CoreEngine.h revision 6bcf27bb9a4b5c3f79cb44c0e4654a6d7619ad89
1//==- CoreEngine.h - Path-Sensitive Dataflow Engine ----------------*- C++ -*-//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines a generic engine for intraprocedural, path-sensitive,
11//  dataflow analysis via graph reachability.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CLANG_GR_COREENGINE
16#define LLVM_CLANG_GR_COREENGINE
17
18#include "clang/AST/Expr.h"
19#include "clang/Analysis/AnalysisContext.h"
20#include "clang/StaticAnalyzer/Core/PathSensitive/BlockCounter.h"
21#include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
22#include "clang/StaticAnalyzer/Core/PathSensitive/FunctionSummary.h"
23#include "clang/StaticAnalyzer/Core/PathSensitive/WorkList.h"
24#include <memory>
25
26namespace clang {
27
28class ProgramPointTag;
29
30namespace ento {
31
32class NodeBuilder;
33
34//===----------------------------------------------------------------------===//
35/// CoreEngine - Implements the core logic of the graph-reachability
36///   analysis. It traverses the CFG and generates the ExplodedGraph.
37///   Program "states" are treated as opaque void pointers.
38///   The template class CoreEngine (which subclasses CoreEngine)
39///   provides the matching component to the engine that knows the actual types
40///   for states.  Note that this engine only dispatches to transfer functions
41///   at the statement and block-level.  The analyses themselves must implement
42///   any transfer function logic and the sub-expression level (if any).
43class CoreEngine {
44  friend struct NodeBuilderContext;
45  friend class NodeBuilder;
46  friend class ExprEngine;
47  friend class CommonNodeBuilder;
48  friend class IndirectGotoNodeBuilder;
49  friend class SwitchNodeBuilder;
50  friend class EndOfFunctionNodeBuilder;
51public:
52  typedef std::vector<std::pair<BlockEdge, const ExplodedNode*> >
53            BlocksExhausted;
54
55  typedef std::vector<std::pair<const CFGBlock*, const ExplodedNode*> >
56            BlocksAborted;
57
58private:
59
60  SubEngine& SubEng;
61
62  /// G - The simulation graph.  Each node is a (location,state) pair.
63  std::unique_ptr<ExplodedGraph> G;
64
65  /// WList - A set of queued nodes that need to be processed by the
66  ///  worklist algorithm.  It is up to the implementation of WList to decide
67  ///  the order that nodes are processed.
68  std::unique_ptr<WorkList> WList;
69
70  /// BCounterFactory - A factory object for created BlockCounter objects.
71  ///   These are used to record for key nodes in the ExplodedGraph the
72  ///   number of times different CFGBlocks have been visited along a path.
73  BlockCounter::Factory BCounterFactory;
74
75  /// The locations where we stopped doing work because we visited a location
76  ///  too many times.
77  BlocksExhausted blocksExhausted;
78
79  /// The locations where we stopped because the engine aborted analysis,
80  /// usually because it could not reason about something.
81  BlocksAborted blocksAborted;
82
83  /// The information about functions shared by the whole translation unit.
84  /// (This data is owned by AnalysisConsumer.)
85  FunctionSummariesTy *FunctionSummaries;
86
87  void generateNode(const ProgramPoint &Loc,
88                    ProgramStateRef State,
89                    ExplodedNode *Pred);
90
91  void HandleBlockEdge(const BlockEdge &E, ExplodedNode *Pred);
92  void HandleBlockEntrance(const BlockEntrance &E, ExplodedNode *Pred);
93  void HandleBlockExit(const CFGBlock *B, ExplodedNode *Pred);
94  void HandlePostStmt(const CFGBlock *B, unsigned StmtIdx, ExplodedNode *Pred);
95
96  void HandleBranch(const Stmt *Cond, const Stmt *Term, const CFGBlock *B,
97                    ExplodedNode *Pred);
98
99  /// Handle conditional logic for running static initializers.
100  void HandleStaticInit(const DeclStmt *DS, const CFGBlock *B,
101                        ExplodedNode *Pred);
102
103private:
104  CoreEngine(const CoreEngine &) LLVM_DELETED_FUNCTION;
105  void operator=(const CoreEngine &) LLVM_DELETED_FUNCTION;
106
107  ExplodedNode *generateCallExitBeginNode(ExplodedNode *N);
108
109public:
110  /// Construct a CoreEngine object to analyze the provided CFG.
