ASTContext.cpp revision 5f9e272e632e951b1efe824cd16acb4d96077930
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExternalASTSource.h"
23#include "clang/AST/ASTMutationListener.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/Mangle.h"
26#include "clang/Basic/Builtins.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/TargetInfo.h"
29#include "llvm/ADT/SmallString.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/Support/MathExtras.h"
32#include "llvm/Support/raw_ostream.h"
33#include "CXXABI.h"
34#include <map>
35
36using namespace clang;
37
38unsigned ASTContext::NumImplicitDefaultConstructors;
39unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
40unsigned ASTContext::NumImplicitCopyConstructors;
41unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
42unsigned ASTContext::NumImplicitMoveConstructors;
43unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
44unsigned ASTContext::NumImplicitCopyAssignmentOperators;
45unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
46unsigned ASTContext::NumImplicitMoveAssignmentOperators;
47unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
48unsigned ASTContext::NumImplicitDestructors;
49unsigned ASTContext::NumImplicitDestructorsDeclared;
50
51enum FloatingRank {
52  FloatRank, DoubleRank, LongDoubleRank
53};
54
55void
56ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
57                                               TemplateTemplateParmDecl *Parm) {
58  ID.AddInteger(Parm->getDepth());
59  ID.AddInteger(Parm->getPosition());
60  ID.AddBoolean(Parm->isParameterPack());
61
62  TemplateParameterList *Params = Parm->getTemplateParameters();
63  ID.AddInteger(Params->size());
64  for (TemplateParameterList::const_iterator P = Params->begin(),
65                                          PEnd = Params->end();
66       P != PEnd; ++P) {
67    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
68      ID.AddInteger(0);
69      ID.AddBoolean(TTP->isParameterPack());
70      continue;
71    }
72
73    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
74      ID.AddInteger(1);
75      ID.AddBoolean(NTTP->isParameterPack());
76      ID.AddPointer(NTTP->getType().getAsOpaquePtr());
77      if (NTTP->isExpandedParameterPack()) {
78        ID.AddBoolean(true);
79        ID.AddInteger(NTTP->getNumExpansionTypes());
80        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I)
81          ID.AddPointer(NTTP->getExpansionType(I).getAsOpaquePtr());
82      } else
83        ID.AddBoolean(false);
84      continue;
85    }
86
87    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
88    ID.AddInteger(2);
89    Profile(ID, TTP);
90  }
91}
92
93TemplateTemplateParmDecl *
94ASTContext::getCanonicalTemplateTemplateParmDecl(
95                                          TemplateTemplateParmDecl *TTP) const {
96  // Check if we already have a canonical template template parameter.
97  llvm::FoldingSetNodeID ID;
98  CanonicalTemplateTemplateParm::Profile(ID, TTP);
99  void *InsertPos = 0;
100  CanonicalTemplateTemplateParm *Canonical
101    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
102  if (Canonical)
103    return Canonical->getParam();
104
105  // Build a canonical template parameter list.
106  TemplateParameterList *Params = TTP->getTemplateParameters();
107  SmallVector<NamedDecl *, 4> CanonParams;
108  CanonParams.reserve(Params->size());
109  for (TemplateParameterList::const_iterator P = Params->begin(),
110                                          PEnd = Params->end();
111       P != PEnd; ++P) {
112    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
113      CanonParams.push_back(
114                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
115                                               SourceLocation(),
116                                               SourceLocation(),
117                                               TTP->getDepth(),
118                                               TTP->getIndex(), 0, false,
119                                               TTP->isParameterPack()));
120    else if (NonTypeTemplateParmDecl *NTTP
121             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
122      QualType T = getCanonicalType(NTTP->getType());
123      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
124      NonTypeTemplateParmDecl *Param;
125      if (NTTP->isExpandedParameterPack()) {
126        SmallVector<QualType, 2> ExpandedTypes;
127        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
128        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
129          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
130          ExpandedTInfos.push_back(
131                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
132        }
133
134        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
135                                                SourceLocation(),
136                                                SourceLocation(),
137                                                NTTP->getDepth(),
138                                                NTTP->getPosition(), 0,
139                                                T,
140                                                TInfo,
141                                                ExpandedTypes.data(),
142                                                ExpandedTypes.size(),
143                                                ExpandedTInfos.data());
144      } else {
145        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
146                                                SourceLocation(),
147                                                SourceLocation(),
148                                                NTTP->getDepth(),
149                                                NTTP->getPosition(), 0,
150                                                T,
151                                                NTTP->isParameterPack(),
152                                                TInfo);
153      }
154      CanonParams.push_back(Param);
155
156    } else
157      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
158                                           cast<TemplateTemplateParmDecl>(*P)));
159  }
160
161  TemplateTemplateParmDecl *CanonTTP
162    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
163                                       SourceLocation(), TTP->getDepth(),
164                                       TTP->getPosition(),
165                                       TTP->isParameterPack(),
166                                       0,
167                         TemplateParameterList::Create(*this, SourceLocation(),
168                                                       SourceLocation(),
169                                                       CanonParams.data(),
170                                                       CanonParams.size(),
171                                                       SourceLocation()));
172
173  // Get the new insert position for the node we care about.
174  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
175  assert(Canonical == 0 && "Shouldn't be in the map!");
176  (void)Canonical;
177
178  // Create the canonical template template parameter entry.
179  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
180  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
181  return CanonTTP;
182}
183
184CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
185  if (!LangOpts.CPlusPlus) return 0;
186
187  switch (T.getCXXABI()) {
188  case CXXABI_ARM:
189    return CreateARMCXXABI(*this);
190  case CXXABI_Itanium:
191    return CreateItaniumCXXABI(*this);
192  case CXXABI_Microsoft:
193    return CreateMicrosoftCXXABI(*this);
194  }
195  return 0;
196}
197
198static const LangAS::Map &getAddressSpaceMap(const TargetInfo &T,
199                                             const LangOptions &LOpts) {
200  if (LOpts.FakeAddressSpaceMap) {
201    // The fake address space map must have a distinct entry for each
202    // language-specific address space.
203    static const unsigned FakeAddrSpaceMap[] = {
204      1, // opencl_global
205      2, // opencl_local
206      3  // opencl_constant
207    };
208    return FakeAddrSpaceMap;
209  } else {
210    return T.getAddressSpaceMap();
211  }
212}
213
214ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
215                       const TargetInfo &t,
216                       IdentifierTable &idents, SelectorTable &sels,
217                       Builtin::Context &builtins,
218                       unsigned size_reserve) :
219  FunctionProtoTypes(this_()),
220  TemplateSpecializationTypes(this_()),
221  DependentTemplateSpecializationTypes(this_()),
222  SubstTemplateTemplateParmPacks(this_()),
223  GlobalNestedNameSpecifier(0), IsInt128Installed(false),
224  CFConstantStringTypeDecl(0), NSConstantStringTypeDecl(0),
225  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0),
226  jmp_bufDecl(0), sigjmp_bufDecl(0), BlockDescriptorType(0),
227  BlockDescriptorExtendedType(0), cudaConfigureCallDecl(0),
228  NullTypeSourceInfo(QualType()),
229  SourceMgr(SM), LangOpts(LOpts), ABI(createCXXABI(t)),
230  AddrSpaceMap(getAddressSpaceMap(t, LOpts)), Target(t),
231  Idents(idents), Selectors(sels),
232  BuiltinInfo(builtins),
233  DeclarationNames(*this),
234  ExternalSource(0), Listener(0), PrintingPolicy(LOpts),
235  LastSDM(0, 0),
236  UniqueBlockByRefTypeID(0) {
237  ObjCIdRedefinitionType = QualType();
238  ObjCClassRedefinitionType = QualType();
239  ObjCSelRedefinitionType = QualType();
240  if (size_reserve > 0) Types.reserve(size_reserve);
241  TUDecl = TranslationUnitDecl::Create(*this);
242  InitBuiltinTypes();
243}
244
245ASTContext::~ASTContext() {
246  // Release the DenseMaps associated with DeclContext objects.
247  // FIXME: Is this the ideal solution?
248  ReleaseDeclContextMaps();
249
250  // Call all of the deallocation functions.
251  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
252    Deallocations[I].first(Deallocations[I].second);
253
254  // Release all of the memory associated with overridden C++ methods.
255  for (llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::iterator
256         OM = OverriddenMethods.begin(), OMEnd = OverriddenMethods.end();
257       OM != OMEnd; ++OM)
258    OM->second.Destroy();
259
260  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
261  // because they can contain DenseMaps.
262  for (llvm::DenseMap<const ObjCContainerDecl*,
263       const ASTRecordLayout*>::iterator
264       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
265    // Increment in loop to prevent using deallocated memory.
266    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
267      R->Destroy(*this);
268
269  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
270       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
271    // Increment in loop to prevent using deallocated memory.
272    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
273      R->Destroy(*this);
274  }
275
276  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
277                                                    AEnd = DeclAttrs.end();
278       A != AEnd; ++A)
279    A->second->~AttrVec();
280}
281
282void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
283  Deallocations.push_back(std::make_pair(Callback, Data));
284}
285
286void
287ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
288  ExternalSource.reset(Source.take());
289}
290
291void ASTContext::PrintStats() const {
292  llvm::errs() << "\n*** AST Context Stats:\n";
293  llvm::errs() << "  " << Types.size() << " types total.\n";
294
295  unsigned counts[] = {
296#define TYPE(Name, Parent) 0,
297#define ABSTRACT_TYPE(Name, Parent)
298#include "clang/AST/TypeNodes.def"
299    0 // Extra
300  };
301
302  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
303    Type *T = Types[i];
304    counts[(unsigned)T->getTypeClass()]++;
305  }
306
307  unsigned Idx = 0;
308  unsigned TotalBytes = 0;
309#define TYPE(Name, Parent)                                              \
310  if (counts[Idx])                                                      \
311    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
312                 << " types\n";                                         \
313  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
314  ++Idx;
315#define ABSTRACT_TYPE(Name, Parent)
316#include "clang/AST/TypeNodes.def"
317
318  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
319
320  // Implicit special member functions.
321  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
322               << NumImplicitDefaultConstructors
323               << " implicit default constructors created\n";
324  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
325               << NumImplicitCopyConstructors
326               << " implicit copy constructors created\n";
327  if (getLangOptions().CPlusPlus)
328    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
329                 << NumImplicitMoveConstructors
330                 << " implicit move constructors created\n";
331  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
332               << NumImplicitCopyAssignmentOperators
333               << " implicit copy assignment operators created\n";
334  if (getLangOptions().CPlusPlus)
335    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
336                 << NumImplicitMoveAssignmentOperators
337                 << " implicit move assignment operators created\n";
338  llvm::errs() << NumImplicitDestructorsDeclared << "/"
339               << NumImplicitDestructors
340               << " implicit destructors created\n";
341
342  if (ExternalSource.get()) {
343    llvm::errs() << "\n";
344    ExternalSource->PrintStats();
345  }
346
347  BumpAlloc.PrintStats();
348}
349
350
351void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
352  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
353  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
354  Types.push_back(Ty);
355}
356
357void ASTContext::InitBuiltinTypes() {
358  assert(VoidTy.isNull() && "Context reinitialized?");
359
360  // C99 6.2.5p19.
361  InitBuiltinType(VoidTy,              BuiltinType::Void);
362
363  // C99 6.2.5p2.
364  InitBuiltinType(BoolTy,              BuiltinType::Bool);
365  // C99 6.2.5p3.
366  if (LangOpts.CharIsSigned)
367    InitBuiltinType(CharTy,            BuiltinType::Char_S);
368  else
369    InitBuiltinType(CharTy,            BuiltinType::Char_U);
370  // C99 6.2.5p4.
371  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
372  InitBuiltinType(ShortTy,             BuiltinType::Short);
373  InitBuiltinType(IntTy,               BuiltinType::Int);
374  InitBuiltinType(LongTy,              BuiltinType::Long);
375  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
376
377  // C99 6.2.5p6.
378  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
379  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
380  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
381  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
382  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
383
384  // C99 6.2.5p10.
385  InitBuiltinType(FloatTy,             BuiltinType::Float);
386  InitBuiltinType(DoubleTy,            BuiltinType::Double);
387  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
388
389  // GNU extension, 128-bit integers.
390  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
391  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
392
393  if (LangOpts.CPlusPlus) { // C++ 3.9.1p5
394    if (TargetInfo::isTypeSigned(Target.getWCharType()))
395      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
396    else  // -fshort-wchar makes wchar_t be unsigned.
397      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
398  } else // C99
399    WCharTy = getFromTargetType(Target.getWCharType());
400
401  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
402    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
403  else // C99
404    Char16Ty = getFromTargetType(Target.getChar16Type());
405
406  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
407    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
408  else // C99
409    Char32Ty = getFromTargetType(Target.getChar32Type());
410
411  // Placeholder type for type-dependent expressions whose type is
412  // completely unknown. No code should ever check a type against
413  // DependentTy and users should never see it; however, it is here to
414  // help diagnose failures to properly check for type-dependent
415  // expressions.
416  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
417
418  // Placeholder type for functions.
419  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
420
421  // Placeholder type for bound members.
422  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
423
424  // "any" type; useful for debugger-like clients.
425  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
426
427  // C99 6.2.5p11.
428  FloatComplexTy      = getComplexType(FloatTy);
429  DoubleComplexTy     = getComplexType(DoubleTy);
430  LongDoubleComplexTy = getComplexType(LongDoubleTy);
431
432  BuiltinVaListType = QualType();
433
434  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
435  ObjCIdTypedefType = QualType();
436  ObjCClassTypedefType = QualType();
437  ObjCSelTypedefType = QualType();
438
439  // Builtin types for 'id', 'Class', and 'SEL'.
440  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
441  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
442  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
443
444  ObjCConstantStringType = QualType();
445
446  // void * type
447  VoidPtrTy = getPointerType(VoidTy);
448
449  // nullptr type (C++0x 2.14.7)
450  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
451}
452
453Diagnostic &ASTContext::getDiagnostics() const {
454  return SourceMgr.getDiagnostics();
455}
456
457AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
458  AttrVec *&Result = DeclAttrs[D];
459  if (!Result) {
460    void *Mem = Allocate(sizeof(AttrVec));
461    Result = new (Mem) AttrVec;
462  }
463
464  return *Result;
465}
466
467/// \brief Erase the attributes corresponding to the given declaration.
468void ASTContext::eraseDeclAttrs(const Decl *D) {
469  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
470  if (Pos != DeclAttrs.end()) {
471    Pos->second->~AttrVec();
472    DeclAttrs.erase(Pos);
473  }
474}
475
476MemberSpecializationInfo *
477ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
478  assert(Var->isStaticDataMember() && "Not a static data member");
479  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
480    = InstantiatedFromStaticDataMember.find(Var);
481  if (Pos == InstantiatedFromStaticDataMember.end())
482    return 0;
483
484  return Pos->second;
485}
486
487void
488ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
489                                                TemplateSpecializationKind TSK,
490                                          SourceLocation PointOfInstantiation) {
491  assert(Inst->isStaticDataMember() && "Not a static data member");
492  assert(Tmpl->isStaticDataMember() && "Not a static data member");
493  assert(!InstantiatedFromStaticDataMember[Inst] &&
494         "Already noted what static data member was instantiated from");
495  InstantiatedFromStaticDataMember[Inst]
496    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
497}
498
499NamedDecl *
500ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
501  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
502    = InstantiatedFromUsingDecl.find(UUD);
503  if (Pos == InstantiatedFromUsingDecl.end())
504    return 0;
505
506  return Pos->second;
507}
508
509void
510ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
511  assert((isa<UsingDecl>(Pattern) ||
512          isa<UnresolvedUsingValueDecl>(Pattern) ||
513          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
514         "pattern decl is not a using decl");
515  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
516  InstantiatedFromUsingDecl[Inst] = Pattern;
517}
518
519UsingShadowDecl *
520ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
521  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
522    = InstantiatedFromUsingShadowDecl.find(Inst);
523  if (Pos == InstantiatedFromUsingShadowDecl.end())
524    return 0;
525
526  return Pos->second;
527}
528
529void
530ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
531                                               UsingShadowDecl *Pattern) {
532  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
533  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
534}
535
536FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
537  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
538    = InstantiatedFromUnnamedFieldDecl.find(Field);
539  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
540    return 0;
541
542  return Pos->second;
543}
544
545void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
546                                                     FieldDecl *Tmpl) {
547  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
548  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
549  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
550         "Already noted what unnamed field was instantiated from");
551
552  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
553}
554
555bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
556                                    const FieldDecl *LastFD) const {
557  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
558          FD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue() == 0);
559
560}
561
562bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
563                                             const FieldDecl *LastFD) const {
564  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
565          FD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue() == 0 &&
566          LastFD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue() != 0);
567
568}
569
570bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
571                                         const FieldDecl *LastFD) const {
572  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
573          FD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue() &&
574          LastFD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue());
575}
576
577bool ASTContext::NoneBitfieldFollowsBitfield(const FieldDecl *FD,
578                                         const FieldDecl *LastFD) const {
579  return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
580          LastFD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue());
581}
582
583bool ASTContext::BitfieldFollowsNoneBitfield(const FieldDecl *FD,
584                                             const FieldDecl *LastFD) const {
585  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
586          FD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue());
587}
588
589ASTContext::overridden_cxx_method_iterator
590ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
591  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
592    = OverriddenMethods.find(Method);
593  if (Pos == OverriddenMethods.end())
594    return 0;
595
596  return Pos->second.begin();
597}
598
599ASTContext::overridden_cxx_method_iterator
600ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
601  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
602    = OverriddenMethods.find(Method);
603  if (Pos == OverriddenMethods.end())
604    return 0;
605
606  return Pos->second.end();
607}
608
609unsigned
610ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
611  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
612    = OverriddenMethods.find(Method);
613  if (Pos == OverriddenMethods.end())
614    return 0;
615
616  return Pos->second.size();
617}
618
619void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
620                                     const CXXMethodDecl *Overridden) {
621  OverriddenMethods[Method].push_back(Overridden);
622}
623
624//===----------------------------------------------------------------------===//
625//                         Type Sizing and Analysis
626//===----------------------------------------------------------------------===//
627
628/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
629/// scalar floating point type.
630const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
631  const BuiltinType *BT = T->getAs<BuiltinType>();
632  assert(BT && "Not a floating point type!");
633  switch (BT->getKind()) {
634  default: assert(0 && "Not a floating point type!");
635  case BuiltinType::Float:      return Target.getFloatFormat();
636  case BuiltinType::Double:     return Target.getDoubleFormat();
637  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
638  }
639}
640
641/// getDeclAlign - Return a conservative estimate of the alignment of the
642/// specified decl.  Note that bitfields do not have a valid alignment, so
643/// this method will assert on them.
644/// If @p RefAsPointee, references are treated like their underlying type
645/// (for alignof), else they're treated like pointers (for CodeGen).
646CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
647  unsigned Align = Target.getCharWidth();
648
649  bool UseAlignAttrOnly = false;
650  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
651    Align = AlignFromAttr;
652
653    // __attribute__((aligned)) can increase or decrease alignment
654    // *except* on a struct or struct member, where it only increases
655    // alignment unless 'packed' is also specified.
656    //
657    // It is an error for [[align]] to decrease alignment, so we can
658    // ignore that possibility;  Sema should diagnose it.
659    if (isa<FieldDecl>(D)) {
660      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
661        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
662    } else {
663      UseAlignAttrOnly = true;
664    }
665  }
666  else if (isa<FieldDecl>(D))
667      UseAlignAttrOnly =
668        D->hasAttr<PackedAttr>() ||
669        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
670
671  // If we're using the align attribute only, just ignore everything
672  // else about the declaration and its type.
673  if (UseAlignAttrOnly) {
674    // do nothing
675
676  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
677    QualType T = VD->getType();
678    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
679      if (RefAsPointee)
680        T = RT->getPointeeType();
681      else
682        T = getPointerType(RT->getPointeeType());
683    }
684    if (!T->isIncompleteType() && !T->isFunctionType()) {
685      // Adjust alignments of declarations with array type by the
686      // large-array alignment on the target.
687      unsigned MinWidth = Target.getLargeArrayMinWidth();
688      const ArrayType *arrayType;
689      if (MinWidth && (arrayType = getAsArrayType(T))) {
690        if (isa<VariableArrayType>(arrayType))
691          Align = std::max(Align, Target.getLargeArrayAlign());
692        else if (isa<ConstantArrayType>(arrayType) &&
693                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
694          Align = std::max(Align, Target.getLargeArrayAlign());
695
696        // Walk through any array types while we're at it.
697        T = getBaseElementType(arrayType);
698      }
699      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
700    }
701
702    // Fields can be subject to extra alignment constraints, like if
703    // the field is packed, the struct is packed, or the struct has a
704    // a max-field-alignment constraint (#pragma pack).  So calculate
705    // the actual alignment of the field within the struct, and then
706    // (as we're expected to) constrain that by the alignment of the type.
707    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
708      // So calculate the alignment of the field.
709      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
710
711      // Start with the record's overall alignment.
712      unsigned fieldAlign = toBits(layout.getAlignment());
713
714      // Use the GCD of that and the offset within the record.
715      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
716      if (offset > 0) {
717        // Alignment is always a power of 2, so the GCD will be a power of 2,
718        // which means we get to do this crazy thing instead of Euclid's.
719        uint64_t lowBitOfOffset = offset & (~offset + 1);
720        if (lowBitOfOffset < fieldAlign)
721          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
722      }
723
724      Align = std::min(Align, fieldAlign);
725    }
726  }
727
728  return toCharUnitsFromBits(Align);
729}
730
731std::pair<CharUnits, CharUnits>
732ASTContext::getTypeInfoInChars(const Type *T) const {
733  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
734  return std::make_pair(toCharUnitsFromBits(Info.first),
735                        toCharUnitsFromBits(Info.second));
736}
737
738std::pair<CharUnits, CharUnits>
739ASTContext::getTypeInfoInChars(QualType T) const {
740  return getTypeInfoInChars(T.getTypePtr());
741}
742
743/// getTypeSize - Return the size of the specified type, in bits.  This method
744/// does not work on incomplete types.
745///
746/// FIXME: Pointers into different addr spaces could have different sizes and
747/// alignment requirements: getPointerInfo should take an AddrSpace, this
748/// should take a QualType, &c.
749std::pair<uint64_t, unsigned>
750ASTContext::getTypeInfo(const Type *T) const {
751  uint64_t Width=0;
752  unsigned Align=8;
753  switch (T->getTypeClass()) {
754#define TYPE(Class, Base)
755#define ABSTRACT_TYPE(Class, Base)
756#define NON_CANONICAL_TYPE(Class, Base)
757#define DEPENDENT_TYPE(Class, Base) case Type::Class:
758#include "clang/AST/TypeNodes.def"
759    llvm_unreachable("Should not see dependent types");
760    break;
761
762  case Type::FunctionNoProto:
763  case Type::FunctionProto:
764    // GCC extension: alignof(function) = 32 bits
765    Width = 0;
766    Align = 32;
767    break;
768
769  case Type::IncompleteArray:
770  case Type::VariableArray:
771    Width = 0;
772    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
773    break;
774
775  case Type::ConstantArray: {
776    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
777
778    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
779    Width = EltInfo.first*CAT->getSize().getZExtValue();
780    Align = EltInfo.second;
781    Width = llvm::RoundUpToAlignment(Width, Align);
782    break;
783  }
784  case Type::ExtVector:
785  case Type::Vector: {
786    const VectorType *VT = cast<VectorType>(T);
787    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
788    Width = EltInfo.first*VT->getNumElements();
789    Align = Width;
790    // If the alignment is not a power of 2, round up to the next power of 2.
791    // This happens for non-power-of-2 length vectors.
792    if (Align & (Align-1)) {
793      Align = llvm::NextPowerOf2(Align);
794      Width = llvm::RoundUpToAlignment(Width, Align);
795    }
796    break;
797  }
798
799  case Type::Builtin:
800    switch (cast<BuiltinType>(T)->getKind()) {
801    default: assert(0 && "Unknown builtin type!");
802    case BuiltinType::Void:
803      // GCC extension: alignof(void) = 8 bits.
804      Width = 0;
805      Align = 8;
806      break;
807
808    case BuiltinType::Bool:
809      Width = Target.getBoolWidth();
810      Align = Target.getBoolAlign();
811      break;
812    case BuiltinType::Char_S:
813    case BuiltinType::Char_U:
814    case BuiltinType::UChar:
815    case BuiltinType::SChar:
816      Width = Target.getCharWidth();
817      Align = Target.getCharAlign();
818      break;
819    case BuiltinType::WChar_S:
820    case BuiltinType::WChar_U:
821      Width = Target.getWCharWidth();
822      Align = Target.getWCharAlign();
823      break;
824    case BuiltinType::Char16:
825      Width = Target.getChar16Width();
826      Align = Target.getChar16Align();
827      break;
828    case BuiltinType::Char32:
829      Width = Target.getChar32Width();
830      Align = Target.getChar32Align();
831      break;
832    case BuiltinType::UShort:
833    case BuiltinType::Short:
834      Width = Target.getShortWidth();
835      Align = Target.getShortAlign();
836      break;
837    case BuiltinType::UInt:
838    case BuiltinType::Int:
839      Width = Target.getIntWidth();
840      Align = Target.getIntAlign();
841      break;
842    case BuiltinType::ULong:
843    case BuiltinType::Long:
844      Width = Target.getLongWidth();
845      Align = Target.getLongAlign();
846      break;
847    case BuiltinType::ULongLong:
848    case BuiltinType::LongLong:
849      Width = Target.getLongLongWidth();
850      Align = Target.getLongLongAlign();
851      break;
852    case BuiltinType::Int128:
853    case BuiltinType::UInt128:
854      Width = 128;
855      Align = 128; // int128_t is 128-bit aligned on all targets.
856      break;
857    case BuiltinType::Float:
858      Width = Target.getFloatWidth();
859      Align = Target.getFloatAlign();
860      break;
861    case BuiltinType::Double:
862      Width = Target.getDoubleWidth();
863      Align = Target.getDoubleAlign();
864      break;
865    case BuiltinType::LongDouble:
866      Width = Target.getLongDoubleWidth();
867      Align = Target.getLongDoubleAlign();
868      break;
869    case BuiltinType::NullPtr:
870      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
871      Align = Target.getPointerAlign(0); //   == sizeof(void*)
872      break;
873    case BuiltinType::ObjCId:
874    case BuiltinType::ObjCClass:
875    case BuiltinType::ObjCSel:
876      Width = Target.getPointerWidth(0);
877      Align = Target.getPointerAlign(0);
878      break;
879    }
880    break;
881  case Type::ObjCObjectPointer:
882    Width = Target.getPointerWidth(0);
883    Align = Target.getPointerAlign(0);
884    break;
885  case Type::BlockPointer: {
886    unsigned AS = getTargetAddressSpace(
887        cast<BlockPointerType>(T)->getPointeeType());
888    Width = Target.getPointerWidth(AS);
889    Align = Target.getPointerAlign(AS);
890    break;
891  }
892  case Type::LValueReference:
893  case Type::RValueReference: {
894    // alignof and sizeof should never enter this code path here, so we go
895    // the pointer route.
