ASTContext.cpp revision 00bd44d5677783527d7517c1ffe45e4d75a0f56f
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExternalASTSource.h"
23#include "clang/AST/ASTMutationListener.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/Mangle.h"
26#include "clang/Basic/Builtins.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "llvm/ADT/SmallString.h"
31#include "llvm/ADT/StringExtras.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/Support/Capacity.h"
35#include "CXXABI.h"
36#include <map>
37
38using namespace clang;
39
40unsigned ASTContext::NumImplicitDefaultConstructors;
41unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
42unsigned ASTContext::NumImplicitCopyConstructors;
43unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
44unsigned ASTContext::NumImplicitMoveConstructors;
45unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
46unsigned ASTContext::NumImplicitCopyAssignmentOperators;
47unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
48unsigned ASTContext::NumImplicitMoveAssignmentOperators;
49unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
50unsigned ASTContext::NumImplicitDestructors;
51unsigned ASTContext::NumImplicitDestructorsDeclared;
52
53enum FloatingRank {
54  HalfRank, FloatRank, DoubleRank, LongDoubleRank
55};
56
57void
58ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
59                                               TemplateTemplateParmDecl *Parm) {
60  ID.AddInteger(Parm->getDepth());
61  ID.AddInteger(Parm->getPosition());
62  ID.AddBoolean(Parm->isParameterPack());
63
64  TemplateParameterList *Params = Parm->getTemplateParameters();
65  ID.AddInteger(Params->size());
66  for (TemplateParameterList::const_iterator P = Params->begin(),
67                                          PEnd = Params->end();
68       P != PEnd; ++P) {
69    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
70      ID.AddInteger(0);
71      ID.AddBoolean(TTP->isParameterPack());
72      continue;
73    }
74
75    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
76      ID.AddInteger(1);
77      ID.AddBoolean(NTTP->isParameterPack());
78      ID.AddPointer(NTTP->getType().getAsOpaquePtr());
79      if (NTTP->isExpandedParameterPack()) {
80        ID.AddBoolean(true);
81        ID.AddInteger(NTTP->getNumExpansionTypes());
82        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I)
83          ID.AddPointer(NTTP->getExpansionType(I).getAsOpaquePtr());
84      } else
85        ID.AddBoolean(false);
86      continue;
87    }
88
89    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
90    ID.AddInteger(2);
91    Profile(ID, TTP);
92  }
93}
94
95TemplateTemplateParmDecl *
96ASTContext::getCanonicalTemplateTemplateParmDecl(
97                                          TemplateTemplateParmDecl *TTP) const {
98  // Check if we already have a canonical template template parameter.
99  llvm::FoldingSetNodeID ID;
100  CanonicalTemplateTemplateParm::Profile(ID, TTP);
101  void *InsertPos = 0;
102  CanonicalTemplateTemplateParm *Canonical
103    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
104  if (Canonical)
105    return Canonical->getParam();
106
107  // Build a canonical template parameter list.
108  TemplateParameterList *Params = TTP->getTemplateParameters();
109  SmallVector<NamedDecl *, 4> CanonParams;
110  CanonParams.reserve(Params->size());
111  for (TemplateParameterList::const_iterator P = Params->begin(),
112                                          PEnd = Params->end();
113       P != PEnd; ++P) {
114    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
115      CanonParams.push_back(
116                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
117                                               SourceLocation(),
118                                               SourceLocation(),
119                                               TTP->getDepth(),
120                                               TTP->getIndex(), 0, false,
121                                               TTP->isParameterPack()));
122    else if (NonTypeTemplateParmDecl *NTTP
123             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
124      QualType T = getCanonicalType(NTTP->getType());
125      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
126      NonTypeTemplateParmDecl *Param;
127      if (NTTP->isExpandedParameterPack()) {
128        SmallVector<QualType, 2> ExpandedTypes;
129        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
130        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
131          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
132          ExpandedTInfos.push_back(
133                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
134        }
135
136        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
137                                                SourceLocation(),
138                                                SourceLocation(),
139                                                NTTP->getDepth(),
140                                                NTTP->getPosition(), 0,
141                                                T,
142                                                TInfo,
143                                                ExpandedTypes.data(),
144                                                ExpandedTypes.size(),
145                                                ExpandedTInfos.data());
146      } else {
147        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
148                                                SourceLocation(),
149                                                SourceLocation(),
150                                                NTTP->getDepth(),
151                                                NTTP->getPosition(), 0,
152                                                T,
153                                                NTTP->isParameterPack(),
154                                                TInfo);
155      }
156      CanonParams.push_back(Param);
157
158    } else
159      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
160                                           cast<TemplateTemplateParmDecl>(*P)));
161  }
162
163  TemplateTemplateParmDecl *CanonTTP
164    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
165                                       SourceLocation(), TTP->getDepth(),
166                                       TTP->getPosition(),
167                                       TTP->isParameterPack(),
168                                       0,
169                         TemplateParameterList::Create(*this, SourceLocation(),
170                                                       SourceLocation(),
171                                                       CanonParams.data(),
172                                                       CanonParams.size(),
173                                                       SourceLocation()));
174
175  // Get the new insert position for the node we care about.
176  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
177  assert(Canonical == 0 && "Shouldn't be in the map!");
178  (void)Canonical;
179
180  // Create the canonical template template parameter entry.
181  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
182  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
183  return CanonTTP;
184}
185
186CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
187  if (!LangOpts.CPlusPlus) return 0;
188
189  switch (T.getCXXABI()) {
190  case CXXABI_ARM:
191    return CreateARMCXXABI(*this);
192  case CXXABI_Itanium:
193    return CreateItaniumCXXABI(*this);
194  case CXXABI_Microsoft:
195    return CreateMicrosoftCXXABI(*this);
196  }
197  llvm_unreachable("Invalid CXXABI type!");
198}
199
200static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
201                                             const LangOptions &LOpts) {
202  if (LOpts.FakeAddressSpaceMap) {
203    // The fake address space map must have a distinct entry for each
204    // language-specific address space.
205    static const unsigned FakeAddrSpaceMap[] = {
206      1, // opencl_global
207      2, // opencl_local
208      3  // opencl_constant
209    };
210    return &FakeAddrSpaceMap;
211  } else {
212    return &T.getAddressSpaceMap();
213  }
214}
215
216ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
217                       const TargetInfo *t,
218                       IdentifierTable &idents, SelectorTable &sels,
219                       Builtin::Context &builtins,
220                       unsigned size_reserve,
221                       bool DelayInitialization)
222  : FunctionProtoTypes(this_()),
223    TemplateSpecializationTypes(this_()),
224    DependentTemplateSpecializationTypes(this_()),
225    SubstTemplateTemplateParmPacks(this_()),
226    GlobalNestedNameSpecifier(0),
227    Int128Decl(0), UInt128Decl(0),
228    ObjCIdDecl(0), ObjCSelDecl(0), ObjCClassDecl(0), ObjCProtocolClassDecl(0),
229    CFConstantStringTypeDecl(0), ObjCInstanceTypeDecl(0),
230    FILEDecl(0),
231    jmp_bufDecl(0), sigjmp_bufDecl(0), ucontext_tDecl(0),
232    BlockDescriptorType(0), BlockDescriptorExtendedType(0),
233    cudaConfigureCallDecl(0),
234    NullTypeSourceInfo(QualType()),
235    FirstLocalImport(), LastLocalImport(),
236    SourceMgr(SM), LangOpts(LOpts),
237    AddrSpaceMap(0), Target(t), PrintingPolicy(LOpts),
238    Idents(idents), Selectors(sels),
239    BuiltinInfo(builtins),
240    DeclarationNames(*this),
241    ExternalSource(0), Listener(0),
242    LastSDM(0, 0),
243    UniqueBlockByRefTypeID(0)
244{
245  // Create a new allocator for partial diagnostics.
246  DiagAllocator = new (BumpAlloc) PartialDiagnosticStorageAllocator;
247
248  if (size_reserve > 0) Types.reserve(size_reserve);
249  TUDecl = TranslationUnitDecl::Create(*this);
250
251  if (!DelayInitialization) {
252    assert(t && "No target supplied for ASTContext initialization");
253    InitBuiltinTypes(*t);
254  }
255}
256
257ASTContext::~ASTContext() {
258  // Release the DenseMaps associated with DeclContext objects.
259  // FIXME: Is this the ideal solution?
260  ReleaseDeclContextMaps();
261
262  // Call all of the deallocation functions.
263  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
264    Deallocations[I].first(Deallocations[I].second);
265
266  // Release all of the memory associated with overridden C++ methods.
267  for (llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::iterator
268         OM = OverriddenMethods.begin(), OMEnd = OverriddenMethods.end();
269       OM != OMEnd; ++OM)
270    OM->second.Destroy();
271
272  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
273  // because they can contain DenseMaps.
274  for (llvm::DenseMap<const ObjCContainerDecl*,
275       const ASTRecordLayout*>::iterator
276       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
277    // Increment in loop to prevent using deallocated memory.
278    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
279      R->Destroy(*this);
280
281  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
282       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
283    // Increment in loop to prevent using deallocated memory.
284    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
285      R->Destroy(*this);
286  }
287
288  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
289                                                    AEnd = DeclAttrs.end();
290       A != AEnd; ++A)
291    A->second->~AttrVec();
292
293  // Destroy the partial diagnostic allocator.
294  DiagAllocator->~PartialDiagnosticStorageAllocator();
295}
296
297void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
298  Deallocations.push_back(std::make_pair(Callback, Data));
299}
300
301void
302ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
303  ExternalSource.reset(Source.take());
304}
305
306void ASTContext::PrintStats() const {
307  llvm::errs() << "\n*** AST Context Stats:\n";
308  llvm::errs() << "  " << Types.size() << " types total.\n";
309
310  unsigned counts[] = {
311#define TYPE(Name, Parent) 0,
312#define ABSTRACT_TYPE(Name, Parent)
313#include "clang/AST/TypeNodes.def"
314    0 // Extra
315  };
316
317  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
318    Type *T = Types[i];
319    counts[(unsigned)T->getTypeClass()]++;
320  }
321
322  unsigned Idx = 0;
323  unsigned TotalBytes = 0;
324#define TYPE(Name, Parent)                                              \
325  if (counts[Idx])                                                      \
326    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
327                 << " types\n";                                         \
328  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
329  ++Idx;
330#define ABSTRACT_TYPE(Name, Parent)
331#include "clang/AST/TypeNodes.def"
332
333  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
334
335  // Implicit special member functions.
336  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
337               << NumImplicitDefaultConstructors
338               << " implicit default constructors created\n";
339  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
340               << NumImplicitCopyConstructors
341               << " implicit copy constructors created\n";
342  if (getLangOptions().CPlusPlus)
343    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
344                 << NumImplicitMoveConstructors
345                 << " implicit move constructors created\n";
346  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
347               << NumImplicitCopyAssignmentOperators
348               << " implicit copy assignment operators created\n";
349  if (getLangOptions().CPlusPlus)
350    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
351                 << NumImplicitMoveAssignmentOperators
352                 << " implicit move assignment operators created\n";
353  llvm::errs() << NumImplicitDestructorsDeclared << "/"
354               << NumImplicitDestructors
355               << " implicit destructors created\n";
356
357  if (ExternalSource.get()) {
358    llvm::errs() << "\n";
359    ExternalSource->PrintStats();
360  }
361
362  BumpAlloc.PrintStats();
363}
364
365TypedefDecl *ASTContext::getInt128Decl() const {
366  if (!Int128Decl) {
367    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(Int128Ty);
368    Int128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
369                                     getTranslationUnitDecl(),
370                                     SourceLocation(),
371                                     SourceLocation(),
372                                     &Idents.get("__int128_t"),
373                                     TInfo);
374  }
375
376  return Int128Decl;
377}
378
379TypedefDecl *ASTContext::getUInt128Decl() const {
380  if (!UInt128Decl) {
381    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(UnsignedInt128Ty);
382    UInt128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
383                                     getTranslationUnitDecl(),
384                                     SourceLocation(),
385                                     SourceLocation(),
386                                     &Idents.get("__uint128_t"),
387                                     TInfo);
388  }
389
390  return UInt128Decl;
391}
392
393void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
394  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
395  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
396  Types.push_back(Ty);
397}
398
399void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
400  assert((!this->Target || this->Target == &Target) &&
401         "Incorrect target reinitialization");
402  assert(VoidTy.isNull() && "Context reinitialized?");
403
404  this->Target = &Target;
405
406  ABI.reset(createCXXABI(Target));
407  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
408
409  // C99 6.2.5p19.
410  InitBuiltinType(VoidTy,              BuiltinType::Void);
411
412  // C99 6.2.5p2.
413  InitBuiltinType(BoolTy,              BuiltinType::Bool);
414  // C99 6.2.5p3.
415  if (LangOpts.CharIsSigned)
416    InitBuiltinType(CharTy,            BuiltinType::Char_S);
417  else
418    InitBuiltinType(CharTy,            BuiltinType::Char_U);
419  // C99 6.2.5p4.
420  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
421  InitBuiltinType(ShortTy,             BuiltinType::Short);
422  InitBuiltinType(IntTy,               BuiltinType::Int);
423  InitBuiltinType(LongTy,              BuiltinType::Long);
424  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
425
426  // C99 6.2.5p6.
427  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
428  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
429  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
430  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
431  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
432
433  // C99 6.2.5p10.
434  InitBuiltinType(FloatTy,             BuiltinType::Float);
435  InitBuiltinType(DoubleTy,            BuiltinType::Double);
436  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
437
438  // GNU extension, 128-bit integers.
439  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
440  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
441
442  if (LangOpts.CPlusPlus) { // C++ 3.9.1p5
443    if (TargetInfo::isTypeSigned(Target.getWCharType()))
444      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
445    else  // -fshort-wchar makes wchar_t be unsigned.
446      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
447  } else // C99
448    WCharTy = getFromTargetType(Target.getWCharType());
449
450  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
451    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
452  else // C99
453    Char16Ty = getFromTargetType(Target.getChar16Type());
454
455  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
456    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
457  else // C99
458    Char32Ty = getFromTargetType(Target.getChar32Type());
459
460  // Placeholder type for type-dependent expressions whose type is
461  // completely unknown. No code should ever check a type against
462  // DependentTy and users should never see it; however, it is here to
463  // help diagnose failures to properly check for type-dependent
464  // expressions.
465  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
466
467  // Placeholder type for functions.
468  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
469
470  // Placeholder type for bound members.
471  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
472
473  // Placeholder type for pseudo-objects.
474  InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
475
476  // "any" type; useful for debugger-like clients.
477  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
478
479  // Placeholder type for unbridged ARC casts.
480  InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
481
482  // C99 6.2.5p11.
483  FloatComplexTy      = getComplexType(FloatTy);
484  DoubleComplexTy     = getComplexType(DoubleTy);
485  LongDoubleComplexTy = getComplexType(LongDoubleTy);
486
487  BuiltinVaListType = QualType();
488
489  // Builtin types for 'id', 'Class', and 'SEL'.
490  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
491  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
492  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
493
494  ObjCConstantStringType = QualType();
495
496  // void * type
497  VoidPtrTy = getPointerType(VoidTy);
498
499  // nullptr type (C++0x 2.14.7)
500  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
501
502  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
503  InitBuiltinType(HalfTy, BuiltinType::Half);
504}
505
506DiagnosticsEngine &ASTContext::getDiagnostics() const {
507  return SourceMgr.getDiagnostics();
508}
509
510AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
511  AttrVec *&Result = DeclAttrs[D];
512  if (!Result) {
513    void *Mem = Allocate(sizeof(AttrVec));
514    Result = new (Mem) AttrVec;
515  }
516
517  return *Result;
518}
519
520/// \brief Erase the attributes corresponding to the given declaration.
