Ownership.h revision ca0408fb49c1370430672acf2d770b7151cf71de
1//===--- Ownership.h - Parser ownership helpers -----------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file contains classes for managing ownership of Stmt and Expr nodes.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_SEMA_OWNERSHIP_H
15#define LLVM_CLANG_SEMA_OWNERSHIP_H
16
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/ADT/PointerIntPair.h"
19
20//===----------------------------------------------------------------------===//
21// OpaquePtr
22//===----------------------------------------------------------------------===//
23
24namespace clang {
25  class ActionBase;
26  class Attr;
27  class CXXBaseOrMemberInitializer;
28  class CXXBaseSpecifier;
29  class Decl;
30  class Expr;
31  class NestedNameSpecifier;
32  class Stmt;
33  class TemplateParameterList;
34
35  /// OpaquePtr - This is a very simple POD type that wraps a pointer that the
36  /// Parser doesn't know about but that Sema or another client does.  The UID
37  /// template argument is used to make sure that "Decl" pointers are not
38  /// compatible with "Type" pointers for example.
39  template<int UID>
40  class OpaquePtr {
41    void *Ptr;
42  public:
43    OpaquePtr() : Ptr(0) {}
44
45    template <typename T>
46    T* getAs() const {
47      return llvm::PointerLikeTypeTraits<T*>::getFromVoidPointer(Ptr);
48    }
49
50    template <typename T>
51    T getAsVal() const {
52      return llvm::PointerLikeTypeTraits<T>::getFromVoidPointer(Ptr);
53    }
54
55    void *get() const { return Ptr; }
56
57    template<typename T>
58    static OpaquePtr make(T P) {
59      OpaquePtr R; R.set(P); return R;
60    }
61
62    template<typename T>
63    void set(T P) {
64      Ptr = llvm::PointerLikeTypeTraits<T>::getAsVoidPointer(P);
65    }
66
67    operator bool() const { return Ptr != 0; }
68  };
69}
70
71namespace llvm {
72  template <int UID>
73  class PointerLikeTypeTraits<clang::OpaquePtr<UID> > {
74  public:
75    static inline void *getAsVoidPointer(clang::OpaquePtr<UID> P) {
76      // FIXME: Doesn't work? return P.getAs< void >();
77      return P.get();
78    }
79    static inline clang::OpaquePtr<UID> getFromVoidPointer(void *P) {
80      return clang::OpaquePtr<UID>::make(P);
81    }
82    enum { NumLowBitsAvailable = 3 };
83  };
84}
85
86
87
88// -------------------------- About Move Emulation -------------------------- //
89// The smart pointer classes in this file attempt to emulate move semantics
90// as they appear in C++0x with rvalue references. Since C++03 doesn't have
91// rvalue references, some tricks are needed to get similar results.
92// Move semantics in C++0x have the following properties:
93// 1) "Moving" means transferring the value of an object to another object,
94//    similar to copying, but without caring what happens to the old object.
95//    In particular, this means that the new object can steal the old object's
96//    resources instead of creating a copy.
97// 2) Since moving can modify the source object, it must either be explicitly
98//    requested by the user, or the modifications must be unnoticeable.
99// 3) As such, C++0x moving is only allowed in three contexts:
100//    * By explicitly using std::move() to request it.
101//    * From a temporary object, since that object cannot be accessed
102//      afterwards anyway, thus making the state unobservable.
103//    * On function return, since the object is not observable afterwards.
104//
105// To sum up: moving from a named object should only be possible with an
106// explicit std::move(), or on function return. Moving from a temporary should
107// be implicitly done. Moving from a const object is forbidden.
108//
109// The emulation is not perfect, and has the following shortcomings:
110// * move() is not in namespace std.
111// * move() is required on function return.
112// * There are difficulties with implicit conversions.
113// * Microsoft's compiler must be given the /Za switch to successfully compile.
114//
115// -------------------------- Implementation -------------------------------- //
116// The move emulation relies on the peculiar reference binding semantics of
117// C++03: as a rule, a non-const reference may not bind to a temporary object,
118// except for the implicit object parameter in a member function call, which
119// can refer to a temporary even when not being const.
