CoreEngine.h revision fbcb3f11fc90e9f00e6074e9b118b8dc11ca604c
1//==- CoreEngine.h - Path-Sensitive Dataflow Engine ----------------*- C++ -*-//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines a generic engine for intraprocedural, path-sensitive,
11//  dataflow analysis via graph reachability.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CLANG_GR_COREENGINE
16#define LLVM_CLANG_GR_COREENGINE
17
18#include "clang/AST/Expr.h"
19#include "clang/Analysis/AnalysisContext.h"
20#include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
21#include "clang/StaticAnalyzer/Core/PathSensitive/FunctionSummary.h"
22#include "clang/StaticAnalyzer/Core/PathSensitive/WorkList.h"
23#include "clang/StaticAnalyzer/Core/PathSensitive/BlockCounter.h"
24#include "llvm/ADT/OwningPtr.h"
25
26namespace clang {
27
28class ProgramPointTag;
29
30namespace ento {
31
32class NodeBuilder;
33
34//===----------------------------------------------------------------------===//
35/// CoreEngine - Implements the core logic of the graph-reachability
36///   analysis. It traverses the CFG and generates the ExplodedGraph.
37///   Program "states" are treated as opaque void pointers.
38///   The template class CoreEngine (which subclasses CoreEngine)
39///   provides the matching component to the engine that knows the actual types
40///   for states.  Note that this engine only dispatches to transfer functions
41///   at the statement and block-level.  The analyses themselves must implement
42///   any transfer function logic and the sub-expression level (if any).
43class CoreEngine {
44  friend struct NodeBuilderContext;
45  friend class NodeBuilder;
46  friend class ExprEngine;
47  friend class CommonNodeBuilder;
48  friend class IndirectGotoNodeBuilder;
49  friend class SwitchNodeBuilder;
50  friend class EndOfFunctionNodeBuilder;
51public:
52  typedef std::vector<std::pair<BlockEdge, const ExplodedNode*> >
53            BlocksExhausted;
54
55  typedef std::vector<std::pair<const CFGBlock*, const ExplodedNode*> >
56            BlocksAborted;
57
58private:
59
60  SubEngine& SubEng;
61
62  /// G - The simulation graph.  Each node is a (location,state) pair.
63  OwningPtr<ExplodedGraph> G;
64
65  /// WList - A set of queued nodes that need to be processed by the
66  ///  worklist algorithm.  It is up to the implementation of WList to decide
67  ///  the order that nodes are processed.
68  OwningPtr<WorkList> WList;
69
70  /// BCounterFactory - A factory object for created BlockCounter objects.
71  ///   These are used to record for key nodes in the ExplodedGraph the
72  ///   number of times different CFGBlocks have been visited along a path.
73  BlockCounter::Factory BCounterFactory;
74
75  /// The locations where we stopped doing work because we visited a location
76  ///  too many times.
77  BlocksExhausted blocksExhausted;
78
79  /// The locations where we stopped because the engine aborted analysis,
80  /// usually because it could not reason about something.
81  BlocksAborted blocksAborted;
82
83  /// The information about functions shared by the whole translation unit.
84  /// (This data is owned by AnalysisConsumer.)
85  FunctionSummariesTy *FunctionSummaries;
86
87  void generateNode(const ProgramPoint &Loc,
88                    ProgramStateRef State,
89                    ExplodedNode *Pred);
90
91  void HandleBlockEdge(const BlockEdge &E, ExplodedNode *Pred);
92  void HandleBlockEntrance(const BlockEntrance &E, ExplodedNode *Pred);
93  void HandleBlockExit(const CFGBlock *B, ExplodedNode *Pred);
94  void HandlePostStmt(const CFGBlock *B, unsigned StmtIdx, ExplodedNode *Pred);
95
96  void HandleBranch(const Stmt *Cond, const Stmt *Term, const CFGBlock *B,
97                    ExplodedNode *Pred);
98
99private:
100  CoreEngine(const CoreEngine&); // Do not implement.
101  CoreEngine& operator=(const CoreEngine&);
102
103  ExplodedNode *generateCallExitBeginNode(ExplodedNode *N);
104
105public:
106  /// Construct a CoreEngine object to analyze the provided CFG.
107  CoreEngine(SubEngine& subengine,
108             FunctionSummariesTy *FS)
109    : SubEng(subengine), G(new ExplodedGraph()),
110      WList(WorkList::makeDFS()),
111      BCounterFactory(G->getAllocator()),
112      FunctionSummaries(FS){}
113
114  /// getGraph - Returns the exploded graph.
