1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "CXXABI.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/Attr.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/Comment.h"
20#include "clang/AST/CommentCommandTraits.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExternalASTSource.h"
27#include "clang/AST/Mangle.h"
28#include "clang/AST/MangleNumberingContext.h"
29#include "clang/AST/RecordLayout.h"
30#include "clang/AST/RecursiveASTVisitor.h"
31#include "clang/AST/TypeLoc.h"
32#include "clang/AST/VTableBuilder.h"
33#include "clang/Basic/Builtins.h"
34#include "clang/Basic/SourceManager.h"
35#include "clang/Basic/TargetInfo.h"
36#include "llvm/ADT/SmallString.h"
37#include "llvm/ADT/StringExtras.h"
38#include "llvm/ADT/Triple.h"
39#include "llvm/Support/Capacity.h"
40#include "llvm/Support/MathExtras.h"
41#include "llvm/Support/raw_ostream.h"
42#include <map>
43
44using namespace clang;
45
46unsigned ASTContext::NumImplicitDefaultConstructors;
47unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
48unsigned ASTContext::NumImplicitCopyConstructors;
49unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
50unsigned ASTContext::NumImplicitMoveConstructors;
51unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
52unsigned ASTContext::NumImplicitCopyAssignmentOperators;
53unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
54unsigned ASTContext::NumImplicitMoveAssignmentOperators;
55unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
56unsigned ASTContext::NumImplicitDestructors;
57unsigned ASTContext::NumImplicitDestructorsDeclared;
58
59enum FloatingRank {
60  HalfRank, FloatRank, DoubleRank, LongDoubleRank
61};
62
63RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
64  if (!CommentsLoaded && ExternalSource) {
65    ExternalSource->ReadComments();
66
67#ifndef NDEBUG
68    ArrayRef<RawComment *> RawComments = Comments.getComments();
69    assert(std::is_sorted(RawComments.begin(), RawComments.end(),
70                          BeforeThanCompare<RawComment>(SourceMgr)));
71#endif
72
73    CommentsLoaded = true;
74  }
75
76  assert(D);
77
78  // User can not attach documentation to implicit declarations.
79  if (D->isImplicit())
80    return nullptr;
81
82  // User can not attach documentation to implicit instantiations.
83  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
84    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
85      return nullptr;
86  }
87
88  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
89    if (VD->isStaticDataMember() &&
90        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
91      return nullptr;
92  }
93
94  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
95    if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
96      return nullptr;
97  }
98
99  if (const ClassTemplateSpecializationDecl *CTSD =
100          dyn_cast<ClassTemplateSpecializationDecl>(D)) {
101    TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
102    if (TSK == TSK_ImplicitInstantiation ||
103        TSK == TSK_Undeclared)
104      return nullptr;
105  }
106
107  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
108    if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
109      return nullptr;
110  }
111  if (const TagDecl *TD = dyn_cast<TagDecl>(D)) {
112    // When tag declaration (but not definition!) is part of the
113    // decl-specifier-seq of some other declaration, it doesn't get comment
114    if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
115      return nullptr;
116  }
117  // TODO: handle comments for function parameters properly.
118  if (isa<ParmVarDecl>(D))
119    return nullptr;
120
121  // TODO: we could look up template parameter documentation in the template
122  // documentation.
123  if (isa<TemplateTypeParmDecl>(D) ||
124      isa<NonTypeTemplateParmDecl>(D) ||
125      isa<TemplateTemplateParmDecl>(D))
126    return nullptr;
127
128  ArrayRef<RawComment *> RawComments = Comments.getComments();
129
130  // If there are no comments anywhere, we won't find anything.
131  if (RawComments.empty())
132    return nullptr;
133
134  // Find declaration location.
135  // For Objective-C declarations we generally don't expect to have multiple
136  // declarators, thus use declaration starting location as the "declaration
137  // location".
138  // For all other declarations multiple declarators are used quite frequently,
139  // so we use the location of the identifier as the "declaration location".
140  SourceLocation DeclLoc;
141  if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
142      isa<ObjCPropertyDecl>(D) ||
143      isa<RedeclarableTemplateDecl>(D) ||
144      isa<ClassTemplateSpecializationDecl>(D))
145    DeclLoc = D->getLocStart();
146  else {
147    DeclLoc = D->getLocation();
148    if (DeclLoc.isMacroID()) {
149      if (isa<TypedefDecl>(D)) {
150        // If location of the typedef name is in a macro, it is because being
151        // declared via a macro. Try using declaration's starting location as
152        // the "declaration location".
153        DeclLoc = D->getLocStart();
154      } else if (const TagDecl *TD = dyn_cast<TagDecl>(D)) {
155        // If location of the tag decl is inside a macro, but the spelling of
156        // the tag name comes from a macro argument, it looks like a special
157        // macro like NS_ENUM is being used to define the tag decl.  In that
158        // case, adjust the source location to the expansion loc so that we can
159        // attach the comment to the tag decl.
160        if (SourceMgr.isMacroArgExpansion(DeclLoc) &&
161            TD->isCompleteDefinition())
162          DeclLoc = SourceMgr.getExpansionLoc(DeclLoc);
163      }
164    }
165  }
166
167  // If the declaration doesn't map directly to a location in a file, we
168  // can't find the comment.
169  if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
170    return nullptr;
171
172  // Find the comment that occurs just after this declaration.
173  ArrayRef<RawComment *>::iterator Comment;
174  {
175    // When searching for comments during parsing, the comment we are looking
176    // for is usually among the last two comments we parsed -- check them
177    // first.
178    RawComment CommentAtDeclLoc(
179        SourceMgr, SourceRange(DeclLoc), false,
180        LangOpts.CommentOpts.ParseAllComments);
181    BeforeThanCompare<RawComment> Compare(SourceMgr);
182    ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
183    bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
184    if (!Found && RawComments.size() >= 2) {
185      MaybeBeforeDecl--;
186      Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
187    }
188
189    if (Found) {
190      Comment = MaybeBeforeDecl + 1;
191      assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),
192                                         &CommentAtDeclLoc, Compare));
193    } else {
194      // Slow path.
195      Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
196                                 &CommentAtDeclLoc, Compare);
197    }
198  }
199
200  // Decompose the location for the declaration and find the beginning of the
201  // file buffer.
202  std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
203
204  // First check whether we have a trailing comment.
205  if (Comment != RawComments.end() &&
206      (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() &&
207      (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) ||
208       isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) {
209    std::pair<FileID, unsigned> CommentBeginDecomp
210      = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
211    // Check that Doxygen trailing comment comes after the declaration, starts
212    // on the same line and in the same file as the declaration.
213    if (DeclLocDecomp.first == CommentBeginDecomp.first &&
214        SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
215          == SourceMgr.getLineNumber(CommentBeginDecomp.first,
216                                     CommentBeginDecomp.second)) {
217      return *Comment;
218    }
219  }
220
221  // The comment just after the declaration was not a trailing comment.
222  // Let's look at the previous comment.
223  if (Comment == RawComments.begin())
224    return nullptr;
225  --Comment;
226
227  // Check that we actually have a non-member Doxygen comment.
228  if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment())
229    return nullptr;
230
231  // Decompose the end of the comment.
232  std::pair<FileID, unsigned> CommentEndDecomp
233    = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
234
235  // If the comment and the declaration aren't in the same file, then they
236  // aren't related.
237  if (DeclLocDecomp.first != CommentEndDecomp.first)
238    return nullptr;
239
240  // Get the corresponding buffer.
241  bool Invalid = false;
242  const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
243                                               &Invalid).data();
244  if (Invalid)
245    return nullptr;
246
247  // Extract text between the comment and declaration.
248  StringRef Text(Buffer + CommentEndDecomp.second,
249                 DeclLocDecomp.second - CommentEndDecomp.second);
250
251  // There should be no other declarations or preprocessor directives between
252  // comment and declaration.
253  if (Text.find_first_of(";{}#@") != StringRef::npos)
254    return nullptr;
255
256  return *Comment;
257}
258
259namespace {
260/// If we have a 'templated' declaration for a template, adjust 'D' to
261/// refer to the actual template.
262/// If we have an implicit instantiation, adjust 'D' to refer to template.
263const Decl *adjustDeclToTemplate(const Decl *D) {
264  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
265    // Is this function declaration part of a function template?
266    if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
267      return FTD;
268
269    // Nothing to do if function is not an implicit instantiation.
270    if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
271      return D;
272
273    // Function is an implicit instantiation of a function template?
274    if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
275      return FTD;
276
277    // Function is instantiated from a member definition of a class template?
278    if (const FunctionDecl *MemberDecl =
279            FD->getInstantiatedFromMemberFunction())
280      return MemberDecl;
281
282    return D;
283  }
284  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
285    // Static data member is instantiated from a member definition of a class
286    // template?
287    if (VD->isStaticDataMember())
288      if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
289        return MemberDecl;
290
291    return D;
292  }
293  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
294    // Is this class declaration part of a class template?
295    if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
296      return CTD;
297
298    // Class is an implicit instantiation of a class template or partial
299    // specialization?
300    if (const ClassTemplateSpecializationDecl *CTSD =
301            dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
302      if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
303        return D;
304      llvm::PointerUnion<ClassTemplateDecl *,
305                         ClassTemplatePartialSpecializationDecl *>
306          PU = CTSD->getSpecializedTemplateOrPartial();
307      return PU.is<ClassTemplateDecl*>() ?
308          static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) :
309          static_cast<const Decl*>(
310              PU.get<ClassTemplatePartialSpecializationDecl *>());
311    }
312
313    // Class is instantiated from a member definition of a class template?
314    if (const MemberSpecializationInfo *Info =
315                   CRD->getMemberSpecializationInfo())
316      return Info->getInstantiatedFrom();
317
318    return D;
319  }
320  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
321    // Enum is instantiated from a member definition of a class template?
322    if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
323      return MemberDecl;
324
325    return D;
326  }
327  // FIXME: Adjust alias templates?
328  return D;
329}
330} // unnamed namespace
331
332const RawComment *ASTContext::getRawCommentForAnyRedecl(
333                                                const Decl *D,
334                                                const Decl **OriginalDecl) const {
335  D = adjustDeclToTemplate(D);
336
337  // Check whether we have cached a comment for this declaration already.
338  {
339    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
340        RedeclComments.find(D);
341    if (Pos != RedeclComments.end()) {
342      const RawCommentAndCacheFlags &Raw = Pos->second;
343      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
344        if (OriginalDecl)
345          *OriginalDecl = Raw.getOriginalDecl();
346        return Raw.getRaw();
347      }
348    }
349  }
350
351  // Search for comments attached to declarations in the redeclaration chain.
352  const RawComment *RC = nullptr;
353  const Decl *OriginalDeclForRC = nullptr;
354  for (auto I : D->redecls()) {
355    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
356        RedeclComments.find(I);
357    if (Pos != RedeclComments.end()) {
358      const RawCommentAndCacheFlags &Raw = Pos->second;
359      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
360        RC = Raw.getRaw();
361        OriginalDeclForRC = Raw.getOriginalDecl();
362        break;
363      }
364    } else {
365      RC = getRawCommentForDeclNoCache(I);
366      OriginalDeclForRC = I;
367      RawCommentAndCacheFlags Raw;
368      if (RC) {
369        Raw.setRaw(RC);
370        Raw.setKind(RawCommentAndCacheFlags::FromDecl);
371      } else
372        Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl);
373      Raw.setOriginalDecl(I);
374      RedeclComments[I] = Raw;
375      if (RC)
376        break;
377    }
378  }
379
380  // If we found a comment, it should be a documentation comment.
381  assert(!RC || RC->isDocumentation());
382
383  if (OriginalDecl)
384    *OriginalDecl = OriginalDeclForRC;
385
386  // Update cache for every declaration in the redeclaration chain.
387  RawCommentAndCacheFlags Raw;
388  Raw.setRaw(RC);
389  Raw.setKind(RawCommentAndCacheFlags::FromRedecl);
390  Raw.setOriginalDecl(OriginalDeclForRC);
391
392  for (auto I : D->redecls()) {
393    RawCommentAndCacheFlags &R = RedeclComments[I];
394    if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl)
395      R = Raw;
396  }
397
398  return RC;
399}
400
401static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
402                   SmallVectorImpl<const NamedDecl *> &Redeclared) {
403  const DeclContext *DC = ObjCMethod->getDeclContext();
404  if (const ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(DC)) {
405    const ObjCInterfaceDecl *ID = IMD->getClassInterface();
406    if (!ID)
407      return;
408    // Add redeclared method here.
409    for (const auto *Ext : ID->known_extensions()) {
410      if (ObjCMethodDecl *RedeclaredMethod =
411            Ext->getMethod(ObjCMethod->getSelector(),
412                                  ObjCMethod->isInstanceMethod()))
413        Redeclared.push_back(RedeclaredMethod);
414    }
415  }
416}
417
418comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
419                                                    const Decl *D) const {
420  comments::DeclInfo *ThisDeclInfo = new (*this) comments::DeclInfo;
421  ThisDeclInfo->CommentDecl = D;
422  ThisDeclInfo->IsFilled = false;
423  ThisDeclInfo->fill();
424  ThisDeclInfo->CommentDecl = FC->getDecl();
425  if (!ThisDeclInfo->TemplateParameters)
426    ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters;
427  comments::FullComment *CFC =
428    new (*this) comments::FullComment(FC->getBlocks(),
429                                      ThisDeclInfo);
430  return CFC;
431
432}
433
434comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const {
435  const RawComment *RC = getRawCommentForDeclNoCache(D);
436  return RC ? RC->parse(*this, nullptr, D) : nullptr;
437}
438
439comments::FullComment *ASTContext::getCommentForDecl(
440                                              const Decl *D,
441                                              const Preprocessor *PP) const {
442  if (D->isInvalidDecl())
443    return nullptr;
444  D = adjustDeclToTemplate(D);
445
446  const Decl *Canonical = D->getCanonicalDecl();
447  llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
448      ParsedComments.find(Canonical);
449
450  if (Pos != ParsedComments.end()) {
451    if (Canonical != D) {
452      comments::FullComment *FC = Pos->second;
453      comments::FullComment *CFC = cloneFullComment(FC, D);
454      return CFC;
455    }
456    return Pos->second;
457  }
458
459  const Decl *OriginalDecl;
460
461  const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
462  if (!RC) {
463    if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
464      SmallVector<const NamedDecl*, 8> Overridden;
465      const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(D);
466      if (OMD && OMD->isPropertyAccessor())
467        if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
468          if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
469            return cloneFullComment(FC, D);
470      if (OMD)
471        addRedeclaredMethods(OMD, Overridden);
472      getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
473      for (unsigned i = 0, e = Overridden.size(); i < e; i++)
474        if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
475          return cloneFullComment(FC, D);
476    }
477    else if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
478      // Attach any tag type's documentation to its typedef if latter
479      // does not have one of its own.
480      QualType QT = TD->getUnderlyingType();
481      if (const TagType *TT = QT->getAs<TagType>())
482        if (const Decl *TD = TT->getDecl())
483          if (comments::FullComment *FC = getCommentForDecl(TD, PP))
484            return cloneFullComment(FC, D);
485    }
486    else if (const ObjCInterfaceDecl *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
487      while (IC->getSuperClass()) {
488        IC = IC->getSuperClass();
489        if (comments::FullComment *FC = getCommentForDecl(IC, PP))
490          return cloneFullComment(FC, D);
491      }
492    }
493    else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(D)) {
494      if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
495        if (comments::FullComment *FC = getCommentForDecl(IC, PP))
496          return cloneFullComment(FC, D);
497    }
498    else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
499      if (!(RD = RD->getDefinition()))
500        return nullptr;
501      // Check non-virtual bases.
502      for (const auto &I : RD->bases()) {
503        if (I.isVirtual() || (I.getAccessSpecifier() != AS_public))
504          continue;
505        QualType Ty = I.getType();
506        if (Ty.isNull())
507          continue;
508        if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
509          if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
510            continue;
511
512          if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
513            return cloneFullComment(FC, D);
514        }
515      }
516      // Check virtual bases.
517      for (const auto &I : RD->vbases()) {
518        if (I.getAccessSpecifier() != AS_public)
519          continue;
520        QualType Ty = I.getType();
521        if (Ty.isNull())
522          continue;
523        if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
524          if (!(VirtualBase= VirtualBase->getDefinition()))
525            continue;
526          if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
527            return cloneFullComment(FC, D);
528        }
529      }
530    }
531    return nullptr;
532  }
533
534  // If the RawComment was attached to other redeclaration of this Decl, we
535  // should parse the comment in context of that other Decl.  This is important
536  // because comments can contain references to parameter names which can be
537  // different across redeclarations.
538  if (D != OriginalDecl)
539    return getCommentForDecl(OriginalDecl, PP);
540
541  comments::FullComment *FC = RC->parse(*this, PP, D);
542  ParsedComments[Canonical] = FC;
543  return FC;
544}
545
546void
547ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
548                                               TemplateTemplateParmDecl *Parm) {
549  ID.AddInteger(Parm->getDepth());
550  ID.AddInteger(Parm->getPosition());
551  ID.AddBoolean(Parm->isParameterPack());
552
553  TemplateParameterList *Params = Parm->getTemplateParameters();
554  ID.AddInteger(Params->size());
555  for (TemplateParameterList::const_iterator P = Params->begin(),
556                                          PEnd = Params->end();
557       P != PEnd; ++P) {
558    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
559      ID.AddInteger(0);
560      ID.AddBoolean(TTP->isParameterPack());
561      continue;
562    }
563
564    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
565      ID.AddInteger(1);
566      ID.AddBoolean(NTTP->isParameterPack());
567      ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
568      if (NTTP->isExpandedParameterPack()) {
569        ID.AddBoolean(true);
570        ID.AddInteger(NTTP->getNumExpansionTypes());
571        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
572          QualType T = NTTP->getExpansionType(I);
573          ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
574        }
575      } else
576        ID.AddBoolean(false);
577      continue;
578    }
579
580    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
581    ID.AddInteger(2);
582    Profile(ID, TTP);
583  }
584}
585
586TemplateTemplateParmDecl *
587ASTContext::getCanonicalTemplateTemplateParmDecl(
588                                          TemplateTemplateParmDecl *TTP) const {
589  // Check if we already have a canonical template template parameter.
590  llvm::FoldingSetNodeID ID;
591  CanonicalTemplateTemplateParm::Profile(ID, TTP);
592  void *InsertPos = nullptr;
593  CanonicalTemplateTemplateParm *Canonical
594    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
595  if (Canonical)
596    return Canonical->getParam();
597
598  // Build a canonical template parameter list.
599  TemplateParameterList *Params = TTP->getTemplateParameters();
600  SmallVector<NamedDecl *, 4> CanonParams;
601  CanonParams.reserve(Params->size());
602  for (TemplateParameterList::const_iterator P = Params->begin(),
603                                          PEnd = Params->end();
604       P != PEnd; ++P) {
605    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
606      CanonParams.push_back(
607                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
608                                               SourceLocation(),
609                                               SourceLocation(),
610                                               TTP->getDepth(),
611                                               TTP->getIndex(), nullptr, false,
612                                               TTP->isParameterPack()));
613    else if (NonTypeTemplateParmDecl *NTTP
614             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
615      QualType T = getCanonicalType(NTTP->getType());
616      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
617      NonTypeTemplateParmDecl *Param;
618      if (NTTP->isExpandedParameterPack()) {
619        SmallVector<QualType, 2> ExpandedTypes;
620        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
621        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
622          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
623          ExpandedTInfos.push_back(
624                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
625        }
626
627        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
628                                                SourceLocation(),
629                                                SourceLocation(),
630                                                NTTP->getDepth(),
631                                                NTTP->getPosition(), nullptr,
632                                                T,
633                                                TInfo,
634                                                ExpandedTypes.data(),
635                                                ExpandedTypes.size(),
636                                                ExpandedTInfos.data());
637      } else {
638        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
639                                                SourceLocation(),
640                                                SourceLocation(),
641                                                NTTP->getDepth(),
642                                                NTTP->getPosition(), nullptr,
643                                                T,
644                                                NTTP->isParameterPack(),
645                                                TInfo);
646      }
647      CanonParams.push_back(Param);
648
649    } else
650      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
651                                           cast<TemplateTemplateParmDecl>(*P)));
652  }
653
654  TemplateTemplateParmDecl *CanonTTP
655    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
656                                       SourceLocation(), TTP->getDepth(),
657                                       TTP->getPosition(),
658                                       TTP->isParameterPack(),
659                                       nullptr,
660                         TemplateParameterList::Create(*this, SourceLocation(),
661                                                       SourceLocation(),
662                                                       CanonParams.data(),
663                                                       CanonParams.size(),
664                                                       SourceLocation()));
665
666  // Get the new insert position for the node we care about.
667  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
668  assert(!Canonical && "Shouldn't be in the map!");
669  (void)Canonical;
670
671  // Create the canonical template template parameter entry.
672  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
673  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
674  return CanonTTP;
675}
676
677CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
678  if (!LangOpts.CPlusPlus) return nullptr;
679
680  switch (T.getCXXABI().getKind()) {
681  case TargetCXXABI::GenericARM: // Same as Itanium at this level
682  case TargetCXXABI::iOS:
683  case TargetCXXABI::iOS64:
684  case TargetCXXABI::GenericAArch64:
685  case TargetCXXABI::GenericItanium:
686    return CreateItaniumCXXABI(*this);
687  case TargetCXXABI::Microsoft:
688    return CreateMicrosoftCXXABI(*this);
689  }
690  llvm_unreachable("Invalid CXXABI type!");
691}
692
693static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
694                                             const LangOptions &LOpts) {
695  if (LOpts.FakeAddressSpaceMap) {
696    // The fake address space map must have a distinct entry for each
697    // language-specific address space.
698    static const unsigned FakeAddrSpaceMap[] = {
699      1, // opencl_global
700      2, // opencl_local
701      3, // opencl_constant
702      4, // cuda_device
703      5, // cuda_constant
704      6  // cuda_shared
705    };
706    return &FakeAddrSpaceMap;
707  } else {
708    return &T.getAddressSpaceMap();
709  }
710}
711
712static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI,
713                                          const LangOptions &LangOpts) {
714  switch (LangOpts.getAddressSpaceMapMangling()) {
715  case LangOptions::ASMM_Target:
716    return TI.useAddressSpaceMapMangling();
717  case LangOptions::ASMM_On:
718    return true;
719  case LangOptions::ASMM_Off:
720    return false;
721  }
722  llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything.");
723}
724
725ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
726                       IdentifierTable &idents, SelectorTable &sels,
727                       Builtin::Context &builtins)
728  : FunctionProtoTypes(this_()),
729    TemplateSpecializationTypes(this_()),
730    DependentTemplateSpecializationTypes(this_()),
731    SubstTemplateTemplateParmPacks(this_()),
732    GlobalNestedNameSpecifier(nullptr),
733    Int128Decl(nullptr), UInt128Decl(nullptr), Float128StubDecl(nullptr),
734    BuiltinVaListDecl(nullptr),
735    ObjCIdDecl(nullptr), ObjCSelDecl(nullptr), ObjCClassDecl(nullptr),
736    ObjCProtocolClassDecl(nullptr), BOOLDecl(nullptr),
737    CFConstantStringTypeDecl(nullptr), ObjCInstanceTypeDecl(nullptr),
738    FILEDecl(nullptr),
739    jmp_bufDecl(nullptr), sigjmp_bufDecl(nullptr), ucontext_tDecl(nullptr),
740    BlockDescriptorType(nullptr), BlockDescriptorExtendedType(nullptr),
741    cudaConfigureCallDecl(nullptr),
742    NullTypeSourceInfo(QualType()),
743    FirstLocalImport(), LastLocalImport(),
744    SourceMgr(SM), LangOpts(LOpts),
745    AddrSpaceMap(nullptr), Target(nullptr), PrintingPolicy(LOpts),
746    Idents(idents), Selectors(sels),
747    BuiltinInfo(builtins),
748    DeclarationNames(*this),
749    ExternalSource(nullptr), Listener(nullptr),
750    Comments(SM), CommentsLoaded(false),
751    CommentCommandTraits(BumpAlloc, LOpts.CommentOpts),
752    LastSDM(nullptr, 0)
753{
754  TUDecl = TranslationUnitDecl::Create(*this);
755}
756
757ASTContext::~ASTContext() {
758  ReleaseParentMapEntries();
759
760  // Release the DenseMaps associated with DeclContext objects.
761  // FIXME: Is this the ideal solution?
762  ReleaseDeclContextMaps();
763
764  // Call all of the deallocation functions on all of their targets.
765  for (DeallocationMap::const_iterator I = Deallocations.begin(),
766           E = Deallocations.end(); I != E; ++I)
767    for (unsigned J = 0, N = I->second.size(); J != N; ++J)
768      (I->first)((I->second)[J]);
769
770  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
771  // because they can contain DenseMaps.
772  for (llvm::DenseMap<const ObjCContainerDecl*,
773       const ASTRecordLayout*>::iterator
774       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
775    // Increment in loop to prevent using deallocated memory.
776    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
777      R->Destroy(*this);
778
779  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
780       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
781    // Increment in loop to prevent using deallocated memory.
782    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
783      R->Destroy(*this);
784  }
785
786  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
787                                                    AEnd = DeclAttrs.end();
788       A != AEnd; ++A)
789    A->second->~AttrVec();
790
791  llvm::DeleteContainerSeconds(MangleNumberingContexts);
792}
793
794void ASTContext::ReleaseParentMapEntries() {
795  if (!AllParents) return;
796  for (const auto &Entry : *AllParents) {
797    if (Entry.second.is<ast_type_traits::DynTypedNode *>()) {
798      delete Entry.second.get<ast_type_traits::DynTypedNode *>();
799    } else {
800      assert(Entry.second.is<ParentVector *>());
801      delete Entry.second.get<ParentVector *>();
802    }
803  }
804}
805
806void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
807  Deallocations[Callback].push_back(Data);
808}
809
810void
811ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) {
812  ExternalSource = Source;
813}
814
815void ASTContext::PrintStats() const {
816  llvm::errs() << "\n*** AST Context Stats:\n";
817  llvm::errs() << "  " << Types.size() << " types total.\n";
818
819  unsigned counts[] = {
820#define TYPE(Name, Parent) 0,
821#define ABSTRACT_TYPE(Name, Parent)
822#include "clang/AST/TypeNodes.def"
823    0 // Extra
824  };
825
826  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
827    Type *T = Types[i];
828    counts[(unsigned)T->getTypeClass()]++;
829  }
830
831  unsigned Idx = 0;
832  unsigned TotalBytes = 0;
833#define TYPE(Name, Parent)                                              \
834  if (counts[Idx])                                                      \
835    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
836                 << " types\n";                                         \
837  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
838  ++Idx;
839#define ABSTRACT_TYPE(Name, Parent)
840#include "clang/AST/TypeNodes.def"
841
842  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
843
844  // Implicit special member functions.
845  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
846               << NumImplicitDefaultConstructors
847               << " implicit default constructors created\n";
848  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
849               << NumImplicitCopyConstructors
850               << " implicit copy constructors created\n";
851  if (getLangOpts().CPlusPlus)
852    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
853                 << NumImplicitMoveConstructors
854                 << " implicit move constructors created\n";
855  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
856               << NumImplicitCopyAssignmentOperators
857               << " implicit copy assignment operators created\n";
858  if (getLangOpts().CPlusPlus)
859    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
860                 << NumImplicitMoveAssignmentOperators
861                 << " implicit move assignment operators created\n";
862  llvm::errs() << NumImplicitDestructorsDeclared << "/"
863               << NumImplicitDestructors
864               << " implicit destructors created\n";
865
866  if (ExternalSource) {
867    llvm::errs() << "\n";
868    ExternalSource->PrintStats();
869  }
870
871  BumpAlloc.PrintStats();
872}
873
874RecordDecl *ASTContext::buildImplicitRecord(StringRef Name,
875                                            RecordDecl::TagKind TK) const {
876  SourceLocation Loc;
877  RecordDecl *NewDecl;
878  if (getLangOpts().CPlusPlus)
879    NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc,
880                                    Loc, &Idents.get(Name));
881  else
882    NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc,
883                                 &Idents.get(Name));
884  NewDecl->setImplicit();
885  return NewDecl;
886}
887
888TypedefDecl *ASTContext::buildImplicitTypedef(QualType T,
889                                              StringRef Name) const {
890  TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
891  TypedefDecl *NewDecl = TypedefDecl::Create(
892      const_cast<ASTContext &>(*this), getTranslationUnitDecl(),
893      SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo);
894  NewDecl->setImplicit();
895  return NewDecl;
896}
897
898TypedefDecl *ASTContext::getInt128Decl() const {
899  if (!Int128Decl)
900    Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t");
901  return Int128Decl;
902}
903
904TypedefDecl *ASTContext::getUInt128Decl() const {
905  if (!UInt128Decl)
906    UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t");
907  return UInt128Decl;
908}
909
910TypeDecl *ASTContext::getFloat128StubType() const {
911  assert(LangOpts.CPlusPlus && "should only be called for c++");
912  if (!Float128StubDecl)
913    Float128StubDecl = buildImplicitRecord("__float128");
914
915  return Float128StubDecl;
916}
917
918void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
919  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
920  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
921  Types.push_back(Ty);
922}
923
924void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
925  assert((!this->Target || this->Target == &Target) &&
926         "Incorrect target reinitialization");
927  assert(VoidTy.isNull() && "Context reinitialized?");
928
929  this->Target = &Target;
930
931  ABI.reset(createCXXABI(Target));
932  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
933  AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts);
934
935  // C99 6.2.5p19.
936  InitBuiltinType(VoidTy,              BuiltinType::Void);
937
938  // C99 6.2.5p2.
939  InitBuiltinType(BoolTy,              BuiltinType::Bool);
940  // C99 6.2.5p3.
941  if (LangOpts.CharIsSigned)
942    InitBuiltinType(CharTy,            BuiltinType::Char_S);
943  else
944    InitBuiltinType(CharTy,            BuiltinType::Char_U);
945  // C99 6.2.5p4.
946  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
947  InitBuiltinType(ShortTy,             BuiltinType::Short);
948  InitBuiltinType(IntTy,               BuiltinType::Int);
949  InitBuiltinType(LongTy,              BuiltinType::Long);
950  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
951
952  // C99 6.2.5p6.
953  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
954  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
955  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
956  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
957  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
958
959  // C99 6.2.5p10.
960  InitBuiltinType(FloatTy,             BuiltinType::Float);
961  InitBuiltinType(DoubleTy,            BuiltinType::Double);
962  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
963
964  // GNU extension, 128-bit integers.
965  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
966  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
967
968  // C++ 3.9.1p5
969  if (TargetInfo::isTypeSigned(Target.getWCharType()))
970    InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
971  else  // -fshort-wchar makes wchar_t be unsigned.
972    InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
973  if (LangOpts.CPlusPlus && LangOpts.WChar)
974    WideCharTy = WCharTy;
975  else {
976    // C99 (or C++ using -fno-wchar).
977    WideCharTy = getFromTargetType(Target.getWCharType());
978  }
979
980  WIntTy = getFromTargetType(Target.getWIntType());
981
982  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
983    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
984  else // C99
985    Char16Ty = getFromTargetType(Target.getChar16Type());
986
987  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
988    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
989  else // C99
990    Char32Ty = getFromTargetType(Target.getChar32Type());
991
992  // Placeholder type for type-dependent expressions whose type is
993  // completely unknown. No code should ever check a type against
994  // DependentTy and users should never see it; however, it is here to
995  // help diagnose failures to properly check for type-dependent
996  // expressions.
997  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
998
999  // Placeholder type for functions.
1000  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
1001
1002  // Placeholder type for bound members.
1003  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
1004
1005  // Placeholder type for pseudo-objects.
1006  InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
1007
1008  // "any" type; useful for debugger-like clients.
1009  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
1010
1011  // Placeholder type for unbridged ARC casts.
1012  InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
1013
1014  // Placeholder type for builtin functions.
1015  InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
1016
1017  // C99 6.2.5p11.
1018  FloatComplexTy      = getComplexType(FloatTy);
1019  DoubleComplexTy     = getComplexType(DoubleTy);
1020  LongDoubleComplexTy = getComplexType(LongDoubleTy);
1021
1022  // Builtin types for 'id', 'Class', and 'SEL'.
1023  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
1024  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
1025  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
1026
1027  if (LangOpts.OpenCL) {
1028    InitBuiltinType(OCLImage1dTy, BuiltinType::OCLImage1d);
1029    InitBuiltinType(OCLImage1dArrayTy, BuiltinType::OCLImage1dArray);
1030    InitBuiltinType(OCLImage1dBufferTy, BuiltinType::OCLImage1dBuffer);
1031    InitBuiltinType(OCLImage2dTy, BuiltinType::OCLImage2d);
1032    InitBuiltinType(OCLImage2dArrayTy, BuiltinType::OCLImage2dArray);
1033    InitBuiltinType(OCLImage3dTy, BuiltinType::OCLImage3d);
1034
1035    InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
1036    InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
1037  }
1038
1039  // Builtin type for __objc_yes and __objc_no
1040  ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
1041                       SignedCharTy : BoolTy);
1042
1043  ObjCConstantStringType = QualType();
1044
1045  ObjCSuperType = QualType();
1046
1047  // void * type
1048  VoidPtrTy = getPointerType(VoidTy);
1049
1050  // nullptr type (C++0x 2.14.7)
1051  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
1052
1053  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
1054  InitBuiltinType(HalfTy, BuiltinType::Half);
1055
1056  // Builtin type used to help define __builtin_va_list.
1057  VaListTagTy = QualType();
1058}
1059
1060DiagnosticsEngine &ASTContext::getDiagnostics() const {
1061  return SourceMgr.getDiagnostics();
1062}
1063
1064AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
1065  AttrVec *&Result = DeclAttrs[D];
1066  if (!Result) {
1067    void *Mem = Allocate(sizeof(AttrVec));
1068    Result = new (Mem) AttrVec;
1069  }
1070
1071  return *Result;
1072}
1073
1074/// \brief Erase the attributes corresponding to the given declaration.
1075void ASTContext::eraseDeclAttrs(const Decl *D) {
1076  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
1077  if (Pos != DeclAttrs.end()) {
1078    Pos->second->~AttrVec();
1079    DeclAttrs.erase(Pos);
1080  }
1081}
1082
1083// FIXME: Remove ?