896    unsigned AS = getTargetAddressSpace(
897        cast<ReferenceType>(T)->getPointeeType());
898    Width = Target.getPointerWidth(AS);
899    Align = Target.getPointerAlign(AS);
900    break;
901  }
902  case Type::Pointer: {
903    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
904    Width = Target.getPointerWidth(AS);
905    Align = Target.getPointerAlign(AS);
906    break;
907  }
908  case Type::MemberPointer: {
909    const MemberPointerType *MPT = cast<MemberPointerType>(T);
910    std::pair<uint64_t, unsigned> PtrDiffInfo =
911      getTypeInfo(getPointerDiffType());
912    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
913    Align = PtrDiffInfo.second;
914    break;
915  }
916  case Type::Complex: {
917    // Complex types have the same alignment as their elements, but twice the
918    // size.
919    std::pair<uint64_t, unsigned> EltInfo =
920      getTypeInfo(cast<ComplexType>(T)->getElementType());
921    Width = EltInfo.first*2;
922    Align = EltInfo.second;
923    break;
924  }
925  case Type::ObjCObject:
926    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
927  case Type::ObjCInterface: {
928    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
929    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
930    Width = toBits(Layout.getSize());
931    Align = toBits(Layout.getAlignment());
932    break;
933  }
934  case Type::Record:
935  case Type::Enum: {
936    const TagType *TT = cast<TagType>(T);
937
938    if (TT->getDecl()->isInvalidDecl()) {
939      Width = 8;
940      Align = 8;
941      break;
942    }
943
944    if (const EnumType *ET = dyn_cast<EnumType>(TT))
945      return getTypeInfo(ET->getDecl()->getIntegerType());
946
947    const RecordType *RT = cast<RecordType>(TT);
948    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
949    Width = toBits(Layout.getSize());
950    Align = toBits(Layout.getAlignment());
951    break;
952  }
953
954  case Type::SubstTemplateTypeParm:
955    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
956                       getReplacementType().getTypePtr());
957
958  case Type::Auto: {
959    const AutoType *A = cast<AutoType>(T);
960    assert(A->isDeduced() && "Cannot request the size of a dependent type");
961    return getTypeInfo(A->getDeducedType().getTypePtr());
962  }
963
964  case Type::Paren:
965    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
966
967  case Type::Typedef: {
968    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
969    std::pair<uint64_t, unsigned> Info
970      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
971    // If the typedef has an aligned attribute on it, it overrides any computed
972    // alignment we have.  This violates the GCC documentation (which says that
973    // attribute(aligned) can only round up) but matches its implementation.
974    if (unsigned AttrAlign = Typedef->getMaxAlignment())
975      Align = AttrAlign;
976    else
977      Align = Info.second;
978    Width = Info.first;
979    break;
980  }
981
982  case Type::TypeOfExpr:
983    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
984                         .getTypePtr());
985
986  case Type::TypeOf:
987    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
988
989  case Type::Decltype:
990    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
991                        .getTypePtr());
992
993  case Type::UnaryTransform:
994    return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
995
996  case Type::Elaborated:
997    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
998
999  case Type::Attributed:
1000    return getTypeInfo(
1001                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1002
1003  case Type::TemplateSpecialization: {
1004    assert(getCanonicalType(T) != T &&
1005           "Cannot request the size of a dependent type");
1006    const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1007    // A type alias template specialization may refer to a typedef with the
1008    // aligned attribute on it.
1009    if (TST->isTypeAlias())
1010      return getTypeInfo(TST->getAliasedType().getTypePtr());
1011    else
1012      return getTypeInfo(getCanonicalType(T));
1013  }
1014
1015  }
1016
1017  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
1018  return std::make_pair(Width, Align);
1019}
1020
1021/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1022CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1023  return CharUnits::fromQuantity(BitSize / getCharWidth());
1024}
1025
1026/// toBits - Convert a size in characters to a size in characters.
1027int64_t ASTContext::toBits(CharUnits CharSize) const {
1028  return CharSize.getQuantity() * getCharWidth();
1029}
1030
1031/// getTypeSizeInChars - Return the size of the specified type, in characters.
1032/// This method does not work on incomplete types.
1033CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1034  return toCharUnitsFromBits(getTypeSize(T));
1035}
1036CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1037  return toCharUnitsFromBits(getTypeSize(T));
1038}
1039
1040/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1041/// characters. This method does not work on incomplete types.
1042CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1043  return toCharUnitsFromBits(getTypeAlign(T));
1044}
1045CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1046  return toCharUnitsFromBits(getTypeAlign(T));
1047}
1048
1049/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1050/// type for the current target in bits.  This can be different than the ABI
1051/// alignment in cases where it is beneficial for performance to overalign
1052/// a data type.
1053unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1054  unsigned ABIAlign = getTypeAlign(T);
1055
1056  // Double and long long should be naturally aligned if possible.
1057  if (const ComplexType* CT = T->getAs<ComplexType>())
1058    T = CT->getElementType().getTypePtr();
1059  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1060      T->isSpecificBuiltinType(BuiltinType::LongLong))
1061    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1062
1063  return ABIAlign;
1064}
1065
1066/// DeepCollectObjCIvars -
1067/// This routine first collects all declared, but not synthesized, ivars in
1068/// super class and then collects all ivars, including those synthesized for
1069/// current class. This routine is used for implementation of current class
1070/// when all ivars, declared and synthesized are known.
1071///
1072void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1073                                      bool leafClass,
1074                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1075  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1076    DeepCollectObjCIvars(SuperClass, false, Ivars);
1077  if (!leafClass) {
1078    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1079         E = OI->ivar_end(); I != E; ++I)
1080      Ivars.push_back(*I);
1081  }
1082  else {
1083    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1084    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1085         Iv= Iv->getNextIvar())
1086      Ivars.push_back(Iv);
1087  }
1088}
1089
1090/// CollectInheritedProtocols - Collect all protocols in current class and
1091/// those inherited by it.
1092void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1093                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1094  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1095    // We can use protocol_iterator here instead of
1096    // all_referenced_protocol_iterator since we are walking all categories.
1097    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1098         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1099      ObjCProtocolDecl *Proto = (*P);
1100      Protocols.insert(Proto);
1101      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1102           PE = Proto->protocol_end(); P != PE; ++P) {
1103        Protocols.insert(*P);
1104        CollectInheritedProtocols(*P, Protocols);
1105      }
1106    }
1107
1108    // Categories of this Interface.
1109    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
1110         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
1111      CollectInheritedProtocols(CDeclChain, Protocols);
1112    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1113      while (SD) {
1114        CollectInheritedProtocols(SD, Protocols);
1115        SD = SD->getSuperClass();
1116      }
1117  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1118    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1119         PE = OC->protocol_end(); P != PE; ++P) {
1120      ObjCProtocolDecl *Proto = (*P);
1121      Protocols.insert(Proto);
1122      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1123           PE = Proto->protocol_end(); P != PE; ++P)
1124        CollectInheritedProtocols(*P, Protocols);
1125    }
1126  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1127    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1128         PE = OP->protocol_end(); P != PE; ++P) {
1129      ObjCProtocolDecl *Proto = (*P);
1130      Protocols.insert(Proto);
1131      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1132           PE = Proto->protocol_end(); P != PE; ++P)
1133        CollectInheritedProtocols(*P, Protocols);
1134    }
1135  }
1136}
1137
1138unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1139  unsigned count = 0;
1140  // Count ivars declared in class extension.
1141  for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
1142       CDecl = CDecl->getNextClassExtension())
1143    count += CDecl->ivar_size();
1144
1145  // Count ivar defined in this class's implementation.  This
1146  // includes synthesized ivars.
1147  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1148    count += ImplDecl->ivar_size();
1149
1150  return count;
1151}
1152
1153/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1154ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1155  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1156    I = ObjCImpls.find(D);
1157  if (I != ObjCImpls.end())
1158    return cast<ObjCImplementationDecl>(I->second);
1159  return 0;
1160}
1161/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1162ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1163  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1164    I = ObjCImpls.find(D);
1165  if (I != ObjCImpls.end())
1166    return cast<ObjCCategoryImplDecl>(I->second);
1167  return 0;
1168}
1169
1170/// \brief Set the implementation of ObjCInterfaceDecl.
1171void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1172                           ObjCImplementationDecl *ImplD) {
1173  assert(IFaceD && ImplD && "Passed null params");
1174  ObjCImpls[IFaceD] = ImplD;
1175}
1176/// \brief Set the implementation of ObjCCategoryDecl.
1177void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1178                           ObjCCategoryImplDecl *ImplD) {
1179  assert(CatD && ImplD && "Passed null params");
1180  ObjCImpls[CatD] = ImplD;
1181}
1182
1183/// \brief Get the copy initialization expression of VarDecl,or NULL if
1184/// none exists.
1185Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1186  assert(VD && "Passed null params");
1187  assert(VD->hasAttr<BlocksAttr>() &&
1188         "getBlockVarCopyInits - not __block var");
1189  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1190    I = BlockVarCopyInits.find(VD);
1191  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1192}
1193
1194/// \brief Set the copy inialization expression of a block var decl.
1195void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1196  assert(VD && Init && "Passed null params");
1197  assert(VD->hasAttr<BlocksAttr>() &&
1198         "setBlockVarCopyInits - not __block var");
1199  BlockVarCopyInits[VD] = Init;
1200}
1201
1202/// \brief Allocate an uninitialized TypeSourceInfo.
1203///
1204/// The caller should initialize the memory held by TypeSourceInfo using
1205/// the TypeLoc wrappers.
1206///
1207/// \param T the type that will be the basis for type source info. This type
1208/// should refer to how the declarator was written in source code, not to
1209/// what type semantic analysis resolved the declarator to.
1210TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1211                                                 unsigned DataSize) const {
1212  if (!DataSize)
1213    DataSize = TypeLoc::getFullDataSizeForType(T);
1214  else
1215    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1216           "incorrect data size provided to CreateTypeSourceInfo!");
1217
1218  TypeSourceInfo *TInfo =
1219    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1220  new (TInfo) TypeSourceInfo(T);
1221  return TInfo;
1222}
1223
1224TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1225                                                     SourceLocation L) const {
1226  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1227  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1228  return DI;
1229}
1230
1231const ASTRecordLayout &
1232ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1233  return getObjCLayout(D, 0);
1234}
1235
1236const ASTRecordLayout &
1237ASTContext::getASTObjCImplementationLayout(
1238                                        const ObjCImplementationDecl *D) const {
1239  return getObjCLayout(D->getClassInterface(), D);
1240}
1241
1242//===----------------------------------------------------------------------===//
1243//                   Type creation/memoization methods
1244//===----------------------------------------------------------------------===//
1245
1246QualType
1247ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1248  unsigned fastQuals = quals.getFastQualifiers();
1249  quals.removeFastQualifiers();
1250
1251  // Check if we've already instantiated this type.
1252  llvm::FoldingSetNodeID ID;
1253  ExtQuals::Profile(ID, baseType, quals);
1254  void *insertPos = 0;
1255  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1256    assert(eq->getQualifiers() == quals);
1257    return QualType(eq, fastQuals);
1258  }
1259
1260  // If the base type is not canonical, make the appropriate canonical type.
1261  QualType canon;
1262  if (!baseType->isCanonicalUnqualified()) {
1263    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1264    canonSplit.second.addConsistentQualifiers(quals);
1265    canon = getExtQualType(canonSplit.first, canonSplit.second);
1266
1267    // Re-find the insert position.
1268    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1269  }
1270
1271  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1272  ExtQualNodes.InsertNode(eq, insertPos);
1273  return QualType(eq, fastQuals);
1274}
1275
1276QualType
1277ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1278  QualType CanT = getCanonicalType(T);
1279  if (CanT.getAddressSpace() == AddressSpace)
1280    return T;
1281
1282  // If we are composing extended qualifiers together, merge together
1283  // into one ExtQuals node.
1284  QualifierCollector Quals;
1285  const Type *TypeNode = Quals.strip(T);
1286
1287  // If this type already has an address space specified, it cannot get
1288  // another one.
1289  assert(!Quals.hasAddressSpace() &&
1290         "Type cannot be in multiple addr spaces!");
1291  Quals.addAddressSpace(AddressSpace);
1292
1293  return getExtQualType(TypeNode, Quals);
1294}
1295
1296QualType ASTContext::getObjCGCQualType(QualType T,
1297                                       Qualifiers::GC GCAttr) const {
1298  QualType CanT = getCanonicalType(T);
1299  if (CanT.getObjCGCAttr() == GCAttr)
1300    return T;
1301
1302  if (const PointerType *ptr = T->getAs<PointerType>()) {
1303    QualType Pointee = ptr->getPointeeType();
1304    if (Pointee->isAnyPointerType()) {
1305      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1306      return getPointerType(ResultType);
1307    }
1308  }
1309
1310  // If we are composing extended qualifiers together, merge together
1311  // into one ExtQuals node.
1312  QualifierCollector Quals;
1313  const Type *TypeNode = Quals.strip(T);
1314
1315  // If this type already has an ObjCGC specified, it cannot get
1316  // another one.
1317  assert(!Quals.hasObjCGCAttr() &&
1318         "Type cannot have multiple ObjCGCs!");
1319  Quals.addObjCGCAttr(GCAttr);
1320
1321  return getExtQualType(TypeNode, Quals);
1322}
1323
1324const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1325                                                   FunctionType::ExtInfo Info) {
1326  if (T->getExtInfo() == Info)
1327    return T;
1328
1329  QualType Result;
1330  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1331    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1332  } else {
1333    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1334    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1335    EPI.ExtInfo = Info;
1336    Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1337                             FPT->getNumArgs(), EPI);
1338  }
1339
1340  return cast<FunctionType>(Result.getTypePtr());
1341}
1342
1343/// getComplexType - Return the uniqued reference to the type for a complex
1344/// number with the specified element type.
1345QualType ASTContext::getComplexType(QualType T) const {
1346  // Unique pointers, to guarantee there is only one pointer of a particular
1347  // structure.
1348  llvm::FoldingSetNodeID ID;
1349  ComplexType::Profile(ID, T);
1350
1351  void *InsertPos = 0;
1352  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1353    return QualType(CT, 0);
1354
1355  // If the pointee type isn't canonical, this won't be a canonical type either,
1356  // so fill in the canonical type field.
1357  QualType Canonical;
1358  if (!T.isCanonical()) {
1359    Canonical = getComplexType(getCanonicalType(T));
1360
1361    // Get the new insert position for the node we care about.
1362    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1363    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1364  }
1365  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1366  Types.push_back(New);
1367  ComplexTypes.InsertNode(New, InsertPos);
1368  return QualType(New, 0);
1369}
1370
1371/// getPointerType - Return the uniqued reference to the type for a pointer to
1372/// the specified type.
1373QualType ASTContext::getPointerType(QualType T) const {
1374  // Unique pointers, to guarantee there is only one pointer of a particular
1375  // structure.
1376  llvm::FoldingSetNodeID ID;
1377  PointerType::Profile(ID, T);
1378
1379  void *InsertPos = 0;
1380  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1381    return QualType(PT, 0);
1382
1383  // If the pointee type isn't canonical, this won't be a canonical type either,
1384  // so fill in the canonical type field.
1385  QualType Canonical;
1386  if (!T.isCanonical()) {
1387    Canonical = getPointerType(getCanonicalType(T));
1388
1389    // Get the new insert position for the node we care about.
1390    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1391    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1392  }
1393  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1394  Types.push_back(New);
1395  PointerTypes.InsertNode(New, InsertPos);
1396  return QualType(New, 0);
1397}
1398
1399/// getBlockPointerType - Return the uniqued reference to the type for
1400/// a pointer to the specified block.
1401QualType ASTContext::getBlockPointerType(QualType T) const {
1402  assert(T->isFunctionType() && "block of function types only");
1403  // Unique pointers, to guarantee there is only one block of a particular
1404  // structure.
1405  llvm::FoldingSetNodeID ID;
1406  BlockPointerType::Profile(ID, T);
1407
1408  void *InsertPos = 0;
1409  if (BlockPointerType *PT =
1410        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1411    return QualType(PT, 0);
1412
1413  // If the block pointee type isn't canonical, this won't be a canonical
1414  // type either so fill in the canonical type field.
1415  QualType Canonical;
1416  if (!T.isCanonical()) {
1417    Canonical = getBlockPointerType(getCanonicalType(T));
1418
1419    // Get the new insert position for the node we care about.
1420    BlockPointerType *NewIP =
1421      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1422    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1423  }
1424  BlockPointerType *New
1425    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1426  Types.push_back(New);
1427  BlockPointerTypes.InsertNode(New, InsertPos);
1428  return QualType(New, 0);
1429}
1430
1431/// getLValueReferenceType - Return the uniqued reference to the type for an
1432/// lvalue reference to the specified type.
1433QualType
1434ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
1435  assert(getCanonicalType(T) != OverloadTy &&
1436         "Unresolved overloaded function type");
1437
1438  // Unique pointers, to guarantee there is only one pointer of a particular
1439  // structure.
1440  llvm::FoldingSetNodeID ID;
1441  ReferenceType::Profile(ID, T, SpelledAsLValue);
1442
1443  void *InsertPos = 0;
1444  if (LValueReferenceType *RT =
1445        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1446    return QualType(RT, 0);
1447
1448  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1449
1450  // If the referencee type isn't canonical, this won't be a canonical type
1451  // either, so fill in the canonical type field.
1452  QualType Canonical;
1453  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1454    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1455    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1456
1457    // Get the new insert position for the node we care about.
1458    LValueReferenceType *NewIP =
1459      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1460    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1461  }
1462
1463  LValueReferenceType *New
1464    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1465                                                     SpelledAsLValue);
1466  Types.push_back(New);
1467  LValueReferenceTypes.InsertNode(New, InsertPos);
1468
1469  return QualType(New, 0);
1470}
1471
1472/// getRValueReferenceType - Return the uniqued reference to the type for an
1473/// rvalue reference to the specified type.
1474QualType ASTContext::getRValueReferenceType(QualType T) const {
1475  // Unique pointers, to guarantee there is only one pointer of a particular
1476  // structure.
1477  llvm::FoldingSetNodeID ID;
1478  ReferenceType::Profile(ID, T, false);
1479
1480  void *InsertPos = 0;
1481  if (RValueReferenceType *RT =
1482        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1483    return QualType(RT, 0);
1484
1485  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1486
1487  // If the referencee type isn't canonical, this won't be a canonical type
1488  // either, so fill in the canonical type field.
1489  QualType Canonical;
1490  if (InnerRef || !T.isCanonical()) {
1491    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1492    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1493
1494    // Get the new insert position for the node we care about.
1495    RValueReferenceType *NewIP =
1496      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1497    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1498  }
1499
1500  RValueReferenceType *New
1501    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1502  Types.push_back(New);
1503  RValueReferenceTypes.InsertNode(New, InsertPos);
1504  return QualType(New, 0);
1505}
1506
1507/// getMemberPointerType - Return the uniqued reference to the type for a
1508/// member pointer to the specified type, in the specified class.
1509QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
1510  // Unique pointers, to guarantee there is only one pointer of a particular
1511  // structure.
1512  llvm::FoldingSetNodeID ID;
1513  MemberPointerType::Profile(ID, T, Cls);
1514
1515  void *InsertPos = 0;
1516  if (MemberPointerType *PT =
1517      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1518    return QualType(PT, 0);
1519
1520  // If the pointee or class type isn't canonical, this won't be a canonical
1521  // type either, so fill in the canonical type field.
1522  QualType Canonical;
1523  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1524    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1525
1526    // Get the new insert position for the node we care about.
1527    MemberPointerType *NewIP =
1528      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1529    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1530  }
1531  MemberPointerType *New
1532    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1533  Types.push_back(New);
1534  MemberPointerTypes.InsertNode(New, InsertPos);
1535  return QualType(New, 0);
1536}
1537
1538/// getConstantArrayType - Return the unique reference to the type for an
1539/// array of the specified element type.
1540QualType ASTContext::getConstantArrayType(QualType EltTy,
1541                                          const llvm::APInt &ArySizeIn,
1542                                          ArrayType::ArraySizeModifier ASM,
1543                                          unsigned IndexTypeQuals) const {
1544  assert((EltTy->isDependentType() ||
1545          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1546         "Constant array of VLAs is illegal!");
1547
1548  // Convert the array size into a canonical width matching the pointer size for
1549  // the target.
1550  llvm::APInt ArySize(ArySizeIn);
1551  ArySize =
1552    ArySize.zextOrTrunc(Target.getPointerWidth(getTargetAddressSpace(EltTy)));
1553
1554  llvm::FoldingSetNodeID ID;
1555  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
1556
1557  void *InsertPos = 0;
1558  if (ConstantArrayType *ATP =
1559      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1560    return QualType(ATP, 0);
1561
1562  // If the element type isn't canonical or has qualifiers, this won't
1563  // be a canonical type either, so fill in the canonical type field.
1564  QualType Canon;
1565  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1566    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1567    Canon = getConstantArrayType(QualType(canonSplit.first, 0), ArySize,
1568                                 ASM, IndexTypeQuals);
1569    Canon = getQualifiedType(Canon, canonSplit.second);
1570
1571    // Get the new insert position for the node we care about.
1572    ConstantArrayType *NewIP =
1573      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1574    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1575  }
1576
1577  ConstantArrayType *New = new(*this,TypeAlignment)
1578    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
1579  ConstantArrayTypes.InsertNode(New, InsertPos);
1580  Types.push_back(New);
1581  return QualType(New, 0);
1582}
1583
1584/// getVariableArrayDecayedType - Turns the given type, which may be
1585/// variably-modified, into the corresponding type with all the known
1586/// sizes replaced with [*].
1587QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
1588  // Vastly most common case.
1589  if (!type->isVariablyModifiedType()) return type;
1590
1591  QualType result;
1592
1593  SplitQualType split = type.getSplitDesugaredType();
1594  const Type *ty = split.first;
1595  switch (ty->getTypeClass()) {
1596#define TYPE(Class, Base)
1597#define ABSTRACT_TYPE(Class, Base)
1598#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1599#include "clang/AST/TypeNodes.def"
1600    llvm_unreachable("didn't desugar past all non-canonical types?");
1601
1602  // These types should never be variably-modified.
1603  case Type::Builtin:
1604  case Type::Complex:
1605  case Type::Vector:
1606  case Type::ExtVector:
1607  case Type::DependentSizedExtVector:
1608  case Type::ObjCObject:
1609  case Type::ObjCInterface:
1610  case Type::ObjCObjectPointer:
1611  case Type::Record:
1612  case Type::Enum:
1613  case Type::UnresolvedUsing:
1614  case Type::TypeOfExpr:
1615  case Type::TypeOf:
1616  case Type::Decltype:
1617  case Type::UnaryTransform:
1618  case Type::DependentName:
1619  case Type::InjectedClassName:
1620  case Type::TemplateSpecialization:
1621  case Type::DependentTemplateSpecialization:
1622  case Type::TemplateTypeParm:
1623  case Type::SubstTemplateTypeParmPack:
1624  case Type::Auto:
1625  case Type::PackExpansion:
1626    llvm_unreachable("type should never be variably-modified");
1627
1628  // These types can be variably-modified but should never need to
1629  // further decay.
1630  case Type::FunctionNoProto:
1631  case Type::FunctionProto:
1632  case Type::BlockPointer:
1633  case Type::MemberPointer:
1634    return type;
1635
1636  // These types can be variably-modified.  All these modifications
1637  // preserve structure except as noted by comments.
1638  // TODO: if we ever care about optimizing VLAs, there are no-op
1639  // optimizations available here.
1640  case Type::Pointer:
1641    result = getPointerType(getVariableArrayDecayedType(
1642                              cast<PointerType>(ty)->getPointeeType()));
1643    break;
1644
1645  case Type::LValueReference: {
1646    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
1647    result = getLValueReferenceType(
1648                 getVariableArrayDecayedType(lv->getPointeeType()),
1649                                    lv->isSpelledAsLValue());
1650    break;
1651  }
1652
1653  case Type::RValueReference: {
1654    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
1655    result = getRValueReferenceType(
1656                 getVariableArrayDecayedType(lv->getPointeeType()));
1657    break;
1658  }
1659
1660  case Type::ConstantArray: {
1661    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
1662    result = getConstantArrayType(
1663                 getVariableArrayDecayedType(cat->getElementType()),
1664                                  cat->getSize(),
1665                                  cat->getSizeModifier(),
1666                                  cat->getIndexTypeCVRQualifiers());
1667    break;
1668  }
1669
1670  case Type::DependentSizedArray: {
1671    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
1672    result = getDependentSizedArrayType(
1673                 getVariableArrayDecayedType(dat->getElementType()),
1674                                        dat->getSizeExpr(),
1675                                        dat->getSizeModifier(),
1676                                        dat->getIndexTypeCVRQualifiers(),
1677                                        dat->getBracketsRange());
1678    break;
1679  }
1680
1681  // Turn incomplete types into [*] types.
1682  case Type::IncompleteArray: {
1683    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
1684    result = getVariableArrayType(
1685                 getVariableArrayDecayedType(iat->getElementType()),
1686                                  /*size*/ 0,
1687                                  ArrayType::Normal,
1688                                  iat->getIndexTypeCVRQualifiers(),
1689                                  SourceRange());
1690    break;
1691  }
1692
1693  // Turn VLA types into [*] types.