115  ExplodedGraph& getGraph() { return *G.get(); }
116
117  /// takeGraph - Returns the exploded graph.  Ownership of the graph is
118  ///  transferred to the caller.
119  ExplodedGraph* takeGraph() { return G.take(); }
120
121  /// ExecuteWorkList - Run the worklist algorithm for a maximum number of
122  ///  steps.  Returns true if there is still simulation state on the worklist.
123  bool ExecuteWorkList(const LocationContext *L, unsigned Steps,
124                       ProgramStateRef InitState);
125  /// Returns true if there is still simulation state on the worklist.
126  bool ExecuteWorkListWithInitialState(const LocationContext *L,
127                                       unsigned Steps,
128                                       ProgramStateRef InitState,
129                                       ExplodedNodeSet &Dst);
130
131  /// Dispatch the work list item based on the given location information.
132  /// Use Pred parameter as the predecessor state.
133  void dispatchWorkItem(ExplodedNode* Pred, ProgramPoint Loc,
134                        const WorkListUnit& WU);
135
136  // Functions for external checking of whether we have unfinished work
137  bool wasBlockAborted() const { return !blocksAborted.empty(); }
138  bool wasBlocksExhausted() const { return !blocksExhausted.empty(); }
139  bool hasWorkRemaining() const { return wasBlocksExhausted() ||
140                                         WList->hasWork() ||
141                                         wasBlockAborted(); }
142
143  /// Inform the CoreEngine that a basic block was aborted because
144  /// it could not be completely analyzed.
145  void addAbortedBlock(const ExplodedNode *node, const CFGBlock *block) {
146    blocksAborted.push_back(std::make_pair(block, node));
147  }
148
149  WorkList *getWorkList() const { return WList.get(); }
150
151  BlocksExhausted::const_iterator blocks_exhausted_begin() const {
152    return blocksExhausted.begin();
153  }
154  BlocksExhausted::const_iterator blocks_exhausted_end() const {
155    return blocksExhausted.end();
156  }
157  BlocksAborted::const_iterator blocks_aborted_begin() const {
158    return blocksAborted.begin();
159  }
160  BlocksAborted::const_iterator blocks_aborted_end() const {
161    return blocksAborted.end();
162  }
163
164  /// \brief Enqueue the given set of nodes onto the work list.
165  void enqueue(ExplodedNodeSet &Set);
166
167  /// \brief Enqueue nodes that were created as a result of processing
168  /// a statement onto the work list.
169  void enqueue(ExplodedNodeSet &Set, const CFGBlock *Block, unsigned Idx);
170
171  /// \brief enqueue the nodes corresponding to the end of function onto the
172  /// end of path / work list.
173  void enqueueEndOfFunction(ExplodedNodeSet &Set);
174
175  /// \brief Enqueue a single node created as a result of statement processing.
176  void enqueueStmtNode(ExplodedNode *N, const CFGBlock *Block, unsigned Idx);
177};
178
179// TODO: Turn into a calss.
180struct NodeBuilderContext {
181  const CoreEngine &Eng;
182  const CFGBlock *Block;
183  ExplodedNode *Pred;
184  NodeBuilderContext(const CoreEngine &E, const CFGBlock *B, ExplodedNode *N)
185    : Eng(E), Block(B), Pred(N) { assert(B); assert(!N->isSink()); }
186
187  ExplodedNode *getPred() const { return Pred; }
188
189  /// \brief Return the CFGBlock associated with this builder.
190  const CFGBlock *getBlock() const { return Block; }
191
192  /// \brief Returns the number of times the current basic block has been
193  /// visited on the exploded graph path.
194  unsigned blockCount() const {
195    return Eng.WList->getBlockCounter().getNumVisited(
196                    Pred->getLocationContext()->getCurrentStackFrame(),
197                    Block->getBlockID());
198  }
199};
200
201/// \class NodeBuilder
202/// \brief This is the simplest builder which generates nodes in the
203/// ExplodedGraph.
204///
205/// The main benefit of the builder is that it automatically tracks the
206/// frontier nodes (or destination set). This is the set of nodes which should
207/// be propagated to the next step / builder. They are the nodes which have been
208/// added to the builder (either as the input node set or as the newly
209/// constructed nodes) but did not have any outgoing transitions added.