120// The moveable object has five important functions to facilitate moving:
121// * A private, unimplemented constructor taking a non-const reference to its
122//   own class. This constructor serves a two-fold purpose.
123//   - It prevents the creation of a copy constructor that takes a const
124//     reference. Temporaries would be able to bind to the argument of such a
125//     constructor, and that would be bad.
126//   - Named objects will bind to the non-const reference, but since it's
127//     private, this will fail to compile. This prevents implicit moving from
128//     named objects.
129//   There's also a copy assignment operator for the same purpose.
130// * An implicit, non-const conversion operator to a special mover type. This
131//   type represents the rvalue reference of C++0x. Being a non-const member,
132//   its implicit this parameter can bind to temporaries.
133// * A constructor that takes an object of this mover type. This constructor
134//   performs the actual move operation. There is an equivalent assignment
135//   operator.
136// There is also a free move() function that takes a non-const reference to
137// an object and returns a temporary. Internally, this function uses explicit
138// constructor calls to move the value from the referenced object to the return
139// value.
140//
141// There are now three possible scenarios of use.
142// * Copying from a const object. Constructor overload resolution will find the
143//   non-const copy constructor, and the move constructor. The first is not
144//   viable because the const object cannot be bound to the non-const reference.
145//   The second fails because the conversion to the mover object is non-const.
146//   Moving from a const object fails as intended.
147// * Copying from a named object. Constructor overload resolution will select
148//   the non-const copy constructor, but fail as intended, because this
149//   constructor is private.
150// * Copying from a temporary. Constructor overload resolution cannot select
151//   the non-const copy constructor, because the temporary cannot be bound to
152//   the non-const reference. It thus selects the move constructor. The
153//   temporary can be bound to the implicit this parameter of the conversion
154//   operator, because of the special binding rule. Construction succeeds.
155//   Note that the Microsoft compiler, as an extension, allows binding
156//   temporaries against non-const references. The compiler thus selects the
157//   non-const copy constructor and fails, because the constructor is private.
158//   Passing /Za (disable extensions) disables this behaviour.
159// The free move() function is used to move from a named object.
160//
161// Note that when passing an object of a different type (the classes below
162// have OwningResult and OwningPtr, which should be mixable), you get a problem.
163// Argument passing and function return use copy initialization rules. The
164// effect of this is that, when the source object is not already of the target
165// type, the compiler will first seek a way to convert the source object to the
166// target type, and only then attempt to copy the resulting object. This means
167// that when passing an OwningResult where an OwningPtr is expected, the
168// compiler will first seek a conversion from OwningResult to OwningPtr, then
169// copy the OwningPtr. The resulting conversion sequence is:
170// OwningResult object -> ResultMover -> OwningResult argument to
171// OwningPtr(OwningResult) -> OwningPtr -> PtrMover -> final OwningPtr
172// This conversion sequence is too complex to be allowed. Thus the special
173// move_* functions, which help the compiler out with some explicit
174// conversions.
175
176namespace llvm {
177  template<>
178  class PointerLikeTypeTraits<clang::ActionBase*> {
179    typedef clang::ActionBase* PT;
180  public:
181    static inline void *getAsVoidPointer(PT P) { return P; }
182    static inline PT getFromVoidPointer(void *P) {
183      return static_cast<PT>(P);
184    }
185    enum { NumLowBitsAvailable = 2 };
186  };
187}
188
189namespace clang {
190  // Basic
191  class DiagnosticBuilder;
192
193  // Determines whether the low bit of the result pointer for the
194  // given UID is always zero. If so, ActionResult will use that bit
195  // for it's "invalid" flag.
196  template<class Ptr>
197  struct IsResultPtrLowBitFree {
198    static const bool value = false;
199  };
200
201  /// ActionBase - A small part split from Action because of the horrible
202  /// definition order dependencies between Action and the smart pointers.
203  class ActionBase {
204  public:
205    /// Out-of-line virtual destructor to provide home for this class.
206    virtual ~ActionBase();
207
208    // Types - Though these don't actually enforce strong typing, they document
209    // what types are required to be identical for the actions.
