CFG.h revision ee7f84d509c6382491673883598eb9ed2d3a6a8b
1//===--- CFG.h - Classes for representing and building CFGs------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the CFG and CFGBuilder classes for representing and
11//  building Control-Flow Graphs (CFGs) from ASTs.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CLANG_CFG_H
16#define LLVM_CLANG_CFG_H
17
18#include "llvm/ADT/PointerIntPair.h"
19#include "llvm/ADT/GraphTraits.h"
20#include "llvm/Support/Allocator.h"
21#include "llvm/Support/Casting.h"
22#include "clang/Analysis/Support/BumpVector.h"
23#include "clang/Basic/SourceLocation.h"
24#include <cassert>
25
26namespace llvm {
27  class raw_ostream;
28}
29namespace clang {
30  class Decl;
31  class Stmt;
32  class Expr;
33  class CFG;
34  class PrinterHelper;
35  class LangOptions;
36  class ASTContext;
37
38/// CFGElement - Represents a top-level expression in a basic block.
39class CFGElement {
40  llvm::PointerIntPair<Stmt *, 2> Data;
41public:
42  enum Type { StartScope, EndScope };
43  explicit CFGElement() {}
44  CFGElement(Stmt *S, bool lvalue) : Data(S, lvalue ? 1 : 0) {}
45  CFGElement(Stmt *S, Type t) : Data(S, t == StartScope ? 2 : 3) {}
46  Stmt *getStmt() const { return Data.getPointer(); }
47  bool asLValue() const { return Data.getInt() == 1; }
48  bool asStartScope() const { return Data.getInt() == 2; }
49  bool asEndScope() const { return Data.getInt() == 3; }
50  bool asDtor() const { return Data.getInt() == 4; }
51  operator Stmt*() const { return getStmt(); }
52  operator bool() const { return getStmt() != 0; }
53};
54
55/// CFGBlock - Represents a single basic block in a source-level CFG.
56///  It consists of:
57///
58///  (1) A set of statements/expressions (which may contain subexpressions).
59///  (2) A "terminator" statement (not in the set of statements).
60///  (3) A list of successors and predecessors.
61///
62/// Terminator: The terminator represents the type of control-flow that occurs
63/// at the end of the basic block.  The terminator is a Stmt* referring to an
64/// AST node that has control-flow: if-statements, breaks, loops, etc.
65/// If the control-flow is conditional, the condition expression will appear
66/// within the set of statements in the block (usually the last statement).
67///
68/// Predecessors: the order in the set of predecessors is arbitrary.
69///
70/// Successors: the order in the set of successors is NOT arbitrary.  We
71///  currently have the following orderings based on the terminator:
72///
73///     Terminator       Successor Ordering
74///  -----------------------------------------------------
75///       if            Then Block;  Else Block
76///     ? operator      LHS expression;  RHS expression
77///     &&, ||          expression that uses result of && or ||, RHS
78///
79class CFGBlock {
80  class StatementList {
81    typedef BumpVector<CFGElement> ImplTy;
82    ImplTy Impl;
83  public:
84    StatementList(BumpVectorContext &C) : Impl(C, 4) {}
85
86    typedef std::reverse_iterator<ImplTy::iterator>       iterator;
87    typedef std::reverse_iterator<ImplTy::const_iterator> const_iterator;
88    typedef ImplTy::iterator                              reverse_iterator;
89    typedef ImplTy::const_iterator                        const_reverse_iterator;
90
91    void push_back(CFGElement e, BumpVectorContext &C) { Impl.push_back(e, C); }
92    CFGElement front() const { return Impl.back(); }
93    CFGElement back() const { return Impl.front(); }
94
95    iterator begin() { return Impl.rbegin(); }
96    iterator end() { return Impl.rend(); }
97    const_iterator begin() const { return Impl.rbegin(); }
98    const_iterator end() const { return Impl.rend(); }
99    reverse_iterator rbegin() { return Impl.begin(); }
100    reverse_iterator rend() { return Impl.end(); }
101    const_reverse_iterator rbegin() const { return Impl.begin(); }
102    const_reverse_iterator rend() const { return Impl.end(); }
103
104   CFGElement operator[](size_t i) const  {
105     assert(i < Impl.size());
106     return Impl[Impl.size() - 1 - i];
107   }
108
109    size_t size() const { return Impl.size(); }
110    bool empty() const { return Impl.empty(); }
111  };
112
113  /// Stmts - The set of statements in the basic block.