1084MemberSpecializationInfo *
1085ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
1086  assert(Var->isStaticDataMember() && "Not a static data member");
1087  return getTemplateOrSpecializationInfo(Var)
1088      .dyn_cast<MemberSpecializationInfo *>();
1089}
1090
1091ASTContext::TemplateOrSpecializationInfo
1092ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) {
1093  llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos =
1094      TemplateOrInstantiation.find(Var);
1095  if (Pos == TemplateOrInstantiation.end())
1096    return TemplateOrSpecializationInfo();
1097
1098  return Pos->second;
1099}
1100
1101void
1102ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
1103                                                TemplateSpecializationKind TSK,
1104                                          SourceLocation PointOfInstantiation) {
1105  assert(Inst->isStaticDataMember() && "Not a static data member");
1106  assert(Tmpl->isStaticDataMember() && "Not a static data member");
1107  setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo(
1108                                            Tmpl, TSK, PointOfInstantiation));
1109}
1110
1111void
1112ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst,
1113                                            TemplateOrSpecializationInfo TSI) {
1114  assert(!TemplateOrInstantiation[Inst] &&
1115         "Already noted what the variable was instantiated from");
1116  TemplateOrInstantiation[Inst] = TSI;
1117}
1118
1119FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
1120                                                     const FunctionDecl *FD){
1121  assert(FD && "Specialization is 0");
1122  llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
1123    = ClassScopeSpecializationPattern.find(FD);
1124  if (Pos == ClassScopeSpecializationPattern.end())
1125    return nullptr;
1126
1127  return Pos->second;
1128}
1129
1130void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
1131                                        FunctionDecl *Pattern) {
1132  assert(FD && "Specialization is 0");
1133  assert(Pattern && "Class scope specialization pattern is 0");
1134  ClassScopeSpecializationPattern[FD] = Pattern;
1135}
1136
1137NamedDecl *
1138ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
1139  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
1140    = InstantiatedFromUsingDecl.find(UUD);
1141  if (Pos == InstantiatedFromUsingDecl.end())
1142    return nullptr;
1143
1144  return Pos->second;
1145}
1146
1147void
1148ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
1149  assert((isa<UsingDecl>(Pattern) ||
1150          isa<UnresolvedUsingValueDecl>(Pattern) ||
1151          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
1152         "pattern decl is not a using decl");
1153  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
1154  InstantiatedFromUsingDecl[Inst] = Pattern;
1155}
1156
1157UsingShadowDecl *
1158ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
1159  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
1160    = InstantiatedFromUsingShadowDecl.find(Inst);
1161  if (Pos == InstantiatedFromUsingShadowDecl.end())
1162    return nullptr;
1163
1164  return Pos->second;
1165}
1166
1167void
1168ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
1169                                               UsingShadowDecl *Pattern) {
1170  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
1171  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1172}
1173
1174FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
1175  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
1176    = InstantiatedFromUnnamedFieldDecl.find(Field);
1177  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
1178    return nullptr;
1179
1180  return Pos->second;
1181}
1182
1183void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1184                                                     FieldDecl *Tmpl) {
1185  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
1186  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
1187  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
1188         "Already noted what unnamed field was instantiated from");
1189
1190  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1191}
1192
1193ASTContext::overridden_cxx_method_iterator
1194ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1195  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1196    = OverriddenMethods.find(Method->getCanonicalDecl());
1197  if (Pos == OverriddenMethods.end())
1198    return nullptr;
1199
1200  return Pos->second.begin();
1201}
1202
1203ASTContext::overridden_cxx_method_iterator
1204ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1205  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1206    = OverriddenMethods.find(Method->getCanonicalDecl());
1207  if (Pos == OverriddenMethods.end())
1208    return nullptr;
1209
1210  return Pos->second.end();
1211}
1212
1213unsigned
1214ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1215  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1216    = OverriddenMethods.find(Method->getCanonicalDecl());
1217  if (Pos == OverriddenMethods.end())
1218    return 0;
1219
1220  return Pos->second.size();
1221}
1222
1223void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1224                                     const CXXMethodDecl *Overridden) {
1225  assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1226  OverriddenMethods[Method].push_back(Overridden);
1227}
1228
1229void ASTContext::getOverriddenMethods(
1230                      const NamedDecl *D,
1231                      SmallVectorImpl<const NamedDecl *> &Overridden) const {
1232  assert(D);
1233
1234  if (const CXXMethodDecl *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1235    Overridden.append(overridden_methods_begin(CXXMethod),
1236                      overridden_methods_end(CXXMethod));
1237    return;
1238  }
1239
1240  const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(D);
1241  if (!Method)
1242    return;
1243
1244  SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1245  Method->getOverriddenMethods(OverDecls);
1246  Overridden.append(OverDecls.begin(), OverDecls.end());
1247}
1248
1249void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1250  assert(!Import->NextLocalImport && "Import declaration already in the chain");
1251  assert(!Import->isFromASTFile() && "Non-local import declaration");
1252  if (!FirstLocalImport) {
1253    FirstLocalImport = Import;
1254    LastLocalImport = Import;
1255    return;
1256  }
1257
1258  LastLocalImport->NextLocalImport = Import;
1259  LastLocalImport = Import;
1260}
1261
1262//===----------------------------------------------------------------------===//
1263//                         Type Sizing and Analysis
1264//===----------------------------------------------------------------------===//
1265
1266/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1267/// scalar floating point type.
1268const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1269  const BuiltinType *BT = T->getAs<BuiltinType>();
1270  assert(BT && "Not a floating point type!");
1271  switch (BT->getKind()) {
1272  default: llvm_unreachable("Not a floating point type!");
1273  case BuiltinType::Half:       return Target->getHalfFormat();
1274  case BuiltinType::Float:      return Target->getFloatFormat();
1275  case BuiltinType::Double:     return Target->getDoubleFormat();
1276  case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
1277  }
1278}
1279
1280CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const {
1281  unsigned Align = Target->getCharWidth();
1282
1283  bool UseAlignAttrOnly = false;
1284  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1285    Align = AlignFromAttr;
1286
1287    // __attribute__((aligned)) can increase or decrease alignment
1288    // *except* on a struct or struct member, where it only increases
1289    // alignment unless 'packed' is also specified.
1290    //
1291    // It is an error for alignas to decrease alignment, so we can
1292    // ignore that possibility;  Sema should diagnose it.
1293    if (isa<FieldDecl>(D)) {
1294      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1295        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1296    } else {
1297      UseAlignAttrOnly = true;
1298    }
1299  }
1300  else if (isa<FieldDecl>(D))
1301      UseAlignAttrOnly =
1302        D->hasAttr<PackedAttr>() ||
1303        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1304
1305  // If we're using the align attribute only, just ignore everything
1306  // else about the declaration and its type.
1307  if (UseAlignAttrOnly) {
1308    // do nothing
1309
1310  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1311    QualType T = VD->getType();
1312    if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
1313      if (ForAlignof)
1314        T = RT->getPointeeType();
1315      else
1316        T = getPointerType(RT->getPointeeType());
1317    }
1318    QualType BaseT = getBaseElementType(T);
1319    if (!BaseT->isIncompleteType() && !T->isFunctionType()) {
1320      // Adjust alignments of declarations with array type by the
1321      // large-array alignment on the target.
1322      if (const ArrayType *arrayType = getAsArrayType(T)) {
1323        unsigned MinWidth = Target->getLargeArrayMinWidth();
1324        if (!ForAlignof && MinWidth) {
1325          if (isa<VariableArrayType>(arrayType))
1326            Align = std::max(Align, Target->getLargeArrayAlign());
1327          else if (isa<ConstantArrayType>(arrayType) &&
1328                   MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1329            Align = std::max(Align, Target->getLargeArrayAlign());
1330        }
1331      }
1332      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1333      if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1334        if (VD->hasGlobalStorage())
1335          Align = std::max(Align, getTargetInfo().getMinGlobalAlign());
1336      }
1337    }
1338
1339    // Fields can be subject to extra alignment constraints, like if
1340    // the field is packed, the struct is packed, or the struct has a
1341    // a max-field-alignment constraint (#pragma pack).  So calculate
1342    // the actual alignment of the field within the struct, and then
1343    // (as we're expected to) constrain that by the alignment of the type.
1344    if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
1345      const RecordDecl *Parent = Field->getParent();
1346      // We can only produce a sensible answer if the record is valid.
1347      if (!Parent->isInvalidDecl()) {
1348        const ASTRecordLayout &Layout = getASTRecordLayout(Parent);
1349
1350        // Start with the record's overall alignment.
1351        unsigned FieldAlign = toBits(Layout.getAlignment());
1352
1353        // Use the GCD of that and the offset within the record.
1354        uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex());
1355        if (Offset > 0) {
1356          // Alignment is always a power of 2, so the GCD will be a power of 2,
1357          // which means we get to do this crazy thing instead of Euclid's.
1358          uint64_t LowBitOfOffset = Offset & (~Offset + 1);
1359          if (LowBitOfOffset < FieldAlign)
1360            FieldAlign = static_cast<unsigned>(LowBitOfOffset);
1361        }
1362
1363        Align = std::min(Align, FieldAlign);
1364      }
1365    }
1366  }
1367
1368  return toCharUnitsFromBits(Align);
1369}
1370
1371// getTypeInfoDataSizeInChars - Return the size of a type, in
1372// chars. If the type is a record, its data size is returned.  This is
1373// the size of the memcpy that's performed when assigning this type
1374// using a trivial copy/move assignment operator.
1375std::pair<CharUnits, CharUnits>
1376ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1377  std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
1378
1379  // In C++, objects can sometimes be allocated into the tail padding
1380  // of a base-class subobject.  We decide whether that's possible
1381  // during class layout, so here we can just trust the layout results.
1382  if (getLangOpts().CPlusPlus) {
1383    if (const RecordType *RT = T->getAs<RecordType>()) {
1384      const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1385      sizeAndAlign.first = layout.getDataSize();
1386    }
1387  }
1388
1389  return sizeAndAlign;
1390}
1391
1392/// getConstantArrayInfoInChars - Performing the computation in CharUnits
1393/// instead of in bits prevents overflowing the uint64_t for some large arrays.
1394std::pair<CharUnits, CharUnits>
1395static getConstantArrayInfoInChars(const ASTContext &Context,
1396                                   const ConstantArrayType *CAT) {
1397  std::pair<CharUnits, CharUnits> EltInfo =
1398      Context.getTypeInfoInChars(CAT->getElementType());
1399  uint64_t Size = CAT->getSize().getZExtValue();
1400  assert((Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity()) <=
1401              (uint64_t)(-1)/Size) &&
1402         "Overflow in array type char size evaluation");
1403  uint64_t Width = EltInfo.first.getQuantity() * Size;
1404  unsigned Align = EltInfo.second.getQuantity();
1405  if (!Context.getTargetInfo().getCXXABI().isMicrosoft() ||
1406      Context.getTargetInfo().getPointerWidth(0) == 64)
1407    Width = llvm::RoundUpToAlignment(Width, Align);
1408  return std::make_pair(CharUnits::fromQuantity(Width),
1409                        CharUnits::fromQuantity(Align));
1410}
1411
1412std::pair<CharUnits, CharUnits>
1413ASTContext::getTypeInfoInChars(const Type *T) const {
1414  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(T))
1415    return getConstantArrayInfoInChars(*this, CAT);
1416  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
1417  return std::make_pair(toCharUnitsFromBits(Info.first),
1418                        toCharUnitsFromBits(Info.second));
1419}
1420
1421std::pair<CharUnits, CharUnits>
1422ASTContext::getTypeInfoInChars(QualType T) const {
1423  return getTypeInfoInChars(T.getTypePtr());
1424}
1425
1426std::pair<uint64_t, unsigned> ASTContext::getTypeInfo(const Type *T) const {
1427  TypeInfoMap::iterator it = MemoizedTypeInfo.find(T);
1428  if (it != MemoizedTypeInfo.end())
1429    return it->second;
1430
1431  std::pair<uint64_t, unsigned> Info = getTypeInfoImpl(T);
1432  MemoizedTypeInfo.insert(std::make_pair(T, Info));
1433  return Info;
1434}
1435
1436/// getTypeInfoImpl - Return the size of the specified type, in bits.  This
1437/// method does not work on incomplete types.
1438///
1439/// FIXME: Pointers into different addr spaces could have different sizes and
1440/// alignment requirements: getPointerInfo should take an AddrSpace, this
1441/// should take a QualType, &c.
1442std::pair<uint64_t, unsigned>
1443ASTContext::getTypeInfoImpl(const Type *T) const {
1444  uint64_t Width=0;
1445  unsigned Align=8;
1446  switch (T->getTypeClass()) {
1447#define TYPE(Class, Base)
1448#define ABSTRACT_TYPE(Class, Base)
1449#define NON_CANONICAL_TYPE(Class, Base)
1450#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1451#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)                       \
1452  case Type::Class:                                                            \
1453  assert(!T->isDependentType() && "should not see dependent types here");      \
1454  return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr());
1455#include "clang/AST/TypeNodes.def"
1456    llvm_unreachable("Should not see dependent types");
1457
1458  case Type::FunctionNoProto:
1459  case Type::FunctionProto:
1460    // GCC extension: alignof(function) = 32 bits
1461    Width = 0;
1462    Align = 32;
1463    break;
1464
1465  case Type::IncompleteArray:
1466  case Type::VariableArray:
1467    Width = 0;
1468    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
1469    break;
1470
1471  case Type::ConstantArray: {
1472    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
1473
1474    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
1475    uint64_t Size = CAT->getSize().getZExtValue();
1476    assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) &&
1477           "Overflow in array type bit size evaluation");
1478    Width = EltInfo.first*Size;
1479    Align = EltInfo.second;
1480    if (!getTargetInfo().getCXXABI().isMicrosoft() ||
1481        getTargetInfo().getPointerWidth(0) == 64)
1482      Width = llvm::RoundUpToAlignment(Width, Align);
1483    break;
1484  }
1485  case Type::ExtVector:
1486  case Type::Vector: {
1487    const VectorType *VT = cast<VectorType>(T);
1488    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
1489    Width = EltInfo.first*VT->getNumElements();
1490    Align = Width;
1491    // If the alignment is not a power of 2, round up to the next power of 2.
1492    // This happens for non-power-of-2 length vectors.
1493    if (Align & (Align-1)) {
1494      Align = llvm::NextPowerOf2(Align);
1495      Width = llvm::RoundUpToAlignment(Width, Align);
1496    }
1497    // Adjust the alignment based on the target max.
1498    uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1499    if (TargetVectorAlign && TargetVectorAlign < Align)
1500      Align = TargetVectorAlign;
1501    break;
1502  }
1503
1504  case Type::Builtin:
1505    switch (cast<BuiltinType>(T)->getKind()) {
1506    default: llvm_unreachable("Unknown builtin type!");
1507    case BuiltinType::Void:
1508      // GCC extension: alignof(void) = 8 bits.
1509      Width = 0;
1510      Align = 8;
1511      break;
1512
1513    case BuiltinType::Bool:
1514      Width = Target->getBoolWidth();
1515      Align = Target->getBoolAlign();
1516      break;
1517    case BuiltinType::Char_S:
1518    case BuiltinType::Char_U:
1519    case BuiltinType::UChar:
1520    case BuiltinType::SChar:
1521      Width = Target->getCharWidth();
1522      Align = Target->getCharAlign();
1523      break;
1524    case BuiltinType::WChar_S:
1525    case BuiltinType::WChar_U:
1526      Width = Target->getWCharWidth();
1527      Align = Target->getWCharAlign();
1528      break;
1529    case BuiltinType::Char16:
1530      Width = Target->getChar16Width();
1531      Align = Target->getChar16Align();
1532      break;
1533    case BuiltinType::Char32:
1534      Width = Target->getChar32Width();
1535      Align = Target->getChar32Align();
1536      break;
1537    case BuiltinType::UShort:
1538    case BuiltinType::Short:
1539      Width = Target->getShortWidth();
1540      Align = Target->getShortAlign();
1541      break;
1542    case BuiltinType::UInt:
1543    case BuiltinType::Int:
1544      Width = Target->getIntWidth();
1545      Align = Target->getIntAlign();
1546      break;
1547    case BuiltinType::ULong:
1548    case BuiltinType::Long:
1549      Width = Target->getLongWidth();
1550      Align = Target->getLongAlign();
1551      break;
1552    case BuiltinType::ULongLong:
1553    case BuiltinType::LongLong:
1554      Width = Target->getLongLongWidth();
1555      Align = Target->getLongLongAlign();
1556      break;
1557    case BuiltinType::Int128:
1558    case BuiltinType::UInt128:
1559      Width = 128;
1560      Align = 128; // int128_t is 128-bit aligned on all targets.
1561      break;
1562    case BuiltinType::Half:
1563      Width = Target->getHalfWidth();
1564      Align = Target->getHalfAlign();
1565      break;
1566    case BuiltinType::Float:
1567      Width = Target->getFloatWidth();
1568      Align = Target->getFloatAlign();
1569      break;
1570    case BuiltinType::Double:
1571      Width = Target->getDoubleWidth();
1572      Align = Target->getDoubleAlign();
1573      break;
1574    case BuiltinType::LongDouble:
1575      Width = Target->getLongDoubleWidth();
1576      Align = Target->getLongDoubleAlign();
1577      break;
1578    case BuiltinType::NullPtr:
1579      Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
1580      Align = Target->getPointerAlign(0); //   == sizeof(void*)
1581      break;
1582    case BuiltinType::ObjCId:
1583    case BuiltinType::ObjCClass:
1584    case BuiltinType::ObjCSel:
1585      Width = Target->getPointerWidth(0);
1586      Align = Target->getPointerAlign(0);
1587      break;
1588    case BuiltinType::OCLSampler:
1589      // Samplers are modeled as integers.
1590      Width = Target->getIntWidth();
1591      Align = Target->getIntAlign();
1592      break;
1593    case BuiltinType::OCLEvent:
1594    case BuiltinType::OCLImage1d:
1595    case BuiltinType::OCLImage1dArray:
1596    case BuiltinType::OCLImage1dBuffer:
1597    case BuiltinType::OCLImage2d:
1598    case BuiltinType::OCLImage2dArray:
1599    case BuiltinType::OCLImage3d:
1600      // Currently these types are pointers to opaque types.
1601      Width = Target->getPointerWidth(0);
1602      Align = Target->getPointerAlign(0);
1603      break;
1604    }
1605    break;
1606  case Type::ObjCObjectPointer:
1607    Width = Target->getPointerWidth(0);
1608    Align = Target->getPointerAlign(0);
1609    break;
1610  case Type::BlockPointer: {
1611    unsigned AS = getTargetAddressSpace(
1612        cast<BlockPointerType>(T)->getPointeeType());
1613    Width = Target->getPointerWidth(AS);
1614    Align = Target->getPointerAlign(AS);
1615    break;
1616  }
1617  case Type::LValueReference:
1618  case Type::RValueReference: {
1619    // alignof and sizeof should never enter this code path here, so we go
1620    // the pointer route.
1621    unsigned AS = getTargetAddressSpace(
1622        cast<ReferenceType>(T)->getPointeeType());
1623    Width = Target->getPointerWidth(AS);
1624    Align = Target->getPointerAlign(AS);
1625    break;
1626  }
1627  case Type::Pointer: {
1628    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
1629    Width = Target->getPointerWidth(AS);
1630    Align = Target->getPointerAlign(AS);
1631    break;
1632  }
1633  case Type::MemberPointer: {
1634    const MemberPointerType *MPT = cast<MemberPointerType>(T);
1635    std::tie(Width, Align) = ABI->getMemberPointerWidthAndAlign(MPT);
1636    break;
1637  }
1638  case Type::Complex: {
1639    // Complex types have the same alignment as their elements, but twice the
1640    // size.
1641    std::pair<uint64_t, unsigned> EltInfo =
1642      getTypeInfo(cast<ComplexType>(T)->getElementType());
1643    Width = EltInfo.first*2;
1644    Align = EltInfo.second;
1645    break;
1646  }
1647  case Type::ObjCObject:
1648    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1649  case Type::Adjusted:
1650  case Type::Decayed:
1651    return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr());
1652  case Type::ObjCInterface: {
1653    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1654    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1655    Width = toBits(Layout.getSize());
1656    Align = toBits(Layout.getAlignment());
1657    break;
1658  }
1659  case Type::Record:
1660  case Type::Enum: {
1661    const TagType *TT = cast<TagType>(T);
1662
1663    if (TT->getDecl()->isInvalidDecl()) {
1664      Width = 8;
1665      Align = 8;
1666      break;
1667    }
1668
1669    if (const EnumType *ET = dyn_cast<EnumType>(TT))
1670      return getTypeInfo(ET->getDecl()->getIntegerType());
1671
1672    const RecordType *RT = cast<RecordType>(TT);
1673    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1674    Width = toBits(Layout.getSize());
1675    Align = toBits(Layout.getAlignment());
1676    break;
1677  }
1678
1679  case Type::SubstTemplateTypeParm:
1680    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1681                       getReplacementType().getTypePtr());
1682
1683  case Type::Auto: {
1684    const AutoType *A = cast<AutoType>(T);
1685    assert(!A->getDeducedType().isNull() &&
1686           "cannot request the size of an undeduced or dependent auto type");
1687    return getTypeInfo(A->getDeducedType().getTypePtr());
1688  }
1689
1690  case Type::Paren:
1691    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1692
1693  case Type::Typedef: {
1694    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1695    std::pair<uint64_t, unsigned> Info
1696      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1697    // If the typedef has an aligned attribute on it, it overrides any computed
1698    // alignment we have.  This violates the GCC documentation (which says that
1699    // attribute(aligned) can only round up) but matches its implementation.
1700    if (unsigned AttrAlign = Typedef->getMaxAlignment())
1701      Align = AttrAlign;
1702    else
1703      Align = Info.second;
1704    Width = Info.first;
1705    break;
1706  }
1707
1708  case Type::Elaborated:
1709    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1710
1711  case Type::Attributed:
1712    return getTypeInfo(
1713                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1714
1715  case Type::Atomic: {
1716    // Start with the base type information.
1717    std::pair<uint64_t, unsigned> Info
1718      = getTypeInfo(cast<AtomicType>(T)->getValueType());
1719    Width = Info.first;
1720    Align = Info.second;
1721
1722    // If the size of the type doesn't exceed the platform's max
1723    // atomic promotion width, make the size and alignment more
1724    // favorable to atomic operations:
1725    if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth()) {
1726      // Round the size up to a power of 2.
1727      if (!llvm::isPowerOf2_64(Width))
1728        Width = llvm::NextPowerOf2(Width);
1729
1730      // Set the alignment equal to the size.
1731      Align = static_cast<unsigned>(Width);
1732    }
1733  }
1734
1735  }
1736
1737  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1738  return std::make_pair(Width, Align);
1739}
1740
1741/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1742CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1743  return CharUnits::fromQuantity(BitSize / getCharWidth());
1744}
1745
1746/// toBits - Convert a size in characters to a size in characters.
1747int64_t ASTContext::toBits(CharUnits CharSize) const {
1748  return CharSize.getQuantity() * getCharWidth();
1749}
1750
1751/// getTypeSizeInChars - Return the size of the specified type, in characters.
1752/// This method does not work on incomplete types.
1753CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1754  return getTypeInfoInChars(T).first;
1755}
1756CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1757  return getTypeInfoInChars(T).first;
1758}
1759
1760/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1761/// characters. This method does not work on incomplete types.
1762CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1763  return toCharUnitsFromBits(getTypeAlign(T));
1764}
1765CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1766  return toCharUnitsFromBits(getTypeAlign(T));
1767}
1768
1769/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1770/// type for the current target in bits.  This can be different than the ABI
1771/// alignment in cases where it is beneficial for performance to overalign
1772/// a data type.
1773unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1774  unsigned ABIAlign = getTypeAlign(T);
1775
1776  if (Target->getTriple().getArch() == llvm::Triple::xcore)
1777    return ABIAlign;  // Never overalign on XCore.
1778
1779  const TypedefType *TT = T->getAs<TypedefType>();
1780
1781  // Double and long long should be naturally aligned if possible.
1782  T = T->getBaseElementTypeUnsafe();
1783  if (const ComplexType *CT = T->getAs<ComplexType>())
1784    T = CT->getElementType().getTypePtr();
1785  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1786      T->isSpecificBuiltinType(BuiltinType::LongLong) ||
1787      T->isSpecificBuiltinType(BuiltinType::ULongLong))
1788    // Don't increase the alignment if an alignment attribute was specified on a
1789    // typedef declaration.
1790    if (!TT || !TT->getDecl()->getMaxAlignment())
1791      return std::max(ABIAlign, (unsigned)getTypeSize(T));
1792
1793  return ABIAlign;
1794}
1795
1796/// getAlignOfGlobalVar - Return the alignment in bits that should be given
1797/// to a global variable of the specified type.
1798unsigned ASTContext::getAlignOfGlobalVar(QualType T) const {
1799  return std::max(getTypeAlign(T), getTargetInfo().getMinGlobalAlign());
1800}
1801
1802/// getAlignOfGlobalVarInChars - Return the alignment in characters that
1803/// should be given to a global variable of the specified type.
1804CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const {
1805  return toCharUnitsFromBits(getAlignOfGlobalVar(T));
1806}
1807
1808/// DeepCollectObjCIvars -
1809/// This routine first collects all declared, but not synthesized, ivars in
1810/// super class and then collects all ivars, including those synthesized for
1811/// current class. This routine is used for implementation of current class
1812/// when all ivars, declared and synthesized are known.
1813///
1814void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1815                                      bool leafClass,
1816                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1817  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1818    DeepCollectObjCIvars(SuperClass, false, Ivars);
1819  if (!leafClass) {
1820    for (const auto *I : OI->ivars())
1821      Ivars.push_back(I);
1822  } else {
1823    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1824    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1825         Iv= Iv->getNextIvar())
1826      Ivars.push_back(Iv);
1827  }
1828}
1829
1830/// CollectInheritedProtocols - Collect all protocols in current class and
1831/// those inherited by it.
1832void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1833                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1834  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1835    // We can use protocol_iterator here instead of
1836    // all_referenced_protocol_iterator since we are walking all categories.
1837    for (auto *Proto : OI->all_referenced_protocols()) {
1838      Protocols.insert(Proto->getCanonicalDecl());
1839      for (auto *P : Proto->protocols()) {
1840        Protocols.insert(P->getCanonicalDecl());
1841        CollectInheritedProtocols(P, Protocols);
1842      }
1843    }
1844
1845    // Categories of this Interface.
1846    for (const auto *Cat : OI->visible_categories())
1847      CollectInheritedProtocols(Cat, Protocols);
1848
1849    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1850      while (SD) {
1851        CollectInheritedProtocols(SD, Protocols);
1852        SD = SD->getSuperClass();
1853      }
1854  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1855    for (auto *Proto : OC->protocols()) {
1856      Protocols.insert(Proto->getCanonicalDecl());
1857      for (const auto *P : Proto->protocols())
1858        CollectInheritedProtocols(P, Protocols);
1859    }
1860  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1861    for (auto *Proto : OP->protocols()) {
1862      Protocols.insert(Proto->getCanonicalDecl());
1863      for (const auto *P : Proto->protocols())
1864        CollectInheritedProtocols(P, Protocols);
1865    }
1866  }
1867}
1868
1869unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1870  unsigned count = 0;
1871  // Count ivars declared in class extension.
1872  for (const auto *Ext : OI->known_extensions())
1873    count += Ext->ivar_size();
1874
1875  // Count ivar defined in this class's implementation.  This
1876  // includes synthesized ivars.
1877  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1878    count += ImplDecl->ivar_size();
1879
1880  return count;
1881}
1882
1883bool ASTContext::isSentinelNullExpr(const Expr *E) {
1884  if (!E)
1885    return false;
1886
1887  // nullptr_t is always treated as null.
1888  if (E->getType()->isNullPtrType()) return true;
1889
1890  if (E->getType()->isAnyPointerType() &&
1891      E->IgnoreParenCasts()->isNullPointerConstant(*this,
1892                                                Expr::NPC_ValueDependentIsNull))
1893    return true;
1894
1895  // Unfortunately, __null has type 'int'.
1896  if (isa<GNUNullExpr>(E)) return true;
1897
1898  return false;
1899}
1900
1901/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1902ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1903  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1904    I = ObjCImpls.find(D);
1905  if (I != ObjCImpls.end())
1906    return cast<ObjCImplementationDecl>(I->second);
1907  return nullptr;
1908}
1909/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1910ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1911  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1912    I = ObjCImpls.find(D);
1913  if (I != ObjCImpls.end())
1914    return cast<ObjCCategoryImplDecl>(I->second);
1915  return nullptr;
1916}
1917
1918/// \brief Set the implementation of ObjCInterfaceDecl.
1919void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1920                           ObjCImplementationDecl *ImplD) {
1921  assert(IFaceD && ImplD && "Passed null params");
1922  ObjCImpls[IFaceD] = ImplD;
1923}
1924/// \brief Set the implementation of ObjCCategoryDecl.
1925void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1926                           ObjCCategoryImplDecl *ImplD) {
1927  assert(CatD && ImplD && "Passed null params");
1928  ObjCImpls[CatD] = ImplD;
1929}
1930
1931const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
1932                                              const NamedDecl *ND) const {
1933  if (const ObjCInterfaceDecl *ID =
1934          dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1935    return ID;
1936  if (const ObjCCategoryDecl *CD =
1937          dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1938    return CD->getClassInterface();
1939  if (const ObjCImplDecl *IMD =
1940          dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1941    return IMD->getClassInterface();
1942
1943  return nullptr;
1944}
1945
1946/// \brief Get the copy initialization expression of VarDecl,or NULL if
1947/// none exists.
1948Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1949  assert(VD && "Passed null params");
1950  assert(VD->hasAttr<BlocksAttr>() &&
1951         "getBlockVarCopyInits - not __block var");
1952  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1953    I = BlockVarCopyInits.find(VD);
1954  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : nullptr;
1955}
1956
1957/// \brief Set the copy inialization expression of a block var decl.
1958void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1959  assert(VD && Init && "Passed null params");
1960  assert(VD->hasAttr<BlocksAttr>() &&
1961         "setBlockVarCopyInits - not __block var");
1962  BlockVarCopyInits[VD] = Init;
1963}
1964
1965TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1966                                                 unsigned DataSize) const {
1967  if (!DataSize)
1968    DataSize = TypeLoc::getFullDataSizeForType(T);
1969  else
1970    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1971           "incorrect data size provided to CreateTypeSourceInfo!");
1972
1973  TypeSourceInfo *TInfo =
1974    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1975  new (TInfo) TypeSourceInfo(T);
1976  return TInfo;
1977}
1978
1979TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1980                                                     SourceLocation L) const {
1981  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1982  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1983  return DI;
1984}
1985
1986const ASTRecordLayout &
1987ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1988  return getObjCLayout(D, nullptr);
1989}
1990
1991const ASTRecordLayout &
1992ASTContext::getASTObjCImplementationLayout(
1993                                        const ObjCImplementationDecl *D) const {
1994  return getObjCLayout(D->getClassInterface(), D);
1995}
1996
1997//===----------------------------------------------------------------------===//
1998//                   Type creation/memoization methods
1999//===----------------------------------------------------------------------===//
2000
2001QualType
2002ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
2003  unsigned fastQuals = quals.getFastQualifiers();
2004  quals.removeFastQualifiers();
2005
2006  // Check if we've already instantiated this type.
2007  llvm::FoldingSetNodeID ID;
2008  ExtQuals::Profile(ID, baseType, quals);
2009  void *insertPos = nullptr;
2010  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
2011    assert(eq->getQualifiers() == quals);
2012    return QualType(eq, fastQuals);
2013  }
2014
2015  // If the base type is not canonical, make the appropriate canonical type.
2016  QualType canon;
2017  if (!baseType->isCanonicalUnqualified()) {
2018    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
2019    canonSplit.Quals.addConsistentQualifiers(quals);
2020    canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
2021
2022    // Re-find the insert position.
2023    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
2024  }
2025
2026  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
2027  ExtQualNodes.InsertNode(eq, insertPos);
2028  return QualType(eq, fastQuals);
2029}
2030
2031QualType
2032ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
2033  QualType CanT = getCanonicalType(T);
2034  if (CanT.getAddressSpace() == AddressSpace)
2035    return T;
2036
2037  // If we are composing extended qualifiers together, merge together
2038  // into one ExtQuals node.
2039  QualifierCollector Quals;
2040  const Type *TypeNode = Quals.strip(T);
2041
2042  // If this type already has an address space specified, it cannot get
2043  // another one.
2044  assert(!Quals.hasAddressSpace() &&
2045         "Type cannot be in multiple addr spaces!");
2046  Quals.addAddressSpace(AddressSpace);
2047
2048  return getExtQualType(TypeNode, Quals);
2049}
2050
2051QualType ASTContext::getObjCGCQualType(QualType T,
2052                                       Qualifiers::GC GCAttr) const {
2053  QualType CanT = getCanonicalType(T);
2054  if (CanT.getObjCGCAttr() == GCAttr)
2055    return T;
2056
2057  if (const PointerType *ptr = T->getAs<PointerType>()) {
2058    QualType Pointee = ptr->getPointeeType();
2059    if (Pointee->isAnyPointerType()) {
2060      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
2061      return getPointerType(ResultType);
2062    }
2063  }
2064
2065  // If we are composing extended qualifiers together, merge together
2066  // into one ExtQuals node.
2067  QualifierCollector Quals;
2068  const Type *TypeNode = Quals.strip(T);
2069
2070  // If this type already has an ObjCGC specified, it cannot get
2071  // another one.
2072  assert(!Quals.hasObjCGCAttr() &&
2073         "Type cannot have multiple ObjCGCs!");
2074  Quals.addObjCGCAttr(GCAttr);
2075
2076  return getExtQualType(TypeNode, Quals);
2077}
2078
2079const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
2080                                                   FunctionType::ExtInfo Info) {
2081  if (T->getExtInfo() == Info)
2082    return T;
2083
2084  QualType Result;
2085  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
2086    Result = getFunctionNoProtoType(FNPT->getReturnType(), Info);
2087  } else {
2088    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
2089    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2090    EPI.ExtInfo = Info;
2091    Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI);
2092  }
2093
2094  return cast<FunctionType>(Result.getTypePtr());
2095}
2096
2097void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD,
2098                                                 QualType ResultType) {
2099  FD = FD->getMostRecentDecl();
2100  while (true) {
2101    const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
2102    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2103    FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI));
2104    if (FunctionDecl *Next = FD->getPreviousDecl())
2105      FD = Next;
2106    else
2107      break;
2108  }
2109  if (ASTMutationListener *L = getASTMutationListener())
2110    L->DeducedReturnType(FD, ResultType);
2111}
2112
2113/// getComplexType - Return the uniqued reference to the type for a complex
2114/// number with the specified element type.
2115QualType ASTContext::getComplexType(QualType T) const {
2116  // Unique pointers, to guarantee there is only one pointer of a particular
2117  // structure.
2118  llvm::FoldingSetNodeID ID;
2119  ComplexType::Profile(ID, T);
2120
2121  void *InsertPos = nullptr;
2122  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
2123    return QualType(CT, 0);
2124
2125  // If the pointee type isn't canonical, this won't be a canonical type either,
2126  // so fill in the canonical type field.
2127  QualType Canonical;
2128  if (!T.isCanonical()) {
2129    Canonical = getComplexType(getCanonicalType(T));
2130
2131    // Get the new insert position for the node we care about.
