Ownership.h revision cbb67480094b3bcb5b715acd827cbad55e2a204c
1//===--- Ownership.h - Parser ownership helpers -----------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file contains classes for managing ownership of Stmt and Expr nodes.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_SEMA_OWNERSHIP_H
15#define LLVM_CLANG_SEMA_OWNERSHIP_H
16
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/ADT/PointerIntPair.h"
19
20//===----------------------------------------------------------------------===//
21// OpaquePtr
22//===----------------------------------------------------------------------===//
23
24namespace clang {
25  class Attr;
26  class CXXCtorInitializer;
27  class CXXBaseSpecifier;
28  class Decl;
29  class DeclGroupRef;
30  class Expr;
31  class NestedNameSpecifier;
32  class QualType;
33  class Sema;
34  class Stmt;
35  class TemplateName;
36  class TemplateParameterList;
37
38  /// OpaquePtr - This is a very simple POD type that wraps a pointer that the
39  /// Parser doesn't know about but that Sema or another client does.  The UID
40  /// template argument is used to make sure that "Decl" pointers are not
41  /// compatible with "Type" pointers for example.
42  template <class PtrTy>
43  class OpaquePtr {
44    void *Ptr;
45    explicit OpaquePtr(void *Ptr) : Ptr(Ptr) {}
46
47    typedef llvm::PointerLikeTypeTraits<PtrTy> Traits;
48
49  public:
50    OpaquePtr() : Ptr(0) {}
51
52    static OpaquePtr make(PtrTy P) { OpaquePtr OP; OP.set(P); return OP; }
53
54    template <typename T> T* getAs() const {
55      return get();
56    }
57
58    template <typename T> T getAsVal() const {
59      return get();
60    }
61
62    PtrTy get() const {
63      return Traits::getFromVoidPointer(Ptr);
64    }
65
66    void set(PtrTy P) {
67      Ptr = Traits::getAsVoidPointer(P);
68    }
69
70    operator bool() const { return Ptr != 0; }
71
72    void *getAsOpaquePtr() const { return Ptr; }
73    static OpaquePtr getFromOpaquePtr(void *P) { return OpaquePtr(P); }
74  };
75
76  /// UnionOpaquePtr - A version of OpaquePtr suitable for membership
77  /// in a union.
78  template <class T> struct UnionOpaquePtr {
79    void *Ptr;
80
81    static UnionOpaquePtr make(OpaquePtr<T> P) {
82      UnionOpaquePtr OP = { P.getAsOpaquePtr() };
83      return OP;
84    }
85
86    OpaquePtr<T> get() const { return OpaquePtr<T>::getFromOpaquePtr(Ptr); }
87    operator OpaquePtr<T>() const { return get(); }
88
89    UnionOpaquePtr &operator=(OpaquePtr<T> P) {
90      Ptr = P.getAsOpaquePtr();
91      return *this;
92    }
93  };
94}
95
96namespace llvm {
97  template <class T>
98  class PointerLikeTypeTraits<clang::OpaquePtr<T> > {
99  public:
100    static inline void *getAsVoidPointer(clang::OpaquePtr<T> P) {
101      // FIXME: Doesn't work? return P.getAs< void >();
102      return P.getAsOpaquePtr();
103    }
104    static inline clang::OpaquePtr<T> getFromVoidPointer(void *P) {
105      return clang::OpaquePtr<T>::getFromOpaquePtr(P);
106    }
107    enum { NumLowBitsAvailable = 0 };
108  };
109
110  template <class T>
111  struct isPodLike<clang::OpaquePtr<T> > { static const bool value = true; };
112}
113
114
115
116// -------------------------- About Move Emulation -------------------------- //
117// The smart pointer classes in this file attempt to emulate move semantics
118// as they appear in C++0x with rvalue references. Since C++03 doesn't have
119// rvalue references, some tricks are needed to get similar results.
120// Move semantics in C++0x have the following properties:
121// 1) "Moving" means transferring the value of an object to another object,
122//    similar to copying, but without caring what happens to the old object.
123//    In particular, this means that the new object can steal the old object's
124//    resources instead of creating a copy.
125// 2) Since moving can modify the source object, it must either be explicitly
126//    requested by the user, or the modifications must be unnoticeable.
127// 3) As such, C++0x moving is only allowed in three contexts:
128//    * By explicitly using std::move() to request it.
129//    * From a temporary object, since that object cannot be accessed
130//      afterwards anyway, thus making the state unobservable.
131//    * On function return, since the object is not observable afterwards.
132//
133// To sum up: moving from a named object should only be possible with an
134// explicit std::move(), or on function return. Moving from a temporary should
135// be implicitly done. Moving from a const object is forbidden.