114  StatementList Stmts;
115
116  /// Label - An (optional) label that prefixes the executable
117  ///  statements in the block.  When this variable is non-NULL, it is
118  ///  either an instance of LabelStmt, SwitchCase or CXXCatchStmt.
119  Stmt *Label;
120
121  /// Terminator - The terminator for a basic block that
122  ///  indicates the type of control-flow that occurs between a block
123  ///  and its successors.
124  Stmt *Terminator;
125
126  /// LoopTarget - Some blocks are used to represent the "loop edge" to
127  ///  the start of a loop from within the loop body.  This Stmt* will be
128  ///  refer to the loop statement for such blocks (and be null otherwise).
129  const Stmt *LoopTarget;
130
131  /// BlockID - A numerical ID assigned to a CFGBlock during construction
132  ///   of the CFG.
133  unsigned BlockID;
134
135  /// Predecessors/Successors - Keep track of the predecessor / successor
136  /// CFG blocks.
137  typedef BumpVector<CFGBlock*> AdjacentBlocks;
138  AdjacentBlocks Preds;
139  AdjacentBlocks Succs;
140
141public:
142  explicit CFGBlock(unsigned blockid, BumpVectorContext &C)
143    : Stmts(C), Label(NULL), Terminator(NULL), LoopTarget(NULL),
144      BlockID(blockid), Preds(C, 1), Succs(C, 1) {}
145  ~CFGBlock() {}
146
147  // Statement iterators
148  typedef StatementList::iterator                      iterator;
149  typedef StatementList::const_iterator                const_iterator;
150  typedef StatementList::reverse_iterator              reverse_iterator;
151  typedef StatementList::const_reverse_iterator        const_reverse_iterator;
152
153  CFGElement                   front()       const { return Stmts.front();   }
154  CFGElement                   back()        const { return Stmts.back();    }
155
156  iterator                     begin()             { return Stmts.begin();   }
157  iterator                     end()               { return Stmts.end();     }
158  const_iterator               begin()       const { return Stmts.begin();   }
159  const_iterator               end()         const { return Stmts.end();     }
160
161  reverse_iterator             rbegin()            { return Stmts.rbegin();  }
162  reverse_iterator             rend()              { return Stmts.rend();    }
163  const_reverse_iterator       rbegin()      const { return Stmts.rbegin();  }
164  const_reverse_iterator       rend()        const { return Stmts.rend();    }
165
166  unsigned                     size()        const { return Stmts.size();    }
167  bool                         empty()       const { return Stmts.empty();   }
168
169  CFGElement operator[](size_t i) const  { return Stmts[i]; }
170
171  // CFG iterators
172  typedef AdjacentBlocks::iterator                              pred_iterator;
173  typedef AdjacentBlocks::const_iterator                  const_pred_iterator;
174  typedef AdjacentBlocks::reverse_iterator              pred_reverse_iterator;
175  typedef AdjacentBlocks::const_reverse_iterator  const_pred_reverse_iterator;
176
177  typedef AdjacentBlocks::iterator                              succ_iterator;
178  typedef AdjacentBlocks::const_iterator                  const_succ_iterator;
179  typedef AdjacentBlocks::reverse_iterator              succ_reverse_iterator;
180  typedef AdjacentBlocks::const_reverse_iterator  const_succ_reverse_iterator;
181
182  pred_iterator                pred_begin()        { return Preds.begin();   }
183  pred_iterator                pred_end()          { return Preds.end();     }
184  const_pred_iterator          pred_begin()  const { return Preds.begin();   }
185  const_pred_iterator          pred_end()    const { return Preds.end();     }
186
187  pred_reverse_iterator        pred_rbegin()       { return Preds.rbegin();  }
188  pred_reverse_iterator        pred_rend()         { return Preds.rend();    }
189  const_pred_reverse_iterator  pred_rbegin() const { return Preds.rbegin();  }
190  const_pred_reverse_iterator  pred_rend()   const { return Preds.rend();    }
191