210    typedef OpaquePtr<1> DeclGroupPtrTy;
211    typedef OpaquePtr<2> TemplateTy;
212    typedef Attr AttrTy;
213    typedef CXXBaseSpecifier BaseTy;
214    typedef CXXBaseOrMemberInitializer MemInitTy;
215    typedef Expr ExprTy;
216    typedef Stmt StmtTy;
217    typedef TemplateParameterList TemplateParamsTy;
218    typedef NestedNameSpecifier CXXScopeTy;
219    typedef void TypeTy;  // FIXME: Change TypeTy to use OpaquePtr<N>.
220
221    /// ActionResult - This structure is used while parsing/acting on
222    /// expressions, stmts, etc.  It encapsulates both the object returned by
223    /// the action, plus a sense of whether or not it is valid.
224    /// When CompressInvalid is true, the "invalid" flag will be
225    /// stored in the low bit of the Val pointer.
226    template<class PtrTy,
227             bool CompressInvalid = IsResultPtrLowBitFree<PtrTy>::value>
228    class ActionResult {
229      PtrTy Val;
230      bool Invalid;
231
232    public:
233      ActionResult(bool Invalid = false) : Val(PtrTy()), Invalid(Invalid) {}
234      ActionResult(PtrTy val) : Val(val), Invalid(false) {}
235      ActionResult(const DiagnosticBuilder &) : Val(PtrTy()), Invalid(true) {}
236
237      // These two overloads prevent void* -> bool conversions.
238      ActionResult(const void *);
239      ActionResult(volatile void *);
240
241      PtrTy get() const { return Val; }
242      void set(PtrTy V) { Val = V; }
243      bool isInvalid() const { return Invalid; }
244
245      const ActionResult &operator=(PtrTy RHS) {
246        Val = RHS;
247        Invalid = false;
248        return *this;
249      }
250    };
251
252    // This ActionResult partial specialization places the "invalid"
253    // flag into the low bit of the pointer.
254    template<typename PtrTy>
255    class ActionResult<PtrTy, true> {
256      // A pointer whose low bit is 1 if this result is invalid, 0
257      // otherwise.
258      uintptr_t PtrWithInvalid;
259      typedef llvm::PointerLikeTypeTraits<PtrTy> PtrTraits;
260    public:
261      ActionResult(bool Invalid = false)
262        : PtrWithInvalid(static_cast<uintptr_t>(Invalid)) { }
263
264      ActionResult(PtrTy V) {
265        void *VP = PtrTraits::getAsVoidPointer(V);
266        PtrWithInvalid = reinterpret_cast<uintptr_t>(VP);
267        assert((PtrWithInvalid & 0x01) == 0 && "Badly aligned pointer");
268      }
269
270      // These two overloads prevent void* -> bool conversions.
271      ActionResult(const void *);
272      ActionResult(volatile void *);
273
274      ActionResult(const DiagnosticBuilder &) : PtrWithInvalid(0x01) { }
275
276      PtrTy get() const {
277        void *VP = reinterpret_cast<void *>(PtrWithInvalid & ~0x01);
278        return PtrTraits::getFromVoidPointer(VP);
279      }
280
281      void set(PtrTy V) {
282        void *VP = PtrTraits::getAsVoidPointer(V);
283        PtrWithInvalid = reinterpret_cast<uintptr_t>(VP);
284        assert((PtrWithInvalid & 0x01) == 0 && "Badly aligned pointer");
285      }
286
287      bool isInvalid() const { return PtrWithInvalid & 0x01; }
288
289      const ActionResult &operator=(PtrTy RHS) {
290        void *VP = PtrTraits::getAsVoidPointer(RHS);
291        PtrWithInvalid = reinterpret_cast<uintptr_t>(VP);
292        assert((PtrWithInvalid & 0x01) == 0 && "Badly aligned pointer");
293        return *this;
294      }
295    };
296
297    /// Deletion callbacks - Since the parser doesn't know the concrete types of
298    /// the AST nodes being generated, it must do callbacks to delete objects
299    /// when recovering from errors. These are in ActionBase because the smart
300    /// pointers need access to them.
301    virtual void DeleteExpr(ExprTy *E) {}
302    virtual void DeleteStmt(StmtTy *S) {}
303    virtual void DeleteTemplateParams(TemplateParamsTy *P) {}
304  };
305
306  /// ASTOwningResult - A moveable smart pointer for AST nodes that also
307  /// has an extra flag to indicate an additional success status.