136//
137// The emulation is not perfect, and has the following shortcomings:
138// * move() is not in namespace std.
139// * move() is required on function return.
140// * There are difficulties with implicit conversions.
141// * Microsoft's compiler must be given the /Za switch to successfully compile.
142//
143// -------------------------- Implementation -------------------------------- //
144// The move emulation relies on the peculiar reference binding semantics of
145// C++03: as a rule, a non-const reference may not bind to a temporary object,
146// except for the implicit object parameter in a member function call, which
147// can refer to a temporary even when not being const.
148// The moveable object has five important functions to facilitate moving:
149// * A private, unimplemented constructor taking a non-const reference to its
150//   own class. This constructor serves a two-fold purpose.
151//   - It prevents the creation of a copy constructor that takes a const
152//     reference. Temporaries would be able to bind to the argument of such a
153//     constructor, and that would be bad.
154//   - Named objects will bind to the non-const reference, but since it's
155//     private, this will fail to compile. This prevents implicit moving from
156//     named objects.
157//   There's also a copy assignment operator for the same purpose.
158// * An implicit, non-const conversion operator to a special mover type. This
159//   type represents the rvalue reference of C++0x. Being a non-const member,
160//   its implicit this parameter can bind to temporaries.
161// * A constructor that takes an object of this mover type. This constructor
162//   performs the actual move operation. There is an equivalent assignment
163//   operator.
164// There is also a free move() function that takes a non-const reference to
165// an object and returns a temporary. Internally, this function uses explicit
166// constructor calls to move the value from the referenced object to the return
167// value.
168//
169// There are now three possible scenarios of use.
170// * Copying from a const object. Constructor overload resolution will find the
171//   non-const copy constructor, and the move constructor. The first is not
172//   viable because the const object cannot be bound to the non-const reference.
173//   The second fails because the conversion to the mover object is non-const.
174//   Moving from a const object fails as intended.
175// * Copying from a named object. Constructor overload resolution will select
176//   the non-const copy constructor, but fail as intended, because this
177//   constructor is private.
178// * Copying from a temporary. Constructor overload resolution cannot select
179//   the non-const copy constructor, because the temporary cannot be bound to
180//   the non-const reference. It thus selects the move constructor. The
181//   temporary can be bound to the implicit this parameter of the conversion
182//   operator, because of the special binding rule. Construction succeeds.
183//   Note that the Microsoft compiler, as an extension, allows binding
184//   temporaries against non-const references. The compiler thus selects the
185//   non-const copy constructor and fails, because the constructor is private.
186//   Passing /Za (disable extensions) disables this behaviour.
187// The free move() function is used to move from a named object.
188//
189// Note that when passing an object of a different type (the classes below
190// have OwningResult and OwningPtr, which should be mixable), you get a problem.
191// Argument passing and function return use copy initialization rules. The
192// effect of this is that, when the source object is not already of the target
193// type, the compiler will first seek a way to convert the source object to the
194// target type, and only then attempt to copy the resulting object. This means
195// that when passing an OwningResult where an OwningPtr is expected, the
196// compiler will first seek a conversion from OwningResult to OwningPtr, then
197// copy the OwningPtr. The resulting conversion sequence is:
198// OwningResult object -> ResultMover -> OwningResult argument to
199// OwningPtr(OwningResult) -> OwningPtr -> PtrMover -> final OwningPtr
200// This conversion sequence is too complex to be allowed. Thus the special
201// move_* functions, which help the compiler out with some explicit
202// conversions.
203
204namespace clang {
205  // Basic
206  class DiagnosticBuilder;
207
208  // Determines whether the low bit of the result pointer for the
209  // given UID is always zero. If so, ActionResult will use that bit
210  // for it's "invalid" flag.
211  template<class Ptr>
212  struct IsResultPtrLowBitFree {
213    static const bool value = false;
214  };
215
216  /// ActionResult - This structure is used while parsing/acting on
217  /// expressions, stmts, etc.  It encapsulates both the object returned by
218  /// the action, plus a sense of whether or not it is valid.
219  /// When CompressInvalid is true, the "invalid" flag will be
220  /// stored in the low bit of the Val pointer.
221  template<class PtrTy,
222           bool CompressInvalid = IsResultPtrLowBitFree<PtrTy>::value>
223  class ActionResult {
224    PtrTy Val;
225    bool Invalid;
226
227  public:
228    ActionResult(bool Invalid = false)
229      : Val(PtrTy()), Invalid(Invalid) {}
230    ActionResult(PtrTy val) : Val(val), Invalid(false) {}
231    ActionResult(const DiagnosticBuilder &) : Val(PtrTy()), Invalid(true) {}
232
233    // These two overloads prevent void* -> bool conversions.