2132    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
2133    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2134  }
2135  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
2136  Types.push_back(New);
2137  ComplexTypes.InsertNode(New, InsertPos);
2138  return QualType(New, 0);
2139}
2140
2141/// getPointerType - Return the uniqued reference to the type for a pointer to
2142/// the specified type.
2143QualType ASTContext::getPointerType(QualType T) const {
2144  // Unique pointers, to guarantee there is only one pointer of a particular
2145  // structure.
2146  llvm::FoldingSetNodeID ID;
2147  PointerType::Profile(ID, T);
2148
2149  void *InsertPos = nullptr;
2150  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2151    return QualType(PT, 0);
2152
2153  // If the pointee type isn't canonical, this won't be a canonical type either,
2154  // so fill in the canonical type field.
2155  QualType Canonical;
2156  if (!T.isCanonical()) {
2157    Canonical = getPointerType(getCanonicalType(T));
2158
2159    // Get the new insert position for the node we care about.
2160    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2161    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2162  }
2163  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
2164  Types.push_back(New);
2165  PointerTypes.InsertNode(New, InsertPos);
2166  return QualType(New, 0);
2167}
2168
2169QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const {
2170  llvm::FoldingSetNodeID ID;
2171  AdjustedType::Profile(ID, Orig, New);
2172  void *InsertPos = nullptr;
2173  AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2174  if (AT)
2175    return QualType(AT, 0);
2176
2177  QualType Canonical = getCanonicalType(New);
2178
2179  // Get the new insert position for the node we care about.
2180  AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2181  assert(!AT && "Shouldn't be in the map!");
2182
2183  AT = new (*this, TypeAlignment)
2184      AdjustedType(Type::Adjusted, Orig, New, Canonical);
2185  Types.push_back(AT);
2186  AdjustedTypes.InsertNode(AT, InsertPos);
2187  return QualType(AT, 0);
2188}
2189
2190QualType ASTContext::getDecayedType(QualType T) const {
2191  assert((T->isArrayType() || T->isFunctionType()) && "T does not decay");
2192
2193  QualType Decayed;
2194
2195  // C99 6.7.5.3p7:
2196  //   A declaration of a parameter as "array of type" shall be
2197  //   adjusted to "qualified pointer to type", where the type
2198  //   qualifiers (if any) are those specified within the [ and ] of
2199  //   the array type derivation.
2200  if (T->isArrayType())
2201    Decayed = getArrayDecayedType(T);
2202
2203  // C99 6.7.5.3p8:
2204  //   A declaration of a parameter as "function returning type"
2205  //   shall be adjusted to "pointer to function returning type", as
2206  //   in 6.3.2.1.
2207  if (T->isFunctionType())
2208    Decayed = getPointerType(T);
2209
2210  llvm::FoldingSetNodeID ID;
2211  AdjustedType::Profile(ID, T, Decayed);
2212  void *InsertPos = nullptr;
2213  AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2214  if (AT)
2215    return QualType(AT, 0);
2216
2217  QualType Canonical = getCanonicalType(Decayed);
2218
2219  // Get the new insert position for the node we care about.
2220  AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2221  assert(!AT && "Shouldn't be in the map!");
2222
2223  AT = new (*this, TypeAlignment) DecayedType(T, Decayed, Canonical);
2224  Types.push_back(AT);
2225  AdjustedTypes.InsertNode(AT, InsertPos);
2226  return QualType(AT, 0);
2227}
2228
2229/// getBlockPointerType - Return the uniqued reference to the type for
2230/// a pointer to the specified block.
2231QualType ASTContext::getBlockPointerType(QualType T) const {
2232  assert(T->isFunctionType() && "block of function types only");
2233  // Unique pointers, to guarantee there is only one block of a particular
2234  // structure.
2235  llvm::FoldingSetNodeID ID;
2236  BlockPointerType::Profile(ID, T);
2237
2238  void *InsertPos = nullptr;
2239  if (BlockPointerType *PT =
2240        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2241    return QualType(PT, 0);
2242
2243  // If the block pointee type isn't canonical, this won't be a canonical
2244  // type either so fill in the canonical type field.
2245  QualType Canonical;
2246  if (!T.isCanonical()) {
2247    Canonical = getBlockPointerType(getCanonicalType(T));
2248
2249    // Get the new insert position for the node we care about.
2250    BlockPointerType *NewIP =
2251      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2252    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2253  }
2254  BlockPointerType *New
2255    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
2256  Types.push_back(New);
2257  BlockPointerTypes.InsertNode(New, InsertPos);
2258  return QualType(New, 0);
2259}
2260
2261/// getLValueReferenceType - Return the uniqued reference to the type for an
2262/// lvalue reference to the specified type.
2263QualType
2264ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
2265  assert(getCanonicalType(T) != OverloadTy &&
2266         "Unresolved overloaded function type");
2267
2268  // Unique pointers, to guarantee there is only one pointer of a particular
2269  // structure.
2270  llvm::FoldingSetNodeID ID;
2271  ReferenceType::Profile(ID, T, SpelledAsLValue);
2272
2273  void *InsertPos = nullptr;
2274  if (LValueReferenceType *RT =
2275        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2276    return QualType(RT, 0);
2277
2278  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2279
2280  // If the referencee type isn't canonical, this won't be a canonical type
2281  // either, so fill in the canonical type field.
2282  QualType Canonical;
2283  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
2284    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2285    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
2286
2287    // Get the new insert position for the node we care about.
2288    LValueReferenceType *NewIP =
2289      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2290    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2291  }
2292
2293  LValueReferenceType *New
2294    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
2295                                                     SpelledAsLValue);
2296  Types.push_back(New);
2297  LValueReferenceTypes.InsertNode(New, InsertPos);
2298
2299  return QualType(New, 0);
2300}
2301
2302/// getRValueReferenceType - Return the uniqued reference to the type for an
2303/// rvalue reference to the specified type.
2304QualType ASTContext::getRValueReferenceType(QualType T) const {
2305  // Unique pointers, to guarantee there is only one pointer of a particular
2306  // structure.
2307  llvm::FoldingSetNodeID ID;
2308  ReferenceType::Profile(ID, T, false);
2309
2310  void *InsertPos = nullptr;
2311  if (RValueReferenceType *RT =
2312        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2313    return QualType(RT, 0);
2314
2315  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2316
2317  // If the referencee type isn't canonical, this won't be a canonical type
2318  // either, so fill in the canonical type field.
2319  QualType Canonical;
2320  if (InnerRef || !T.isCanonical()) {
2321    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2322    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
2323
2324    // Get the new insert position for the node we care about.
2325    RValueReferenceType *NewIP =
2326      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2327    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2328  }
2329
2330  RValueReferenceType *New
2331    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
2332  Types.push_back(New);
2333  RValueReferenceTypes.InsertNode(New, InsertPos);
2334  return QualType(New, 0);
2335}
2336
2337/// getMemberPointerType - Return the uniqued reference to the type for a
2338/// member pointer to the specified type, in the specified class.
2339QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
2340  // Unique pointers, to guarantee there is only one pointer of a particular
2341  // structure.
2342  llvm::FoldingSetNodeID ID;
2343  MemberPointerType::Profile(ID, T, Cls);
2344
2345  void *InsertPos = nullptr;
2346  if (MemberPointerType *PT =
2347      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2348    return QualType(PT, 0);
2349
2350  // If the pointee or class type isn't canonical, this won't be a canonical
2351  // type either, so fill in the canonical type field.
2352  QualType Canonical;
2353  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
2354    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
2355
2356    // Get the new insert position for the node we care about.
2357    MemberPointerType *NewIP =
2358      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2359    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2360  }
2361  MemberPointerType *New
2362    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
2363  Types.push_back(New);
2364  MemberPointerTypes.InsertNode(New, InsertPos);
2365  return QualType(New, 0);
2366}
2367
2368/// getConstantArrayType - Return the unique reference to the type for an
2369/// array of the specified element type.
2370QualType ASTContext::getConstantArrayType(QualType EltTy,
2371                                          const llvm::APInt &ArySizeIn,
2372                                          ArrayType::ArraySizeModifier ASM,
2373                                          unsigned IndexTypeQuals) const {
2374  assert((EltTy->isDependentType() ||
2375          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
2376         "Constant array of VLAs is illegal!");
2377
2378  // Convert the array size into a canonical width matching the pointer size for
2379  // the target.
2380  llvm::APInt ArySize(ArySizeIn);
2381  ArySize =
2382    ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
2383
2384  llvm::FoldingSetNodeID ID;
2385  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
2386
2387  void *InsertPos = nullptr;
2388  if (ConstantArrayType *ATP =
2389      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
2390    return QualType(ATP, 0);
2391
2392  // If the element type isn't canonical or has qualifiers, this won't
2393  // be a canonical type either, so fill in the canonical type field.
2394  QualType Canon;
2395  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2396    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2397    Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
2398                                 ASM, IndexTypeQuals);
2399    Canon = getQualifiedType(Canon, canonSplit.Quals);
2400
2401    // Get the new insert position for the node we care about.
2402    ConstantArrayType *NewIP =
2403      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
2404    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2405  }
2406
2407  ConstantArrayType *New = new(*this,TypeAlignment)
2408    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
2409  ConstantArrayTypes.InsertNode(New, InsertPos);
2410  Types.push_back(New);
2411  return QualType(New, 0);
2412}
2413
2414/// getVariableArrayDecayedType - Turns the given type, which may be
2415/// variably-modified, into the corresponding type with all the known
2416/// sizes replaced with [*].
2417QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
2418  // Vastly most common case.
2419  if (!type->isVariablyModifiedType()) return type;
2420
2421  QualType result;
2422
2423  SplitQualType split = type.getSplitDesugaredType();
2424  const Type *ty = split.Ty;
2425  switch (ty->getTypeClass()) {
2426#define TYPE(Class, Base)
2427#define ABSTRACT_TYPE(Class, Base)
2428#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2429#include "clang/AST/TypeNodes.def"
2430    llvm_unreachable("didn't desugar past all non-canonical types?");
2431
2432  // These types should never be variably-modified.
2433  case Type::Builtin:
2434  case Type::Complex:
2435  case Type::Vector:
2436  case Type::ExtVector:
2437  case Type::DependentSizedExtVector:
2438  case Type::ObjCObject:
2439  case Type::ObjCInterface:
2440  case Type::ObjCObjectPointer:
2441  case Type::Record:
2442  case Type::Enum:
2443  case Type::UnresolvedUsing:
2444  case Type::TypeOfExpr:
2445  case Type::TypeOf:
2446  case Type::Decltype:
2447  case Type::UnaryTransform:
2448  case Type::DependentName:
2449  case Type::InjectedClassName:
2450  case Type::TemplateSpecialization:
2451  case Type::DependentTemplateSpecialization:
2452  case Type::TemplateTypeParm:
2453  case Type::SubstTemplateTypeParmPack:
2454  case Type::Auto:
2455  case Type::PackExpansion:
2456    llvm_unreachable("type should never be variably-modified");
2457
2458  // These types can be variably-modified but should never need to
2459  // further decay.
2460  case Type::FunctionNoProto:
2461  case Type::FunctionProto:
2462  case Type::BlockPointer:
2463  case Type::MemberPointer:
2464    return type;
2465
2466  // These types can be variably-modified.  All these modifications
2467  // preserve structure except as noted by comments.
2468  // TODO: if we ever care about optimizing VLAs, there are no-op
2469  // optimizations available here.
2470  case Type::Pointer:
2471    result = getPointerType(getVariableArrayDecayedType(
2472                              cast<PointerType>(ty)->getPointeeType()));
2473    break;
2474
2475  case Type::LValueReference: {
2476    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
2477    result = getLValueReferenceType(
2478                 getVariableArrayDecayedType(lv->getPointeeType()),
2479                                    lv->isSpelledAsLValue());
2480    break;
2481  }
2482
2483  case Type::RValueReference: {
2484    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
2485    result = getRValueReferenceType(
2486                 getVariableArrayDecayedType(lv->getPointeeType()));
2487    break;
2488  }
2489
2490  case Type::Atomic: {
2491    const AtomicType *at = cast<AtomicType>(ty);
2492    result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
2493    break;
2494  }
2495
2496  case Type::ConstantArray: {
2497    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
2498    result = getConstantArrayType(
2499                 getVariableArrayDecayedType(cat->getElementType()),
2500                                  cat->getSize(),
2501                                  cat->getSizeModifier(),
2502                                  cat->getIndexTypeCVRQualifiers());
2503    break;
2504  }
2505
2506  case Type::DependentSizedArray: {
2507    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
2508    result = getDependentSizedArrayType(
2509                 getVariableArrayDecayedType(dat->getElementType()),
2510                                        dat->getSizeExpr(),
2511                                        dat->getSizeModifier(),
2512                                        dat->getIndexTypeCVRQualifiers(),
2513                                        dat->getBracketsRange());
2514    break;
2515  }
2516
2517  // Turn incomplete types into [*] types.
2518  case Type::IncompleteArray: {
2519    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
2520    result = getVariableArrayType(
2521                 getVariableArrayDecayedType(iat->getElementType()),
2522                                  /*size*/ nullptr,
2523                                  ArrayType::Normal,
2524                                  iat->getIndexTypeCVRQualifiers(),
2525                                  SourceRange());
2526    break;
2527  }
2528
2529  // Turn VLA types into [*] types.
2530  case Type::VariableArray: {
2531    const VariableArrayType *vat = cast<VariableArrayType>(ty);
2532    result = getVariableArrayType(
2533                 getVariableArrayDecayedType(vat->getElementType()),
2534                                  /*size*/ nullptr,
2535                                  ArrayType::Star,
2536                                  vat->getIndexTypeCVRQualifiers(),
2537                                  vat->getBracketsRange());
2538    break;
2539  }
2540  }
2541
2542  // Apply the top-level qualifiers from the original.
2543  return getQualifiedType(result, split.Quals);
2544}
2545
2546/// getVariableArrayType - Returns a non-unique reference to the type for a
2547/// variable array of the specified element type.
2548QualType ASTContext::getVariableArrayType(QualType EltTy,
2549                                          Expr *NumElts,
2550                                          ArrayType::ArraySizeModifier ASM,
2551                                          unsigned IndexTypeQuals,
2552                                          SourceRange Brackets) const {
2553  // Since we don't unique expressions, it isn't possible to unique VLA's
2554  // that have an expression provided for their size.
2555  QualType Canon;
2556
2557  // Be sure to pull qualifiers off the element type.
2558  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2559    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2560    Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
2561                                 IndexTypeQuals, Brackets);
2562    Canon = getQualifiedType(Canon, canonSplit.Quals);
2563  }
2564
2565  VariableArrayType *New = new(*this, TypeAlignment)
2566    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
2567
2568  VariableArrayTypes.push_back(New);
2569  Types.push_back(New);
2570  return QualType(New, 0);
2571}
2572
2573/// getDependentSizedArrayType - Returns a non-unique reference to
2574/// the type for a dependently-sized array of the specified element
2575/// type.
2576QualType ASTContext::getDependentSizedArrayType(QualType elementType,
2577                                                Expr *numElements,
2578                                                ArrayType::ArraySizeModifier ASM,
2579                                                unsigned elementTypeQuals,
2580                                                SourceRange brackets) const {
2581  assert((!numElements || numElements->isTypeDependent() ||
2582          numElements->isValueDependent()) &&
2583         "Size must be type- or value-dependent!");
2584
2585  // Dependently-sized array types that do not have a specified number
2586  // of elements will have their sizes deduced from a dependent
2587  // initializer.  We do no canonicalization here at all, which is okay
2588  // because they can't be used in most locations.
2589  if (!numElements) {
2590    DependentSizedArrayType *newType
2591      = new (*this, TypeAlignment)
2592          DependentSizedArrayType(*this, elementType, QualType(),
2593                                  numElements, ASM, elementTypeQuals,
2594                                  brackets);
2595    Types.push_back(newType);
2596    return QualType(newType, 0);
2597  }
2598
2599  // Otherwise, we actually build a new type every time, but we
2600  // also build a canonical type.
2601
2602  SplitQualType canonElementType = getCanonicalType(elementType).split();
2603
2604  void *insertPos = nullptr;
2605  llvm::FoldingSetNodeID ID;
2606  DependentSizedArrayType::Profile(ID, *this,
2607                                   QualType(canonElementType.Ty, 0),
2608                                   ASM, elementTypeQuals, numElements);
2609
2610  // Look for an existing type with these properties.
2611  DependentSizedArrayType *canonTy =
2612    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2613
2614  // If we don't have one, build one.
2615  if (!canonTy) {
2616    canonTy = new (*this, TypeAlignment)
2617      DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
2618                              QualType(), numElements, ASM, elementTypeQuals,
2619                              brackets);
2620    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
2621    Types.push_back(canonTy);
2622  }
2623
2624  // Apply qualifiers from the element type to the array.
2625  QualType canon = getQualifiedType(QualType(canonTy,0),
2626                                    canonElementType.Quals);
2627
2628  // If we didn't need extra canonicalization for the element type,
2629  // then just use that as our result.
2630  if (QualType(canonElementType.Ty, 0) == elementType)
2631    return canon;
2632
2633  // Otherwise, we need to build a type which follows the spelling
2634  // of the element type.
2635  DependentSizedArrayType *sugaredType
2636    = new (*this, TypeAlignment)
2637        DependentSizedArrayType(*this, elementType, canon, numElements,
2638                                ASM, elementTypeQuals, brackets);
2639  Types.push_back(sugaredType);
2640  return QualType(sugaredType, 0);
2641}
2642
2643QualType ASTContext::getIncompleteArrayType(QualType elementType,
2644                                            ArrayType::ArraySizeModifier ASM,
2645                                            unsigned elementTypeQuals) const {
2646  llvm::FoldingSetNodeID ID;
2647  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
2648
2649  void *insertPos = nullptr;
2650  if (IncompleteArrayType *iat =
2651       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
2652    return QualType(iat, 0);
2653
2654  // If the element type isn't canonical, this won't be a canonical type
2655  // either, so fill in the canonical type field.  We also have to pull
2656  // qualifiers off the element type.
2657  QualType canon;
2658
2659  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
2660    SplitQualType canonSplit = getCanonicalType(elementType).split();
2661    canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
2662                                   ASM, elementTypeQuals);
2663    canon = getQualifiedType(canon, canonSplit.Quals);
2664
2665    // Get the new insert position for the node we care about.
2666    IncompleteArrayType *existing =
2667      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2668    assert(!existing && "Shouldn't be in the map!"); (void) existing;
2669  }
2670
2671  IncompleteArrayType *newType = new (*this, TypeAlignment)
2672    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
2673
2674  IncompleteArrayTypes.InsertNode(newType, insertPos);
2675  Types.push_back(newType);
2676  return QualType(newType, 0);
2677}
2678
2679/// getVectorType - Return the unique reference to a vector type of
2680/// the specified element type and size. VectorType must be a built-in type.
2681QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
2682                                   VectorType::VectorKind VecKind) const {
2683  assert(vecType->isBuiltinType());
2684
2685  // Check if we've already instantiated a vector of this type.
2686  llvm::FoldingSetNodeID ID;
2687  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
2688
2689  void *InsertPos = nullptr;
2690  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2691    return QualType(VTP, 0);
2692
2693  // If the element type isn't canonical, this won't be a canonical type either,
2694  // so fill in the canonical type field.
2695  QualType Canonical;
2696  if (!vecType.isCanonical()) {
2697    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
2698
2699    // Get the new insert position for the node we care about.
2700    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2701    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2702  }
2703  VectorType *New = new (*this, TypeAlignment)
2704    VectorType(vecType, NumElts, Canonical, VecKind);
2705  VectorTypes.InsertNode(New, InsertPos);
2706  Types.push_back(New);
2707  return QualType(New, 0);
2708}
2709
2710/// getExtVectorType - Return the unique reference to an extended vector type of
2711/// the specified element type and size. VectorType must be a built-in type.
2712QualType
2713ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2714  assert(vecType->isBuiltinType() || vecType->isDependentType());
2715
2716  // Check if we've already instantiated a vector of this type.
2717  llvm::FoldingSetNodeID ID;
2718  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2719                      VectorType::GenericVector);
2720  void *InsertPos = nullptr;
2721  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2722    return QualType(VTP, 0);
2723
2724  // If the element type isn't canonical, this won't be a canonical type either,
2725  // so fill in the canonical type field.
2726  QualType Canonical;
2727  if (!vecType.isCanonical()) {
2728    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2729
2730    // Get the new insert position for the node we care about.
2731    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2732    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2733  }
2734  ExtVectorType *New = new (*this, TypeAlignment)
2735    ExtVectorType(vecType, NumElts, Canonical);
2736  VectorTypes.InsertNode(New, InsertPos);
2737  Types.push_back(New);
2738  return QualType(New, 0);
2739}
2740
2741QualType
2742ASTContext::getDependentSizedExtVectorType(QualType vecType,
2743                                           Expr *SizeExpr,
2744                                           SourceLocation AttrLoc) const {
2745  llvm::FoldingSetNodeID ID;
2746  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2747                                       SizeExpr);
2748
2749  void *InsertPos = nullptr;
2750  DependentSizedExtVectorType *Canon
2751    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2752  DependentSizedExtVectorType *New;
2753  if (Canon) {
2754    // We already have a canonical version of this array type; use it as
2755    // the canonical type for a newly-built type.
2756    New = new (*this, TypeAlignment)
2757      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2758                                  SizeExpr, AttrLoc);
2759  } else {
2760    QualType CanonVecTy = getCanonicalType(vecType);
2761    if (CanonVecTy == vecType) {
2762      New = new (*this, TypeAlignment)
2763        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2764                                    AttrLoc);
2765
2766      DependentSizedExtVectorType *CanonCheck
2767        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2768      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2769      (void)CanonCheck;
2770      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2771    } else {
2772      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2773                                                      SourceLocation());
2774      New = new (*this, TypeAlignment)
2775        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2776    }
2777  }
2778
2779  Types.push_back(New);
2780  return QualType(New, 0);
2781}
2782
2783/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2784///
2785QualType
2786ASTContext::getFunctionNoProtoType(QualType ResultTy,
2787                                   const FunctionType::ExtInfo &Info) const {
2788  const CallingConv CallConv = Info.getCC();
2789
2790  // Unique functions, to guarantee there is only one function of a particular
2791  // structure.
2792  llvm::FoldingSetNodeID ID;
2793  FunctionNoProtoType::Profile(ID, ResultTy, Info);
2794
2795  void *InsertPos = nullptr;
2796  if (FunctionNoProtoType *FT =
2797        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2798    return QualType(FT, 0);
2799
2800  QualType Canonical;
2801  if (!ResultTy.isCanonical()) {
2802    Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy), Info);
2803
2804    // Get the new insert position for the node we care about.
2805    FunctionNoProtoType *NewIP =
2806      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2807    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2808  }
2809
2810  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2811  FunctionNoProtoType *New = new (*this, TypeAlignment)
2812    FunctionNoProtoType(ResultTy, Canonical, newInfo);
2813  Types.push_back(New);
2814  FunctionNoProtoTypes.InsertNode(New, InsertPos);
2815  return QualType(New, 0);
2816}
2817
2818/// \brief Determine whether \p T is canonical as the result type of a function.
2819static bool isCanonicalResultType(QualType T) {
2820  return T.isCanonical() &&
2821         (T.getObjCLifetime() == Qualifiers::OCL_None ||
2822          T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
2823}
2824
2825QualType
2826ASTContext::getFunctionType(QualType ResultTy, ArrayRef<QualType> ArgArray,
2827                            const FunctionProtoType::ExtProtoInfo &EPI) const {
2828  size_t NumArgs = ArgArray.size();
2829
2830  // Unique functions, to guarantee there is only one function of a particular
2831  // structure.
2832  llvm::FoldingSetNodeID ID;
2833  FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
2834                             *this);
2835
2836  void *InsertPos = nullptr;
2837  if (FunctionProtoType *FTP =
2838        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2839    return QualType(FTP, 0);
2840
2841  // Determine whether the type being created is already canonical or not.
2842  bool isCanonical =
2843    EPI.ExceptionSpecType == EST_None && isCanonicalResultType(ResultTy) &&
2844    !EPI.HasTrailingReturn;
2845  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2846    if (!ArgArray[i].isCanonicalAsParam())
2847      isCanonical = false;
2848
2849  // If this type isn't canonical, get the canonical version of it.
2850  // The exception spec is not part of the canonical type.
2851  QualType Canonical;
2852  if (!isCanonical) {
2853    SmallVector<QualType, 16> CanonicalArgs;
2854    CanonicalArgs.reserve(NumArgs);
2855    for (unsigned i = 0; i != NumArgs; ++i)
2856      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2857
2858    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2859    CanonicalEPI.HasTrailingReturn = false;
2860    CanonicalEPI.ExceptionSpecType = EST_None;
2861    CanonicalEPI.NumExceptions = 0;
2862
2863    // Result types do not have ARC lifetime qualifiers.
2864    QualType CanResultTy = getCanonicalType(ResultTy);
2865    if (ResultTy.getQualifiers().hasObjCLifetime()) {
2866      Qualifiers Qs = CanResultTy.getQualifiers();
2867      Qs.removeObjCLifetime();
2868      CanResultTy = getQualifiedType(CanResultTy.getUnqualifiedType(), Qs);
2869    }
2870
2871    Canonical = getFunctionType(CanResultTy, CanonicalArgs, CanonicalEPI);
2872
2873    // Get the new insert position for the node we care about.
2874    FunctionProtoType *NewIP =
2875      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2876    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2877  }
2878
2879  // FunctionProtoType objects are allocated with extra bytes after
2880  // them for three variable size arrays at the end:
2881  //  - parameter types
2882  //  - exception types
2883  //  - consumed-arguments flags
2884  // Instead of the exception types, there could be a noexcept
2885  // expression, or information used to resolve the exception
2886  // specification.
2887  size_t Size = sizeof(FunctionProtoType) +
2888                NumArgs * sizeof(QualType);
2889  if (EPI.ExceptionSpecType == EST_Dynamic) {
2890    Size += EPI.NumExceptions * sizeof(QualType);
2891  } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2892    Size += sizeof(Expr*);
2893  } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
2894    Size += 2 * sizeof(FunctionDecl*);
2895  } else if (EPI.ExceptionSpecType == EST_Unevaluated) {
2896    Size += sizeof(FunctionDecl*);
2897  }
2898  if (EPI.ConsumedParameters)
2899    Size += NumArgs * sizeof(bool);
2900
2901  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2902  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2903  new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
2904  Types.push_back(FTP);
2905  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2906  return QualType(FTP, 0);
2907}
2908
2909#ifndef NDEBUG
2910static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2911  if (!isa<CXXRecordDecl>(D)) return false;
2912  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2913  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2914    return true;
2915  if (RD->getDescribedClassTemplate() &&
2916      !isa<ClassTemplateSpecializationDecl>(RD))
2917    return true;
2918  return false;
2919}
2920#endif
2921
2922/// getInjectedClassNameType - Return the unique reference to the
2923/// injected class name type for the specified templated declaration.
2924QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2925                                              QualType TST) const {
2926  assert(NeedsInjectedClassNameType(Decl));
2927  if (Decl->TypeForDecl) {
2928    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2929  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
2930    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2931    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2932    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2933  } else {
2934    Type *newType =
2935      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2936    Decl->TypeForDecl = newType;
2937    Types.push_back(newType);
2938  }
2939  return QualType(Decl->TypeForDecl, 0);
2940}
2941
2942/// getTypeDeclType - Return the unique reference to the type for the
2943/// specified type declaration.
2944QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2945  assert(Decl && "Passed null for Decl param");
2946  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2947
2948  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2949    return getTypedefType(Typedef);
2950
2951  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2952         "Template type parameter types are always available.");
2953
2954  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2955    assert(Record->isFirstDecl() && "struct/union has previous declaration");
2956    assert(!NeedsInjectedClassNameType(Record));
2957    return getRecordType(Record);
2958  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2959    assert(Enum->isFirstDecl() && "enum has previous declaration");
2960    return getEnumType(Enum);
2961  } else if (const UnresolvedUsingTypenameDecl *Using =
2962               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2963    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2964    Decl->TypeForDecl = newType;
2965    Types.push_back(newType);
2966  } else
2967    llvm_unreachable("TypeDecl without a type?");
2968
2969  return QualType(Decl->TypeForDecl, 0);
2970}
2971
2972/// getTypedefType - Return the unique reference to the type for the
2973/// specified typedef name decl.
2974QualType
2975ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2976                           QualType Canonical) const {
2977  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2978
2979  if (Canonical.isNull())
2980    Canonical = getCanonicalType(Decl->getUnderlyingType());
2981  TypedefType *newType = new(*this, TypeAlignment)
2982    TypedefType(Type::Typedef, Decl, Canonical);
2983  Decl->TypeForDecl = newType;
2984  Types.push_back(newType);
2985  return QualType(newType, 0);
2986}
2987
2988QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2989  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2990
2991  if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
2992    if (PrevDecl->TypeForDecl)
2993      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2994
2995  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2996  Decl->TypeForDecl = newType;
2997  Types.push_back(newType);
2998  return QualType(newType, 0);
2999}
3000
3001QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
3002  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
3003
3004  if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
3005    if (PrevDecl->TypeForDecl)
3006      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
3007
3008  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
3009  Decl->TypeForDecl = newType;
3010  Types.push_back(newType);
3011  return QualType(newType, 0);
3012}
3013
3014QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
3015                                       QualType modifiedType,
3016                                       QualType equivalentType) {
3017  llvm::FoldingSetNodeID id;
3018  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
3019
3020  void *insertPos = nullptr;
3021  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
3022  if (type) return QualType(type, 0);
3023
3024  QualType canon = getCanonicalType(equivalentType);
3025  type = new (*this, TypeAlignment)
3026           AttributedType(canon, attrKind, modifiedType, equivalentType);
3027
3028  Types.push_back(type);
3029  AttributedTypes.InsertNode(type, insertPos);
3030
3031  return QualType(type, 0);
3032}
3033
3034
3035/// \brief Retrieve a substitution-result type.
3036QualType
3037ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
3038                                         QualType Replacement) const {
3039  assert(Replacement.isCanonical()
3040         && "replacement types must always be canonical");
3041
3042  llvm::FoldingSetNodeID ID;
3043  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
3044  void *InsertPos = nullptr;
3045  SubstTemplateTypeParmType *SubstParm
3046    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3047
3048  if (!SubstParm) {
3049    SubstParm = new (*this, TypeAlignment)
3050      SubstTemplateTypeParmType(Parm, Replacement);
3051    Types.push_back(SubstParm);
3052    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
3053  }
3054
3055  return QualType(SubstParm, 0);
3056}
3057
3058/// \brief Retrieve a
3059QualType ASTContext::getSubstTemplateTypeParmPackType(
3060                                          const TemplateTypeParmType *Parm,
3061                                              const TemplateArgument &ArgPack) {
3062#ifndef NDEBUG
3063  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
3064                                    PEnd = ArgPack.pack_end();
3065       P != PEnd; ++P) {
3066    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
3067    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
3068  }
3069#endif
3070
3071  llvm::FoldingSetNodeID ID;
3072  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
3073  void *InsertPos = nullptr;
3074  if (SubstTemplateTypeParmPackType *SubstParm
3075        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
3076    return QualType(SubstParm, 0);
3077
3078  QualType Canon;
3079  if (!Parm->isCanonicalUnqualified()) {
3080    Canon = getCanonicalType(QualType(Parm, 0));
3081    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
3082                                             ArgPack);
3083    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
3084  }
3085
3086  SubstTemplateTypeParmPackType *SubstParm
3087    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
3088                                                               ArgPack);
3089  Types.push_back(SubstParm);
3090  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
3091  return QualType(SubstParm, 0);
3092}
3093
3094/// \brief Retrieve the template type parameter type for a template
3095/// parameter or parameter pack with the given depth, index, and (optionally)
3096/// name.
3097QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
3098                                             bool ParameterPack,
3099                                             TemplateTypeParmDecl *TTPDecl) const {
3100  llvm::FoldingSetNodeID ID;
3101  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
3102  void *InsertPos = nullptr;
3103  TemplateTypeParmType *TypeParm
3104    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3105
3106  if (TypeParm)
3107    return QualType(TypeParm, 0);
3108
3109  if (TTPDecl) {
3110    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
3111    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
3112
3113    TemplateTypeParmType *TypeCheck
3114      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3115    assert(!TypeCheck && "Template type parameter canonical type broken");
3116    (void)TypeCheck;
3117  } else
3118    TypeParm = new (*this, TypeAlignment)
3119      TemplateTypeParmType(Depth, Index, ParameterPack);
3120
3121  Types.push_back(TypeParm);
3122  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
3123
3124  return QualType(TypeParm, 0);
3125}
3126
3127TypeSourceInfo *
3128ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
3129                                              SourceLocation NameLoc,
3130                                        const TemplateArgumentListInfo &Args,
3131                                              QualType Underlying) const {
3132  assert(!Name.getAsDependentTemplateName() &&
3133         "No dependent template names here!");
3134  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
3135
3136  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
3137  TemplateSpecializationTypeLoc TL =
3138      DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
3139  TL.setTemplateKeywordLoc(SourceLocation());
3140  TL.setTemplateNameLoc(NameLoc);
3141  TL.setLAngleLoc(Args.getLAngleLoc());
3142  TL.setRAngleLoc(Args.getRAngleLoc());
3143  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
3144    TL.setArgLocInfo(i, Args[i].getLocInfo());
3145  return DI;
3146}
3147
3148QualType
3149ASTContext::getTemplateSpecializationType(TemplateName Template,
3150                                          const TemplateArgumentListInfo &Args,
3151                                          QualType Underlying) const {
3152  assert(!Template.getAsDependentTemplateName() &&
3153         "No dependent template names here!");
3154
3155  unsigned NumArgs = Args.size();
3156
3157  SmallVector<TemplateArgument, 4> ArgVec;
3158  ArgVec.reserve(NumArgs);
3159  for (unsigned i = 0; i != NumArgs; ++i)
3160    ArgVec.push_back(Args[i].getArgument());
3161
3162  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
3163                                       Underlying);
3164}
3165
3166#ifndef NDEBUG
3167static bool hasAnyPackExpansions(const TemplateArgument *Args,
3168                                 unsigned NumArgs) {
3169  for (unsigned I = 0; I != NumArgs; ++I)
3170    if (Args[I].isPackExpansion())
3171      return true;
3172
3173  return true;
3174}
3175#endif
3176
3177QualType
3178ASTContext::getTemplateSpecializationType(TemplateName Template,
3179                                          const TemplateArgument *Args,
3180                                          unsigned NumArgs,
3181                                          QualType Underlying) const {
3182  assert(!Template.getAsDependentTemplateName() &&
3183         "No dependent template names here!");
3184  // Look through qualified template names.