308  template <typename PtrTy> class ASTOwningResult;
309
310  /// ASTMultiPtr - A moveable smart pointer to multiple AST nodes. Only owns
311  /// the individual pointers, not the array holding them.
312  template <typename PtrTy> class ASTMultiPtr;
313
314  /// Kept only as a type-safe wrapper for a void pointer.
315  template <typename PtrTy> class ASTOwningPtr {
316    PtrTy Node;
317
318  public:
319    explicit ASTOwningPtr(ActionBase &) : Node(0) {}
320    ASTOwningPtr(ActionBase &, PtrTy node) : Node(node) {}
321
322    // Normal copying operators are defined implicitly.
323    ASTOwningPtr(const ASTOwningResult<PtrTy> &o);
324
325    ASTOwningPtr & operator =(PtrTy raw) {
326      Node = raw;
327      return *this;
328    }
329
330    /// Access to the raw pointer.
331    PtrTy get() const { return Node; }
332
333    /// Release the raw pointer.
334    PtrTy take() { return Node; }
335
336    /// Take outside ownership of the raw pointer and cast it down.
337    template<typename T> T *takeAs() {
338      return static_cast<T*>(Node);
339    }
340
341    /// Alias for interface familiarity with unique_ptr.
342    PtrTy release() {
343      return take();
344    }
345  };
346
347  template <class PtrTy> class ASTOwningResult {
348  public:
349    typedef ActionBase::ActionResult<PtrTy> DumbResult;
350
351  private:
352    DumbResult Result;
353
354  public:
355    explicit ASTOwningResult(bool invalid = false)
356      : Result(invalid) { }
357    explicit ASTOwningResult(PtrTy node) : Result(node) { }
358    explicit ASTOwningResult(const DumbResult &res) : Result(res) { }
359    // Normal copying semantics are defined implicitly.
360    ASTOwningResult(const ASTOwningPtr<PtrTy> &o) : Result(o.get()) { }
361
362    // These two overloads prevent void* -> bool conversions.
363    explicit ASTOwningResult(const void *);
364    explicit ASTOwningResult(volatile void *);
365
366    /// Assignment from a raw pointer. Takes ownership - beware!
367    ASTOwningResult & operator =(PtrTy raw) {
368      Result = raw;
369      return *this;
370    }
371
372    /// Assignment from an ActionResult. Takes ownership - beware!
373    ASTOwningResult & operator =(const DumbResult &res) {
374      Result = res;
375      return *this;
376    }
377
378    /// Access to the raw pointer.
379    PtrTy get() const { return Result.get(); }
380
381    bool isInvalid() const { return Result.isInvalid(); }
382
383    /// Does this point to a usable AST node? To be usable, the node must be
384    /// valid and non-null.
385    bool isUsable() const { return !Result.isInvalid() && get(); }
386
387    /// Take outside ownership of the raw pointer.
388    PtrTy take() {
389      return Result.get();
390    }
391
392    /// Take outside ownership of the raw pointer and cast it down.
393    template<typename T>
394    T *takeAs() {
395      return static_cast<T*>(take());
396    }
397
398    /// Alias for interface familiarity with unique_ptr.
399    PtrTy release() { return take(); }
400
401    /// Pass ownership to a classical ActionResult.
402    DumbResult result() { return Result; }
403  };
404
405  template <class PtrTy>
406  class ASTMultiPtr {
407    PtrTy *Nodes;
408    unsigned Count;
409
410  public:
411    // Normal copying implicitly defined
412    explicit ASTMultiPtr(ActionBase &) : Nodes(0), Count(0) {}
413    ASTMultiPtr(ActionBase &, PtrTy *nodes, unsigned count)
414      : Nodes(nodes), Count(count) {}
415    // Fake mover in Parse/AstGuard.h needs this:
416    ASTMultiPtr(PtrTy *nodes, unsigned count) : Nodes(nodes), Count(count) {}
417
418    /// Access to the raw pointers.
419    PtrTy *get() const { return Nodes; }
420
421    /// Access to the count.
