Ownership.h revision b3d8748e797c6c2f1dc01186c8eeb3b1b5fe970c
1//===--- Ownership.h - Parser ownership helpers -----------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file contains classes for managing ownership of Stmt and Expr nodes.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_SEMA_OWNERSHIP_H
15#define LLVM_CLANG_SEMA_OWNERSHIP_H
16
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/ADT/PointerIntPair.h"
19
20//===----------------------------------------------------------------------===//
21// OpaquePtr
22//===----------------------------------------------------------------------===//
23
24namespace clang {
25  class Action;
26  class Attr;
27  class CXXBaseOrMemberInitializer;
28  class CXXBaseSpecifier;
29  class Decl;
30  class DeclGroupRef;
31  class Expr;
32  class NestedNameSpecifier;
33  class QualType;
34  class Stmt;
35  class TemplateName;
36  class TemplateParameterList;
37
38  /// OpaquePtr - This is a very simple POD type that wraps a pointer that the
39  /// Parser doesn't know about but that Sema or another client does.  The UID
40  /// template argument is used to make sure that "Decl" pointers are not
41  /// compatible with "Type" pointers for example.
42  template <class PtrTy>
43  class OpaquePtr {
44    void *Ptr;
45    explicit OpaquePtr(void *Ptr) : Ptr(Ptr) {}
46
47    typedef llvm::PointerLikeTypeTraits<PtrTy> Traits;
48
49  public:
50    OpaquePtr() : Ptr(0) {}
51
52    static OpaquePtr make(PtrTy P) { OpaquePtr OP; OP.set(P); return OP; }
53
54    template <typename T> T* getAs() const {
55      return get();
56    }
57
58    template <typename T> T getAsVal() const {
59      return get();
60    }
61
62    PtrTy get() const {
63      return Traits::getFromVoidPointer(Ptr);
64    }
65
66    void set(PtrTy P) {
67      Ptr = Traits::getAsVoidPointer(P);
68    }
69
70    operator bool() const { return Ptr != 0; }
71
72    void *getAsOpaquePtr() const { return Ptr; }
73    static OpaquePtr getFromOpaquePtr(void *P) { return OpaquePtr(P); }
74  };
75
76  /// UnionOpaquePtr - A version of OpaquePtr suitable for membership
77  /// in a union.
78  template <class T> struct UnionOpaquePtr {
79    void *Ptr;
80
81    static UnionOpaquePtr make(OpaquePtr<T> P) {
82      UnionOpaquePtr OP = { P.getAsOpaquePtr() };
83      return OP;
84    }
85
86    OpaquePtr<T> get() const { return OpaquePtr<T>::getFromOpaquePtr(Ptr); }
87    operator OpaquePtr<T>() const { return get(); }
88
89    UnionOpaquePtr &operator=(OpaquePtr<T> P) {
90      Ptr = P.getAsOpaquePtr();
91      return *this;
92    }
93  };
94}
95
96namespace llvm {
97  template <class T>
98  class PointerLikeTypeTraits<clang::OpaquePtr<T> > {
99  public:
100    static inline void *getAsVoidPointer(clang::OpaquePtr<T> P) {
101      // FIXME: Doesn't work? return P.getAs< void >();
102      return P.getAsOpaquePtr();
103    }
104    static inline clang::OpaquePtr<T> getFromVoidPointer(void *P) {
105      return clang::OpaquePtr<T>::getFromOpaquePtr(P);
106    }
107    enum { NumLowBitsAvailable = 0 };
108  };
109}
110
111
112
113// -------------------------- About Move Emulation -------------------------- //
114// The smart pointer classes in this file attempt to emulate move semantics
115// as they appear in C++0x with rvalue references. Since C++03 doesn't have
116// rvalue references, some tricks are needed to get similar results.
117// Move semantics in C++0x have the following properties:
118// 1) "Moving" means transferring the value of an object to another object,
119//    similar to copying, but without caring what happens to the old object.
