;
617  };
618
619  class const_graph_iterator {
620  public:
621    typedef const CFGBlock                  value_type;
622    typedef value_type&                     reference;
623    typedef value_type*                     pointer;
624    typedef BumpVector<CFGBlock*>::const_iterator ImplTy;
625
626    const_graph_iterator(const ImplTy &i) : I(i) {}
627
628    bool operator==(const const_graph_iterator &X) const { return I == X.I; }
629    bool operator!=(const const_graph_iterator &X) const { return I != X.I; }
630
631    reference operator*() const { return **I; }
632    pointer operator->()  const { return  *I; }
633    operator CFGBlock* () const { return  *I; }
634
635    const_graph_iterator &operator++() { ++I; return *this; }
636    const_graph_iterator &operator--() { --I; return *this; }
637
638  private:
639    ImplTy I;
640  };
641
642  /// buildCFG - Builds a CFG from an AST.  The responsibility to free the
643  ///   constructed CFG belongs to the caller.
644  static CFG* buildCFG(const Decl *D, Stmt *AST, ASTContext *C,
645                       const BuildOptions &BO);
646
647  /// createBlock - Create a new block in the CFG.  The CFG owns the block;
648  ///  the caller should not directly free it.
649  CFGBlock *createBlock();
650
651  /// setEntry - Set the entry block of the CFG.  This is typically used
652  ///  only during CFG construction.  Most CFG clients expect that the
653  ///  entry block has no predecessors and contains no statements.
654  void setEntry(CFGBlock *B) { Entry = B; }
655
656  /// setIndirectGotoBlock - Set the block used for indirect goto jumps.
657  ///  This is typically used only during CFG construction.
658  void setIndirectGotoBlock(CFGBlock *B) { IndirectGotoBlock = B; }
659
660  //===--------------------------------------------------------------------===//
661  // Block Iterators
662  //===--------------------------------------------------------------------===//
663
664  typedef BumpVector<CFGBlock*>                    CFGBlockListTy;
665  typedef CFGBlockListTy::iterator                 iterator;
666  typedef CFGBlockListTy::const_iterator           const_iterator;
667  typedef std::reverse_iterator<iterator>          reverse_iterator;
668  typedef std::reverse_iterator<const_iterator>    const_reverse_iterator;
669
670  CFGBlock &                front()                { return *Blocks.front(); }
671  CFGBlock &                back()                 { return *Blocks.back(); }
672
673  iterator                  begin()                { return Blocks.begin(); }
674  iterator                  end()                  { return Blocks.end(); }
675  const_iterator            begin()       const    { return Blocks.begin(); }
676  const_iterator            end()         const    { return Blocks.end(); }
677
678  graph_iterator nodes_begin() { return graph_iterator(Blocks.begin()); }
679  graph_iterator nodes_end() { return graph_iterator(Blocks.end()); }
680  const_graph_iterator nodes_begin() const {
681    return const_graph_iterator(Blocks.begin());
682  }
683  const_graph_iterator nodes_end() const {
684    return const_graph_iterator(Blocks.end());
685  }
686
687  reverse_iterator          rbegin()               { return Blocks.rbegin(); }
688  reverse_iterator          rend()                 { return Blocks.rend(); }
689  const_reverse_iterator    rbegin()      const    { return Blocks.rbegin(); }
690  const_reverse_iterator    rend()        const    { return Blocks.rend(); }
691
692  CFGBlock &                getEntry()             { return *Entry; }
693  const CFGBlock &          getEntry()    const    { return *Entry; }
694  CFGBlock &                getExit()              { return *Exit; }
695  const CFGBlock &          getExit()     const    { return *Exit; }
696
697  CFGBlock *       getIndirectGotoBlock() { return IndirectGotoBlock; }
698  const CFGBlock * getIndirectGotoBlock() const { return IndirectGotoBlock; }
699
700  typedef std::vector<const CFGBlock*>::const_iterator try_block_iterator;
701  try_block_iterator try_blocks_begin() const {
702    return TryDispatchBlocks.begin();
703  }
704  try_block_iterator try_blocks_end() const {
705    return TryDispatchBlocks.end();
706  }
707
708  void addTryDispatchBlock(const CFGBlock *block) {
709    TryDispatchBlocks.push_back(block);
710  }
711
712  //===--------------------------------------------------------------------===//
713  // Member templates useful for various batch operations over CFGs.