210class NodeBuilder {
211  virtual void anchor();
212protected:
213  const NodeBuilderContext &C;
214
215  /// Specifies if the builder results have been finalized. For example, if it
216  /// is set to false, autotransitions are yet to be generated.
217  bool Finalized;
218  bool HasGeneratedNodes;
219  /// \brief The frontier set - a set of nodes which need to be propagated after
220  /// the builder dies.
221  ExplodedNodeSet &Frontier;
222
223  /// Checkes if the results are ready.
224  virtual bool checkResults() {
225    if (!Finalized)
226      return false;
227    return true;
228  }
229
230  bool hasNoSinksInFrontier() {
231    for (iterator I = Frontier.begin(), E = Frontier.end(); I != E; ++I) {
232      if ((*I)->isSink())
233        return false;
234    }
235    return true;
236  }
237
238  /// Allow subclasses to finalize results before result_begin() is executed.
239  virtual void finalizeResults() {}
240
241  ExplodedNode *generateNodeImpl(const ProgramPoint &PP,
242                                 ProgramStateRef State,
243                                 ExplodedNode *Pred,
244                                 bool MarkAsSink = false);
245
246public:
247  NodeBuilder(ExplodedNode *SrcNode, ExplodedNodeSet &DstSet,
248              const NodeBuilderContext &Ctx, bool F = true)
249    : C(Ctx), Finalized(F), HasGeneratedNodes(false), Frontier(DstSet) {
250    Frontier.Add(SrcNode);
251  }
252
253  NodeBuilder(const ExplodedNodeSet &SrcSet, ExplodedNodeSet &DstSet,
254              const NodeBuilderContext &Ctx, bool F = true)
255    : C(Ctx), Finalized(F), HasGeneratedNodes(false), Frontier(DstSet) {
256    Frontier.insert(SrcSet);
257    assert(hasNoSinksInFrontier());
258  }
259
260  virtual ~NodeBuilder() {}
261
262  /// \brief Generates a node in the ExplodedGraph.
263  ExplodedNode *generateNode(const ProgramPoint &PP,
264                             ProgramStateRef State,
265                             ExplodedNode *Pred) {
266    return generateNodeImpl(PP, State, Pred, false);
267  }
268
269  /// \brief Generates a sink in the ExplodedGraph.
270  ///
271  /// When a node is marked as sink, the exploration from the node is stopped -
272  /// the node becomes the last node on the path and certain kinds of bugs are
273  /// suppressed.
274  ExplodedNode *generateSink(const ProgramPoint &PP,
275                             ProgramStateRef State,
276                             ExplodedNode *Pred) {
277    return generateNodeImpl(PP, State, Pred, true);
278  }
279
280  const ExplodedNodeSet &getResults() {
281    finalizeResults();
282    assert(checkResults());
283    return Frontier;
284  }
285
286  typedef ExplodedNodeSet::iterator iterator;
287  /// \brief Iterators through the results frontier.
288  inline iterator begin() {
289    finalizeResults();
290    assert(checkResults());
291    return Frontier.begin();
292  }
293  inline iterator end() {
294    finalizeResults();
295    return Frontier.end();
296  }
297
298  const NodeBuilderContext &getContext() { return C; }
299  bool hasGeneratedNodes() { return HasGeneratedNodes; }
300
301  void takeNodes(const ExplodedNodeSet &S) {
302    for (ExplodedNodeSet::iterator I = S.begin(), E = S.end(); I != E; ++I )
303      Frontier.erase(*I);
304  }
305  void takeNodes(ExplodedNode *N) { Frontier.erase(N); }
306  void addNodes(const ExplodedNodeSet &S) { Frontier.insert(S); }
307  void addNodes(ExplodedNode *N) { Frontier.Add(N); }
308};
309
310/// \class NodeBuilderWithSinks
311/// \brief This node builder keeps track of the generated sink nodes.