192  succ_iterator                succ_begin()        { return Succs.begin();   }
193  succ_iterator                succ_end()          { return Succs.end();     }
194  const_succ_iterator          succ_begin()  const { return Succs.begin();   }
195  const_succ_iterator          succ_end()    const { return Succs.end();     }
196
197  succ_reverse_iterator        succ_rbegin()       { return Succs.rbegin();  }
198  succ_reverse_iterator        succ_rend()         { return Succs.rend();    }
199  const_succ_reverse_iterator  succ_rbegin() const { return Succs.rbegin();  }
200  const_succ_reverse_iterator  succ_rend()   const { return Succs.rend();    }
201
202  unsigned                     succ_size()   const { return Succs.size();    }
203  bool                         succ_empty()  const { return Succs.empty();   }
204
205  unsigned                     pred_size()   const { return Preds.size();    }
206  bool                         pred_empty()  const { return Preds.empty();   }
207
208
209  class FilterOptions {
210  public:
211    FilterOptions() {
212      IgnoreDefaultsWithCoveredEnums = 0;
213    };
214
215    unsigned IgnoreDefaultsWithCoveredEnums : 1;
216  };
217
218  static bool FilterEdge(const FilterOptions &F, const CFGBlock *Src,
219			 const CFGBlock *Dst);
220
221  template <typename IMPL, bool IsPred>
222  class FilteredCFGBlockIterator {
223  private:
224    IMPL I, E;
225    const FilterOptions F;
226    const CFGBlock *From;
227   public:
228    explicit FilteredCFGBlockIterator(const IMPL &i, const IMPL &e,
229				      const CFGBlock *from,
230				      const FilterOptions &f)
231      : I(i), E(e), F(f), From(from) {}
232
233    bool hasMore() const { return I != E; }
234
235    FilteredCFGBlockIterator &operator++() {
236      do { ++I; } while (hasMore() && Filter(*I));
237      return *this;
238    }
239
240    const CFGBlock *operator*() const { return *I; }
241  private:
242    bool Filter(const CFGBlock *To) {
243      return IsPred ? FilterEdge(F, To, From) : FilterEdge(F, From, To);
244    }
245  };
246
247  typedef FilteredCFGBlockIterator<const_pred_iterator, true>
248          filtered_pred_iterator;
249
250  typedef FilteredCFGBlockIterator<const_succ_iterator, false>
251          filtered_succ_iterator;
252
253  filtered_pred_iterator filtered_pred_start_end(const FilterOptions &f) const {
254    return filtered_pred_iterator(pred_begin(), pred_end(), this, f);
255  }
256
257  filtered_succ_iterator filtered_succ_start_end(const FilterOptions &f) const {
258    return filtered_succ_iterator(succ_begin(), succ_end(), this, f);
259  }
260
261  // Manipulation of block contents
262
263  void setTerminator(Stmt* Statement) { Terminator = Statement; }
264  void setLabel(Stmt* Statement) { Label = Statement; }
265  void setLoopTarget(const Stmt *loopTarget) { LoopTarget = loopTarget; }
266
267  Stmt* getTerminator() { return Terminator; }
268  const Stmt* getTerminator() const { return Terminator; }
269
270  Stmt* getTerminatorCondition();
271
272  const Stmt* getTerminatorCondition() const {
273    return const_cast<CFGBlock*>(this)->getTerminatorCondition();
274  }
275
276  const Stmt *getLoopTarget() const { return LoopTarget; }
277
278  bool hasBinaryBranchTerminator() const;
279
280  Stmt* getLabel() { return Label; }
281  const Stmt* getLabel() const { return Label; }
282
283  unsigned getBlockID() const { return BlockID; }
284
285  void dump(const CFG *cfg, const LangOptions &LO) const;
286  void print(llvm::raw_ostream &OS, const CFG* cfg, const LangOptions &LO) const;
287  void printTerminator(llvm::raw_ostream &OS, const LangOptions &LO) const;
288
289  void addSuccessor(CFGBlock* Block, BumpVectorContext &C) {
290    if (Block)
291      Block->Preds.push_back(this, C);
292    Succs.push_back(Block, C);
293  }
294
295  void appendStmt(Stmt* Statement, BumpVectorContext &C, bool asLValue) {
296      Stmts.push_back(CFGElement(Statement, asLValue), C);
297  }
298  void StartScope(Stmt* S, BumpVectorContext &C) {