714  //===--------------------------------------------------------------------===//
715
716  template <typename CALLBACK>
717  void VisitBlockStmts(CALLBACK& O) const {
718    for (const_iterator I=begin(), E=end(); I != E; ++I)
719      for (CFGBlock::const_iterator BI=(*I)->begin(), BE=(*I)->end();
720           BI != BE; ++BI) {
721        if (const CFGStmt *stmt = BI->getAs<CFGStmt>())
722          O(const_cast<Stmt*>(stmt->getStmt()));
723      }
724  }
725
726  //===--------------------------------------------------------------------===//
727  // CFG Introspection.
728  //===--------------------------------------------------------------------===//
729
730  struct   BlkExprNumTy {
731    const signed Idx;
732    explicit BlkExprNumTy(signed idx) : Idx(idx) {}
733    explicit BlkExprNumTy() : Idx(-1) {}
734    operator bool() const { return Idx >= 0; }
735    operator unsigned() const { assert(Idx >=0); return (unsigned) Idx; }
736  };
737
738  bool isBlkExpr(const Stmt *S) { return getBlkExprNum(S); }
739  bool isBlkExpr(const Stmt *S) const {
740    return const_cast<CFG*>(this)->isBlkExpr(S);
741  }
742  BlkExprNumTy  getBlkExprNum(const Stmt *S);
743  unsigned      getNumBlkExprs();
744
745  /// getNumBlockIDs - Returns the total number of BlockIDs allocated (which
746  /// start at 0).
747  unsigned getNumBlockIDs() const { return NumBlockIDs; }
748
749  /// size - Return the total number of CFGBlocks within the CFG
750  /// This is simply a renaming of the getNumBlockIDs(). This is necessary
751  /// because the dominator implementation needs such an interface.
752  unsigned size() const { return NumBlockIDs; }
753
754  //===--------------------------------------------------------------------===//
755  // CFG Debugging: Pretty-Printing and Visualization.
756  //===--------------------------------------------------------------------===//
757
758  void viewCFG(const LangOptions &LO) const;
759  void print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const;
760  void dump(const LangOptions &LO, bool ShowColors) const;
761
762  //===--------------------------------------------------------------------===//
763  // Internal: constructors and data.
764  //===--------------------------------------------------------------------===//
765
766  CFG() : Entry(NULL), Exit(NULL), IndirectGotoBlock(NULL), NumBlockIDs(0),
767          BlkExprMap(NULL), Blocks(BlkBVC, 10) {}
768
769  ~CFG();
770
771  llvm::BumpPtrAllocator& getAllocator() {
772    return BlkBVC.getAllocator();
773  }
774
775  BumpVectorContext &getBumpVectorContext() {
776    return BlkBVC;
777  }
778
779private:
780  CFGBlock *Entry;
781  CFGBlock *Exit;
782  CFGBlock* IndirectGotoBlock;  // Special block to contain collective dispatch
783                                // for indirect gotos
784  unsigned  NumBlockIDs;
785
786  // BlkExprMap - An opaque pointer to prevent inclusion of DenseMap.h.
787  //  It represents a map from Expr* to integers to record the set of
788  //  block-level expressions and their "statement number" in the CFG.
789  void *    BlkExprMap;
790
791  BumpVectorContext BlkBVC;
792
793  CFGBlockListTy Blocks;
794
795  /// C++ 'try' statements are modeled with an indirect dispatch block.
796  /// This is the collection of such blocks present in the CFG.
797  std::vector<const CFGBlock *> TryDispatchBlocks;
798
799};
800} // end namespace clang
801
802//===----------------------------------------------------------------------===//
803// GraphTraits specializations for CFG basic block graphs (source-level CFGs)
804//===----------------------------------------------------------------------===//
805
806namespace llvm {
807
808/// Implement simplify_type for CFGTerminator, so that we can dyn_cast from
809/// CFGTerminator to a specific Stmt class.