234    ActionResult(const void *);
235    ActionResult(volatile void *);
236
237    bool isInvalid() const { return Invalid; }
238    bool isUsable() const { return !Invalid && Val; }
239
240    PtrTy get() const { return Val; }
241    PtrTy release() const { return Val; }
242    PtrTy take() const { return Val; }
243    template <typename T> T *takeAs() { return static_cast<T*>(get()); }
244
245    void set(PtrTy V) { Val = V; }
246
247    const ActionResult &operator=(PtrTy RHS) {
248      Val = RHS;
249      Invalid = false;
250      return *this;
251    }
252  };
253
254  // This ActionResult partial specialization places the "invalid"
255  // flag into the low bit of the pointer.
256  template<typename PtrTy>
257  class ActionResult<PtrTy, true> {
258    // A pointer whose low bit is 1 if this result is invalid, 0
259    // otherwise.
260    uintptr_t PtrWithInvalid;
261    typedef llvm::PointerLikeTypeTraits<PtrTy> PtrTraits;
262  public:
263    ActionResult(bool Invalid = false)
264      : PtrWithInvalid(static_cast<uintptr_t>(Invalid)) { }
265
266    ActionResult(PtrTy V) {
267      void *VP = PtrTraits::getAsVoidPointer(V);
268      PtrWithInvalid = reinterpret_cast<uintptr_t>(VP);
269      assert((PtrWithInvalid & 0x01) == 0 && "Badly aligned pointer");
270    }
271    ActionResult(const DiagnosticBuilder &) : PtrWithInvalid(0x01) { }
272
273    // These two overloads prevent void* -> bool conversions.
274    ActionResult(const void *);
275    ActionResult(volatile void *);
276
277    bool isInvalid() const { return PtrWithInvalid & 0x01; }
278    bool isUsable() const { return PtrWithInvalid > 0x01; }
279
280    PtrTy get() const {
281      void *VP = reinterpret_cast<void *>(PtrWithInvalid & ~0x01);
282      return PtrTraits::getFromVoidPointer(VP);
283    }
284    PtrTy take() const { return get(); }
285    PtrTy release() const { return get(); }
286    template <typename T> T *takeAs() { return static_cast<T*>(get()); }
287
288    void set(PtrTy V) {
289      void *VP = PtrTraits::getAsVoidPointer(V);
290      PtrWithInvalid = reinterpret_cast<uintptr_t>(VP);
291      assert((PtrWithInvalid & 0x01) == 0 && "Badly aligned pointer");
292    }
293
294    const ActionResult &operator=(PtrTy RHS) {
295      void *VP = PtrTraits::getAsVoidPointer(RHS);
296      PtrWithInvalid = reinterpret_cast<uintptr_t>(VP);
297      assert((PtrWithInvalid & 0x01) == 0 && "Badly aligned pointer");
298      return *this;
299    }
300  };
301
302  /// ASTMultiPtr - A moveable smart pointer to multiple AST nodes. Only owns
303  /// the individual pointers, not the array holding them.
304  template <typename PtrTy> class ASTMultiPtr;
305
306  template <class PtrTy>
307  class ASTMultiPtr {
308    PtrTy *Nodes;
309    unsigned Count;
310
311  public:
312    // Normal copying implicitly defined
313    ASTMultiPtr() : Nodes(0), Count(0) {}
314    explicit ASTMultiPtr(Sema &) : Nodes(0), Count(0) {}
315    ASTMultiPtr(Sema &, PtrTy *nodes, unsigned count)
316      : Nodes(nodes), Count(count) {}
317    // Fake mover in Parse/AstGuard.h needs this:
318    ASTMultiPtr(PtrTy *nodes, unsigned count) : Nodes(nodes), Count(count) {}
319
320    /// Access to the raw pointers.
321    PtrTy *get() const { return Nodes; }
322
323    /// Access to the count.
324    unsigned size() const { return Count; }
325
326    PtrTy *release() {
327      return Nodes;
328    }
329  };
330
331  class ParsedTemplateArgument;
332
333  class ASTTemplateArgsPtr {
334    ParsedTemplateArgument *Args;
335    mutable unsigned Count;
336
337  public:
338    ASTTemplateArgsPtr(Sema &actions, ParsedTemplateArgument *args,
339                       unsigned count) :
340      Args(args), Count(count) { }
341
342    // FIXME: Lame, not-fully-type-safe emulation of 'move semantics'.
343    ASTTemplateArgsPtr(ASTTemplateArgsPtr &Other) :
344      Args(Other.Args), Count(Other.Count) {
345    }
346
347    // FIXME: Lame, not-fully-type-safe emulation of 'move semantics'.