3185  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3186    Template = TemplateName(QTN->getTemplateDecl());
3187
3188  bool IsTypeAlias =
3189    Template.getAsTemplateDecl() &&
3190    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
3191  QualType CanonType;
3192  if (!Underlying.isNull())
3193    CanonType = getCanonicalType(Underlying);
3194  else {
3195    // We can get here with an alias template when the specialization contains
3196    // a pack expansion that does not match up with a parameter pack.
3197    assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
3198           "Caller must compute aliased type");
3199    IsTypeAlias = false;
3200    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
3201                                                       NumArgs);
3202  }
3203
3204  // Allocate the (non-canonical) template specialization type, but don't
3205  // try to unique it: these types typically have location information that
3206  // we don't unique and don't want to lose.
3207  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
3208                       sizeof(TemplateArgument) * NumArgs +
3209                       (IsTypeAlias? sizeof(QualType) : 0),
3210                       TypeAlignment);
3211  TemplateSpecializationType *Spec
3212    = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
3213                                         IsTypeAlias ? Underlying : QualType());
3214
3215  Types.push_back(Spec);
3216  return QualType(Spec, 0);
3217}
3218
3219QualType
3220ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
3221                                                   const TemplateArgument *Args,
3222                                                   unsigned NumArgs) const {
3223  assert(!Template.getAsDependentTemplateName() &&
3224         "No dependent template names here!");
3225
3226  // Look through qualified template names.
3227  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3228    Template = TemplateName(QTN->getTemplateDecl());
3229
3230  // Build the canonical template specialization type.
3231  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
3232  SmallVector<TemplateArgument, 4> CanonArgs;
3233  CanonArgs.reserve(NumArgs);
3234  for (unsigned I = 0; I != NumArgs; ++I)
3235    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
3236
3237  // Determine whether this canonical template specialization type already
3238  // exists.
3239  llvm::FoldingSetNodeID ID;
3240  TemplateSpecializationType::Profile(ID, CanonTemplate,
3241                                      CanonArgs.data(), NumArgs, *this);
3242
3243  void *InsertPos = nullptr;
3244  TemplateSpecializationType *Spec
3245    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3246
3247  if (!Spec) {
3248    // Allocate a new canonical template specialization type.
3249    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
3250                          sizeof(TemplateArgument) * NumArgs),
3251                         TypeAlignment);
3252    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
3253                                                CanonArgs.data(), NumArgs,
3254                                                QualType(), QualType());
3255    Types.push_back(Spec);
3256    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
3257  }
3258
3259  assert(Spec->isDependentType() &&
3260         "Non-dependent template-id type must have a canonical type");
3261  return QualType(Spec, 0);
3262}
3263
3264QualType
3265ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
3266                              NestedNameSpecifier *NNS,
3267                              QualType NamedType) const {
3268  llvm::FoldingSetNodeID ID;
3269  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
3270
3271  void *InsertPos = nullptr;
3272  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3273  if (T)
3274    return QualType(T, 0);
3275
3276  QualType Canon = NamedType;
3277  if (!Canon.isCanonical()) {
3278    Canon = getCanonicalType(NamedType);
3279    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3280    assert(!CheckT && "Elaborated canonical type broken");
3281    (void)CheckT;
3282  }
3283
3284  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
3285  Types.push_back(T);
3286  ElaboratedTypes.InsertNode(T, InsertPos);
3287  return QualType(T, 0);
3288}
3289
3290QualType
3291ASTContext::getParenType(QualType InnerType) const {
3292  llvm::FoldingSetNodeID ID;
3293  ParenType::Profile(ID, InnerType);
3294
3295  void *InsertPos = nullptr;
3296  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3297  if (T)
3298    return QualType(T, 0);
3299
3300  QualType Canon = InnerType;
3301  if (!Canon.isCanonical()) {
3302    Canon = getCanonicalType(InnerType);
3303    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3304    assert(!CheckT && "Paren canonical type broken");
3305    (void)CheckT;
3306  }
3307
3308  T = new (*this) ParenType(InnerType, Canon);
3309  Types.push_back(T);
3310  ParenTypes.InsertNode(T, InsertPos);
3311  return QualType(T, 0);
3312}
3313
3314QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
3315                                          NestedNameSpecifier *NNS,
3316                                          const IdentifierInfo *Name,
3317                                          QualType Canon) const {
3318  if (Canon.isNull()) {
3319    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3320    ElaboratedTypeKeyword CanonKeyword = Keyword;
3321    if (Keyword == ETK_None)
3322      CanonKeyword = ETK_Typename;
3323
3324    if (CanonNNS != NNS || CanonKeyword != Keyword)
3325      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
3326  }
3327
3328  llvm::FoldingSetNodeID ID;
3329  DependentNameType::Profile(ID, Keyword, NNS, Name);
3330
3331  void *InsertPos = nullptr;
3332  DependentNameType *T
3333    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
3334  if (T)
3335    return QualType(T, 0);
3336
3337  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
3338  Types.push_back(T);
3339  DependentNameTypes.InsertNode(T, InsertPos);
3340  return QualType(T, 0);
3341}
3342
3343QualType
3344ASTContext::getDependentTemplateSpecializationType(
3345                                 ElaboratedTypeKeyword Keyword,
3346                                 NestedNameSpecifier *NNS,
3347                                 const IdentifierInfo *Name,
3348                                 const TemplateArgumentListInfo &Args) const {
3349  // TODO: avoid this copy
3350  SmallVector<TemplateArgument, 16> ArgCopy;
3351  for (unsigned I = 0, E = Args.size(); I != E; ++I)
3352    ArgCopy.push_back(Args[I].getArgument());
3353  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
3354                                                ArgCopy.size(),
3355                                                ArgCopy.data());
3356}
3357
3358QualType
3359ASTContext::getDependentTemplateSpecializationType(
3360                                 ElaboratedTypeKeyword Keyword,
3361                                 NestedNameSpecifier *NNS,
3362                                 const IdentifierInfo *Name,
3363                                 unsigned NumArgs,
3364                                 const TemplateArgument *Args) const {
3365  assert((!NNS || NNS->isDependent()) &&
3366         "nested-name-specifier must be dependent");
3367
3368  llvm::FoldingSetNodeID ID;
3369  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
3370                                               Name, NumArgs, Args);
3371
3372  void *InsertPos = nullptr;
3373  DependentTemplateSpecializationType *T
3374    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3375  if (T)
3376    return QualType(T, 0);
3377
3378  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3379
3380  ElaboratedTypeKeyword CanonKeyword = Keyword;
3381  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
3382
3383  bool AnyNonCanonArgs = false;
3384  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
3385  for (unsigned I = 0; I != NumArgs; ++I) {
3386    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
3387    if (!CanonArgs[I].structurallyEquals(Args[I]))
3388      AnyNonCanonArgs = true;
3389  }
3390
3391  QualType Canon;
3392  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
3393    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
3394                                                   Name, NumArgs,
3395                                                   CanonArgs.data());
3396
3397    // Find the insert position again.
3398    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3399  }
3400
3401  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
3402                        sizeof(TemplateArgument) * NumArgs),
3403                       TypeAlignment);
3404  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
3405                                                    Name, NumArgs, Args, Canon);
3406  Types.push_back(T);
3407  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
3408  return QualType(T, 0);
3409}
3410
3411QualType ASTContext::getPackExpansionType(QualType Pattern,
3412                                          Optional<unsigned> NumExpansions) {
3413  llvm::FoldingSetNodeID ID;
3414  PackExpansionType::Profile(ID, Pattern, NumExpansions);
3415
3416  assert(Pattern->containsUnexpandedParameterPack() &&
3417         "Pack expansions must expand one or more parameter packs");
3418  void *InsertPos = nullptr;
3419  PackExpansionType *T
3420    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3421  if (T)
3422    return QualType(T, 0);
3423
3424  QualType Canon;
3425  if (!Pattern.isCanonical()) {
3426    Canon = getCanonicalType(Pattern);
3427    // The canonical type might not contain an unexpanded parameter pack, if it
3428    // contains an alias template specialization which ignores one of its
3429    // parameters.
3430    if (Canon->containsUnexpandedParameterPack()) {
3431      Canon = getPackExpansionType(Canon, NumExpansions);
3432
3433      // Find the insert position again, in case we inserted an element into
3434      // PackExpansionTypes and invalidated our insert position.
3435      PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3436    }
3437  }
3438
3439  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
3440  Types.push_back(T);
3441  PackExpansionTypes.InsertNode(T, InsertPos);
3442  return QualType(T, 0);
3443}
3444
3445/// CmpProtocolNames - Comparison predicate for sorting protocols
3446/// alphabetically.
3447static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
3448                            const ObjCProtocolDecl *RHS) {
3449  return LHS->getDeclName() < RHS->getDeclName();
3450}
3451
3452static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
3453                                unsigned NumProtocols) {
3454  if (NumProtocols == 0) return true;
3455
3456  if (Protocols[0]->getCanonicalDecl() != Protocols[0])
3457    return false;
3458
3459  for (unsigned i = 1; i != NumProtocols; ++i)
3460    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
3461        Protocols[i]->getCanonicalDecl() != Protocols[i])
3462      return false;
3463  return true;
3464}
3465
3466static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
3467                                   unsigned &NumProtocols) {
3468  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
3469
3470  // Sort protocols, keyed by name.
3471  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
3472
3473  // Canonicalize.
3474  for (unsigned I = 0, N = NumProtocols; I != N; ++I)
3475    Protocols[I] = Protocols[I]->getCanonicalDecl();
3476
3477  // Remove duplicates.
3478  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
3479  NumProtocols = ProtocolsEnd-Protocols;
3480}
3481
3482QualType ASTContext::getObjCObjectType(QualType BaseType,
3483                                       ObjCProtocolDecl * const *Protocols,
3484                                       unsigned NumProtocols) const {
3485  // If the base type is an interface and there aren't any protocols
3486  // to add, then the interface type will do just fine.
3487  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
3488    return BaseType;
3489
3490  // Look in the folding set for an existing type.
3491  llvm::FoldingSetNodeID ID;
3492  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
3493  void *InsertPos = nullptr;
3494  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
3495    return QualType(QT, 0);
3496
3497  // Build the canonical type, which has the canonical base type and
3498  // a sorted-and-uniqued list of protocols.
3499  QualType Canonical;
3500  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
3501  if (!ProtocolsSorted || !BaseType.isCanonical()) {
3502    if (!ProtocolsSorted) {
3503      SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
3504                                                     Protocols + NumProtocols);
3505      unsigned UniqueCount = NumProtocols;
3506
3507      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
3508      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3509                                    &Sorted[0], UniqueCount);
3510    } else {
3511      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3512                                    Protocols, NumProtocols);
3513    }
3514
3515    // Regenerate InsertPos.
3516    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
3517  }
3518
3519  unsigned Size = sizeof(ObjCObjectTypeImpl);
3520  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
3521  void *Mem = Allocate(Size, TypeAlignment);
3522  ObjCObjectTypeImpl *T =
3523    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
3524
3525  Types.push_back(T);
3526  ObjCObjectTypes.InsertNode(T, InsertPos);
3527  return QualType(T, 0);
3528}
3529
3530/// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's
3531/// protocol list adopt all protocols in QT's qualified-id protocol
3532/// list.
3533bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT,
3534                                                ObjCInterfaceDecl *IC) {
3535  if (!QT->isObjCQualifiedIdType())
3536    return false;
3537
3538  if (const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>()) {
3539    // If both the right and left sides have qualifiers.
3540    for (auto *Proto : OPT->quals()) {
3541      if (!IC->ClassImplementsProtocol(Proto, false))
3542        return false;
3543    }
3544    return true;
3545  }
3546  return false;
3547}
3548
3549/// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
3550/// QT's qualified-id protocol list adopt all protocols in IDecl's list
3551/// of protocols.
3552bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
3553                                                ObjCInterfaceDecl *IDecl) {
3554  if (!QT->isObjCQualifiedIdType())
3555    return false;
3556  const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>();
3557  if (!OPT)
3558    return false;
3559  if (!IDecl->hasDefinition())
3560    return false;
3561  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols;
3562  CollectInheritedProtocols(IDecl, InheritedProtocols);
3563  if (InheritedProtocols.empty())
3564    return false;
3565  // Check that if every protocol in list of id<plist> conforms to a protcol
3566  // of IDecl's, then bridge casting is ok.
3567  bool Conforms = false;
3568  for (auto *Proto : OPT->quals()) {
3569    Conforms = false;
3570    for (auto *PI : InheritedProtocols) {
3571      if (ProtocolCompatibleWithProtocol(Proto, PI)) {
3572        Conforms = true;
3573        break;
3574      }
3575    }
3576    if (!Conforms)
3577      break;
3578  }
3579  if (Conforms)
3580    return true;
3581
3582  for (auto *PI : InheritedProtocols) {
3583    // If both the right and left sides have qualifiers.
3584    bool Adopts = false;
3585    for (auto *Proto : OPT->quals()) {
3586      // return 'true' if 'PI' is in the inheritance hierarchy of Proto
3587      if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto)))
3588        break;
3589    }
3590    if (!Adopts)
3591      return false;
3592  }
3593  return true;
3594}
3595
3596/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
3597/// the given object type.
3598QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
3599  llvm::FoldingSetNodeID ID;
3600  ObjCObjectPointerType::Profile(ID, ObjectT);
3601
3602  void *InsertPos = nullptr;
3603  if (ObjCObjectPointerType *QT =
3604              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3605    return QualType(QT, 0);
3606
3607  // Find the canonical object type.
3608  QualType Canonical;
3609  if (!ObjectT.isCanonical()) {
3610    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
3611
3612    // Regenerate InsertPos.
3613    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3614  }
3615
3616  // No match.
3617  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
3618  ObjCObjectPointerType *QType =
3619    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
3620
3621  Types.push_back(QType);
3622  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
3623  return QualType(QType, 0);
3624}
3625
3626/// getObjCInterfaceType - Return the unique reference to the type for the
3627/// specified ObjC interface decl. The list of protocols is optional.
3628QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
3629                                          ObjCInterfaceDecl *PrevDecl) const {
3630  if (Decl->TypeForDecl)
3631    return QualType(Decl->TypeForDecl, 0);
3632
3633  if (PrevDecl) {
3634    assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
3635    Decl->TypeForDecl = PrevDecl->TypeForDecl;
3636    return QualType(PrevDecl->TypeForDecl, 0);
3637  }
3638
3639  // Prefer the definition, if there is one.
3640  if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
3641    Decl = Def;
3642
3643  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
3644  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
3645  Decl->TypeForDecl = T;
3646  Types.push_back(T);
3647  return QualType(T, 0);
3648}
3649
3650/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
3651/// TypeOfExprType AST's (since expression's are never shared). For example,
3652/// multiple declarations that refer to "typeof(x)" all contain different
3653/// DeclRefExpr's. This doesn't effect the type checker, since it operates
3654/// on canonical type's (which are always unique).
3655QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
3656  TypeOfExprType *toe;
3657  if (tofExpr->isTypeDependent()) {
3658    llvm::FoldingSetNodeID ID;
3659    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
3660
3661    void *InsertPos = nullptr;
3662    DependentTypeOfExprType *Canon
3663      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
3664    if (Canon) {
3665      // We already have a "canonical" version of an identical, dependent
3666      // typeof(expr) type. Use that as our canonical type.
3667      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
3668                                          QualType((TypeOfExprType*)Canon, 0));
3669    } else {
3670      // Build a new, canonical typeof(expr) type.
3671      Canon
3672        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
3673      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
3674      toe = Canon;
3675    }
3676  } else {
3677    QualType Canonical = getCanonicalType(tofExpr->getType());
3678    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
3679  }
3680  Types.push_back(toe);
3681  return QualType(toe, 0);
3682}
3683
3684/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
3685/// TypeOfType nodes. The only motivation to unique these nodes would be
3686/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
3687/// an issue. This doesn't affect the type checker, since it operates
3688/// on canonical types (which are always unique).
3689QualType ASTContext::getTypeOfType(QualType tofType) const {
3690  QualType Canonical = getCanonicalType(tofType);
3691  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
3692  Types.push_back(tot);
3693  return QualType(tot, 0);
3694}
3695
3696
3697/// \brief Unlike many "get<Type>" functions, we don't unique DecltypeType
3698/// nodes. This would never be helpful, since each such type has its own
3699/// expression, and would not give a significant memory saving, since there
3700/// is an Expr tree under each such type.
3701QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
3702  DecltypeType *dt;
3703
3704  // C++11 [temp.type]p2:
3705  //   If an expression e involves a template parameter, decltype(e) denotes a
3706  //   unique dependent type. Two such decltype-specifiers refer to the same
3707  //   type only if their expressions are equivalent (14.5.6.1).
3708  if (e->isInstantiationDependent()) {
3709    llvm::FoldingSetNodeID ID;
3710    DependentDecltypeType::Profile(ID, *this, e);
3711
3712    void *InsertPos = nullptr;
3713    DependentDecltypeType *Canon
3714      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
3715    if (!Canon) {
3716      // Build a new, canonical typeof(expr) type.
3717      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
3718      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
3719    }
3720    dt = new (*this, TypeAlignment)
3721        DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0));
3722  } else {
3723    dt = new (*this, TypeAlignment)
3724        DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType));
3725  }
3726  Types.push_back(dt);
3727  return QualType(dt, 0);
3728}
3729
3730/// getUnaryTransformationType - We don't unique these, since the memory
3731/// savings are minimal and these are rare.
3732QualType ASTContext::getUnaryTransformType(QualType BaseType,
3733                                           QualType UnderlyingType,
3734                                           UnaryTransformType::UTTKind Kind)
3735    const {
3736  UnaryTransformType *Ty =
3737    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
3738                                                   Kind,
3739                                 UnderlyingType->isDependentType() ?
3740                                 QualType() : getCanonicalType(UnderlyingType));
3741  Types.push_back(Ty);
3742  return QualType(Ty, 0);
3743}
3744
3745/// getAutoType - Return the uniqued reference to the 'auto' type which has been
3746/// deduced to the given type, or to the canonical undeduced 'auto' type, or the
3747/// canonical deduced-but-dependent 'auto' type.
3748QualType ASTContext::getAutoType(QualType DeducedType, bool IsDecltypeAuto,
3749                                 bool IsDependent) const {
3750  if (DeducedType.isNull() && !IsDecltypeAuto && !IsDependent)
3751    return getAutoDeductType();
3752
3753  // Look in the folding set for an existing type.
3754  void *InsertPos = nullptr;
3755  llvm::FoldingSetNodeID ID;
3756  AutoType::Profile(ID, DeducedType, IsDecltypeAuto, IsDependent);
3757  if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
3758    return QualType(AT, 0);
3759
3760  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType,
3761                                                     IsDecltypeAuto,
3762                                                     IsDependent);
3763  Types.push_back(AT);
3764  if (InsertPos)
3765    AutoTypes.InsertNode(AT, InsertPos);
3766  return QualType(AT, 0);
3767}
3768
3769/// getAtomicType - Return the uniqued reference to the atomic type for
3770/// the given value type.
3771QualType ASTContext::getAtomicType(QualType T) const {
3772  // Unique pointers, to guarantee there is only one pointer of a particular
3773  // structure.
3774  llvm::FoldingSetNodeID ID;
3775  AtomicType::Profile(ID, T);
3776
3777  void *InsertPos = nullptr;
3778  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
3779    return QualType(AT, 0);
3780
3781  // If the atomic value type isn't canonical, this won't be a canonical type
3782  // either, so fill in the canonical type field.
3783  QualType Canonical;
3784  if (!T.isCanonical()) {
3785    Canonical = getAtomicType(getCanonicalType(T));
3786
3787    // Get the new insert position for the node we care about.
3788    AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
3789    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3790  }
3791  AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
3792  Types.push_back(New);
3793  AtomicTypes.InsertNode(New, InsertPos);
3794  return QualType(New, 0);
3795}
3796
3797/// getAutoDeductType - Get type pattern for deducing against 'auto'.
3798QualType ASTContext::getAutoDeductType() const {
3799  if (AutoDeductTy.isNull())
3800    AutoDeductTy = QualType(
3801      new (*this, TypeAlignment) AutoType(QualType(), /*decltype(auto)*/false,
3802                                          /*dependent*/false),
3803      0);
3804  return AutoDeductTy;
3805}
3806
3807/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
3808QualType ASTContext::getAutoRRefDeductType() const {
3809  if (AutoRRefDeductTy.isNull())
3810    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3811  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3812  return AutoRRefDeductTy;
3813}
3814
3815/// getTagDeclType - Return the unique reference to the type for the
3816/// specified TagDecl (struct/union/class/enum) decl.
3817QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3818  assert (Decl);
3819  // FIXME: What is the design on getTagDeclType when it requires casting
3820  // away const?  mutable?
3821  return getTypeDeclType(const_cast<TagDecl*>(Decl));
3822}
3823
3824/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3825/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3826/// needs to agree with the definition in <stddef.h>.
3827CanQualType ASTContext::getSizeType() const {
3828  return getFromTargetType(Target->getSizeType());
3829}
3830
3831/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
3832CanQualType ASTContext::getIntMaxType() const {
3833  return getFromTargetType(Target->getIntMaxType());
3834}
3835
3836/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
3837CanQualType ASTContext::getUIntMaxType() const {
3838  return getFromTargetType(Target->getUIntMaxType());
3839}
3840
3841/// getSignedWCharType - Return the type of "signed wchar_t".
3842/// Used when in C++, as a GCC extension.
3843QualType ASTContext::getSignedWCharType() const {
3844  // FIXME: derive from "Target" ?
3845  return WCharTy;
3846}
3847
3848/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3849/// Used when in C++, as a GCC extension.
3850QualType ASTContext::getUnsignedWCharType() const {
3851  // FIXME: derive from "Target" ?
3852  return UnsignedIntTy;
3853}
3854
3855QualType ASTContext::getIntPtrType() const {
3856  return getFromTargetType(Target->getIntPtrType());
3857}
3858
3859QualType ASTContext::getUIntPtrType() const {
3860  return getCorrespondingUnsignedType(getIntPtrType());
3861}
3862
3863/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3864/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
3865QualType ASTContext::getPointerDiffType() const {
3866  return getFromTargetType(Target->getPtrDiffType(0));
3867}
3868
3869/// \brief Return the unique type for "pid_t" defined in
3870/// <sys/types.h>. We need this to compute the correct type for vfork().
3871QualType ASTContext::getProcessIDType() const {
3872  return getFromTargetType(Target->getProcessIDType());
3873}
3874
3875//===----------------------------------------------------------------------===//
3876//                              Type Operators
3877//===----------------------------------------------------------------------===//
3878
3879CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3880  // Push qualifiers into arrays, and then discard any remaining
3881  // qualifiers.
3882  T = getCanonicalType(T);
3883  T = getVariableArrayDecayedType(T);
3884  const Type *Ty = T.getTypePtr();
3885  QualType Result;
3886  if (isa<ArrayType>(Ty)) {
3887    Result = getArrayDecayedType(QualType(Ty,0));
3888  } else if (isa<FunctionType>(Ty)) {
3889    Result = getPointerType(QualType(Ty, 0));
3890  } else {
3891    Result = QualType(Ty, 0);
3892  }
3893
3894  return CanQualType::CreateUnsafe(Result);
3895}
3896
3897QualType ASTContext::getUnqualifiedArrayType(QualType type,
3898                                             Qualifiers &quals) {
3899  SplitQualType splitType = type.getSplitUnqualifiedType();
3900
3901  // FIXME: getSplitUnqualifiedType() actually walks all the way to
3902  // the unqualified desugared type and then drops it on the floor.
3903  // We then have to strip that sugar back off with
3904  // getUnqualifiedDesugaredType(), which is silly.
3905  const ArrayType *AT =
3906    dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
3907
3908  // If we don't have an array, just use the results in splitType.
3909  if (!AT) {
3910    quals = splitType.Quals;
3911    return QualType(splitType.Ty, 0);
3912  }
3913
3914  // Otherwise, recurse on the array's element type.
3915  QualType elementType = AT->getElementType();
3916  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3917
3918  // If that didn't change the element type, AT has no qualifiers, so we
3919  // can just use the results in splitType.
3920  if (elementType == unqualElementType) {
3921    assert(quals.empty()); // from the recursive call
3922    quals = splitType.Quals;
3923    return QualType(splitType.Ty, 0);
3924  }
3925
3926  // Otherwise, add in the qualifiers from the outermost type, then
3927  // build the type back up.
3928  quals.addConsistentQualifiers(splitType.Quals);
3929
3930  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3931    return getConstantArrayType(unqualElementType, CAT->getSize(),
3932                                CAT->getSizeModifier(), 0);
3933  }
3934
3935  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3936    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3937  }
3938
3939  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3940    return getVariableArrayType(unqualElementType,
3941                                VAT->getSizeExpr(),
3942                                VAT->getSizeModifier(),
3943                                VAT->getIndexTypeCVRQualifiers(),
3944                                VAT->getBracketsRange());
3945  }
3946
3947  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
3948  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
3949                                    DSAT->getSizeModifier(), 0,
3950                                    SourceRange());
3951}
3952
3953/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
3954/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
3955/// they point to and return true. If T1 and T2 aren't pointer types
3956/// or pointer-to-member types, or if they are not similar at this
3957/// level, returns false and leaves T1 and T2 unchanged. Top-level
3958/// qualifiers on T1 and T2 are ignored. This function will typically
3959/// be called in a loop that successively "unwraps" pointer and
3960/// pointer-to-member types to compare them at each level.
3961bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3962  const PointerType *T1PtrType = T1->getAs<PointerType>(),
3963                    *T2PtrType = T2->getAs<PointerType>();
3964  if (T1PtrType && T2PtrType) {
3965    T1 = T1PtrType->getPointeeType();
3966    T2 = T2PtrType->getPointeeType();
3967    return true;
3968  }
3969
3970  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3971                          *T2MPType = T2->getAs<MemberPointerType>();
3972  if (T1MPType && T2MPType &&
3973      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3974                             QualType(T2MPType->getClass(), 0))) {
3975    T1 = T1MPType->getPointeeType();
3976    T2 = T2MPType->getPointeeType();
3977    return true;
3978  }
3979
3980  if (getLangOpts().ObjC1) {
3981    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3982                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
3983    if (T1OPType && T2OPType) {
3984      T1 = T1OPType->getPointeeType();
3985      T2 = T2OPType->getPointeeType();
3986      return true;
3987    }
3988  }
3989
3990  // FIXME: Block pointers, too?
3991
3992  return false;
3993}
3994
3995DeclarationNameInfo
3996ASTContext::getNameForTemplate(TemplateName Name,
3997                               SourceLocation NameLoc) const {
3998  switch (Name.getKind()) {
3999  case TemplateName::QualifiedTemplate:
4000  case TemplateName::Template:
4001    // DNInfo work in progress: CHECKME: what about DNLoc?
4002    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
4003                               NameLoc);
4004
4005  case TemplateName::OverloadedTemplate: {
4006    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
4007    // DNInfo work in progress: CHECKME: what about DNLoc?
4008    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
4009  }
4010
4011  case TemplateName::DependentTemplate: {
4012    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
4013    DeclarationName DName;
4014    if (DTN->isIdentifier()) {
4015      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
4016      return DeclarationNameInfo(DName, NameLoc);
4017    } else {
4018      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
4019      // DNInfo work in progress: FIXME: source locations?
4020      DeclarationNameLoc DNLoc;
4021      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
4022      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
4023      return DeclarationNameInfo(DName, NameLoc, DNLoc);
4024    }
4025  }
4026
4027  case TemplateName::SubstTemplateTemplateParm: {
4028    SubstTemplateTemplateParmStorage *subst
4029      = Name.getAsSubstTemplateTemplateParm();
4030    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
4031                               NameLoc);
4032  }
4033
4034  case TemplateName::SubstTemplateTemplateParmPack: {
4035    SubstTemplateTemplateParmPackStorage *subst
4036      = Name.getAsSubstTemplateTemplateParmPack();
4037    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
4038                               NameLoc);
4039  }
4040  }
4041
4042  llvm_unreachable("bad template name kind!");
4043}
4044
4045TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
4046  switch (Name.getKind()) {
4047  case TemplateName::QualifiedTemplate:
4048  case TemplateName::Template: {
4049    TemplateDecl *Template = Name.getAsTemplateDecl();
4050    if (TemplateTemplateParmDecl *TTP
4051          = dyn_cast<TemplateTemplateParmDecl>(Template))
4052      Template = getCanonicalTemplateTemplateParmDecl(TTP);
4053
4054    // The canonical template name is the canonical template declaration.
4055    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
4056  }
4057
4058  case TemplateName::OverloadedTemplate:
4059    llvm_unreachable("cannot canonicalize overloaded template");
4060
4061  case TemplateName::DependentTemplate: {
4062    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
4063    assert(DTN && "Non-dependent template names must refer to template decls.");
4064    return DTN->CanonicalTemplateName;
4065  }
4066
4067  case TemplateName::SubstTemplateTemplateParm: {
4068    SubstTemplateTemplateParmStorage *subst
4069      = Name.getAsSubstTemplateTemplateParm();
4070    return getCanonicalTemplateName(subst->getReplacement());
4071  }
4072
4073  case TemplateName::SubstTemplateTemplateParmPack: {
4074    SubstTemplateTemplateParmPackStorage *subst
4075                                  = Name.getAsSubstTemplateTemplateParmPack();
4076    TemplateTemplateParmDecl *canonParameter
4077      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
4078    TemplateArgument canonArgPack
4079      = getCanonicalTemplateArgument(subst->getArgumentPack());
4080    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
4081  }
4082  }
4083
4084  llvm_unreachable("bad template name!");
4085}
4086
4087bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
4088  X = getCanonicalTemplateName(X);
4089  Y = getCanonicalTemplateName(Y);
4090  return X.getAsVoidPointer() == Y.getAsVoidPointer();
4091}
4092
4093TemplateArgument
4094ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
4095  switch (Arg.getKind()) {
4096    case TemplateArgument::Null:
4097      return Arg;
4098
4099    case TemplateArgument::Expression:
4100      return Arg;
4101
4102    case TemplateArgument::Declaration: {
4103      ValueDecl *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
4104      return TemplateArgument(D, Arg.isDeclForReferenceParam());
4105    }
4106
4107    case TemplateArgument::NullPtr:
4108      return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
4109                              /*isNullPtr*/true);
4110
4111    case TemplateArgument::Template:
4112      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
4113
4114    case TemplateArgument::TemplateExpansion:
4115      return TemplateArgument(getCanonicalTemplateName(
4116                                         Arg.getAsTemplateOrTemplatePattern()),
4117                              Arg.getNumTemplateExpansions());
4118
4119    case TemplateArgument::Integral:
4120      return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
4121
4122    case TemplateArgument::Type:
4123      return TemplateArgument(getCanonicalType(Arg.getAsType()));
4124
4125    case TemplateArgument::Pack: {
4126      if (Arg.pack_size() == 0)
4127        return Arg;
4128
4129      TemplateArgument *CanonArgs
4130        = new (*this) TemplateArgument[Arg.pack_size()];
4131      unsigned Idx = 0;
4132      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
4133                                        AEnd = Arg.pack_end();
4134           A != AEnd; (void)++A, ++Idx)
4135        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
4136
4137      return TemplateArgument(CanonArgs, Arg.pack_size());
4138    }
4139  }
4140
4141  // Silence GCC warning
4142  llvm_unreachable("Unhandled template argument kind");
4143}
4144
4145NestedNameSpecifier *
4146ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
4147  if (!NNS)
4148    return nullptr;
4149
4150  switch (NNS->getKind()) {
4151  case NestedNameSpecifier::Identifier:
4152    // Canonicalize the prefix but keep the identifier the same.
4153    return NestedNameSpecifier::Create(*this,
4154                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
4155                                       NNS->getAsIdentifier());
4156
4157  case NestedNameSpecifier::Namespace:
4158    // A namespace is canonical; build a nested-name-specifier with
4159    // this namespace and no prefix.
4160    return NestedNameSpecifier::Create(*this, nullptr,
4161                                 NNS->getAsNamespace()->getOriginalNamespace());
4162
4163  case NestedNameSpecifier::NamespaceAlias:
4164    // A namespace is canonical; build a nested-name-specifier with
4165    // this namespace and no prefix.
4166    return NestedNameSpecifier::Create(*this, nullptr,
4167                                    NNS->getAsNamespaceAlias()->getNamespace()
4168                                                      ->getOriginalNamespace());
4169
4170  case NestedNameSpecifier::TypeSpec:
4171  case NestedNameSpecifier::TypeSpecWithTemplate: {
4172    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
4173
4174    // If we have some kind of dependent-named type (e.g., "typename T::type"),
4175    // break it apart into its prefix and identifier, then reconsititute those
4176    // as the canonical nested-name-specifier. This is required to canonicalize
4177    // a dependent nested-name-specifier involving typedefs of dependent-name
4178    // types, e.g.,
4179    //   typedef typename T::type T1;
4180    //   typedef typename T1::type T2;
4181    if (const DependentNameType *DNT = T->getAs<DependentNameType>())
4182      return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
4183                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
4184
4185    // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
4186    // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
4187    // first place?
4188    return NestedNameSpecifier::Create(*this, nullptr, false,
4189                                       const_cast<Type *>(T.getTypePtr()));
4190  }
4191
4192  case NestedNameSpecifier::Global:
4193    // The global specifier is canonical and unique.
4194    return NNS;
4195  }
4196
4197  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
4198}
4199
4200
4201const ArrayType *ASTContext::getAsArrayType(QualType T) const {
4202  // Handle the non-qualified case efficiently.
4203  if (!T.hasLocalQualifiers()) {
4204    // Handle the common positive case fast.
4205    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
4206      return AT;
4207  }
4208
4209  // Handle the common negative case fast.
4210  if (!isa<ArrayType>(T.getCanonicalType()))
4211    return nullptr;
4212
4213  // Apply any qualifiers from the array type to the element type.  This
4214  // implements C99 6.7.3p8: "If the specification of an array type includes
4215  // any type qualifiers, the element type is so qualified, not the array type."
4216
4217  // If we get here, we either have type qualifiers on the type, or we have
4218  // sugar such as a typedef in the way.  If we have type qualifiers on the type
4219  // we must propagate them down into the element type.
4220
4221  SplitQualType split = T.getSplitDesugaredType();
4222  Qualifiers qs = split.Quals;
4223
4224  // If we have a simple case, just return now.
4225  const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
4226  if (!ATy || qs.empty())
4227    return ATy;
4228
4229  // Otherwise, we have an array and we have qualifiers on it.  Push the
4230  // qualifiers into the array element type and return a new array type.