521void ASTContext::eraseDeclAttrs(const Decl *D) {
522  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
523  if (Pos != DeclAttrs.end()) {
524    Pos->second->~AttrVec();
525    DeclAttrs.erase(Pos);
526  }
527}
528
529MemberSpecializationInfo *
530ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
531  assert(Var->isStaticDataMember() && "Not a static data member");
532  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
533    = InstantiatedFromStaticDataMember.find(Var);
534  if (Pos == InstantiatedFromStaticDataMember.end())
535    return 0;
536
537  return Pos->second;
538}
539
540void
541ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
542                                                TemplateSpecializationKind TSK,
543                                          SourceLocation PointOfInstantiation) {
544  assert(Inst->isStaticDataMember() && "Not a static data member");
545  assert(Tmpl->isStaticDataMember() && "Not a static data member");
546  assert(!InstantiatedFromStaticDataMember[Inst] &&
547         "Already noted what static data member was instantiated from");
548  InstantiatedFromStaticDataMember[Inst]
549    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
550}
551
552FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
553                                                     const FunctionDecl *FD){
554  assert(FD && "Specialization is 0");
555  llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
556    = ClassScopeSpecializationPattern.find(FD);
557  if (Pos == ClassScopeSpecializationPattern.end())
558    return 0;
559
560  return Pos->second;
561}
562
563void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
564                                        FunctionDecl *Pattern) {
565  assert(FD && "Specialization is 0");
566  assert(Pattern && "Class scope specialization pattern is 0");
567  ClassScopeSpecializationPattern[FD] = Pattern;
568}
569
570NamedDecl *
571ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
572  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
573    = InstantiatedFromUsingDecl.find(UUD);
574  if (Pos == InstantiatedFromUsingDecl.end())
575    return 0;
576
577  return Pos->second;
578}
579
580void
581ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
582  assert((isa<UsingDecl>(Pattern) ||
583          isa<UnresolvedUsingValueDecl>(Pattern) ||
584          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
585         "pattern decl is not a using decl");
586  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
587  InstantiatedFromUsingDecl[Inst] = Pattern;
588}
589
590UsingShadowDecl *
591ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
592  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
593    = InstantiatedFromUsingShadowDecl.find(Inst);
594  if (Pos == InstantiatedFromUsingShadowDecl.end())
595    return 0;
596
597  return Pos->second;
598}
599
600void
601ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
602                                               UsingShadowDecl *Pattern) {
603  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
604  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
605}
606
607FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
608  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
609    = InstantiatedFromUnnamedFieldDecl.find(Field);
610  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
611    return 0;
612
613  return Pos->second;
614}
615
616void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
617                                                     FieldDecl *Tmpl) {
618  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
619  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
620  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
621         "Already noted what unnamed field was instantiated from");
622
623  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
624}
625
626bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
627                                    const FieldDecl *LastFD) const {
628  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
629          FD->getBitWidthValue(*this) == 0);
630}
631
632bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
633                                             const FieldDecl *LastFD) const {
634  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
635          FD->getBitWidthValue(*this) == 0 &&
636          LastFD->getBitWidthValue(*this) != 0);
637}
638
639bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
640                                         const FieldDecl *LastFD) const {
641  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
642          FD->getBitWidthValue(*this) &&
643          LastFD->getBitWidthValue(*this));
644}
645
646bool ASTContext::NonBitfieldFollowsBitfield(const FieldDecl *FD,
647                                         const FieldDecl *LastFD) const {
648  return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
649          LastFD->getBitWidthValue(*this));
650}
651
652bool ASTContext::BitfieldFollowsNonBitfield(const FieldDecl *FD,
653                                             const FieldDecl *LastFD) const {
654  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
655          FD->getBitWidthValue(*this));
656}
657
658ASTContext::overridden_cxx_method_iterator
659ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
660  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
661    = OverriddenMethods.find(Method);
662  if (Pos == OverriddenMethods.end())
663    return 0;
664
665  return Pos->second.begin();
666}
667
668ASTContext::overridden_cxx_method_iterator
669ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
670  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
671    = OverriddenMethods.find(Method);
672  if (Pos == OverriddenMethods.end())
673    return 0;
674
675  return Pos->second.end();
676}
677
678unsigned
679ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
680  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
681    = OverriddenMethods.find(Method);
682  if (Pos == OverriddenMethods.end())
683    return 0;
684
685  return Pos->second.size();
686}
687
688void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
689                                     const CXXMethodDecl *Overridden) {
690  OverriddenMethods[Method].push_back(Overridden);
691}
692
693void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
694  assert(!Import->NextLocalImport && "Import declaration already in the chain");
695  assert(!Import->isFromASTFile() && "Non-local import declaration");
696  if (!FirstLocalImport) {
697    FirstLocalImport = Import;
698    LastLocalImport = Import;
699    return;
700  }
701
702  LastLocalImport->NextLocalImport = Import;
703  LastLocalImport = Import;
704}
705
706//===----------------------------------------------------------------------===//
707//                         Type Sizing and Analysis
708//===----------------------------------------------------------------------===//
709
710/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
711/// scalar floating point type.
712const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
713  const BuiltinType *BT = T->getAs<BuiltinType>();
714  assert(BT && "Not a floating point type!");
715  switch (BT->getKind()) {
716  default: llvm_unreachable("Not a floating point type!");
717  case BuiltinType::Half:       return Target->getHalfFormat();
718  case BuiltinType::Float:      return Target->getFloatFormat();
719  case BuiltinType::Double:     return Target->getDoubleFormat();
720  case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
721  }
722}
723
724/// getDeclAlign - Return a conservative estimate of the alignment of the
725/// specified decl.  Note that bitfields do not have a valid alignment, so
726/// this method will assert on them.
727/// If @p RefAsPointee, references are treated like their underlying type
728/// (for alignof), else they're treated like pointers (for CodeGen).
729CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
730  unsigned Align = Target->getCharWidth();
731
732  bool UseAlignAttrOnly = false;
733  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
734    Align = AlignFromAttr;
735
736    // __attribute__((aligned)) can increase or decrease alignment
737    // *except* on a struct or struct member, where it only increases
738    // alignment unless 'packed' is also specified.
739    //
740    // It is an error for alignas to decrease alignment, so we can
741    // ignore that possibility;  Sema should diagnose it.
742    if (isa<FieldDecl>(D)) {
743      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
744        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
745    } else {
746      UseAlignAttrOnly = true;
747    }
748  }
749  else if (isa<FieldDecl>(D))
750      UseAlignAttrOnly =
751        D->hasAttr<PackedAttr>() ||
752        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
753
754  // If we're using the align attribute only, just ignore everything
755  // else about the declaration and its type.
756  if (UseAlignAttrOnly) {
757    // do nothing
758
759  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
760    QualType T = VD->getType();
761    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
762      if (RefAsPointee)
763        T = RT->getPointeeType();
764      else
765        T = getPointerType(RT->getPointeeType());
766    }
767    if (!T->isIncompleteType() && !T->isFunctionType()) {
768      // Adjust alignments of declarations with array type by the
769      // large-array alignment on the target.
770      unsigned MinWidth = Target->getLargeArrayMinWidth();
771      const ArrayType *arrayType;
772      if (MinWidth && (arrayType = getAsArrayType(T))) {
773        if (isa<VariableArrayType>(arrayType))
774          Align = std::max(Align, Target->getLargeArrayAlign());
775        else if (isa<ConstantArrayType>(arrayType) &&
776                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
777          Align = std::max(Align, Target->getLargeArrayAlign());
778
779        // Walk through any array types while we're at it.
780        T = getBaseElementType(arrayType);
781      }
782      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
783    }
784
785    // Fields can be subject to extra alignment constraints, like if
786    // the field is packed, the struct is packed, or the struct has a
787    // a max-field-alignment constraint (#pragma pack).  So calculate
788    // the actual alignment of the field within the struct, and then
789    // (as we're expected to) constrain that by the alignment of the type.
790    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
791      // So calculate the alignment of the field.
792      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
793
794      // Start with the record's overall alignment.
795      unsigned fieldAlign = toBits(layout.getAlignment());
796
797      // Use the GCD of that and the offset within the record.
798      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
799      if (offset > 0) {
800        // Alignment is always a power of 2, so the GCD will be a power of 2,
801        // which means we get to do this crazy thing instead of Euclid's.
802        uint64_t lowBitOfOffset = offset & (~offset + 1);
803        if (lowBitOfOffset < fieldAlign)
804          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
805      }
806
807      Align = std::min(Align, fieldAlign);
808    }
809  }
810
811  return toCharUnitsFromBits(Align);
812}
813
814std::pair<CharUnits, CharUnits>
815ASTContext::getTypeInfoInChars(const Type *T) const {
816  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
817  return std::make_pair(toCharUnitsFromBits(Info.first),
818                        toCharUnitsFromBits(Info.second));
819}
820
821std::pair<CharUnits, CharUnits>
822ASTContext::getTypeInfoInChars(QualType T) const {
823  return getTypeInfoInChars(T.getTypePtr());
824}
825
826/// getTypeSize - Return the size of the specified type, in bits.  This method
827/// does not work on incomplete types.
828///
829/// FIXME: Pointers into different addr spaces could have different sizes and
830/// alignment requirements: getPointerInfo should take an AddrSpace, this
831/// should take a QualType, &c.
832std::pair<uint64_t, unsigned>
833ASTContext::getTypeInfo(const Type *T) const {
834  uint64_t Width=0;
835  unsigned Align=8;
836  switch (T->getTypeClass()) {
837#define TYPE(Class, Base)
838#define ABSTRACT_TYPE(Class, Base)
839#define NON_CANONICAL_TYPE(Class, Base)
840#define DEPENDENT_TYPE(Class, Base) case Type::Class:
841#include "clang/AST/TypeNodes.def"
842    llvm_unreachable("Should not see dependent types");
843
844  case Type::FunctionNoProto:
845  case Type::FunctionProto:
846    // GCC extension: alignof(function) = 32 bits
847    Width = 0;
848    Align = 32;
849    break;
850
851  case Type::IncompleteArray:
852  case Type::VariableArray:
853    Width = 0;
854    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
855    break;
856
857  case Type::ConstantArray: {
858    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
859
860    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
861    uint64_t Size = CAT->getSize().getZExtValue();
862    assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) && "Overflow in array type bit size evaluation");
863    Width = EltInfo.first*Size;
864    Align = EltInfo.second;
865    Width = llvm::RoundUpToAlignment(Width, Align);
866    break;
867  }
868  case Type::ExtVector:
869  case Type::Vector: {
870    const VectorType *VT = cast<VectorType>(T);
871    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
872    Width = EltInfo.first*VT->getNumElements();
873    Align = Width;
874    // If the alignment is not a power of 2, round up to the next power of 2.
875    // This happens for non-power-of-2 length vectors.
876    if (Align & (Align-1)) {
877      Align = llvm::NextPowerOf2(Align);
878      Width = llvm::RoundUpToAlignment(Width, Align);
879    }
880    break;
881  }
882
883  case Type::Builtin:
884    switch (cast<BuiltinType>(T)->getKind()) {
885    default: llvm_unreachable("Unknown builtin type!");
886    case BuiltinType::Void:
887      // GCC extension: alignof(void) = 8 bits.
888      Width = 0;
889      Align = 8;
890      break;
891
892    case BuiltinType::Bool:
893      Width = Target->getBoolWidth();
894      Align = Target->getBoolAlign();
895      break;
896    case BuiltinType::Char_S:
897    case BuiltinType::Char_U:
898    case BuiltinType::UChar:
899    case BuiltinType::SChar:
900      Width = Target->getCharWidth();
901      Align = Target->getCharAlign();
902      break;
903    case BuiltinType::WChar_S:
904    case BuiltinType::WChar_U:
905      Width = Target->getWCharWidth();
906      Align = Target->getWCharAlign();
907      break;
908    case BuiltinType::Char16:
909      Width = Target->getChar16Width();
910      Align = Target->getChar16Align();
911      break;
912    case BuiltinType::Char32:
913      Width = Target->getChar32Width();
914      Align = Target->getChar32Align();
915      break;
916    case BuiltinType::UShort:
917    case BuiltinType::Short:
918      Width = Target->getShortWidth();
919      Align = Target->getShortAlign();
920      break;
921    case BuiltinType::UInt:
922    case BuiltinType::Int:
923      Width = Target->getIntWidth();
924      Align = Target->getIntAlign();
925      break;
926    case BuiltinType::ULong:
927    case BuiltinType::Long:
928      Width = Target->getLongWidth();
929      Align = Target->getLongAlign();
930      break;
931    case BuiltinType::ULongLong:
932    case BuiltinType::LongLong:
933      Width = Target->getLongLongWidth();
934      Align = Target->getLongLongAlign();
935      break;
936    case BuiltinType::Int128:
937    case BuiltinType::UInt128:
938      Width = 128;
939      Align = 128; // int128_t is 128-bit aligned on all targets.
940      break;
941    case BuiltinType::Half:
942      Width = Target->getHalfWidth();
943      Align = Target->getHalfAlign();
944      break;
945    case BuiltinType::Float:
946      Width = Target->getFloatWidth();
947      Align = Target->getFloatAlign();
948      break;
949    case BuiltinType::Double:
950      Width = Target->getDoubleWidth();
951      Align = Target->getDoubleAlign();
952      break;
953    case BuiltinType::LongDouble:
954      Width = Target->getLongDoubleWidth();
955      Align = Target->getLongDoubleAlign();
956      break;
957    case BuiltinType::NullPtr:
958      Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
959      Align = Target->getPointerAlign(0); //   == sizeof(void*)
960      break;
961    case BuiltinType::ObjCId:
962    case BuiltinType::ObjCClass:
963    case BuiltinType::ObjCSel:
964      Width = Target->getPointerWidth(0);
965      Align = Target->getPointerAlign(0);
966      break;
967    }
968    break;
969  case Type::ObjCObjectPointer:
970    Width = Target->getPointerWidth(0);
971    Align = Target->getPointerAlign(0);
972    break;
973  case Type::BlockPointer: {
974    unsigned AS = getTargetAddressSpace(
975        cast<BlockPointerType>(T)->getPointeeType());
976    Width = Target->getPointerWidth(AS);
977    Align = Target->getPointerAlign(AS);
978    break;
979  }
980  case Type::LValueReference:
981  case Type::RValueReference: {
982    // alignof and sizeof should never enter this code path here, so we go
983    // the pointer route.
984    unsigned AS = getTargetAddressSpace(
985        cast<ReferenceType>(T)->getPointeeType());
986    Width = Target->getPointerWidth(AS);
987    Align = Target->getPointerAlign(AS);
988    break;
989  }
990  case Type::Pointer: {
991    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
992    Width = Target->getPointerWidth(AS);
993    Align = Target->getPointerAlign(AS);
994    break;
995  }
996  case Type::MemberPointer: {
997    const MemberPointerType *MPT = cast<MemberPointerType>(T);
998    std::pair<uint64_t, unsigned> PtrDiffInfo =
999      getTypeInfo(getPointerDiffType());
1000    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
1001    Align = PtrDiffInfo.second;
1002    break;
1003  }
1004  case Type::Complex: {
1005    // Complex types have the same alignment as their elements, but twice the
1006    // size.
1007    std::pair<uint64_t, unsigned> EltInfo =
1008      getTypeInfo(cast<ComplexType>(T)->getElementType());
1009    Width = EltInfo.first*2;
1010    Align = EltInfo.second;
1011    break;
1012  }
1013  case Type::ObjCObject:
1014    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1015  case Type::ObjCInterface: {
1016    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1017    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1018    Width = toBits(Layout.getSize());
1019    Align = toBits(Layout.getAlignment());
1020    break;
1021  }
1022  case Type::Record:
1023  case Type::Enum: {
1024    const TagType *TT = cast<TagType>(T);
1025
1026    if (TT->getDecl()->isInvalidDecl()) {
1027      Width = 8;
1028      Align = 8;
1029      break;
1030    }
1031
1032    if (const EnumType *ET = dyn_cast<EnumType>(TT))
1033      return getTypeInfo(ET->getDecl()->getIntegerType());
1034
1035    const RecordType *RT = cast<RecordType>(TT);
1036    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1037    Width = toBits(Layout.getSize());
1038    Align = toBits(Layout.getAlignment());
1039    break;
1040  }
1041
1042  case Type::SubstTemplateTypeParm:
1043    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1044                       getReplacementType().getTypePtr());
1045
1046  case Type::Auto: {
1047    const AutoType *A = cast<AutoType>(T);
1048    assert(A->isDeduced() && "Cannot request the size of a dependent type");
1049    return getTypeInfo(A->getDeducedType().getTypePtr());
1050  }
1051
1052  case Type::Paren:
1053    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1054
1055  case Type::Typedef: {
1056    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1057    std::pair<uint64_t, unsigned> Info
1058      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1059    // If the typedef has an aligned attribute on it, it overrides any computed
1060    // alignment we have.  This violates the GCC documentation (which says that
1061    // attribute(aligned) can only round up) but matches its implementation.
1062    if (unsigned AttrAlign = Typedef->getMaxAlignment())
1063      Align = AttrAlign;
1064    else
1065      Align = Info.second;
1066    Width = Info.first;
1067    break;
1068  }
1069
1070  case Type::TypeOfExpr:
1071    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
1072                         .getTypePtr());
1073
1074  case Type::TypeOf:
1075    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
1076
1077  case Type::Decltype:
1078    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
1079                        .getTypePtr());
1080
1081  case Type::UnaryTransform:
1082    return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
1083
1084  case Type::Elaborated:
1085    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1086
1087  case Type::Attributed:
1088    return getTypeInfo(
1089                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1090
1091  case Type::TemplateSpecialization: {
1092    assert(getCanonicalType(T) != T &&
1093           "Cannot request the size of a dependent type");
1094    const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1095    // A type alias template specialization may refer to a typedef with the
1096    // aligned attribute on it.
1097    if (TST->isTypeAlias())
1098      return getTypeInfo(TST->getAliasedType().getTypePtr());
1099    else
1100      return getTypeInfo(getCanonicalType(T));
1101  }
1102
1103  case Type::Atomic: {
1104    std::pair<uint64_t, unsigned> Info
1105      = getTypeInfo(cast<AtomicType>(T)->getValueType());
1106    Width = Info.first;
1107    Align = Info.second;
1108    if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth() &&
1109        llvm::isPowerOf2_64(Width)) {
1110      // We can potentially perform lock-free atomic operations for this
1111      // type; promote the alignment appropriately.