1694  case Type::VariableArray: {
1695    const VariableArrayType *vat = cast<VariableArrayType>(ty);
1696    result = getVariableArrayType(
1697                 getVariableArrayDecayedType(vat->getElementType()),
1698                                  /*size*/ 0,
1699                                  ArrayType::Star,
1700                                  vat->getIndexTypeCVRQualifiers(),
1701                                  vat->getBracketsRange());
1702    break;
1703  }
1704  }
1705
1706  // Apply the top-level qualifiers from the original.
1707  return getQualifiedType(result, split.second);
1708}
1709
1710/// getVariableArrayType - Returns a non-unique reference to the type for a
1711/// variable array of the specified element type.
1712QualType ASTContext::getVariableArrayType(QualType EltTy,
1713                                          Expr *NumElts,
1714                                          ArrayType::ArraySizeModifier ASM,
1715                                          unsigned IndexTypeQuals,
1716                                          SourceRange Brackets) const {
1717  // Since we don't unique expressions, it isn't possible to unique VLA's
1718  // that have an expression provided for their size.
1719  QualType Canon;
1720
1721  // Be sure to pull qualifiers off the element type.
1722  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1723    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1724    Canon = getVariableArrayType(QualType(canonSplit.first, 0), NumElts, ASM,
1725                                 IndexTypeQuals, Brackets);
1726    Canon = getQualifiedType(Canon, canonSplit.second);
1727  }
1728
1729  VariableArrayType *New = new(*this, TypeAlignment)
1730    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
1731
1732  VariableArrayTypes.push_back(New);
1733  Types.push_back(New);
1734  return QualType(New, 0);
1735}
1736
1737/// getDependentSizedArrayType - Returns a non-unique reference to
1738/// the type for a dependently-sized array of the specified element
1739/// type.
1740QualType ASTContext::getDependentSizedArrayType(QualType elementType,
1741                                                Expr *numElements,
1742                                                ArrayType::ArraySizeModifier ASM,
1743                                                unsigned elementTypeQuals,
1744                                                SourceRange brackets) const {
1745  assert((!numElements || numElements->isTypeDependent() ||
1746          numElements->isValueDependent()) &&
1747         "Size must be type- or value-dependent!");
1748
1749  // Dependently-sized array types that do not have a specified number
1750  // of elements will have their sizes deduced from a dependent
1751  // initializer.  We do no canonicalization here at all, which is okay
1752  // because they can't be used in most locations.
1753  if (!numElements) {
1754    DependentSizedArrayType *newType
1755      = new (*this, TypeAlignment)
1756          DependentSizedArrayType(*this, elementType, QualType(),
1757                                  numElements, ASM, elementTypeQuals,
1758                                  brackets);
1759    Types.push_back(newType);
1760    return QualType(newType, 0);
1761  }
1762
1763  // Otherwise, we actually build a new type every time, but we
1764  // also build a canonical type.
1765
1766  SplitQualType canonElementType = getCanonicalType(elementType).split();
1767
1768  void *insertPos = 0;
1769  llvm::FoldingSetNodeID ID;
1770  DependentSizedArrayType::Profile(ID, *this,
1771                                   QualType(canonElementType.first, 0),
1772                                   ASM, elementTypeQuals, numElements);
1773
1774  // Look for an existing type with these properties.
1775  DependentSizedArrayType *canonTy =
1776    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1777
1778  // If we don't have one, build one.
1779  if (!canonTy) {
1780    canonTy = new (*this, TypeAlignment)
1781      DependentSizedArrayType(*this, QualType(canonElementType.first, 0),
1782                              QualType(), numElements, ASM, elementTypeQuals,
1783                              brackets);
1784    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
1785    Types.push_back(canonTy);
1786  }
1787
1788  // Apply qualifiers from the element type to the array.
1789  QualType canon = getQualifiedType(QualType(canonTy,0),
1790                                    canonElementType.second);
1791
1792  // If we didn't need extra canonicalization for the element type,
1793  // then just use that as our result.
1794  if (QualType(canonElementType.first, 0) == elementType)
1795    return canon;
1796
1797  // Otherwise, we need to build a type which follows the spelling
1798  // of the element type.
1799  DependentSizedArrayType *sugaredType
1800    = new (*this, TypeAlignment)
1801        DependentSizedArrayType(*this, elementType, canon, numElements,
1802                                ASM, elementTypeQuals, brackets);
1803  Types.push_back(sugaredType);
1804  return QualType(sugaredType, 0);
1805}
1806
1807QualType ASTContext::getIncompleteArrayType(QualType elementType,
1808                                            ArrayType::ArraySizeModifier ASM,
1809                                            unsigned elementTypeQuals) const {
1810  llvm::FoldingSetNodeID ID;
1811  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
1812
1813  void *insertPos = 0;
1814  if (IncompleteArrayType *iat =
1815       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
1816    return QualType(iat, 0);
1817
1818  // If the element type isn't canonical, this won't be a canonical type
1819  // either, so fill in the canonical type field.  We also have to pull
1820  // qualifiers off the element type.
1821  QualType canon;
1822
1823  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
1824    SplitQualType canonSplit = getCanonicalType(elementType).split();
1825    canon = getIncompleteArrayType(QualType(canonSplit.first, 0),
1826                                   ASM, elementTypeQuals);
1827    canon = getQualifiedType(canon, canonSplit.second);
1828
1829    // Get the new insert position for the node we care about.
1830    IncompleteArrayType *existing =
1831      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1832    assert(!existing && "Shouldn't be in the map!"); (void) existing;
1833  }
1834
1835  IncompleteArrayType *newType = new (*this, TypeAlignment)
1836    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
1837
1838  IncompleteArrayTypes.InsertNode(newType, insertPos);
1839  Types.push_back(newType);
1840  return QualType(newType, 0);
1841}
1842
1843/// getVectorType - Return the unique reference to a vector type of
1844/// the specified element type and size. VectorType must be a built-in type.
1845QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
1846                                   VectorType::VectorKind VecKind) const {
1847  assert(vecType->isBuiltinType());
1848
1849  // Check if we've already instantiated a vector of this type.
1850  llvm::FoldingSetNodeID ID;
1851  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
1852
1853  void *InsertPos = 0;
1854  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1855    return QualType(VTP, 0);
1856
1857  // If the element type isn't canonical, this won't be a canonical type either,
1858  // so fill in the canonical type field.
1859  QualType Canonical;
1860  if (!vecType.isCanonical()) {
1861    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
1862
1863    // Get the new insert position for the node we care about.
1864    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1865    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1866  }
1867  VectorType *New = new (*this, TypeAlignment)
1868    VectorType(vecType, NumElts, Canonical, VecKind);
1869  VectorTypes.InsertNode(New, InsertPos);
1870  Types.push_back(New);
1871  return QualType(New, 0);
1872}
1873
1874/// getExtVectorType - Return the unique reference to an extended vector type of
1875/// the specified element type and size. VectorType must be a built-in type.
1876QualType
1877ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
1878  assert(vecType->isBuiltinType() || vecType->isDependentType());
1879
1880  // Check if we've already instantiated a vector of this type.
1881  llvm::FoldingSetNodeID ID;
1882  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
1883                      VectorType::GenericVector);
1884  void *InsertPos = 0;
1885  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1886    return QualType(VTP, 0);
1887
1888  // If the element type isn't canonical, this won't be a canonical type either,
1889  // so fill in the canonical type field.
1890  QualType Canonical;
1891  if (!vecType.isCanonical()) {
1892    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1893
1894    // Get the new insert position for the node we care about.
1895    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1896    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1897  }
1898  ExtVectorType *New = new (*this, TypeAlignment)
1899    ExtVectorType(vecType, NumElts, Canonical);
1900  VectorTypes.InsertNode(New, InsertPos);
1901  Types.push_back(New);
1902  return QualType(New, 0);
1903}
1904
1905QualType
1906ASTContext::getDependentSizedExtVectorType(QualType vecType,
1907                                           Expr *SizeExpr,
1908                                           SourceLocation AttrLoc) const {
1909  llvm::FoldingSetNodeID ID;
1910  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1911                                       SizeExpr);
1912
1913  void *InsertPos = 0;
1914  DependentSizedExtVectorType *Canon
1915    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1916  DependentSizedExtVectorType *New;
1917  if (Canon) {
1918    // We already have a canonical version of this array type; use it as
1919    // the canonical type for a newly-built type.
1920    New = new (*this, TypeAlignment)
1921      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
1922                                  SizeExpr, AttrLoc);
1923  } else {
1924    QualType CanonVecTy = getCanonicalType(vecType);
1925    if (CanonVecTy == vecType) {
1926      New = new (*this, TypeAlignment)
1927        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
1928                                    AttrLoc);
1929
1930      DependentSizedExtVectorType *CanonCheck
1931        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1932      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
1933      (void)CanonCheck;
1934      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1935    } else {
1936      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1937                                                      SourceLocation());
1938      New = new (*this, TypeAlignment)
1939        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
1940    }
1941  }
1942
1943  Types.push_back(New);
1944  return QualType(New, 0);
1945}
1946
1947/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1948///
1949QualType
1950ASTContext::getFunctionNoProtoType(QualType ResultTy,
1951                                   const FunctionType::ExtInfo &Info) const {
1952  const CallingConv DefaultCC = Info.getCC();
1953  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
1954                               CC_X86StdCall : DefaultCC;
1955  // Unique functions, to guarantee there is only one function of a particular
1956  // structure.
1957  llvm::FoldingSetNodeID ID;
1958  FunctionNoProtoType::Profile(ID, ResultTy, Info);
1959
1960  void *InsertPos = 0;
1961  if (FunctionNoProtoType *FT =
1962        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1963    return QualType(FT, 0);
1964
1965  QualType Canonical;
1966  if (!ResultTy.isCanonical() ||
1967      getCanonicalCallConv(CallConv) != CallConv) {
1968    Canonical =
1969      getFunctionNoProtoType(getCanonicalType(ResultTy),
1970                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
1971
1972    // Get the new insert position for the node we care about.
1973    FunctionNoProtoType *NewIP =
1974      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1975    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1976  }
1977
1978  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
1979  FunctionNoProtoType *New = new (*this, TypeAlignment)
1980    FunctionNoProtoType(ResultTy, Canonical, newInfo);
1981  Types.push_back(New);
1982  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1983  return QualType(New, 0);
1984}
1985
1986/// getFunctionType - Return a normal function type with a typed argument
1987/// list.  isVariadic indicates whether the argument list includes '...'.
1988QualType
1989ASTContext::getFunctionType(QualType ResultTy,
1990                            const QualType *ArgArray, unsigned NumArgs,
1991                            const FunctionProtoType::ExtProtoInfo &EPI) const {
1992  // Unique functions, to guarantee there is only one function of a particular
1993  // structure.
1994  llvm::FoldingSetNodeID ID;
1995  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI, *this);
1996
1997  void *InsertPos = 0;
1998  if (FunctionProtoType *FTP =
1999        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2000    return QualType(FTP, 0);
2001
2002  // Determine whether the type being created is already canonical or not.
2003  bool isCanonical= EPI.ExceptionSpecType == EST_None && ResultTy.isCanonical();
2004  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2005    if (!ArgArray[i].isCanonicalAsParam())
2006      isCanonical = false;
2007
2008  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2009  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2010                               CC_X86StdCall : DefaultCC;
2011
2012  // If this type isn't canonical, get the canonical version of it.
2013  // The exception spec is not part of the canonical type.
2014  QualType Canonical;
2015  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2016    SmallVector<QualType, 16> CanonicalArgs;
2017    CanonicalArgs.reserve(NumArgs);
2018    for (unsigned i = 0; i != NumArgs; ++i)
2019      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2020
2021    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2022    CanonicalEPI.ExceptionSpecType = EST_None;
2023    CanonicalEPI.NumExceptions = 0;
2024    CanonicalEPI.ExtInfo
2025      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2026
2027    Canonical = getFunctionType(getCanonicalType(ResultTy),
2028                                CanonicalArgs.data(), NumArgs,
2029                                CanonicalEPI);
2030
2031    // Get the new insert position for the node we care about.
2032    FunctionProtoType *NewIP =
2033      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2034    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2035  }
2036
2037  // FunctionProtoType objects are allocated with extra bytes after
2038  // them for three variable size arrays at the end:
2039  //  - parameter types
2040  //  - exception types
2041  //  - consumed-arguments flags
2042  // Instead of the exception types, there could be a noexcept
2043  // expression.
2044  size_t Size = sizeof(FunctionProtoType) +
2045                NumArgs * sizeof(QualType);
2046  if (EPI.ExceptionSpecType == EST_Dynamic)
2047    Size += EPI.NumExceptions * sizeof(QualType);
2048  else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2049    Size += sizeof(Expr*);
2050  }
2051  if (EPI.ConsumedArguments)
2052    Size += NumArgs * sizeof(bool);
2053
2054  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2055  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2056  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2057  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, newEPI);
2058  Types.push_back(FTP);
2059  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2060  return QualType(FTP, 0);
2061}
2062
2063#ifndef NDEBUG
2064static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2065  if (!isa<CXXRecordDecl>(D)) return false;
2066  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2067  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2068    return true;
2069  if (RD->getDescribedClassTemplate() &&
2070      !isa<ClassTemplateSpecializationDecl>(RD))
2071    return true;
2072  return false;
2073}
2074#endif
2075
2076/// getInjectedClassNameType - Return the unique reference to the
2077/// injected class name type for the specified templated declaration.
2078QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2079                                              QualType TST) const {
2080  assert(NeedsInjectedClassNameType(Decl));
2081  if (Decl->TypeForDecl) {
2082    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2083  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDeclaration()) {
2084    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2085    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2086    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2087  } else {
2088    Type *newType =
2089      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2090    Decl->TypeForDecl = newType;
2091    Types.push_back(newType);
2092  }
2093  return QualType(Decl->TypeForDecl, 0);
2094}
2095
2096/// getTypeDeclType - Return the unique reference to the type for the
2097/// specified type declaration.
2098QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2099  assert(Decl && "Passed null for Decl param");
2100  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2101
2102  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2103    return getTypedefType(Typedef);
2104
2105  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2106         "Template type parameter types are always available.");
2107
2108  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2109    assert(!Record->getPreviousDeclaration() &&
2110           "struct/union has previous declaration");
2111    assert(!NeedsInjectedClassNameType(Record));
2112    return getRecordType(Record);
2113  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2114    assert(!Enum->getPreviousDeclaration() &&
2115           "enum has previous declaration");
2116    return getEnumType(Enum);
2117  } else if (const UnresolvedUsingTypenameDecl *Using =
2118               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2119    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2120    Decl->TypeForDecl = newType;
2121    Types.push_back(newType);
2122  } else
2123    llvm_unreachable("TypeDecl without a type?");
2124
2125  return QualType(Decl->TypeForDecl, 0);
2126}
2127
2128/// getTypedefType - Return the unique reference to the type for the
2129/// specified typedef name decl.
2130QualType
2131ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2132                           QualType Canonical) const {
2133  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2134
2135  if (Canonical.isNull())
2136    Canonical = getCanonicalType(Decl->getUnderlyingType());
2137  TypedefType *newType = new(*this, TypeAlignment)
2138    TypedefType(Type::Typedef, Decl, Canonical);
2139  Decl->TypeForDecl = newType;
2140  Types.push_back(newType);
2141  return QualType(newType, 0);
2142}
2143
2144QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2145  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2146
2147  if (const RecordDecl *PrevDecl = Decl->getPreviousDeclaration())
2148    if (PrevDecl->TypeForDecl)
2149      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2150
2151  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2152  Decl->TypeForDecl = newType;
2153  Types.push_back(newType);
2154  return QualType(newType, 0);
2155}
2156
2157QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2158  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2159
2160  if (const EnumDecl *PrevDecl = Decl->getPreviousDeclaration())
2161    if (PrevDecl->TypeForDecl)
2162      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2163
2164  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2165  Decl->TypeForDecl = newType;
2166  Types.push_back(newType);
2167  return QualType(newType, 0);
2168}
2169
2170QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2171                                       QualType modifiedType,
2172                                       QualType equivalentType) {
2173  llvm::FoldingSetNodeID id;
2174  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2175
2176  void *insertPos = 0;
2177  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2178  if (type) return QualType(type, 0);
2179
2180  QualType canon = getCanonicalType(equivalentType);
2181  type = new (*this, TypeAlignment)
2182           AttributedType(canon, attrKind, modifiedType, equivalentType);
2183
2184  Types.push_back(type);
2185  AttributedTypes.InsertNode(type, insertPos);
2186
2187  return QualType(type, 0);
2188}
2189
2190
2191/// \brief Retrieve a substitution-result type.
2192QualType
2193ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2194                                         QualType Replacement) const {
2195  assert(Replacement.isCanonical()
2196         && "replacement types must always be canonical");
2197
2198  llvm::FoldingSetNodeID ID;
2199  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2200  void *InsertPos = 0;
2201  SubstTemplateTypeParmType *SubstParm
2202    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2203
2204  if (!SubstParm) {
2205    SubstParm = new (*this, TypeAlignment)
2206      SubstTemplateTypeParmType(Parm, Replacement);
2207    Types.push_back(SubstParm);
2208    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2209  }
2210
2211  return QualType(SubstParm, 0);
2212}
2213
2214/// \brief Retrieve a
2215QualType ASTContext::getSubstTemplateTypeParmPackType(
2216                                          const TemplateTypeParmType *Parm,
2217                                              const TemplateArgument &ArgPack) {
2218#ifndef NDEBUG
2219  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2220                                    PEnd = ArgPack.pack_end();
2221       P != PEnd; ++P) {
2222    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2223    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2224  }
2225#endif
2226
2227  llvm::FoldingSetNodeID ID;
2228  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2229  void *InsertPos = 0;
2230  if (SubstTemplateTypeParmPackType *SubstParm
2231        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2232    return QualType(SubstParm, 0);
2233
2234  QualType Canon;
2235  if (!Parm->isCanonicalUnqualified()) {
2236    Canon = getCanonicalType(QualType(Parm, 0));
2237    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2238                                             ArgPack);
2239    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2240  }
2241
2242  SubstTemplateTypeParmPackType *SubstParm
2243    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2244                                                               ArgPack);
2245  Types.push_back(SubstParm);
2246  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2247  return QualType(SubstParm, 0);
2248}
2249
2250/// \brief Retrieve the template type parameter type for a template
2251/// parameter or parameter pack with the given depth, index, and (optionally)
2252/// name.
2253QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2254                                             bool ParameterPack,
2255                                             TemplateTypeParmDecl *TTPDecl) const {
2256  llvm::FoldingSetNodeID ID;
2257  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
2258  void *InsertPos = 0;
2259  TemplateTypeParmType *TypeParm
2260    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2261
2262  if (TypeParm)
2263    return QualType(TypeParm, 0);
2264
2265  if (TTPDecl) {
2266    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2267    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
2268
2269    TemplateTypeParmType *TypeCheck
2270      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2271    assert(!TypeCheck && "Template type parameter canonical type broken");
2272    (void)TypeCheck;
2273  } else
2274    TypeParm = new (*this, TypeAlignment)
2275      TemplateTypeParmType(Depth, Index, ParameterPack);
2276
2277  Types.push_back(TypeParm);
2278  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2279
2280  return QualType(TypeParm, 0);
2281}
2282
2283TypeSourceInfo *
2284ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2285                                              SourceLocation NameLoc,
2286                                        const TemplateArgumentListInfo &Args,
2287                                              QualType Underlying) const {
2288  assert(!Name.getAsDependentTemplateName() &&
2289         "No dependent template names here!");
2290  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
2291
2292  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2293  TemplateSpecializationTypeLoc TL
2294    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
2295  TL.setTemplateNameLoc(NameLoc);
2296  TL.setLAngleLoc(Args.getLAngleLoc());
2297  TL.setRAngleLoc(Args.getRAngleLoc());
2298  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2299    TL.setArgLocInfo(i, Args[i].getLocInfo());
2300  return DI;
2301}
2302
2303QualType
2304ASTContext::getTemplateSpecializationType(TemplateName Template,
2305                                          const TemplateArgumentListInfo &Args,
2306                                          QualType Underlying) const {
2307  assert(!Template.getAsDependentTemplateName() &&
2308         "No dependent template names here!");
2309
2310  unsigned NumArgs = Args.size();
2311
2312  SmallVector<TemplateArgument, 4> ArgVec;
2313  ArgVec.reserve(NumArgs);
2314  for (unsigned i = 0; i != NumArgs; ++i)
2315    ArgVec.push_back(Args[i].getArgument());
2316
2317  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2318                                       Underlying);
2319}
2320
2321QualType
2322ASTContext::getTemplateSpecializationType(TemplateName Template,
2323                                          const TemplateArgument *Args,
2324                                          unsigned NumArgs,
2325                                          QualType Underlying) const {
2326  assert(!Template.getAsDependentTemplateName() &&
2327         "No dependent template names here!");
2328  // Look through qualified template names.
2329  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2330    Template = TemplateName(QTN->getTemplateDecl());
2331
2332  bool isTypeAlias =
2333    Template.getAsTemplateDecl() &&
2334    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
2335
2336  QualType CanonType;
2337  if (!Underlying.isNull())
2338    CanonType = getCanonicalType(Underlying);
2339  else {
2340    assert(!isTypeAlias &&
2341           "Underlying type for template alias must be computed by caller");
2342    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
2343                                                       NumArgs);
2344  }
2345
2346  // Allocate the (non-canonical) template specialization type, but don't
2347  // try to unique it: these types typically have location information that
2348  // we don't unique and don't want to lose.
2349  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
2350                       sizeof(TemplateArgument) * NumArgs +
2351                       (isTypeAlias ? sizeof(QualType) : 0),
2352                       TypeAlignment);
2353  TemplateSpecializationType *Spec
2354    = new (Mem) TemplateSpecializationType(Template,
2355                                           Args, NumArgs,
2356                                           CanonType,
2357                                         isTypeAlias ? Underlying : QualType());
2358
2359  Types.push_back(Spec);
2360  return QualType(Spec, 0);
2361}
2362
2363QualType
2364ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
2365                                                   const TemplateArgument *Args,
2366                                                   unsigned NumArgs) const {
2367  assert(!Template.getAsDependentTemplateName() &&
2368         "No dependent template names here!");
2369  assert((!Template.getAsTemplateDecl() ||
2370          !isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) &&
2371         "Underlying type for template alias must be computed by caller");
2372
2373  // Look through qualified template names.
2374  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2375    Template = TemplateName(QTN->getTemplateDecl());
2376
2377  // Build the canonical template specialization type.
2378  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
2379  SmallVector<TemplateArgument, 4> CanonArgs;
2380  CanonArgs.reserve(NumArgs);
2381  for (unsigned I = 0; I != NumArgs; ++I)
2382    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
2383
2384  // Determine whether this canonical template specialization type already
2385  // exists.
2386  llvm::FoldingSetNodeID ID;
2387  TemplateSpecializationType::Profile(ID, CanonTemplate,
2388                                      CanonArgs.data(), NumArgs, *this);
2389
2390  void *InsertPos = 0;
2391  TemplateSpecializationType *Spec
2392    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2393
2394  if (!Spec) {
2395    // Allocate a new canonical template specialization type.
2396    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2397                          sizeof(TemplateArgument) * NumArgs),
2398                         TypeAlignment);
2399    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
2400                                                CanonArgs.data(), NumArgs,
2401                                                QualType(), QualType());
2402    Types.push_back(Spec);
2403    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
2404  }
2405
2406  assert(Spec->isDependentType() &&
2407         "Non-dependent template-id type must have a canonical type");
2408  return QualType(Spec, 0);
2409}
2410
2411QualType
2412ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
2413                              NestedNameSpecifier *NNS,
2414                              QualType NamedType) const {
2415  llvm::FoldingSetNodeID ID;
2416  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
2417
2418  void *InsertPos = 0;
2419  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2420  if (T)
2421    return QualType(T, 0);
2422
2423  QualType Canon = NamedType;
2424  if (!Canon.isCanonical()) {
2425    Canon = getCanonicalType(NamedType);
2426    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2427    assert(!CheckT && "Elaborated canonical type broken");
2428    (void)CheckT;
2429  }
2430
2431  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
2432  Types.push_back(T);
2433  ElaboratedTypes.InsertNode(T, InsertPos);
2434  return QualType(T, 0);
2435}
2436
2437QualType
2438ASTContext::getParenType(QualType InnerType) const {
2439  llvm::FoldingSetNodeID ID;
2440  ParenType::Profile(ID, InnerType);
2441
2442  void *InsertPos = 0;
2443  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2444  if (T)
2445    return QualType(T, 0);
2446
2447  QualType Canon = InnerType;
2448  if (!Canon.isCanonical()) {
2449    Canon = getCanonicalType(InnerType);
2450    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2451    assert(!CheckT && "Paren canonical type broken");
2452    (void)CheckT;
2453  }
2454
2455  T = new (*this) ParenType(InnerType, Canon);
2456  Types.push_back(T);
2457  ParenTypes.InsertNode(T, InsertPos);
2458  return QualType(T, 0);
2459}
2460
2461QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
2462                                          NestedNameSpecifier *NNS,
2463                                          const IdentifierInfo *Name,
2464                                          QualType Canon) const {
2465  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2466
2467  if (Canon.isNull()) {
2468    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2469    ElaboratedTypeKeyword CanonKeyword = Keyword;
2470    if (Keyword == ETK_None)
2471      CanonKeyword = ETK_Typename;
2472
2473    if (CanonNNS != NNS || CanonKeyword != Keyword)
2474      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
2475  }
2476
2477  llvm::FoldingSetNodeID ID;
2478  DependentNameType::Profile(ID, Keyword, NNS, Name);
2479
2480  void *InsertPos = 0;
2481  DependentNameType *T
2482    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2483  if (T)
2484    return QualType(T, 0);
2485
2486  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
2487  Types.push_back(T);
2488  DependentNameTypes.InsertNode(T, InsertPos);
2489  return QualType(T, 0);
2490}
2491
2492QualType
2493ASTContext::getDependentTemplateSpecializationType(
2494                                 ElaboratedTypeKeyword Keyword,
2495                                 NestedNameSpecifier *NNS,
2496                                 const IdentifierInfo *Name,
2497                                 const TemplateArgumentListInfo &Args) const {
2498  // TODO: avoid this copy
2499  SmallVector<TemplateArgument, 16> ArgCopy;
2500  for (unsigned I = 0, E = Args.size(); I != E; ++I)
2501    ArgCopy.push_back(Args[I].getArgument());
2502  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
2503                                                ArgCopy.size(),
2504                                                ArgCopy.data());
2505}
2506
2507QualType
2508ASTContext::getDependentTemplateSpecializationType(
2509                                 ElaboratedTypeKeyword Keyword,
2510                                 NestedNameSpecifier *NNS,
2511                                 const IdentifierInfo *Name,
2512                                 unsigned NumArgs,
2513                                 const TemplateArgument *Args) const {
2514  assert((!NNS || NNS->isDependent()) &&
2515         "nested-name-specifier must be dependent");
2516
2517  llvm::FoldingSetNodeID ID;
2518  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
2519                                               Name, NumArgs, Args);
2520
2521  void *InsertPos = 0;
2522  DependentTemplateSpecializationType *T
2523    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2524  if (T)
2525    return QualType(T, 0);
2526
2527  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2528
2529  ElaboratedTypeKeyword CanonKeyword = Keyword;
2530  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
2531
2532  bool AnyNonCanonArgs = false;
2533  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
2534  for (unsigned I = 0; I != NumArgs; ++I) {
2535    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
2536    if (!CanonArgs[I].structurallyEquals(Args[I]))
2537      AnyNonCanonArgs = true;
2538  }
2539
2540  QualType Canon;
2541  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
2542    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
2543                                                   Name, NumArgs,
2544                                                   CanonArgs.data());
2545
2546    // Find the insert position again.