4231  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
4232
4233  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
4234    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
4235                                                CAT->getSizeModifier(),
4236                                           CAT->getIndexTypeCVRQualifiers()));
4237  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
4238    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
4239                                                  IAT->getSizeModifier(),
4240                                           IAT->getIndexTypeCVRQualifiers()));
4241
4242  if (const DependentSizedArrayType *DSAT
4243        = dyn_cast<DependentSizedArrayType>(ATy))
4244    return cast<ArrayType>(
4245                     getDependentSizedArrayType(NewEltTy,
4246                                                DSAT->getSizeExpr(),
4247                                                DSAT->getSizeModifier(),
4248                                              DSAT->getIndexTypeCVRQualifiers(),
4249                                                DSAT->getBracketsRange()));
4250
4251  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
4252  return cast<ArrayType>(getVariableArrayType(NewEltTy,
4253                                              VAT->getSizeExpr(),
4254                                              VAT->getSizeModifier(),
4255                                              VAT->getIndexTypeCVRQualifiers(),
4256                                              VAT->getBracketsRange()));
4257}
4258
4259QualType ASTContext::getAdjustedParameterType(QualType T) const {
4260  if (T->isArrayType() || T->isFunctionType())
4261    return getDecayedType(T);
4262  return T;
4263}
4264
4265QualType ASTContext::getSignatureParameterType(QualType T) const {
4266  T = getVariableArrayDecayedType(T);
4267  T = getAdjustedParameterType(T);
4268  return T.getUnqualifiedType();
4269}
4270
4271/// getArrayDecayedType - Return the properly qualified result of decaying the
4272/// specified array type to a pointer.  This operation is non-trivial when
4273/// handling typedefs etc.  The canonical type of "T" must be an array type,
4274/// this returns a pointer to a properly qualified element of the array.
4275///
4276/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
4277QualType ASTContext::getArrayDecayedType(QualType Ty) const {
4278  // Get the element type with 'getAsArrayType' so that we don't lose any
4279  // typedefs in the element type of the array.  This also handles propagation
4280  // of type qualifiers from the array type into the element type if present
4281  // (C99 6.7.3p8).
4282  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
4283  assert(PrettyArrayType && "Not an array type!");
4284
4285  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
4286
4287  // int x[restrict 4] ->  int *restrict
4288  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
4289}
4290
4291QualType ASTContext::getBaseElementType(const ArrayType *array) const {
4292  return getBaseElementType(array->getElementType());
4293}
4294
4295QualType ASTContext::getBaseElementType(QualType type) const {
4296  Qualifiers qs;
4297  while (true) {
4298    SplitQualType split = type.getSplitDesugaredType();
4299    const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
4300    if (!array) break;
4301
4302    type = array->getElementType();
4303    qs.addConsistentQualifiers(split.Quals);
4304  }
4305
4306  return getQualifiedType(type, qs);
4307}
4308
4309/// getConstantArrayElementCount - Returns number of constant array elements.
4310uint64_t
4311ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
4312  uint64_t ElementCount = 1;
4313  do {
4314    ElementCount *= CA->getSize().getZExtValue();
4315    CA = dyn_cast_or_null<ConstantArrayType>(
4316      CA->getElementType()->getAsArrayTypeUnsafe());
4317  } while (CA);
4318  return ElementCount;
4319}
4320
4321/// getFloatingRank - Return a relative rank for floating point types.
4322/// This routine will assert if passed a built-in type that isn't a float.
4323static FloatingRank getFloatingRank(QualType T) {
4324  if (const ComplexType *CT = T->getAs<ComplexType>())
4325    return getFloatingRank(CT->getElementType());
4326
4327  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
4328  switch (T->getAs<BuiltinType>()->getKind()) {
4329  default: llvm_unreachable("getFloatingRank(): not a floating type");
4330  case BuiltinType::Half:       return HalfRank;
4331  case BuiltinType::Float:      return FloatRank;
4332  case BuiltinType::Double:     return DoubleRank;
4333  case BuiltinType::LongDouble: return LongDoubleRank;
4334  }
4335}
4336
4337/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
4338/// point or a complex type (based on typeDomain/typeSize).
4339/// 'typeDomain' is a real floating point or complex type.
4340/// 'typeSize' is a real floating point or complex type.
4341QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
4342                                                       QualType Domain) const {
4343  FloatingRank EltRank = getFloatingRank(Size);
4344  if (Domain->isComplexType()) {
4345    switch (EltRank) {
4346    case HalfRank: llvm_unreachable("Complex half is not supported");
4347    case FloatRank:      return FloatComplexTy;
4348    case DoubleRank:     return DoubleComplexTy;
4349    case LongDoubleRank: return LongDoubleComplexTy;
4350    }
4351  }
4352
4353  assert(Domain->isRealFloatingType() && "Unknown domain!");
4354  switch (EltRank) {
4355  case HalfRank:       return HalfTy;
4356  case FloatRank:      return FloatTy;
4357  case DoubleRank:     return DoubleTy;
4358  case LongDoubleRank: return LongDoubleTy;
4359  }
4360  llvm_unreachable("getFloatingRank(): illegal value for rank");
4361}
4362
4363/// getFloatingTypeOrder - Compare the rank of the two specified floating
4364/// point types, ignoring the domain of the type (i.e. 'double' ==
4365/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4366/// LHS < RHS, return -1.
4367int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
4368  FloatingRank LHSR = getFloatingRank(LHS);
4369  FloatingRank RHSR = getFloatingRank(RHS);
4370
4371  if (LHSR == RHSR)
4372    return 0;
4373  if (LHSR > RHSR)
4374    return 1;
4375  return -1;
4376}
4377
4378/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
4379/// routine will assert if passed a built-in type that isn't an integer or enum,
4380/// or if it is not canonicalized.
4381unsigned ASTContext::getIntegerRank(const Type *T) const {
4382  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
4383
4384  switch (cast<BuiltinType>(T)->getKind()) {
4385  default: llvm_unreachable("getIntegerRank(): not a built-in integer");
4386  case BuiltinType::Bool:
4387    return 1 + (getIntWidth(BoolTy) << 3);
4388  case BuiltinType::Char_S:
4389  case BuiltinType::Char_U:
4390  case BuiltinType::SChar:
4391  case BuiltinType::UChar:
4392    return 2 + (getIntWidth(CharTy) << 3);
4393  case BuiltinType::Short:
4394  case BuiltinType::UShort:
4395    return 3 + (getIntWidth(ShortTy) << 3);
4396  case BuiltinType::Int:
4397  case BuiltinType::UInt:
4398    return 4 + (getIntWidth(IntTy) << 3);
4399  case BuiltinType::Long:
4400  case BuiltinType::ULong:
4401    return 5 + (getIntWidth(LongTy) << 3);
4402  case BuiltinType::LongLong:
4403  case BuiltinType::ULongLong:
4404    return 6 + (getIntWidth(LongLongTy) << 3);
4405  case BuiltinType::Int128:
4406  case BuiltinType::UInt128:
4407    return 7 + (getIntWidth(Int128Ty) << 3);
4408  }
4409}
4410
4411/// \brief Whether this is a promotable bitfield reference according
4412/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
4413///
4414/// \returns the type this bit-field will promote to, or NULL if no
4415/// promotion occurs.
4416QualType ASTContext::isPromotableBitField(Expr *E) const {
4417  if (E->isTypeDependent() || E->isValueDependent())
4418    return QualType();
4419
4420  FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields?
4421  if (!Field)
4422    return QualType();
4423
4424  QualType FT = Field->getType();
4425
4426  uint64_t BitWidth = Field->getBitWidthValue(*this);
4427  uint64_t IntSize = getTypeSize(IntTy);
4428  // GCC extension compatibility: if the bit-field size is less than or equal
4429  // to the size of int, it gets promoted no matter what its type is.
4430  // For instance, unsigned long bf : 4 gets promoted to signed int.
4431  if (BitWidth < IntSize)
4432    return IntTy;
4433
4434  if (BitWidth == IntSize)
4435    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
4436
4437  // Types bigger than int are not subject to promotions, and therefore act
4438  // like the base type.
4439  // FIXME: This doesn't quite match what gcc does, but what gcc does here
4440  // is ridiculous.
4441  return QualType();
4442}
4443
4444/// getPromotedIntegerType - Returns the type that Promotable will
4445/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
4446/// integer type.
4447QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
4448  assert(!Promotable.isNull());
4449  assert(Promotable->isPromotableIntegerType());
4450  if (const EnumType *ET = Promotable->getAs<EnumType>())
4451    return ET->getDecl()->getPromotionType();
4452
4453  if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
4454    // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
4455    // (3.9.1) can be converted to a prvalue of the first of the following
4456    // types that can represent all the values of its underlying type:
4457    // int, unsigned int, long int, unsigned long int, long long int, or
4458    // unsigned long long int [...]
4459    // FIXME: Is there some better way to compute this?
4460    if (BT->getKind() == BuiltinType::WChar_S ||
4461        BT->getKind() == BuiltinType::WChar_U ||
4462        BT->getKind() == BuiltinType::Char16 ||
4463        BT->getKind() == BuiltinType::Char32) {
4464      bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
4465      uint64_t FromSize = getTypeSize(BT);
4466      QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
4467                                  LongLongTy, UnsignedLongLongTy };
4468      for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
4469        uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
4470        if (FromSize < ToSize ||
4471            (FromSize == ToSize &&
4472             FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
4473          return PromoteTypes[Idx];
4474      }
4475      llvm_unreachable("char type should fit into long long");
4476    }
4477  }
4478
4479  // At this point, we should have a signed or unsigned integer type.
4480  if (Promotable->isSignedIntegerType())
4481    return IntTy;
4482  uint64_t PromotableSize = getIntWidth(Promotable);
4483  uint64_t IntSize = getIntWidth(IntTy);
4484  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
4485  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
4486}
4487
4488/// \brief Recurses in pointer/array types until it finds an objc retainable
4489/// type and returns its ownership.
4490Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
4491  while (!T.isNull()) {
4492    if (T.getObjCLifetime() != Qualifiers::OCL_None)
4493      return T.getObjCLifetime();
4494    if (T->isArrayType())
4495      T = getBaseElementType(T);
4496    else if (const PointerType *PT = T->getAs<PointerType>())
4497      T = PT->getPointeeType();
4498    else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4499      T = RT->getPointeeType();
4500    else
4501      break;
4502  }
4503
4504  return Qualifiers::OCL_None;
4505}
4506
4507static const Type *getIntegerTypeForEnum(const EnumType *ET) {
4508  // Incomplete enum types are not treated as integer types.
4509  // FIXME: In C++, enum types are never integer types.
4510  if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
4511    return ET->getDecl()->getIntegerType().getTypePtr();
4512  return nullptr;
4513}
4514
4515/// getIntegerTypeOrder - Returns the highest ranked integer type:
4516/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4517/// LHS < RHS, return -1.
4518int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
4519  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
4520  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
4521
4522  // Unwrap enums to their underlying type.
4523  if (const EnumType *ET = dyn_cast<EnumType>(LHSC))
4524    LHSC = getIntegerTypeForEnum(ET);
4525  if (const EnumType *ET = dyn_cast<EnumType>(RHSC))
4526    RHSC = getIntegerTypeForEnum(ET);
4527
4528  if (LHSC == RHSC) return 0;
4529
4530  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
4531  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
4532
4533  unsigned LHSRank = getIntegerRank(LHSC);
4534  unsigned RHSRank = getIntegerRank(RHSC);
4535
4536  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
4537    if (LHSRank == RHSRank) return 0;
4538    return LHSRank > RHSRank ? 1 : -1;
4539  }
4540
4541  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
4542  if (LHSUnsigned) {
4543    // If the unsigned [LHS] type is larger, return it.
4544    if (LHSRank >= RHSRank)
4545      return 1;
4546
4547    // If the signed type can represent all values of the unsigned type, it
4548    // wins.  Because we are dealing with 2's complement and types that are
4549    // powers of two larger than each other, this is always safe.
4550    return -1;
4551  }
4552
4553  // If the unsigned [RHS] type is larger, return it.
4554  if (RHSRank >= LHSRank)
4555    return -1;
4556
4557  // If the signed type can represent all values of the unsigned type, it
4558  // wins.  Because we are dealing with 2's complement and types that are
4559  // powers of two larger than each other, this is always safe.
4560  return 1;
4561}
4562
4563// getCFConstantStringType - Return the type used for constant CFStrings.
4564QualType ASTContext::getCFConstantStringType() const {
4565  if (!CFConstantStringTypeDecl) {
4566    CFConstantStringTypeDecl = buildImplicitRecord("NSConstantString");
4567    CFConstantStringTypeDecl->startDefinition();
4568
4569    QualType FieldTypes[4];
4570
4571    // const int *isa;
4572    FieldTypes[0] = getPointerType(IntTy.withConst());
4573    // int flags;
4574    FieldTypes[1] = IntTy;
4575    // const char *str;
4576    FieldTypes[2] = getPointerType(CharTy.withConst());
4577    // long length;
4578    FieldTypes[3] = LongTy;
4579
4580    // Create fields
4581    for (unsigned i = 0; i < 4; ++i) {
4582      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
4583                                           SourceLocation(),
4584                                           SourceLocation(), nullptr,
4585                                           FieldTypes[i], /*TInfo=*/nullptr,
4586                                           /*BitWidth=*/nullptr,
4587                                           /*Mutable=*/false,
4588                                           ICIS_NoInit);
4589      Field->setAccess(AS_public);
4590      CFConstantStringTypeDecl->addDecl(Field);
4591    }
4592
4593    CFConstantStringTypeDecl->completeDefinition();
4594  }
4595
4596  return getTagDeclType(CFConstantStringTypeDecl);
4597}
4598
4599QualType ASTContext::getObjCSuperType() const {
4600  if (ObjCSuperType.isNull()) {
4601    RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super");
4602    TUDecl->addDecl(ObjCSuperTypeDecl);
4603    ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
4604  }
4605  return ObjCSuperType;
4606}
4607
4608void ASTContext::setCFConstantStringType(QualType T) {
4609  const RecordType *Rec = T->getAs<RecordType>();
4610  assert(Rec && "Invalid CFConstantStringType");
4611  CFConstantStringTypeDecl = Rec->getDecl();
4612}
4613
4614QualType ASTContext::getBlockDescriptorType() const {
4615  if (BlockDescriptorType)
4616    return getTagDeclType(BlockDescriptorType);
4617
4618  RecordDecl *RD;
4619  // FIXME: Needs the FlagAppleBlock bit.
4620  RD = buildImplicitRecord("__block_descriptor");
4621  RD->startDefinition();
4622
4623  QualType FieldTypes[] = {
4624    UnsignedLongTy,
4625    UnsignedLongTy,
4626  };
4627
4628  static const char *const FieldNames[] = {
4629    "reserved",
4630    "Size"
4631  };
4632
4633  for (size_t i = 0; i < 2; ++i) {
4634    FieldDecl *Field = FieldDecl::Create(
4635        *this, RD, SourceLocation(), SourceLocation(),
4636        &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
4637        /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
4638    Field->setAccess(AS_public);
4639    RD->addDecl(Field);
4640  }
4641
4642  RD->completeDefinition();
4643
4644  BlockDescriptorType = RD;
4645
4646  return getTagDeclType(BlockDescriptorType);
4647}
4648
4649QualType ASTContext::getBlockDescriptorExtendedType() const {
4650  if (BlockDescriptorExtendedType)
4651    return getTagDeclType(BlockDescriptorExtendedType);
4652
4653  RecordDecl *RD;
4654  // FIXME: Needs the FlagAppleBlock bit.
4655  RD = buildImplicitRecord("__block_descriptor_withcopydispose");
4656  RD->startDefinition();
4657
4658  QualType FieldTypes[] = {
4659    UnsignedLongTy,
4660    UnsignedLongTy,
4661    getPointerType(VoidPtrTy),
4662    getPointerType(VoidPtrTy)
4663  };
4664
4665  static const char *const FieldNames[] = {
4666    "reserved",
4667    "Size",
4668    "CopyFuncPtr",
4669    "DestroyFuncPtr"
4670  };
4671
4672  for (size_t i = 0; i < 4; ++i) {
4673    FieldDecl *Field = FieldDecl::Create(
4674        *this, RD, SourceLocation(), SourceLocation(),
4675        &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
4676        /*BitWidth=*/nullptr,
4677        /*Mutable=*/false, ICIS_NoInit);
4678    Field->setAccess(AS_public);
4679    RD->addDecl(Field);
4680  }
4681
4682  RD->completeDefinition();
4683
4684  BlockDescriptorExtendedType = RD;
4685  return getTagDeclType(BlockDescriptorExtendedType);
4686}
4687
4688/// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
4689/// requires copy/dispose. Note that this must match the logic
4690/// in buildByrefHelpers.
4691bool ASTContext::BlockRequiresCopying(QualType Ty,
4692                                      const VarDecl *D) {
4693  if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
4694    const Expr *copyExpr = getBlockVarCopyInits(D);
4695    if (!copyExpr && record->hasTrivialDestructor()) return false;
4696
4697    return true;
4698  }
4699
4700  if (!Ty->isObjCRetainableType()) return false;
4701
4702  Qualifiers qs = Ty.getQualifiers();
4703
4704  // If we have lifetime, that dominates.
4705  if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
4706    assert(getLangOpts().ObjCAutoRefCount);
4707
4708    switch (lifetime) {
4709      case Qualifiers::OCL_None: llvm_unreachable("impossible");
4710
4711      // These are just bits as far as the runtime is concerned.
4712      case Qualifiers::OCL_ExplicitNone:
4713      case Qualifiers::OCL_Autoreleasing:
4714        return false;
4715
4716      // Tell the runtime that this is ARC __weak, called by the
4717      // byref routines.
4718      case Qualifiers::OCL_Weak:
4719      // ARC __strong __block variables need to be retained.
4720      case Qualifiers::OCL_Strong:
4721        return true;
4722    }
4723    llvm_unreachable("fell out of lifetime switch!");
4724  }
4725  return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
4726          Ty->isObjCObjectPointerType());
4727}
4728
4729bool ASTContext::getByrefLifetime(QualType Ty,
4730                              Qualifiers::ObjCLifetime &LifeTime,
4731                              bool &HasByrefExtendedLayout) const {
4732
4733  if (!getLangOpts().ObjC1 ||
4734      getLangOpts().getGC() != LangOptions::NonGC)
4735    return false;
4736
4737  HasByrefExtendedLayout = false;
4738  if (Ty->isRecordType()) {
4739    HasByrefExtendedLayout = true;
4740    LifeTime = Qualifiers::OCL_None;
4741  }
4742  else if (getLangOpts().ObjCAutoRefCount)
4743    LifeTime = Ty.getObjCLifetime();
4744  // MRR.
4745  else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4746    LifeTime = Qualifiers::OCL_ExplicitNone;
4747  else
4748    LifeTime = Qualifiers::OCL_None;
4749  return true;
4750}
4751
4752TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
4753  if (!ObjCInstanceTypeDecl)
4754    ObjCInstanceTypeDecl =
4755        buildImplicitTypedef(getObjCIdType(), "instancetype");
4756  return ObjCInstanceTypeDecl;
4757}
4758
4759// This returns true if a type has been typedefed to BOOL:
4760// typedef <type> BOOL;
4761static bool isTypeTypedefedAsBOOL(QualType T) {
4762  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
4763    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
4764      return II->isStr("BOOL");
4765
4766  return false;
4767}
4768
4769/// getObjCEncodingTypeSize returns size of type for objective-c encoding
4770/// purpose.
4771CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
4772  if (!type->isIncompleteArrayType() && type->isIncompleteType())
4773    return CharUnits::Zero();
4774
4775  CharUnits sz = getTypeSizeInChars(type);
4776
4777  // Make all integer and enum types at least as large as an int
4778  if (sz.isPositive() && type->isIntegralOrEnumerationType())
4779    sz = std::max(sz, getTypeSizeInChars(IntTy));
4780  // Treat arrays as pointers, since that's how they're passed in.
4781  else if (type->isArrayType())
4782    sz = getTypeSizeInChars(VoidPtrTy);
4783  return sz;
4784}
4785
4786static inline
4787std::string charUnitsToString(const CharUnits &CU) {
4788  return llvm::itostr(CU.getQuantity());
4789}
4790
4791/// getObjCEncodingForBlock - Return the encoded type for this block
4792/// declaration.
4793std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4794  std::string S;
4795
4796  const BlockDecl *Decl = Expr->getBlockDecl();
4797  QualType BlockTy =
4798      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4799  // Encode result type.
4800  if (getLangOpts().EncodeExtendedBlockSig)
4801    getObjCEncodingForMethodParameter(
4802        Decl::OBJC_TQ_None, BlockTy->getAs<FunctionType>()->getReturnType(), S,
4803        true /*Extended*/);
4804  else
4805    getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getReturnType(), S);
4806  // Compute size of all parameters.
4807  // Start with computing size of a pointer in number of bytes.
4808  // FIXME: There might(should) be a better way of doing this computation!
4809  SourceLocation Loc;
4810  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4811  CharUnits ParmOffset = PtrSize;
4812  for (auto PI : Decl->params()) {
4813    QualType PType = PI->getType();
4814    CharUnits sz = getObjCEncodingTypeSize(PType);
4815    if (sz.isZero())
4816      continue;
4817    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4818    ParmOffset += sz;
4819  }
4820  // Size of the argument frame
4821  S += charUnitsToString(ParmOffset);
4822  // Block pointer and offset.
4823  S += "@?0";
4824
4825  // Argument types.
4826  ParmOffset = PtrSize;
4827  for (auto PVDecl : Decl->params()) {
4828    QualType PType = PVDecl->getOriginalType();
4829    if (const ArrayType *AT =
4830          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4831      // Use array's original type only if it has known number of
4832      // elements.
4833      if (!isa<ConstantArrayType>(AT))
4834        PType = PVDecl->getType();
4835    } else if (PType->isFunctionType())
4836      PType = PVDecl->getType();
4837    if (getLangOpts().EncodeExtendedBlockSig)
4838      getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
4839                                      S, true /*Extended*/);
4840    else
4841      getObjCEncodingForType(PType, S);
4842    S += charUnitsToString(ParmOffset);
4843    ParmOffset += getObjCEncodingTypeSize(PType);
4844  }
4845
4846  return S;
4847}
4848
4849bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4850                                                std::string& S) {
4851  // Encode result type.
4852  getObjCEncodingForType(Decl->getReturnType(), S);
4853  CharUnits ParmOffset;
4854  // Compute size of all parameters.
4855  for (auto PI : Decl->params()) {
4856    QualType PType = PI->getType();
4857    CharUnits sz = getObjCEncodingTypeSize(PType);
4858    if (sz.isZero())
4859      continue;
4860
4861    assert (sz.isPositive() &&
4862        "getObjCEncodingForFunctionDecl - Incomplete param type");
4863    ParmOffset += sz;
4864  }
4865  S += charUnitsToString(ParmOffset);
4866  ParmOffset = CharUnits::Zero();
4867
4868  // Argument types.
4869  for (auto PVDecl : Decl->params()) {
4870    QualType PType = PVDecl->getOriginalType();
4871    if (const ArrayType *AT =
4872          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4873      // Use array's original type only if it has known number of
4874      // elements.
4875      if (!isa<ConstantArrayType>(AT))
4876        PType = PVDecl->getType();
4877    } else if (PType->isFunctionType())
4878      PType = PVDecl->getType();
4879    getObjCEncodingForType(PType, S);
4880    S += charUnitsToString(ParmOffset);
4881    ParmOffset += getObjCEncodingTypeSize(PType);
4882  }
4883
4884  return false;
4885}
4886
4887/// getObjCEncodingForMethodParameter - Return the encoded type for a single
4888/// method parameter or return type. If Extended, include class names and
4889/// block object types.
4890void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
4891                                                   QualType T, std::string& S,
4892                                                   bool Extended) const {
4893  // Encode type qualifer, 'in', 'inout', etc. for the parameter.
4894  getObjCEncodingForTypeQualifier(QT, S);
4895  // Encode parameter type.
4896  getObjCEncodingForTypeImpl(T, S, true, true, nullptr,
4897                             true     /*OutermostType*/,
4898                             false    /*EncodingProperty*/,
4899                             false    /*StructField*/,
4900                             Extended /*EncodeBlockParameters*/,
4901                             Extended /*EncodeClassNames*/);
4902}
4903
4904/// getObjCEncodingForMethodDecl - Return the encoded type for this method
4905/// declaration.
4906bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4907                                              std::string& S,
4908                                              bool Extended) const {
4909  // FIXME: This is not very efficient.
4910  // Encode return type.
4911  getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
4912                                    Decl->getReturnType(), S, Extended);
4913  // Compute size of all parameters.
4914  // Start with computing size of a pointer in number of bytes.
4915  // FIXME: There might(should) be a better way of doing this computation!
4916  SourceLocation Loc;
4917  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4918  // The first two arguments (self and _cmd) are pointers; account for
4919  // their size.
4920  CharUnits ParmOffset = 2 * PtrSize;
4921  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4922       E = Decl->sel_param_end(); PI != E; ++PI) {
4923    QualType PType = (*PI)->getType();
4924    CharUnits sz = getObjCEncodingTypeSize(PType);
4925    if (sz.isZero())
4926      continue;
4927
4928    assert (sz.isPositive() &&
4929        "getObjCEncodingForMethodDecl - Incomplete param type");
4930    ParmOffset += sz;
4931  }
4932  S += charUnitsToString(ParmOffset);
4933  S += "@0:";
4934  S += charUnitsToString(PtrSize);
4935
4936  // Argument types.
4937  ParmOffset = 2 * PtrSize;
4938  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4939       E = Decl->sel_param_end(); PI != E; ++PI) {
4940    const ParmVarDecl *PVDecl = *PI;
4941    QualType PType = PVDecl->getOriginalType();
4942    if (const ArrayType *AT =
4943          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4944      // Use array's original type only if it has known number of
4945      // elements.
4946      if (!isa<ConstantArrayType>(AT))
4947        PType = PVDecl->getType();
4948    } else if (PType->isFunctionType())
4949      PType = PVDecl->getType();
4950    getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
4951                                      PType, S, Extended);
4952    S += charUnitsToString(ParmOffset);
4953    ParmOffset += getObjCEncodingTypeSize(PType);
4954  }
4955
4956  return false;
4957}
4958
4959ObjCPropertyImplDecl *
4960ASTContext::getObjCPropertyImplDeclForPropertyDecl(
4961                                      const ObjCPropertyDecl *PD,
4962                                      const Decl *Container) const {
4963  if (!Container)
4964    return nullptr;
4965  if (const ObjCCategoryImplDecl *CID =
4966      dyn_cast<ObjCCategoryImplDecl>(Container)) {
4967    for (auto *PID : CID->property_impls())
4968      if (PID->getPropertyDecl() == PD)
4969        return PID;
4970  } else {
4971    const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4972    for (auto *PID : OID->property_impls())
4973      if (PID->getPropertyDecl() == PD)
4974        return PID;
4975  }
4976  return nullptr;
4977}
4978
4979/// getObjCEncodingForPropertyDecl - Return the encoded type for this
4980/// property declaration. If non-NULL, Container must be either an
4981/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4982/// NULL when getting encodings for protocol properties.
4983/// Property attributes are stored as a comma-delimited C string. The simple
4984/// attributes readonly and bycopy are encoded as single characters. The
4985/// parametrized attributes, getter=name, setter=name, and ivar=name, are
4986/// encoded as single characters, followed by an identifier. Property types
4987/// are also encoded as a parametrized attribute. The characters used to encode
4988/// these attributes are defined by the following enumeration:
4989/// @code
4990/// enum PropertyAttributes {
4991/// kPropertyReadOnly = 'R',   // property is read-only.
4992/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4993/// kPropertyByref = '&',  // property is a reference to the value last assigned
4994/// kPropertyDynamic = 'D',    // property is dynamic
4995/// kPropertyGetter = 'G',     // followed by getter selector name
4996/// kPropertySetter = 'S',     // followed by setter selector name
4997/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4998/// kPropertyType = 'T'              // followed by old-style type encoding.
4999/// kPropertyWeak = 'W'              // 'weak' property
5000/// kPropertyStrong = 'P'            // property GC'able
5001/// kPropertyNonAtomic = 'N'         // property non-atomic
5002/// };
5003/// @endcode
5004void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
5005                                                const Decl *Container,
5006                                                std::string& S) const {
5007  // Collect information from the property implementation decl(s).
5008  bool Dynamic = false;
5009  ObjCPropertyImplDecl *SynthesizePID = nullptr;
5010
5011  if (ObjCPropertyImplDecl *PropertyImpDecl =
5012      getObjCPropertyImplDeclForPropertyDecl(PD, Container)) {
5013    if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
5014      Dynamic = true;
5015    else
5016      SynthesizePID = PropertyImpDecl;
5017  }
5018
5019  // FIXME: This is not very efficient.
5020  S = "T";
5021
5022  // Encode result type.
5023  // GCC has some special rules regarding encoding of properties which
5024  // closely resembles encoding of ivars.
5025  getObjCEncodingForPropertyType(PD->getType(), S);
5026
5027  if (PD->isReadOnly()) {
5028    S += ",R";
5029    if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_copy)
5030      S += ",C";
5031    if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_retain)
5032      S += ",&";
5033    if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_weak)
5034      S += ",W";
5035  } else {
5036    switch (PD->getSetterKind()) {
5037    case ObjCPropertyDecl::Assign: break;
5038    case ObjCPropertyDecl::Copy:   S += ",C"; break;
5039    case ObjCPropertyDecl::Retain: S += ",&"; break;
5040    case ObjCPropertyDecl::Weak:   S += ",W"; break;
5041    }
5042  }
5043
5044  // It really isn't clear at all what this means, since properties
5045  // are "dynamic by default".
5046  if (Dynamic)
5047    S += ",D";
5048
5049  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
5050    S += ",N";
5051
5052  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
5053    S += ",G";
5054    S += PD->getGetterName().getAsString();
5055  }
5056
5057  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
5058    S += ",S";
5059    S += PD->getSetterName().getAsString();
5060  }
5061
5062  if (SynthesizePID) {
5063    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
5064    S += ",V";
5065    S += OID->getNameAsString();
5066  }
5067
5068  // FIXME: OBJCGC: weak & strong
5069}
5070
5071/// getLegacyIntegralTypeEncoding -
5072/// Another legacy compatibility encoding: 32-bit longs are encoded as
5073/// 'l' or 'L' , but not always.  For typedefs, we need to use
5074/// 'i' or 'I' instead if encoding a struct field, or a pointer!
5075///
5076void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
5077  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
5078    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
5079      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
5080        PointeeTy = UnsignedIntTy;
5081      else
5082        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
5083          PointeeTy = IntTy;
5084    }
5085  }
5086}
5087
5088void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
5089                                        const FieldDecl *Field) const {
5090  // We follow the behavior of gcc, expanding structures which are
5091  // directly pointed to, and expanding embedded structures. Note that
5092  // these rules are sufficient to prevent recursive encoding of the
5093  // same type.
5094  getObjCEncodingForTypeImpl(T, S, true, true, Field,
5095                             true /* outermost type */);
5096}
5097
5098void ASTContext::getObjCEncodingForPropertyType(QualType T,
5099                                                std::string& S) const {
5100  // Encode result type.
5101  // GCC has some special rules regarding encoding of properties which
5102  // closely resembles encoding of ivars.
5103  getObjCEncodingForTypeImpl(T, S, true, true, nullptr,
5104                             true /* outermost type */,
5105                             true /* encoding property */);
5106}
5107
5108static char getObjCEncodingForPrimitiveKind(const ASTContext *C,
5109                                            BuiltinType::Kind kind) {
5110    switch (kind) {
5111    case BuiltinType::Void:       return 'v';
5112    case BuiltinType::Bool:       return 'B';
5113    case BuiltinType::Char_U:
5114    case BuiltinType::UChar:      return 'C';
5115    case BuiltinType::Char16:
5116    case BuiltinType::UShort:     return 'S';
5117    case BuiltinType::Char32:
5118    case BuiltinType::UInt:       return 'I';
5119    case BuiltinType::ULong:
5120        return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
5121    case BuiltinType::UInt128:    return 'T';
5122    case BuiltinType::ULongLong:  return 'Q';
5123    case BuiltinType::Char_S:
5124    case BuiltinType::SChar:      return 'c';
5125    case BuiltinType::Short:      return 's';
5126    case BuiltinType::WChar_S:
5127    case BuiltinType::WChar_U:
5128    case BuiltinType::Int:        return 'i';
5129    case BuiltinType::Long:
5130      return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
5131    case BuiltinType::LongLong:   return 'q';
5132    case BuiltinType::Int128:     return 't';
5133    case BuiltinType::Float:      return 'f';
5134    case BuiltinType::Double:     return 'd';
5135    case BuiltinType::LongDouble: return 'D';
5136    case BuiltinType::NullPtr:    return '*'; // like char*
5137
5138    case BuiltinType::Half:
5139      // FIXME: potentially need @encodes for these!
5140      return ' ';
5141
5142    case BuiltinType::ObjCId:
5143    case BuiltinType::ObjCClass:
5144    case BuiltinType::ObjCSel:
5145      llvm_unreachable("@encoding ObjC primitive type");
5146
5147    // OpenCL and placeholder types don't need @encodings.
5148    case BuiltinType::OCLImage1d:
5149    case BuiltinType::OCLImage1dArray:
5150    case BuiltinType::OCLImage1dBuffer:
5151    case BuiltinType::OCLImage2d:
5152    case BuiltinType::OCLImage2dArray:
5153    case BuiltinType::OCLImage3d:
5154    case BuiltinType::OCLEvent:
5155    case BuiltinType::OCLSampler:
5156    case BuiltinType::Dependent:
5157#define BUILTIN_TYPE(KIND, ID)
5158#define PLACEHOLDER_TYPE(KIND, ID) \
5159    case BuiltinType::KIND:
5160#include "clang/AST/BuiltinTypes.def"
5161      llvm_unreachable("invalid builtin type for @encode");
5162    }
5163    llvm_unreachable("invalid BuiltinType::Kind value");
5164}
5165
5166static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
5167  EnumDecl *Enum = ET->getDecl();
5168
5169  // The encoding of an non-fixed enum type is always 'i', regardless of size.
5170  if (!Enum->isFixed())
5171    return 'i';
5172
5173  // The encoding of a fixed enum type matches its fixed underlying type.
5174  const BuiltinType *BT = Enum->getIntegerType()->castAs<BuiltinType>();
5175  return getObjCEncodingForPrimitiveKind(C, BT->getKind());
5176}
5177
5178static void EncodeBitField(const ASTContext *Ctx, std::string& S,
5179                           QualType T, const FieldDecl *FD) {
5180  assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
5181  S += 'b';
5182  // The NeXT runtime encodes bit fields as b followed by the number of bits.
5183  // The GNU runtime requires more information; bitfields are encoded as b,
5184  // then the offset (in bits) of the first element, then the type of the
5185  // bitfield, then the size in bits.  For example, in this structure:
5186  //
5187  // struct
5188  // {
5189  //    int integer;
5190  //    int flags:2;
5191  // };
5192  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
5193  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
5194  // information is not especially sensible, but we're stuck with it for
5195  // compatibility with GCC, although providing it breaks anything that
5196  // actually uses runtime introspection and wants to work on both runtimes...