1112      // FIXME: We could potentially promote the width here as well...
1113      // is that worthwhile?  (Non-struct atomic types generally have
1114      // power-of-two size anyway, but structs might not.  Requires a bit
1115      // of implementation work to make sure we zero out the extra bits.)
1116      Align = static_cast<unsigned>(Width);
1117    }
1118  }
1119
1120  }
1121
1122  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1123  return std::make_pair(Width, Align);
1124}
1125
1126/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1127CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1128  return CharUnits::fromQuantity(BitSize / getCharWidth());
1129}
1130
1131/// toBits - Convert a size in characters to a size in characters.
1132int64_t ASTContext::toBits(CharUnits CharSize) const {
1133  return CharSize.getQuantity() * getCharWidth();
1134}
1135
1136/// getTypeSizeInChars - Return the size of the specified type, in characters.
1137/// This method does not work on incomplete types.
1138CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1139  return toCharUnitsFromBits(getTypeSize(T));
1140}
1141CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1142  return toCharUnitsFromBits(getTypeSize(T));
1143}
1144
1145/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1146/// characters. This method does not work on incomplete types.
1147CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1148  return toCharUnitsFromBits(getTypeAlign(T));
1149}
1150CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1151  return toCharUnitsFromBits(getTypeAlign(T));
1152}
1153
1154/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1155/// type for the current target in bits.  This can be different than the ABI
1156/// alignment in cases where it is beneficial for performance to overalign
1157/// a data type.
1158unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1159  unsigned ABIAlign = getTypeAlign(T);
1160
1161  // Double and long long should be naturally aligned if possible.
1162  if (const ComplexType* CT = T->getAs<ComplexType>())
1163    T = CT->getElementType().getTypePtr();
1164  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1165      T->isSpecificBuiltinType(BuiltinType::LongLong))
1166    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1167
1168  return ABIAlign;
1169}
1170
1171/// DeepCollectObjCIvars -
1172/// This routine first collects all declared, but not synthesized, ivars in
1173/// super class and then collects all ivars, including those synthesized for
1174/// current class. This routine is used for implementation of current class
1175/// when all ivars, declared and synthesized are known.
1176///
1177void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1178                                      bool leafClass,
1179                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1180  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1181    DeepCollectObjCIvars(SuperClass, false, Ivars);
1182  if (!leafClass) {
1183    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1184         E = OI->ivar_end(); I != E; ++I)
1185      Ivars.push_back(*I);
1186  } else {
1187    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1188    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1189         Iv= Iv->getNextIvar())
1190      Ivars.push_back(Iv);
1191  }
1192}
1193
1194/// CollectInheritedProtocols - Collect all protocols in current class and
1195/// those inherited by it.
1196void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1197                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1198  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1199    // We can use protocol_iterator here instead of
1200    // all_referenced_protocol_iterator since we are walking all categories.
1201    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1202         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1203      ObjCProtocolDecl *Proto = (*P);
1204      Protocols.insert(Proto->getCanonicalDecl());
1205      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1206           PE = Proto->protocol_end(); P != PE; ++P) {
1207        Protocols.insert((*P)->getCanonicalDecl());
1208        CollectInheritedProtocols(*P, Protocols);
1209      }
1210    }
1211
1212    // Categories of this Interface.
1213    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
1214         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
1215      CollectInheritedProtocols(CDeclChain, Protocols);
1216    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1217      while (SD) {
1218        CollectInheritedProtocols(SD, Protocols);
1219        SD = SD->getSuperClass();
1220      }
1221  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1222    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1223         PE = OC->protocol_end(); P != PE; ++P) {
1224      ObjCProtocolDecl *Proto = (*P);
1225      Protocols.insert(Proto->getCanonicalDecl());
1226      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1227           PE = Proto->protocol_end(); P != PE; ++P)
1228        CollectInheritedProtocols(*P, Protocols);
1229    }
1230  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1231    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1232         PE = OP->protocol_end(); P != PE; ++P) {
1233      ObjCProtocolDecl *Proto = (*P);
1234      Protocols.insert(Proto->getCanonicalDecl());
1235      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1236           PE = Proto->protocol_end(); P != PE; ++P)
1237        CollectInheritedProtocols(*P, Protocols);
1238    }
1239  }
1240}
1241
1242unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1243  unsigned count = 0;
1244  // Count ivars declared in class extension.
1245  for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
1246       CDecl = CDecl->getNextClassExtension())
1247    count += CDecl->ivar_size();
1248
1249  // Count ivar defined in this class's implementation.  This
1250  // includes synthesized ivars.
1251  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1252    count += ImplDecl->ivar_size();
1253
1254  return count;
1255}
1256
1257bool ASTContext::isSentinelNullExpr(const Expr *E) {
1258  if (!E)
1259    return false;
1260
1261  // nullptr_t is always treated as null.
1262  if (E->getType()->isNullPtrType()) return true;
1263
1264  if (E->getType()->isAnyPointerType() &&
1265      E->IgnoreParenCasts()->isNullPointerConstant(*this,
1266                                                Expr::NPC_ValueDependentIsNull))
1267    return true;
1268
1269  // Unfortunately, __null has type 'int'.
1270  if (isa<GNUNullExpr>(E)) return true;
1271
1272  return false;
1273}
1274
1275/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1276ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1277  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1278    I = ObjCImpls.find(D);
1279  if (I != ObjCImpls.end())
1280    return cast<ObjCImplementationDecl>(I->second);
1281  return 0;
1282}
1283/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1284ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1285  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1286    I = ObjCImpls.find(D);
1287  if (I != ObjCImpls.end())
1288    return cast<ObjCCategoryImplDecl>(I->second);
1289  return 0;
1290}
1291
1292/// \brief Set the implementation of ObjCInterfaceDecl.
1293void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1294                           ObjCImplementationDecl *ImplD) {
1295  assert(IFaceD && ImplD && "Passed null params");
1296  ObjCImpls[IFaceD] = ImplD;
1297}
1298/// \brief Set the implementation of ObjCCategoryDecl.
1299void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1300                           ObjCCategoryImplDecl *ImplD) {
1301  assert(CatD && ImplD && "Passed null params");
1302  ObjCImpls[CatD] = ImplD;
1303}
1304
1305ObjCInterfaceDecl *ASTContext::getObjContainingInterface(NamedDecl *ND) const {
1306  if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1307    return ID;
1308  if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1309    return CD->getClassInterface();
1310  if (ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1311    return IMD->getClassInterface();
1312
1313  return 0;
1314}
1315
1316/// \brief Get the copy initialization expression of VarDecl,or NULL if
1317/// none exists.
1318Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1319  assert(VD && "Passed null params");
1320  assert(VD->hasAttr<BlocksAttr>() &&
1321         "getBlockVarCopyInits - not __block var");
1322  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1323    I = BlockVarCopyInits.find(VD);
1324  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1325}
1326
1327/// \brief Set the copy inialization expression of a block var decl.
1328void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1329  assert(VD && Init && "Passed null params");
1330  assert(VD->hasAttr<BlocksAttr>() &&
1331         "setBlockVarCopyInits - not __block var");
1332  BlockVarCopyInits[VD] = Init;
1333}
1334
1335/// \brief Allocate an uninitialized TypeSourceInfo.
1336///
1337/// The caller should initialize the memory held by TypeSourceInfo using
1338/// the TypeLoc wrappers.
1339///
1340/// \param T the type that will be the basis for type source info. This type
1341/// should refer to how the declarator was written in source code, not to
1342/// what type semantic analysis resolved the declarator to.
1343TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1344                                                 unsigned DataSize) const {
1345  if (!DataSize)
1346    DataSize = TypeLoc::getFullDataSizeForType(T);
1347  else
1348    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1349           "incorrect data size provided to CreateTypeSourceInfo!");
1350
1351  TypeSourceInfo *TInfo =
1352    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1353  new (TInfo) TypeSourceInfo(T);
1354  return TInfo;
1355}
1356
1357TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1358                                                     SourceLocation L) const {
1359  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1360  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1361  return DI;
1362}
1363
1364const ASTRecordLayout &
1365ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1366  return getObjCLayout(D, 0);
1367}
1368
1369const ASTRecordLayout &
1370ASTContext::getASTObjCImplementationLayout(
1371                                        const ObjCImplementationDecl *D) const {
1372  return getObjCLayout(D->getClassInterface(), D);
1373}
1374
1375//===----------------------------------------------------------------------===//
1376//                   Type creation/memoization methods
1377//===----------------------------------------------------------------------===//
1378
1379QualType
1380ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1381  unsigned fastQuals = quals.getFastQualifiers();
1382  quals.removeFastQualifiers();
1383
1384  // Check if we've already instantiated this type.
1385  llvm::FoldingSetNodeID ID;
1386  ExtQuals::Profile(ID, baseType, quals);
1387  void *insertPos = 0;
1388  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1389    assert(eq->getQualifiers() == quals);
1390    return QualType(eq, fastQuals);
1391  }
1392
1393  // If the base type is not canonical, make the appropriate canonical type.
1394  QualType canon;
1395  if (!baseType->isCanonicalUnqualified()) {
1396    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1397    canonSplit.second.addConsistentQualifiers(quals);
1398    canon = getExtQualType(canonSplit.first, canonSplit.second);
1399
1400    // Re-find the insert position.
1401    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1402  }
1403
1404  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1405  ExtQualNodes.InsertNode(eq, insertPos);
1406  return QualType(eq, fastQuals);
1407}
1408
1409QualType
1410ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1411  QualType CanT = getCanonicalType(T);
1412  if (CanT.getAddressSpace() == AddressSpace)
1413    return T;
1414
1415  // If we are composing extended qualifiers together, merge together
1416  // into one ExtQuals node.
1417  QualifierCollector Quals;
1418  const Type *TypeNode = Quals.strip(T);
1419
1420  // If this type already has an address space specified, it cannot get
1421  // another one.
1422  assert(!Quals.hasAddressSpace() &&
1423         "Type cannot be in multiple addr spaces!");
1424  Quals.addAddressSpace(AddressSpace);
1425
1426  return getExtQualType(TypeNode, Quals);
1427}
1428
1429QualType ASTContext::getObjCGCQualType(QualType T,
1430                                       Qualifiers::GC GCAttr) const {
1431  QualType CanT = getCanonicalType(T);
1432  if (CanT.getObjCGCAttr() == GCAttr)
1433    return T;
1434
1435  if (const PointerType *ptr = T->getAs<PointerType>()) {
1436    QualType Pointee = ptr->getPointeeType();
1437    if (Pointee->isAnyPointerType()) {
1438      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1439      return getPointerType(ResultType);
1440    }
1441  }
1442
1443  // If we are composing extended qualifiers together, merge together
1444  // into one ExtQuals node.
1445  QualifierCollector Quals;
1446  const Type *TypeNode = Quals.strip(T);
1447
1448  // If this type already has an ObjCGC specified, it cannot get
1449  // another one.
1450  assert(!Quals.hasObjCGCAttr() &&
1451         "Type cannot have multiple ObjCGCs!");
1452  Quals.addObjCGCAttr(GCAttr);
1453
1454  return getExtQualType(TypeNode, Quals);
1455}
1456
1457const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1458                                                   FunctionType::ExtInfo Info) {
1459  if (T->getExtInfo() == Info)
1460    return T;
1461
1462  QualType Result;
1463  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1464    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1465  } else {
1466    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1467    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1468    EPI.ExtInfo = Info;
1469    Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1470                             FPT->getNumArgs(), EPI);
1471  }
1472
1473  return cast<FunctionType>(Result.getTypePtr());
1474}
1475
1476/// getComplexType - Return the uniqued reference to the type for a complex
1477/// number with the specified element type.
1478QualType ASTContext::getComplexType(QualType T) const {
1479  // Unique pointers, to guarantee there is only one pointer of a particular
1480  // structure.
1481  llvm::FoldingSetNodeID ID;
1482  ComplexType::Profile(ID, T);
1483
1484  void *InsertPos = 0;
1485  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1486    return QualType(CT, 0);
1487
1488  // If the pointee type isn't canonical, this won't be a canonical type either,
1489  // so fill in the canonical type field.
1490  QualType Canonical;
1491  if (!T.isCanonical()) {
1492    Canonical = getComplexType(getCanonicalType(T));
1493
1494    // Get the new insert position for the node we care about.
1495    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1496    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1497  }
1498  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1499  Types.push_back(New);
1500  ComplexTypes.InsertNode(New, InsertPos);
1501  return QualType(New, 0);
1502}
1503
1504/// getPointerType - Return the uniqued reference to the type for a pointer to
1505/// the specified type.
1506QualType ASTContext::getPointerType(QualType T) const {
1507  // Unique pointers, to guarantee there is only one pointer of a particular
1508  // structure.
1509  llvm::FoldingSetNodeID ID;
1510  PointerType::Profile(ID, T);
1511
1512  void *InsertPos = 0;
1513  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1514    return QualType(PT, 0);
1515
1516  // If the pointee type isn't canonical, this won't be a canonical type either,
1517  // so fill in the canonical type field.
1518  QualType Canonical;
1519  if (!T.isCanonical()) {
1520    Canonical = getPointerType(getCanonicalType(T));
1521
1522    // Get the new insert position for the node we care about.
1523    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1524    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1525  }
1526  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1527  Types.push_back(New);
1528  PointerTypes.InsertNode(New, InsertPos);
1529  return QualType(New, 0);
1530}
1531
1532/// getBlockPointerType - Return the uniqued reference to the type for
1533/// a pointer to the specified block.
1534QualType ASTContext::getBlockPointerType(QualType T) const {
1535  assert(T->isFunctionType() && "block of function types only");
1536  // Unique pointers, to guarantee there is only one block of a particular
1537  // structure.
1538  llvm::FoldingSetNodeID ID;
1539  BlockPointerType::Profile(ID, T);
1540
1541  void *InsertPos = 0;
1542  if (BlockPointerType *PT =
1543        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1544    return QualType(PT, 0);
1545
1546  // If the block pointee type isn't canonical, this won't be a canonical
1547  // type either so fill in the canonical type field.
1548  QualType Canonical;
1549  if (!T.isCanonical()) {
1550    Canonical = getBlockPointerType(getCanonicalType(T));
1551
1552    // Get the new insert position for the node we care about.
1553    BlockPointerType *NewIP =
1554      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1555    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1556  }
1557  BlockPointerType *New
1558    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1559  Types.push_back(New);
1560  BlockPointerTypes.InsertNode(New, InsertPos);
1561  return QualType(New, 0);
1562}
1563
1564/// getLValueReferenceType - Return the uniqued reference to the type for an
1565/// lvalue reference to the specified type.
1566QualType
1567ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
1568  assert(getCanonicalType(T) != OverloadTy &&
1569         "Unresolved overloaded function type");
1570
1571  // Unique pointers, to guarantee there is only one pointer of a particular
1572  // structure.
1573  llvm::FoldingSetNodeID ID;
1574  ReferenceType::Profile(ID, T, SpelledAsLValue);
1575
1576  void *InsertPos = 0;
1577  if (LValueReferenceType *RT =
1578        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1579    return QualType(RT, 0);
1580
1581  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1582
1583  // If the referencee type isn't canonical, this won't be a canonical type
1584  // either, so fill in the canonical type field.
1585  QualType Canonical;
1586  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1587    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1588    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1589
1590    // Get the new insert position for the node we care about.
1591    LValueReferenceType *NewIP =
1592      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1593    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1594  }
1595
1596  LValueReferenceType *New
1597    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1598                                                     SpelledAsLValue);
1599  Types.push_back(New);
1600  LValueReferenceTypes.InsertNode(New, InsertPos);
1601
1602  return QualType(New, 0);
1603}
1604
1605/// getRValueReferenceType - Return the uniqued reference to the type for an
1606/// rvalue reference to the specified type.
1607QualType ASTContext::getRValueReferenceType(QualType T) const {
1608  // Unique pointers, to guarantee there is only one pointer of a particular
1609  // structure.
1610  llvm::FoldingSetNodeID ID;
1611  ReferenceType::Profile(ID, T, false);
1612
1613  void *InsertPos = 0;
1614  if (RValueReferenceType *RT =
1615        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1616    return QualType(RT, 0);
1617
1618  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1619
1620  // If the referencee type isn't canonical, this won't be a canonical type
1621  // either, so fill in the canonical type field.
1622  QualType Canonical;
1623  if (InnerRef || !T.isCanonical()) {
1624    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1625    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1626
1627    // Get the new insert position for the node we care about.
1628    RValueReferenceType *NewIP =
1629      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1630    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1631  }
1632
1633  RValueReferenceType *New
1634    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1635  Types.push_back(New);
1636  RValueReferenceTypes.InsertNode(New, InsertPos);
1637  return QualType(New, 0);
1638}
1639
1640/// getMemberPointerType - Return the uniqued reference to the type for a
1641/// member pointer to the specified type, in the specified class.