299    Stmts.push_back(CFGElement(S, CFGElement::StartScope), C);
300  }
301  void EndScope(Stmt* S, BumpVectorContext &C) {
302    Stmts.push_back(CFGElement(S, CFGElement::EndScope), C);
303  }
304};
305
306
307/// CFG - Represents a source-level, intra-procedural CFG that represents the
308///  control-flow of a Stmt.  The Stmt can represent an entire function body,
309///  or a single expression.  A CFG will always contain one empty block that
310///  represents the Exit point of the CFG.  A CFG will also contain a designated
311///  Entry block.  The CFG solely represents control-flow; it consists of
312///  CFGBlocks which are simply containers of Stmt*'s in the AST the CFG
313///  was constructed from.
314class CFG {
315public:
316  //===--------------------------------------------------------------------===//
317  // CFG Construction & Manipulation.
318  //===--------------------------------------------------------------------===//
319
320  /// buildCFG - Builds a CFG from an AST.  The responsibility to free the
321  ///   constructed CFG belongs to the caller.
322  static CFG* buildCFG(const Decl *D, Stmt* AST, ASTContext *C,
323                       bool pruneTriviallyFalseEdges = true,
324                       bool AddEHEdges = false,
325                       bool AddScopes = false /* NOT FULLY IMPLEMENTED.
326                                                 NOT READY FOR GENERAL USE. */);
327
328  /// createBlock - Create a new block in the CFG.  The CFG owns the block;
329  ///  the caller should not directly free it.
330  CFGBlock* createBlock();
331
332  /// setEntry - Set the entry block of the CFG.  This is typically used
333  ///  only during CFG construction.  Most CFG clients expect that the
334  ///  entry block has no predecessors and contains no statements.
335  void setEntry(CFGBlock *B) { Entry = B; }
336
337  /// setIndirectGotoBlock - Set the block used for indirect goto jumps.
338  ///  This is typically used only during CFG construction.
339  void setIndirectGotoBlock(CFGBlock* B) { IndirectGotoBlock = B; }
340
341  //===--------------------------------------------------------------------===//
342  // Block Iterators
343  //===--------------------------------------------------------------------===//
344
345  typedef BumpVector<CFGBlock*>                    CFGBlockListTy;
346  typedef CFGBlockListTy::iterator                 iterator;
347  typedef CFGBlockListTy::const_iterator           const_iterator;
348  typedef std::reverse_iterator<iterator>          reverse_iterator;
349  typedef std::reverse_iterator<const_iterator>    const_reverse_iterator;
350
351  CFGBlock&                 front()                { return *Blocks.front(); }
352  CFGBlock&                 back()                 { return *Blocks.back(); }
353
354  iterator                  begin()                { return Blocks.begin(); }
355  iterator                  end()                  { return Blocks.end(); }
356  const_iterator            begin()       const    { return Blocks.begin(); }
357  const_iterator            end()         const    { return Blocks.end(); }
358
359  reverse_iterator          rbegin()               { return Blocks.rbegin(); }
360  reverse_iterator          rend()                 { return Blocks.rend(); }
361  const_reverse_iterator    rbegin()      const    { return Blocks.rbegin(); }
362  const_reverse_iterator    rend()        const    { return Blocks.rend(); }
363
364  CFGBlock&                 getEntry()             { return *Entry; }
365  const CFGBlock&           getEntry()    const    { return *Entry; }
366  CFGBlock&                 getExit()              { return *Exit; }
367  const CFGBlock&           getExit()     const    { return *Exit; }
368
369  CFGBlock*        getIndirectGotoBlock() { return IndirectGotoBlock; }
370  const CFGBlock*  getIndirectGotoBlock() const { return IndirectGotoBlock; }
371
372  //===--------------------------------------------------------------------===//
373  // Member templates useful for various batch operations over CFGs.