2547    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2548  }
2549
2550  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
2551                        sizeof(TemplateArgument) * NumArgs),
2552                       TypeAlignment);
2553  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
2554                                                    Name, NumArgs, Args, Canon);
2555  Types.push_back(T);
2556  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
2557  return QualType(T, 0);
2558}
2559
2560QualType ASTContext::getPackExpansionType(QualType Pattern,
2561                                      llvm::Optional<unsigned> NumExpansions) {
2562  llvm::FoldingSetNodeID ID;
2563  PackExpansionType::Profile(ID, Pattern, NumExpansions);
2564
2565  assert(Pattern->containsUnexpandedParameterPack() &&
2566         "Pack expansions must expand one or more parameter packs");
2567  void *InsertPos = 0;
2568  PackExpansionType *T
2569    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2570  if (T)
2571    return QualType(T, 0);
2572
2573  QualType Canon;
2574  if (!Pattern.isCanonical()) {
2575    Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
2576
2577    // Find the insert position again.
2578    PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2579  }
2580
2581  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
2582  Types.push_back(T);
2583  PackExpansionTypes.InsertNode(T, InsertPos);
2584  return QualType(T, 0);
2585}
2586
2587/// CmpProtocolNames - Comparison predicate for sorting protocols
2588/// alphabetically.
2589static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2590                            const ObjCProtocolDecl *RHS) {
2591  return LHS->getDeclName() < RHS->getDeclName();
2592}
2593
2594static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
2595                                unsigned NumProtocols) {
2596  if (NumProtocols == 0) return true;
2597
2598  for (unsigned i = 1; i != NumProtocols; ++i)
2599    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
2600      return false;
2601  return true;
2602}
2603
2604static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2605                                   unsigned &NumProtocols) {
2606  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2607
2608  // Sort protocols, keyed by name.
2609  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2610
2611  // Remove duplicates.
2612  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2613  NumProtocols = ProtocolsEnd-Protocols;
2614}
2615
2616QualType ASTContext::getObjCObjectType(QualType BaseType,
2617                                       ObjCProtocolDecl * const *Protocols,
2618                                       unsigned NumProtocols) const {
2619  // If the base type is an interface and there aren't any protocols
2620  // to add, then the interface type will do just fine.
2621  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
2622    return BaseType;
2623
2624  // Look in the folding set for an existing type.
2625  llvm::FoldingSetNodeID ID;
2626  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
2627  void *InsertPos = 0;
2628  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
2629    return QualType(QT, 0);
2630
2631  // Build the canonical type, which has the canonical base type and
2632  // a sorted-and-uniqued list of protocols.
2633  QualType Canonical;
2634  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
2635  if (!ProtocolsSorted || !BaseType.isCanonical()) {
2636    if (!ProtocolsSorted) {
2637      SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
2638                                                     Protocols + NumProtocols);
2639      unsigned UniqueCount = NumProtocols;
2640
2641      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2642      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2643                                    &Sorted[0], UniqueCount);
2644    } else {
2645      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2646                                    Protocols, NumProtocols);
2647    }
2648
2649    // Regenerate InsertPos.
2650    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
2651  }
2652
2653  unsigned Size = sizeof(ObjCObjectTypeImpl);
2654  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
2655  void *Mem = Allocate(Size, TypeAlignment);
2656  ObjCObjectTypeImpl *T =
2657    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
2658
2659  Types.push_back(T);
2660  ObjCObjectTypes.InsertNode(T, InsertPos);
2661  return QualType(T, 0);
2662}
2663
2664/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2665/// the given object type.
2666QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
2667  llvm::FoldingSetNodeID ID;
2668  ObjCObjectPointerType::Profile(ID, ObjectT);
2669
2670  void *InsertPos = 0;
2671  if (ObjCObjectPointerType *QT =
2672              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2673    return QualType(QT, 0);
2674
2675  // Find the canonical object type.
2676  QualType Canonical;
2677  if (!ObjectT.isCanonical()) {
2678    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
2679
2680    // Regenerate InsertPos.
2681    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2682  }
2683
2684  // No match.
2685  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
2686  ObjCObjectPointerType *QType =
2687    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
2688
2689  Types.push_back(QType);
2690  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2691  return QualType(QType, 0);
2692}
2693
2694/// getObjCInterfaceType - Return the unique reference to the type for the
2695/// specified ObjC interface decl. The list of protocols is optional.
2696QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl) const {
2697  if (Decl->TypeForDecl)
2698    return QualType(Decl->TypeForDecl, 0);
2699
2700  // FIXME: redeclarations?
2701  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
2702  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
2703  Decl->TypeForDecl = T;
2704  Types.push_back(T);
2705  return QualType(T, 0);
2706}
2707
2708/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2709/// TypeOfExprType AST's (since expression's are never shared). For example,
2710/// multiple declarations that refer to "typeof(x)" all contain different
2711/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2712/// on canonical type's (which are always unique).
2713QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
2714  TypeOfExprType *toe;
2715  if (tofExpr->isTypeDependent()) {
2716    llvm::FoldingSetNodeID ID;
2717    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2718
2719    void *InsertPos = 0;
2720    DependentTypeOfExprType *Canon
2721      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2722    if (Canon) {
2723      // We already have a "canonical" version of an identical, dependent
2724      // typeof(expr) type. Use that as our canonical type.
2725      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2726                                          QualType((TypeOfExprType*)Canon, 0));
2727    }
2728    else {
2729      // Build a new, canonical typeof(expr) type.
2730      Canon
2731        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2732      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2733      toe = Canon;
2734    }
2735  } else {
2736    QualType Canonical = getCanonicalType(tofExpr->getType());
2737    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2738  }
2739  Types.push_back(toe);
2740  return QualType(toe, 0);
2741}
2742
2743/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2744/// TypeOfType AST's. The only motivation to unique these nodes would be
2745/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2746/// an issue. This doesn't effect the type checker, since it operates
2747/// on canonical type's (which are always unique).
2748QualType ASTContext::getTypeOfType(QualType tofType) const {
2749  QualType Canonical = getCanonicalType(tofType);
2750  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2751  Types.push_back(tot);
2752  return QualType(tot, 0);
2753}
2754
2755/// getDecltypeForExpr - Given an expr, will return the decltype for that
2756/// expression, according to the rules in C++0x [dcl.type.simple]p4
2757static QualType getDecltypeForExpr(const Expr *e, const ASTContext &Context) {
2758  if (e->isTypeDependent())
2759    return Context.DependentTy;
2760
2761  // If e is an id expression or a class member access, decltype(e) is defined
2762  // as the type of the entity named by e.
2763  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2764    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2765      return VD->getType();
2766  }
2767  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2768    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2769      return FD->getType();
2770  }
2771  // If e is a function call or an invocation of an overloaded operator,
2772  // (parentheses around e are ignored), decltype(e) is defined as the
2773  // return type of that function.
2774  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2775    return CE->getCallReturnType();
2776
2777  QualType T = e->getType();
2778
2779  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2780  // defined as T&, otherwise decltype(e) is defined as T.
2781  if (e->isLValue())
2782    T = Context.getLValueReferenceType(T);
2783
2784  return T;
2785}
2786
2787/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2788/// DecltypeType AST's. The only motivation to unique these nodes would be
2789/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2790/// an issue. This doesn't effect the type checker, since it operates
2791/// on canonical type's (which are always unique).
2792QualType ASTContext::getDecltypeType(Expr *e) const {
2793  DecltypeType *dt;
2794
2795  // C++0x [temp.type]p2:
2796  //   If an expression e involves a template parameter, decltype(e) denotes a
2797  //   unique dependent type. Two such decltype-specifiers refer to the same
2798  //   type only if their expressions are equivalent (14.5.6.1).
2799  if (e->isInstantiationDependent()) {
2800    llvm::FoldingSetNodeID ID;
2801    DependentDecltypeType::Profile(ID, *this, e);
2802
2803    void *InsertPos = 0;
2804    DependentDecltypeType *Canon
2805      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2806    if (Canon) {
2807      // We already have a "canonical" version of an equivalent, dependent
2808      // decltype type. Use that as our canonical type.
2809      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2810                                       QualType((DecltypeType*)Canon, 0));
2811    }
2812    else {
2813      // Build a new, canonical typeof(expr) type.
2814      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2815      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2816      dt = Canon;
2817    }
2818  } else {
2819    QualType T = getDecltypeForExpr(e, *this);
2820    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2821  }
2822  Types.push_back(dt);
2823  return QualType(dt, 0);
2824}
2825
2826/// getUnaryTransformationType - We don't unique these, since the memory
2827/// savings are minimal and these are rare.
2828QualType ASTContext::getUnaryTransformType(QualType BaseType,
2829                                           QualType UnderlyingType,
2830                                           UnaryTransformType::UTTKind Kind)
2831    const {
2832  UnaryTransformType *Ty =
2833    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
2834                                                   Kind,
2835                                 UnderlyingType->isDependentType() ?
2836                                    QualType() : UnderlyingType);
2837  Types.push_back(Ty);
2838  return QualType(Ty, 0);
2839}
2840
2841/// getAutoType - We only unique auto types after they've been deduced.
2842QualType ASTContext::getAutoType(QualType DeducedType) const {
2843  void *InsertPos = 0;
2844  if (!DeducedType.isNull()) {
2845    // Look in the folding set for an existing type.
2846    llvm::FoldingSetNodeID ID;
2847    AutoType::Profile(ID, DeducedType);
2848    if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
2849      return QualType(AT, 0);
2850  }
2851
2852  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
2853  Types.push_back(AT);
2854  if (InsertPos)
2855    AutoTypes.InsertNode(AT, InsertPos);
2856  return QualType(AT, 0);
2857}
2858
2859/// getAutoDeductType - Get type pattern for deducing against 'auto'.
2860QualType ASTContext::getAutoDeductType() const {
2861  if (AutoDeductTy.isNull())
2862    AutoDeductTy = getAutoType(QualType());
2863  assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern");
2864  return AutoDeductTy;
2865}
2866
2867/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
2868QualType ASTContext::getAutoRRefDeductType() const {
2869  if (AutoRRefDeductTy.isNull())
2870    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
2871  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
2872  return AutoRRefDeductTy;
2873}
2874
2875/// getTagDeclType - Return the unique reference to the type for the
2876/// specified TagDecl (struct/union/class/enum) decl.
2877QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
2878  assert (Decl);
2879  // FIXME: What is the design on getTagDeclType when it requires casting
2880  // away const?  mutable?
2881  return getTypeDeclType(const_cast<TagDecl*>(Decl));
2882}
2883
2884/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2885/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2886/// needs to agree with the definition in <stddef.h>.
2887CanQualType ASTContext::getSizeType() const {
2888  return getFromTargetType(Target.getSizeType());
2889}
2890
2891/// getSignedWCharType - Return the type of "signed wchar_t".
2892/// Used when in C++, as a GCC extension.
2893QualType ASTContext::getSignedWCharType() const {
2894  // FIXME: derive from "Target" ?
2895  return WCharTy;
2896}
2897
2898/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2899/// Used when in C++, as a GCC extension.
2900QualType ASTContext::getUnsignedWCharType() const {
2901  // FIXME: derive from "Target" ?
2902  return UnsignedIntTy;
2903}
2904
2905/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2906/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2907QualType ASTContext::getPointerDiffType() const {
2908  return getFromTargetType(Target.getPtrDiffType(0));
2909}
2910
2911//===----------------------------------------------------------------------===//
2912//                              Type Operators
2913//===----------------------------------------------------------------------===//
2914
2915CanQualType ASTContext::getCanonicalParamType(QualType T) const {
2916  // Push qualifiers into arrays, and then discard any remaining
2917  // qualifiers.
2918  T = getCanonicalType(T);
2919  T = getVariableArrayDecayedType(T);
2920  const Type *Ty = T.getTypePtr();
2921  QualType Result;
2922  if (isa<ArrayType>(Ty)) {
2923    Result = getArrayDecayedType(QualType(Ty,0));
2924  } else if (isa<FunctionType>(Ty)) {
2925    Result = getPointerType(QualType(Ty, 0));
2926  } else {
2927    Result = QualType(Ty, 0);
2928  }
2929
2930  return CanQualType::CreateUnsafe(Result);
2931}
2932
2933QualType ASTContext::getUnqualifiedArrayType(QualType type,
2934                                             Qualifiers &quals) {
2935  SplitQualType splitType = type.getSplitUnqualifiedType();
2936
2937  // FIXME: getSplitUnqualifiedType() actually walks all the way to
2938  // the unqualified desugared type and then drops it on the floor.
2939  // We then have to strip that sugar back off with
2940  // getUnqualifiedDesugaredType(), which is silly.
2941  const ArrayType *AT =
2942    dyn_cast<ArrayType>(splitType.first->getUnqualifiedDesugaredType());
2943
2944  // If we don't have an array, just use the results in splitType.
2945  if (!AT) {
2946    quals = splitType.second;
2947    return QualType(splitType.first, 0);
2948  }
2949
2950  // Otherwise, recurse on the array's element type.
2951  QualType elementType = AT->getElementType();
2952  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
2953
2954  // If that didn't change the element type, AT has no qualifiers, so we
2955  // can just use the results in splitType.
2956  if (elementType == unqualElementType) {
2957    assert(quals.empty()); // from the recursive call
2958    quals = splitType.second;
2959    return QualType(splitType.first, 0);
2960  }
2961
2962  // Otherwise, add in the qualifiers from the outermost type, then
2963  // build the type back up.
2964  quals.addConsistentQualifiers(splitType.second);
2965
2966  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
2967    return getConstantArrayType(unqualElementType, CAT->getSize(),
2968                                CAT->getSizeModifier(), 0);
2969  }
2970
2971  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
2972    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
2973  }
2974
2975  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
2976    return getVariableArrayType(unqualElementType,
2977                                VAT->getSizeExpr(),
2978                                VAT->getSizeModifier(),
2979                                VAT->getIndexTypeCVRQualifiers(),
2980                                VAT->getBracketsRange());
2981  }
2982
2983  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
2984  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
2985                                    DSAT->getSizeModifier(), 0,
2986                                    SourceRange());
2987}
2988
2989/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
2990/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
2991/// they point to and return true. If T1 and T2 aren't pointer types
2992/// or pointer-to-member types, or if they are not similar at this
2993/// level, returns false and leaves T1 and T2 unchanged. Top-level
2994/// qualifiers on T1 and T2 are ignored. This function will typically
2995/// be called in a loop that successively "unwraps" pointer and
2996/// pointer-to-member types to compare them at each level.
2997bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
2998  const PointerType *T1PtrType = T1->getAs<PointerType>(),
2999                    *T2PtrType = T2->getAs<PointerType>();
3000  if (T1PtrType && T2PtrType) {
3001    T1 = T1PtrType->getPointeeType();
3002    T2 = T2PtrType->getPointeeType();
3003    return true;
3004  }
3005
3006  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3007                          *T2MPType = T2->getAs<MemberPointerType>();
3008  if (T1MPType && T2MPType &&
3009      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3010                             QualType(T2MPType->getClass(), 0))) {
3011    T1 = T1MPType->getPointeeType();
3012    T2 = T2MPType->getPointeeType();
3013    return true;
3014  }
3015
3016  if (getLangOptions().ObjC1) {
3017    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3018                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
3019    if (T1OPType && T2OPType) {
3020      T1 = T1OPType->getPointeeType();
3021      T2 = T2OPType->getPointeeType();
3022      return true;
3023    }
3024  }
3025
3026  // FIXME: Block pointers, too?
3027
3028  return false;
3029}
3030
3031DeclarationNameInfo
3032ASTContext::getNameForTemplate(TemplateName Name,
3033                               SourceLocation NameLoc) const {
3034  switch (Name.getKind()) {
3035  case TemplateName::QualifiedTemplate:
3036  case TemplateName::Template:
3037    // DNInfo work in progress: CHECKME: what about DNLoc?
3038    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3039                               NameLoc);
3040
3041  case TemplateName::OverloadedTemplate: {
3042    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3043    // DNInfo work in progress: CHECKME: what about DNLoc?
3044    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3045  }
3046
3047  case TemplateName::DependentTemplate: {
3048    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3049    DeclarationName DName;
3050    if (DTN->isIdentifier()) {
3051      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3052      return DeclarationNameInfo(DName, NameLoc);
3053    } else {
3054      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3055      // DNInfo work in progress: FIXME: source locations?
3056      DeclarationNameLoc DNLoc;
3057      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3058      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3059      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3060    }
3061  }
3062
3063  case TemplateName::SubstTemplateTemplateParm: {
3064    SubstTemplateTemplateParmStorage *subst
3065      = Name.getAsSubstTemplateTemplateParm();
3066    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3067                               NameLoc);
3068  }
3069
3070  case TemplateName::SubstTemplateTemplateParmPack: {
3071    SubstTemplateTemplateParmPackStorage *subst
3072      = Name.getAsSubstTemplateTemplateParmPack();
3073    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3074                               NameLoc);
3075  }
3076  }
3077
3078  llvm_unreachable("bad template name kind!");
3079}
3080
3081TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3082  switch (Name.getKind()) {
3083  case TemplateName::QualifiedTemplate:
3084  case TemplateName::Template: {
3085    TemplateDecl *Template = Name.getAsTemplateDecl();
3086    if (TemplateTemplateParmDecl *TTP
3087          = dyn_cast<TemplateTemplateParmDecl>(Template))
3088      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3089
3090    // The canonical template name is the canonical template declaration.
3091    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3092  }
3093
3094  case TemplateName::OverloadedTemplate:
3095    llvm_unreachable("cannot canonicalize overloaded template");
3096
3097  case TemplateName::DependentTemplate: {
3098    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3099    assert(DTN && "Non-dependent template names must refer to template decls.");
3100    return DTN->CanonicalTemplateName;
3101  }
3102
3103  case TemplateName::SubstTemplateTemplateParm: {
3104    SubstTemplateTemplateParmStorage *subst
3105      = Name.getAsSubstTemplateTemplateParm();
3106    return getCanonicalTemplateName(subst->getReplacement());
3107  }
3108
3109  case TemplateName::SubstTemplateTemplateParmPack: {
3110    SubstTemplateTemplateParmPackStorage *subst
3111                                  = Name.getAsSubstTemplateTemplateParmPack();
3112    TemplateTemplateParmDecl *canonParameter
3113      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3114    TemplateArgument canonArgPack
3115      = getCanonicalTemplateArgument(subst->getArgumentPack());
3116    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3117  }
3118  }
3119
3120  llvm_unreachable("bad template name!");
3121}
3122
3123bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3124  X = getCanonicalTemplateName(X);
3125  Y = getCanonicalTemplateName(Y);
3126  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3127}
3128
3129TemplateArgument
3130ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3131  switch (Arg.getKind()) {
3132    case TemplateArgument::Null:
3133      return Arg;
3134
3135    case TemplateArgument::Expression:
3136      return Arg;
3137
3138    case TemplateArgument::Declaration:
3139      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
3140
3141    case TemplateArgument::Template:
3142      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3143
3144    case TemplateArgument::TemplateExpansion:
3145      return TemplateArgument(getCanonicalTemplateName(
3146                                         Arg.getAsTemplateOrTemplatePattern()),
3147                              Arg.getNumTemplateExpansions());
3148
3149    case TemplateArgument::Integral:
3150      return TemplateArgument(*Arg.getAsIntegral(),
3151                              getCanonicalType(Arg.getIntegralType()));
3152
3153    case TemplateArgument::Type:
3154      return TemplateArgument(getCanonicalType(Arg.getAsType()));
3155
3156    case TemplateArgument::Pack: {
3157      if (Arg.pack_size() == 0)
3158        return Arg;
3159
3160      TemplateArgument *CanonArgs
3161        = new (*this) TemplateArgument[Arg.pack_size()];
3162      unsigned Idx = 0;
3163      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
3164                                        AEnd = Arg.pack_end();
3165           A != AEnd; (void)++A, ++Idx)
3166        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
3167
3168      return TemplateArgument(CanonArgs, Arg.pack_size());
3169    }
3170  }
3171
3172  // Silence GCC warning
3173  assert(false && "Unhandled template argument kind");
3174  return TemplateArgument();
3175}
3176
3177NestedNameSpecifier *
3178ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
3179  if (!NNS)
3180    return 0;
3181
3182  switch (NNS->getKind()) {
3183  case NestedNameSpecifier::Identifier:
3184    // Canonicalize the prefix but keep the identifier the same.
3185    return NestedNameSpecifier::Create(*this,
3186                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
3187                                       NNS->getAsIdentifier());
3188
3189  case NestedNameSpecifier::Namespace:
3190    // A namespace is canonical; build a nested-name-specifier with
3191    // this namespace and no prefix.
3192    return NestedNameSpecifier::Create(*this, 0,
3193                                 NNS->getAsNamespace()->getOriginalNamespace());
3194
3195  case NestedNameSpecifier::NamespaceAlias:
3196    // A namespace is canonical; build a nested-name-specifier with
3197    // this namespace and no prefix.
3198    return NestedNameSpecifier::Create(*this, 0,
3199                                    NNS->getAsNamespaceAlias()->getNamespace()
3200                                                      ->getOriginalNamespace());
3201
3202  case NestedNameSpecifier::TypeSpec:
3203  case NestedNameSpecifier::TypeSpecWithTemplate: {
3204    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
3205
3206    // If we have some kind of dependent-named type (e.g., "typename T::type"),
3207    // break it apart into its prefix and identifier, then reconsititute those
3208    // as the canonical nested-name-specifier. This is required to canonicalize
3209    // a dependent nested-name-specifier involving typedefs of dependent-name
3210    // types, e.g.,
3211    //   typedef typename T::type T1;
3212    //   typedef typename T1::type T2;
3213    if (const DependentNameType *DNT = T->getAs<DependentNameType>()) {
3214      NestedNameSpecifier *Prefix
3215        = getCanonicalNestedNameSpecifier(DNT->getQualifier());
3216      return NestedNameSpecifier::Create(*this, Prefix,
3217                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
3218    }
3219
3220    // Do the same thing as above, but with dependent-named specializations.
3221    if (const DependentTemplateSpecializationType *DTST
3222          = T->getAs<DependentTemplateSpecializationType>()) {
3223      NestedNameSpecifier *Prefix
3224        = getCanonicalNestedNameSpecifier(DTST->getQualifier());
3225
3226      T = getDependentTemplateSpecializationType(DTST->getKeyword(),
3227                                                 Prefix, DTST->getIdentifier(),
3228                                                 DTST->getNumArgs(),
3229                                                 DTST->getArgs());
3230      T = getCanonicalType(T);
3231    }
3232
3233    return NestedNameSpecifier::Create(*this, 0, false,
3234                                       const_cast<Type*>(T.getTypePtr()));
3235  }
3236
3237  case NestedNameSpecifier::Global:
3238    // The global specifier is canonical and unique.
3239    return NNS;
3240  }
3241
3242  // Required to silence a GCC warning
3243  return 0;
3244}
3245
3246
3247const ArrayType *ASTContext::getAsArrayType(QualType T) const {
3248  // Handle the non-qualified case efficiently.
3249  if (!T.hasLocalQualifiers()) {
3250    // Handle the common positive case fast.
3251    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
3252      return AT;
3253  }
3254
3255  // Handle the common negative case fast.
3256  if (!isa<ArrayType>(T.getCanonicalType()))
3257    return 0;
3258
3259  // Apply any qualifiers from the array type to the element type.  This
3260  // implements C99 6.7.3p8: "If the specification of an array type includes
3261  // any type qualifiers, the element type is so qualified, not the array type."
3262
3263  // If we get here, we either have type qualifiers on the type, or we have
3264  // sugar such as a typedef in the way.  If we have type qualifiers on the type
3265  // we must propagate them down into the element type.
3266
3267  SplitQualType split = T.getSplitDesugaredType();
3268  Qualifiers qs = split.second;
3269
3270  // If we have a simple case, just return now.
3271  const ArrayType *ATy = dyn_cast<ArrayType>(split.first);
3272  if (ATy == 0 || qs.empty())
3273    return ATy;
3274
3275  // Otherwise, we have an array and we have qualifiers on it.  Push the
3276  // qualifiers into the array element type and return a new array type.