1642QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
1643  // Unique pointers, to guarantee there is only one pointer of a particular
1644  // structure.
1645  llvm::FoldingSetNodeID ID;
1646  MemberPointerType::Profile(ID, T, Cls);
1647
1648  void *InsertPos = 0;
1649  if (MemberPointerType *PT =
1650      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1651    return QualType(PT, 0);
1652
1653  // If the pointee or class type isn't canonical, this won't be a canonical
1654  // type either, so fill in the canonical type field.
1655  QualType Canonical;
1656  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1657    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1658
1659    // Get the new insert position for the node we care about.
1660    MemberPointerType *NewIP =
1661      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1662    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1663  }
1664  MemberPointerType *New
1665    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1666  Types.push_back(New);
1667  MemberPointerTypes.InsertNode(New, InsertPos);
1668  return QualType(New, 0);
1669}
1670
1671/// getConstantArrayType - Return the unique reference to the type for an
1672/// array of the specified element type.
1673QualType ASTContext::getConstantArrayType(QualType EltTy,
1674                                          const llvm::APInt &ArySizeIn,
1675                                          ArrayType::ArraySizeModifier ASM,
1676                                          unsigned IndexTypeQuals) const {
1677  assert((EltTy->isDependentType() ||
1678          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1679         "Constant array of VLAs is illegal!");
1680
1681  // Convert the array size into a canonical width matching the pointer size for
1682  // the target.
1683  llvm::APInt ArySize(ArySizeIn);
1684  ArySize =
1685    ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
1686
1687  llvm::FoldingSetNodeID ID;
1688  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
1689
1690  void *InsertPos = 0;
1691  if (ConstantArrayType *ATP =
1692      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1693    return QualType(ATP, 0);
1694
1695  // If the element type isn't canonical or has qualifiers, this won't
1696  // be a canonical type either, so fill in the canonical type field.
1697  QualType Canon;
1698  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1699    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1700    Canon = getConstantArrayType(QualType(canonSplit.first, 0), ArySize,
1701                                 ASM, IndexTypeQuals);
1702    Canon = getQualifiedType(Canon, canonSplit.second);
1703
1704    // Get the new insert position for the node we care about.
1705    ConstantArrayType *NewIP =
1706      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1707    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1708  }
1709
1710  ConstantArrayType *New = new(*this,TypeAlignment)
1711    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
1712  ConstantArrayTypes.InsertNode(New, InsertPos);
1713  Types.push_back(New);
1714  return QualType(New, 0);
1715}
1716
1717/// getVariableArrayDecayedType - Turns the given type, which may be
1718/// variably-modified, into the corresponding type with all the known
1719/// sizes replaced with [*].
1720QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
1721  // Vastly most common case.
1722  if (!type->isVariablyModifiedType()) return type;
1723
1724  QualType result;
1725
1726  SplitQualType split = type.getSplitDesugaredType();
1727  const Type *ty = split.first;
1728  switch (ty->getTypeClass()) {
1729#define TYPE(Class, Base)
1730#define ABSTRACT_TYPE(Class, Base)
1731#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1732#include "clang/AST/TypeNodes.def"
1733    llvm_unreachable("didn't desugar past all non-canonical types?");
1734
1735  // These types should never be variably-modified.
1736  case Type::Builtin:
1737  case Type::Complex:
1738  case Type::Vector:
1739  case Type::ExtVector:
1740  case Type::DependentSizedExtVector:
1741  case Type::ObjCObject:
1742  case Type::ObjCInterface:
1743  case Type::ObjCObjectPointer:
1744  case Type::Record:
1745  case Type::Enum:
1746  case Type::UnresolvedUsing:
1747  case Type::TypeOfExpr:
1748  case Type::TypeOf:
1749  case Type::Decltype:
1750  case Type::UnaryTransform:
1751  case Type::DependentName:
1752  case Type::InjectedClassName:
1753  case Type::TemplateSpecialization:
1754  case Type::DependentTemplateSpecialization:
1755  case Type::TemplateTypeParm:
1756  case Type::SubstTemplateTypeParmPack:
1757  case Type::Auto:
1758  case Type::PackExpansion:
1759    llvm_unreachable("type should never be variably-modified");
1760
1761  // These types can be variably-modified but should never need to
1762  // further decay.
1763  case Type::FunctionNoProto:
1764  case Type::FunctionProto:
1765  case Type::BlockPointer:
1766  case Type::MemberPointer:
1767    return type;
1768
1769  // These types can be variably-modified.  All these modifications
1770  // preserve structure except as noted by comments.
1771  // TODO: if we ever care about optimizing VLAs, there are no-op
1772  // optimizations available here.
1773  case Type::Pointer:
1774    result = getPointerType(getVariableArrayDecayedType(
1775                              cast<PointerType>(ty)->getPointeeType()));
1776    break;
1777
1778  case Type::LValueReference: {
1779    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
1780    result = getLValueReferenceType(
1781                 getVariableArrayDecayedType(lv->getPointeeType()),
1782                                    lv->isSpelledAsLValue());
1783    break;
1784  }
1785
1786  case Type::RValueReference: {
1787    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
1788    result = getRValueReferenceType(
1789                 getVariableArrayDecayedType(lv->getPointeeType()));
1790    break;
1791  }
1792
1793  case Type::Atomic: {
1794    const AtomicType *at = cast<AtomicType>(ty);
1795    result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
1796    break;
1797  }
1798
1799  case Type::ConstantArray: {
1800    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
1801    result = getConstantArrayType(
1802                 getVariableArrayDecayedType(cat->getElementType()),
1803                                  cat->getSize(),
1804                                  cat->getSizeModifier(),
1805                                  cat->getIndexTypeCVRQualifiers());
1806    break;
1807  }
1808
1809  case Type::DependentSizedArray: {
1810    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
1811    result = getDependentSizedArrayType(
1812                 getVariableArrayDecayedType(dat->getElementType()),
1813                                        dat->getSizeExpr(),
1814                                        dat->getSizeModifier(),
1815                                        dat->getIndexTypeCVRQualifiers(),
1816                                        dat->getBracketsRange());
1817    break;
1818  }
1819
1820  // Turn incomplete types into [*] types.
1821  case Type::IncompleteArray: {
1822    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
1823    result = getVariableArrayType(
1824                 getVariableArrayDecayedType(iat->getElementType()),
1825                                  /*size*/ 0,
1826                                  ArrayType::Normal,
1827                                  iat->getIndexTypeCVRQualifiers(),
1828                                  SourceRange());
1829    break;
1830  }
1831
1832  // Turn VLA types into [*] types.
1833  case Type::VariableArray: {
1834    const VariableArrayType *vat = cast<VariableArrayType>(ty);
1835    result = getVariableArrayType(
1836                 getVariableArrayDecayedType(vat->getElementType()),
1837                                  /*size*/ 0,
1838                                  ArrayType::Star,
1839                                  vat->getIndexTypeCVRQualifiers(),
1840                                  vat->getBracketsRange());
1841    break;
1842  }
1843  }
1844
1845  // Apply the top-level qualifiers from the original.
1846  return getQualifiedType(result, split.second);
1847}
1848
1849/// getVariableArrayType - Returns a non-unique reference to the type for a
1850/// variable array of the specified element type.
1851QualType ASTContext::getVariableArrayType(QualType EltTy,
1852                                          Expr *NumElts,
1853                                          ArrayType::ArraySizeModifier ASM,
1854                                          unsigned IndexTypeQuals,
1855                                          SourceRange Brackets) const {
1856  // Since we don't unique expressions, it isn't possible to unique VLA's
1857  // that have an expression provided for their size.
1858  QualType Canon;
1859
1860  // Be sure to pull qualifiers off the element type.
1861  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1862    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1863    Canon = getVariableArrayType(QualType(canonSplit.first, 0), NumElts, ASM,
1864                                 IndexTypeQuals, Brackets);
1865    Canon = getQualifiedType(Canon, canonSplit.second);
1866  }
1867
1868  VariableArrayType *New = new(*this, TypeAlignment)
1869    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
1870
1871  VariableArrayTypes.push_back(New);
1872  Types.push_back(New);
1873  return QualType(New, 0);
1874}
1875
1876/// getDependentSizedArrayType - Returns a non-unique reference to
1877/// the type for a dependently-sized array of the specified element
1878/// type.
1879QualType ASTContext::getDependentSizedArrayType(QualType elementType,
1880                                                Expr *numElements,
1881                                                ArrayType::ArraySizeModifier ASM,
1882                                                unsigned elementTypeQuals,
1883                                                SourceRange brackets) const {
1884  assert((!numElements || numElements->isTypeDependent() ||
1885          numElements->isValueDependent()) &&
1886         "Size must be type- or value-dependent!");
1887
1888  // Dependently-sized array types that do not have a specified number
1889  // of elements will have their sizes deduced from a dependent
1890  // initializer.  We do no canonicalization here at all, which is okay
1891  // because they can't be used in most locations.
1892  if (!numElements) {
1893    DependentSizedArrayType *newType
1894      = new (*this, TypeAlignment)
1895          DependentSizedArrayType(*this, elementType, QualType(),
1896                                  numElements, ASM, elementTypeQuals,
1897                                  brackets);
1898    Types.push_back(newType);
1899    return QualType(newType, 0);
1900  }
1901
1902  // Otherwise, we actually build a new type every time, but we
1903  // also build a canonical type.
1904
1905  SplitQualType canonElementType = getCanonicalType(elementType).split();
1906
1907  void *insertPos = 0;
1908  llvm::FoldingSetNodeID ID;
1909  DependentSizedArrayType::Profile(ID, *this,
1910                                   QualType(canonElementType.first, 0),
1911                                   ASM, elementTypeQuals, numElements);
1912
1913  // Look for an existing type with these properties.
1914  DependentSizedArrayType *canonTy =
1915    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1916
1917  // If we don't have one, build one.
1918  if (!canonTy) {
1919    canonTy = new (*this, TypeAlignment)
1920      DependentSizedArrayType(*this, QualType(canonElementType.first, 0),
1921                              QualType(), numElements, ASM, elementTypeQuals,
1922                              brackets);
1923    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
1924    Types.push_back(canonTy);
1925  }
1926
1927  // Apply qualifiers from the element type to the array.
1928  QualType canon = getQualifiedType(QualType(canonTy,0),
1929                                    canonElementType.second);
1930
1931  // If we didn't need extra canonicalization for the element type,
1932  // then just use that as our result.
1933  if (QualType(canonElementType.first, 0) == elementType)
1934    return canon;
1935
1936  // Otherwise, we need to build a type which follows the spelling
1937  // of the element type.
1938  DependentSizedArrayType *sugaredType
1939    = new (*this, TypeAlignment)
1940        DependentSizedArrayType(*this, elementType, canon, numElements,
1941                                ASM, elementTypeQuals, brackets);
1942  Types.push_back(sugaredType);
1943  return QualType(sugaredType, 0);
1944}
1945
1946QualType ASTContext::getIncompleteArrayType(QualType elementType,
1947                                            ArrayType::ArraySizeModifier ASM,
1948                                            unsigned elementTypeQuals) const {
1949  llvm::FoldingSetNodeID ID;
1950  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
1951
1952  void *insertPos = 0;
1953  if (IncompleteArrayType *iat =
1954       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
1955    return QualType(iat, 0);
1956
1957  // If the element type isn't canonical, this won't be a canonical type
1958  // either, so fill in the canonical type field.  We also have to pull
1959  // qualifiers off the element type.
1960  QualType canon;
1961
1962  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
1963    SplitQualType canonSplit = getCanonicalType(elementType).split();
1964    canon = getIncompleteArrayType(QualType(canonSplit.first, 0),
1965                                   ASM, elementTypeQuals);
1966    canon = getQualifiedType(canon, canonSplit.second);
1967
1968    // Get the new insert position for the node we care about.
1969    IncompleteArrayType *existing =
1970      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1971    assert(!existing && "Shouldn't be in the map!"); (void) existing;
1972  }
1973
1974  IncompleteArrayType *newType = new (*this, TypeAlignment)
1975    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
1976
1977  IncompleteArrayTypes.InsertNode(newType, insertPos);
1978  Types.push_back(newType);
1979  return QualType(newType, 0);
1980}
1981
1982/// getVectorType - Return the unique reference to a vector type of
1983/// the specified element type and size. VectorType must be a built-in type.
1984QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
1985                                   VectorType::VectorKind VecKind) const {
1986  assert(vecType->isBuiltinType());
1987
1988  // Check if we've already instantiated a vector of this type.
1989  llvm::FoldingSetNodeID ID;
1990  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
1991
1992  void *InsertPos = 0;
1993  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1994    return QualType(VTP, 0);
1995
1996  // If the element type isn't canonical, this won't be a canonical type either,
1997  // so fill in the canonical type field.
1998  QualType Canonical;
1999  if (!vecType.isCanonical()) {
2000    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
2001
2002    // Get the new insert position for the node we care about.
2003    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2004    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2005  }
2006  VectorType *New = new (*this, TypeAlignment)
2007    VectorType(vecType, NumElts, Canonical, VecKind);
2008  VectorTypes.InsertNode(New, InsertPos);
2009  Types.push_back(New);
2010  return QualType(New, 0);
2011}
2012
2013/// getExtVectorType - Return the unique reference to an extended vector type of
2014/// the specified element type and size. VectorType must be a built-in type.
2015QualType
2016ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2017  assert(vecType->isBuiltinType() || vecType->isDependentType());
2018
2019  // Check if we've already instantiated a vector of this type.
2020  llvm::FoldingSetNodeID ID;
2021  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2022                      VectorType::GenericVector);
2023  void *InsertPos = 0;
2024  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2025    return QualType(VTP, 0);
2026
2027  // If the element type isn't canonical, this won't be a canonical type either,
2028  // so fill in the canonical type field.
2029  QualType Canonical;
2030  if (!vecType.isCanonical()) {
2031    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2032
2033    // Get the new insert position for the node we care about.
2034    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2035    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2036  }
2037  ExtVectorType *New = new (*this, TypeAlignment)
2038    ExtVectorType(vecType, NumElts, Canonical);
2039  VectorTypes.InsertNode(New, InsertPos);
2040  Types.push_back(New);
2041  return QualType(New, 0);
2042}
2043
2044QualType
2045ASTContext::getDependentSizedExtVectorType(QualType vecType,
2046                                           Expr *SizeExpr,
2047                                           SourceLocation AttrLoc) const {
2048  llvm::FoldingSetNodeID ID;
2049  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2050                                       SizeExpr);
2051
2052  void *InsertPos = 0;
2053  DependentSizedExtVectorType *Canon
2054    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2055  DependentSizedExtVectorType *New;
2056  if (Canon) {
2057    // We already have a canonical version of this array type; use it as
2058    // the canonical type for a newly-built type.
2059    New = new (*this, TypeAlignment)
2060      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2061                                  SizeExpr, AttrLoc);
2062  } else {
2063    QualType CanonVecTy = getCanonicalType(vecType);
2064    if (CanonVecTy == vecType) {
2065      New = new (*this, TypeAlignment)
2066        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2067                                    AttrLoc);
2068
2069      DependentSizedExtVectorType *CanonCheck
2070        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2071      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2072      (void)CanonCheck;
2073      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2074    } else {
2075      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2076                                                      SourceLocation());
2077      New = new (*this, TypeAlignment)
2078        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2079    }
2080  }
2081
2082  Types.push_back(New);
2083  return QualType(New, 0);
2084}
2085
2086/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2087///
2088QualType
2089ASTContext::getFunctionNoProtoType(QualType ResultTy,
2090                                   const FunctionType::ExtInfo &Info) const {
2091  const CallingConv DefaultCC = Info.getCC();
2092  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2093                               CC_X86StdCall : DefaultCC;
2094  // Unique functions, to guarantee there is only one function of a particular
2095  // structure.
2096  llvm::FoldingSetNodeID ID;
2097  FunctionNoProtoType::Profile(ID, ResultTy, Info);
2098
2099  void *InsertPos = 0;
2100  if (FunctionNoProtoType *FT =
2101        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2102    return QualType(FT, 0);
2103
2104  QualType Canonical;
2105  if (!ResultTy.isCanonical() ||
2106      getCanonicalCallConv(CallConv) != CallConv) {
2107    Canonical =
2108      getFunctionNoProtoType(getCanonicalType(ResultTy),
2109                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
2110
2111    // Get the new insert position for the node we care about.
2112    FunctionNoProtoType *NewIP =
2113      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2114    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2115  }
2116
2117  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2118  FunctionNoProtoType *New = new (*this, TypeAlignment)
2119    FunctionNoProtoType(ResultTy, Canonical, newInfo);
2120  Types.push_back(New);
2121  FunctionNoProtoTypes.InsertNode(New, InsertPos);
2122  return QualType(New, 0);
2123}
2124
2125/// getFunctionType - Return a normal function type with a typed argument
2126/// list.  isVariadic indicates whether the argument list includes '...'.