111  CoreEngine(SubEngine& subengine,
112             FunctionSummariesTy *FS)
113    : SubEng(subengine), G(new ExplodedGraph()),
114      WList(WorkList::makeDFS()),
115      BCounterFactory(G->getAllocator()),
116      FunctionSummaries(FS){}
117
118  /// getGraph - Returns the exploded graph.
119  ExplodedGraph& getGraph() { return *G.get(); }
120
121  /// takeGraph - Returns the exploded graph.  Ownership of the graph is
122  ///  transferred to the caller.
123  ExplodedGraph *takeGraph() { return G.release(); }
124
125  /// ExecuteWorkList - Run the worklist algorithm for a maximum number of
126  ///  steps.  Returns true if there is still simulation state on the worklist.
127  bool ExecuteWorkList(const LocationContext *L, unsigned Steps,
128                       ProgramStateRef InitState);
129  /// Returns true if there is still simulation state on the worklist.
130  bool ExecuteWorkListWithInitialState(const LocationContext *L,
131                                       unsigned Steps,
132                                       ProgramStateRef InitState,
133                                       ExplodedNodeSet &Dst);
134
135  /// Dispatch the work list item based on the given location information.
136  /// Use Pred parameter as the predecessor state.
137  void dispatchWorkItem(ExplodedNode* Pred, ProgramPoint Loc,
138                        const WorkListUnit& WU);
139
140  // Functions for external checking of whether we have unfinished work
141  bool wasBlockAborted() const { return !blocksAborted.empty(); }
142  bool wasBlocksExhausted() const { return !blocksExhausted.empty(); }
143  bool hasWorkRemaining() const { return wasBlocksExhausted() ||
144                                         WList->hasWork() ||
145                                         wasBlockAborted(); }
146
147  /// Inform the CoreEngine that a basic block was aborted because
148  /// it could not be completely analyzed.
149  void addAbortedBlock(const ExplodedNode *node, const CFGBlock *block) {
150    blocksAborted.push_back(std::make_pair(block, node));
151  }
152
153  WorkList *getWorkList() const { return WList.get(); }
154
155  BlocksExhausted::const_iterator blocks_exhausted_begin() const {
156    return blocksExhausted.begin();
157  }
158  BlocksExhausted::const_iterator blocks_exhausted_end() const {
159    return blocksExhausted.end();
160  }
161  BlocksAborted::const_iterator blocks_aborted_begin() const {
162    return blocksAborted.begin();
163  }
164  BlocksAborted::const_iterator blocks_aborted_end() const {
165    return blocksAborted.end();
166  }
167
168  /// \brief Enqueue the given set of nodes onto the work list.
169  void enqueue(ExplodedNodeSet &Set);
170
171  /// \brief Enqueue nodes that were created as a result of processing
172  /// a statement onto the work list.
173  void enqueue(ExplodedNodeSet &Set, const CFGBlock *Block, unsigned Idx);
174
175  /// \brief enqueue the nodes corresponding to the end of function onto the
176  /// end of path / work list.
177  void enqueueEndOfFunction(ExplodedNodeSet &Set);
178
179  /// \brief Enqueue a single node created as a result of statement processing.
180  void enqueueStmtNode(ExplodedNode *N, const CFGBlock *Block, unsigned Idx);
181};
182
183// TODO: Turn into a calss.
184struct NodeBuilderContext {
185  const CoreEngine &Eng;
186  const CFGBlock *Block;
187  const LocationContext *LC;
188  NodeBuilderContext(const CoreEngine &E, const CFGBlock *B, ExplodedNode *N)
189    : Eng(E), Block(B), LC(N->getLocationContext()) { assert(B); }
190
191  /// \brief Return the CFGBlock associated with this builder.
192  const CFGBlock *getBlock() const { return Block; }
193
194  /// \brief Returns the number of times the current basic block has been
195  /// visited on the exploded graph path.
196  unsigned blockCount() const {
197    return Eng.WList->getBlockCounter().getNumVisited(
198                    LC->getCurrentStackFrame(),
199                    Block->getBlockID());
200  }
201};
202
203/// \class NodeBuilder
204/// \brief This is the simplest builder which generates nodes in the
205/// ExplodedGraph.
206///
207/// The main benefit of the builder is that it automatically tracks the
208/// frontier nodes (or destination set). This is the set of nodes which should
209/// be propagated to the next step / builder. They are the nodes which have been
210/// added to the builder (either as the input node set or as the newly
211/// constructed nodes) but did not have any outgoing transitions added.