5197  if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
5198    const RecordDecl *RD = FD->getParent();
5199    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
5200    S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
5201    if (const EnumType *ET = T->getAs<EnumType>())
5202      S += ObjCEncodingForEnumType(Ctx, ET);
5203    else {
5204      const BuiltinType *BT = T->castAs<BuiltinType>();
5205      S += getObjCEncodingForPrimitiveKind(Ctx, BT->getKind());
5206    }
5207  }
5208  S += llvm::utostr(FD->getBitWidthValue(*Ctx));
5209}
5210
5211// FIXME: Use SmallString for accumulating string.
5212void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
5213                                            bool ExpandPointedToStructures,
5214                                            bool ExpandStructures,
5215                                            const FieldDecl *FD,
5216                                            bool OutermostType,
5217                                            bool EncodingProperty,
5218                                            bool StructField,
5219                                            bool EncodeBlockParameters,
5220                                            bool EncodeClassNames,
5221                                            bool EncodePointerToObjCTypedef) const {
5222  CanQualType CT = getCanonicalType(T);
5223  switch (CT->getTypeClass()) {
5224  case Type::Builtin:
5225  case Type::Enum:
5226    if (FD && FD->isBitField())
5227      return EncodeBitField(this, S, T, FD);
5228    if (const BuiltinType *BT = dyn_cast<BuiltinType>(CT))
5229      S += getObjCEncodingForPrimitiveKind(this, BT->getKind());
5230    else
5231      S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
5232    return;
5233
5234  case Type::Complex: {
5235    const ComplexType *CT = T->castAs<ComplexType>();
5236    S += 'j';
5237    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, nullptr,
5238                               false, false);
5239    return;
5240  }
5241
5242  case Type::Atomic: {
5243    const AtomicType *AT = T->castAs<AtomicType>();
5244    S += 'A';
5245    getObjCEncodingForTypeImpl(AT->getValueType(), S, false, false, nullptr,
5246                               false, false);
5247    return;
5248  }
5249
5250  // encoding for pointer or reference types.
5251  case Type::Pointer:
5252  case Type::LValueReference:
5253  case Type::RValueReference: {
5254    QualType PointeeTy;
5255    if (isa<PointerType>(CT)) {
5256      const PointerType *PT = T->castAs<PointerType>();
5257      if (PT->isObjCSelType()) {
5258        S += ':';
5259        return;
5260      }
5261      PointeeTy = PT->getPointeeType();
5262    } else {
5263      PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
5264    }
5265
5266    bool isReadOnly = false;
5267    // For historical/compatibility reasons, the read-only qualifier of the
5268    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
5269    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
5270    // Also, do not emit the 'r' for anything but the outermost type!
5271    if (isa<TypedefType>(T.getTypePtr())) {
5272      if (OutermostType && T.isConstQualified()) {
5273        isReadOnly = true;
5274        S += 'r';
5275      }
5276    } else if (OutermostType) {
5277      QualType P = PointeeTy;
5278      while (P->getAs<PointerType>())
5279        P = P->getAs<PointerType>()->getPointeeType();
5280      if (P.isConstQualified()) {
5281        isReadOnly = true;
5282        S += 'r';
5283      }
5284    }
5285    if (isReadOnly) {
5286      // Another legacy compatibility encoding. Some ObjC qualifier and type
5287      // combinations need to be rearranged.
5288      // Rewrite "in const" from "nr" to "rn"
5289      if (StringRef(S).endswith("nr"))
5290        S.replace(S.end()-2, S.end(), "rn");
5291    }
5292
5293    if (PointeeTy->isCharType()) {
5294      // char pointer types should be encoded as '*' unless it is a
5295      // type that has been typedef'd to 'BOOL'.
5296      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
5297        S += '*';
5298        return;
5299      }
5300    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
5301      // GCC binary compat: Need to convert "struct objc_class *" to "#".
5302      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
5303        S += '#';
5304        return;
5305      }
5306      // GCC binary compat: Need to convert "struct objc_object *" to "@".
5307      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
5308        S += '@';
5309        return;
5310      }
5311      // fall through...
5312    }
5313    S += '^';
5314    getLegacyIntegralTypeEncoding(PointeeTy);
5315
5316    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
5317                               nullptr);
5318    return;
5319  }
5320
5321  case Type::ConstantArray:
5322  case Type::IncompleteArray:
5323  case Type::VariableArray: {
5324    const ArrayType *AT = cast<ArrayType>(CT);
5325
5326    if (isa<IncompleteArrayType>(AT) && !StructField) {
5327      // Incomplete arrays are encoded as a pointer to the array element.
5328      S += '^';
5329
5330      getObjCEncodingForTypeImpl(AT->getElementType(), S,
5331                                 false, ExpandStructures, FD);
5332    } else {
5333      S += '[';
5334
5335      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
5336        S += llvm::utostr(CAT->getSize().getZExtValue());
5337      else {
5338        //Variable length arrays are encoded as a regular array with 0 elements.
5339        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
5340               "Unknown array type!");
5341        S += '0';
5342      }
5343
5344      getObjCEncodingForTypeImpl(AT->getElementType(), S,
5345                                 false, ExpandStructures, FD);
5346      S += ']';
5347    }
5348    return;
5349  }
5350
5351  case Type::FunctionNoProto:
5352  case Type::FunctionProto:
5353    S += '?';
5354    return;
5355
5356  case Type::Record: {
5357    RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
5358    S += RDecl->isUnion() ? '(' : '{';
5359    // Anonymous structures print as '?'
5360    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
5361      S += II->getName();
5362      if (ClassTemplateSpecializationDecl *Spec
5363          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
5364        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
5365        llvm::raw_string_ostream OS(S);
5366        TemplateSpecializationType::PrintTemplateArgumentList(OS,
5367                                            TemplateArgs.data(),
5368                                            TemplateArgs.size(),
5369                                            (*this).getPrintingPolicy());
5370      }
5371    } else {
5372      S += '?';
5373    }
5374    if (ExpandStructures) {
5375      S += '=';
5376      if (!RDecl->isUnion()) {
5377        getObjCEncodingForStructureImpl(RDecl, S, FD);
5378      } else {
5379        for (const auto *Field : RDecl->fields()) {
5380          if (FD) {
5381            S += '"';
5382            S += Field->getNameAsString();
5383            S += '"';
5384          }
5385
5386          // Special case bit-fields.
5387          if (Field->isBitField()) {
5388            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
5389                                       Field);
5390          } else {
5391            QualType qt = Field->getType();
5392            getLegacyIntegralTypeEncoding(qt);
5393            getObjCEncodingForTypeImpl(qt, S, false, true,
5394                                       FD, /*OutermostType*/false,
5395                                       /*EncodingProperty*/false,
5396                                       /*StructField*/true);
5397          }
5398        }
5399      }
5400    }
5401    S += RDecl->isUnion() ? ')' : '}';
5402    return;
5403  }
5404
5405  case Type::BlockPointer: {
5406    const BlockPointerType *BT = T->castAs<BlockPointerType>();
5407    S += "@?"; // Unlike a pointer-to-function, which is "^?".
5408    if (EncodeBlockParameters) {
5409      const FunctionType *FT = BT->getPointeeType()->castAs<FunctionType>();
5410
5411      S += '<';
5412      // Block return type
5413      getObjCEncodingForTypeImpl(
5414          FT->getReturnType(), S, ExpandPointedToStructures, ExpandStructures,
5415          FD, false /* OutermostType */, EncodingProperty,
5416          false /* StructField */, EncodeBlockParameters, EncodeClassNames);
5417      // Block self
5418      S += "@?";
5419      // Block parameters
5420      if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
5421        for (const auto &I : FPT->param_types())
5422          getObjCEncodingForTypeImpl(
5423              I, S, ExpandPointedToStructures, ExpandStructures, FD,
5424              false /* OutermostType */, EncodingProperty,
5425              false /* StructField */, EncodeBlockParameters, EncodeClassNames);
5426      }
5427      S += '>';
5428    }
5429    return;
5430  }
5431
5432  case Type::ObjCObject: {
5433    // hack to match legacy encoding of *id and *Class
5434    QualType Ty = getObjCObjectPointerType(CT);
5435    if (Ty->isObjCIdType()) {
5436      S += "{objc_object=}";
5437      return;
5438    }
5439    else if (Ty->isObjCClassType()) {
5440      S += "{objc_class=}";
5441      return;
5442    }
5443  }
5444
5445  case Type::ObjCInterface: {
5446    // Ignore protocol qualifiers when mangling at this level.
5447    T = T->castAs<ObjCObjectType>()->getBaseType();
5448
5449    // The assumption seems to be that this assert will succeed
5450    // because nested levels will have filtered out 'id' and 'Class'.
5451    const ObjCInterfaceType *OIT = T->castAs<ObjCInterfaceType>();
5452    // @encode(class_name)
5453    ObjCInterfaceDecl *OI = OIT->getDecl();
5454    S += '{';
5455    const IdentifierInfo *II = OI->getIdentifier();
5456    S += II->getName();
5457    S += '=';
5458    SmallVector<const ObjCIvarDecl*, 32> Ivars;
5459    DeepCollectObjCIvars(OI, true, Ivars);
5460    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
5461      const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
5462      if (Field->isBitField())
5463        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
5464      else
5465        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD,
5466                                   false, false, false, false, false,
5467                                   EncodePointerToObjCTypedef);
5468    }
5469    S += '}';
5470    return;
5471  }
5472
5473  case Type::ObjCObjectPointer: {
5474    const ObjCObjectPointerType *OPT = T->castAs<ObjCObjectPointerType>();
5475    if (OPT->isObjCIdType()) {
5476      S += '@';
5477      return;
5478    }
5479
5480    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
5481      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
5482      // Since this is a binary compatibility issue, need to consult with runtime
5483      // folks. Fortunately, this is a *very* obsure construct.
5484      S += '#';
5485      return;
5486    }
5487
5488    if (OPT->isObjCQualifiedIdType()) {
5489      getObjCEncodingForTypeImpl(getObjCIdType(), S,
5490                                 ExpandPointedToStructures,
5491                                 ExpandStructures, FD);
5492      if (FD || EncodingProperty || EncodeClassNames) {
5493        // Note that we do extended encoding of protocol qualifer list
5494        // Only when doing ivar or property encoding.
5495        S += '"';
5496        for (const auto *I : OPT->quals()) {
5497          S += '<';
5498          S += I->getNameAsString();
5499          S += '>';
5500        }
5501        S += '"';
5502      }
5503      return;
5504    }
5505
5506    QualType PointeeTy = OPT->getPointeeType();
5507    if (!EncodingProperty &&
5508        isa<TypedefType>(PointeeTy.getTypePtr()) &&
5509        !EncodePointerToObjCTypedef) {
5510      // Another historical/compatibility reason.
5511      // We encode the underlying type which comes out as
5512      // {...};
5513      S += '^';
5514      if (FD && OPT->getInterfaceDecl()) {
5515        // Prevent recursive encoding of fields in some rare cases.
5516        ObjCInterfaceDecl *OI = OPT->getInterfaceDecl();
5517        SmallVector<const ObjCIvarDecl*, 32> Ivars;
5518        DeepCollectObjCIvars(OI, true, Ivars);
5519        for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
5520          if (cast<FieldDecl>(Ivars[i]) == FD) {
5521            S += '{';
5522            S += OI->getIdentifier()->getName();
5523            S += '}';
5524            return;
5525          }
5526        }
5527      }
5528      getObjCEncodingForTypeImpl(PointeeTy, S,
5529                                 false, ExpandPointedToStructures,
5530                                 nullptr,
5531                                 false, false, false, false, false,
5532                                 /*EncodePointerToObjCTypedef*/true);
5533      return;
5534    }
5535
5536    S += '@';
5537    if (OPT->getInterfaceDecl() &&
5538        (FD || EncodingProperty || EncodeClassNames)) {
5539      S += '"';
5540      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
5541      for (const auto *I : OPT->quals()) {
5542        S += '<';
5543        S += I->getNameAsString();
5544        S += '>';
5545      }
5546      S += '"';
5547    }
5548    return;
5549  }
5550
5551  // gcc just blithely ignores member pointers.
5552  // FIXME: we shoul do better than that.  'M' is available.
5553  case Type::MemberPointer:
5554    return;
5555
5556  case Type::Vector:
5557  case Type::ExtVector:
5558    // This matches gcc's encoding, even though technically it is
5559    // insufficient.
5560    // FIXME. We should do a better job than gcc.
5561    return;
5562
5563  case Type::Auto:
5564    // We could see an undeduced auto type here during error recovery.
5565    // Just ignore it.
5566    return;
5567
5568#define ABSTRACT_TYPE(KIND, BASE)
5569#define TYPE(KIND, BASE)
5570#define DEPENDENT_TYPE(KIND, BASE) \
5571  case Type::KIND:
5572#define NON_CANONICAL_TYPE(KIND, BASE) \
5573  case Type::KIND:
5574#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
5575  case Type::KIND:
5576#include "clang/AST/TypeNodes.def"
5577    llvm_unreachable("@encode for dependent type!");
5578  }
5579  llvm_unreachable("bad type kind!");
5580}
5581
5582void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
5583                                                 std::string &S,
5584                                                 const FieldDecl *FD,
5585                                                 bool includeVBases) const {
5586  assert(RDecl && "Expected non-null RecordDecl");
5587  assert(!RDecl->isUnion() && "Should not be called for unions");
5588  if (!RDecl->getDefinition())
5589    return;
5590
5591  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
5592  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
5593  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
5594
5595  if (CXXRec) {
5596    for (const auto &BI : CXXRec->bases()) {
5597      if (!BI.isVirtual()) {
5598        CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
5599        if (base->isEmpty())
5600          continue;
5601        uint64_t offs = toBits(layout.getBaseClassOffset(base));
5602        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5603                                  std::make_pair(offs, base));
5604      }
5605    }
5606  }
5607
5608  unsigned i = 0;
5609  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
5610                               FieldEnd = RDecl->field_end();
5611       Field != FieldEnd; ++Field, ++i) {
5612    uint64_t offs = layout.getFieldOffset(i);
5613    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5614                              std::make_pair(offs, *Field));
5615  }
5616
5617  if (CXXRec && includeVBases) {
5618    for (const auto &BI : CXXRec->vbases()) {
5619      CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
5620      if (base->isEmpty())
5621        continue;
5622      uint64_t offs = toBits(layout.getVBaseClassOffset(base));
5623      if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) &&
5624          FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
5625        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
5626                                  std::make_pair(offs, base));
5627    }
5628  }
5629
5630  CharUnits size;
5631  if (CXXRec) {
5632    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
5633  } else {
5634    size = layout.getSize();
5635  }
5636
5637#ifndef NDEBUG
5638  uint64_t CurOffs = 0;
5639#endif
5640  std::multimap<uint64_t, NamedDecl *>::iterator
5641    CurLayObj = FieldOrBaseOffsets.begin();
5642
5643  if (CXXRec && CXXRec->isDynamicClass() &&
5644      (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
5645    if (FD) {
5646      S += "\"_vptr$";
5647      std::string recname = CXXRec->getNameAsString();
5648      if (recname.empty()) recname = "?";
5649      S += recname;
5650      S += '"';
5651    }
5652    S += "^^?";
5653#ifndef NDEBUG
5654    CurOffs += getTypeSize(VoidPtrTy);
5655#endif
5656  }
5657
5658  if (!RDecl->hasFlexibleArrayMember()) {
5659    // Mark the end of the structure.
5660    uint64_t offs = toBits(size);
5661    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5662                              std::make_pair(offs, nullptr));
5663  }
5664
5665  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
5666#ifndef NDEBUG
5667    assert(CurOffs <= CurLayObj->first);
5668    if (CurOffs < CurLayObj->first) {
5669      uint64_t padding = CurLayObj->first - CurOffs;
5670      // FIXME: There doesn't seem to be a way to indicate in the encoding that
5671      // packing/alignment of members is different that normal, in which case
5672      // the encoding will be out-of-sync with the real layout.
5673      // If the runtime switches to just consider the size of types without
5674      // taking into account alignment, we could make padding explicit in the
5675      // encoding (e.g. using arrays of chars). The encoding strings would be
5676      // longer then though.
5677      CurOffs += padding;
5678    }
5679#endif
5680
5681    NamedDecl *dcl = CurLayObj->second;
5682    if (!dcl)
5683      break; // reached end of structure.
5684
5685    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
5686      // We expand the bases without their virtual bases since those are going
5687      // in the initial structure. Note that this differs from gcc which
5688      // expands virtual bases each time one is encountered in the hierarchy,
5689      // making the encoding type bigger than it really is.
5690      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
5691      assert(!base->isEmpty());
5692#ifndef NDEBUG
5693      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
5694#endif
5695    } else {
5696      FieldDecl *field = cast<FieldDecl>(dcl);
5697      if (FD) {
5698        S += '"';
5699        S += field->getNameAsString();
5700        S += '"';
5701      }
5702
5703      if (field->isBitField()) {
5704        EncodeBitField(this, S, field->getType(), field);
5705#ifndef NDEBUG
5706        CurOffs += field->getBitWidthValue(*this);
5707#endif
5708      } else {
5709        QualType qt = field->getType();
5710        getLegacyIntegralTypeEncoding(qt);
5711        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
5712                                   /*OutermostType*/false,
5713                                   /*EncodingProperty*/false,
5714                                   /*StructField*/true);
5715#ifndef NDEBUG
5716        CurOffs += getTypeSize(field->getType());
5717#endif
5718      }
5719    }
5720  }
5721}
5722
5723void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
5724                                                 std::string& S) const {
5725  if (QT & Decl::OBJC_TQ_In)
5726    S += 'n';
5727  if (QT & Decl::OBJC_TQ_Inout)
5728    S += 'N';
5729  if (QT & Decl::OBJC_TQ_Out)
5730    S += 'o';
5731  if (QT & Decl::OBJC_TQ_Bycopy)
5732    S += 'O';
5733  if (QT & Decl::OBJC_TQ_Byref)
5734    S += 'R';
5735  if (QT & Decl::OBJC_TQ_Oneway)
5736    S += 'V';
5737}
5738
5739TypedefDecl *ASTContext::getObjCIdDecl() const {
5740  if (!ObjCIdDecl) {
5741    QualType T = getObjCObjectType(ObjCBuiltinIdTy, nullptr, 0);
5742    T = getObjCObjectPointerType(T);
5743    ObjCIdDecl = buildImplicitTypedef(T, "id");
5744  }
5745  return ObjCIdDecl;
5746}
5747
5748TypedefDecl *ASTContext::getObjCSelDecl() const {
5749  if (!ObjCSelDecl) {
5750    QualType T = getPointerType(ObjCBuiltinSelTy);
5751    ObjCSelDecl = buildImplicitTypedef(T, "SEL");
5752  }
5753  return ObjCSelDecl;
5754}
5755
5756TypedefDecl *ASTContext::getObjCClassDecl() const {
5757  if (!ObjCClassDecl) {
5758    QualType T = getObjCObjectType(ObjCBuiltinClassTy, nullptr, 0);
5759    T = getObjCObjectPointerType(T);
5760    ObjCClassDecl = buildImplicitTypedef(T, "Class");
5761  }
5762  return ObjCClassDecl;
5763}
5764
5765ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
5766  if (!ObjCProtocolClassDecl) {
5767    ObjCProtocolClassDecl
5768      = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
5769                                  SourceLocation(),
5770                                  &Idents.get("Protocol"),
5771                                  /*PrevDecl=*/nullptr,
5772                                  SourceLocation(), true);
5773  }
5774
5775  return ObjCProtocolClassDecl;
5776}
5777
5778//===----------------------------------------------------------------------===//
5779// __builtin_va_list Construction Functions
5780//===----------------------------------------------------------------------===//
5781
5782static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
5783  // typedef char* __builtin_va_list;
5784  QualType T = Context->getPointerType(Context->CharTy);
5785  return Context->buildImplicitTypedef(T, "__builtin_va_list");
5786}
5787
5788static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
5789  // typedef void* __builtin_va_list;
5790  QualType T = Context->getPointerType(Context->VoidTy);
5791  return Context->buildImplicitTypedef(T, "__builtin_va_list");
5792}
5793
5794static TypedefDecl *
5795CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
5796  // struct __va_list
5797  RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list");
5798  if (Context->getLangOpts().CPlusPlus) {
5799    // namespace std { struct __va_list {
5800    NamespaceDecl *NS;
5801    NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
5802                               Context->getTranslationUnitDecl(),
5803                               /*Inline*/ false, SourceLocation(),
5804                               SourceLocation(), &Context->Idents.get("std"),
5805                               /*PrevDecl*/ nullptr);
5806    NS->setImplicit();
5807    VaListTagDecl->setDeclContext(NS);
5808  }
5809
5810  VaListTagDecl->startDefinition();
5811
5812  const size_t NumFields = 5;
5813  QualType FieldTypes[NumFields];
5814  const char *FieldNames[NumFields];
5815
5816  // void *__stack;
5817  FieldTypes[0] = Context->getPointerType(Context->VoidTy);
5818  FieldNames[0] = "__stack";
5819
5820  // void *__gr_top;
5821  FieldTypes[1] = Context->getPointerType(Context->VoidTy);
5822  FieldNames[1] = "__gr_top";
5823
5824  // void *__vr_top;
5825  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5826  FieldNames[2] = "__vr_top";
5827
5828  // int __gr_offs;
5829  FieldTypes[3] = Context->IntTy;
5830  FieldNames[3] = "__gr_offs";
5831
5832  // int __vr_offs;
5833  FieldTypes[4] = Context->IntTy;
5834  FieldNames[4] = "__vr_offs";
5835
5836  // Create fields
5837  for (unsigned i = 0; i < NumFields; ++i) {
5838    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5839                                         VaListTagDecl,
5840                                         SourceLocation(),
5841                                         SourceLocation(),
5842                                         &Context->Idents.get(FieldNames[i]),
5843                                         FieldTypes[i], /*TInfo=*/nullptr,
5844                                         /*BitWidth=*/nullptr,
5845                                         /*Mutable=*/false,
5846                                         ICIS_NoInit);
5847    Field->setAccess(AS_public);
5848    VaListTagDecl->addDecl(Field);
5849  }
5850  VaListTagDecl->completeDefinition();
5851  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5852  Context->VaListTagTy = VaListTagType;
5853
5854  // } __builtin_va_list;
5855  return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list");
5856}
5857
5858static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
5859  // typedef struct __va_list_tag {
5860  RecordDecl *VaListTagDecl;
5861
5862  VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
5863  VaListTagDecl->startDefinition();
5864
5865  const size_t NumFields = 5;
5866  QualType FieldTypes[NumFields];
5867  const char *FieldNames[NumFields];
5868
5869  //   unsigned char gpr;
5870  FieldTypes[0] = Context->UnsignedCharTy;
5871  FieldNames[0] = "gpr";
5872
5873  //   unsigned char fpr;
5874  FieldTypes[1] = Context->UnsignedCharTy;
5875  FieldNames[1] = "fpr";
5876
5877  //   unsigned short reserved;
5878  FieldTypes[2] = Context->UnsignedShortTy;
5879  FieldNames[2] = "reserved";
5880
5881  //   void* overflow_arg_area;
5882  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5883  FieldNames[3] = "overflow_arg_area";
5884
5885  //   void* reg_save_area;
5886  FieldTypes[4] = Context->getPointerType(Context->VoidTy);
5887  FieldNames[4] = "reg_save_area";
5888
5889  // Create fields
5890  for (unsigned i = 0; i < NumFields; ++i) {
5891    FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
5892                                         SourceLocation(),
5893                                         SourceLocation(),
5894                                         &Context->Idents.get(FieldNames[i]),
5895                                         FieldTypes[i], /*TInfo=*/nullptr,
5896                                         /*BitWidth=*/nullptr,
5897                                         /*Mutable=*/false,
5898                                         ICIS_NoInit);
5899    Field->setAccess(AS_public);
5900    VaListTagDecl->addDecl(Field);
5901  }
5902  VaListTagDecl->completeDefinition();
5903  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5904  Context->VaListTagTy = VaListTagType;
5905
5906  // } __va_list_tag;
5907  TypedefDecl *VaListTagTypedefDecl =
5908      Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
5909
5910  QualType VaListTagTypedefType =
5911    Context->getTypedefType(VaListTagTypedefDecl);
5912
5913  // typedef __va_list_tag __builtin_va_list[1];
5914  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5915  QualType VaListTagArrayType
5916    = Context->getConstantArrayType(VaListTagTypedefType,
5917                                    Size, ArrayType::Normal, 0);
5918  return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
5919}
5920
5921static TypedefDecl *
5922CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
5923  // typedef struct __va_list_tag {
5924  RecordDecl *VaListTagDecl;
5925  VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
5926  VaListTagDecl->startDefinition();
5927
5928  const size_t NumFields = 4;
5929  QualType FieldTypes[NumFields];
5930  const char *FieldNames[NumFields];
5931
5932  //   unsigned gp_offset;
5933  FieldTypes[0] = Context->UnsignedIntTy;
5934  FieldNames[0] = "gp_offset";
5935
5936  //   unsigned fp_offset;
5937  FieldTypes[1] = Context->UnsignedIntTy;
5938  FieldNames[1] = "fp_offset";
5939
5940  //   void* overflow_arg_area;
5941  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5942  FieldNames[2] = "overflow_arg_area";
5943
5944  //   void* reg_save_area;
5945  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5946  FieldNames[3] = "reg_save_area";
5947
5948  // Create fields
5949  for (unsigned i = 0; i < NumFields; ++i) {
5950    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5951                                         VaListTagDecl,
5952                                         SourceLocation(),
5953                                         SourceLocation(),
5954                                         &Context->Idents.get(FieldNames[i]),
5955                                         FieldTypes[i], /*TInfo=*/nullptr,
5956                                         /*BitWidth=*/nullptr,
5957                                         /*Mutable=*/false,
5958                                         ICIS_NoInit);
5959    Field->setAccess(AS_public);
5960    VaListTagDecl->addDecl(Field);
5961  }
5962  VaListTagDecl->completeDefinition();
5963  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5964  Context->VaListTagTy = VaListTagType;
5965
5966  // } __va_list_tag;
5967  TypedefDecl *VaListTagTypedefDecl =
5968      Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
5969
5970  QualType VaListTagTypedefType =
5971    Context->getTypedefType(VaListTagTypedefDecl);
5972
5973  // typedef __va_list_tag __builtin_va_list[1];
5974  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5975  QualType VaListTagArrayType
5976    = Context->getConstantArrayType(VaListTagTypedefType,
5977                                      Size, ArrayType::Normal,0);
5978  return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
5979}
5980
5981static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
5982  // typedef int __builtin_va_list[4];
5983  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
5984  QualType IntArrayType
5985    = Context->getConstantArrayType(Context->IntTy,
5986				    Size, ArrayType::Normal, 0);
5987  return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list");
5988}
5989
5990static TypedefDecl *
5991CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
5992  // struct __va_list
5993  RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list");
5994  if (Context->getLangOpts().CPlusPlus) {
5995    // namespace std { struct __va_list {
5996    NamespaceDecl *NS;
5997    NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
5998                               Context->getTranslationUnitDecl(),
5999                               /*Inline*/false, SourceLocation(),
6000                               SourceLocation(), &Context->Idents.get("std"),
6001                               /*PrevDecl*/ nullptr);
6002    NS->setImplicit();
6003    VaListDecl->setDeclContext(NS);
6004  }
6005
6006  VaListDecl->startDefinition();
6007
6008  // void * __ap;
6009  FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6010                                       VaListDecl,
6011                                       SourceLocation(),
6012                                       SourceLocation(),
6013                                       &Context->Idents.get("__ap"),
6014                                       Context->getPointerType(Context->VoidTy),
6015                                       /*TInfo=*/nullptr,
6016                                       /*BitWidth=*/nullptr,
6017                                       /*Mutable=*/false,
6018                                       ICIS_NoInit);
6019  Field->setAccess(AS_public);
6020  VaListDecl->addDecl(Field);
6021
6022  // };
6023  VaListDecl->completeDefinition();
6024
6025  // typedef struct __va_list __builtin_va_list;
6026  QualType T = Context->getRecordType(VaListDecl);
6027  return Context->buildImplicitTypedef(T, "__builtin_va_list");
6028}
6029
6030static TypedefDecl *
6031CreateSystemZBuiltinVaListDecl(const ASTContext *Context) {
6032  // typedef struct __va_list_tag {
6033  RecordDecl *VaListTagDecl;
6034  VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
6035  VaListTagDecl->startDefinition();
6036
6037  const size_t NumFields = 4;
6038  QualType FieldTypes[NumFields];
6039  const char *FieldNames[NumFields];
6040
6041  //   long __gpr;
6042  FieldTypes[0] = Context->LongTy;
6043  FieldNames[0] = "__gpr";
6044
6045  //   long __fpr;
6046  FieldTypes[1] = Context->LongTy;
6047  FieldNames[1] = "__fpr";
6048
6049  //   void *__overflow_arg_area;
6050  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
6051  FieldNames[2] = "__overflow_arg_area";
6052
6053  //   void *__reg_save_area;
6054  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
6055  FieldNames[3] = "__reg_save_area";
6056
6057  // Create fields
6058  for (unsigned i = 0; i < NumFields; ++i) {
6059    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6060                                         VaListTagDecl,
6061                                         SourceLocation(),
6062                                         SourceLocation(),
6063                                         &Context->Idents.get(FieldNames[i]),
6064                                         FieldTypes[i], /*TInfo=*/nullptr,
6065                                         /*BitWidth=*/nullptr,
6066                                         /*Mutable=*/false,
6067                                         ICIS_NoInit);
6068    Field->setAccess(AS_public);
6069    VaListTagDecl->addDecl(Field);
6070  }
6071  VaListTagDecl->completeDefinition();
6072  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
6073  Context->VaListTagTy = VaListTagType;
6074
6075  // } __va_list_tag;
6076  TypedefDecl *VaListTagTypedefDecl =
6077      Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
6078  QualType VaListTagTypedefType =
6079    Context->getTypedefType(VaListTagTypedefDecl);
6080
6081  // typedef __va_list_tag __builtin_va_list[1];
6082  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
6083  QualType VaListTagArrayType
6084    = Context->getConstantArrayType(VaListTagTypedefType,
6085                                      Size, ArrayType::Normal,0);
6086
6087  return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
6088}
6089
6090static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
6091                                     TargetInfo::BuiltinVaListKind Kind) {
6092  switch (Kind) {
6093  case TargetInfo::CharPtrBuiltinVaList:
6094    return CreateCharPtrBuiltinVaListDecl(Context);
6095  case TargetInfo::VoidPtrBuiltinVaList:
6096    return CreateVoidPtrBuiltinVaListDecl(Context);
6097  case TargetInfo::AArch64ABIBuiltinVaList:
6098    return CreateAArch64ABIBuiltinVaListDecl(Context);
6099  case TargetInfo::PowerABIBuiltinVaList:
6100    return CreatePowerABIBuiltinVaListDecl(Context);
6101  case TargetInfo::X86_64ABIBuiltinVaList:
6102    return CreateX86_64ABIBuiltinVaListDecl(Context);
6103  case TargetInfo::PNaClABIBuiltinVaList:
6104    return CreatePNaClABIBuiltinVaListDecl(Context);
6105  case TargetInfo::AAPCSABIBuiltinVaList:
6106    return CreateAAPCSABIBuiltinVaListDecl(Context);
6107  case TargetInfo::SystemZBuiltinVaList:
6108    return CreateSystemZBuiltinVaListDecl(Context);
6109  }
6110
6111  llvm_unreachable("Unhandled __builtin_va_list type kind");
6112}
6113
6114TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
6115  if (!BuiltinVaListDecl) {
6116    BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
6117    assert(BuiltinVaListDecl->isImplicit());
6118  }
6119
6120  return BuiltinVaListDecl;
6121}
6122
6123QualType ASTContext::getVaListTagType() const {
6124  // Force the creation of VaListTagTy by building the __builtin_va_list
6125  // declaration.
6126  if (VaListTagTy.isNull())
6127    (void) getBuiltinVaListDecl();
6128
6129  return VaListTagTy;
6130}
6131
6132void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
6133  assert(ObjCConstantStringType.isNull() &&
6134         "'NSConstantString' type already set!");
6135
6136  ObjCConstantStringType = getObjCInterfaceType(Decl);
6137}
6138
6139/// \brief Retrieve the template name that corresponds to a non-empty
6140/// lookup.
6141TemplateName
6142ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
6143                                      UnresolvedSetIterator End) const {
6144  unsigned size = End - Begin;
6145  assert(size > 1 && "set is not overloaded!");
6146
6147  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
6148                          size * sizeof(FunctionTemplateDecl*));
6149  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
6150
6151  NamedDecl **Storage = OT->getStorage();
6152  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
6153    NamedDecl *D = *I;
6154    assert(isa<FunctionTemplateDecl>(D) ||
6155           (isa<UsingShadowDecl>(D) &&
6156            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
6157    *Storage++ = D;
6158  }
6159
6160  return TemplateName(OT);
6161}
6162
6163/// \brief Retrieve the template name that represents a qualified
6164/// template name such as \c std::vector.
6165TemplateName
6166ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
6167                                     bool TemplateKeyword,
6168                                     TemplateDecl *Template) const {
6169  assert(NNS && "Missing nested-name-specifier in qualified template name");
6170
6171  // FIXME: Canonicalization?
6172  llvm::FoldingSetNodeID ID;
6173  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
6174
6175  void *InsertPos = nullptr;
6176  QualifiedTemplateName *QTN =
6177    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6178  if (!QTN) {
6179    QTN = new (*this, llvm::alignOf<QualifiedTemplateName>())
6180        QualifiedTemplateName(NNS, TemplateKeyword, Template);
6181    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
6182  }
6183
6184  return TemplateName(QTN);
6185}
6186
6187/// \brief Retrieve the template name that represents a dependent
6188/// template name such as \c MetaFun::template apply.
6189TemplateName
6190ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
6191                                     const IdentifierInfo *Name) const {
6192  assert((!NNS || NNS->isDependent()) &&
6193         "Nested name specifier must be dependent");
6194
6195  llvm::FoldingSetNodeID ID;
6196  DependentTemplateName::Profile(ID, NNS, Name);
6197
6198  void *InsertPos = nullptr;
6199  DependentTemplateName *QTN =
6200    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6201
6202  if (QTN)
6203    return TemplateName(QTN);
6204
6205  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6206  if (CanonNNS == NNS) {
6207    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6208        DependentTemplateName(NNS, Name);
6209  } else {
6210    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
6211    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6212        DependentTemplateName(NNS, Name, Canon);
6213    DependentTemplateName *CheckQTN =
6214      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6215    assert(!CheckQTN && "Dependent type name canonicalization broken");
6216    (void)CheckQTN;
6217  }
6218
6219  DependentTemplateNames.InsertNode(QTN, InsertPos);
6220  return TemplateName(QTN);
6221}
6222
6223/// \brief Retrieve the template name that represents a dependent
6224/// template name such as \c MetaFun::template operator+.