2127QualType
2128ASTContext::getFunctionType(QualType ResultTy,
2129                            const QualType *ArgArray, unsigned NumArgs,
2130                            const FunctionProtoType::ExtProtoInfo &EPI) const {
2131  // Unique functions, to guarantee there is only one function of a particular
2132  // structure.
2133  llvm::FoldingSetNodeID ID;
2134  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI, *this);
2135
2136  void *InsertPos = 0;
2137  if (FunctionProtoType *FTP =
2138        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2139    return QualType(FTP, 0);
2140
2141  // Determine whether the type being created is already canonical or not.
2142  bool isCanonical= EPI.ExceptionSpecType == EST_None && ResultTy.isCanonical();
2143  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2144    if (!ArgArray[i].isCanonicalAsParam())
2145      isCanonical = false;
2146
2147  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2148  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2149                               CC_X86StdCall : DefaultCC;
2150
2151  // If this type isn't canonical, get the canonical version of it.
2152  // The exception spec is not part of the canonical type.
2153  QualType Canonical;
2154  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2155    SmallVector<QualType, 16> CanonicalArgs;
2156    CanonicalArgs.reserve(NumArgs);
2157    for (unsigned i = 0; i != NumArgs; ++i)
2158      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2159
2160    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2161    CanonicalEPI.ExceptionSpecType = EST_None;
2162    CanonicalEPI.NumExceptions = 0;
2163    CanonicalEPI.ExtInfo
2164      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2165
2166    Canonical = getFunctionType(getCanonicalType(ResultTy),
2167                                CanonicalArgs.data(), NumArgs,
2168                                CanonicalEPI);
2169
2170    // Get the new insert position for the node we care about.
2171    FunctionProtoType *NewIP =
2172      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2173    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2174  }
2175
2176  // FunctionProtoType objects are allocated with extra bytes after
2177  // them for three variable size arrays at the end:
2178  //  - parameter types
2179  //  - exception types
2180  //  - consumed-arguments flags
2181  // Instead of the exception types, there could be a noexcept
2182  // expression.
2183  size_t Size = sizeof(FunctionProtoType) +
2184                NumArgs * sizeof(QualType);
2185  if (EPI.ExceptionSpecType == EST_Dynamic)
2186    Size += EPI.NumExceptions * sizeof(QualType);
2187  else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2188    Size += sizeof(Expr*);
2189  }
2190  if (EPI.ConsumedArguments)
2191    Size += NumArgs * sizeof(bool);
2192
2193  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2194  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2195  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2196  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, newEPI);
2197  Types.push_back(FTP);
2198  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2199  return QualType(FTP, 0);
2200}
2201
2202#ifndef NDEBUG
2203static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2204  if (!isa<CXXRecordDecl>(D)) return false;
2205  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2206  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2207    return true;
2208  if (RD->getDescribedClassTemplate() &&
2209      !isa<ClassTemplateSpecializationDecl>(RD))
2210    return true;
2211  return false;
2212}
2213#endif
2214
2215/// getInjectedClassNameType - Return the unique reference to the
2216/// injected class name type for the specified templated declaration.
2217QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2218                                              QualType TST) const {
2219  assert(NeedsInjectedClassNameType(Decl));
2220  if (Decl->TypeForDecl) {
2221    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2222  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
2223    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2224    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2225    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2226  } else {
2227    Type *newType =
2228      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2229    Decl->TypeForDecl = newType;
2230    Types.push_back(newType);
2231  }
2232  return QualType(Decl->TypeForDecl, 0);
2233}
2234
2235/// getTypeDeclType - Return the unique reference to the type for the
2236/// specified type declaration.
2237QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2238  assert(Decl && "Passed null for Decl param");
2239  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2240
2241  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2242    return getTypedefType(Typedef);
2243
2244  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2245         "Template type parameter types are always available.");
2246
2247  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2248    assert(!Record->getPreviousDecl() &&
2249           "struct/union has previous declaration");
2250    assert(!NeedsInjectedClassNameType(Record));
2251    return getRecordType(Record);
2252  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2253    assert(!Enum->getPreviousDecl() &&
2254           "enum has previous declaration");
2255    return getEnumType(Enum);
2256  } else if (const UnresolvedUsingTypenameDecl *Using =
2257               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2258    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2259    Decl->TypeForDecl = newType;
2260    Types.push_back(newType);
2261  } else
2262    llvm_unreachable("TypeDecl without a type?");
2263
2264  return QualType(Decl->TypeForDecl, 0);
2265}
2266
2267/// getTypedefType - Return the unique reference to the type for the
2268/// specified typedef name decl.
2269QualType
2270ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2271                           QualType Canonical) const {
2272  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2273
2274  if (Canonical.isNull())
2275    Canonical = getCanonicalType(Decl->getUnderlyingType());
2276  TypedefType *newType = new(*this, TypeAlignment)
2277    TypedefType(Type::Typedef, Decl, Canonical);
2278  Decl->TypeForDecl = newType;
2279  Types.push_back(newType);
2280  return QualType(newType, 0);
2281}
2282
2283QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2284  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2285
2286  if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
2287    if (PrevDecl->TypeForDecl)
2288      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2289
2290  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2291  Decl->TypeForDecl = newType;
2292  Types.push_back(newType);
2293  return QualType(newType, 0);
2294}
2295
2296QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2297  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2298
2299  if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
2300    if (PrevDecl->TypeForDecl)
2301      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2302
2303  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2304  Decl->TypeForDecl = newType;
2305  Types.push_back(newType);
2306  return QualType(newType, 0);
2307}
2308
2309QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2310                                       QualType modifiedType,
2311                                       QualType equivalentType) {
2312  llvm::FoldingSetNodeID id;
2313  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2314
2315  void *insertPos = 0;
2316  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2317  if (type) return QualType(type, 0);
2318
2319  QualType canon = getCanonicalType(equivalentType);
2320  type = new (*this, TypeAlignment)
2321           AttributedType(canon, attrKind, modifiedType, equivalentType);
2322
2323  Types.push_back(type);
2324  AttributedTypes.InsertNode(type, insertPos);
2325
2326  return QualType(type, 0);
2327}
2328
2329
2330/// \brief Retrieve a substitution-result type.
2331QualType
2332ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2333                                         QualType Replacement) const {
2334  assert(Replacement.isCanonical()
2335         && "replacement types must always be canonical");
2336
2337  llvm::FoldingSetNodeID ID;
2338  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2339  void *InsertPos = 0;
2340  SubstTemplateTypeParmType *SubstParm
2341    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2342
2343  if (!SubstParm) {
2344    SubstParm = new (*this, TypeAlignment)
2345      SubstTemplateTypeParmType(Parm, Replacement);
2346    Types.push_back(SubstParm);
2347    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2348  }
2349
2350  return QualType(SubstParm, 0);
2351}
2352
2353/// \brief Retrieve a
2354QualType ASTContext::getSubstTemplateTypeParmPackType(
2355                                          const TemplateTypeParmType *Parm,
2356                                              const TemplateArgument &ArgPack) {
2357#ifndef NDEBUG
2358  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2359                                    PEnd = ArgPack.pack_end();
2360       P != PEnd; ++P) {
2361    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2362    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2363  }
2364#endif
2365
2366  llvm::FoldingSetNodeID ID;
2367  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2368  void *InsertPos = 0;
2369  if (SubstTemplateTypeParmPackType *SubstParm
2370        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2371    return QualType(SubstParm, 0);
2372
2373  QualType Canon;
2374  if (!Parm->isCanonicalUnqualified()) {
2375    Canon = getCanonicalType(QualType(Parm, 0));
2376    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2377                                             ArgPack);
2378    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2379  }
2380
2381  SubstTemplateTypeParmPackType *SubstParm
2382    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2383                                                               ArgPack);
2384  Types.push_back(SubstParm);
2385  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2386  return QualType(SubstParm, 0);
2387}
2388
2389/// \brief Retrieve the template type parameter type for a template
2390/// parameter or parameter pack with the given depth, index, and (optionally)
2391/// name.
2392QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2393                                             bool ParameterPack,
2394                                             TemplateTypeParmDecl *TTPDecl) const {
2395  llvm::FoldingSetNodeID ID;
2396  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
2397  void *InsertPos = 0;
2398  TemplateTypeParmType *TypeParm
2399    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2400
2401  if (TypeParm)
2402    return QualType(TypeParm, 0);
2403
2404  if (TTPDecl) {
2405    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2406    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
2407
2408    TemplateTypeParmType *TypeCheck
2409      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2410    assert(!TypeCheck && "Template type parameter canonical type broken");
2411    (void)TypeCheck;
2412  } else
2413    TypeParm = new (*this, TypeAlignment)
2414      TemplateTypeParmType(Depth, Index, ParameterPack);
2415
2416  Types.push_back(TypeParm);
2417  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2418
2419  return QualType(TypeParm, 0);
2420}
2421
2422TypeSourceInfo *
2423ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2424                                              SourceLocation NameLoc,
2425                                        const TemplateArgumentListInfo &Args,
2426                                              QualType Underlying) const {
2427  assert(!Name.getAsDependentTemplateName() &&
2428         "No dependent template names here!");
2429  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
2430
2431  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2432  TemplateSpecializationTypeLoc TL
2433    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
2434  TL.setTemplateNameLoc(NameLoc);
2435  TL.setLAngleLoc(Args.getLAngleLoc());
2436  TL.setRAngleLoc(Args.getRAngleLoc());
2437  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2438    TL.setArgLocInfo(i, Args[i].getLocInfo());
2439  return DI;
2440}
2441
2442QualType
2443ASTContext::getTemplateSpecializationType(TemplateName Template,
2444                                          const TemplateArgumentListInfo &Args,
2445                                          QualType Underlying) const {
2446  assert(!Template.getAsDependentTemplateName() &&
2447         "No dependent template names here!");
2448
2449  unsigned NumArgs = Args.size();
2450
2451  SmallVector<TemplateArgument, 4> ArgVec;
2452  ArgVec.reserve(NumArgs);
2453  for (unsigned i = 0; i != NumArgs; ++i)
2454    ArgVec.push_back(Args[i].getArgument());
2455
2456  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2457                                       Underlying);
2458}
2459
2460#ifndef NDEBUG
2461static bool hasAnyPackExpansions(const TemplateArgument *Args,
2462                                 unsigned NumArgs) {
2463  for (unsigned I = 0; I != NumArgs; ++I)
2464    if (Args[I].isPackExpansion())
2465      return true;
2466
2467  return true;
2468}
2469#endif
2470
2471QualType
2472ASTContext::getTemplateSpecializationType(TemplateName Template,
2473                                          const TemplateArgument *Args,
2474                                          unsigned NumArgs,
2475                                          QualType Underlying) const {
2476  assert(!Template.getAsDependentTemplateName() &&
2477         "No dependent template names here!");
2478  // Look through qualified template names.
2479  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2480    Template = TemplateName(QTN->getTemplateDecl());
2481
2482  bool IsTypeAlias =
2483    Template.getAsTemplateDecl() &&
2484    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
2485  QualType CanonType;
2486  if (!Underlying.isNull())
2487    CanonType = getCanonicalType(Underlying);
2488  else {
2489    // We can get here with an alias template when the specialization contains
2490    // a pack expansion that does not match up with a parameter pack.
2491    assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
2492           "Caller must compute aliased type");
2493    IsTypeAlias = false;
2494    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
2495                                                       NumArgs);
2496  }
2497
2498  // Allocate the (non-canonical) template specialization type, but don't
2499  // try to unique it: these types typically have location information that
2500  // we don't unique and don't want to lose.
2501  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
2502                       sizeof(TemplateArgument) * NumArgs +
2503                       (IsTypeAlias? sizeof(QualType) : 0),
2504                       TypeAlignment);
2505  TemplateSpecializationType *Spec
2506    = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
2507                                         IsTypeAlias ? Underlying : QualType());
2508
2509  Types.push_back(Spec);
2510  return QualType(Spec, 0);
2511}
2512
2513QualType
2514ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
2515                                                   const TemplateArgument *Args,
2516                                                   unsigned NumArgs) const {
2517  assert(!Template.getAsDependentTemplateName() &&
2518         "No dependent template names here!");
2519
2520  // Look through qualified template names.
2521  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2522    Template = TemplateName(QTN->getTemplateDecl());
2523
2524  // Build the canonical template specialization type.
2525  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
2526  SmallVector<TemplateArgument, 4> CanonArgs;
2527  CanonArgs.reserve(NumArgs);
2528  for (unsigned I = 0; I != NumArgs; ++I)
2529    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
2530
2531  // Determine whether this canonical template specialization type already
2532  // exists.
2533  llvm::FoldingSetNodeID ID;
2534  TemplateSpecializationType::Profile(ID, CanonTemplate,
2535                                      CanonArgs.data(), NumArgs, *this);
2536
2537  void *InsertPos = 0;
2538  TemplateSpecializationType *Spec
2539    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2540
2541  if (!Spec) {
2542    // Allocate a new canonical template specialization type.
2543    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2544                          sizeof(TemplateArgument) * NumArgs),
2545                         TypeAlignment);
2546    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
2547                                                CanonArgs.data(), NumArgs,
2548                                                QualType(), QualType());
2549    Types.push_back(Spec);
2550    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
2551  }
2552
2553  assert(Spec->isDependentType() &&
2554         "Non-dependent template-id type must have a canonical type");
2555  return QualType(Spec, 0);
2556}
2557
2558QualType
2559ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
2560                              NestedNameSpecifier *NNS,
2561                              QualType NamedType) const {
2562  llvm::FoldingSetNodeID ID;
2563  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
2564
2565  void *InsertPos = 0;
2566  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2567  if (T)
2568    return QualType(T, 0);
2569
2570  QualType Canon = NamedType;
2571  if (!Canon.isCanonical()) {
2572    Canon = getCanonicalType(NamedType);
2573    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2574    assert(!CheckT && "Elaborated canonical type broken");
2575    (void)CheckT;
2576  }
2577
2578  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
2579  Types.push_back(T);
2580  ElaboratedTypes.InsertNode(T, InsertPos);
2581  return QualType(T, 0);
2582}
2583
2584QualType
2585ASTContext::getParenType(QualType InnerType) const {
2586  llvm::FoldingSetNodeID ID;
2587  ParenType::Profile(ID, InnerType);
2588
2589  void *InsertPos = 0;
2590  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2591  if (T)
2592    return QualType(T, 0);
2593
2594  QualType Canon = InnerType;
2595  if (!Canon.isCanonical()) {
2596    Canon = getCanonicalType(InnerType);
2597    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2598    assert(!CheckT && "Paren canonical type broken");
2599    (void)CheckT;
2600  }
2601
2602  T = new (*this) ParenType(InnerType, Canon);
2603  Types.push_back(T);
2604  ParenTypes.InsertNode(T, InsertPos);
2605  return QualType(T, 0);
2606}
2607
2608QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
2609                                          NestedNameSpecifier *NNS,
2610                                          const IdentifierInfo *Name,
2611                                          QualType Canon) const {
2612  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2613
2614  if (Canon.isNull()) {
2615    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2616    ElaboratedTypeKeyword CanonKeyword = Keyword;
2617    if (Keyword == ETK_None)
2618      CanonKeyword = ETK_Typename;
2619
2620    if (CanonNNS != NNS || CanonKeyword != Keyword)
2621      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
2622  }
2623
2624  llvm::FoldingSetNodeID ID;
2625  DependentNameType::Profile(ID, Keyword, NNS, Name);
2626
2627  void *InsertPos = 0;
2628  DependentNameType *T
2629    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2630  if (T)
2631    return QualType(T, 0);
2632
2633  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
2634  Types.push_back(T);
2635  DependentNameTypes.InsertNode(T, InsertPos);
2636  return QualType(T, 0);
2637}
2638
2639QualType
2640ASTContext::getDependentTemplateSpecializationType(
2641                                 ElaboratedTypeKeyword Keyword,
2642                                 NestedNameSpecifier *NNS,
2643                                 const IdentifierInfo *Name,
2644                                 const TemplateArgumentListInfo &Args) const {
2645  // TODO: avoid this copy
2646  SmallVector<TemplateArgument, 16> ArgCopy;
2647  for (unsigned I = 0, E = Args.size(); I != E; ++I)
2648    ArgCopy.push_back(Args[I].getArgument());
2649  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
2650                                                ArgCopy.size(),
2651                                                ArgCopy.data());
2652}
2653
2654QualType
2655ASTContext::getDependentTemplateSpecializationType(
2656                                 ElaboratedTypeKeyword Keyword,
2657                                 NestedNameSpecifier *NNS,
2658                                 const IdentifierInfo *Name,
2659                                 unsigned NumArgs,
2660                                 const TemplateArgument *Args) const {
2661  assert((!NNS || NNS->isDependent()) &&
2662         "nested-name-specifier must be dependent");
2663
2664  llvm::FoldingSetNodeID ID;
2665  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
2666                                               Name, NumArgs, Args);
2667
2668  void *InsertPos = 0;
2669  DependentTemplateSpecializationType *T
2670    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2671  if (T)
2672    return QualType(T, 0);
2673
2674  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2675
2676  ElaboratedTypeKeyword CanonKeyword = Keyword;
2677  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
2678
2679  bool AnyNonCanonArgs = false;
2680  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
2681  for (unsigned I = 0; I != NumArgs; ++I) {
2682    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
2683    if (!CanonArgs[I].structurallyEquals(Args[I]))
2684      AnyNonCanonArgs = true;
2685  }
2686
2687  QualType Canon;
2688  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
2689    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
2690                                                   Name, NumArgs,
2691                                                   CanonArgs.data());
2692
2693    // Find the insert position again.