374  //===--------------------------------------------------------------------===//
375
376  template <typename CALLBACK>
377  void VisitBlockStmts(CALLBACK& O) const {
378    for (const_iterator I=begin(), E=end(); I != E; ++I)
379      for (CFGBlock::const_iterator BI=(*I)->begin(), BE=(*I)->end();
380           BI != BE; ++BI)
381        O(*BI);
382  }
383
384  //===--------------------------------------------------------------------===//
385  // CFG Introspection.
386  //===--------------------------------------------------------------------===//
387
388  struct   BlkExprNumTy {
389    const signed Idx;
390    explicit BlkExprNumTy(signed idx) : Idx(idx) {}
391    explicit BlkExprNumTy() : Idx(-1) {}
392    operator bool() const { return Idx >= 0; }
393    operator unsigned() const { assert(Idx >=0); return (unsigned) Idx; }
394  };
395
396  bool          isBlkExpr(const Stmt* S) { return getBlkExprNum(S); }
397  BlkExprNumTy  getBlkExprNum(const Stmt* S);
398  unsigned      getNumBlkExprs();
399
400  /// getNumBlockIDs - Returns the total number of BlockIDs allocated (which
401  /// start at 0).
402  unsigned getNumBlockIDs() const { return NumBlockIDs; }
403
404  //===--------------------------------------------------------------------===//
405  // CFG Debugging: Pretty-Printing and Visualization.
406  //===--------------------------------------------------------------------===//
407
408  void viewCFG(const LangOptions &LO) const;
409  void print(llvm::raw_ostream& OS, const LangOptions &LO) const;
410  void dump(const LangOptions &LO) const;
411
412  //===--------------------------------------------------------------------===//
413  // Internal: constructors and data.
414  //===--------------------------------------------------------------------===//
415
416  CFG() : Entry(NULL), Exit(NULL), IndirectGotoBlock(NULL), NumBlockIDs(0),
417          BlkExprMap(NULL), Blocks(BlkBVC, 10) {}
418
419  ~CFG();
420
421  llvm::BumpPtrAllocator& getAllocator() {
422    return BlkBVC.getAllocator();
423  }
424
425  BumpVectorContext &getBumpVectorContext() {
426    return BlkBVC;
427  }
428
429private:
430  CFGBlock* Entry;
431  CFGBlock* Exit;
432  CFGBlock* IndirectGotoBlock;  // Special block to contain collective dispatch
433                                // for indirect gotos
434  unsigned  NumBlockIDs;
435
436  // BlkExprMap - An opaque pointer to prevent inclusion of DenseMap.h.
437  //  It represents a map from Expr* to integers to record the set of
438  //  block-level expressions and their "statement number" in the CFG.
439  void*     BlkExprMap;
440
441  BumpVectorContext BlkBVC;
442
443  CFGBlockListTy Blocks;
444
445};
446} // end namespace clang
447
448//===----------------------------------------------------------------------===//
449// GraphTraits specializations for CFG basic block graphs (source-level CFGs)
450//===----------------------------------------------------------------------===//
451
452namespace llvm {
453
454/// Implement simplify_type for CFGElement, so that we can dyn_cast from
455/// CFGElement to a specific Stmt class.