120//    In particular, this means that the new object can steal the old object's
121//    resources instead of creating a copy.
122// 2) Since moving can modify the source object, it must either be explicitly
123//    requested by the user, or the modifications must be unnoticeable.
124// 3) As such, C++0x moving is only allowed in three contexts:
125//    * By explicitly using std::move() to request it.
126//    * From a temporary object, since that object cannot be accessed
127//      afterwards anyway, thus making the state unobservable.
128//    * On function return, since the object is not observable afterwards.
129//
130// To sum up: moving from a named object should only be possible with an
131// explicit std::move(), or on function return. Moving from a temporary should
132// be implicitly done. Moving from a const object is forbidden.
133//
134// The emulation is not perfect, and has the following shortcomings:
135// * move() is not in namespace std.
136// * move() is required on function return.
137// * There are difficulties with implicit conversions.
138// * Microsoft's compiler must be given the /Za switch to successfully compile.
139//
140// -------------------------- Implementation -------------------------------- //
141// The move emulation relies on the peculiar reference binding semantics of
142// C++03: as a rule, a non-const reference may not bind to a temporary object,
143// except for the implicit object parameter in a member function call, which
144// can refer to a temporary even when not being const.
145// The moveable object has five important functions to facilitate moving:
146// * A private, unimplemented constructor taking a non-const reference to its
147//   own class. This constructor serves a two-fold purpose.
148//   - It prevents the creation of a copy constructor that takes a const
149//     reference. Temporaries would be able to bind to the argument of such a
150//     constructor, and that would be bad.
151//   - Named objects will bind to the non-const reference, but since it's
152//     private, this will fail to compile. This prevents implicit moving from
153//     named objects.
154//   There's also a copy assignment operator for the same purpose.
155// * An implicit, non-const conversion operator to a special mover type. This
156//   type represents the rvalue reference of C++0x. Being a non-const member,
157//   its implicit this parameter can bind to temporaries.
158// * A constructor that takes an object of this mover type. This constructor
159//   performs the actual move operation. There is an equivalent assignment
160//   operator.
161// There is also a free move() function that takes a non-const reference to
162// an object and returns a temporary. Internally, this function uses explicit
163// constructor calls to move the value from the referenced object to the return
164// value.
165//
166// There are now three possible scenarios of use.
167// * Copying from a const object. Constructor overload resolution will find the
168//   non-const copy constructor, and the move constructor. The first is not
169//   viable because the const object cannot be bound to the non-const reference.
170//   The second fails because the conversion to the mover object is non-const.
171//   Moving from a const object fails as intended.
172// * Copying from a named object. Constructor overload resolution will select
173//   the non-const copy constructor, but fail as intended, because this
174//   constructor is private.
175// * Copying from a temporary. Constructor overload resolution cannot select
176//   the non-const copy constructor, because the temporary cannot be bound to
177//   the non-const reference. It thus selects the move constructor. The
178//   temporary can be bound to the implicit this parameter of the conversion
179//   operator, because of the special binding rule. Construction succeeds.
180//   Note that the Microsoft compiler, as an extension, allows binding
181//   temporaries against non-const references. The compiler thus selects the
182//   non-const copy constructor and fails, because the constructor is private.
183//   Passing /Za (disable extensions) disables this behaviour.
184// The free move() function is used to move from a named object.
185//
186// Note that when passing an object of a different type (the classes below
187// have OwningResult and OwningPtr, which should be mixable), you get a problem.
188// Argument passing and function return use copy initialization rules. The
189// effect of this is that, when the source object is not already of the target
190// type, the compiler will first seek a way to convert the source object to the
191// target type, and only then attempt to copy the resulting object. This means
192// that when passing an OwningResult where an OwningPtr is expected, the
193// compiler will first seek a conversion from OwningResult to OwningPtr, then
194// copy the OwningPtr. The resulting conversion sequence is:
195// OwningResult object -> ResultMover -> OwningResult argument to
196// OwningPtr(OwningResult) -> OwningPtr -> PtrMover -> final OwningPtr
197// This conversion sequence is too complex to be allowed. Thus the special
198// move_* functions, which help the compiler out with some explicit
199// conversions.