312class NodeBuilderWithSinks: public NodeBuilder {
313  virtual void anchor();
314protected:
315  SmallVector<ExplodedNode*, 2> sinksGenerated;
316  ProgramPoint &Location;
317
318public:
319  NodeBuilderWithSinks(ExplodedNode *Pred, ExplodedNodeSet &DstSet,
320                       const NodeBuilderContext &Ctx, ProgramPoint &L)
321    : NodeBuilder(Pred, DstSet, Ctx), Location(L) {}
322
323  ExplodedNode *generateNode(ProgramStateRef State,
324                             ExplodedNode *Pred,
325                             const ProgramPointTag *Tag = 0) {
326    const ProgramPoint &LocalLoc = (Tag ? Location.withTag(Tag) : Location);
327    return NodeBuilder::generateNode(LocalLoc, State, Pred);
328  }
329
330  ExplodedNode *generateSink(ProgramStateRef State, ExplodedNode *Pred,
331                             const ProgramPointTag *Tag = 0) {
332    const ProgramPoint &LocalLoc = (Tag ? Location.withTag(Tag) : Location);
333    ExplodedNode *N = NodeBuilder::generateSink(LocalLoc, State, Pred);
334    if (N && N->isSink())
335      sinksGenerated.push_back(N);
336    return N;
337  }
338
339  const SmallVectorImpl<ExplodedNode*> &getSinks() const {
340    return sinksGenerated;
341  }
342};
343
344/// \class StmtNodeBuilder
345/// \brief This builder class is useful for generating nodes that resulted from
346/// visiting a statement. The main difference from its parent NodeBuilder is
347/// that it creates a statement specific ProgramPoint.
348class StmtNodeBuilder: public NodeBuilder {
349  NodeBuilder *EnclosingBldr;
350public:
351
352  /// \brief Constructs a StmtNodeBuilder. If the builder is going to process
353  /// nodes currently owned by another builder(with larger scope), use
354  /// Enclosing builder to transfer ownership.
355  StmtNodeBuilder(ExplodedNode *SrcNode, ExplodedNodeSet &DstSet,
356                      const NodeBuilderContext &Ctx, NodeBuilder *Enclosing = 0)
357    : NodeBuilder(SrcNode, DstSet, Ctx), EnclosingBldr(Enclosing) {
358    if (EnclosingBldr)
359      EnclosingBldr->takeNodes(SrcNode);
360  }
361
362  StmtNodeBuilder(ExplodedNodeSet &SrcSet, ExplodedNodeSet &DstSet,
363                      const NodeBuilderContext &Ctx, NodeBuilder *Enclosing = 0)
364    : NodeBuilder(SrcSet, DstSet, Ctx), EnclosingBldr(Enclosing) {
365    if (EnclosingBldr)
366      for (ExplodedNodeSet::iterator I = SrcSet.begin(),
367                                     E = SrcSet.end(); I != E; ++I )
368        EnclosingBldr->takeNodes(*I);
369  }
370
371  virtual ~StmtNodeBuilder();
372
373  using NodeBuilder::generateNode;
374  using NodeBuilder::generateSink;
375
376  ExplodedNode *generateNode(const Stmt *S,
377                             ExplodedNode *Pred,
378                             ProgramStateRef St,
379                             const ProgramPointTag *tag = 0,
380                             ProgramPoint::Kind K = ProgramPoint::PostStmtKind){
381    const ProgramPoint &L = ProgramPoint::getProgramPoint(S, K,
382                                  Pred->getLocationContext(), tag);
383    return NodeBuilder::generateNode(L, St, Pred);
384  }
385
386  ExplodedNode *generateSink(const Stmt *S,
387                             ExplodedNode *Pred,
388                             ProgramStateRef St,
389                             const ProgramPointTag *tag = 0,
390                             ProgramPoint::Kind K = ProgramPoint::PostStmtKind){
391    const ProgramPoint &L = ProgramPoint::getProgramPoint(S, K,
392                                  Pred->getLocationContext(), tag);
393    return NodeBuilder::generateSink(L, St, Pred);
394  }
395};
396
397/// \brief BranchNodeBuilder is responsible for constructing the nodes
398/// corresponding to the two branches of the if statement - true and false.
399class BranchNodeBuilder: public NodeBuilder {
400  virtual void anchor();
401  const CFGBlock *DstT;
402  const CFGBlock *DstF;
403
404  bool InFeasibleTrue;
405  bool InFeasibleFalse;
406
407public:
408  BranchNodeBuilder(ExplodedNode *SrcNode, ExplodedNodeSet &DstSet,
409                    const NodeBuilderContext &C,
410                    const CFGBlock *dstT, const CFGBlock *dstF)
411  : NodeBuilder(SrcNode, DstSet, C), DstT(dstT), DstF(dstF),
412    InFeasibleTrue(!DstT), InFeasibleFalse(!DstF) {
413    // The branch node builder does not generate autotransitions.
414    // If there are no successors it means that both branches are infeasible.