456template <> struct simplify_type<const ::clang::CFGElement> {
457  typedef ::clang::Stmt* SimpleType;
458  static SimpleType getSimplifiedValue(const ::clang::CFGElement &Val) {
459    return Val.getStmt();
460  }
461};
462
463template <> struct simplify_type< ::clang::CFGElement>
464  : public simplify_type<const ::clang::CFGElement> {};
465
466// Traits for: CFGBlock
467
468template <> struct GraphTraits< ::clang::CFGBlock* > {
469  typedef ::clang::CFGBlock NodeType;
470  typedef ::clang::CFGBlock::succ_iterator ChildIteratorType;
471
472  static NodeType* getEntryNode(::clang::CFGBlock* BB)
473  { return BB; }
474
475  static inline ChildIteratorType child_begin(NodeType* N)
476  { return N->succ_begin(); }
477
478  static inline ChildIteratorType child_end(NodeType* N)
479  { return N->succ_end(); }
480};
481
482template <> struct GraphTraits< const ::clang::CFGBlock* > {
483  typedef const ::clang::CFGBlock NodeType;
484  typedef ::clang::CFGBlock::const_succ_iterator ChildIteratorType;
485
486  static NodeType* getEntryNode(const clang::CFGBlock* BB)
487  { return BB; }
488
489  static inline ChildIteratorType child_begin(NodeType* N)
490  { return N->succ_begin(); }
491
492  static inline ChildIteratorType child_end(NodeType* N)
493  { return N->succ_end(); }
494};
495
496template <> struct GraphTraits<Inverse<const ::clang::CFGBlock*> > {
497  typedef const ::clang::CFGBlock NodeType;
498  typedef ::clang::CFGBlock::const_pred_iterator ChildIteratorType;
499
500  static NodeType *getEntryNode(Inverse<const ::clang::CFGBlock*> G)
501  { return G.Graph; }
502
503  static inline ChildIteratorType child_begin(NodeType* N)
504  { return N->pred_begin(); }
505
506  static inline ChildIteratorType child_end(NodeType* N)
507  { return N->pred_end(); }
508};
509
510// Traits for: CFG
511
512template <> struct GraphTraits< ::clang::CFG* >
513    : public GraphTraits< ::clang::CFGBlock* >  {
514
515  typedef ::clang::CFG::iterator nodes_iterator;
516
517  static NodeType *getEntryNode(::clang::CFG* F) { return &F->getEntry(); }
518  static nodes_iterator nodes_begin(::clang::CFG* F) { return F->begin(); }
519  static nodes_iterator nodes_end(::clang::CFG* F) { return F->end(); }
520};
521
522template <> struct GraphTraits<const ::clang::CFG* >
523    : public GraphTraits<const ::clang::CFGBlock* >  {
524
525  typedef ::clang::CFG::const_iterator nodes_iterator;
526
527  static NodeType *getEntryNode( const ::clang::CFG* F) {
528    return &F->getEntry();
529  }
530  static nodes_iterator nodes_begin( const ::clang::CFG* F) {
531    return F->begin();
532  }
533  static nodes_iterator nodes_end( const ::clang::CFG* F) {
534    return F->end();
535  }
536};
537
538template <> struct GraphTraits<Inverse<const ::clang::CFG*> >
539  : public GraphTraits<Inverse<const ::clang::CFGBlock*> > {
540
541  typedef ::clang::CFG::const_iterator nodes_iterator;
542
543  static NodeType *getEntryNode(const ::clang::CFG* F) { return &F->getExit(); }
544  static nodes_iterator nodes_begin(const ::clang::CFG* F) { return F->begin();}
545  static nodes_iterator nodes_end(const ::clang::CFG* F) { return F->end(); }
546};
547} // end llvm namespace
548#endif
549