200
201namespace clang {
202  // Basic
203  class DiagnosticBuilder;
204
205  // Determines whether the low bit of the result pointer for the
206  // given UID is always zero. If so, ActionResult will use that bit
207  // for it's "invalid" flag.
208  template<class Ptr>
209  struct IsResultPtrLowBitFree {
210    static const bool value = false;
211  };
212
213  /// ActionResult - This structure is used while parsing/acting on
214  /// expressions, stmts, etc.  It encapsulates both the object returned by
215  /// the action, plus a sense of whether or not it is valid.
216  /// When CompressInvalid is true, the "invalid" flag will be
217  /// stored in the low bit of the Val pointer.
218  template<class PtrTy,
219           bool CompressInvalid = IsResultPtrLowBitFree<PtrTy>::value>
220  class ActionResult {
221    PtrTy Val;
222    bool Invalid;
223
224  public:
225    ActionResult(bool Invalid = false) : Val(PtrTy()), Invalid(Invalid) {}
226    ActionResult(PtrTy val) : Val(val), Invalid(false) {}
227    ActionResult(const DiagnosticBuilder &) : Val(PtrTy()), Invalid(true) {}
228
229    // These two overloads prevent void* -> bool conversions.
230    ActionResult(const void *);
231    ActionResult(volatile void *);
232
233    PtrTy get() const { return Val; }
234    void set(PtrTy V) { Val = V; }
235    bool isInvalid() const { return Invalid; }
236
237    const ActionResult &operator=(PtrTy RHS) {
238      Val = RHS;
239      Invalid = false;
240      return *this;
241    }
242  };
243
244  // This ActionResult partial specialization places the "invalid"
245  // flag into the low bit of the pointer.
246  template<typename PtrTy>
247  class ActionResult<PtrTy, true> {
248    // A pointer whose low bit is 1 if this result is invalid, 0
249    // otherwise.
250    uintptr_t PtrWithInvalid;
251    typedef llvm::PointerLikeTypeTraits<PtrTy> PtrTraits;
252  public:
253    ActionResult(bool Invalid = false)
254      : PtrWithInvalid(static_cast<uintptr_t>(Invalid)) { }
255
256    ActionResult(PtrTy V) {
257      void *VP = PtrTraits::getAsVoidPointer(V);
258      PtrWithInvalid = reinterpret_cast<uintptr_t>(VP);
259      assert((PtrWithInvalid & 0x01) == 0 && "Badly aligned pointer");
260    }
261
262    // These two overloads prevent void* -> bool conversions.
263    ActionResult(const void *);
264    ActionResult(volatile void *);
265
266    ActionResult(const DiagnosticBuilder &) : PtrWithInvalid(0x01) { }
267
268    PtrTy get() const {
269      void *VP = reinterpret_cast<void *>(PtrWithInvalid & ~0x01);
270      return PtrTraits::getFromVoidPointer(VP);
271    }
272
273    void set(PtrTy V) {
274      void *VP = PtrTraits::getAsVoidPointer(V);
275      PtrWithInvalid = reinterpret_cast<uintptr_t>(VP);
276      assert((PtrWithInvalid & 0x01) == 0 && "Badly aligned pointer");
277    }
278
279    bool isInvalid() const { return PtrWithInvalid & 0x01; }
280
281    const ActionResult &operator=(PtrTy RHS) {
282      void *VP = PtrTraits::getAsVoidPointer(RHS);
283      PtrWithInvalid = reinterpret_cast<uintptr_t>(VP);
284      assert((PtrWithInvalid & 0x01) == 0 && "Badly aligned pointer");
285      return *this;
286    }
287  };
288
289  /// ASTOwningResult - A moveable smart pointer for AST nodes that also
290  /// has an extra flag to indicate an additional success status.