3277  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
3278
3279  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
3280    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
3281                                                CAT->getSizeModifier(),
3282                                           CAT->getIndexTypeCVRQualifiers()));
3283  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
3284    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
3285                                                  IAT->getSizeModifier(),
3286                                           IAT->getIndexTypeCVRQualifiers()));
3287
3288  if (const DependentSizedArrayType *DSAT
3289        = dyn_cast<DependentSizedArrayType>(ATy))
3290    return cast<ArrayType>(
3291                     getDependentSizedArrayType(NewEltTy,
3292                                                DSAT->getSizeExpr(),
3293                                                DSAT->getSizeModifier(),
3294                                              DSAT->getIndexTypeCVRQualifiers(),
3295                                                DSAT->getBracketsRange()));
3296
3297  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
3298  return cast<ArrayType>(getVariableArrayType(NewEltTy,
3299                                              VAT->getSizeExpr(),
3300                                              VAT->getSizeModifier(),
3301                                              VAT->getIndexTypeCVRQualifiers(),
3302                                              VAT->getBracketsRange()));
3303}
3304
3305QualType ASTContext::getAdjustedParameterType(QualType T) {
3306  // C99 6.7.5.3p7:
3307  //   A declaration of a parameter as "array of type" shall be
3308  //   adjusted to "qualified pointer to type", where the type
3309  //   qualifiers (if any) are those specified within the [ and ] of
3310  //   the array type derivation.
3311  if (T->isArrayType())
3312    return getArrayDecayedType(T);
3313
3314  // C99 6.7.5.3p8:
3315  //   A declaration of a parameter as "function returning type"
3316  //   shall be adjusted to "pointer to function returning type", as
3317  //   in 6.3.2.1.
3318  if (T->isFunctionType())
3319    return getPointerType(T);
3320
3321  return T;
3322}
3323
3324QualType ASTContext::getSignatureParameterType(QualType T) {
3325  T = getVariableArrayDecayedType(T);
3326  T = getAdjustedParameterType(T);
3327  return T.getUnqualifiedType();
3328}
3329
3330/// getArrayDecayedType - Return the properly qualified result of decaying the
3331/// specified array type to a pointer.  This operation is non-trivial when
3332/// handling typedefs etc.  The canonical type of "T" must be an array type,
3333/// this returns a pointer to a properly qualified element of the array.
3334///
3335/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
3336QualType ASTContext::getArrayDecayedType(QualType Ty) const {
3337  // Get the element type with 'getAsArrayType' so that we don't lose any
3338  // typedefs in the element type of the array.  This also handles propagation
3339  // of type qualifiers from the array type into the element type if present
3340  // (C99 6.7.3p8).
3341  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
3342  assert(PrettyArrayType && "Not an array type!");
3343
3344  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
3345
3346  // int x[restrict 4] ->  int *restrict
3347  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
3348}
3349
3350QualType ASTContext::getBaseElementType(const ArrayType *array) const {
3351  return getBaseElementType(array->getElementType());
3352}
3353
3354QualType ASTContext::getBaseElementType(QualType type) const {
3355  Qualifiers qs;
3356  while (true) {
3357    SplitQualType split = type.getSplitDesugaredType();
3358    const ArrayType *array = split.first->getAsArrayTypeUnsafe();
3359    if (!array) break;
3360
3361    type = array->getElementType();
3362    qs.addConsistentQualifiers(split.second);
3363  }
3364
3365  return getQualifiedType(type, qs);
3366}
3367
3368/// getConstantArrayElementCount - Returns number of constant array elements.
3369uint64_t
3370ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
3371  uint64_t ElementCount = 1;
3372  do {
3373    ElementCount *= CA->getSize().getZExtValue();
3374    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
3375  } while (CA);
3376  return ElementCount;
3377}
3378
3379/// getFloatingRank - Return a relative rank for floating point types.
3380/// This routine will assert if passed a built-in type that isn't a float.
3381static FloatingRank getFloatingRank(QualType T) {
3382  if (const ComplexType *CT = T->getAs<ComplexType>())
3383    return getFloatingRank(CT->getElementType());
3384
3385  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
3386  switch (T->getAs<BuiltinType>()->getKind()) {
3387  default: assert(0 && "getFloatingRank(): not a floating type");
3388  case BuiltinType::Float:      return FloatRank;
3389  case BuiltinType::Double:     return DoubleRank;
3390  case BuiltinType::LongDouble: return LongDoubleRank;
3391  }
3392}
3393
3394/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
3395/// point or a complex type (based on typeDomain/typeSize).
3396/// 'typeDomain' is a real floating point or complex type.
3397/// 'typeSize' is a real floating point or complex type.
3398QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
3399                                                       QualType Domain) const {
3400  FloatingRank EltRank = getFloatingRank(Size);
3401  if (Domain->isComplexType()) {
3402    switch (EltRank) {
3403    default: assert(0 && "getFloatingRank(): illegal value for rank");
3404    case FloatRank:      return FloatComplexTy;
3405    case DoubleRank:     return DoubleComplexTy;
3406    case LongDoubleRank: return LongDoubleComplexTy;
3407    }
3408  }
3409
3410  assert(Domain->isRealFloatingType() && "Unknown domain!");
3411  switch (EltRank) {
3412  default: assert(0 && "getFloatingRank(): illegal value for rank");
3413  case FloatRank:      return FloatTy;
3414  case DoubleRank:     return DoubleTy;
3415  case LongDoubleRank: return LongDoubleTy;
3416  }
3417}
3418
3419/// getFloatingTypeOrder - Compare the rank of the two specified floating
3420/// point types, ignoring the domain of the type (i.e. 'double' ==
3421/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3422/// LHS < RHS, return -1.
3423int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
3424  FloatingRank LHSR = getFloatingRank(LHS);
3425  FloatingRank RHSR = getFloatingRank(RHS);
3426
3427  if (LHSR == RHSR)
3428    return 0;
3429  if (LHSR > RHSR)
3430    return 1;
3431  return -1;
3432}
3433
3434/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
3435/// routine will assert if passed a built-in type that isn't an integer or enum,
3436/// or if it is not canonicalized.
3437unsigned ASTContext::getIntegerRank(const Type *T) const {
3438  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
3439  if (const EnumType* ET = dyn_cast<EnumType>(T))
3440    T = ET->getDecl()->getPromotionType().getTypePtr();
3441
3442  if (T->isSpecificBuiltinType(BuiltinType::WChar_S) ||
3443      T->isSpecificBuiltinType(BuiltinType::WChar_U))
3444    T = getFromTargetType(Target.getWCharType()).getTypePtr();
3445
3446  if (T->isSpecificBuiltinType(BuiltinType::Char16))
3447    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
3448
3449  if (T->isSpecificBuiltinType(BuiltinType::Char32))
3450    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
3451
3452  switch (cast<BuiltinType>(T)->getKind()) {
3453  default: assert(0 && "getIntegerRank(): not a built-in integer");
3454  case BuiltinType::Bool:
3455    return 1 + (getIntWidth(BoolTy) << 3);
3456  case BuiltinType::Char_S:
3457  case BuiltinType::Char_U:
3458  case BuiltinType::SChar:
3459  case BuiltinType::UChar:
3460    return 2 + (getIntWidth(CharTy) << 3);
3461  case BuiltinType::Short:
3462  case BuiltinType::UShort:
3463    return 3 + (getIntWidth(ShortTy) << 3);
3464  case BuiltinType::Int:
3465  case BuiltinType::UInt:
3466    return 4 + (getIntWidth(IntTy) << 3);
3467  case BuiltinType::Long:
3468  case BuiltinType::ULong:
3469    return 5 + (getIntWidth(LongTy) << 3);
3470  case BuiltinType::LongLong:
3471  case BuiltinType::ULongLong:
3472    return 6 + (getIntWidth(LongLongTy) << 3);
3473  case BuiltinType::Int128:
3474  case BuiltinType::UInt128:
3475    return 7 + (getIntWidth(Int128Ty) << 3);
3476  }
3477}
3478
3479/// \brief Whether this is a promotable bitfield reference according
3480/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
3481///
3482/// \returns the type this bit-field will promote to, or NULL if no
3483/// promotion occurs.
3484QualType ASTContext::isPromotableBitField(Expr *E) const {
3485  if (E->isTypeDependent() || E->isValueDependent())
3486    return QualType();
3487
3488  FieldDecl *Field = E->getBitField();
3489  if (!Field)
3490    return QualType();
3491
3492  QualType FT = Field->getType();
3493
3494  llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
3495  uint64_t BitWidth = BitWidthAP.getZExtValue();
3496  uint64_t IntSize = getTypeSize(IntTy);
3497  // GCC extension compatibility: if the bit-field size is less than or equal
3498  // to the size of int, it gets promoted no matter what its type is.
3499  // For instance, unsigned long bf : 4 gets promoted to signed int.
3500  if (BitWidth < IntSize)
3501    return IntTy;
3502
3503  if (BitWidth == IntSize)
3504    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
3505
3506  // Types bigger than int are not subject to promotions, and therefore act
3507  // like the base type.
3508  // FIXME: This doesn't quite match what gcc does, but what gcc does here
3509  // is ridiculous.
3510  return QualType();
3511}
3512
3513/// getPromotedIntegerType - Returns the type that Promotable will
3514/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
3515/// integer type.
3516QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
3517  assert(!Promotable.isNull());
3518  assert(Promotable->isPromotableIntegerType());
3519  if (const EnumType *ET = Promotable->getAs<EnumType>())
3520    return ET->getDecl()->getPromotionType();
3521  if (Promotable->isSignedIntegerType())
3522    return IntTy;
3523  uint64_t PromotableSize = getTypeSize(Promotable);
3524  uint64_t IntSize = getTypeSize(IntTy);
3525  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
3526  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
3527}
3528
3529/// \brief Recurses in pointer/array types until it finds an objc retainable
3530/// type and returns its ownership.
3531Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
3532  while (!T.isNull()) {
3533    if (T.getObjCLifetime() != Qualifiers::OCL_None)
3534      return T.getObjCLifetime();
3535    if (T->isArrayType())
3536      T = getBaseElementType(T);
3537    else if (const PointerType *PT = T->getAs<PointerType>())
3538      T = PT->getPointeeType();
3539    else if (const ReferenceType *RT = T->getAs<ReferenceType>())
3540      T = RT->getPointeeType();
3541    else
3542      break;
3543  }
3544
3545  return Qualifiers::OCL_None;
3546}
3547
3548/// getIntegerTypeOrder - Returns the highest ranked integer type:
3549/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3550/// LHS < RHS, return -1.
3551int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
3552  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
3553  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
3554  if (LHSC == RHSC) return 0;
3555
3556  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
3557  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
3558
3559  unsigned LHSRank = getIntegerRank(LHSC);
3560  unsigned RHSRank = getIntegerRank(RHSC);
3561
3562  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
3563    if (LHSRank == RHSRank) return 0;
3564    return LHSRank > RHSRank ? 1 : -1;
3565  }
3566
3567  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
3568  if (LHSUnsigned) {
3569    // If the unsigned [LHS] type is larger, return it.
3570    if (LHSRank >= RHSRank)
3571      return 1;
3572
3573    // If the signed type can represent all values of the unsigned type, it
3574    // wins.  Because we are dealing with 2's complement and types that are
3575    // powers of two larger than each other, this is always safe.
3576    return -1;
3577  }
3578
3579  // If the unsigned [RHS] type is larger, return it.
3580  if (RHSRank >= LHSRank)
3581    return -1;
3582
3583  // If the signed type can represent all values of the unsigned type, it
3584  // wins.  Because we are dealing with 2's complement and types that are
3585  // powers of two larger than each other, this is always safe.
3586  return 1;
3587}
3588
3589static RecordDecl *
3590CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
3591                 DeclContext *DC, IdentifierInfo *Id) {
3592  SourceLocation Loc;
3593  if (Ctx.getLangOptions().CPlusPlus)
3594    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3595  else
3596    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3597}
3598
3599// getCFConstantStringType - Return the type used for constant CFStrings.
3600QualType ASTContext::getCFConstantStringType() const {
3601  if (!CFConstantStringTypeDecl) {
3602    CFConstantStringTypeDecl =
3603      CreateRecordDecl(*this, TTK_Struct, TUDecl,
3604                       &Idents.get("NSConstantString"));
3605    CFConstantStringTypeDecl->startDefinition();
3606
3607    QualType FieldTypes[4];
3608
3609    // const int *isa;
3610    FieldTypes[0] = getPointerType(IntTy.withConst());
3611    // int flags;
3612    FieldTypes[1] = IntTy;
3613    // const char *str;
3614    FieldTypes[2] = getPointerType(CharTy.withConst());
3615    // long length;
3616    FieldTypes[3] = LongTy;
3617
3618    // Create fields
3619    for (unsigned i = 0; i < 4; ++i) {
3620      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
3621                                           SourceLocation(),
3622                                           SourceLocation(), 0,
3623                                           FieldTypes[i], /*TInfo=*/0,
3624                                           /*BitWidth=*/0,
3625                                           /*Mutable=*/false,
3626                                           /*HasInit=*/false);
3627      Field->setAccess(AS_public);
3628      CFConstantStringTypeDecl->addDecl(Field);
3629    }
3630
3631    CFConstantStringTypeDecl->completeDefinition();
3632  }
3633
3634  return getTagDeclType(CFConstantStringTypeDecl);
3635}
3636
3637void ASTContext::setCFConstantStringType(QualType T) {
3638  const RecordType *Rec = T->getAs<RecordType>();
3639  assert(Rec && "Invalid CFConstantStringType");
3640  CFConstantStringTypeDecl = Rec->getDecl();
3641}
3642
3643// getNSConstantStringType - Return the type used for constant NSStrings.
3644QualType ASTContext::getNSConstantStringType() const {
3645  if (!NSConstantStringTypeDecl) {
3646    NSConstantStringTypeDecl =
3647    CreateRecordDecl(*this, TTK_Struct, TUDecl,
3648                     &Idents.get("__builtin_NSString"));
3649    NSConstantStringTypeDecl->startDefinition();
3650
3651    QualType FieldTypes[3];
3652
3653    // const int *isa;
3654    FieldTypes[0] = getPointerType(IntTy.withConst());
3655    // const char *str;
3656    FieldTypes[1] = getPointerType(CharTy.withConst());
3657    // unsigned int length;
3658    FieldTypes[2] = UnsignedIntTy;
3659
3660    // Create fields
3661    for (unsigned i = 0; i < 3; ++i) {
3662      FieldDecl *Field = FieldDecl::Create(*this, NSConstantStringTypeDecl,
3663                                           SourceLocation(),
3664                                           SourceLocation(), 0,
3665                                           FieldTypes[i], /*TInfo=*/0,
3666                                           /*BitWidth=*/0,
3667                                           /*Mutable=*/false,
3668                                           /*HasInit=*/false);
3669      Field->setAccess(AS_public);
3670      NSConstantStringTypeDecl->addDecl(Field);
3671    }
3672
3673    NSConstantStringTypeDecl->completeDefinition();
3674  }
3675
3676  return getTagDeclType(NSConstantStringTypeDecl);
3677}
3678
3679void ASTContext::setNSConstantStringType(QualType T) {
3680  const RecordType *Rec = T->getAs<RecordType>();
3681  assert(Rec && "Invalid NSConstantStringType");
3682  NSConstantStringTypeDecl = Rec->getDecl();
3683}
3684
3685QualType ASTContext::getObjCFastEnumerationStateType() const {
3686  if (!ObjCFastEnumerationStateTypeDecl) {
3687    ObjCFastEnumerationStateTypeDecl =
3688      CreateRecordDecl(*this, TTK_Struct, TUDecl,
3689                       &Idents.get("__objcFastEnumerationState"));
3690    ObjCFastEnumerationStateTypeDecl->startDefinition();
3691
3692    QualType FieldTypes[] = {
3693      UnsignedLongTy,
3694      getPointerType(ObjCIdTypedefType),
3695      getPointerType(UnsignedLongTy),
3696      getConstantArrayType(UnsignedLongTy,
3697                           llvm::APInt(32, 5), ArrayType::Normal, 0)
3698    };
3699
3700    for (size_t i = 0; i < 4; ++i) {
3701      FieldDecl *Field = FieldDecl::Create(*this,
3702                                           ObjCFastEnumerationStateTypeDecl,
3703                                           SourceLocation(),
3704                                           SourceLocation(), 0,
3705                                           FieldTypes[i], /*TInfo=*/0,
3706                                           /*BitWidth=*/0,
3707                                           /*Mutable=*/false,
3708                                           /*HasInit=*/false);
3709      Field->setAccess(AS_public);
3710      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
3711    }
3712
3713    ObjCFastEnumerationStateTypeDecl->completeDefinition();
3714  }
3715
3716  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
3717}
3718
3719QualType ASTContext::getBlockDescriptorType() const {
3720  if (BlockDescriptorType)
3721    return getTagDeclType(BlockDescriptorType);
3722
3723  RecordDecl *T;
3724  // FIXME: Needs the FlagAppleBlock bit.
3725  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
3726                       &Idents.get("__block_descriptor"));
3727  T->startDefinition();
3728
3729  QualType FieldTypes[] = {
3730    UnsignedLongTy,
3731    UnsignedLongTy,
3732  };
3733
3734  const char *FieldNames[] = {
3735    "reserved",
3736    "Size"
3737  };
3738
3739  for (size_t i = 0; i < 2; ++i) {
3740    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3741                                         SourceLocation(),
3742                                         &Idents.get(FieldNames[i]),
3743                                         FieldTypes[i], /*TInfo=*/0,
3744                                         /*BitWidth=*/0,
3745                                         /*Mutable=*/false,
3746                                         /*HasInit=*/false);
3747    Field->setAccess(AS_public);
3748    T->addDecl(Field);
3749  }
3750
3751  T->completeDefinition();
3752
3753  BlockDescriptorType = T;
3754
3755  return getTagDeclType(BlockDescriptorType);
3756}
3757
3758void ASTContext::setBlockDescriptorType(QualType T) {
3759  const RecordType *Rec = T->getAs<RecordType>();
3760  assert(Rec && "Invalid BlockDescriptorType");
3761  BlockDescriptorType = Rec->getDecl();
3762}
3763
3764QualType ASTContext::getBlockDescriptorExtendedType() const {
3765  if (BlockDescriptorExtendedType)
3766    return getTagDeclType(BlockDescriptorExtendedType);
3767
3768  RecordDecl *T;
3769  // FIXME: Needs the FlagAppleBlock bit.
3770  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
3771                       &Idents.get("__block_descriptor_withcopydispose"));
3772  T->startDefinition();
3773
3774  QualType FieldTypes[] = {
3775    UnsignedLongTy,
3776    UnsignedLongTy,
3777    getPointerType(VoidPtrTy),
3778    getPointerType(VoidPtrTy)
3779  };
3780
3781  const char *FieldNames[] = {
3782    "reserved",
3783    "Size",
3784    "CopyFuncPtr",
3785    "DestroyFuncPtr"
3786  };
3787
3788  for (size_t i = 0; i < 4; ++i) {
3789    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3790                                         SourceLocation(),
3791                                         &Idents.get(FieldNames[i]),
3792                                         FieldTypes[i], /*TInfo=*/0,
3793                                         /*BitWidth=*/0,
3794                                         /*Mutable=*/false,
3795                                         /*HasInit=*/false);
3796    Field->setAccess(AS_public);
3797    T->addDecl(Field);
3798  }
3799
3800  T->completeDefinition();
3801
3802  BlockDescriptorExtendedType = T;
3803
3804  return getTagDeclType(BlockDescriptorExtendedType);
3805}
3806
3807void ASTContext::setBlockDescriptorExtendedType(QualType T) {
3808  const RecordType *Rec = T->getAs<RecordType>();
3809  assert(Rec && "Invalid BlockDescriptorType");
3810  BlockDescriptorExtendedType = Rec->getDecl();
3811}
3812
3813bool ASTContext::BlockRequiresCopying(QualType Ty) const {
3814  if (Ty->isObjCRetainableType())
3815    return true;
3816  if (getLangOptions().CPlusPlus) {
3817    if (const RecordType *RT = Ty->getAs<RecordType>()) {
3818      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3819      return RD->hasConstCopyConstructor();
3820
3821    }
3822  }
3823  return false;
3824}
3825
3826QualType
3827ASTContext::BuildByRefType(StringRef DeclName, QualType Ty) const {
3828  //  type = struct __Block_byref_1_X {
3829  //    void *__isa;
3830  //    struct __Block_byref_1_X *__forwarding;
3831  //    unsigned int __flags;
3832  //    unsigned int __size;
3833  //    void *__copy_helper;            // as needed
3834  //    void *__destroy_help            // as needed
3835  //    int X;
3836  //  } *
3837
3838  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
3839
3840  // FIXME: Move up
3841  llvm::SmallString<36> Name;
3842  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
3843                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
3844  RecordDecl *T;
3845  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get(Name.str()));
3846  T->startDefinition();
3847  QualType Int32Ty = IntTy;
3848  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
3849  QualType FieldTypes[] = {
3850    getPointerType(VoidPtrTy),
3851    getPointerType(getTagDeclType(T)),
3852    Int32Ty,
3853    Int32Ty,
3854    getPointerType(VoidPtrTy),
3855    getPointerType(VoidPtrTy),
3856    Ty
3857  };
3858
3859  StringRef FieldNames[] = {
3860    "__isa",
3861    "__forwarding",
3862    "__flags",
3863    "__size",
3864    "__copy_helper",
3865    "__destroy_helper",
3866    DeclName,
3867  };
3868
3869  for (size_t i = 0; i < 7; ++i) {
3870    if (!HasCopyAndDispose && i >=4 && i <= 5)
3871      continue;
3872    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3873                                         SourceLocation(),
3874                                         &Idents.get(FieldNames[i]),
3875                                         FieldTypes[i], /*TInfo=*/0,
3876                                         /*BitWidth=*/0, /*Mutable=*/false,
3877                                         /*HasInit=*/false);
3878    Field->setAccess(AS_public);
3879    T->addDecl(Field);
3880  }
3881
3882  T->completeDefinition();
3883
3884  return getPointerType(getTagDeclType(T));
3885}
3886
3887void ASTContext::setObjCFastEnumerationStateType(QualType T) {
3888  const RecordType *Rec = T->getAs<RecordType>();
3889  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
3890  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
3891}
3892
3893// This returns true if a type has been typedefed to BOOL:
3894// typedef <type> BOOL;
3895static bool isTypeTypedefedAsBOOL(QualType T) {
3896  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3897    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3898      return II->isStr("BOOL");
3899
3900  return false;
3901}
3902
3903/// getObjCEncodingTypeSize returns size of type for objective-c encoding
3904/// purpose.
3905CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
3906  if (!type->isIncompleteArrayType() && type->isIncompleteType())
3907    return CharUnits::Zero();
3908
3909  CharUnits sz = getTypeSizeInChars(type);
3910
3911  // Make all integer and enum types at least as large as an int
3912  if (sz.isPositive() && type->isIntegralOrEnumerationType())
3913    sz = std::max(sz, getTypeSizeInChars(IntTy));
3914  // Treat arrays as pointers, since that's how they're passed in.
3915  else if (type->isArrayType())
3916    sz = getTypeSizeInChars(VoidPtrTy);
3917  return sz;
3918}
3919
3920static inline
3921std::string charUnitsToString(const CharUnits &CU) {
3922  return llvm::itostr(CU.getQuantity());
3923}
3924
3925/// getObjCEncodingForBlock - Return the encoded type for this block
3926/// declaration.
3927std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
3928  std::string S;
3929
3930  const BlockDecl *Decl = Expr->getBlockDecl();
3931  QualType BlockTy =
3932      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
3933  // Encode result type.
3934  getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
3935  // Compute size of all parameters.
3936  // Start with computing size of a pointer in number of bytes.
3937  // FIXME: There might(should) be a better way of doing this computation!
3938  SourceLocation Loc;
3939  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3940  CharUnits ParmOffset = PtrSize;
3941  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
3942       E = Decl->param_end(); PI != E; ++PI) {
3943    QualType PType = (*PI)->getType();
3944    CharUnits sz = getObjCEncodingTypeSize(PType);
3945    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
3946    ParmOffset += sz;
3947  }
3948  // Size of the argument frame
3949  S += charUnitsToString(ParmOffset);
3950  // Block pointer and offset.
3951  S += "@?0";
3952  ParmOffset = PtrSize;
3953
3954  // Argument types.
3955  ParmOffset = PtrSize;
3956  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
3957       Decl->param_end(); PI != E; ++PI) {
3958    ParmVarDecl *PVDecl = *PI;
3959    QualType PType = PVDecl->getOriginalType();
3960    if (const ArrayType *AT =
3961          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3962      // Use array's original type only if it has known number of
3963      // elements.
3964      if (!isa<ConstantArrayType>(AT))
3965        PType = PVDecl->getType();
3966    } else if (PType->isFunctionType())
3967      PType = PVDecl->getType();
3968    getObjCEncodingForType(PType, S);
3969    S += charUnitsToString(ParmOffset);
3970    ParmOffset += getObjCEncodingTypeSize(PType);
3971  }
3972
3973  return S;
3974}
3975
3976bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
3977                                                std::string& S) {
3978  // Encode result type.
3979  getObjCEncodingForType(Decl->getResultType(), S);
3980  CharUnits ParmOffset;
3981  // Compute size of all parameters.
3982  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
3983       E = Decl->param_end(); PI != E; ++PI) {
3984    QualType PType = (*PI)->getType();
3985    CharUnits sz = getObjCEncodingTypeSize(PType);
3986    if (sz.isZero())
3987      return true;
3988
3989    assert (sz.isPositive() &&
3990        "getObjCEncodingForFunctionDecl - Incomplete param type");
3991    ParmOffset += sz;
3992  }
3993  S += charUnitsToString(ParmOffset);
3994  ParmOffset = CharUnits::Zero();
3995
3996  // Argument types.
3997  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
3998       E = Decl->param_end(); PI != E; ++PI) {
3999    ParmVarDecl *PVDecl = *PI;
4000    QualType PType = PVDecl->getOriginalType();
4001    if (const ArrayType *AT =
4002          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4003      // Use array's original type only if it has known number of
4004      // elements.
4005      if (!isa<ConstantArrayType>(AT))
4006        PType = PVDecl->getType();
4007    } else if (PType->isFunctionType())
4008      PType = PVDecl->getType();
4009    getObjCEncodingForType(PType, S);
4010    S += charUnitsToString(ParmOffset);
4011    ParmOffset += getObjCEncodingTypeSize(PType);
4012  }
4013
4014  return false;
4015}
4016
4017/// getObjCEncodingForMethodDecl - Return the encoded type for this method
4018/// declaration.
4019bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4020                                              std::string& S) const {
4021  // FIXME: This is not very efficient.