2694    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2695  }
2696
2697  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
2698                        sizeof(TemplateArgument) * NumArgs),
2699                       TypeAlignment);
2700  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
2701                                                    Name, NumArgs, Args, Canon);
2702  Types.push_back(T);
2703  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
2704  return QualType(T, 0);
2705}
2706
2707QualType ASTContext::getPackExpansionType(QualType Pattern,
2708                                      llvm::Optional<unsigned> NumExpansions) {
2709  llvm::FoldingSetNodeID ID;
2710  PackExpansionType::Profile(ID, Pattern, NumExpansions);
2711
2712  assert(Pattern->containsUnexpandedParameterPack() &&
2713         "Pack expansions must expand one or more parameter packs");
2714  void *InsertPos = 0;
2715  PackExpansionType *T
2716    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2717  if (T)
2718    return QualType(T, 0);
2719
2720  QualType Canon;
2721  if (!Pattern.isCanonical()) {
2722    Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
2723
2724    // Find the insert position again.
2725    PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2726  }
2727
2728  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
2729  Types.push_back(T);
2730  PackExpansionTypes.InsertNode(T, InsertPos);
2731  return QualType(T, 0);
2732}
2733
2734/// CmpProtocolNames - Comparison predicate for sorting protocols
2735/// alphabetically.
2736static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2737                            const ObjCProtocolDecl *RHS) {
2738  return LHS->getDeclName() < RHS->getDeclName();
2739}
2740
2741static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
2742                                unsigned NumProtocols) {
2743  if (NumProtocols == 0) return true;
2744
2745  if (Protocols[0]->getCanonicalDecl() != Protocols[0])
2746    return false;
2747
2748  for (unsigned i = 1; i != NumProtocols; ++i)
2749    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
2750        Protocols[i]->getCanonicalDecl() != Protocols[i])
2751      return false;
2752  return true;
2753}
2754
2755static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2756                                   unsigned &NumProtocols) {
2757  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2758
2759  // Sort protocols, keyed by name.
2760  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2761
2762  // Canonicalize.
2763  for (unsigned I = 0, N = NumProtocols; I != N; ++I)
2764    Protocols[I] = Protocols[I]->getCanonicalDecl();
2765
2766  // Remove duplicates.
2767  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2768  NumProtocols = ProtocolsEnd-Protocols;
2769}
2770
2771QualType ASTContext::getObjCObjectType(QualType BaseType,
2772                                       ObjCProtocolDecl * const *Protocols,
2773                                       unsigned NumProtocols) const {
2774  // If the base type is an interface and there aren't any protocols
2775  // to add, then the interface type will do just fine.
2776  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
2777    return BaseType;
2778
2779  // Look in the folding set for an existing type.
2780  llvm::FoldingSetNodeID ID;
2781  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
2782  void *InsertPos = 0;
2783  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
2784    return QualType(QT, 0);
2785
2786  // Build the canonical type, which has the canonical base type and
2787  // a sorted-and-uniqued list of protocols.
2788  QualType Canonical;
2789  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
2790  if (!ProtocolsSorted || !BaseType.isCanonical()) {
2791    if (!ProtocolsSorted) {
2792      SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
2793                                                     Protocols + NumProtocols);
2794      unsigned UniqueCount = NumProtocols;
2795
2796      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2797      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2798                                    &Sorted[0], UniqueCount);
2799    } else {
2800      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2801                                    Protocols, NumProtocols);
2802    }
2803
2804    // Regenerate InsertPos.
2805    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
2806  }
2807
2808  unsigned Size = sizeof(ObjCObjectTypeImpl);
2809  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
2810  void *Mem = Allocate(Size, TypeAlignment);
2811  ObjCObjectTypeImpl *T =
2812    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
2813
2814  Types.push_back(T);
2815  ObjCObjectTypes.InsertNode(T, InsertPos);
2816  return QualType(T, 0);
2817}
2818
2819/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2820/// the given object type.
2821QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
2822  llvm::FoldingSetNodeID ID;
2823  ObjCObjectPointerType::Profile(ID, ObjectT);
2824
2825  void *InsertPos = 0;
2826  if (ObjCObjectPointerType *QT =
2827              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2828    return QualType(QT, 0);
2829
2830  // Find the canonical object type.
2831  QualType Canonical;
2832  if (!ObjectT.isCanonical()) {
2833    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
2834
2835    // Regenerate InsertPos.
2836    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2837  }
2838
2839  // No match.
2840  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
2841  ObjCObjectPointerType *QType =
2842    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
2843
2844  Types.push_back(QType);
2845  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2846  return QualType(QType, 0);
2847}
2848
2849/// getObjCInterfaceType - Return the unique reference to the type for the
2850/// specified ObjC interface decl. The list of protocols is optional.
2851QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
2852                                          ObjCInterfaceDecl *PrevDecl) const {
2853  if (Decl->TypeForDecl)
2854    return QualType(Decl->TypeForDecl, 0);
2855
2856  if (PrevDecl) {
2857    assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
2858    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2859    return QualType(PrevDecl->TypeForDecl, 0);
2860  }
2861
2862  // Prefer the definition, if there is one.
2863  if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
2864    Decl = Def;
2865
2866  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
2867  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
2868  Decl->TypeForDecl = T;
2869  Types.push_back(T);
2870  return QualType(T, 0);
2871}
2872
2873/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2874/// TypeOfExprType AST's (since expression's are never shared). For example,
2875/// multiple declarations that refer to "typeof(x)" all contain different
2876/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2877/// on canonical type's (which are always unique).
2878QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
2879  TypeOfExprType *toe;
2880  if (tofExpr->isTypeDependent()) {
2881    llvm::FoldingSetNodeID ID;
2882    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2883
2884    void *InsertPos = 0;
2885    DependentTypeOfExprType *Canon
2886      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2887    if (Canon) {
2888      // We already have a "canonical" version of an identical, dependent
2889      // typeof(expr) type. Use that as our canonical type.
2890      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2891                                          QualType((TypeOfExprType*)Canon, 0));
2892    } else {
2893      // Build a new, canonical typeof(expr) type.
2894      Canon
2895        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2896      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2897      toe = Canon;
2898    }
2899  } else {
2900    QualType Canonical = getCanonicalType(tofExpr->getType());
2901    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2902  }
2903  Types.push_back(toe);
2904  return QualType(toe, 0);
2905}
2906
2907/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2908/// TypeOfType AST's. The only motivation to unique these nodes would be
2909/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2910/// an issue. This doesn't effect the type checker, since it operates
2911/// on canonical type's (which are always unique).
2912QualType ASTContext::getTypeOfType(QualType tofType) const {
2913  QualType Canonical = getCanonicalType(tofType);
2914  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2915  Types.push_back(tot);
2916  return QualType(tot, 0);
2917}
2918
2919/// getDecltypeForExpr - Given an expr, will return the decltype for that
2920/// expression, according to the rules in C++0x [dcl.type.simple]p4
2921static QualType getDecltypeForExpr(const Expr *e, const ASTContext &Context) {
2922  if (e->isTypeDependent())
2923    return Context.DependentTy;
2924
2925  // If e is an id expression or a class member access, decltype(e) is defined
2926  // as the type of the entity named by e.
2927  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2928    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2929      return VD->getType();
2930  }
2931  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2932    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2933      return FD->getType();
2934  }
2935  // If e is a function call or an invocation of an overloaded operator,
2936  // (parentheses around e are ignored), decltype(e) is defined as the
2937  // return type of that function.
2938  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2939    return CE->getCallReturnType();
2940
2941  QualType T = e->getType();
2942
2943  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2944  // defined as T&, otherwise decltype(e) is defined as T.
2945  if (e->isLValue())
2946    T = Context.getLValueReferenceType(T);
2947
2948  return T;
2949}
2950
2951/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2952/// DecltypeType AST's. The only motivation to unique these nodes would be
2953/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2954/// an issue. This doesn't effect the type checker, since it operates
2955/// on canonical types (which are always unique).
2956QualType ASTContext::getDecltypeType(Expr *e) const {
2957  DecltypeType *dt;
2958
2959  // C++0x [temp.type]p2:
2960  //   If an expression e involves a template parameter, decltype(e) denotes a
2961  //   unique dependent type. Two such decltype-specifiers refer to the same
2962  //   type only if their expressions are equivalent (14.5.6.1).
2963  if (e->isInstantiationDependent()) {
2964    llvm::FoldingSetNodeID ID;
2965    DependentDecltypeType::Profile(ID, *this, e);
2966
2967    void *InsertPos = 0;
2968    DependentDecltypeType *Canon
2969      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2970    if (Canon) {
2971      // We already have a "canonical" version of an equivalent, dependent
2972      // decltype type. Use that as our canonical type.
2973      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2974                                       QualType((DecltypeType*)Canon, 0));
2975    } else {
2976      // Build a new, canonical typeof(expr) type.
2977      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2978      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2979      dt = Canon;
2980    }
2981  } else {
2982    QualType T = getDecltypeForExpr(e, *this);
2983    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2984  }
2985  Types.push_back(dt);
2986  return QualType(dt, 0);
2987}
2988
2989/// getUnaryTransformationType - We don't unique these, since the memory
2990/// savings are minimal and these are rare.
2991QualType ASTContext::getUnaryTransformType(QualType BaseType,
2992                                           QualType UnderlyingType,
2993                                           UnaryTransformType::UTTKind Kind)
2994    const {
2995  UnaryTransformType *Ty =
2996    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
2997                                                   Kind,
2998                                 UnderlyingType->isDependentType() ?
2999                                    QualType() : UnderlyingType);
3000  Types.push_back(Ty);
3001  return QualType(Ty, 0);
3002}
3003
3004/// getAutoType - We only unique auto types after they've been deduced.
3005QualType ASTContext::getAutoType(QualType DeducedType) const {
3006  void *InsertPos = 0;
3007  if (!DeducedType.isNull()) {
3008    // Look in the folding set for an existing type.
3009    llvm::FoldingSetNodeID ID;
3010    AutoType::Profile(ID, DeducedType);
3011    if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
3012      return QualType(AT, 0);
3013  }
3014
3015  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
3016  Types.push_back(AT);
3017  if (InsertPos)
3018    AutoTypes.InsertNode(AT, InsertPos);
3019  return QualType(AT, 0);
3020}
3021
3022/// getAtomicType - Return the uniqued reference to the atomic type for
3023/// the given value type.
3024QualType ASTContext::getAtomicType(QualType T) const {
3025  // Unique pointers, to guarantee there is only one pointer of a particular
3026  // structure.
3027  llvm::FoldingSetNodeID ID;
3028  AtomicType::Profile(ID, T);
3029
3030  void *InsertPos = 0;
3031  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
3032    return QualType(AT, 0);
3033
3034  // If the atomic value type isn't canonical, this won't be a canonical type
3035  // either, so fill in the canonical type field.
3036  QualType Canonical;
3037  if (!T.isCanonical()) {
3038    Canonical = getAtomicType(getCanonicalType(T));
3039
3040    // Get the new insert position for the node we care about.
3041    AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
3042    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
3043  }
3044  AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
3045  Types.push_back(New);
3046  AtomicTypes.InsertNode(New, InsertPos);
3047  return QualType(New, 0);
3048}
3049
3050/// getAutoDeductType - Get type pattern for deducing against 'auto'.
3051QualType ASTContext::getAutoDeductType() const {
3052  if (AutoDeductTy.isNull())
3053    AutoDeductTy = getAutoType(QualType());
3054  assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern");
3055  return AutoDeductTy;
3056}
3057
3058/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
3059QualType ASTContext::getAutoRRefDeductType() const {
3060  if (AutoRRefDeductTy.isNull())
3061    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3062  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3063  return AutoRRefDeductTy;
3064}
3065
3066/// getTagDeclType - Return the unique reference to the type for the
3067/// specified TagDecl (struct/union/class/enum) decl.
3068QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3069  assert (Decl);
3070  // FIXME: What is the design on getTagDeclType when it requires casting
3071  // away const?  mutable?
3072  return getTypeDeclType(const_cast<TagDecl*>(Decl));
3073}
3074
3075/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3076/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3077/// needs to agree with the definition in <stddef.h>.
3078CanQualType ASTContext::getSizeType() const {
3079  return getFromTargetType(Target->getSizeType());
3080}
3081
3082/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
3083CanQualType ASTContext::getIntMaxType() const {
3084  return getFromTargetType(Target->getIntMaxType());
3085}
3086
3087/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
3088CanQualType ASTContext::getUIntMaxType() const {
3089  return getFromTargetType(Target->getUIntMaxType());
3090}
3091
3092/// getSignedWCharType - Return the type of "signed wchar_t".
3093/// Used when in C++, as a GCC extension.
3094QualType ASTContext::getSignedWCharType() const {
3095  // FIXME: derive from "Target" ?
3096  return WCharTy;
3097}
3098
3099/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3100/// Used when in C++, as a GCC extension.
3101QualType ASTContext::getUnsignedWCharType() const {
3102  // FIXME: derive from "Target" ?
3103  return UnsignedIntTy;
3104}
3105
3106/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3107/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
3108QualType ASTContext::getPointerDiffType() const {
3109  return getFromTargetType(Target->getPtrDiffType(0));
3110}
3111
3112//===----------------------------------------------------------------------===//
3113//                              Type Operators
3114//===----------------------------------------------------------------------===//
3115
3116CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3117  // Push qualifiers into arrays, and then discard any remaining
3118  // qualifiers.
3119  T = getCanonicalType(T);
3120  T = getVariableArrayDecayedType(T);
3121  const Type *Ty = T.getTypePtr();
3122  QualType Result;
3123  if (isa<ArrayType>(Ty)) {
3124    Result = getArrayDecayedType(QualType(Ty,0));
3125  } else if (isa<FunctionType>(Ty)) {
3126    Result = getPointerType(QualType(Ty, 0));
3127  } else {
3128    Result = QualType(Ty, 0);
3129  }
3130
3131  return CanQualType::CreateUnsafe(Result);
3132}
3133
3134QualType ASTContext::getUnqualifiedArrayType(QualType type,
3135                                             Qualifiers &quals) {
3136  SplitQualType splitType = type.getSplitUnqualifiedType();
3137
3138  // FIXME: getSplitUnqualifiedType() actually walks all the way to
3139  // the unqualified desugared type and then drops it on the floor.
3140  // We then have to strip that sugar back off with
3141  // getUnqualifiedDesugaredType(), which is silly.
3142  const ArrayType *AT =
3143    dyn_cast<ArrayType>(splitType.first->getUnqualifiedDesugaredType());
3144
3145  // If we don't have an array, just use the results in splitType.
3146  if (!AT) {
3147    quals = splitType.second;
3148    return QualType(splitType.first, 0);
3149  }
3150
3151  // Otherwise, recurse on the array's element type.
3152  QualType elementType = AT->getElementType();
3153  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3154
3155  // If that didn't change the element type, AT has no qualifiers, so we
3156  // can just use the results in splitType.
3157  if (elementType == unqualElementType) {
3158    assert(quals.empty()); // from the recursive call
3159    quals = splitType.second;
3160    return QualType(splitType.first, 0);
3161  }
3162
3163  // Otherwise, add in the qualifiers from the outermost type, then
3164  // build the type back up.
3165  quals.addConsistentQualifiers(splitType.second);
3166
3167  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3168    return getConstantArrayType(unqualElementType, CAT->getSize(),
3169                                CAT->getSizeModifier(), 0);
3170  }
3171
3172  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3173    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3174  }
3175
3176  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3177    return getVariableArrayType(unqualElementType,
3178                                VAT->getSizeExpr(),
3179                                VAT->getSizeModifier(),
3180                                VAT->getIndexTypeCVRQualifiers(),
3181                                VAT->getBracketsRange());
3182  }
3183
3184  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
3185  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
3186                                    DSAT->getSizeModifier(), 0,
3187                                    SourceRange());
3188}
3189
3190/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
3191/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
3192/// they point to and return true. If T1 and T2 aren't pointer types
3193/// or pointer-to-member types, or if they are not similar at this
3194/// level, returns false and leaves T1 and T2 unchanged. Top-level
3195/// qualifiers on T1 and T2 are ignored. This function will typically
3196/// be called in a loop that successively "unwraps" pointer and
3197/// pointer-to-member types to compare them at each level.