810template <> struct simplify_type<const ::clang::CFGTerminator> {
811  typedef const ::clang::Stmt *SimpleType;
812  static SimpleType getSimplifiedValue(const ::clang::CFGTerminator &Val) {
813    return Val.getStmt();
814  }
815};
816
817template <> struct simplify_type< ::clang::CFGTerminator> {
818  typedef ::clang::Stmt *SimpleType;
819  static SimpleType getSimplifiedValue(const ::clang::CFGTerminator &Val) {
820    return const_cast<SimpleType>(Val.getStmt());
821  }
822};
823
824// Traits for: CFGBlock
825
826template <> struct GraphTraits< ::clang::CFGBlock *> {
827  typedef ::clang::CFGBlock NodeType;
828  typedef ::clang::CFGBlock::succ_iterator ChildIteratorType;
829
830  static NodeType* getEntryNode(::clang::CFGBlock *BB)
831  { return BB; }
832
833  static inline ChildIteratorType child_begin(NodeType* N)
834  { return N->succ_begin(); }
835
836  static inline ChildIteratorType child_end(NodeType* N)
837  { return N->succ_end(); }
838};
839
840template <> struct GraphTraits< const ::clang::CFGBlock *> {
841  typedef const ::clang::CFGBlock NodeType;
842  typedef ::clang::CFGBlock::const_succ_iterator ChildIteratorType;
843
844  static NodeType* getEntryNode(const clang::CFGBlock *BB)
845  { return BB; }
846
847  static inline ChildIteratorType child_begin(NodeType* N)
848  { return N->succ_begin(); }
849
850  static inline ChildIteratorType child_end(NodeType* N)
851  { return N->succ_end(); }
852};
853
854template <> struct GraphTraits<Inverse< ::clang::CFGBlock*> > {
855  typedef ::clang::CFGBlock NodeType;
856  typedef ::clang::CFGBlock::const_pred_iterator ChildIteratorType;
857
858  static NodeType *getEntryNode(Inverse< ::clang::CFGBlock*> G)
859  { return G.Graph; }
860
861  static inline ChildIteratorType child_begin(NodeType* N)
862  { return N->pred_begin(); }
863
864  static inline ChildIteratorType child_end(NodeType* N)
865  { return N->pred_end(); }
866};
867
868template <> struct GraphTraits<Inverse<const ::clang::CFGBlock*> > {
869  typedef const ::clang::CFGBlock NodeType;
870  typedef ::clang::CFGBlock::const_pred_iterator ChildIteratorType;
871
872  static NodeType *getEntryNode(Inverse<const ::clang::CFGBlock*> G)
873  { return G.Graph; }
874
875  static inline ChildIteratorType child_begin(NodeType* N)
876  { return N->pred_begin(); }
877
878  static inline ChildIteratorType child_end(NodeType* N)
879  { return N->pred_end(); }
880};
881
882// Traits for: CFG
883
884template <> struct GraphTraits< ::clang::CFG* >
885    : public GraphTraits< ::clang::CFGBlock *>  {
886
887  typedef ::clang::CFG::graph_iterator nodes_iterator;
888
889  static NodeType     *getEntryNode(::clang::CFG* F) { return &F->getEntry(); }
890  static nodes_iterator nodes_begin(::clang::CFG* F) { return F->nodes_begin();}
891  static nodes_iterator   nodes_end(::clang::CFG* F) { return F->nodes_end(); }
892  static unsigned              size(::clang::CFG* F) { return F->size(); }
893};
894
895template <> struct GraphTraits<const ::clang::CFG* >
896    : public GraphTraits<const ::clang::CFGBlock *>  {
897
898  typedef ::clang::CFG::const_graph_iterator nodes_iterator;
899
900  static NodeType *getEntryNode( const ::clang::CFG* F) {
901    return &F->getEntry();
902  }
903  static nodes_iterator nodes_begin( const ::clang::CFG* F) {
904    return F->nodes_begin();
905  }
906  static nodes_iterator nodes_end( const ::clang::CFG* F) {
907    return F->nodes_end();
908  }
909  static unsigned size(const ::clang::CFG* F) {
910    return F->size();
911  }
912};
913
914template <> struct GraphTraits<Inverse< ::clang::CFG*> >
915  : public GraphTraits<Inverse< ::clang::CFGBlock*> > {
916
917  typedef ::clang::CFG::graph_iterator nodes_iterator;
918
919  static NodeType *getEntryNode( ::clang::CFG* F) { return &F->getExit(); }
920  static nodes_iterator nodes_begin( ::clang::CFG* F) {return F->nodes_begin();}
921  static nodes_iterator nodes_end( ::clang::CFG* F) { return F->nodes_end(); }
922};
923
924template <> struct GraphTraits<Inverse<const ::clang::CFG*> >
925  : public GraphTraits<Inverse<const ::clang::CFGBlock*> > {
926
927  typedef ::clang::CFG::const_graph_iterator nodes_iterator;
928
929  static NodeType *getEntryNode(const ::clang::CFG* F) { return &F->getExit(); }
930  static nodes_iterator nodes_begin(const ::clang::CFG* F) {
931    return F->nodes_begin();
932  }
933  static nodes_iterator nodes_end(const ::clang::CFG* F) {
934    return F->nodes_end();
935  }
936};
937} // end llvm namespace
938#endif
939