348    ASTTemplateArgsPtr& operator=(ASTTemplateArgsPtr &Other)  {
349      Args = Other.Args;
350      Count = Other.Count;
351      return *this;
352    }
353
354    ParsedTemplateArgument *getArgs() const { return Args; }
355    unsigned size() const { return Count; }
356
357    void reset(ParsedTemplateArgument *args, unsigned count) {
358      Args = args;
359      Count = count;
360    }
361
362    const ParsedTemplateArgument &operator[](unsigned Arg) const;
363
364    ParsedTemplateArgument *release() const {
365      return Args;
366    }
367  };
368
369  /// \brief A small vector that owns a set of AST nodes.
370  template <class PtrTy, unsigned N = 8>
371  class ASTOwningVector : public llvm::SmallVector<PtrTy, N> {
372    ASTOwningVector(ASTOwningVector &); // do not implement
373    ASTOwningVector &operator=(ASTOwningVector &); // do not implement
374
375  public:
376    explicit ASTOwningVector(Sema &Actions)
377    { }
378
379    PtrTy *take() {
380      return &this->front();
381    }
382
383    template<typename T> T **takeAs() { return reinterpret_cast<T**>(take()); }
384  };
385
386  /// A SmallVector of statements, with stack size 32 (as that is the only one
387  /// used.)
388  typedef ASTOwningVector<Stmt*, 32> StmtVector;
389  /// A SmallVector of expressions, with stack size 12 (the maximum used.)
390  typedef ASTOwningVector<Expr*, 12> ExprVector;
391
392  template <class T, unsigned N> inline
393  ASTMultiPtr<T> move_arg(ASTOwningVector<T, N> &vec) {
394    return ASTMultiPtr<T>(vec.take(), vec.size());
395  }
396
397  // These versions are hopefully no-ops.
398  template <class T, bool C>
399  inline ActionResult<T,C> move(ActionResult<T,C> &ptr) {
400    return ptr;
401  }
402
403  template <class T> inline
404  ASTMultiPtr<T>& move(ASTMultiPtr<T> &ptr) {
405    return ptr;
406  }
407
408  // We can re-use the low bit of expression, statement, base, and
409  // member-initializer pointers for the "invalid" flag of
410  // ActionResult.
411  template<> struct IsResultPtrLowBitFree<Expr*> {
412    static const bool value = true;
413  };
414  template<> struct IsResultPtrLowBitFree<Stmt*> {
415    static const bool value = true;
416  };
417  template<> struct IsResultPtrLowBitFree<CXXBaseSpecifier*> {
418    static const bool value = true;
419  };
420  template<> struct IsResultPtrLowBitFree<CXXCtorInitializer*> {
421    static const bool value = true;
422  };
423
424  /// An opaque type for threading parsed type information through the
425  /// parser.
426  typedef OpaquePtr<QualType> ParsedType;
427  typedef UnionOpaquePtr<QualType> UnionParsedType;
428
429  typedef ActionResult<Expr*> ExprResult;
430  typedef ActionResult<Stmt*> StmtResult;
431  typedef ActionResult<ParsedType> TypeResult;
432  typedef ActionResult<CXXBaseSpecifier*> BaseResult;
433  typedef ActionResult<CXXCtorInitializer*> MemInitResult;
434
435  typedef ActionResult<Decl*> DeclResult;
436  typedef OpaquePtr<TemplateName> ParsedTemplateTy;
437
438  inline Expr *move(Expr *E) { return E; }
439  inline Stmt *move(Stmt *S) { return S; }
440
441  typedef ASTMultiPtr<Expr*> MultiExprArg;
442  typedef ASTMultiPtr<Stmt*> MultiStmtArg;
443  typedef ASTMultiPtr<TemplateParameterList*> MultiTemplateParamsArg;
444
445  inline ExprResult ExprError() { return ExprResult(true); }
446  inline StmtResult StmtError() { return StmtResult(true); }
447
448  inline ExprResult ExprError(const DiagnosticBuilder&) { return ExprError(); }
449  inline StmtResult StmtError(const DiagnosticBuilder&) { return StmtError(); }
450
451  inline ExprResult ExprEmpty() { return ExprResult(false); }
452  inline StmtResult StmtEmpty() { return StmtResult(false); }
453
454  inline Expr *AssertSuccess(ExprResult R) {
455    assert(!R.isInvalid() && "operation was asserted to never fail!");
456    return R.get();
457  }
458
459  inline Stmt *AssertSuccess(StmtResult R) {
460    assert(!R.isInvalid() && "operation was asserted to never fail!");
461    return R.get();
462  }
463}
464
465#endif
466