422    unsigned size() const { return Count; }
423
424    PtrTy *release() {
425      return Nodes;
426    }
427  };
428
429  class ParsedTemplateArgument;
430
431  class ASTTemplateArgsPtr {
432    ParsedTemplateArgument *Args;
433    mutable unsigned Count;
434
435  public:
436    ASTTemplateArgsPtr(ActionBase &actions, ParsedTemplateArgument *args,
437                       unsigned count) :
438      Args(args), Count(count) { }
439
440    // FIXME: Lame, not-fully-type-safe emulation of 'move semantics'.
441    ASTTemplateArgsPtr(ASTTemplateArgsPtr &Other) :
442      Args(Other.Args), Count(Other.Count) {
443    }
444
445    // FIXME: Lame, not-fully-type-safe emulation of 'move semantics'.
446    ASTTemplateArgsPtr& operator=(ASTTemplateArgsPtr &Other)  {
447      Args = Other.Args;
448      Count = Other.Count;
449      return *this;
450    }
451
452    ParsedTemplateArgument *getArgs() const { return Args; }
453    unsigned size() const { return Count; }
454
455    void reset(ParsedTemplateArgument *args, unsigned count) {
456      Args = args;
457      Count = count;
458    }
459
460    const ParsedTemplateArgument &operator[](unsigned Arg) const;
461
462    ParsedTemplateArgument *release() const {
463      return Args;
464    }
465  };
466
467  /// \brief A small vector that owns a set of AST nodes.
468  template <class PtrTy, unsigned N = 8>
469  class ASTOwningVector : public llvm::SmallVector<PtrTy, N> {
470    ASTOwningVector(ASTOwningVector &); // do not implement
471    ASTOwningVector &operator=(ASTOwningVector &); // do not implement
472
473  public:
474    explicit ASTOwningVector(ActionBase &Actions)
475    { }
476
477    PtrTy *take() {
478      return &this->front();
479    }
480
481    template<typename T> T **takeAs() { return reinterpret_cast<T**>(take()); }
482  };
483
484  /// A SmallVector of statements, with stack size 32 (as that is the only one
485  /// used.)
486  typedef ASTOwningVector<Stmt*, 32> StmtVector;
487  /// A SmallVector of expressions, with stack size 12 (the maximum used.)
488  typedef ASTOwningVector<Expr*, 12> ExprVector;
489
490  template <class T, unsigned N> inline
491  ASTMultiPtr<T> move_arg(ASTOwningVector<T, N> &vec) {
492    return ASTMultiPtr<T>(vec.take(), vec.size());
493  }
494
495  template <class T> inline
496  ASTOwningPtr<T>::ASTOwningPtr(const ASTOwningResult<T> &o)
497    : Node(o.get()) { }
498
499  // These versions are hopefully no-ops.
500  template <class T> inline
501  ASTOwningResult<T>& move(ASTOwningResult<T> &ptr) {
502    return ptr;
503  }
504
505  template <class T> inline
506  ASTOwningPtr<T>& move(ASTOwningPtr<T> &ptr) {
507    return ptr;
508  }
509
510  template <class T> inline
511  ASTMultiPtr<T>& move(ASTMultiPtr<T> &ptr) {
512    return ptr;
513  }
514
515  // We can re-use the low bit of expression, statement, base, and
516  // member-initializer pointers for the "invalid" flag of
517  // ActionResult.
518  template<> struct IsResultPtrLowBitFree<Expr*> {
519    static const bool value = true;
520  };
521  template<> struct IsResultPtrLowBitFree<Stmt*> {
522    static const bool value = true;
523  };
524  template<> struct IsResultPtrLowBitFree<CXXBaseSpecifier*> {
525    static const bool value = true;
526  };
527  template<> struct IsResultPtrLowBitFree<CXXBaseOrMemberInitializer*> {
528    static const bool value = true;
529  };
530
531  typedef ActionBase::ActionResult<Expr*> ExprResult;
532  typedef ActionBase::ActionResult<Stmt*> StmtResult;
533  typedef ActionBase::ActionResult<void*> TypeResult;
534  typedef ActionBase::ActionResult<CXXBaseSpecifier*> BaseResult;
535  typedef ActionBase::ActionResult<CXXBaseOrMemberInitializer*> MemInitResult;
536
537  typedef ActionBase::ActionResult<Decl*> DeclResult;
538}
539
540#endif
541