291  template <typename PtrTy> class ASTOwningResult;
292
293  /// ASTMultiPtr - A moveable smart pointer to multiple AST nodes. Only owns
294  /// the individual pointers, not the array holding them.
295  template <typename PtrTy> class ASTMultiPtr;
296
297  template <class PtrTy> class ASTOwningResult {
298  public:
299    typedef ActionResult<PtrTy> DumbResult;
300
301  private:
302    DumbResult Result;
303
304  public:
305    explicit ASTOwningResult(bool invalid = false)
306      : Result(invalid) { }
307    ASTOwningResult(PtrTy node) : Result(node) { }
308    ASTOwningResult(const DumbResult &res) : Result(res) { }
309    // Normal copying semantics are defined implicitly.
310
311    // These two overloads prevent void* -> bool conversions.
312    explicit ASTOwningResult(const void *);
313    explicit ASTOwningResult(volatile void *);
314
315    /// Assignment from a raw pointer.
316    ASTOwningResult &operator=(PtrTy raw) {
317      Result = raw;
318      return *this;
319    }
320
321    /// Assignment from an ActionResult.
322    ASTOwningResult &operator=(const DumbResult &res) {
323      Result = res;
324      return *this;
325    }
326
327    bool isInvalid() const { return Result.isInvalid(); }
328
329    /// Does this point to a usable AST node? To be usable, the node
330    /// must be valid and non-null.
331    bool isUsable() const { return !Result.isInvalid() && get(); }
332
333    /// It is forbidden to call either of these methods on an invalid
334    /// pointer.  We should assert that, but we're not going to,
335    /// because it's likely to trigger it unpredictable ways on
336    /// invalid code.
337    PtrTy get() const { return Result.get(); }
338    PtrTy take() const { return get(); }
339
340    /// Take outside ownership of the raw pointer and cast it down.
341    template<typename T>
342    T *takeAs() { return static_cast<T*>(get()); }
343
344    /// Alias for interface familiarity with unique_ptr.
345    PtrTy release() { return take(); }
346
347    /// Pass ownership to a classical ActionResult.
348    DumbResult result() { return Result; }
349  };
350
351  template <class PtrTy>
352  class ASTMultiPtr {
353    PtrTy *Nodes;
354    unsigned Count;
355
356  public:
357    // Normal copying implicitly defined
358    explicit ASTMultiPtr(Action &) : Nodes(0), Count(0) {}
359    ASTMultiPtr(Action &, PtrTy *nodes, unsigned count)
360      : Nodes(nodes), Count(count) {}
361    // Fake mover in Parse/AstGuard.h needs this:
362    ASTMultiPtr(PtrTy *nodes, unsigned count) : Nodes(nodes), Count(count) {}
363
364    /// Access to the raw pointers.
365    PtrTy *get() const { return Nodes; }
366
367    /// Access to the count.
368    unsigned size() const { return Count; }
369
370    PtrTy *release() {
371      return Nodes;
372    }
373  };
374
375  class ParsedTemplateArgument;
376
377  class ASTTemplateArgsPtr {
378    ParsedTemplateArgument *Args;
379    mutable unsigned Count;
380
381  public:
382    ASTTemplateArgsPtr(Action &actions, ParsedTemplateArgument *args,
383                       unsigned count) :
384      Args(args), Count(count) { }
385
386    // FIXME: Lame, not-fully-type-safe emulation of 'move semantics'.
387    ASTTemplateArgsPtr(ASTTemplateArgsPtr &Other) :
388      Args(Other.Args), Count(Other.Count) {
389    }
390
391    // FIXME: Lame, not-fully-type-safe emulation of 'move semantics'.