4022  // Encode type qualifer, 'in', 'inout', etc. for the return type.
4023  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
4024  // Encode result type.
4025  getObjCEncodingForType(Decl->getResultType(), S);
4026  // Compute size of all parameters.
4027  // Start with computing size of a pointer in number of bytes.
4028  // FIXME: There might(should) be a better way of doing this computation!
4029  SourceLocation Loc;
4030  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4031  // The first two arguments (self and _cmd) are pointers; account for
4032  // their size.
4033  CharUnits ParmOffset = 2 * PtrSize;
4034  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
4035       E = Decl->sel_param_end(); PI != E; ++PI) {
4036    QualType PType = (*PI)->getType();
4037    CharUnits sz = getObjCEncodingTypeSize(PType);
4038    if (sz.isZero())
4039      return true;
4040
4041    assert (sz.isPositive() &&
4042        "getObjCEncodingForMethodDecl - Incomplete param type");
4043    ParmOffset += sz;
4044  }
4045  S += charUnitsToString(ParmOffset);
4046  S += "@0:";
4047  S += charUnitsToString(PtrSize);
4048
4049  // Argument types.
4050  ParmOffset = 2 * PtrSize;
4051  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
4052       E = Decl->sel_param_end(); PI != E; ++PI) {
4053    ParmVarDecl *PVDecl = *PI;
4054    QualType PType = PVDecl->getOriginalType();
4055    if (const ArrayType *AT =
4056          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4057      // Use array's original type only if it has known number of
4058      // elements.
4059      if (!isa<ConstantArrayType>(AT))
4060        PType = PVDecl->getType();
4061    } else if (PType->isFunctionType())
4062      PType = PVDecl->getType();
4063    // Process argument qualifiers for user supplied arguments; such as,
4064    // 'in', 'inout', etc.
4065    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
4066    getObjCEncodingForType(PType, S);
4067    S += charUnitsToString(ParmOffset);
4068    ParmOffset += getObjCEncodingTypeSize(PType);
4069  }
4070
4071  return false;
4072}
4073
4074/// getObjCEncodingForPropertyDecl - Return the encoded type for this
4075/// property declaration. If non-NULL, Container must be either an
4076/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4077/// NULL when getting encodings for protocol properties.
4078/// Property attributes are stored as a comma-delimited C string. The simple
4079/// attributes readonly and bycopy are encoded as single characters. The
4080/// parametrized attributes, getter=name, setter=name, and ivar=name, are
4081/// encoded as single characters, followed by an identifier. Property types
4082/// are also encoded as a parametrized attribute. The characters used to encode
4083/// these attributes are defined by the following enumeration:
4084/// @code
4085/// enum PropertyAttributes {
4086/// kPropertyReadOnly = 'R',   // property is read-only.
4087/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4088/// kPropertyByref = '&',  // property is a reference to the value last assigned
4089/// kPropertyDynamic = 'D',    // property is dynamic
4090/// kPropertyGetter = 'G',     // followed by getter selector name
4091/// kPropertySetter = 'S',     // followed by setter selector name
4092/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4093/// kPropertyType = 't'              // followed by old-style type encoding.
4094/// kPropertyWeak = 'W'              // 'weak' property
4095/// kPropertyStrong = 'P'            // property GC'able
4096/// kPropertyNonAtomic = 'N'         // property non-atomic
4097/// };
4098/// @endcode
4099void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4100                                                const Decl *Container,
4101                                                std::string& S) const {
4102  // Collect information from the property implementation decl(s).
4103  bool Dynamic = false;
4104  ObjCPropertyImplDecl *SynthesizePID = 0;
4105
4106  // FIXME: Duplicated code due to poor abstraction.
4107  if (Container) {
4108    if (const ObjCCategoryImplDecl *CID =
4109        dyn_cast<ObjCCategoryImplDecl>(Container)) {
4110      for (ObjCCategoryImplDecl::propimpl_iterator
4111             i = CID->propimpl_begin(), e = CID->propimpl_end();
4112           i != e; ++i) {
4113        ObjCPropertyImplDecl *PID = *i;
4114        if (PID->getPropertyDecl() == PD) {
4115          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4116            Dynamic = true;
4117          } else {
4118            SynthesizePID = PID;
4119          }
4120        }
4121      }
4122    } else {
4123      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4124      for (ObjCCategoryImplDecl::propimpl_iterator
4125             i = OID->propimpl_begin(), e = OID->propimpl_end();
4126           i != e; ++i) {
4127        ObjCPropertyImplDecl *PID = *i;
4128        if (PID->getPropertyDecl() == PD) {
4129          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4130            Dynamic = true;
4131          } else {
4132            SynthesizePID = PID;
4133          }
4134        }
4135      }
4136    }
4137  }
4138
4139  // FIXME: This is not very efficient.
4140  S = "T";
4141
4142  // Encode result type.
4143  // GCC has some special rules regarding encoding of properties which
4144  // closely resembles encoding of ivars.
4145  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4146                             true /* outermost type */,
4147                             true /* encoding for property */);
4148
4149  if (PD->isReadOnly()) {
4150    S += ",R";
4151  } else {
4152    switch (PD->getSetterKind()) {
4153    case ObjCPropertyDecl::Assign: break;
4154    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4155    case ObjCPropertyDecl::Retain: S += ",&"; break;
4156    }
4157  }
4158
4159  // It really isn't clear at all what this means, since properties
4160  // are "dynamic by default".
4161  if (Dynamic)
4162    S += ",D";
4163
4164  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4165    S += ",N";
4166
4167  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4168    S += ",G";
4169    S += PD->getGetterName().getAsString();
4170  }
4171
4172  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4173    S += ",S";
4174    S += PD->getSetterName().getAsString();
4175  }
4176
4177  if (SynthesizePID) {
4178    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4179    S += ",V";
4180    S += OID->getNameAsString();
4181  }
4182
4183  // FIXME: OBJCGC: weak & strong
4184}
4185
4186/// getLegacyIntegralTypeEncoding -
4187/// Another legacy compatibility encoding: 32-bit longs are encoded as
4188/// 'l' or 'L' , but not always.  For typedefs, we need to use
4189/// 'i' or 'I' instead if encoding a struct field, or a pointer!
4190///
4191void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4192  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4193    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4194      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4195        PointeeTy = UnsignedIntTy;
4196      else
4197        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4198          PointeeTy = IntTy;
4199    }
4200  }
4201}
4202
4203void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
4204                                        const FieldDecl *Field) const {
4205  // We follow the behavior of gcc, expanding structures which are
4206  // directly pointed to, and expanding embedded structures. Note that
4207  // these rules are sufficient to prevent recursive encoding of the
4208  // same type.
4209  getObjCEncodingForTypeImpl(T, S, true, true, Field,
4210                             true /* outermost type */);
4211}
4212
4213static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
4214    switch (T->getAs<BuiltinType>()->getKind()) {
4215    default: assert(0 && "Unhandled builtin type kind");
4216    case BuiltinType::Void:       return 'v';
4217    case BuiltinType::Bool:       return 'B';
4218    case BuiltinType::Char_U:
4219    case BuiltinType::UChar:      return 'C';
4220    case BuiltinType::UShort:     return 'S';
4221    case BuiltinType::UInt:       return 'I';
4222    case BuiltinType::ULong:
4223        return C->getIntWidth(T) == 32 ? 'L' : 'Q';
4224    case BuiltinType::UInt128:    return 'T';
4225    case BuiltinType::ULongLong:  return 'Q';
4226    case BuiltinType::Char_S:
4227    case BuiltinType::SChar:      return 'c';
4228    case BuiltinType::Short:      return 's';
4229    case BuiltinType::WChar_S:
4230    case BuiltinType::WChar_U:
4231    case BuiltinType::Int:        return 'i';
4232    case BuiltinType::Long:
4233      return C->getIntWidth(T) == 32 ? 'l' : 'q';
4234    case BuiltinType::LongLong:   return 'q';
4235    case BuiltinType::Int128:     return 't';
4236    case BuiltinType::Float:      return 'f';
4237    case BuiltinType::Double:     return 'd';
4238    case BuiltinType::LongDouble: return 'D';
4239    }
4240}
4241
4242static void EncodeBitField(const ASTContext *Ctx, std::string& S,
4243                           QualType T, const FieldDecl *FD) {
4244  const Expr *E = FD->getBitWidth();
4245  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
4246  S += 'b';
4247  // The NeXT runtime encodes bit fields as b followed by the number of bits.
4248  // The GNU runtime requires more information; bitfields are encoded as b,
4249  // then the offset (in bits) of the first element, then the type of the
4250  // bitfield, then the size in bits.  For example, in this structure:
4251  //
4252  // struct
4253  // {
4254  //    int integer;
4255  //    int flags:2;
4256  // };
4257  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
4258  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
4259  // information is not especially sensible, but we're stuck with it for
4260  // compatibility with GCC, although providing it breaks anything that
4261  // actually uses runtime introspection and wants to work on both runtimes...
4262  if (!Ctx->getLangOptions().NeXTRuntime) {
4263    const RecordDecl *RD = FD->getParent();
4264    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
4265    S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
4266    if (T->isEnumeralType())
4267      S += 'i';
4268    else
4269      S += ObjCEncodingForPrimitiveKind(Ctx, T);
4270  }
4271  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
4272  S += llvm::utostr(N);
4273}
4274
4275// FIXME: Use SmallString for accumulating string.
4276void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
4277                                            bool ExpandPointedToStructures,
4278                                            bool ExpandStructures,
4279                                            const FieldDecl *FD,
4280                                            bool OutermostType,
4281                                            bool EncodingProperty,
4282                                            bool StructField) const {
4283  if (T->getAs<BuiltinType>()) {
4284    if (FD && FD->isBitField())
4285      return EncodeBitField(this, S, T, FD);
4286    S += ObjCEncodingForPrimitiveKind(this, T);
4287    return;
4288  }
4289
4290  if (const ComplexType *CT = T->getAs<ComplexType>()) {
4291    S += 'j';
4292    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
4293                               false);
4294    return;
4295  }
4296
4297  // encoding for pointer or r3eference types.
4298  QualType PointeeTy;
4299  if (const PointerType *PT = T->getAs<PointerType>()) {
4300    if (PT->isObjCSelType()) {
4301      S += ':';
4302      return;
4303    }
4304    PointeeTy = PT->getPointeeType();
4305  }
4306  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4307    PointeeTy = RT->getPointeeType();
4308  if (!PointeeTy.isNull()) {
4309    bool isReadOnly = false;
4310    // For historical/compatibility reasons, the read-only qualifier of the
4311    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
4312    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
4313    // Also, do not emit the 'r' for anything but the outermost type!
4314    if (isa<TypedefType>(T.getTypePtr())) {
4315      if (OutermostType && T.isConstQualified()) {
4316        isReadOnly = true;
4317        S += 'r';
4318      }
4319    } else if (OutermostType) {
4320      QualType P = PointeeTy;
4321      while (P->getAs<PointerType>())
4322        P = P->getAs<PointerType>()->getPointeeType();
4323      if (P.isConstQualified()) {
4324        isReadOnly = true;
4325        S += 'r';
4326      }
4327    }
4328    if (isReadOnly) {
4329      // Another legacy compatibility encoding. Some ObjC qualifier and type
4330      // combinations need to be rearranged.
4331      // Rewrite "in const" from "nr" to "rn"
4332      if (StringRef(S).endswith("nr"))
4333        S.replace(S.end()-2, S.end(), "rn");
4334    }
4335
4336    if (PointeeTy->isCharType()) {
4337      // char pointer types should be encoded as '*' unless it is a
4338      // type that has been typedef'd to 'BOOL'.
4339      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
4340        S += '*';
4341        return;
4342      }
4343    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
4344      // GCC binary compat: Need to convert "struct objc_class *" to "#".
4345      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
4346        S += '#';
4347        return;
4348      }
4349      // GCC binary compat: Need to convert "struct objc_object *" to "@".
4350      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
4351        S += '@';
4352        return;
4353      }
4354      // fall through...
4355    }
4356    S += '^';
4357    getLegacyIntegralTypeEncoding(PointeeTy);
4358
4359    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
4360                               NULL);
4361    return;
4362  }
4363
4364  if (const ArrayType *AT =
4365      // Ignore type qualifiers etc.
4366        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
4367    if (isa<IncompleteArrayType>(AT) && !StructField) {
4368      // Incomplete arrays are encoded as a pointer to the array element.
4369      S += '^';
4370
4371      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4372                                 false, ExpandStructures, FD);
4373    } else {
4374      S += '[';
4375
4376      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
4377        if (getTypeSize(CAT->getElementType()) == 0)
4378          S += '0';
4379        else
4380          S += llvm::utostr(CAT->getSize().getZExtValue());
4381      } else {
4382        //Variable length arrays are encoded as a regular array with 0 elements.
4383        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
4384               "Unknown array type!");
4385        S += '0';
4386      }
4387
4388      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4389                                 false, ExpandStructures, FD);
4390      S += ']';
4391    }
4392    return;
4393  }
4394
4395  if (T->getAs<FunctionType>()) {
4396    S += '?';
4397    return;
4398  }
4399
4400  if (const RecordType *RTy = T->getAs<RecordType>()) {
4401    RecordDecl *RDecl = RTy->getDecl();
4402    S += RDecl->isUnion() ? '(' : '{';
4403    // Anonymous structures print as '?'
4404    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
4405      S += II->getName();
4406      if (ClassTemplateSpecializationDecl *Spec
4407          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
4408        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
4409        std::string TemplateArgsStr
4410          = TemplateSpecializationType::PrintTemplateArgumentList(
4411                                            TemplateArgs.data(),
4412                                            TemplateArgs.size(),
4413                                            (*this).PrintingPolicy);
4414
4415        S += TemplateArgsStr;
4416      }
4417    } else {
4418      S += '?';
4419    }
4420    if (ExpandStructures) {
4421      S += '=';
4422      if (!RDecl->isUnion()) {
4423        getObjCEncodingForStructureImpl(RDecl, S, FD);
4424      } else {
4425        for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4426                                     FieldEnd = RDecl->field_end();
4427             Field != FieldEnd; ++Field) {
4428          if (FD) {
4429            S += '"';
4430            S += Field->getNameAsString();
4431            S += '"';
4432          }
4433
4434          // Special case bit-fields.
4435          if (Field->isBitField()) {
4436            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
4437                                       (*Field));
4438          } else {
4439            QualType qt = Field->getType();
4440            getLegacyIntegralTypeEncoding(qt);
4441            getObjCEncodingForTypeImpl(qt, S, false, true,
4442                                       FD, /*OutermostType*/false,
4443                                       /*EncodingProperty*/false,
4444                                       /*StructField*/true);
4445          }
4446        }
4447      }
4448    }
4449    S += RDecl->isUnion() ? ')' : '}';
4450    return;
4451  }
4452
4453  if (T->isEnumeralType()) {
4454    if (FD && FD->isBitField())
4455      EncodeBitField(this, S, T, FD);
4456    else
4457      S += 'i';
4458    return;
4459  }
4460
4461  if (T->isBlockPointerType()) {
4462    S += "@?"; // Unlike a pointer-to-function, which is "^?".
4463    return;
4464  }
4465
4466  // Ignore protocol qualifiers when mangling at this level.
4467  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
4468    T = OT->getBaseType();
4469
4470  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
4471    // @encode(class_name)
4472    ObjCInterfaceDecl *OI = OIT->getDecl();
4473    S += '{';
4474    const IdentifierInfo *II = OI->getIdentifier();
4475    S += II->getName();
4476    S += '=';
4477    SmallVector<const ObjCIvarDecl*, 32> Ivars;
4478    DeepCollectObjCIvars(OI, true, Ivars);
4479    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
4480      const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
4481      if (Field->isBitField())
4482        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
4483      else
4484        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
4485    }
4486    S += '}';
4487    return;
4488  }
4489
4490  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
4491    if (OPT->isObjCIdType()) {
4492      S += '@';
4493      return;
4494    }
4495
4496    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
4497      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
4498      // Since this is a binary compatibility issue, need to consult with runtime
4499      // folks. Fortunately, this is a *very* obsure construct.
4500      S += '#';
4501      return;
4502    }
4503
4504    if (OPT->isObjCQualifiedIdType()) {
4505      getObjCEncodingForTypeImpl(getObjCIdType(), S,
4506                                 ExpandPointedToStructures,
4507                                 ExpandStructures, FD);
4508      if (FD || EncodingProperty) {
4509        // Note that we do extended encoding of protocol qualifer list
4510        // Only when doing ivar or property encoding.
4511        S += '"';
4512        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4513             E = OPT->qual_end(); I != E; ++I) {
4514          S += '<';
4515          S += (*I)->getNameAsString();
4516          S += '>';
4517        }
4518        S += '"';
4519      }
4520      return;
4521    }
4522
4523    QualType PointeeTy = OPT->getPointeeType();
4524    if (!EncodingProperty &&
4525        isa<TypedefType>(PointeeTy.getTypePtr())) {
4526      // Another historical/compatibility reason.
4527      // We encode the underlying type which comes out as
4528      // {...};
4529      S += '^';
4530      getObjCEncodingForTypeImpl(PointeeTy, S,
4531                                 false, ExpandPointedToStructures,
4532                                 NULL);
4533      return;
4534    }
4535
4536    S += '@';
4537    if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
4538      S += '"';
4539      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
4540      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4541           E = OPT->qual_end(); I != E; ++I) {
4542        S += '<';
4543        S += (*I)->getNameAsString();
4544        S += '>';
4545      }
4546      S += '"';
4547    }
4548    return;
4549  }
4550
4551  // gcc just blithely ignores member pointers.
4552  // TODO: maybe there should be a mangling for these
4553  if (T->getAs<MemberPointerType>())
4554    return;
4555
4556  if (T->isVectorType()) {
4557    // This matches gcc's encoding, even though technically it is
4558    // insufficient.
4559    // FIXME. We should do a better job than gcc.
4560    return;
4561  }
4562
4563  assert(0 && "@encode for type not implemented!");
4564}
4565
4566void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
4567                                                 std::string &S,
4568                                                 const FieldDecl *FD,
4569                                                 bool includeVBases) const {
4570  assert(RDecl && "Expected non-null RecordDecl");
4571  assert(!RDecl->isUnion() && "Should not be called for unions");
4572  if (!RDecl->getDefinition())
4573    return;
4574
4575  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
4576  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
4577  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
4578
4579  if (CXXRec) {
4580    for (CXXRecordDecl::base_class_iterator
4581           BI = CXXRec->bases_begin(),
4582           BE = CXXRec->bases_end(); BI != BE; ++BI) {
4583      if (!BI->isVirtual()) {
4584        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4585        if (base->isEmpty())
4586          continue;
4587        uint64_t offs = layout.getBaseClassOffsetInBits(base);
4588        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4589                                  std::make_pair(offs, base));
4590      }
4591    }
4592  }
4593
4594  unsigned i = 0;
4595  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4596                               FieldEnd = RDecl->field_end();
4597       Field != FieldEnd; ++Field, ++i) {
4598    uint64_t offs = layout.getFieldOffset(i);
4599    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4600                              std::make_pair(offs, *Field));
4601  }
4602
4603  if (CXXRec && includeVBases) {
4604    for (CXXRecordDecl::base_class_iterator
4605           BI = CXXRec->vbases_begin(),
4606           BE = CXXRec->vbases_end(); BI != BE; ++BI) {
4607      CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4608      if (base->isEmpty())
4609        continue;
4610      uint64_t offs = layout.getVBaseClassOffsetInBits(base);
4611      FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4612                                std::make_pair(offs, base));
4613    }
4614  }
4615
4616  CharUnits size;
4617  if (CXXRec) {
4618    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
4619  } else {
4620    size = layout.getSize();
4621  }
4622
4623  uint64_t CurOffs = 0;
4624  std::multimap<uint64_t, NamedDecl *>::iterator
4625    CurLayObj = FieldOrBaseOffsets.begin();
4626
4627  if (CurLayObj != FieldOrBaseOffsets.end() && CurLayObj->first != 0) {
4628    assert(CXXRec && CXXRec->isDynamicClass() &&
4629           "Offset 0 was empty but no VTable ?");
4630    if (FD) {
4631      S += "\"_vptr$";
4632      std::string recname = CXXRec->getNameAsString();
4633      if (recname.empty()) recname = "?";
4634      S += recname;
4635      S += '"';
4636    }
4637    S += "^^?";
4638    CurOffs += getTypeSize(VoidPtrTy);
4639  }
4640
4641  if (!RDecl->hasFlexibleArrayMember()) {
4642    // Mark the end of the structure.
4643    uint64_t offs = toBits(size);
4644    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4645                              std::make_pair(offs, (NamedDecl*)0));
4646  }
4647
4648  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
4649    assert(CurOffs <= CurLayObj->first);
4650
4651    if (CurOffs < CurLayObj->first) {
4652      uint64_t padding = CurLayObj->first - CurOffs;
4653      // FIXME: There doesn't seem to be a way to indicate in the encoding that
4654      // packing/alignment of members is different that normal, in which case
4655      // the encoding will be out-of-sync with the real layout.
4656      // If the runtime switches to just consider the size of types without
4657      // taking into account alignment, we could make padding explicit in the
4658      // encoding (e.g. using arrays of chars). The encoding strings would be
4659      // longer then though.
4660      CurOffs += padding;
4661    }
4662
4663    NamedDecl *dcl = CurLayObj->second;
4664    if (dcl == 0)
4665      break; // reached end of structure.
4666
4667    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
4668      // We expand the bases without their virtual bases since those are going
4669      // in the initial structure. Note that this differs from gcc which
4670      // expands virtual bases each time one is encountered in the hierarchy,
4671      // making the encoding type bigger than it really is.
4672      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
4673      assert(!base->isEmpty());
4674      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
4675    } else {
4676      FieldDecl *field = cast<FieldDecl>(dcl);
4677      if (FD) {
4678        S += '"';
4679        S += field->getNameAsString();
4680        S += '"';
4681      }
4682
4683      if (field->isBitField()) {
4684        EncodeBitField(this, S, field->getType(), field);
4685        CurOffs += field->getBitWidth()->EvaluateAsInt(*this).getZExtValue();
4686      } else {
4687        QualType qt = field->getType();
4688        getLegacyIntegralTypeEncoding(qt);
4689        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
4690                                   /*OutermostType*/false,
4691                                   /*EncodingProperty*/false,
4692                                   /*StructField*/true);
4693        CurOffs += getTypeSize(field->getType());
4694      }
4695    }
4696  }
4697}
4698
4699void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
4700                                                 std::string& S) const {
4701  if (QT & Decl::OBJC_TQ_In)
4702    S += 'n';
4703  if (QT & Decl::OBJC_TQ_Inout)
4704    S += 'N';
4705  if (QT & Decl::OBJC_TQ_Out)
4706    S += 'o';
4707  if (QT & Decl::OBJC_TQ_Bycopy)
4708    S += 'O';
4709  if (QT & Decl::OBJC_TQ_Byref)
4710    S += 'R';
4711  if (QT & Decl::OBJC_TQ_Oneway)
4712    S += 'V';
4713}
4714
4715void ASTContext::setBuiltinVaListType(QualType T) {
4716  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
4717
4718  BuiltinVaListType = T;
4719}
4720
4721void ASTContext::setObjCIdType(QualType T) {
4722  ObjCIdTypedefType = T;
4723}
4724
4725void ASTContext::setObjCSelType(QualType T) {
4726  ObjCSelTypedefType = T;
4727}
4728
4729void ASTContext::setObjCProtoType(QualType QT) {
4730  ObjCProtoType = QT;
4731}
4732
4733void ASTContext::setObjCClassType(QualType T) {
4734  ObjCClassTypedefType = T;
4735}
4736
4737void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
4738  assert(ObjCConstantStringType.isNull() &&
4739         "'NSConstantString' type already set!");
4740
4741  ObjCConstantStringType = getObjCInterfaceType(Decl);
4742}
4743
4744/// \brief Retrieve the template name that corresponds to a non-empty
4745/// lookup.
4746TemplateName
4747ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
4748                                      UnresolvedSetIterator End) const {
4749  unsigned size = End - Begin;
4750  assert(size > 1 && "set is not overloaded!");
4751
4752  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
4753                          size * sizeof(FunctionTemplateDecl*));
4754  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
4755
4756  NamedDecl **Storage = OT->getStorage();
4757  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
4758    NamedDecl *D = *I;
4759    assert(isa<FunctionTemplateDecl>(D) ||
4760           (isa<UsingShadowDecl>(D) &&
4761            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
4762    *Storage++ = D;
4763  }
4764
4765  return TemplateName(OT);
4766}
4767
4768/// \brief Retrieve the template name that represents a qualified
4769/// template name such as \c std::vector.
4770TemplateName
4771ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
4772                                     bool TemplateKeyword,
4773                                     TemplateDecl *Template) const {
4774  assert(NNS && "Missing nested-name-specifier in qualified template name");
4775
4776  // FIXME: Canonicalization?
4777  llvm::FoldingSetNodeID ID;
4778  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
4779
4780  void *InsertPos = 0;
4781  QualifiedTemplateName *QTN =
4782    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4783  if (!QTN) {
4784    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
4785    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
4786  }
4787
4788  return TemplateName(QTN);
4789}
4790
4791/// \brief Retrieve the template name that represents a dependent
4792/// template name such as \c MetaFun::template apply.
4793TemplateName
4794ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4795                                     const IdentifierInfo *Name) const {
4796  assert((!NNS || NNS->isDependent()) &&
4797         "Nested name specifier must be dependent");
4798
4799  llvm::FoldingSetNodeID ID;
4800  DependentTemplateName::Profile(ID, NNS, Name);
4801
4802  void *InsertPos = 0;
4803  DependentTemplateName *QTN =
4804    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4805
4806  if (QTN)
4807    return TemplateName(QTN);
4808
4809  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4810  if (CanonNNS == NNS) {
4811    QTN = new (*this,4) DependentTemplateName(NNS, Name);
4812  } else {
4813    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
4814    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
4815    DependentTemplateName *CheckQTN =
4816      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4817    assert(!CheckQTN && "Dependent type name canonicalization broken");
4818    (void)CheckQTN;
4819  }
4820
4821  DependentTemplateNames.InsertNode(QTN, InsertPos);
4822  return TemplateName(QTN);
4823}
4824
4825/// \brief Retrieve the template name that represents a dependent
4826/// template name such as \c MetaFun::template operator+.