415    takeNodes(SrcNode);
416  }
417
418  BranchNodeBuilder(const ExplodedNodeSet &SrcSet, ExplodedNodeSet &DstSet,
419                    const NodeBuilderContext &C,
420                    const CFGBlock *dstT, const CFGBlock *dstF)
421  : NodeBuilder(SrcSet, DstSet, C), DstT(dstT), DstF(dstF),
422    InFeasibleTrue(!DstT), InFeasibleFalse(!DstF) {
423    takeNodes(SrcSet);
424  }
425
426  ExplodedNode *generateNode(ProgramStateRef State, bool branch,
427                             ExplodedNode *Pred);
428
429  const CFGBlock *getTargetBlock(bool branch) const {
430    return branch ? DstT : DstF;
431  }
432
433  void markInfeasible(bool branch) {
434    if (branch)
435      InFeasibleTrue = true;
436    else
437      InFeasibleFalse = true;
438  }
439
440  bool isFeasible(bool branch) {
441    return branch ? !InFeasibleTrue : !InFeasibleFalse;
442  }
443};
444
445class IndirectGotoNodeBuilder {
446  CoreEngine& Eng;
447  const CFGBlock *Src;
448  const CFGBlock &DispatchBlock;
449  const Expr *E;
450  ExplodedNode *Pred;
451
452public:
453  IndirectGotoNodeBuilder(ExplodedNode *pred, const CFGBlock *src,
454                    const Expr *e, const CFGBlock *dispatch, CoreEngine* eng)
455    : Eng(*eng), Src(src), DispatchBlock(*dispatch), E(e), Pred(pred) {}
456
457  class iterator {
458    CFGBlock::const_succ_iterator I;
459
460    friend class IndirectGotoNodeBuilder;
461    iterator(CFGBlock::const_succ_iterator i) : I(i) {}
462  public:
463
464    iterator &operator++() { ++I; return *this; }
465    bool operator!=(const iterator &X) const { return I != X.I; }
466
467    const LabelDecl *getLabel() const {
468      return llvm::cast<LabelStmt>((*I)->getLabel())->getDecl();
469    }
470
471    const CFGBlock *getBlock() const {
472      return *I;
473    }
474  };
475
476  iterator begin() { return iterator(DispatchBlock.succ_begin()); }
477  iterator end() { return iterator(DispatchBlock.succ_end()); }
478
479  ExplodedNode *generateNode(const iterator &I,
480                             ProgramStateRef State,
481                             bool isSink = false);
482
483  const Expr *getTarget() const { return E; }
484
485  ProgramStateRef getState() const { return Pred->State; }
486
487  const LocationContext *getLocationContext() const {
488    return Pred->getLocationContext();
489  }
490};
491
492class SwitchNodeBuilder {
493  CoreEngine& Eng;
494  const CFGBlock *Src;
495  const Expr *Condition;
496  ExplodedNode *Pred;
497
498public:
499  SwitchNodeBuilder(ExplodedNode *pred, const CFGBlock *src,
500                    const Expr *condition, CoreEngine* eng)
501  : Eng(*eng), Src(src), Condition(condition), Pred(pred) {}
502
503  class iterator {
504    CFGBlock::const_succ_reverse_iterator I;
505
506    friend class SwitchNodeBuilder;
507    iterator(CFGBlock::const_succ_reverse_iterator i) : I(i) {}
508
509  public:
510    iterator &operator++() { ++I; return *this; }
511    bool operator!=(const iterator &X) const { return I != X.I; }
512    bool operator==(const iterator &X) const { return I == X.I; }
513
514    const CaseStmt *getCase() const {
515      return llvm::cast<CaseStmt>((*I)->getLabel());
516    }
517
518    const CFGBlock *getBlock() const {
519      return *I;
520    }
521  };
522
523  iterator begin() { return iterator(Src->succ_rbegin()+1); }
524  iterator end() { return iterator(Src->succ_rend()); }
525
526  const SwitchStmt *getSwitch() const {
527    return llvm::cast<SwitchStmt>(Src->getTerminator());
528  }
529
530  ExplodedNode *generateCaseStmtNode(const iterator &I,
531                                     ProgramStateRef State);
532
533  ExplodedNode *generateDefaultCaseNode(ProgramStateRef State,
534                                        bool isSink = false);
535
536  const Expr *getCondition() const { return Condition; }
537
538  ProgramStateRef getState() const { return Pred->State; }
539
540  const LocationContext *getLocationContext() const {
541    return Pred->getLocationContext();
542  }
543};
544
545} // end ento namespace
546} // end clang namespace
547
548#endif
549