6225TemplateName
6226ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
6227                                     OverloadedOperatorKind Operator) const {
6228  assert((!NNS || NNS->isDependent()) &&
6229         "Nested name specifier must be dependent");
6230
6231  llvm::FoldingSetNodeID ID;
6232  DependentTemplateName::Profile(ID, NNS, Operator);
6233
6234  void *InsertPos = nullptr;
6235  DependentTemplateName *QTN
6236    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6237
6238  if (QTN)
6239    return TemplateName(QTN);
6240
6241  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6242  if (CanonNNS == NNS) {
6243    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6244        DependentTemplateName(NNS, Operator);
6245  } else {
6246    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
6247    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6248        DependentTemplateName(NNS, Operator, Canon);
6249
6250    DependentTemplateName *CheckQTN
6251      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6252    assert(!CheckQTN && "Dependent template name canonicalization broken");
6253    (void)CheckQTN;
6254  }
6255
6256  DependentTemplateNames.InsertNode(QTN, InsertPos);
6257  return TemplateName(QTN);
6258}
6259
6260TemplateName
6261ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
6262                                         TemplateName replacement) const {
6263  llvm::FoldingSetNodeID ID;
6264  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
6265
6266  void *insertPos = nullptr;
6267  SubstTemplateTemplateParmStorage *subst
6268    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
6269
6270  if (!subst) {
6271    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
6272    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
6273  }
6274
6275  return TemplateName(subst);
6276}
6277
6278TemplateName
6279ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
6280                                       const TemplateArgument &ArgPack) const {
6281  ASTContext &Self = const_cast<ASTContext &>(*this);
6282  llvm::FoldingSetNodeID ID;
6283  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
6284
6285  void *InsertPos = nullptr;
6286  SubstTemplateTemplateParmPackStorage *Subst
6287    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
6288
6289  if (!Subst) {
6290    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
6291                                                           ArgPack.pack_size(),
6292                                                         ArgPack.pack_begin());
6293    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
6294  }
6295
6296  return TemplateName(Subst);
6297}
6298
6299/// getFromTargetType - Given one of the integer types provided by
6300/// TargetInfo, produce the corresponding type. The unsigned @p Type
6301/// is actually a value of type @c TargetInfo::IntType.
6302CanQualType ASTContext::getFromTargetType(unsigned Type) const {
6303  switch (Type) {
6304  case TargetInfo::NoInt: return CanQualType();
6305  case TargetInfo::SignedChar: return SignedCharTy;
6306  case TargetInfo::UnsignedChar: return UnsignedCharTy;
6307  case TargetInfo::SignedShort: return ShortTy;
6308  case TargetInfo::UnsignedShort: return UnsignedShortTy;
6309  case TargetInfo::SignedInt: return IntTy;
6310  case TargetInfo::UnsignedInt: return UnsignedIntTy;
6311  case TargetInfo::SignedLong: return LongTy;
6312  case TargetInfo::UnsignedLong: return UnsignedLongTy;
6313  case TargetInfo::SignedLongLong: return LongLongTy;
6314  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
6315  }
6316
6317  llvm_unreachable("Unhandled TargetInfo::IntType value");
6318}
6319
6320//===----------------------------------------------------------------------===//
6321//                        Type Predicates.
6322//===----------------------------------------------------------------------===//
6323
6324/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
6325/// garbage collection attribute.
6326///
6327Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
6328  if (getLangOpts().getGC() == LangOptions::NonGC)
6329    return Qualifiers::GCNone;
6330
6331  assert(getLangOpts().ObjC1);
6332  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
6333
6334  // Default behaviour under objective-C's gc is for ObjC pointers
6335  // (or pointers to them) be treated as though they were declared
6336  // as __strong.
6337  if (GCAttrs == Qualifiers::GCNone) {
6338    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
6339      return Qualifiers::Strong;
6340    else if (Ty->isPointerType())
6341      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
6342  } else {
6343    // It's not valid to set GC attributes on anything that isn't a
6344    // pointer.
6345#ifndef NDEBUG
6346    QualType CT = Ty->getCanonicalTypeInternal();
6347    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
6348      CT = AT->getElementType();
6349    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
6350#endif
6351  }
6352  return GCAttrs;
6353}
6354
6355//===----------------------------------------------------------------------===//
6356//                        Type Compatibility Testing
6357//===----------------------------------------------------------------------===//
6358
6359/// areCompatVectorTypes - Return true if the two specified vector types are
6360/// compatible.
6361static bool areCompatVectorTypes(const VectorType *LHS,
6362                                 const VectorType *RHS) {
6363  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
6364  return LHS->getElementType() == RHS->getElementType() &&
6365         LHS->getNumElements() == RHS->getNumElements();
6366}
6367
6368bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
6369                                          QualType SecondVec) {
6370  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
6371  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
6372
6373  if (hasSameUnqualifiedType(FirstVec, SecondVec))
6374    return true;
6375
6376  // Treat Neon vector types and most AltiVec vector types as if they are the
6377  // equivalent GCC vector types.
6378  const VectorType *First = FirstVec->getAs<VectorType>();
6379  const VectorType *Second = SecondVec->getAs<VectorType>();
6380  if (First->getNumElements() == Second->getNumElements() &&
6381      hasSameType(First->getElementType(), Second->getElementType()) &&
6382      First->getVectorKind() != VectorType::AltiVecPixel &&
6383      First->getVectorKind() != VectorType::AltiVecBool &&
6384      Second->getVectorKind() != VectorType::AltiVecPixel &&
6385      Second->getVectorKind() != VectorType::AltiVecBool)
6386    return true;
6387
6388  return false;
6389}
6390
6391//===----------------------------------------------------------------------===//
6392// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
6393//===----------------------------------------------------------------------===//
6394
6395/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
6396/// inheritance hierarchy of 'rProto'.
6397bool
6398ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
6399                                           ObjCProtocolDecl *rProto) const {
6400  if (declaresSameEntity(lProto, rProto))
6401    return true;
6402  for (auto *PI : rProto->protocols())
6403    if (ProtocolCompatibleWithProtocol(lProto, PI))
6404      return true;
6405  return false;
6406}
6407
6408/// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
6409/// Class<pr1, ...>.
6410bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
6411                                                      QualType rhs) {
6412  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
6413  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6414  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
6415
6416  for (auto *lhsProto : lhsQID->quals()) {
6417    bool match = false;
6418    for (auto *rhsProto : rhsOPT->quals()) {
6419      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
6420        match = true;
6421        break;
6422      }
6423    }
6424    if (!match)
6425      return false;
6426  }
6427  return true;
6428}
6429
6430/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
6431/// ObjCQualifiedIDType.
6432bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
6433                                                   bool compare) {
6434  // Allow id<P..> and an 'id' or void* type in all cases.
6435  if (lhs->isVoidPointerType() ||
6436      lhs->isObjCIdType() || lhs->isObjCClassType())
6437    return true;
6438  else if (rhs->isVoidPointerType() ||
6439           rhs->isObjCIdType() || rhs->isObjCClassType())
6440    return true;
6441
6442  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
6443    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6444
6445    if (!rhsOPT) return false;
6446
6447    if (rhsOPT->qual_empty()) {
6448      // If the RHS is a unqualified interface pointer "NSString*",
6449      // make sure we check the class hierarchy.
6450      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6451        for (auto *I : lhsQID->quals()) {
6452          // when comparing an id<P> on lhs with a static type on rhs,
6453          // see if static class implements all of id's protocols, directly or
6454          // through its super class and categories.
6455          if (!rhsID->ClassImplementsProtocol(I, true))
6456            return false;
6457        }
6458      }
6459      // If there are no qualifiers and no interface, we have an 'id'.
6460      return true;
6461    }
6462    // Both the right and left sides have qualifiers.
6463    for (auto *lhsProto : lhsQID->quals()) {
6464      bool match = false;
6465
6466      // when comparing an id<P> on lhs with a static type on rhs,
6467      // see if static class implements all of id's protocols, directly or
6468      // through its super class and categories.
6469      for (auto *rhsProto : rhsOPT->quals()) {
6470        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6471            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6472          match = true;
6473          break;
6474        }
6475      }
6476      // If the RHS is a qualified interface pointer "NSString<P>*",
6477      // make sure we check the class hierarchy.
6478      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6479        for (auto *I : lhsQID->quals()) {
6480          // when comparing an id<P> on lhs with a static type on rhs,
6481          // see if static class implements all of id's protocols, directly or
6482          // through its super class and categories.
6483          if (rhsID->ClassImplementsProtocol(I, true)) {
6484            match = true;
6485            break;
6486          }
6487        }
6488      }
6489      if (!match)
6490        return false;
6491    }
6492
6493    return true;
6494  }
6495
6496  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
6497  assert(rhsQID && "One of the LHS/RHS should be id<x>");
6498
6499  if (const ObjCObjectPointerType *lhsOPT =
6500        lhs->getAsObjCInterfacePointerType()) {
6501    // If both the right and left sides have qualifiers.
6502    for (auto *lhsProto : lhsOPT->quals()) {
6503      bool match = false;
6504
6505      // when comparing an id<P> on rhs with a static type on lhs,
6506      // see if static class implements all of id's protocols, directly or
6507      // through its super class and categories.
6508      // First, lhs protocols in the qualifier list must be found, direct
6509      // or indirect in rhs's qualifier list or it is a mismatch.
6510      for (auto *rhsProto : rhsQID->quals()) {
6511        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6512            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6513          match = true;
6514          break;
6515        }
6516      }
6517      if (!match)
6518        return false;
6519    }
6520
6521    // Static class's protocols, or its super class or category protocols
6522    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
6523    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
6524      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6525      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
6526      // This is rather dubious but matches gcc's behavior. If lhs has
6527      // no type qualifier and its class has no static protocol(s)
6528      // assume that it is mismatch.
6529      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
6530        return false;
6531      for (auto *lhsProto : LHSInheritedProtocols) {
6532        bool match = false;
6533        for (auto *rhsProto : rhsQID->quals()) {
6534          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6535              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6536            match = true;
6537            break;
6538          }
6539        }
6540        if (!match)
6541          return false;
6542      }
6543    }
6544    return true;
6545  }
6546  return false;
6547}
6548
6549/// canAssignObjCInterfaces - Return true if the two interface types are
6550/// compatible for assignment from RHS to LHS.  This handles validation of any
6551/// protocol qualifiers on the LHS or RHS.
6552///
6553bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
6554                                         const ObjCObjectPointerType *RHSOPT) {
6555  const ObjCObjectType* LHS = LHSOPT->getObjectType();
6556  const ObjCObjectType* RHS = RHSOPT->getObjectType();
6557
6558  // If either type represents the built-in 'id' or 'Class' types, return true.
6559  if (LHS->isObjCUnqualifiedIdOrClass() ||
6560      RHS->isObjCUnqualifiedIdOrClass())
6561    return true;
6562
6563  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
6564    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6565                                             QualType(RHSOPT,0),
6566                                             false);
6567
6568  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
6569    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
6570                                                QualType(RHSOPT,0));
6571
6572  // If we have 2 user-defined types, fall into that path.
6573  if (LHS->getInterface() && RHS->getInterface())
6574    return canAssignObjCInterfaces(LHS, RHS);
6575
6576  return false;
6577}
6578
6579/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
6580/// for providing type-safety for objective-c pointers used to pass/return
6581/// arguments in block literals. When passed as arguments, passing 'A*' where
6582/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
6583/// not OK. For the return type, the opposite is not OK.
6584bool ASTContext::canAssignObjCInterfacesInBlockPointer(
6585                                         const ObjCObjectPointerType *LHSOPT,
6586                                         const ObjCObjectPointerType *RHSOPT,
6587                                         bool BlockReturnType) {
6588  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
6589    return true;
6590
6591  if (LHSOPT->isObjCBuiltinType()) {
6592    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
6593  }
6594
6595  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
6596    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6597                                             QualType(RHSOPT,0),
6598                                             false);
6599
6600  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
6601  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
6602  if (LHS && RHS)  { // We have 2 user-defined types.
6603    if (LHS != RHS) {
6604      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
6605        return BlockReturnType;
6606      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
6607        return !BlockReturnType;
6608    }
6609    else
6610      return true;
6611  }
6612  return false;
6613}
6614
6615/// getIntersectionOfProtocols - This routine finds the intersection of set
6616/// of protocols inherited from two distinct objective-c pointer objects.
6617/// It is used to build composite qualifier list of the composite type of
6618/// the conditional expression involving two objective-c pointer objects.
6619static
6620void getIntersectionOfProtocols(ASTContext &Context,
6621                                const ObjCObjectPointerType *LHSOPT,
6622                                const ObjCObjectPointerType *RHSOPT,
6623      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
6624
6625  const ObjCObjectType* LHS = LHSOPT->getObjectType();
6626  const ObjCObjectType* RHS = RHSOPT->getObjectType();
6627  assert(LHS->getInterface() && "LHS must have an interface base");
6628  assert(RHS->getInterface() && "RHS must have an interface base");
6629
6630  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
6631  unsigned LHSNumProtocols = LHS->getNumProtocols();
6632  if (LHSNumProtocols > 0)
6633    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
6634  else {
6635    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6636    Context.CollectInheritedProtocols(LHS->getInterface(),
6637                                      LHSInheritedProtocols);
6638    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
6639                                LHSInheritedProtocols.end());
6640  }
6641
6642  unsigned RHSNumProtocols = RHS->getNumProtocols();
6643  if (RHSNumProtocols > 0) {
6644    ObjCProtocolDecl **RHSProtocols =
6645      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
6646    for (unsigned i = 0; i < RHSNumProtocols; ++i)
6647      if (InheritedProtocolSet.count(RHSProtocols[i]))
6648        IntersectionOfProtocols.push_back(RHSProtocols[i]);
6649  } else {
6650    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
6651    Context.CollectInheritedProtocols(RHS->getInterface(),
6652                                      RHSInheritedProtocols);
6653    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6654         RHSInheritedProtocols.begin(),
6655         E = RHSInheritedProtocols.end(); I != E; ++I)
6656      if (InheritedProtocolSet.count((*I)))
6657        IntersectionOfProtocols.push_back((*I));
6658  }
6659}
6660
6661/// areCommonBaseCompatible - Returns common base class of the two classes if
6662/// one found. Note that this is O'2 algorithm. But it will be called as the
6663/// last type comparison in a ?-exp of ObjC pointer types before a
6664/// warning is issued. So, its invokation is extremely rare.
6665QualType ASTContext::areCommonBaseCompatible(
6666                                          const ObjCObjectPointerType *Lptr,
6667                                          const ObjCObjectPointerType *Rptr) {
6668  const ObjCObjectType *LHS = Lptr->getObjectType();
6669  const ObjCObjectType *RHS = Rptr->getObjectType();
6670  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
6671  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
6672  if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
6673    return QualType();
6674
6675  do {
6676    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
6677    if (canAssignObjCInterfaces(LHS, RHS)) {
6678      SmallVector<ObjCProtocolDecl *, 8> Protocols;
6679      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
6680
6681      QualType Result = QualType(LHS, 0);
6682      if (!Protocols.empty())
6683        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
6684      Result = getObjCObjectPointerType(Result);
6685      return Result;
6686    }
6687  } while ((LDecl = LDecl->getSuperClass()));
6688
6689  return QualType();
6690}
6691
6692bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
6693                                         const ObjCObjectType *RHS) {
6694  assert(LHS->getInterface() && "LHS is not an interface type");
6695  assert(RHS->getInterface() && "RHS is not an interface type");
6696
6697  // Verify that the base decls are compatible: the RHS must be a subclass of
6698  // the LHS.
6699  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
6700    return false;
6701
6702  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
6703  // protocol qualified at all, then we are good.
6704  if (LHS->getNumProtocols() == 0)
6705    return true;
6706
6707  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
6708  // more detailed analysis is required.
6709  if (RHS->getNumProtocols() == 0) {
6710    // OK, if LHS is a superclass of RHS *and*
6711    // this superclass is assignment compatible with LHS.
6712    // false otherwise.
6713    bool IsSuperClass =
6714      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
6715    if (IsSuperClass) {
6716      // OK if conversion of LHS to SuperClass results in narrowing of types
6717      // ; i.e., SuperClass may implement at least one of the protocols
6718      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
6719      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
6720      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
6721      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
6722      // If super class has no protocols, it is not a match.
6723      if (SuperClassInheritedProtocols.empty())
6724        return false;
6725
6726      for (const auto *LHSProto : LHS->quals()) {
6727        bool SuperImplementsProtocol = false;
6728        for (auto *SuperClassProto : SuperClassInheritedProtocols) {
6729          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
6730            SuperImplementsProtocol = true;
6731            break;
6732          }
6733        }
6734        if (!SuperImplementsProtocol)
6735          return false;
6736      }
6737      return true;
6738    }
6739    return false;
6740  }
6741
6742  for (const auto *LHSPI : LHS->quals()) {
6743    bool RHSImplementsProtocol = false;
6744
6745    // If the RHS doesn't implement the protocol on the left, the types
6746    // are incompatible.
6747    for (auto *RHSPI : RHS->quals()) {
6748      if (RHSPI->lookupProtocolNamed(LHSPI->getIdentifier())) {
6749        RHSImplementsProtocol = true;
6750        break;
6751      }
6752    }
6753    // FIXME: For better diagnostics, consider passing back the protocol name.
6754    if (!RHSImplementsProtocol)
6755      return false;
6756  }
6757  // The RHS implements all protocols listed on the LHS.
6758  return true;
6759}
6760
6761bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
6762  // get the "pointed to" types
6763  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
6764  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
6765
6766  if (!LHSOPT || !RHSOPT)
6767    return false;
6768
6769  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
6770         canAssignObjCInterfaces(RHSOPT, LHSOPT);
6771}
6772
6773bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
6774  return canAssignObjCInterfaces(
6775                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
6776                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
6777}
6778
6779/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
6780/// both shall have the identically qualified version of a compatible type.
6781/// C99 6.2.7p1: Two types have compatible types if their types are the
6782/// same. See 6.7.[2,3,5] for additional rules.
6783bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
6784                                    bool CompareUnqualified) {
6785  if (getLangOpts().CPlusPlus)
6786    return hasSameType(LHS, RHS);
6787
6788  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
6789}
6790
6791bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
6792  return typesAreCompatible(LHS, RHS);
6793}
6794
6795bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
6796  return !mergeTypes(LHS, RHS, true).isNull();
6797}
6798
6799/// mergeTransparentUnionType - if T is a transparent union type and a member
6800/// of T is compatible with SubType, return the merged type, else return
6801/// QualType()
6802QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
6803                                               bool OfBlockPointer,
6804                                               bool Unqualified) {
6805  if (const RecordType *UT = T->getAsUnionType()) {
6806    RecordDecl *UD = UT->getDecl();
6807    if (UD->hasAttr<TransparentUnionAttr>()) {
6808      for (const auto *I : UD->fields()) {
6809        QualType ET = I->getType().getUnqualifiedType();
6810        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
6811        if (!MT.isNull())
6812          return MT;
6813      }
6814    }
6815  }
6816
6817  return QualType();
6818}
6819
6820/// mergeFunctionParameterTypes - merge two types which appear as function
6821/// parameter types
6822QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs,
6823                                                 bool OfBlockPointer,
6824                                                 bool Unqualified) {
6825  // GNU extension: two types are compatible if they appear as a function
6826  // argument, one of the types is a transparent union type and the other
6827  // type is compatible with a union member
6828  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
6829                                              Unqualified);
6830  if (!lmerge.isNull())
6831    return lmerge;
6832
6833  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
6834                                              Unqualified);
6835  if (!rmerge.isNull())
6836    return rmerge;
6837
6838  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
6839}
6840
6841QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
6842                                        bool OfBlockPointer,
6843                                        bool Unqualified) {
6844  const FunctionType *lbase = lhs->getAs<FunctionType>();
6845  const FunctionType *rbase = rhs->getAs<FunctionType>();
6846  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
6847  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
6848  bool allLTypes = true;
6849  bool allRTypes = true;
6850
6851  // Check return type
6852  QualType retType;
6853  if (OfBlockPointer) {
6854    QualType RHS = rbase->getReturnType();
6855    QualType LHS = lbase->getReturnType();
6856    bool UnqualifiedResult = Unqualified;
6857    if (!UnqualifiedResult)
6858      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
6859    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
6860  }
6861  else
6862    retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false,
6863                         Unqualified);
6864  if (retType.isNull()) return QualType();
6865
6866  if (Unqualified)
6867    retType = retType.getUnqualifiedType();
6868
6869  CanQualType LRetType = getCanonicalType(lbase->getReturnType());
6870  CanQualType RRetType = getCanonicalType(rbase->getReturnType());
6871  if (Unqualified) {
6872    LRetType = LRetType.getUnqualifiedType();
6873    RRetType = RRetType.getUnqualifiedType();
6874  }
6875
6876  if (getCanonicalType(retType) != LRetType)
6877    allLTypes = false;
6878  if (getCanonicalType(retType) != RRetType)
6879    allRTypes = false;
6880
6881  // FIXME: double check this
6882  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
6883  //                           rbase->getRegParmAttr() != 0 &&
6884  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
6885  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
6886  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
6887
6888  // Compatible functions must have compatible calling conventions
6889  if (lbaseInfo.getCC() != rbaseInfo.getCC())
6890    return QualType();
6891
6892  // Regparm is part of the calling convention.
6893  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
6894    return QualType();
6895  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
6896    return QualType();
6897
6898  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
6899    return QualType();
6900
6901  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
6902  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
6903
6904  if (lbaseInfo.getNoReturn() != NoReturn)
6905    allLTypes = false;
6906  if (rbaseInfo.getNoReturn() != NoReturn)
6907    allRTypes = false;
6908
6909  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
6910
6911  if (lproto && rproto) { // two C99 style function prototypes
6912    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
6913           "C++ shouldn't be here");
6914    // Compatible functions must have the same number of parameters
6915    if (lproto->getNumParams() != rproto->getNumParams())
6916      return QualType();
6917
6918    // Variadic and non-variadic functions aren't compatible
6919    if (lproto->isVariadic() != rproto->isVariadic())
6920      return QualType();
6921
6922    if (lproto->getTypeQuals() != rproto->getTypeQuals())
6923      return QualType();
6924
6925    if (LangOpts.ObjCAutoRefCount &&
6926        !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
6927      return QualType();
6928
6929    // Check parameter type compatibility
6930    SmallVector<QualType, 10> types;
6931    for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) {
6932      QualType lParamType = lproto->getParamType(i).getUnqualifiedType();
6933      QualType rParamType = rproto->getParamType(i).getUnqualifiedType();
6934      QualType paramType = mergeFunctionParameterTypes(
6935          lParamType, rParamType, OfBlockPointer, Unqualified);
6936      if (paramType.isNull())
6937        return QualType();
6938
6939      if (Unqualified)
6940        paramType = paramType.getUnqualifiedType();
6941
6942      types.push_back(paramType);
6943      if (Unqualified) {
6944        lParamType = lParamType.getUnqualifiedType();
6945        rParamType = rParamType.getUnqualifiedType();
6946      }
6947
6948      if (getCanonicalType(paramType) != getCanonicalType(lParamType))
6949        allLTypes = false;
6950      if (getCanonicalType(paramType) != getCanonicalType(rParamType))
6951        allRTypes = false;
6952    }
6953
6954    if (allLTypes) return lhs;
6955    if (allRTypes) return rhs;
6956
6957    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
6958    EPI.ExtInfo = einfo;
6959    return getFunctionType(retType, types, EPI);
6960  }
6961
6962  if (lproto) allRTypes = false;
6963  if (rproto) allLTypes = false;
6964
6965  const FunctionProtoType *proto = lproto ? lproto : rproto;
6966  if (proto) {
6967    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
6968    if (proto->isVariadic()) return QualType();
6969    // Check that the types are compatible with the types that
6970    // would result from default argument promotions (C99 6.7.5.3p15).
6971    // The only types actually affected are promotable integer
6972    // types and floats, which would be passed as a different
6973    // type depending on whether the prototype is visible.
6974    for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) {
6975      QualType paramTy = proto->getParamType(i);
6976
6977      // Look at the converted type of enum types, since that is the type used
6978      // to pass enum values.
6979      if (const EnumType *Enum = paramTy->getAs<EnumType>()) {
6980        paramTy = Enum->getDecl()->getIntegerType();
6981        if (paramTy.isNull())
6982          return QualType();
6983      }
6984
6985      if (paramTy->isPromotableIntegerType() ||
6986          getCanonicalType(paramTy).getUnqualifiedType() == FloatTy)
6987        return QualType();
6988    }
6989
6990    if (allLTypes) return lhs;
6991    if (allRTypes) return rhs;
6992
6993    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
6994    EPI.ExtInfo = einfo;
6995    return getFunctionType(retType, proto->getParamTypes(), EPI);
6996  }
6997
6998  if (allLTypes) return lhs;
6999  if (allRTypes) return rhs;
7000  return getFunctionNoProtoType(retType, einfo);
7001}
7002
7003/// Given that we have an enum type and a non-enum type, try to merge them.
7004static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET,
7005                                     QualType other, bool isBlockReturnType) {
7006  // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
7007  // a signed integer type, or an unsigned integer type.
7008  // Compatibility is based on the underlying type, not the promotion
7009  // type.
7010  QualType underlyingType = ET->getDecl()->getIntegerType();
7011  if (underlyingType.isNull()) return QualType();
7012  if (Context.hasSameType(underlyingType, other))
7013    return other;
7014
7015  // In block return types, we're more permissive and accept any
7016  // integral type of the same size.
7017  if (isBlockReturnType && other->isIntegerType() &&
7018      Context.getTypeSize(underlyingType) == Context.getTypeSize(other))
7019    return other;
7020
7021  return QualType();
7022}
7023
7024QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
7025                                bool OfBlockPointer,
7026                                bool Unqualified, bool BlockReturnType) {
7027  // C++ [expr]: If an expression initially has the type "reference to T", the
7028  // type is adjusted to "T" prior to any further analysis, the expression
7029  // designates the object or function denoted by the reference, and the
7030  // expression is an lvalue unless the reference is an rvalue reference and
7031  // the expression is a function call (possibly inside parentheses).
7032  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
7033  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
7034
7035  if (Unqualified) {
7036    LHS = LHS.getUnqualifiedType();
7037    RHS = RHS.getUnqualifiedType();
7038  }
7039
7040  QualType LHSCan = getCanonicalType(LHS),
7041           RHSCan = getCanonicalType(RHS);
7042
7043  // If two types are identical, they are compatible.
7044  if (LHSCan == RHSCan)
7045    return LHS;
7046
7047  // If the qualifiers are different, the types aren't compatible... mostly.
7048  Qualifiers LQuals = LHSCan.getLocalQualifiers();
7049  Qualifiers RQuals = RHSCan.getLocalQualifiers();
7050  if (LQuals != RQuals) {
7051    // If any of these qualifiers are different, we have a type
7052    // mismatch.
7053    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7054        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
7055        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
7056      return QualType();
7057
7058    // Exactly one GC qualifier difference is allowed: __strong is
7059    // okay if the other type has no GC qualifier but is an Objective
7060    // C object pointer (i.e. implicitly strong by default).  We fix
7061    // this by pretending that the unqualified type was actually
7062    // qualified __strong.
7063    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7064    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7065    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
7066
7067    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7068      return QualType();
7069
7070    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
7071      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
7072    }
7073    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
7074      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
7075    }
7076    return QualType();
7077  }
7078
7079  // Okay, qualifiers are equal.
7080
7081  Type::TypeClass LHSClass = LHSCan->getTypeClass();
7082  Type::TypeClass RHSClass = RHSCan->getTypeClass();
7083
7084  // We want to consider the two function types to be the same for these
7085  // comparisons, just force one to the other.
7086  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
7087  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
7088
7089  // Same as above for arrays
7090  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
7091    LHSClass = Type::ConstantArray;
7092  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
7093    RHSClass = Type::ConstantArray;
7094
7095  // ObjCInterfaces are just specialized ObjCObjects.
7096  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
7097  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
7098
7099  // Canonicalize ExtVector -> Vector.
7100  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
7101  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
7102
7103  // If the canonical type classes don't match.
7104  if (LHSClass != RHSClass) {
7105    // Note that we only have special rules for turning block enum
7106    // returns into block int returns, not vice-versa.
7107    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
7108      return mergeEnumWithInteger(*this, ETy, RHS, false);
7109    }
7110    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
7111      return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType);
7112    }
7113    // allow block pointer type to match an 'id' type.
7114    if (OfBlockPointer && !BlockReturnType) {
7115       if (LHS->isObjCIdType() && RHS->isBlockPointerType())
7116         return LHS;
7117      if (RHS->isObjCIdType() && LHS->isBlockPointerType())
7118        return RHS;
7119    }
7120
7121    return QualType();
7122  }
7123
7124  // The canonical type classes match.
7125  switch (LHSClass) {
7126#define TYPE(Class, Base)
7127#define ABSTRACT_TYPE(Class, Base)
7128#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
7129#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
7130#define DEPENDENT_TYPE(Class, Base) case Type::Class:
7131#include "clang/AST/TypeNodes.def"
7132    llvm_unreachable("Non-canonical and dependent types shouldn't get here");
7133
7134  case Type::Auto:
7135  case Type::LValueReference:
7136  case Type::RValueReference:
7137  case Type::MemberPointer:
7138    llvm_unreachable("C++ should never be in mergeTypes");
7139
7140  case Type::ObjCInterface:
7141  case Type::IncompleteArray:
7142  case Type::VariableArray:
7143  case Type::FunctionProto:
7144  case Type::ExtVector:
7145    llvm_unreachable("Types are eliminated above");
7146
7147  case Type::Pointer:
7148  {
7149    // Merge two pointer types, while trying to preserve typedef info
7150    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
7151    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
7152    if (Unqualified) {
7153      LHSPointee = LHSPointee.getUnqualifiedType();
7154      RHSPointee = RHSPointee.getUnqualifiedType();
7155    }
7156    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
7157                                     Unqualified);
7158    if (ResultType.isNull()) return QualType();
7159    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
7160      return LHS;
7161    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
7162      return RHS;
7163    return getPointerType(ResultType);
7164  }
7165  case Type::BlockPointer:
7166  {
7167    // Merge two block pointer types, while trying to preserve typedef info
7168    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
7169    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
7170    if (Unqualified) {
7171      LHSPointee = LHSPointee.getUnqualifiedType();
7172      RHSPointee = RHSPointee.getUnqualifiedType();
7173    }
7174    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
7175                                     Unqualified);
7176    if (ResultType.isNull()) return QualType();
7177    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
7178      return LHS;
7179    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
7180      return RHS;
7181    return getBlockPointerType(ResultType);
7182  }
7183  case Type::Atomic:
7184  {
7185    // Merge two pointer types, while trying to preserve typedef info
7186    QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
7187    QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
7188    if (Unqualified) {
7189      LHSValue = LHSValue.getUnqualifiedType();
7190      RHSValue = RHSValue.getUnqualifiedType();
7191    }
7192    QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
7193                                     Unqualified);
7194    if (ResultType.isNull()) return QualType();
7195    if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
7196      return LHS;
7197    if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
7198      return RHS;
7199    return getAtomicType(ResultType);
7200  }
7201  case Type::ConstantArray:
7202  {
7203    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
7204    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
7205    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
7206      return QualType();
7207
7208    QualType LHSElem = getAsArrayType(LHS)->getElementType();
7209    QualType RHSElem = getAsArrayType(RHS)->getElementType();
7210    if (Unqualified) {
7211      LHSElem = LHSElem.getUnqualifiedType();
7212      RHSElem = RHSElem.getUnqualifiedType();
7213    }
7214
7215    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
7216    if (ResultType.isNull()) return QualType();
7217    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7218      return LHS;
7219    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7220      return RHS;
7221    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
7222                                          ArrayType::ArraySizeModifier(), 0);
7223    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
7224                                          ArrayType::ArraySizeModifier(), 0);
7225    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
7226    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
7227    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7228      return LHS;
7229    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7230      return RHS;
7231    if (LVAT) {
7232      // FIXME: This isn't correct! But tricky to implement because
7233      // the array's size has to be the size of LHS, but the type
7234      // has to be different.
7235      return LHS;
7236    }
7237    if (RVAT) {
7238      // FIXME: This isn't correct! But tricky to implement because
7239      // the array's size has to be the size of RHS, but the type
7240      // has to be different.
7241      return RHS;
7242    }
7243    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
7244    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
7245    return getIncompleteArrayType(ResultType,
7246                                  ArrayType::ArraySizeModifier(), 0);
7247  }
7248  case Type::FunctionNoProto:
7249    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
7250  case Type::Record:
7251  case Type::Enum:
7252    return QualType();
7253  case Type::Builtin:
7254    // Only exactly equal builtin types are compatible, which is tested above.
7255    return QualType();
7256  case Type::Complex:
7257    // Distinct complex types are incompatible.
7258    return QualType();
7259  case Type::Vector:
7260    // FIXME: The merged type should be an ExtVector!
7261    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
7262                             RHSCan->getAs<VectorType>()))
7263      return LHS;
7264    return QualType();
7265  case Type::ObjCObject: {
7266    // Check if the types are assignment compatible.
7267    // FIXME: This should be type compatibility, e.g. whether
7268    // "LHS x; RHS x;" at global scope is legal.
7269    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
7270    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
7271    if (canAssignObjCInterfaces(LHSIface, RHSIface))
7272      return LHS;
7273
7274    return QualType();
7275  }
7276  case Type::ObjCObjectPointer: {
7277    if (OfBlockPointer) {
7278      if (canAssignObjCInterfacesInBlockPointer(
7279                                          LHS->getAs<ObjCObjectPointerType>(),
7280                                          RHS->getAs<ObjCObjectPointerType>(),
7281                                          BlockReturnType))
7282        return LHS;
7283      return QualType();
7284    }
7285    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
7286                                RHS->getAs<ObjCObjectPointerType>()))
7287      return LHS;
7288
7289    return QualType();
7290  }
7291  }
7292
7293  llvm_unreachable("Invalid Type::Class!");
7294}
7295
7296bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
7297                   const FunctionProtoType *FromFunctionType,
7298                   const FunctionProtoType *ToFunctionType) {
7299  if (FromFunctionType->hasAnyConsumedParams() !=
7300      ToFunctionType->hasAnyConsumedParams())
7301    return false;
7302  FunctionProtoType::ExtProtoInfo FromEPI =
7303    FromFunctionType->getExtProtoInfo();
7304  FunctionProtoType::ExtProtoInfo ToEPI =
7305    ToFunctionType->getExtProtoInfo();
7306  if (FromEPI.ConsumedParameters && ToEPI.ConsumedParameters)
7307    for (unsigned i = 0, n = FromFunctionType->getNumParams(); i != n; ++i) {
7308      if (FromEPI.ConsumedParameters[i] != ToEPI.ConsumedParameters[i])
7309        return false;
7310    }
7311  return true;
7312}
7313
7314/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
7315/// 'RHS' attributes and returns the merged version; including for function
7316/// return types.