4827TemplateName
4828ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4829                                     OverloadedOperatorKind Operator) const {
4830  assert((!NNS || NNS->isDependent()) &&
4831         "Nested name specifier must be dependent");
4832
4833  llvm::FoldingSetNodeID ID;
4834  DependentTemplateName::Profile(ID, NNS, Operator);
4835
4836  void *InsertPos = 0;
4837  DependentTemplateName *QTN
4838    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4839
4840  if (QTN)
4841    return TemplateName(QTN);
4842
4843  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4844  if (CanonNNS == NNS) {
4845    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
4846  } else {
4847    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
4848    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
4849
4850    DependentTemplateName *CheckQTN
4851      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4852    assert(!CheckQTN && "Dependent template name canonicalization broken");
4853    (void)CheckQTN;
4854  }
4855
4856  DependentTemplateNames.InsertNode(QTN, InsertPos);
4857  return TemplateName(QTN);
4858}
4859
4860TemplateName
4861ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
4862                                         TemplateName replacement) const {
4863  llvm::FoldingSetNodeID ID;
4864  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
4865
4866  void *insertPos = 0;
4867  SubstTemplateTemplateParmStorage *subst
4868    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
4869
4870  if (!subst) {
4871    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
4872    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
4873  }
4874
4875  return TemplateName(subst);
4876}
4877
4878TemplateName
4879ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
4880                                       const TemplateArgument &ArgPack) const {
4881  ASTContext &Self = const_cast<ASTContext &>(*this);
4882  llvm::FoldingSetNodeID ID;
4883  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
4884
4885  void *InsertPos = 0;
4886  SubstTemplateTemplateParmPackStorage *Subst
4887    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
4888
4889  if (!Subst) {
4890    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
4891                                                           ArgPack.pack_size(),
4892                                                         ArgPack.pack_begin());
4893    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
4894  }
4895
4896  return TemplateName(Subst);
4897}
4898
4899/// getFromTargetType - Given one of the integer types provided by
4900/// TargetInfo, produce the corresponding type. The unsigned @p Type
4901/// is actually a value of type @c TargetInfo::IntType.
4902CanQualType ASTContext::getFromTargetType(unsigned Type) const {
4903  switch (Type) {
4904  case TargetInfo::NoInt: return CanQualType();
4905  case TargetInfo::SignedShort: return ShortTy;
4906  case TargetInfo::UnsignedShort: return UnsignedShortTy;
4907  case TargetInfo::SignedInt: return IntTy;
4908  case TargetInfo::UnsignedInt: return UnsignedIntTy;
4909  case TargetInfo::SignedLong: return LongTy;
4910  case TargetInfo::UnsignedLong: return UnsignedLongTy;
4911  case TargetInfo::SignedLongLong: return LongLongTy;
4912  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
4913  }
4914
4915  assert(false && "Unhandled TargetInfo::IntType value");
4916  return CanQualType();
4917}
4918
4919//===----------------------------------------------------------------------===//
4920//                        Type Predicates.
4921//===----------------------------------------------------------------------===//
4922
4923/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
4924/// garbage collection attribute.
4925///
4926Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
4927  if (getLangOptions().getGCMode() == LangOptions::NonGC)
4928    return Qualifiers::GCNone;
4929
4930  assert(getLangOptions().ObjC1);
4931  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
4932
4933  // Default behaviour under objective-C's gc is for ObjC pointers
4934  // (or pointers to them) be treated as though they were declared
4935  // as __strong.
4936  if (GCAttrs == Qualifiers::GCNone) {
4937    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4938      return Qualifiers::Strong;
4939    else if (Ty->isPointerType())
4940      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
4941  } else {
4942    // It's not valid to set GC attributes on anything that isn't a
4943    // pointer.
4944#ifndef NDEBUG
4945    QualType CT = Ty->getCanonicalTypeInternal();
4946    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
4947      CT = AT->getElementType();
4948    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
4949#endif
4950  }
4951  return GCAttrs;
4952}
4953
4954//===----------------------------------------------------------------------===//
4955//                        Type Compatibility Testing
4956//===----------------------------------------------------------------------===//
4957
4958/// areCompatVectorTypes - Return true if the two specified vector types are
4959/// compatible.
4960static bool areCompatVectorTypes(const VectorType *LHS,
4961                                 const VectorType *RHS) {
4962  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
4963  return LHS->getElementType() == RHS->getElementType() &&
4964         LHS->getNumElements() == RHS->getNumElements();
4965}
4966
4967bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
4968                                          QualType SecondVec) {
4969  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
4970  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
4971
4972  if (hasSameUnqualifiedType(FirstVec, SecondVec))
4973    return true;
4974
4975  // Treat Neon vector types and most AltiVec vector types as if they are the
4976  // equivalent GCC vector types.
4977  const VectorType *First = FirstVec->getAs<VectorType>();
4978  const VectorType *Second = SecondVec->getAs<VectorType>();
4979  if (First->getNumElements() == Second->getNumElements() &&
4980      hasSameType(First->getElementType(), Second->getElementType()) &&
4981      First->getVectorKind() != VectorType::AltiVecPixel &&
4982      First->getVectorKind() != VectorType::AltiVecBool &&
4983      Second->getVectorKind() != VectorType::AltiVecPixel &&
4984      Second->getVectorKind() != VectorType::AltiVecBool)
4985    return true;
4986
4987  return false;
4988}
4989
4990//===----------------------------------------------------------------------===//
4991// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
4992//===----------------------------------------------------------------------===//
4993
4994/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
4995/// inheritance hierarchy of 'rProto'.
4996bool
4997ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
4998                                           ObjCProtocolDecl *rProto) const {
4999  if (lProto == rProto)
5000    return true;
5001  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
5002       E = rProto->protocol_end(); PI != E; ++PI)
5003    if (ProtocolCompatibleWithProtocol(lProto, *PI))
5004      return true;
5005  return false;
5006}
5007
5008/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
5009/// return true if lhs's protocols conform to rhs's protocol; false
5010/// otherwise.
5011bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
5012  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
5013    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
5014  return false;
5015}
5016
5017/// ObjCQualifiedClassTypesAreCompatible - compare  Class<p,...> and
5018/// Class<p1, ...>.
5019bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
5020                                                      QualType rhs) {
5021  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
5022  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5023  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
5024
5025  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5026       E = lhsQID->qual_end(); I != E; ++I) {
5027    bool match = false;
5028    ObjCProtocolDecl *lhsProto = *I;
5029    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5030         E = rhsOPT->qual_end(); J != E; ++J) {
5031      ObjCProtocolDecl *rhsProto = *J;
5032      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
5033        match = true;
5034        break;
5035      }
5036    }
5037    if (!match)
5038      return false;
5039  }
5040  return true;
5041}
5042
5043/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
5044/// ObjCQualifiedIDType.
5045bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
5046                                                   bool compare) {
5047  // Allow id<P..> and an 'id' or void* type in all cases.
5048  if (lhs->isVoidPointerType() ||
5049      lhs->isObjCIdType() || lhs->isObjCClassType())
5050    return true;
5051  else if (rhs->isVoidPointerType() ||
5052           rhs->isObjCIdType() || rhs->isObjCClassType())
5053    return true;
5054
5055  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
5056    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5057
5058    if (!rhsOPT) return false;
5059
5060    if (rhsOPT->qual_empty()) {
5061      // If the RHS is a unqualified interface pointer "NSString*",
5062      // make sure we check the class hierarchy.
5063      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5064        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5065             E = lhsQID->qual_end(); I != E; ++I) {
5066          // when comparing an id<P> on lhs with a static type on rhs,
5067          // see if static class implements all of id's protocols, directly or
5068          // through its super class and categories.
5069          if (!rhsID->ClassImplementsProtocol(*I, true))
5070            return false;
5071        }
5072      }
5073      // If there are no qualifiers and no interface, we have an 'id'.
5074      return true;
5075    }
5076    // Both the right and left sides have qualifiers.
5077    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5078         E = lhsQID->qual_end(); I != E; ++I) {
5079      ObjCProtocolDecl *lhsProto = *I;
5080      bool match = false;
5081
5082      // when comparing an id<P> on lhs with a static type on rhs,
5083      // see if static class implements all of id's protocols, directly or
5084      // through its super class and categories.
5085      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5086           E = rhsOPT->qual_end(); J != E; ++J) {
5087        ObjCProtocolDecl *rhsProto = *J;
5088        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5089            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5090          match = true;
5091          break;
5092        }
5093      }
5094      // If the RHS is a qualified interface pointer "NSString<P>*",
5095      // make sure we check the class hierarchy.
5096      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5097        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5098             E = lhsQID->qual_end(); I != E; ++I) {
5099          // when comparing an id<P> on lhs with a static type on rhs,
5100          // see if static class implements all of id's protocols, directly or
5101          // through its super class and categories.
5102          if (rhsID->ClassImplementsProtocol(*I, true)) {
5103            match = true;
5104            break;
5105          }
5106        }
5107      }
5108      if (!match)
5109        return false;
5110    }
5111
5112    return true;
5113  }
5114
5115  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
5116  assert(rhsQID && "One of the LHS/RHS should be id<x>");
5117
5118  if (const ObjCObjectPointerType *lhsOPT =
5119        lhs->getAsObjCInterfacePointerType()) {
5120    // If both the right and left sides have qualifiers.
5121    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
5122         E = lhsOPT->qual_end(); I != E; ++I) {
5123      ObjCProtocolDecl *lhsProto = *I;
5124      bool match = false;
5125
5126      // when comparing an id<P> on rhs with a static type on lhs,
5127      // see if static class implements all of id's protocols, directly or
5128      // through its super class and categories.
5129      // First, lhs protocols in the qualifier list must be found, direct
5130      // or indirect in rhs's qualifier list or it is a mismatch.
5131      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5132           E = rhsQID->qual_end(); J != E; ++J) {
5133        ObjCProtocolDecl *rhsProto = *J;
5134        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5135            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5136          match = true;
5137          break;
5138        }
5139      }
5140      if (!match)
5141        return false;
5142    }
5143
5144    // Static class's protocols, or its super class or category protocols
5145    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
5146    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
5147      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5148      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
5149      // This is rather dubious but matches gcc's behavior. If lhs has
5150      // no type qualifier and its class has no static protocol(s)
5151      // assume that it is mismatch.
5152      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
5153        return false;
5154      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5155           LHSInheritedProtocols.begin(),
5156           E = LHSInheritedProtocols.end(); I != E; ++I) {
5157        bool match = false;
5158        ObjCProtocolDecl *lhsProto = (*I);
5159        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5160             E = rhsQID->qual_end(); J != E; ++J) {
5161          ObjCProtocolDecl *rhsProto = *J;
5162          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5163              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5164            match = true;
5165            break;
5166          }
5167        }
5168        if (!match)
5169          return false;
5170      }
5171    }
5172    return true;
5173  }
5174  return false;
5175}
5176
5177/// canAssignObjCInterfaces - Return true if the two interface types are
5178/// compatible for assignment from RHS to LHS.  This handles validation of any
5179/// protocol qualifiers on the LHS or RHS.
5180///
5181bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
5182                                         const ObjCObjectPointerType *RHSOPT) {
5183  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5184  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5185
5186  // If either type represents the built-in 'id' or 'Class' types, return true.
5187  if (LHS->isObjCUnqualifiedIdOrClass() ||
5188      RHS->isObjCUnqualifiedIdOrClass())
5189    return true;
5190
5191  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
5192    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5193                                             QualType(RHSOPT,0),
5194                                             false);
5195
5196  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
5197    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
5198                                                QualType(RHSOPT,0));
5199
5200  // If we have 2 user-defined types, fall into that path.
5201  if (LHS->getInterface() && RHS->getInterface())
5202    return canAssignObjCInterfaces(LHS, RHS);
5203
5204  return false;
5205}
5206
5207/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
5208/// for providing type-safety for objective-c pointers used to pass/return
5209/// arguments in block literals. When passed as arguments, passing 'A*' where
5210/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
5211/// not OK. For the return type, the opposite is not OK.
5212bool ASTContext::canAssignObjCInterfacesInBlockPointer(
5213                                         const ObjCObjectPointerType *LHSOPT,
5214                                         const ObjCObjectPointerType *RHSOPT,
5215                                         bool BlockReturnType) {
5216  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
5217    return true;
5218
5219  if (LHSOPT->isObjCBuiltinType()) {
5220    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
5221  }
5222
5223  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
5224    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5225                                             QualType(RHSOPT,0),
5226                                             false);
5227
5228  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
5229  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
5230  if (LHS && RHS)  { // We have 2 user-defined types.
5231    if (LHS != RHS) {
5232      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
5233        return BlockReturnType;
5234      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
5235        return !BlockReturnType;
5236    }
5237    else
5238      return true;
5239  }
5240  return false;
5241}
5242
5243/// getIntersectionOfProtocols - This routine finds the intersection of set
5244/// of protocols inherited from two distinct objective-c pointer objects.
5245/// It is used to build composite qualifier list of the composite type of
5246/// the conditional expression involving two objective-c pointer objects.
5247static
5248void getIntersectionOfProtocols(ASTContext &Context,
5249                                const ObjCObjectPointerType *LHSOPT,
5250                                const ObjCObjectPointerType *RHSOPT,
5251      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
5252
5253  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5254  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5255  assert(LHS->getInterface() && "LHS must have an interface base");
5256  assert(RHS->getInterface() && "RHS must have an interface base");
5257
5258  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
5259  unsigned LHSNumProtocols = LHS->getNumProtocols();
5260  if (LHSNumProtocols > 0)
5261    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
5262  else {
5263    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5264    Context.CollectInheritedProtocols(LHS->getInterface(),
5265                                      LHSInheritedProtocols);
5266    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
5267                                LHSInheritedProtocols.end());
5268  }
5269
5270  unsigned RHSNumProtocols = RHS->getNumProtocols();
5271  if (RHSNumProtocols > 0) {
5272    ObjCProtocolDecl **RHSProtocols =
5273      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
5274    for (unsigned i = 0; i < RHSNumProtocols; ++i)
5275      if (InheritedProtocolSet.count(RHSProtocols[i]))
5276        IntersectionOfProtocols.push_back(RHSProtocols[i]);
5277  }
5278  else {
5279    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
5280    Context.CollectInheritedProtocols(RHS->getInterface(),
5281                                      RHSInheritedProtocols);
5282    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5283         RHSInheritedProtocols.begin(),
5284         E = RHSInheritedProtocols.end(); I != E; ++I)
5285      if (InheritedProtocolSet.count((*I)))
5286        IntersectionOfProtocols.push_back((*I));
5287  }
5288}
5289
5290/// areCommonBaseCompatible - Returns common base class of the two classes if
5291/// one found. Note that this is O'2 algorithm. But it will be called as the
5292/// last type comparison in a ?-exp of ObjC pointer types before a
5293/// warning is issued. So, its invokation is extremely rare.
5294QualType ASTContext::areCommonBaseCompatible(
5295                                          const ObjCObjectPointerType *Lptr,
5296                                          const ObjCObjectPointerType *Rptr) {
5297  const ObjCObjectType *LHS = Lptr->getObjectType();
5298  const ObjCObjectType *RHS = Rptr->getObjectType();
5299  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
5300  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
5301  if (!LDecl || !RDecl || (LDecl == RDecl))
5302    return QualType();
5303
5304  do {
5305    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
5306    if (canAssignObjCInterfaces(LHS, RHS)) {
5307      SmallVector<ObjCProtocolDecl *, 8> Protocols;
5308      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
5309
5310      QualType Result = QualType(LHS, 0);
5311      if (!Protocols.empty())
5312        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
5313      Result = getObjCObjectPointerType(Result);
5314      return Result;
5315    }
5316  } while ((LDecl = LDecl->getSuperClass()));
5317
5318  return QualType();
5319}
5320
5321bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
5322                                         const ObjCObjectType *RHS) {
5323  assert(LHS->getInterface() && "LHS is not an interface type");
5324  assert(RHS->getInterface() && "RHS is not an interface type");
5325
5326  // Verify that the base decls are compatible: the RHS must be a subclass of
5327  // the LHS.
5328  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
5329    return false;
5330
5331  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
5332  // protocol qualified at all, then we are good.
5333  if (LHS->getNumProtocols() == 0)
5334    return true;
5335
5336  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
5337  // more detailed analysis is required.
5338  if (RHS->getNumProtocols() == 0) {
5339    // OK, if LHS is a superclass of RHS *and*
5340    // this superclass is assignment compatible with LHS.
5341    // false otherwise.
5342    bool IsSuperClass =
5343      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
5344    if (IsSuperClass) {
5345      // OK if conversion of LHS to SuperClass results in narrowing of types
5346      // ; i.e., SuperClass may implement at least one of the protocols
5347      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
5348      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
5349      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
5350      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
5351      // If super class has no protocols, it is not a match.
5352      if (SuperClassInheritedProtocols.empty())
5353        return false;
5354
5355      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5356           LHSPE = LHS->qual_end();
5357           LHSPI != LHSPE; LHSPI++) {
5358        bool SuperImplementsProtocol = false;
5359        ObjCProtocolDecl *LHSProto = (*LHSPI);
5360
5361        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5362             SuperClassInheritedProtocols.begin(),
5363             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
5364          ObjCProtocolDecl *SuperClassProto = (*I);
5365          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
5366            SuperImplementsProtocol = true;
5367            break;
5368          }
5369        }
5370        if (!SuperImplementsProtocol)
5371          return false;
5372      }
5373      return true;
5374    }
5375    return false;
5376  }
5377
5378  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5379                                     LHSPE = LHS->qual_end();
5380       LHSPI != LHSPE; LHSPI++) {
5381    bool RHSImplementsProtocol = false;
5382
5383    // If the RHS doesn't implement the protocol on the left, the types
5384    // are incompatible.
5385    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
5386                                       RHSPE = RHS->qual_end();
5387         RHSPI != RHSPE; RHSPI++) {
5388      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
5389        RHSImplementsProtocol = true;
5390        break;
5391      }
5392    }
5393    // FIXME: For better diagnostics, consider passing back the protocol name.
5394    if (!RHSImplementsProtocol)
5395      return false;
5396  }
5397  // The RHS implements all protocols listed on the LHS.
5398  return true;
5399}
5400
5401bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
5402  // get the "pointed to" types
5403  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
5404  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
5405
5406  if (!LHSOPT || !RHSOPT)
5407    return false;
5408
5409  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
5410         canAssignObjCInterfaces(RHSOPT, LHSOPT);
5411}
5412
5413bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
5414  return canAssignObjCInterfaces(
5415                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
5416                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
5417}
5418
5419/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
5420/// both shall have the identically qualified version of a compatible type.
5421/// C99 6.2.7p1: Two types have compatible types if their types are the
5422/// same. See 6.7.[2,3,5] for additional rules.
5423bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
5424                                    bool CompareUnqualified) {
5425  if (getLangOptions().CPlusPlus)
5426    return hasSameType(LHS, RHS);
5427
5428  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
5429}
5430
5431bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
5432  return typesAreCompatible(LHS, RHS);
5433}
5434
5435bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
5436  return !mergeTypes(LHS, RHS, true).isNull();
5437}
5438
5439/// mergeTransparentUnionType - if T is a transparent union type and a member
5440/// of T is compatible with SubType, return the merged type, else return
5441/// QualType()
5442QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
5443                                               bool OfBlockPointer,
5444                                               bool Unqualified) {
5445  if (const RecordType *UT = T->getAsUnionType()) {
5446    RecordDecl *UD = UT->getDecl();
5447    if (UD->hasAttr<TransparentUnionAttr>()) {
5448      for (RecordDecl::field_iterator it = UD->field_begin(),
5449           itend = UD->field_end(); it != itend; ++it) {
5450        QualType ET = it->getType().getUnqualifiedType();
5451        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
5452        if (!MT.isNull())
5453          return MT;
5454      }
5455    }
5456  }
5457
5458  return QualType();
5459}
5460
5461/// mergeFunctionArgumentTypes - merge two types which appear as function
5462/// argument types
5463QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
5464                                                bool OfBlockPointer,
5465                                                bool Unqualified) {
5466  // GNU extension: two types are compatible if they appear as a function
5467  // argument, one of the types is a transparent union type and the other
5468  // type is compatible with a union member
5469  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
5470                                              Unqualified);
5471  if (!lmerge.isNull())
5472    return lmerge;
5473
5474  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
5475                                              Unqualified);
5476  if (!rmerge.isNull())
5477    return rmerge;
5478
5479  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
5480}
5481
5482QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
5483                                        bool OfBlockPointer,
5484                                        bool Unqualified) {
5485  const FunctionType *lbase = lhs->getAs<FunctionType>();
5486  const FunctionType *rbase = rhs->getAs<FunctionType>();
5487  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
5488  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
5489  bool allLTypes = true;
5490  bool allRTypes = true;
5491
5492  // Check return type
5493  QualType retType;
5494  if (OfBlockPointer) {
5495    QualType RHS = rbase->getResultType();
5496    QualType LHS = lbase->getResultType();
5497    bool UnqualifiedResult = Unqualified;
5498    if (!UnqualifiedResult)
5499      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
5500    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
5501  }
5502  else
5503    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
5504                         Unqualified);
5505  if (retType.isNull()) return QualType();
5506
5507  if (Unqualified)
5508    retType = retType.getUnqualifiedType();
5509
5510  CanQualType LRetType = getCanonicalType(lbase->getResultType());
5511  CanQualType RRetType = getCanonicalType(rbase->getResultType());
5512  if (Unqualified) {
5513    LRetType = LRetType.getUnqualifiedType();
5514    RRetType = RRetType.getUnqualifiedType();
5515  }
5516
5517  if (getCanonicalType(retType) != LRetType)
5518    allLTypes = false;
5519  if (getCanonicalType(retType) != RRetType)
5520    allRTypes = false;
5521
5522  // FIXME: double check this
5523  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
5524  //                           rbase->getRegParmAttr() != 0 &&
5525  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
5526  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
5527  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
5528
5529  // Compatible functions must have compatible calling conventions
5530  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
5531    return QualType();
5532
5533  // Regparm is part of the calling convention.
5534  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
5535    return QualType();
5536  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
5537    return QualType();
5538
5539  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
5540    return QualType();
5541
5542  // It's noreturn if either type is.
5543  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
5544  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
5545  if (NoReturn != lbaseInfo.getNoReturn())
5546    allLTypes = false;
5547  if (NoReturn != rbaseInfo.getNoReturn())
5548    allRTypes = false;
5549
5550  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
5551
5552  if (lproto && rproto) { // two C99 style function prototypes
5553    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
5554           "C++ shouldn't be here");
5555    unsigned lproto_nargs = lproto->getNumArgs();
5556    unsigned rproto_nargs = rproto->getNumArgs();
5557
5558    // Compatible functions must have the same number of arguments
5559    if (lproto_nargs != rproto_nargs)
5560      return QualType();
5561
5562    // Variadic and non-variadic functions aren't compatible
5563    if (lproto->isVariadic() != rproto->isVariadic())
5564      return QualType();
5565
5566    if (lproto->getTypeQuals() != rproto->getTypeQuals())
5567      return QualType();
5568
5569    // Check argument compatibility
5570    SmallVector<QualType, 10> types;
5571    for (unsigned i = 0; i < lproto_nargs; i++) {
5572      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
5573      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
5574      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
5575                                                    OfBlockPointer,
5576                                                    Unqualified);
5577      if (argtype.isNull()) return QualType();
5578
5579      if (Unqualified)
5580        argtype = argtype.getUnqualifiedType();
5581
5582      types.push_back(argtype);
5583      if (Unqualified) {
5584        largtype = largtype.getUnqualifiedType();
5585        rargtype = rargtype.getUnqualifiedType();
5586      }
5587
5588      if (getCanonicalType(argtype) != getCanonicalType(largtype))
5589        allLTypes = false;
5590      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
5591        allRTypes = false;
5592    }
5593    if (allLTypes) return lhs;
5594    if (allRTypes) return rhs;
5595
5596    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
5597    EPI.ExtInfo = einfo;
5598    return getFunctionType(retType, types.begin(), types.size(), EPI);
5599  }
5600
5601  if (lproto) allRTypes = false;
5602  if (rproto) allLTypes = false;
5603
5604  const FunctionProtoType *proto = lproto ? lproto : rproto;
5605  if (proto) {
5606    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
5607    if (proto->isVariadic()) return QualType();
5608    // Check that the types are compatible with the types that
5609    // would result from default argument promotions (C99 6.7.5.3p15).
5610    // The only types actually affected are promotable integer
5611    // types and floats, which would be passed as a different
5612    // type depending on whether the prototype is visible.
5613    unsigned proto_nargs = proto->getNumArgs();
5614    for (unsigned i = 0; i < proto_nargs; ++i) {
5615      QualType argTy = proto->getArgType(i);
5616
5617      // Look at the promotion type of enum types, since that is the type used
5618      // to pass enum values.
5619      if (const EnumType *Enum = argTy->getAs<EnumType>())
5620        argTy = Enum->getDecl()->getPromotionType();
5621
5622      if (argTy->isPromotableIntegerType() ||
5623          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
5624        return QualType();
5625    }
5626
5627    if (allLTypes) return lhs;
5628    if (allRTypes) return rhs;
5629
5630    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
5631    EPI.ExtInfo = einfo;
5632    return getFunctionType(retType, proto->arg_type_begin(),
5633                           proto->getNumArgs(), EPI);
5634  }
5635
5636  if (allLTypes) return lhs;
5637  if (allRTypes) return rhs;
5638  return getFunctionNoProtoType(retType, einfo);
5639}
5640
5641QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
5642                                bool OfBlockPointer,
5643                                bool Unqualified, bool BlockReturnType) {
5644  // C++ [expr]: If an expression initially has the type "reference to T", the
5645  // type is adjusted to "T" prior to any further analysis, the expression
5646  // designates the object or function denoted by the reference, and the
5647  // expression is an lvalue unless the reference is an rvalue reference and
5648  // the expression is a function call (possibly inside parentheses).
5649  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
5650  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
5651
5652  if (Unqualified) {
5653    LHS = LHS.getUnqualifiedType();
5654    RHS = RHS.getUnqualifiedType();
5655  }
5656
5657  QualType LHSCan = getCanonicalType(LHS),
5658           RHSCan = getCanonicalType(RHS);
5659
5660  // If two types are identical, they are compatible.