392    ASTTemplateArgsPtr& operator=(ASTTemplateArgsPtr &Other)  {
393      Args = Other.Args;
394      Count = Other.Count;
395      return *this;
396    }
397
398    ParsedTemplateArgument *getArgs() const { return Args; }
399    unsigned size() const { return Count; }
400
401    void reset(ParsedTemplateArgument *args, unsigned count) {
402      Args = args;
403      Count = count;
404    }
405
406    const ParsedTemplateArgument &operator[](unsigned Arg) const;
407
408    ParsedTemplateArgument *release() const {
409      return Args;
410    }
411  };
412
413  /// \brief A small vector that owns a set of AST nodes.
414  template <class PtrTy, unsigned N = 8>
415  class ASTOwningVector : public llvm::SmallVector<PtrTy, N> {
416    ASTOwningVector(ASTOwningVector &); // do not implement
417    ASTOwningVector &operator=(ASTOwningVector &); // do not implement
418
419  public:
420    explicit ASTOwningVector(Action &Actions)
421    { }
422
423    PtrTy *take() {
424      return &this->front();
425    }
426
427    template<typename T> T **takeAs() { return reinterpret_cast<T**>(take()); }
428  };
429
430  /// A SmallVector of statements, with stack size 32 (as that is the only one
431  /// used.)
432  typedef ASTOwningVector<Stmt*, 32> StmtVector;
433  /// A SmallVector of expressions, with stack size 12 (the maximum used.)
434  typedef ASTOwningVector<Expr*, 12> ExprVector;
435
436  template <class T, unsigned N> inline
437  ASTMultiPtr<T> move_arg(ASTOwningVector<T, N> &vec) {
438    return ASTMultiPtr<T>(vec.take(), vec.size());
439  }
440
441  // These versions are hopefully no-ops.
442  template <class T> inline
443  ASTOwningResult<T> move(ASTOwningResult<T> &ptr) {
444    return ptr;
445  }
446
447  template <class T> inline
448  ASTMultiPtr<T>& move(ASTMultiPtr<T> &ptr) {
449    return ptr;
450  }
451
452  // We can re-use the low bit of expression, statement, base, and
453  // member-initializer pointers for the "invalid" flag of
454  // ActionResult.
455  template<> struct IsResultPtrLowBitFree<Expr*> {
456    static const bool value = true;
457  };
458  template<> struct IsResultPtrLowBitFree<Stmt*> {
459    static const bool value = true;
460  };
461  template<> struct IsResultPtrLowBitFree<CXXBaseSpecifier*> {
462    static const bool value = true;
463  };
464  template<> struct IsResultPtrLowBitFree<CXXBaseOrMemberInitializer*> {
465    static const bool value = true;
466  };
467
468  /// An opaque type for threading parsed type information through the
469  /// parser.
470  typedef OpaquePtr<QualType> ParsedType;
471  typedef UnionOpaquePtr<QualType> UnionParsedType;
472
473  typedef ActionResult<Expr*> ExprResult;
474  typedef ActionResult<Stmt*> StmtResult;
475  typedef ActionResult<ParsedType> TypeResult;
476  typedef ActionResult<CXXBaseSpecifier*> BaseResult;
477  typedef ActionResult<CXXBaseOrMemberInitializer*> MemInitResult;
478
479  typedef ActionResult<Decl*> DeclResult;
480  typedef OpaquePtr<TemplateName> ParsedTemplateTy;
481
482  typedef ASTOwningResult<Expr*> OwningExprResult;
483  typedef ASTOwningResult<Stmt*> OwningStmtResult;
484
485  inline Expr *move(Expr *E) { return E; }
486  inline Stmt *move(Stmt *S) { return S; }
487
488  typedef ASTMultiPtr<Expr*> MultiExprArg;
489  typedef ASTMultiPtr<TemplateParameterList*> MultiTemplateParamsArg;
490
491  inline Expr *AssertSuccess(OwningExprResult R) {
492    assert(!R.isInvalid() && "operation was asserted to never fail!");
493    return R.get();
494  }
495
496  inline Stmt *AssertSuccess(OwningStmtResult R) {
497    assert(!R.isInvalid() && "operation was asserted to never fail!");
498    return R.get();
499  }
500}
501
502#endif
503