212class NodeBuilder {
213  virtual void anchor();
214protected:
215  const NodeBuilderContext &C;
216
217  /// Specifies if the builder results have been finalized. For example, if it
218  /// is set to false, autotransitions are yet to be generated.
219  bool Finalized;
220  bool HasGeneratedNodes;
221  /// \brief The frontier set - a set of nodes which need to be propagated after
222  /// the builder dies.
223  ExplodedNodeSet &Frontier;
224
225  /// Checkes if the results are ready.
226  virtual bool checkResults() {
227    if (!Finalized)
228      return false;
229    return true;
230  }
231
232  bool hasNoSinksInFrontier() {
233    for (iterator I = Frontier.begin(), E = Frontier.end(); I != E; ++I) {
234      if ((*I)->isSink())
235        return false;
236    }
237    return true;
238  }
239
240  /// Allow subclasses to finalize results before result_begin() is executed.
241  virtual void finalizeResults() {}
242
243  ExplodedNode *generateNodeImpl(const ProgramPoint &PP,
244                                 ProgramStateRef State,
245                                 ExplodedNode *Pred,
246                                 bool MarkAsSink = false);
247
248public:
249  NodeBuilder(ExplodedNode *SrcNode, ExplodedNodeSet &DstSet,
250              const NodeBuilderContext &Ctx, bool F = true)
251    : C(Ctx), Finalized(F), HasGeneratedNodes(false), Frontier(DstSet) {
252    Frontier.Add(SrcNode);
253  }
254
255  NodeBuilder(const ExplodedNodeSet &SrcSet, ExplodedNodeSet &DstSet,
256              const NodeBuilderContext &Ctx, bool F = true)
257    : C(Ctx), Finalized(F), HasGeneratedNodes(false), Frontier(DstSet) {
258    Frontier.insert(SrcSet);
259    assert(hasNoSinksInFrontier());
260  }
261
262  virtual ~NodeBuilder() {}
263
264  /// \brief Generates a node in the ExplodedGraph.
265  ExplodedNode *generateNode(const ProgramPoint &PP,
266                             ProgramStateRef State,
267                             ExplodedNode *Pred) {
268    return generateNodeImpl(PP, State, Pred, false);
269  }
270
271  /// \brief Generates a sink in the ExplodedGraph.
272  ///
273  /// When a node is marked as sink, the exploration from the node is stopped -
274  /// the node becomes the last node on the path and certain kinds of bugs are
275  /// suppressed.
276  ExplodedNode *generateSink(const ProgramPoint &PP,
277                             ProgramStateRef State,
278                             ExplodedNode *Pred) {
279    return generateNodeImpl(PP, State, Pred, true);
280  }
281
282  const ExplodedNodeSet &getResults() {
283    finalizeResults();
284    assert(checkResults());
285    return Frontier;
286  }
287
288  typedef ExplodedNodeSet::iterator iterator;
289  /// \brief Iterators through the results frontier.
290  inline iterator begin() {
291    finalizeResults();
292    assert(checkResults());
293    return Frontier.begin();
294  }
295  inline iterator end() {
296    finalizeResults();
297    return Frontier.end();
298  }
299
300  const NodeBuilderContext &getContext() { return C; }
301  bool hasGeneratedNodes() { return HasGeneratedNodes; }
302
303  void takeNodes(const ExplodedNodeSet &S) {
304    for (ExplodedNodeSet::iterator I = S.begin(), E = S.end(); I != E; ++I )
305      Frontier.erase(*I);
306  }
307  void takeNodes(ExplodedNode *N) { Frontier.erase(N); }
308  void addNodes(const ExplodedNodeSet &S) { Frontier.insert(S); }
309  void addNodes(ExplodedNode *N) { Frontier.Add(N); }
310};
311
312/// \class NodeBuilderWithSinks
313/// \brief This node builder keeps track of the generated sink nodes.