3198bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3199  const PointerType *T1PtrType = T1->getAs<PointerType>(),
3200                    *T2PtrType = T2->getAs<PointerType>();
3201  if (T1PtrType && T2PtrType) {
3202    T1 = T1PtrType->getPointeeType();
3203    T2 = T2PtrType->getPointeeType();
3204    return true;
3205  }
3206
3207  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3208                          *T2MPType = T2->getAs<MemberPointerType>();
3209  if (T1MPType && T2MPType &&
3210      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3211                             QualType(T2MPType->getClass(), 0))) {
3212    T1 = T1MPType->getPointeeType();
3213    T2 = T2MPType->getPointeeType();
3214    return true;
3215  }
3216
3217  if (getLangOptions().ObjC1) {
3218    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3219                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
3220    if (T1OPType && T2OPType) {
3221      T1 = T1OPType->getPointeeType();
3222      T2 = T2OPType->getPointeeType();
3223      return true;
3224    }
3225  }
3226
3227  // FIXME: Block pointers, too?
3228
3229  return false;
3230}
3231
3232DeclarationNameInfo
3233ASTContext::getNameForTemplate(TemplateName Name,
3234                               SourceLocation NameLoc) const {
3235  switch (Name.getKind()) {
3236  case TemplateName::QualifiedTemplate:
3237  case TemplateName::Template:
3238    // DNInfo work in progress: CHECKME: what about DNLoc?
3239    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3240                               NameLoc);
3241
3242  case TemplateName::OverloadedTemplate: {
3243    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3244    // DNInfo work in progress: CHECKME: what about DNLoc?
3245    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3246  }
3247
3248  case TemplateName::DependentTemplate: {
3249    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3250    DeclarationName DName;
3251    if (DTN->isIdentifier()) {
3252      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3253      return DeclarationNameInfo(DName, NameLoc);
3254    } else {
3255      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3256      // DNInfo work in progress: FIXME: source locations?
3257      DeclarationNameLoc DNLoc;
3258      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3259      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3260      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3261    }
3262  }
3263
3264  case TemplateName::SubstTemplateTemplateParm: {
3265    SubstTemplateTemplateParmStorage *subst
3266      = Name.getAsSubstTemplateTemplateParm();
3267    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3268                               NameLoc);
3269  }
3270
3271  case TemplateName::SubstTemplateTemplateParmPack: {
3272    SubstTemplateTemplateParmPackStorage *subst
3273      = Name.getAsSubstTemplateTemplateParmPack();
3274    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3275                               NameLoc);
3276  }
3277  }
3278
3279  llvm_unreachable("bad template name kind!");
3280}
3281
3282TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3283  switch (Name.getKind()) {
3284  case TemplateName::QualifiedTemplate:
3285  case TemplateName::Template: {
3286    TemplateDecl *Template = Name.getAsTemplateDecl();
3287    if (TemplateTemplateParmDecl *TTP
3288          = dyn_cast<TemplateTemplateParmDecl>(Template))
3289      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3290
3291    // The canonical template name is the canonical template declaration.
3292    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3293  }
3294
3295  case TemplateName::OverloadedTemplate:
3296    llvm_unreachable("cannot canonicalize overloaded template");
3297
3298  case TemplateName::DependentTemplate: {
3299    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3300    assert(DTN && "Non-dependent template names must refer to template decls.");
3301    return DTN->CanonicalTemplateName;
3302  }
3303
3304  case TemplateName::SubstTemplateTemplateParm: {
3305    SubstTemplateTemplateParmStorage *subst
3306      = Name.getAsSubstTemplateTemplateParm();
3307    return getCanonicalTemplateName(subst->getReplacement());
3308  }
3309
3310  case TemplateName::SubstTemplateTemplateParmPack: {
3311    SubstTemplateTemplateParmPackStorage *subst
3312                                  = Name.getAsSubstTemplateTemplateParmPack();
3313    TemplateTemplateParmDecl *canonParameter
3314      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3315    TemplateArgument canonArgPack
3316      = getCanonicalTemplateArgument(subst->getArgumentPack());
3317    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3318  }
3319  }
3320
3321  llvm_unreachable("bad template name!");
3322}
3323
3324bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3325  X = getCanonicalTemplateName(X);
3326  Y = getCanonicalTemplateName(Y);
3327  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3328}
3329
3330TemplateArgument
3331ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3332  switch (Arg.getKind()) {
3333    case TemplateArgument::Null:
3334      return Arg;
3335
3336    case TemplateArgument::Expression:
3337      return Arg;
3338
3339    case TemplateArgument::Declaration:
3340      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
3341
3342    case TemplateArgument::Template:
3343      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3344
3345    case TemplateArgument::TemplateExpansion:
3346      return TemplateArgument(getCanonicalTemplateName(
3347                                         Arg.getAsTemplateOrTemplatePattern()),
3348                              Arg.getNumTemplateExpansions());
3349
3350    case TemplateArgument::Integral:
3351      return TemplateArgument(*Arg.getAsIntegral(),
3352                              getCanonicalType(Arg.getIntegralType()));
3353
3354    case TemplateArgument::Type:
3355      return TemplateArgument(getCanonicalType(Arg.getAsType()));
3356
3357    case TemplateArgument::Pack: {
3358      if (Arg.pack_size() == 0)
3359        return Arg;
3360
3361      TemplateArgument *CanonArgs
3362        = new (*this) TemplateArgument[Arg.pack_size()];
3363      unsigned Idx = 0;
3364      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
3365                                        AEnd = Arg.pack_end();
3366           A != AEnd; (void)++A, ++Idx)
3367        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
3368
3369      return TemplateArgument(CanonArgs, Arg.pack_size());
3370    }
3371  }
3372
3373  // Silence GCC warning
3374  llvm_unreachable("Unhandled template argument kind");
3375}
3376
3377NestedNameSpecifier *
3378ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
3379  if (!NNS)
3380    return 0;
3381
3382  switch (NNS->getKind()) {
3383  case NestedNameSpecifier::Identifier:
3384    // Canonicalize the prefix but keep the identifier the same.
3385    return NestedNameSpecifier::Create(*this,
3386                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
3387                                       NNS->getAsIdentifier());
3388
3389  case NestedNameSpecifier::Namespace:
3390    // A namespace is canonical; build a nested-name-specifier with
3391    // this namespace and no prefix.
3392    return NestedNameSpecifier::Create(*this, 0,
3393                                 NNS->getAsNamespace()->getOriginalNamespace());
3394
3395  case NestedNameSpecifier::NamespaceAlias:
3396    // A namespace is canonical; build a nested-name-specifier with
3397    // this namespace and no prefix.
3398    return NestedNameSpecifier::Create(*this, 0,
3399                                    NNS->getAsNamespaceAlias()->getNamespace()
3400                                                      ->getOriginalNamespace());
3401
3402  case NestedNameSpecifier::TypeSpec:
3403  case NestedNameSpecifier::TypeSpecWithTemplate: {
3404    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
3405
3406    // If we have some kind of dependent-named type (e.g., "typename T::type"),
3407    // break it apart into its prefix and identifier, then reconsititute those
3408    // as the canonical nested-name-specifier. This is required to canonicalize
3409    // a dependent nested-name-specifier involving typedefs of dependent-name
3410    // types, e.g.,
3411    //   typedef typename T::type T1;
3412    //   typedef typename T1::type T2;
3413    if (const DependentNameType *DNT = T->getAs<DependentNameType>()) {
3414      NestedNameSpecifier *Prefix
3415        = getCanonicalNestedNameSpecifier(DNT->getQualifier());
3416      return NestedNameSpecifier::Create(*this, Prefix,
3417                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
3418    }
3419
3420    // Do the same thing as above, but with dependent-named specializations.
3421    if (const DependentTemplateSpecializationType *DTST
3422          = T->getAs<DependentTemplateSpecializationType>()) {
3423      NestedNameSpecifier *Prefix
3424        = getCanonicalNestedNameSpecifier(DTST->getQualifier());
3425
3426      T = getDependentTemplateSpecializationType(DTST->getKeyword(),
3427                                                 Prefix, DTST->getIdentifier(),
3428                                                 DTST->getNumArgs(),
3429                                                 DTST->getArgs());
3430      T = getCanonicalType(T);
3431    }
3432
3433    return NestedNameSpecifier::Create(*this, 0, false,
3434                                       const_cast<Type*>(T.getTypePtr()));
3435  }
3436
3437  case NestedNameSpecifier::Global:
3438    // The global specifier is canonical and unique.
3439    return NNS;
3440  }
3441
3442  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
3443}
3444
3445
3446const ArrayType *ASTContext::getAsArrayType(QualType T) const {
3447  // Handle the non-qualified case efficiently.
3448  if (!T.hasLocalQualifiers()) {
3449    // Handle the common positive case fast.
3450    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
3451      return AT;
3452  }
3453
3454  // Handle the common negative case fast.
3455  if (!isa<ArrayType>(T.getCanonicalType()))
3456    return 0;
3457
3458  // Apply any qualifiers from the array type to the element type.  This
3459  // implements C99 6.7.3p8: "If the specification of an array type includes
3460  // any type qualifiers, the element type is so qualified, not the array type."
3461
3462  // If we get here, we either have type qualifiers on the type, or we have
3463  // sugar such as a typedef in the way.  If we have type qualifiers on the type
3464  // we must propagate them down into the element type.
3465
3466  SplitQualType split = T.getSplitDesugaredType();
3467  Qualifiers qs = split.second;
3468
3469  // If we have a simple case, just return now.
3470  const ArrayType *ATy = dyn_cast<ArrayType>(split.first);
3471  if (ATy == 0 || qs.empty())
3472    return ATy;
3473
3474  // Otherwise, we have an array and we have qualifiers on it.  Push the
3475  // qualifiers into the array element type and return a new array type.
3476  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
3477
3478  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
3479    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
3480                                                CAT->getSizeModifier(),
3481                                           CAT->getIndexTypeCVRQualifiers()));
3482  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
3483    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
3484                                                  IAT->getSizeModifier(),
3485                                           IAT->getIndexTypeCVRQualifiers()));
3486
3487  if (const DependentSizedArrayType *DSAT
3488        = dyn_cast<DependentSizedArrayType>(ATy))
3489    return cast<ArrayType>(
3490                     getDependentSizedArrayType(NewEltTy,
3491                                                DSAT->getSizeExpr(),
3492                                                DSAT->getSizeModifier(),
3493                                              DSAT->getIndexTypeCVRQualifiers(),
3494                                                DSAT->getBracketsRange()));
3495
3496  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
3497  return cast<ArrayType>(getVariableArrayType(NewEltTy,
3498                                              VAT->getSizeExpr(),
3499                                              VAT->getSizeModifier(),
3500                                              VAT->getIndexTypeCVRQualifiers(),
3501                                              VAT->getBracketsRange()));
3502}
3503
3504QualType ASTContext::getAdjustedParameterType(QualType T) {
3505  // C99 6.7.5.3p7:
3506  //   A declaration of a parameter as "array of type" shall be
3507  //   adjusted to "qualified pointer to type", where the type
3508  //   qualifiers (if any) are those specified within the [ and ] of
3509  //   the array type derivation.
3510  if (T->isArrayType())
3511    return getArrayDecayedType(T);
3512
3513  // C99 6.7.5.3p8:
3514  //   A declaration of a parameter as "function returning type"
3515  //   shall be adjusted to "pointer to function returning type", as
3516  //   in 6.3.2.1.
3517  if (T->isFunctionType())
3518    return getPointerType(T);
3519
3520  return T;
3521}
3522
3523QualType ASTContext::getSignatureParameterType(QualType T) {
3524  T = getVariableArrayDecayedType(T);
3525  T = getAdjustedParameterType(T);
3526  return T.getUnqualifiedType();
3527}
3528
3529/// getArrayDecayedType - Return the properly qualified result of decaying the
3530/// specified array type to a pointer.  This operation is non-trivial when
3531/// handling typedefs etc.  The canonical type of "T" must be an array type,
3532/// this returns a pointer to a properly qualified element of the array.
3533///
3534/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
3535QualType ASTContext::getArrayDecayedType(QualType Ty) const {
3536  // Get the element type with 'getAsArrayType' so that we don't lose any
3537  // typedefs in the element type of the array.  This also handles propagation
3538  // of type qualifiers from the array type into the element type if present
3539  // (C99 6.7.3p8).
3540  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
3541  assert(PrettyArrayType && "Not an array type!");
3542
3543  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
3544
3545  // int x[restrict 4] ->  int *restrict
3546  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
3547}
3548
3549QualType ASTContext::getBaseElementType(const ArrayType *array) const {
3550  return getBaseElementType(array->getElementType());
3551}
3552
3553QualType ASTContext::getBaseElementType(QualType type) const {
3554  Qualifiers qs;
3555  while (true) {
3556    SplitQualType split = type.getSplitDesugaredType();
3557    const ArrayType *array = split.first->getAsArrayTypeUnsafe();
3558    if (!array) break;
3559
3560    type = array->getElementType();
3561    qs.addConsistentQualifiers(split.second);
3562  }
3563
3564  return getQualifiedType(type, qs);
3565}
3566
3567/// getConstantArrayElementCount - Returns number of constant array elements.
3568uint64_t
3569ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
3570  uint64_t ElementCount = 1;
3571  do {
3572    ElementCount *= CA->getSize().getZExtValue();
3573    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
3574  } while (CA);
3575  return ElementCount;
3576}
3577
3578/// getFloatingRank - Return a relative rank for floating point types.
3579/// This routine will assert if passed a built-in type that isn't a float.
3580static FloatingRank getFloatingRank(QualType T) {
3581  if (const ComplexType *CT = T->getAs<ComplexType>())
3582    return getFloatingRank(CT->getElementType());
3583
3584  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
3585  switch (T->getAs<BuiltinType>()->getKind()) {
3586  default: llvm_unreachable("getFloatingRank(): not a floating type");
3587  case BuiltinType::Half:       return HalfRank;
3588  case BuiltinType::Float:      return FloatRank;
3589  case BuiltinType::Double:     return DoubleRank;
3590  case BuiltinType::LongDouble: return LongDoubleRank;
3591  }
3592}
3593
3594/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
3595/// point or a complex type (based on typeDomain/typeSize).
3596/// 'typeDomain' is a real floating point or complex type.
3597/// 'typeSize' is a real floating point or complex type.
3598QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
3599                                                       QualType Domain) const {
3600  FloatingRank EltRank = getFloatingRank(Size);
3601  if (Domain->isComplexType()) {
3602    switch (EltRank) {
3603    case HalfRank: llvm_unreachable("Complex half is not supported");
3604    case FloatRank:      return FloatComplexTy;
3605    case DoubleRank:     return DoubleComplexTy;
3606    case LongDoubleRank: return LongDoubleComplexTy;
3607    }
3608  }
3609
3610  assert(Domain->isRealFloatingType() && "Unknown domain!");
3611  switch (EltRank) {
3612  case HalfRank: llvm_unreachable("Half ranks are not valid here");
3613  case FloatRank:      return FloatTy;
3614  case DoubleRank:     return DoubleTy;
3615  case LongDoubleRank: return LongDoubleTy;
3616  }
3617  llvm_unreachable("getFloatingRank(): illegal value for rank");
3618}
3619
3620/// getFloatingTypeOrder - Compare the rank of the two specified floating
3621/// point types, ignoring the domain of the type (i.e. 'double' ==
3622/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3623/// LHS < RHS, return -1.
3624int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
3625  FloatingRank LHSR = getFloatingRank(LHS);
3626  FloatingRank RHSR = getFloatingRank(RHS);
3627
3628  if (LHSR == RHSR)
3629    return 0;
3630  if (LHSR > RHSR)
3631    return 1;
3632  return -1;
3633}
3634
3635/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
3636/// routine will assert if passed a built-in type that isn't an integer or enum,
3637/// or if it is not canonicalized.
3638unsigned ASTContext::getIntegerRank(const Type *T) const {
3639  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
3640
3641  switch (cast<BuiltinType>(T)->getKind()) {
3642  default: llvm_unreachable("getIntegerRank(): not a built-in integer");
3643  case BuiltinType::Bool:
3644    return 1 + (getIntWidth(BoolTy) << 3);
3645  case BuiltinType::Char_S:
3646  case BuiltinType::Char_U:
3647  case BuiltinType::SChar:
3648  case BuiltinType::UChar:
3649    return 2 + (getIntWidth(CharTy) << 3);
3650  case BuiltinType::Short:
3651  case BuiltinType::UShort:
3652    return 3 + (getIntWidth(ShortTy) << 3);
3653  case BuiltinType::Int:
3654  case BuiltinType::UInt:
3655    return 4 + (getIntWidth(IntTy) << 3);
3656  case BuiltinType::Long:
3657  case BuiltinType::ULong:
3658    return 5 + (getIntWidth(LongTy) << 3);
3659  case BuiltinType::LongLong:
3660  case BuiltinType::ULongLong:
3661    return 6 + (getIntWidth(LongLongTy) << 3);
3662  case BuiltinType::Int128:
3663  case BuiltinType::UInt128:
3664    return 7 + (getIntWidth(Int128Ty) << 3);
3665  }
3666}
3667
3668/// \brief Whether this is a promotable bitfield reference according
3669/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
3670///
3671/// \returns the type this bit-field will promote to, or NULL if no
3672/// promotion occurs.