7317QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
7318  QualType LHSCan = getCanonicalType(LHS),
7319  RHSCan = getCanonicalType(RHS);
7320  // If two types are identical, they are compatible.
7321  if (LHSCan == RHSCan)
7322    return LHS;
7323  if (RHSCan->isFunctionType()) {
7324    if (!LHSCan->isFunctionType())
7325      return QualType();
7326    QualType OldReturnType =
7327        cast<FunctionType>(RHSCan.getTypePtr())->getReturnType();
7328    QualType NewReturnType =
7329        cast<FunctionType>(LHSCan.getTypePtr())->getReturnType();
7330    QualType ResReturnType =
7331      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
7332    if (ResReturnType.isNull())
7333      return QualType();
7334    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
7335      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
7336      // In either case, use OldReturnType to build the new function type.
7337      const FunctionType *F = LHS->getAs<FunctionType>();
7338      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
7339        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7340        EPI.ExtInfo = getFunctionExtInfo(LHS);
7341        QualType ResultType =
7342            getFunctionType(OldReturnType, FPT->getParamTypes(), EPI);
7343        return ResultType;
7344      }
7345    }
7346    return QualType();
7347  }
7348
7349  // If the qualifiers are different, the types can still be merged.
7350  Qualifiers LQuals = LHSCan.getLocalQualifiers();
7351  Qualifiers RQuals = RHSCan.getLocalQualifiers();
7352  if (LQuals != RQuals) {
7353    // If any of these qualifiers are different, we have a type mismatch.
7354    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7355        LQuals.getAddressSpace() != RQuals.getAddressSpace())
7356      return QualType();
7357
7358    // Exactly one GC qualifier difference is allowed: __strong is
7359    // okay if the other type has no GC qualifier but is an Objective
7360    // C object pointer (i.e. implicitly strong by default).  We fix
7361    // this by pretending that the unqualified type was actually
7362    // qualified __strong.
7363    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7364    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7365    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
7366
7367    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7368      return QualType();
7369
7370    if (GC_L == Qualifiers::Strong)
7371      return LHS;
7372    if (GC_R == Qualifiers::Strong)
7373      return RHS;
7374    return QualType();
7375  }
7376
7377  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
7378    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7379    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7380    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
7381    if (ResQT == LHSBaseQT)
7382      return LHS;
7383    if (ResQT == RHSBaseQT)
7384      return RHS;
7385  }
7386  return QualType();
7387}
7388
7389//===----------------------------------------------------------------------===//
7390//                         Integer Predicates
7391//===----------------------------------------------------------------------===//
7392
7393unsigned ASTContext::getIntWidth(QualType T) const {
7394  if (const EnumType *ET = T->getAs<EnumType>())
7395    T = ET->getDecl()->getIntegerType();
7396  if (T->isBooleanType())
7397    return 1;
7398  // For builtin types, just use the standard type sizing method
7399  return (unsigned)getTypeSize(T);
7400}
7401
7402QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
7403  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
7404
7405  // Turn <4 x signed int> -> <4 x unsigned int>
7406  if (const VectorType *VTy = T->getAs<VectorType>())
7407    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
7408                         VTy->getNumElements(), VTy->getVectorKind());
7409
7410  // For enums, we return the unsigned version of the base type.
7411  if (const EnumType *ETy = T->getAs<EnumType>())
7412    T = ETy->getDecl()->getIntegerType();
7413
7414  const BuiltinType *BTy = T->getAs<BuiltinType>();
7415  assert(BTy && "Unexpected signed integer type");
7416  switch (BTy->getKind()) {
7417  case BuiltinType::Char_S:
7418  case BuiltinType::SChar:
7419    return UnsignedCharTy;
7420  case BuiltinType::Short:
7421    return UnsignedShortTy;
7422  case BuiltinType::Int:
7423    return UnsignedIntTy;
7424  case BuiltinType::Long:
7425    return UnsignedLongTy;
7426  case BuiltinType::LongLong:
7427    return UnsignedLongLongTy;
7428  case BuiltinType::Int128:
7429    return UnsignedInt128Ty;
7430  default:
7431    llvm_unreachable("Unexpected signed integer type");
7432  }
7433}
7434
7435ASTMutationListener::~ASTMutationListener() { }
7436
7437void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD,
7438                                            QualType ReturnType) {}
7439
7440//===----------------------------------------------------------------------===//
7441//                          Builtin Type Computation
7442//===----------------------------------------------------------------------===//
7443
7444/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
7445/// pointer over the consumed characters.  This returns the resultant type.  If
7446/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
7447/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
7448/// a vector of "i*".
7449///
7450/// RequiresICE is filled in on return to indicate whether the value is required
7451/// to be an Integer Constant Expression.
7452static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
7453                                  ASTContext::GetBuiltinTypeError &Error,
7454                                  bool &RequiresICE,
7455                                  bool AllowTypeModifiers) {
7456  // Modifiers.
7457  int HowLong = 0;
7458  bool Signed = false, Unsigned = false;
7459  RequiresICE = false;
7460
7461  // Read the prefixed modifiers first.
7462  bool Done = false;
7463  while (!Done) {
7464    switch (*Str++) {
7465    default: Done = true; --Str; break;
7466    case 'I':
7467      RequiresICE = true;
7468      break;
7469    case 'S':
7470      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
7471      assert(!Signed && "Can't use 'S' modifier multiple times!");
7472      Signed = true;
7473      break;
7474    case 'U':
7475      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
7476      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
7477      Unsigned = true;
7478      break;
7479    case 'L':
7480      assert(HowLong <= 2 && "Can't have LLLL modifier");
7481      ++HowLong;
7482      break;
7483    case 'W':
7484      // This modifier represents int64 type.
7485      assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!");
7486      switch (Context.getTargetInfo().getInt64Type()) {
7487      default:
7488        llvm_unreachable("Unexpected integer type");
7489      case TargetInfo::SignedLong:
7490        HowLong = 1;
7491        break;
7492      case TargetInfo::SignedLongLong:
7493        HowLong = 2;
7494        break;
7495      }
7496    }
7497  }
7498
7499  QualType Type;
7500
7501  // Read the base type.
7502  switch (*Str++) {
7503  default: llvm_unreachable("Unknown builtin type letter!");
7504  case 'v':
7505    assert(HowLong == 0 && !Signed && !Unsigned &&
7506           "Bad modifiers used with 'v'!");
7507    Type = Context.VoidTy;
7508    break;
7509  case 'h':
7510    assert(HowLong == 0 && !Signed && !Unsigned &&
7511           "Bad modifiers used with 'f'!");
7512    Type = Context.HalfTy;
7513    break;
7514  case 'f':
7515    assert(HowLong == 0 && !Signed && !Unsigned &&
7516           "Bad modifiers used with 'f'!");
7517    Type = Context.FloatTy;
7518    break;
7519  case 'd':
7520    assert(HowLong < 2 && !Signed && !Unsigned &&
7521           "Bad modifiers used with 'd'!");
7522    if (HowLong)
7523      Type = Context.LongDoubleTy;
7524    else
7525      Type = Context.DoubleTy;
7526    break;
7527  case 's':
7528    assert(HowLong == 0 && "Bad modifiers used with 's'!");
7529    if (Unsigned)
7530      Type = Context.UnsignedShortTy;
7531    else
7532      Type = Context.ShortTy;
7533    break;
7534  case 'i':
7535    if (HowLong == 3)
7536      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
7537    else if (HowLong == 2)
7538      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
7539    else if (HowLong == 1)
7540      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
7541    else
7542      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
7543    break;
7544  case 'c':
7545    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
7546    if (Signed)
7547      Type = Context.SignedCharTy;
7548    else if (Unsigned)
7549      Type = Context.UnsignedCharTy;
7550    else
7551      Type = Context.CharTy;
7552    break;
7553  case 'b': // boolean
7554    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
7555    Type = Context.BoolTy;
7556    break;
7557  case 'z':  // size_t.
7558    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
7559    Type = Context.getSizeType();
7560    break;
7561  case 'F':
7562    Type = Context.getCFConstantStringType();
7563    break;
7564  case 'G':
7565    Type = Context.getObjCIdType();
7566    break;
7567  case 'H':
7568    Type = Context.getObjCSelType();
7569    break;
7570  case 'M':
7571    Type = Context.getObjCSuperType();
7572    break;
7573  case 'a':
7574    Type = Context.getBuiltinVaListType();
7575    assert(!Type.isNull() && "builtin va list type not initialized!");
7576    break;
7577  case 'A':
7578    // This is a "reference" to a va_list; however, what exactly
7579    // this means depends on how va_list is defined. There are two
7580    // different kinds of va_list: ones passed by value, and ones
7581    // passed by reference.  An example of a by-value va_list is
7582    // x86, where va_list is a char*. An example of by-ref va_list
7583    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
7584    // we want this argument to be a char*&; for x86-64, we want
7585    // it to be a __va_list_tag*.
7586    Type = Context.getBuiltinVaListType();
7587    assert(!Type.isNull() && "builtin va list type not initialized!");
7588    if (Type->isArrayType())
7589      Type = Context.getArrayDecayedType(Type);
7590    else
7591      Type = Context.getLValueReferenceType(Type);
7592    break;
7593  case 'V': {
7594    char *End;
7595    unsigned NumElements = strtoul(Str, &End, 10);
7596    assert(End != Str && "Missing vector size");
7597    Str = End;
7598
7599    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
7600                                             RequiresICE, false);
7601    assert(!RequiresICE && "Can't require vector ICE");
7602
7603    // TODO: No way to make AltiVec vectors in builtins yet.
7604    Type = Context.getVectorType(ElementType, NumElements,
7605                                 VectorType::GenericVector);
7606    break;
7607  }
7608  case 'E': {
7609    char *End;
7610
7611    unsigned NumElements = strtoul(Str, &End, 10);
7612    assert(End != Str && "Missing vector size");
7613
7614    Str = End;
7615
7616    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7617                                             false);
7618    Type = Context.getExtVectorType(ElementType, NumElements);
7619    break;
7620  }
7621  case 'X': {
7622    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7623                                             false);
7624    assert(!RequiresICE && "Can't require complex ICE");
7625    Type = Context.getComplexType(ElementType);
7626    break;
7627  }
7628  case 'Y' : {
7629    Type = Context.getPointerDiffType();
7630    break;
7631  }
7632  case 'P':
7633    Type = Context.getFILEType();
7634    if (Type.isNull()) {
7635      Error = ASTContext::GE_Missing_stdio;
7636      return QualType();
7637    }
7638    break;
7639  case 'J':
7640    if (Signed)
7641      Type = Context.getsigjmp_bufType();
7642    else
7643      Type = Context.getjmp_bufType();
7644
7645    if (Type.isNull()) {
7646      Error = ASTContext::GE_Missing_setjmp;
7647      return QualType();
7648    }
7649    break;
7650  case 'K':
7651    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
7652    Type = Context.getucontext_tType();
7653
7654    if (Type.isNull()) {
7655      Error = ASTContext::GE_Missing_ucontext;
7656      return QualType();
7657    }
7658    break;
7659  case 'p':
7660    Type = Context.getProcessIDType();
7661    break;
7662  }
7663
7664  // If there are modifiers and if we're allowed to parse them, go for it.
7665  Done = !AllowTypeModifiers;
7666  while (!Done) {
7667    switch (char c = *Str++) {
7668    default: Done = true; --Str; break;
7669    case '*':
7670    case '&': {
7671      // Both pointers and references can have their pointee types
7672      // qualified with an address space.
7673      char *End;
7674      unsigned AddrSpace = strtoul(Str, &End, 10);
7675      if (End != Str && AddrSpace != 0) {
7676        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
7677        Str = End;
7678      }
7679      if (c == '*')
7680        Type = Context.getPointerType(Type);
7681      else
7682        Type = Context.getLValueReferenceType(Type);
7683      break;
7684    }
7685    // FIXME: There's no way to have a built-in with an rvalue ref arg.
7686    case 'C':
7687      Type = Type.withConst();
7688      break;
7689    case 'D':
7690      Type = Context.getVolatileType(Type);
7691      break;
7692    case 'R':
7693      Type = Type.withRestrict();
7694      break;
7695    }
7696  }
7697
7698  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
7699         "Integer constant 'I' type must be an integer");
7700
7701  return Type;
7702}
7703
7704/// GetBuiltinType - Return the type for the specified builtin.
7705QualType ASTContext::GetBuiltinType(unsigned Id,
7706                                    GetBuiltinTypeError &Error,
7707                                    unsigned *IntegerConstantArgs) const {
7708  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
7709
7710  SmallVector<QualType, 8> ArgTypes;
7711
7712  bool RequiresICE = false;
7713  Error = GE_None;
7714  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
7715                                       RequiresICE, true);
7716  if (Error != GE_None)
7717    return QualType();
7718
7719  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
7720
7721  while (TypeStr[0] && TypeStr[0] != '.') {
7722    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
7723    if (Error != GE_None)
7724      return QualType();
7725
7726    // If this argument is required to be an IntegerConstantExpression and the
7727    // caller cares, fill in the bitmask we return.
7728    if (RequiresICE && IntegerConstantArgs)
7729      *IntegerConstantArgs |= 1 << ArgTypes.size();
7730
7731    // Do array -> pointer decay.  The builtin should use the decayed type.
7732    if (Ty->isArrayType())
7733      Ty = getArrayDecayedType(Ty);
7734
7735    ArgTypes.push_back(Ty);
7736  }
7737
7738  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
7739         "'.' should only occur at end of builtin type list!");
7740
7741  FunctionType::ExtInfo EI(CC_C);
7742  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
7743
7744  bool Variadic = (TypeStr[0] == '.');
7745
7746  // We really shouldn't be making a no-proto type here, especially in C++.
7747  if (ArgTypes.empty() && Variadic)
7748    return getFunctionNoProtoType(ResType, EI);
7749
7750  FunctionProtoType::ExtProtoInfo EPI;
7751  EPI.ExtInfo = EI;
7752  EPI.Variadic = Variadic;
7753
7754  return getFunctionType(ResType, ArgTypes, EPI);
7755}
7756
7757static GVALinkage basicGVALinkageForFunction(const ASTContext &Context,
7758                                             const FunctionDecl *FD) {
7759  if (!FD->isExternallyVisible())
7760    return GVA_Internal;
7761
7762  GVALinkage External = GVA_StrongExternal;
7763  switch (FD->getTemplateSpecializationKind()) {
7764  case TSK_Undeclared:
7765  case TSK_ExplicitSpecialization:
7766    External = GVA_StrongExternal;
7767    break;
7768
7769  case TSK_ExplicitInstantiationDefinition:
7770    return GVA_StrongODR;
7771
7772  // C++11 [temp.explicit]p10:
7773  //   [ Note: The intent is that an inline function that is the subject of
7774  //   an explicit instantiation declaration will still be implicitly
7775  //   instantiated when used so that the body can be considered for
7776  //   inlining, but that no out-of-line copy of the inline function would be
7777  //   generated in the translation unit. -- end note ]
7778  case TSK_ExplicitInstantiationDeclaration:
7779    return GVA_AvailableExternally;
7780
7781  case TSK_ImplicitInstantiation:
7782    External = GVA_DiscardableODR;
7783    break;
7784  }
7785
7786  if (!FD->isInlined())
7787    return External;
7788
7789  if ((!Context.getLangOpts().CPlusPlus && !Context.getLangOpts().MSVCCompat &&
7790       !FD->hasAttr<DLLExportAttr>()) ||
7791      FD->hasAttr<GNUInlineAttr>()) {
7792    // FIXME: This doesn't match gcc's behavior for dllexport inline functions.
7793
7794    // GNU or C99 inline semantics. Determine whether this symbol should be
7795    // externally visible.
7796    if (FD->isInlineDefinitionExternallyVisible())
7797      return External;
7798
7799    // C99 inline semantics, where the symbol is not externally visible.
7800    return GVA_AvailableExternally;
7801  }
7802
7803  // Functions specified with extern and inline in -fms-compatibility mode
7804  // forcibly get emitted.  While the body of the function cannot be later
7805  // replaced, the function definition cannot be discarded.
7806  if (FD->getMostRecentDecl()->isMSExternInline())
7807    return GVA_StrongODR;
7808
7809  return GVA_DiscardableODR;
7810}
7811
7812static GVALinkage adjustGVALinkageForDLLAttribute(GVALinkage L, const Decl *D) {
7813  // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx
7814  // dllexport/dllimport on inline functions.
7815  if (D->hasAttr<DLLImportAttr>()) {
7816    if (L == GVA_DiscardableODR || L == GVA_StrongODR)
7817      return GVA_AvailableExternally;
7818  } else if (D->hasAttr<DLLExportAttr>()) {
7819    if (L == GVA_DiscardableODR)
7820      return GVA_StrongODR;
7821  }
7822  return L;
7823}
7824
7825GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const {
7826  return adjustGVALinkageForDLLAttribute(basicGVALinkageForFunction(*this, FD),
7827                                         FD);
7828}
7829
7830static GVALinkage basicGVALinkageForVariable(const ASTContext &Context,
7831                                             const VarDecl *VD) {
7832  if (!VD->isExternallyVisible())
7833    return GVA_Internal;
7834
7835  if (VD->isStaticLocal()) {
7836    GVALinkage StaticLocalLinkage = GVA_DiscardableODR;
7837    const DeclContext *LexicalContext = VD->getParentFunctionOrMethod();
7838    while (LexicalContext && !isa<FunctionDecl>(LexicalContext))
7839      LexicalContext = LexicalContext->getLexicalParent();
7840
7841    // Let the static local variable inherit it's linkage from the nearest
7842    // enclosing function.
7843    if (LexicalContext)
7844      StaticLocalLinkage =
7845          Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext));
7846
7847    // GVA_StrongODR function linkage is stronger than what we need,
7848    // downgrade to GVA_DiscardableODR.
7849    // This allows us to discard the variable if we never end up needing it.
7850    return StaticLocalLinkage == GVA_StrongODR ? GVA_DiscardableODR
7851                                               : StaticLocalLinkage;
7852  }
7853
7854  switch (VD->getTemplateSpecializationKind()) {
7855  case TSK_Undeclared:
7856  case TSK_ExplicitSpecialization:
7857    return GVA_StrongExternal;
7858
7859  case TSK_ExplicitInstantiationDefinition:
7860    return GVA_StrongODR;
7861
7862  case TSK_ExplicitInstantiationDeclaration:
7863    return GVA_AvailableExternally;
7864
7865  case TSK_ImplicitInstantiation:
7866    return GVA_DiscardableODR;
7867  }
7868
7869  llvm_unreachable("Invalid Linkage!");
7870}
7871
7872GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
7873  return adjustGVALinkageForDLLAttribute(basicGVALinkageForVariable(*this, VD),
7874                                         VD);
7875}
7876
7877bool ASTContext::DeclMustBeEmitted(const Decl *D) {
7878  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7879    if (!VD->isFileVarDecl())
7880      return false;
7881    // Global named register variables (GNU extension) are never emitted.
7882    if (VD->getStorageClass() == SC_Register)
7883      return false;
7884  } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7885    // We never need to emit an uninstantiated function template.
7886    if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
7887      return false;
7888  } else
7889    return false;
7890
7891  // If this is a member of a class template, we do not need to emit it.
7892  if (D->getDeclContext()->isDependentContext())
7893    return false;
7894
7895  // Weak references don't produce any output by themselves.
7896  if (D->hasAttr<WeakRefAttr>())
7897    return false;
7898
7899  // Aliases and used decls are required.
7900  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
7901    return true;
7902
7903  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7904    // Forward declarations aren't required.
7905    if (!FD->doesThisDeclarationHaveABody())
7906      return FD->doesDeclarationForceExternallyVisibleDefinition();
7907
7908    // Constructors and destructors are required.
7909    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
7910      return true;
7911
7912    // The key function for a class is required.  This rule only comes
7913    // into play when inline functions can be key functions, though.
7914    if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
7915      if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
7916        const CXXRecordDecl *RD = MD->getParent();
7917        if (MD->isOutOfLine() && RD->isDynamicClass()) {
7918          const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
7919          if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
7920            return true;
7921        }
7922      }
7923    }
7924
7925    GVALinkage Linkage = GetGVALinkageForFunction(FD);
7926
7927    // static, static inline, always_inline, and extern inline functions can
7928    // always be deferred.  Normal inline functions can be deferred in C99/C++.
7929    // Implicit template instantiations can also be deferred in C++.
7930    if (Linkage == GVA_Internal || Linkage == GVA_AvailableExternally ||
7931        Linkage == GVA_DiscardableODR)
7932      return false;
7933    return true;
7934  }
7935
7936  const VarDecl *VD = cast<VarDecl>(D);
7937  assert(VD->isFileVarDecl() && "Expected file scoped var");
7938
7939  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
7940    return false;
7941
7942  // Variables that can be needed in other TUs are required.
7943  GVALinkage L = GetGVALinkageForVariable(VD);
7944  if (L != GVA_Internal && L != GVA_AvailableExternally &&
7945      L != GVA_DiscardableODR)
7946    return true;
7947
7948  // Variables that have destruction with side-effects are required.
7949  if (VD->getType().isDestructedType())
7950    return true;
7951
7952  // Variables that have initialization with side-effects are required.
7953  if (VD->getInit() && VD->getInit()->HasSideEffects(*this))
7954    return true;
7955
7956  return false;
7957}
7958
7959CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic,
7960                                                    bool IsCXXMethod) const {
7961  // Pass through to the C++ ABI object
7962  if (IsCXXMethod)
7963    return ABI->getDefaultMethodCallConv(IsVariadic);
7964
7965  return (LangOpts.MRTD && !IsVariadic) ? CC_X86StdCall : CC_C;
7966}
7967
7968bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
7969  // Pass through to the C++ ABI object
7970  return ABI->isNearlyEmpty(RD);
7971}
7972
7973VTableContextBase *ASTContext::getVTableContext() {
7974  if (!VTContext.get()) {
7975    if (Target->getCXXABI().isMicrosoft())
7976      VTContext.reset(new MicrosoftVTableContext(*this));
7977    else
7978      VTContext.reset(new ItaniumVTableContext(*this));
7979  }
7980  return VTContext.get();
7981}
7982
7983MangleContext *ASTContext::createMangleContext() {
7984  switch (Target->getCXXABI().getKind()) {
7985  case TargetCXXABI::GenericAArch64:
7986  case TargetCXXABI::GenericItanium:
7987  case TargetCXXABI::GenericARM:
7988  case TargetCXXABI::iOS:
7989  case TargetCXXABI::iOS64:
7990    return ItaniumMangleContext::create(*this, getDiagnostics());
7991  case TargetCXXABI::Microsoft:
7992    return MicrosoftMangleContext::create(*this, getDiagnostics());
7993  }
7994  llvm_unreachable("Unsupported ABI");
7995}
7996
7997CXXABI::~CXXABI() {}
7998
7999size_t ASTContext::getSideTableAllocatedMemory() const {
8000  return ASTRecordLayouts.getMemorySize() +
8001         llvm::capacity_in_bytes(ObjCLayouts) +
8002         llvm::capacity_in_bytes(KeyFunctions) +
8003         llvm::capacity_in_bytes(ObjCImpls) +
8004         llvm::capacity_in_bytes(BlockVarCopyInits) +
8005         llvm::capacity_in_bytes(DeclAttrs) +
8006         llvm::capacity_in_bytes(TemplateOrInstantiation) +
8007         llvm::capacity_in_bytes(InstantiatedFromUsingDecl) +
8008         llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) +
8009         llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) +
8010         llvm::capacity_in_bytes(OverriddenMethods) +
8011         llvm::capacity_in_bytes(Types) +
8012         llvm::capacity_in_bytes(VariableArrayTypes) +
8013         llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
8014}
8015
8016/// getIntTypeForBitwidth -
8017/// sets integer QualTy according to specified details:
8018/// bitwidth, signed/unsigned.
8019/// Returns empty type if there is no appropriate target types.
8020QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth,
8021                                           unsigned Signed) const {
8022  TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed);
8023  CanQualType QualTy = getFromTargetType(Ty);
8024  if (!QualTy && DestWidth == 128)
8025    return Signed ? Int128Ty : UnsignedInt128Ty;
8026  return QualTy;
8027}
8028
8029/// getRealTypeForBitwidth -
8030/// sets floating point QualTy according to specified bitwidth.
8031/// Returns empty type if there is no appropriate target types.
8032QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth) const {
8033  TargetInfo::RealType Ty = getTargetInfo().getRealTypeByWidth(DestWidth);
8034  switch (Ty) {
8035  case TargetInfo::Float:
8036    return FloatTy;
8037  case TargetInfo::Double:
8038    return DoubleTy;
8039  case TargetInfo::LongDouble:
8040    return LongDoubleTy;
8041  case TargetInfo::NoFloat:
8042    return QualType();
8043  }
8044
8045  llvm_unreachable("Unhandled TargetInfo::RealType value");
8046}
8047
8048void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) {
8049  if (Number > 1)
8050    MangleNumbers[ND] = Number;
8051}
8052
8053unsigned ASTContext::getManglingNumber(const NamedDecl *ND) const {
8054  llvm::DenseMap<const NamedDecl *, unsigned>::const_iterator I =
8055    MangleNumbers.find(ND);
8056  return I != MangleNumbers.end() ? I->second : 1;
8057}
8058
8059void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) {
8060  if (Number > 1)
8061    StaticLocalNumbers[VD] = Number;
8062}
8063
8064unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const {
8065  llvm::DenseMap<const VarDecl *, unsigned>::const_iterator I =
8066      StaticLocalNumbers.find(VD);
8067  return I != StaticLocalNumbers.end() ? I->second : 1;
8068}
8069
8070MangleNumberingContext &
8071ASTContext::getManglingNumberContext(const DeclContext *DC) {
8072  assert(LangOpts.CPlusPlus);  // We don't need mangling numbers for plain C.
8073  MangleNumberingContext *&MCtx = MangleNumberingContexts[DC];
8074  if (!MCtx)
8075    MCtx = createMangleNumberingContext();
8076  return *MCtx;
8077}
8078
8079MangleNumberingContext *ASTContext::createMangleNumberingContext() const {
8080  return ABI->createMangleNumberingContext();
8081}
8082
8083void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
8084  ParamIndices[D] = index;
8085}
8086
8087unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
8088  ParameterIndexTable::const_iterator I = ParamIndices.find(D);
8089  assert(I != ParamIndices.end() &&
8090         "ParmIndices lacks entry set by ParmVarDecl");
8091  return I->second;
8092}
8093
8094APValue *
8095ASTContext::getMaterializedTemporaryValue(const MaterializeTemporaryExpr *E,
8096                                          bool MayCreate) {
8097  assert(E && E->getStorageDuration() == SD_Static &&
8098         "don't need to cache the computed value for this temporary");
8099  if (MayCreate)
8100    return &MaterializedTemporaryValues[E];
8101
8102  llvm::DenseMap<const MaterializeTemporaryExpr *, APValue>::iterator I =
8103      MaterializedTemporaryValues.find(E);
8104  return I == MaterializedTemporaryValues.end() ? nullptr : &I->second;
8105}
8106
8107bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const {
8108  const llvm::Triple &T = getTargetInfo().getTriple();
8109  if (!T.isOSDarwin())
8110    return false;
8111
8112  if (!(T.isiOS() && T.isOSVersionLT(7)) &&
8113      !(T.isMacOSX() && T.isOSVersionLT(10, 9)))
8114    return false;
8115
8116  QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
8117  CharUnits sizeChars = getTypeSizeInChars(AtomicTy);
8118  uint64_t Size = sizeChars.getQuantity();
8119  CharUnits alignChars = getTypeAlignInChars(AtomicTy);
8120  unsigned Align = alignChars.getQuantity();
8121  unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth();
8122  return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits);
8123}
8124
8125namespace {
8126
8127  /// \brief A \c RecursiveASTVisitor that builds a map from nodes to their
8128  /// parents as defined by the \c RecursiveASTVisitor.
8129  ///
8130  /// Note that the relationship described here is purely in terms of AST
8131  /// traversal - there are other relationships (for example declaration context)
8132  /// in the AST that are better modeled by special matchers.
8133  ///
8134  /// FIXME: Currently only builds up the map using \c Stmt and \c Decl nodes.
8135  class ParentMapASTVisitor : public RecursiveASTVisitor<ParentMapASTVisitor> {
8136
8137  public:
8138    /// \brief Builds and returns the translation unit's parent map.
8139    ///
8140    ///  The caller takes ownership of the returned \c ParentMap.
8141    static ASTContext::ParentMap *buildMap(TranslationUnitDecl &TU) {
8142      ParentMapASTVisitor Visitor(new ASTContext::ParentMap);
8143      Visitor.TraverseDecl(&TU);
8144      return Visitor.Parents;
8145    }
8146
8147  private:
8148    typedef RecursiveASTVisitor<ParentMapASTVisitor> VisitorBase;
8149
8150    ParentMapASTVisitor(ASTContext::ParentMap *Parents) : Parents(Parents) {
8151    }
8152
8153    bool shouldVisitTemplateInstantiations() const {
8154      return true;
8155    }
8156    bool shouldVisitImplicitCode() const {
8157      return true;
8158    }
8159    // Disables data recursion. We intercept Traverse* methods in the RAV, which
8160    // are not triggered during data recursion.
8161    bool shouldUseDataRecursionFor(clang::Stmt *S) const {
8162      return false;
8163    }
8164
8165    template <typename T>
8166    bool TraverseNode(T *Node, bool(VisitorBase:: *traverse) (T *)) {
8167      if (!Node)
8168        return true;
8169      if (ParentStack.size() > 0) {
8170        // FIXME: Currently we add the same parent multiple times, but only
8171        // when no memoization data is available for the type.
8172        // For example when we visit all subexpressions of template
8173        // instantiations; this is suboptimal, but benign: the only way to
8174        // visit those is with hasAncestor / hasParent, and those do not create
8175        // new matches.
8176        // The plan is to enable DynTypedNode to be storable in a map or hash
8177        // map. The main problem there is to implement hash functions /
8178        // comparison operators for all types that DynTypedNode supports that
8179        // do not have pointer identity.
8180        auto &NodeOrVector = (*Parents)[Node];
8181        if (NodeOrVector.isNull()) {
8182          NodeOrVector = new ast_type_traits::DynTypedNode(ParentStack.back());
8183        } else {
8184          if (NodeOrVector.template is<ast_type_traits::DynTypedNode *>()) {
8185            auto *Node =
8186                NodeOrVector.template get<ast_type_traits::DynTypedNode *>();
8187            auto *Vector = new ASTContext::ParentVector(1, *Node);
8188            NodeOrVector = Vector;
8189            delete Node;
8190          }
8191          assert(NodeOrVector.template is<ASTContext::ParentVector *>());
8192
8193          auto *Vector =
8194              NodeOrVector.template get<ASTContext::ParentVector *>();
8195          // Skip duplicates for types that have memoization data.
8196          // We must check that the type has memoization data before calling
8197          // std::find() because DynTypedNode::operator== can't compare all
8198          // types.
8199          bool Found = ParentStack.back().getMemoizationData() &&
8200                       std::find(Vector->begin(), Vector->end(),
8201                                 ParentStack.back()) != Vector->end();
8202          if (!Found)
8203            Vector->push_back(ParentStack.back());
8204        }
8205      }
8206      ParentStack.push_back(ast_type_traits::DynTypedNode::create(*Node));
8207      bool Result = (this ->* traverse) (Node);
8208      ParentStack.pop_back();
8209      return Result;
8210    }
8211
8212    bool TraverseDecl(Decl *DeclNode) {
8213      return TraverseNode(DeclNode, &VisitorBase::TraverseDecl);
8214    }
8215
8216    bool TraverseStmt(Stmt *StmtNode) {
8217      return TraverseNode(StmtNode, &VisitorBase::TraverseStmt);
8218    }
8219
8220    ASTContext::ParentMap *Parents;
8221    llvm::SmallVector<ast_type_traits::DynTypedNode, 16> ParentStack;
8222
8223    friend class RecursiveASTVisitor<ParentMapASTVisitor>;
8224  };
8225
8226} // end namespace
8227
8228ASTContext::ParentVector
8229ASTContext::getParents(const ast_type_traits::DynTypedNode &Node) {
8230  assert(Node.getMemoizationData() &&
8231         "Invariant broken: only nodes that support memoization may be "
8232         "used in the parent map.");
8233  if (!AllParents) {
8234    // We always need to run over the whole translation unit, as
8235    // hasAncestor can escape any subtree.
8236    AllParents.reset(
8237        ParentMapASTVisitor::buildMap(*getTranslationUnitDecl()));
8238  }
8239  ParentMap::const_iterator I = AllParents->find(Node.getMemoizationData());
8240  if (I == AllParents->end()) {
8241    return ParentVector();
8242  }
8243  if (I->second.is<ast_type_traits::DynTypedNode *>()) {
8244    return ParentVector(1, *I->second.get<ast_type_traits::DynTypedNode *>());
8245  }
8246  const auto &Parents = *I->second.get<ParentVector *>();
8247  return ParentVector(Parents.begin(), Parents.end());
8248}
8249
8250bool
8251ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
8252                                const ObjCMethodDecl *MethodImpl) {
8253  // No point trying to match an unavailable/deprecated mothod.
8254  if (MethodDecl->hasAttr<UnavailableAttr>()
8255      || MethodDecl->hasAttr<DeprecatedAttr>())
8256    return false;
8257  if (MethodDecl->getObjCDeclQualifier() !=
8258      MethodImpl->getObjCDeclQualifier())
8259    return false;
8260  if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType()))
8261    return false;
8262
8263  if (MethodDecl->param_size() != MethodImpl->param_size())
8264    return false;
8265
8266  for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(),
8267       IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(),
8268       EF = MethodDecl->param_end();
8269       IM != EM && IF != EF; ++IM, ++IF) {
8270    const ParmVarDecl *DeclVar = (*IF);
8271    const ParmVarDecl *ImplVar = (*IM);
8272    if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier())
8273      return false;
8274    if (!hasSameType(DeclVar->getType(), ImplVar->getType()))
8275      return false;
8276  }
8277  return (MethodDecl->isVariadic() == MethodImpl->isVariadic());
8278
8279}
8280
8281// Explicitly instantiate this in case a Redeclarable<T> is used from a TU that
8282// doesn't include ASTContext.h
8283template
8284clang::LazyGenerationalUpdatePtr<
8285    const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType
8286clang::LazyGenerationalUpdatePtr<
8287    const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue(
8288        const clang::ASTContext &Ctx, Decl *Value);
8289