314class NodeBuilderWithSinks: public NodeBuilder {
315  void anchor() override;
316protected:
317  SmallVector<ExplodedNode*, 2> sinksGenerated;
318  ProgramPoint &Location;
319
320public:
321  NodeBuilderWithSinks(ExplodedNode *Pred, ExplodedNodeSet &DstSet,
322                       const NodeBuilderContext &Ctx, ProgramPoint &L)
323    : NodeBuilder(Pred, DstSet, Ctx), Location(L) {}
324
325  ExplodedNode *generateNode(ProgramStateRef State,
326                             ExplodedNode *Pred,
327                             const ProgramPointTag *Tag = nullptr) {
328    const ProgramPoint &LocalLoc = (Tag ? Location.withTag(Tag) : Location);
329    return NodeBuilder::generateNode(LocalLoc, State, Pred);
330  }
331
332  ExplodedNode *generateSink(ProgramStateRef State, ExplodedNode *Pred,
333                             const ProgramPointTag *Tag = nullptr) {
334    const ProgramPoint &LocalLoc = (Tag ? Location.withTag(Tag) : Location);
335    ExplodedNode *N = NodeBuilder::generateSink(LocalLoc, State, Pred);
336    if (N && N->isSink())
337      sinksGenerated.push_back(N);
338    return N;
339  }
340
341  const SmallVectorImpl<ExplodedNode*> &getSinks() const {
342    return sinksGenerated;
343  }
344};
345
346/// \class StmtNodeBuilder
347/// \brief This builder class is useful for generating nodes that resulted from
348/// visiting a statement. The main difference from its parent NodeBuilder is
349/// that it creates a statement specific ProgramPoint.
350class StmtNodeBuilder: public NodeBuilder {
351  NodeBuilder *EnclosingBldr;
352public:
353
354  /// \brief Constructs a StmtNodeBuilder. If the builder is going to process
355  /// nodes currently owned by another builder(with larger scope), use
356  /// Enclosing builder to transfer ownership.
357  StmtNodeBuilder(ExplodedNode *SrcNode, ExplodedNodeSet &DstSet,
358                  const NodeBuilderContext &Ctx,
359                  NodeBuilder *Enclosing = nullptr)
360    : NodeBuilder(SrcNode, DstSet, Ctx), EnclosingBldr(Enclosing) {
361    if (EnclosingBldr)
362      EnclosingBldr->takeNodes(SrcNode);
363  }
364
365  StmtNodeBuilder(ExplodedNodeSet &SrcSet, ExplodedNodeSet &DstSet,
366                  const NodeBuilderContext &Ctx,
367                  NodeBuilder *Enclosing = nullptr)
368    : NodeBuilder(SrcSet, DstSet, Ctx), EnclosingBldr(Enclosing) {
369    if (EnclosingBldr)
370      for (ExplodedNodeSet::iterator I = SrcSet.begin(),
371                                     E = SrcSet.end(); I != E; ++I )
372        EnclosingBldr->takeNodes(*I);
373  }
374
375  virtual ~StmtNodeBuilder();
376
377  using NodeBuilder::generateNode;
378  using NodeBuilder::generateSink;
379
380  ExplodedNode *generateNode(const Stmt *S,
381                             ExplodedNode *Pred,
382                             ProgramStateRef St,
383                             const ProgramPointTag *tag = nullptr,
384                             ProgramPoint::Kind K = ProgramPoint::PostStmtKind){
385    const ProgramPoint &L = ProgramPoint::getProgramPoint(S, K,
386                                  Pred->getLocationContext(), tag);
387    return NodeBuilder::generateNode(L, St, Pred);
388  }
389
390  ExplodedNode *generateSink(const Stmt *S,
391                             ExplodedNode *Pred,
392                             ProgramStateRef St,
393                             const ProgramPointTag *tag = nullptr,
394                             ProgramPoint::Kind K = ProgramPoint::PostStmtKind){
395    const ProgramPoint &L = ProgramPoint::getProgramPoint(S, K,
396                                  Pred->getLocationContext(), tag);
397    return NodeBuilder::generateSink(L, St, Pred);
398  }
399};
400
401/// \brief BranchNodeBuilder is responsible for constructing the nodes
402/// corresponding to the two branches of the if statement - true and false.
403class BranchNodeBuilder: public NodeBuilder {
404  void anchor() override;
405  const CFGBlock *DstT;
406  const CFGBlock *DstF;
407
408  bool InFeasibleTrue;
409  bool InFeasibleFalse;
410
411public:
412  BranchNodeBuilder(ExplodedNode *SrcNode, ExplodedNodeSet &DstSet,
413                    const NodeBuilderContext &C,
414                    const CFGBlock *dstT, const CFGBlock *dstF)
415  : NodeBuilder(SrcNode, DstSet, C), DstT(dstT), DstF(dstF),
416    InFeasibleTrue(!DstT), InFeasibleFalse(!DstF) {
417    // The branch node builder does not generate autotransitions.
418    // If there are no successors it means that both branches are infeasible.