5661  if (LHSCan == RHSCan)
5662    return LHS;
5663
5664  // If the qualifiers are different, the types aren't compatible... mostly.
5665  Qualifiers LQuals = LHSCan.getLocalQualifiers();
5666  Qualifiers RQuals = RHSCan.getLocalQualifiers();
5667  if (LQuals != RQuals) {
5668    // If any of these qualifiers are different, we have a type
5669    // mismatch.
5670    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
5671        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
5672        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
5673      return QualType();
5674
5675    // Exactly one GC qualifier difference is allowed: __strong is
5676    // okay if the other type has no GC qualifier but is an Objective
5677    // C object pointer (i.e. implicitly strong by default).  We fix
5678    // this by pretending that the unqualified type was actually
5679    // qualified __strong.
5680    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
5681    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
5682    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
5683
5684    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
5685      return QualType();
5686
5687    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
5688      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
5689    }
5690    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
5691      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
5692    }
5693    return QualType();
5694  }
5695
5696  // Okay, qualifiers are equal.
5697
5698  Type::TypeClass LHSClass = LHSCan->getTypeClass();
5699  Type::TypeClass RHSClass = RHSCan->getTypeClass();
5700
5701  // We want to consider the two function types to be the same for these
5702  // comparisons, just force one to the other.
5703  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
5704  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
5705
5706  // Same as above for arrays
5707  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
5708    LHSClass = Type::ConstantArray;
5709  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
5710    RHSClass = Type::ConstantArray;
5711
5712  // ObjCInterfaces are just specialized ObjCObjects.
5713  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
5714  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
5715
5716  // Canonicalize ExtVector -> Vector.
5717  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
5718  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
5719
5720  // If the canonical type classes don't match.
5721  if (LHSClass != RHSClass) {
5722    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
5723    // a signed integer type, or an unsigned integer type.
5724    // Compatibility is based on the underlying type, not the promotion
5725    // type.
5726    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
5727      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
5728        return RHS;
5729    }
5730    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
5731      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
5732        return LHS;
5733    }
5734
5735    return QualType();
5736  }
5737
5738  // The canonical type classes match.
5739  switch (LHSClass) {
5740#define TYPE(Class, Base)
5741#define ABSTRACT_TYPE(Class, Base)
5742#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
5743#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
5744#define DEPENDENT_TYPE(Class, Base) case Type::Class:
5745#include "clang/AST/TypeNodes.def"
5746    assert(false && "Non-canonical and dependent types shouldn't get here");
5747    return QualType();
5748
5749  case Type::LValueReference:
5750  case Type::RValueReference:
5751  case Type::MemberPointer:
5752    assert(false && "C++ should never be in mergeTypes");
5753    return QualType();
5754
5755  case Type::ObjCInterface:
5756  case Type::IncompleteArray:
5757  case Type::VariableArray:
5758  case Type::FunctionProto:
5759  case Type::ExtVector:
5760    assert(false && "Types are eliminated above");
5761    return QualType();
5762
5763  case Type::Pointer:
5764  {
5765    // Merge two pointer types, while trying to preserve typedef info
5766    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
5767    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
5768    if (Unqualified) {
5769      LHSPointee = LHSPointee.getUnqualifiedType();
5770      RHSPointee = RHSPointee.getUnqualifiedType();
5771    }
5772    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
5773                                     Unqualified);
5774    if (ResultType.isNull()) return QualType();
5775    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5776      return LHS;
5777    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5778      return RHS;
5779    return getPointerType(ResultType);
5780  }
5781  case Type::BlockPointer:
5782  {
5783    // Merge two block pointer types, while trying to preserve typedef info
5784    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
5785    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
5786    if (Unqualified) {
5787      LHSPointee = LHSPointee.getUnqualifiedType();
5788      RHSPointee = RHSPointee.getUnqualifiedType();
5789    }
5790    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
5791                                     Unqualified);
5792    if (ResultType.isNull()) return QualType();
5793    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5794      return LHS;
5795    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5796      return RHS;
5797    return getBlockPointerType(ResultType);
5798  }
5799  case Type::ConstantArray:
5800  {
5801    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
5802    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
5803    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
5804      return QualType();
5805
5806    QualType LHSElem = getAsArrayType(LHS)->getElementType();
5807    QualType RHSElem = getAsArrayType(RHS)->getElementType();
5808    if (Unqualified) {
5809      LHSElem = LHSElem.getUnqualifiedType();
5810      RHSElem = RHSElem.getUnqualifiedType();
5811    }
5812
5813    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
5814    if (ResultType.isNull()) return QualType();
5815    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
5816      return LHS;
5817    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
5818      return RHS;
5819    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
5820                                          ArrayType::ArraySizeModifier(), 0);
5821    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
5822                                          ArrayType::ArraySizeModifier(), 0);
5823    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
5824    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
5825    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
5826      return LHS;
5827    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
5828      return RHS;
5829    if (LVAT) {
5830      // FIXME: This isn't correct! But tricky to implement because
5831      // the array's size has to be the size of LHS, but the type
5832      // has to be different.
5833      return LHS;
5834    }
5835    if (RVAT) {
5836      // FIXME: This isn't correct! But tricky to implement because
5837      // the array's size has to be the size of RHS, but the type
5838      // has to be different.
5839      return RHS;
5840    }
5841    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
5842    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
5843    return getIncompleteArrayType(ResultType,
5844                                  ArrayType::ArraySizeModifier(), 0);
5845  }
5846  case Type::FunctionNoProto:
5847    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
5848  case Type::Record:
5849  case Type::Enum:
5850    return QualType();
5851  case Type::Builtin:
5852    // Only exactly equal builtin types are compatible, which is tested above.
5853    return QualType();
5854  case Type::Complex:
5855    // Distinct complex types are incompatible.
5856    return QualType();
5857  case Type::Vector:
5858    // FIXME: The merged type should be an ExtVector!
5859    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
5860                             RHSCan->getAs<VectorType>()))
5861      return LHS;
5862    return QualType();
5863  case Type::ObjCObject: {
5864    // Check if the types are assignment compatible.
5865    // FIXME: This should be type compatibility, e.g. whether
5866    // "LHS x; RHS x;" at global scope is legal.
5867    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
5868    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
5869    if (canAssignObjCInterfaces(LHSIface, RHSIface))
5870      return LHS;
5871
5872    return QualType();
5873  }
5874  case Type::ObjCObjectPointer: {
5875    if (OfBlockPointer) {
5876      if (canAssignObjCInterfacesInBlockPointer(
5877                                          LHS->getAs<ObjCObjectPointerType>(),
5878                                          RHS->getAs<ObjCObjectPointerType>(),
5879                                          BlockReturnType))
5880      return LHS;
5881      return QualType();
5882    }
5883    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
5884                                RHS->getAs<ObjCObjectPointerType>()))
5885      return LHS;
5886
5887    return QualType();
5888    }
5889  }
5890
5891  return QualType();
5892}
5893
5894/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
5895/// 'RHS' attributes and returns the merged version; including for function
5896/// return types.
5897QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
5898  QualType LHSCan = getCanonicalType(LHS),
5899  RHSCan = getCanonicalType(RHS);
5900  // If two types are identical, they are compatible.
5901  if (LHSCan == RHSCan)
5902    return LHS;
5903  if (RHSCan->isFunctionType()) {
5904    if (!LHSCan->isFunctionType())
5905      return QualType();
5906    QualType OldReturnType =
5907      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
5908    QualType NewReturnType =
5909      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
5910    QualType ResReturnType =
5911      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
5912    if (ResReturnType.isNull())
5913      return QualType();
5914    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
5915      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
5916      // In either case, use OldReturnType to build the new function type.
5917      const FunctionType *F = LHS->getAs<FunctionType>();
5918      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
5919        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5920        EPI.ExtInfo = getFunctionExtInfo(LHS);
5921        QualType ResultType
5922          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
5923                            FPT->getNumArgs(), EPI);
5924        return ResultType;
5925      }
5926    }
5927    return QualType();
5928  }
5929
5930  // If the qualifiers are different, the types can still be merged.
5931  Qualifiers LQuals = LHSCan.getLocalQualifiers();
5932  Qualifiers RQuals = RHSCan.getLocalQualifiers();
5933  if (LQuals != RQuals) {
5934    // If any of these qualifiers are different, we have a type mismatch.
5935    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
5936        LQuals.getAddressSpace() != RQuals.getAddressSpace())
5937      return QualType();
5938
5939    // Exactly one GC qualifier difference is allowed: __strong is
5940    // okay if the other type has no GC qualifier but is an Objective
5941    // C object pointer (i.e. implicitly strong by default).  We fix
5942    // this by pretending that the unqualified type was actually
5943    // qualified __strong.
5944    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
5945    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
5946    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
5947
5948    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
5949      return QualType();
5950
5951    if (GC_L == Qualifiers::Strong)
5952      return LHS;
5953    if (GC_R == Qualifiers::Strong)
5954      return RHS;
5955    return QualType();
5956  }
5957
5958  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
5959    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
5960    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
5961    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
5962    if (ResQT == LHSBaseQT)
5963      return LHS;
5964    if (ResQT == RHSBaseQT)
5965      return RHS;
5966  }
5967  return QualType();
5968}
5969
5970//===----------------------------------------------------------------------===//
5971//                         Integer Predicates
5972//===----------------------------------------------------------------------===//
5973
5974unsigned ASTContext::getIntWidth(QualType T) const {
5975  if (const EnumType *ET = dyn_cast<EnumType>(T))
5976    T = ET->getDecl()->getIntegerType();
5977  if (T->isBooleanType())
5978    return 1;
5979  // For builtin types, just use the standard type sizing method
5980  return (unsigned)getTypeSize(T);
5981}
5982
5983QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
5984  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
5985
5986  // Turn <4 x signed int> -> <4 x unsigned int>
5987  if (const VectorType *VTy = T->getAs<VectorType>())
5988    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
5989                         VTy->getNumElements(), VTy->getVectorKind());
5990
5991  // For enums, we return the unsigned version of the base type.
5992  if (const EnumType *ETy = T->getAs<EnumType>())
5993    T = ETy->getDecl()->getIntegerType();
5994
5995  const BuiltinType *BTy = T->getAs<BuiltinType>();
5996  assert(BTy && "Unexpected signed integer type");
5997  switch (BTy->getKind()) {
5998  case BuiltinType::Char_S:
5999  case BuiltinType::SChar:
6000    return UnsignedCharTy;
6001  case BuiltinType::Short:
6002    return UnsignedShortTy;
6003  case BuiltinType::Int:
6004    return UnsignedIntTy;
6005  case BuiltinType::Long:
6006    return UnsignedLongTy;
6007  case BuiltinType::LongLong:
6008    return UnsignedLongLongTy;
6009  case BuiltinType::Int128:
6010    return UnsignedInt128Ty;
6011  default:
6012    assert(0 && "Unexpected signed integer type");
6013    return QualType();
6014  }
6015}
6016
6017ASTMutationListener::~ASTMutationListener() { }
6018
6019
6020//===----------------------------------------------------------------------===//
6021//                          Builtin Type Computation
6022//===----------------------------------------------------------------------===//
6023
6024/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
6025/// pointer over the consumed characters.  This returns the resultant type.  If
6026/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
6027/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
6028/// a vector of "i*".
6029///
6030/// RequiresICE is filled in on return to indicate whether the value is required
6031/// to be an Integer Constant Expression.
6032static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
6033                                  ASTContext::GetBuiltinTypeError &Error,
6034                                  bool &RequiresICE,
6035                                  bool AllowTypeModifiers) {
6036  // Modifiers.
6037  int HowLong = 0;
6038  bool Signed = false, Unsigned = false;
6039  RequiresICE = false;
6040
6041  // Read the prefixed modifiers first.
6042  bool Done = false;
6043  while (!Done) {
6044    switch (*Str++) {
6045    default: Done = true; --Str; break;
6046    case 'I':
6047      RequiresICE = true;
6048      break;
6049    case 'S':
6050      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
6051      assert(!Signed && "Can't use 'S' modifier multiple times!");
6052      Signed = true;
6053      break;
6054    case 'U':
6055      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
6056      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
6057      Unsigned = true;
6058      break;
6059    case 'L':
6060      assert(HowLong <= 2 && "Can't have LLLL modifier");
6061      ++HowLong;
6062      break;
6063    }
6064  }
6065
6066  QualType Type;
6067
6068  // Read the base type.
6069  switch (*Str++) {
6070  default: assert(0 && "Unknown builtin type letter!");
6071  case 'v':
6072    assert(HowLong == 0 && !Signed && !Unsigned &&
6073           "Bad modifiers used with 'v'!");
6074    Type = Context.VoidTy;
6075    break;
6076  case 'f':
6077    assert(HowLong == 0 && !Signed && !Unsigned &&
6078           "Bad modifiers used with 'f'!");
6079    Type = Context.FloatTy;
6080    break;
6081  case 'd':
6082    assert(HowLong < 2 && !Signed && !Unsigned &&
6083           "Bad modifiers used with 'd'!");
6084    if (HowLong)
6085      Type = Context.LongDoubleTy;
6086    else
6087      Type = Context.DoubleTy;
6088    break;
6089  case 's':
6090    assert(HowLong == 0 && "Bad modifiers used with 's'!");
6091    if (Unsigned)
6092      Type = Context.UnsignedShortTy;
6093    else
6094      Type = Context.ShortTy;
6095    break;
6096  case 'i':
6097    if (HowLong == 3)
6098      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
6099    else if (HowLong == 2)
6100      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
6101    else if (HowLong == 1)
6102      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
6103    else
6104      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
6105    break;
6106  case 'c':
6107    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
6108    if (Signed)
6109      Type = Context.SignedCharTy;
6110    else if (Unsigned)
6111      Type = Context.UnsignedCharTy;
6112    else
6113      Type = Context.CharTy;
6114    break;
6115  case 'b': // boolean
6116    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
6117    Type = Context.BoolTy;
6118    break;
6119  case 'z':  // size_t.
6120    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
6121    Type = Context.getSizeType();
6122    break;
6123  case 'F':
6124    Type = Context.getCFConstantStringType();
6125    break;
6126  case 'G':
6127    Type = Context.getObjCIdType();
6128    break;
6129  case 'H':
6130    Type = Context.getObjCSelType();
6131    break;
6132  case 'a':
6133    Type = Context.getBuiltinVaListType();
6134    assert(!Type.isNull() && "builtin va list type not initialized!");
6135    break;
6136  case 'A':
6137    // This is a "reference" to a va_list; however, what exactly
6138    // this means depends on how va_list is defined. There are two
6139    // different kinds of va_list: ones passed by value, and ones
6140    // passed by reference.  An example of a by-value va_list is
6141    // x86, where va_list is a char*. An example of by-ref va_list
6142    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
6143    // we want this argument to be a char*&; for x86-64, we want
6144    // it to be a __va_list_tag*.
6145    Type = Context.getBuiltinVaListType();
6146    assert(!Type.isNull() && "builtin va list type not initialized!");
6147    if (Type->isArrayType())
6148      Type = Context.getArrayDecayedType(Type);
6149    else
6150      Type = Context.getLValueReferenceType(Type);
6151    break;
6152  case 'V': {
6153    char *End;
6154    unsigned NumElements = strtoul(Str, &End, 10);
6155    assert(End != Str && "Missing vector size");
6156    Str = End;
6157
6158    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
6159                                             RequiresICE, false);
6160    assert(!RequiresICE && "Can't require vector ICE");
6161
6162    // TODO: No way to make AltiVec vectors in builtins yet.
6163    Type = Context.getVectorType(ElementType, NumElements,
6164                                 VectorType::GenericVector);
6165    break;
6166  }
6167  case 'X': {
6168    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
6169                                             false);
6170    assert(!RequiresICE && "Can't require complex ICE");
6171    Type = Context.getComplexType(ElementType);
6172    break;
6173  }
6174  case 'P':
6175    Type = Context.getFILEType();
6176    if (Type.isNull()) {
6177      Error = ASTContext::GE_Missing_stdio;
6178      return QualType();
6179    }
6180    break;
6181  case 'J':
6182    if (Signed)
6183      Type = Context.getsigjmp_bufType();
6184    else
6185      Type = Context.getjmp_bufType();
6186
6187    if (Type.isNull()) {
6188      Error = ASTContext::GE_Missing_setjmp;
6189      return QualType();
6190    }
6191    break;
6192  }
6193
6194  // If there are modifiers and if we're allowed to parse them, go for it.
6195  Done = !AllowTypeModifiers;
6196  while (!Done) {
6197    switch (char c = *Str++) {
6198    default: Done = true; --Str; break;
6199    case '*':
6200    case '&': {
6201      // Both pointers and references can have their pointee types
6202      // qualified with an address space.
6203      char *End;
6204      unsigned AddrSpace = strtoul(Str, &End, 10);
6205      if (End != Str && AddrSpace != 0) {
6206        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
6207        Str = End;
6208      }
6209      if (c == '*')
6210        Type = Context.getPointerType(Type);
6211      else
6212        Type = Context.getLValueReferenceType(Type);
6213      break;
6214    }
6215    // FIXME: There's no way to have a built-in with an rvalue ref arg.
6216    case 'C':
6217      Type = Type.withConst();
6218      break;
6219    case 'D':
6220      Type = Context.getVolatileType(Type);
6221      break;
6222    }
6223  }
6224
6225  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
6226         "Integer constant 'I' type must be an integer");
6227
6228  return Type;
6229}
6230
6231/// GetBuiltinType - Return the type for the specified builtin.
6232QualType ASTContext::GetBuiltinType(unsigned Id,
6233                                    GetBuiltinTypeError &Error,
6234                                    unsigned *IntegerConstantArgs) const {
6235  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
6236
6237  SmallVector<QualType, 8> ArgTypes;
6238
6239  bool RequiresICE = false;
6240  Error = GE_None;
6241  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
6242                                       RequiresICE, true);
6243  if (Error != GE_None)
6244    return QualType();
6245
6246  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
6247
6248  while (TypeStr[0] && TypeStr[0] != '.') {
6249    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
6250    if (Error != GE_None)
6251      return QualType();
6252
6253    // If this argument is required to be an IntegerConstantExpression and the
6254    // caller cares, fill in the bitmask we return.
6255    if (RequiresICE && IntegerConstantArgs)
6256      *IntegerConstantArgs |= 1 << ArgTypes.size();
6257
6258    // Do array -> pointer decay.  The builtin should use the decayed type.
6259    if (Ty->isArrayType())
6260      Ty = getArrayDecayedType(Ty);
6261
6262    ArgTypes.push_back(Ty);
6263  }
6264
6265  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
6266         "'.' should only occur at end of builtin type list!");
6267
6268  FunctionType::ExtInfo EI;
6269  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
6270
6271  bool Variadic = (TypeStr[0] == '.');
6272
6273  // We really shouldn't be making a no-proto type here, especially in C++.
6274  if (ArgTypes.empty() && Variadic)
6275    return getFunctionNoProtoType(ResType, EI);
6276
6277  FunctionProtoType::ExtProtoInfo EPI;
6278  EPI.ExtInfo = EI;
6279  EPI.Variadic = Variadic;
6280
6281  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
6282}
6283
6284GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
6285  GVALinkage External = GVA_StrongExternal;
6286
6287  Linkage L = FD->getLinkage();
6288  switch (L) {
6289  case NoLinkage:
6290  case InternalLinkage:
6291  case UniqueExternalLinkage:
6292    return GVA_Internal;
6293
6294  case ExternalLinkage:
6295    switch (FD->getTemplateSpecializationKind()) {
6296    case TSK_Undeclared:
6297    case TSK_ExplicitSpecialization:
6298      External = GVA_StrongExternal;
6299      break;
6300
6301    case TSK_ExplicitInstantiationDefinition:
6302      return GVA_ExplicitTemplateInstantiation;
6303
6304    case TSK_ExplicitInstantiationDeclaration:
6305    case TSK_ImplicitInstantiation:
6306      External = GVA_TemplateInstantiation;
6307      break;
6308    }
6309  }
6310
6311  if (!FD->isInlined())
6312    return External;
6313
6314  if (!getLangOptions().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
6315    // GNU or C99 inline semantics. Determine whether this symbol should be
6316    // externally visible.
6317    if (FD->isInlineDefinitionExternallyVisible())
6318      return External;
6319
6320    // C99 inline semantics, where the symbol is not externally visible.
6321    return GVA_C99Inline;
6322  }
6323
6324  // C++0x [temp.explicit]p9:
6325  //   [ Note: The intent is that an inline function that is the subject of
6326  //   an explicit instantiation declaration will still be implicitly
6327  //   instantiated when used so that the body can be considered for
6328  //   inlining, but that no out-of-line copy of the inline function would be
6329  //   generated in the translation unit. -- end note ]
6330  if (FD->getTemplateSpecializationKind()
6331                                       == TSK_ExplicitInstantiationDeclaration)
6332    return GVA_C99Inline;
6333
6334  return GVA_CXXInline;
6335}
6336
6337GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
6338  // If this is a static data member, compute the kind of template
6339  // specialization. Otherwise, this variable is not part of a
6340  // template.
6341  TemplateSpecializationKind TSK = TSK_Undeclared;
6342  if (VD->isStaticDataMember())
6343    TSK = VD->getTemplateSpecializationKind();
6344
6345  Linkage L = VD->getLinkage();
6346  if (L == ExternalLinkage && getLangOptions().CPlusPlus &&
6347      VD->getType()->getLinkage() == UniqueExternalLinkage)
6348    L = UniqueExternalLinkage;
6349
6350  switch (L) {
6351  case NoLinkage:
6352  case InternalLinkage:
6353  case UniqueExternalLinkage:
6354    return GVA_Internal;
6355
6356  case ExternalLinkage:
6357    switch (TSK) {
6358    case TSK_Undeclared:
6359    case TSK_ExplicitSpecialization:
6360      return GVA_StrongExternal;
6361
6362    case TSK_ExplicitInstantiationDeclaration:
6363      llvm_unreachable("Variable should not be instantiated");
6364      // Fall through to treat this like any other instantiation.
6365
6366    case TSK_ExplicitInstantiationDefinition:
6367      return GVA_ExplicitTemplateInstantiation;
6368
6369    case TSK_ImplicitInstantiation:
6370      return GVA_TemplateInstantiation;
6371    }
6372  }
6373
6374  return GVA_StrongExternal;
6375}
6376
6377bool ASTContext::DeclMustBeEmitted(const Decl *D) {
6378  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
6379    if (!VD->isFileVarDecl())
6380      return false;
6381  } else if (!isa<FunctionDecl>(D))
6382    return false;
6383
6384  // Weak references don't produce any output by themselves.
6385  if (D->hasAttr<WeakRefAttr>())
6386    return false;
6387
6388  // Aliases and used decls are required.
6389  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
6390    return true;
6391
6392  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6393    // Forward declarations aren't required.
6394    if (!FD->doesThisDeclarationHaveABody())
6395      return FD->doesDeclarationForceExternallyVisibleDefinition();
6396
6397    // Constructors and destructors are required.
6398    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
6399      return true;
6400
6401    // The key function for a class is required.
6402    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
6403      const CXXRecordDecl *RD = MD->getParent();
6404      if (MD->isOutOfLine() && RD->isDynamicClass()) {
6405        const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
6406        if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
6407          return true;
6408      }
6409    }
6410
6411    GVALinkage Linkage = GetGVALinkageForFunction(FD);
6412
6413    // static, static inline, always_inline, and extern inline functions can
6414    // always be deferred.  Normal inline functions can be deferred in C99/C++.
6415    // Implicit template instantiations can also be deferred in C++.
6416    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
6417        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
6418      return false;
6419    return true;
6420  }
6421
6422  const VarDecl *VD = cast<VarDecl>(D);
6423  assert(VD->isFileVarDecl() && "Expected file scoped var");
6424
6425  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
6426    return false;
6427
6428  // Structs that have non-trivial constructors or destructors are required.
6429
6430  // FIXME: Handle references.
6431  // FIXME: Be more selective about which constructors we care about.
6432  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
6433    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
6434      if (RD->hasDefinition() && !(RD->hasTrivialDefaultConstructor() &&
6435                                   RD->hasTrivialCopyConstructor() &&
6436                                   RD->hasTrivialMoveConstructor() &&
6437                                   RD->hasTrivialDestructor()))
6438        return true;
6439    }
6440  }
6441
6442  GVALinkage L = GetGVALinkageForVariable(VD);
6443  if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
6444    if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
6445      return false;
6446  }
6447
6448  return true;
6449}
6450
6451CallingConv ASTContext::getDefaultMethodCallConv() {
6452  // Pass through to the C++ ABI object
6453  return ABI->getDefaultMethodCallConv();
6454}
6455
6456bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
6457  // Pass through to the C++ ABI object
6458  return ABI->isNearlyEmpty(RD);
6459}
6460
6461MangleContext *ASTContext::createMangleContext() {
6462  switch (Target.getCXXABI()) {
6463  case CXXABI_ARM:
6464  case CXXABI_Itanium:
6465    return createItaniumMangleContext(*this, getDiagnostics());
6466  case CXXABI_Microsoft:
6467    return createMicrosoftMangleContext(*this, getDiagnostics());
6468  }
6469  assert(0 && "Unsupported ABI");
6470  return 0;
6471}
6472
6473CXXABI::~CXXABI() {}
6474
6475size_t ASTContext::getSideTableAllocatedMemory() const {
6476  size_t bytes = 0;
6477  bytes += ASTRecordLayouts.getMemorySize();
6478  bytes += ObjCLayouts.getMemorySize();
6479  bytes += KeyFunctions.getMemorySize();
6480  bytes += ObjCImpls.getMemorySize();
6481  bytes += BlockVarCopyInits.getMemorySize();
6482  bytes += DeclAttrs.getMemorySize();
6483  bytes += InstantiatedFromStaticDataMember.getMemorySize();
6484  bytes += InstantiatedFromUsingDecl.getMemorySize();
6485  bytes += InstantiatedFromUsingShadowDecl.getMemorySize();
6486  bytes += InstantiatedFromUnnamedFieldDecl.getMemorySize();
6487  return bytes;
6488}
6489