419    takeNodes(SrcNode);
420  }
421
422  BranchNodeBuilder(const ExplodedNodeSet &SrcSet, ExplodedNodeSet &DstSet,
423                    const NodeBuilderContext &C,
424                    const CFGBlock *dstT, const CFGBlock *dstF)
425  : NodeBuilder(SrcSet, DstSet, C), DstT(dstT), DstF(dstF),
426    InFeasibleTrue(!DstT), InFeasibleFalse(!DstF) {
427    takeNodes(SrcSet);
428  }
429
430  ExplodedNode *generateNode(ProgramStateRef State, bool branch,
431                             ExplodedNode *Pred);
432
433  const CFGBlock *getTargetBlock(bool branch) const {
434    return branch ? DstT : DstF;
435  }
436
437  void markInfeasible(bool branch) {
438    if (branch)
439      InFeasibleTrue = true;
440    else
441      InFeasibleFalse = true;
442  }
443
444  bool isFeasible(bool branch) {
445    return branch ? !InFeasibleTrue : !InFeasibleFalse;
446  }
447};
448
449class IndirectGotoNodeBuilder {
450  CoreEngine& Eng;
451  const CFGBlock *Src;
452  const CFGBlock &DispatchBlock;
453  const Expr *E;
454  ExplodedNode *Pred;
455
456public:
457  IndirectGotoNodeBuilder(ExplodedNode *pred, const CFGBlock *src,
458                    const Expr *e, const CFGBlock *dispatch, CoreEngine* eng)
459    : Eng(*eng), Src(src), DispatchBlock(*dispatch), E(e), Pred(pred) {}
460
461  class iterator {
462    CFGBlock::const_succ_iterator I;
463
464    friend class IndirectGotoNodeBuilder;
465    iterator(CFGBlock::const_succ_iterator i) : I(i) {}
466  public:
467
468    iterator &operator++() { ++I; return *this; }
469    bool operator!=(const iterator &X) const { return I != X.I; }
470
471    const LabelDecl *getLabel() const {
472      return cast<LabelStmt>((*I)->getLabel())->getDecl();
473    }
474
475    const CFGBlock *getBlock() const {
476      return *I;
477    }
478  };
479
480  iterator begin() { return iterator(DispatchBlock.succ_begin()); }
481  iterator end() { return iterator(DispatchBlock.succ_end()); }
482
483  ExplodedNode *generateNode(const iterator &I,
484                             ProgramStateRef State,
485                             bool isSink = false);
486
487  const Expr *getTarget() const { return E; }
488
489  ProgramStateRef getState() const { return Pred->State; }
490
491  const LocationContext *getLocationContext() const {
492    return Pred->getLocationContext();
493  }
494};
495
496class SwitchNodeBuilder {
497  CoreEngine& Eng;
498  const CFGBlock *Src;
499  const Expr *Condition;
500  ExplodedNode *Pred;
501
502public:
503  SwitchNodeBuilder(ExplodedNode *pred, const CFGBlock *src,
504                    const Expr *condition, CoreEngine* eng)
505  : Eng(*eng), Src(src), Condition(condition), Pred(pred) {}
506
507  class iterator {
508    CFGBlock::const_succ_reverse_iterator I;
509
510    friend class SwitchNodeBuilder;
511    iterator(CFGBlock::const_succ_reverse_iterator i) : I(i) {}
512
513  public:
514    iterator &operator++() { ++I; return *this; }
515    bool operator!=(const iterator &X) const { return I != X.I; }
516    bool operator==(const iterator &X) const { return I == X.I; }
517
518    const CaseStmt *getCase() const {
519      return cast<CaseStmt>((*I)->getLabel());
520    }
521
522    const CFGBlock *getBlock() const {
523      return *I;
524    }
525  };
526
527  iterator begin() { return iterator(Src->succ_rbegin()+1); }
528  iterator end() { return iterator(Src->succ_rend()); }
529
530  const SwitchStmt *getSwitch() const {
531    return cast<SwitchStmt>(Src->getTerminator());
532  }
533
534  ExplodedNode *generateCaseStmtNode(const iterator &I,
535                                     ProgramStateRef State);
536
537  ExplodedNode *generateDefaultCaseNode(ProgramStateRef State,
538                                        bool isSink = false);
539
540  const Expr *getCondition() const { return Condition; }
541
542  ProgramStateRef getState() const { return Pred->State; }
543
544  const LocationContext *getLocationContext() const {
545    return Pred->getLocationContext();
546  }
547};
548
549} // end ento namespace
550} // end clang namespace
551
552#endif
553