3673QualType ASTContext::isPromotableBitField(Expr *E) const {
3674  if (E->isTypeDependent() || E->isValueDependent())
3675    return QualType();
3676
3677  FieldDecl *Field = E->getBitField();
3678  if (!Field)
3679    return QualType();
3680
3681  QualType FT = Field->getType();
3682
3683  uint64_t BitWidth = Field->getBitWidthValue(*this);
3684  uint64_t IntSize = getTypeSize(IntTy);
3685  // GCC extension compatibility: if the bit-field size is less than or equal
3686  // to the size of int, it gets promoted no matter what its type is.
3687  // For instance, unsigned long bf : 4 gets promoted to signed int.
3688  if (BitWidth < IntSize)
3689    return IntTy;
3690
3691  if (BitWidth == IntSize)
3692    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
3693
3694  // Types bigger than int are not subject to promotions, and therefore act
3695  // like the base type.
3696  // FIXME: This doesn't quite match what gcc does, but what gcc does here
3697  // is ridiculous.
3698  return QualType();
3699}
3700
3701/// getPromotedIntegerType - Returns the type that Promotable will
3702/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
3703/// integer type.
3704QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
3705  assert(!Promotable.isNull());
3706  assert(Promotable->isPromotableIntegerType());
3707  if (const EnumType *ET = Promotable->getAs<EnumType>())
3708    return ET->getDecl()->getPromotionType();
3709
3710  if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
3711    // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
3712    // (3.9.1) can be converted to a prvalue of the first of the following
3713    // types that can represent all the values of its underlying type:
3714    // int, unsigned int, long int, unsigned long int, long long int, or
3715    // unsigned long long int [...]
3716    // FIXME: Is there some better way to compute this?
3717    if (BT->getKind() == BuiltinType::WChar_S ||
3718        BT->getKind() == BuiltinType::WChar_U ||
3719        BT->getKind() == BuiltinType::Char16 ||
3720        BT->getKind() == BuiltinType::Char32) {
3721      bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
3722      uint64_t FromSize = getTypeSize(BT);
3723      QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
3724                                  LongLongTy, UnsignedLongLongTy };
3725      for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
3726        uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
3727        if (FromSize < ToSize ||
3728            (FromSize == ToSize &&
3729             FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
3730          return PromoteTypes[Idx];
3731      }
3732      llvm_unreachable("char type should fit into long long");
3733    }
3734  }
3735
3736  // At this point, we should have a signed or unsigned integer type.
3737  if (Promotable->isSignedIntegerType())
3738    return IntTy;
3739  uint64_t PromotableSize = getTypeSize(Promotable);
3740  uint64_t IntSize = getTypeSize(IntTy);
3741  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
3742  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
3743}
3744
3745/// \brief Recurses in pointer/array types until it finds an objc retainable
3746/// type and returns its ownership.
3747Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
3748  while (!T.isNull()) {
3749    if (T.getObjCLifetime() != Qualifiers::OCL_None)
3750      return T.getObjCLifetime();
3751    if (T->isArrayType())
3752      T = getBaseElementType(T);
3753    else if (const PointerType *PT = T->getAs<PointerType>())
3754      T = PT->getPointeeType();
3755    else if (const ReferenceType *RT = T->getAs<ReferenceType>())
3756      T = RT->getPointeeType();
3757    else
3758      break;
3759  }
3760
3761  return Qualifiers::OCL_None;
3762}
3763
3764/// getIntegerTypeOrder - Returns the highest ranked integer type:
3765/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3766/// LHS < RHS, return -1.
3767int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
3768  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
3769  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
3770  if (LHSC == RHSC) return 0;
3771
3772  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
3773  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
3774
3775  unsigned LHSRank = getIntegerRank(LHSC);
3776  unsigned RHSRank = getIntegerRank(RHSC);
3777
3778  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
3779    if (LHSRank == RHSRank) return 0;
3780    return LHSRank > RHSRank ? 1 : -1;
3781  }
3782
3783  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
3784  if (LHSUnsigned) {
3785    // If the unsigned [LHS] type is larger, return it.
3786    if (LHSRank >= RHSRank)
3787      return 1;
3788
3789    // If the signed type can represent all values of the unsigned type, it
3790    // wins.  Because we are dealing with 2's complement and types that are
3791    // powers of two larger than each other, this is always safe.
3792    return -1;
3793  }
3794
3795  // If the unsigned [RHS] type is larger, return it.
3796  if (RHSRank >= LHSRank)
3797    return -1;
3798
3799  // If the signed type can represent all values of the unsigned type, it
3800  // wins.  Because we are dealing with 2's complement and types that are
3801  // powers of two larger than each other, this is always safe.
3802  return 1;
3803}
3804
3805static RecordDecl *
3806CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
3807                 DeclContext *DC, IdentifierInfo *Id) {
3808  SourceLocation Loc;
3809  if (Ctx.getLangOptions().CPlusPlus)
3810    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3811  else
3812    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3813}
3814
3815// getCFConstantStringType - Return the type used for constant CFStrings.
3816QualType ASTContext::getCFConstantStringType() const {
3817  if (!CFConstantStringTypeDecl) {
3818    CFConstantStringTypeDecl =
3819      CreateRecordDecl(*this, TTK_Struct, TUDecl,
3820                       &Idents.get("NSConstantString"));
3821    CFConstantStringTypeDecl->startDefinition();
3822
3823    QualType FieldTypes[4];
3824
3825    // const int *isa;
3826    FieldTypes[0] = getPointerType(IntTy.withConst());
3827    // int flags;
3828    FieldTypes[1] = IntTy;
3829    // const char *str;
3830    FieldTypes[2] = getPointerType(CharTy.withConst());
3831    // long length;
3832    FieldTypes[3] = LongTy;
3833
3834    // Create fields
3835    for (unsigned i = 0; i < 4; ++i) {
3836      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
3837                                           SourceLocation(),
3838                                           SourceLocation(), 0,
3839                                           FieldTypes[i], /*TInfo=*/0,
3840                                           /*BitWidth=*/0,
3841                                           /*Mutable=*/false,
3842                                           /*HasInit=*/false);
3843      Field->setAccess(AS_public);
3844      CFConstantStringTypeDecl->addDecl(Field);
3845    }
3846
3847    CFConstantStringTypeDecl->completeDefinition();
3848  }
3849
3850  return getTagDeclType(CFConstantStringTypeDecl);
3851}
3852
3853void ASTContext::setCFConstantStringType(QualType T) {
3854  const RecordType *Rec = T->getAs<RecordType>();
3855  assert(Rec && "Invalid CFConstantStringType");
3856  CFConstantStringTypeDecl = Rec->getDecl();
3857}
3858
3859QualType ASTContext::getBlockDescriptorType() const {
3860  if (BlockDescriptorType)
3861    return getTagDeclType(BlockDescriptorType);
3862
3863  RecordDecl *T;
3864  // FIXME: Needs the FlagAppleBlock bit.
3865  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
3866                       &Idents.get("__block_descriptor"));
3867  T->startDefinition();
3868
3869  QualType FieldTypes[] = {
3870    UnsignedLongTy,
3871    UnsignedLongTy,
3872  };
3873
3874  const char *FieldNames[] = {
3875    "reserved",
3876    "Size"
3877  };
3878
3879  for (size_t i = 0; i < 2; ++i) {
3880    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3881                                         SourceLocation(),
3882                                         &Idents.get(FieldNames[i]),
3883                                         FieldTypes[i], /*TInfo=*/0,
3884                                         /*BitWidth=*/0,
3885                                         /*Mutable=*/false,
3886                                         /*HasInit=*/false);
3887    Field->setAccess(AS_public);
3888    T->addDecl(Field);
3889  }
3890
3891  T->completeDefinition();
3892
3893  BlockDescriptorType = T;
3894
3895  return getTagDeclType(BlockDescriptorType);
3896}
3897
3898QualType ASTContext::getBlockDescriptorExtendedType() const {
3899  if (BlockDescriptorExtendedType)
3900    return getTagDeclType(BlockDescriptorExtendedType);
3901
3902  RecordDecl *T;
3903  // FIXME: Needs the FlagAppleBlock bit.
3904  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
3905                       &Idents.get("__block_descriptor_withcopydispose"));
3906  T->startDefinition();
3907
3908  QualType FieldTypes[] = {
3909    UnsignedLongTy,
3910    UnsignedLongTy,
3911    getPointerType(VoidPtrTy),
3912    getPointerType(VoidPtrTy)
3913  };
3914
3915  const char *FieldNames[] = {
3916    "reserved",
3917    "Size",
3918    "CopyFuncPtr",
3919    "DestroyFuncPtr"
3920  };
3921
3922  for (size_t i = 0; i < 4; ++i) {
3923    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3924                                         SourceLocation(),
3925                                         &Idents.get(FieldNames[i]),
3926                                         FieldTypes[i], /*TInfo=*/0,
3927                                         /*BitWidth=*/0,
3928                                         /*Mutable=*/false,
3929                                         /*HasInit=*/false);
3930    Field->setAccess(AS_public);
3931    T->addDecl(Field);
3932  }
3933
3934  T->completeDefinition();
3935
3936  BlockDescriptorExtendedType = T;
3937
3938  return getTagDeclType(BlockDescriptorExtendedType);
3939}
3940
3941bool ASTContext::BlockRequiresCopying(QualType Ty) const {
3942  if (Ty->isObjCRetainableType())
3943    return true;
3944  if (getLangOptions().CPlusPlus) {
3945    if (const RecordType *RT = Ty->getAs<RecordType>()) {
3946      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3947      return RD->hasConstCopyConstructor();
3948
3949    }
3950  }
3951  return false;
3952}
3953
3954QualType
3955ASTContext::BuildByRefType(StringRef DeclName, QualType Ty) const {
3956  //  type = struct __Block_byref_1_X {
3957  //    void *__isa;
3958  //    struct __Block_byref_1_X *__forwarding;
3959  //    unsigned int __flags;
3960  //    unsigned int __size;
3961  //    void *__copy_helper;            // as needed
3962  //    void *__destroy_help            // as needed
3963  //    int X;
3964  //  } *
3965
3966  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
3967
3968  // FIXME: Move up
3969  llvm::SmallString<36> Name;
3970  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
3971                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
3972  RecordDecl *T;
3973  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get(Name.str()));
3974  T->startDefinition();
3975  QualType Int32Ty = IntTy;
3976  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
3977  QualType FieldTypes[] = {
3978    getPointerType(VoidPtrTy),
3979    getPointerType(getTagDeclType(T)),
3980    Int32Ty,
3981    Int32Ty,
3982    getPointerType(VoidPtrTy),
3983    getPointerType(VoidPtrTy),
3984    Ty
3985  };
3986
3987  StringRef FieldNames[] = {
3988    "__isa",
3989    "__forwarding",
3990    "__flags",
3991    "__size",
3992    "__copy_helper",
3993    "__destroy_helper",
3994    DeclName,
3995  };
3996
3997  for (size_t i = 0; i < 7; ++i) {
3998    if (!HasCopyAndDispose && i >=4 && i <= 5)
3999      continue;
4000    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4001                                         SourceLocation(),
4002                                         &Idents.get(FieldNames[i]),
4003                                         FieldTypes[i], /*TInfo=*/0,
4004                                         /*BitWidth=*/0, /*Mutable=*/false,
4005                                         /*HasInit=*/false);
4006    Field->setAccess(AS_public);
4007    T->addDecl(Field);
4008  }
4009
4010  T->completeDefinition();
4011
4012  return getPointerType(getTagDeclType(T));
4013}
4014
4015TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
4016  if (!ObjCInstanceTypeDecl)
4017    ObjCInstanceTypeDecl = TypedefDecl::Create(*this,
4018                                               getTranslationUnitDecl(),
4019                                               SourceLocation(),
4020                                               SourceLocation(),
4021                                               &Idents.get("instancetype"),
4022                                     getTrivialTypeSourceInfo(getObjCIdType()));
4023  return ObjCInstanceTypeDecl;
4024}
4025
4026// This returns true if a type has been typedefed to BOOL:
4027// typedef <type> BOOL;
4028static bool isTypeTypedefedAsBOOL(QualType T) {
4029  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
4030    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
4031      return II->isStr("BOOL");
4032
4033  return false;
4034}
4035
4036/// getObjCEncodingTypeSize returns size of type for objective-c encoding
4037/// purpose.
4038CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
4039  if (!type->isIncompleteArrayType() && type->isIncompleteType())
4040    return CharUnits::Zero();
4041
4042  CharUnits sz = getTypeSizeInChars(type);
4043
4044  // Make all integer and enum types at least as large as an int
4045  if (sz.isPositive() && type->isIntegralOrEnumerationType())
4046    sz = std::max(sz, getTypeSizeInChars(IntTy));
4047  // Treat arrays as pointers, since that's how they're passed in.
4048  else if (type->isArrayType())
4049    sz = getTypeSizeInChars(VoidPtrTy);
4050  return sz;
4051}
4052
4053static inline
4054std::string charUnitsToString(const CharUnits &CU) {
4055  return llvm::itostr(CU.getQuantity());
4056}
4057
4058/// getObjCEncodingForBlock - Return the encoded type for this block
4059/// declaration.
4060std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4061  std::string S;
4062
4063  const BlockDecl *Decl = Expr->getBlockDecl();
4064  QualType BlockTy =
4065      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4066  // Encode result type.
4067  getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
4068  // Compute size of all parameters.
4069  // Start with computing size of a pointer in number of bytes.
4070  // FIXME: There might(should) be a better way of doing this computation!
4071  SourceLocation Loc;
4072  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4073  CharUnits ParmOffset = PtrSize;
4074  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
4075       E = Decl->param_end(); PI != E; ++PI) {
4076    QualType PType = (*PI)->getType();
4077    CharUnits sz = getObjCEncodingTypeSize(PType);
4078    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4079    ParmOffset += sz;
4080  }
4081  // Size of the argument frame
4082  S += charUnitsToString(ParmOffset);
4083  // Block pointer and offset.
4084  S += "@?0";
4085
4086  // Argument types.
4087  ParmOffset = PtrSize;
4088  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
4089       Decl->param_end(); PI != E; ++PI) {
4090    ParmVarDecl *PVDecl = *PI;
4091    QualType PType = PVDecl->getOriginalType();
4092    if (const ArrayType *AT =
4093          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4094      // Use array's original type only if it has known number of
4095      // elements.
4096      if (!isa<ConstantArrayType>(AT))
4097        PType = PVDecl->getType();
4098    } else if (PType->isFunctionType())
4099      PType = PVDecl->getType();
4100    getObjCEncodingForType(PType, S);
4101    S += charUnitsToString(ParmOffset);
4102    ParmOffset += getObjCEncodingTypeSize(PType);
4103  }
4104
4105  return S;
4106}
4107
4108bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4109                                                std::string& S) {
4110  // Encode result type.
4111  getObjCEncodingForType(Decl->getResultType(), S);
4112  CharUnits ParmOffset;
4113  // Compute size of all parameters.
4114  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4115       E = Decl->param_end(); PI != E; ++PI) {
4116    QualType PType = (*PI)->getType();
4117    CharUnits sz = getObjCEncodingTypeSize(PType);
4118    if (sz.isZero())
4119      return true;
4120
4121    assert (sz.isPositive() &&
4122        "getObjCEncodingForFunctionDecl - Incomplete param type");
4123    ParmOffset += sz;
4124  }
4125  S += charUnitsToString(ParmOffset);
4126  ParmOffset = CharUnits::Zero();
4127
4128  // Argument types.
4129  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4130       E = Decl->param_end(); PI != E; ++PI) {
4131    ParmVarDecl *PVDecl = *PI;
4132    QualType PType = PVDecl->getOriginalType();
4133    if (const ArrayType *AT =
4134          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4135      // Use array's original type only if it has known number of
4136      // elements.
4137      if (!isa<ConstantArrayType>(AT))
4138        PType = PVDecl->getType();
4139    } else if (PType->isFunctionType())
4140      PType = PVDecl->getType();
4141    getObjCEncodingForType(PType, S);
4142    S += charUnitsToString(ParmOffset);
4143    ParmOffset += getObjCEncodingTypeSize(PType);
4144  }
4145
4146  return false;
4147}
4148
4149/// getObjCEncodingForMethodParameter - Return the encoded type for a single
4150/// method parameter or return type. If Extended, include class names and
4151/// block object types.
4152void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
4153                                                   QualType T, std::string& S,
4154                                                   bool Extended) const {
4155  // Encode type qualifer, 'in', 'inout', etc. for the parameter.
4156  getObjCEncodingForTypeQualifier(QT, S);
4157  // Encode parameter type.
4158  getObjCEncodingForTypeImpl(T, S, true, true, 0,
4159                             true     /*OutermostType*/,
4160                             false    /*EncodingProperty*/,
4161                             false    /*StructField*/,
4162                             Extended /*EncodeBlockParameters*/,
4163                             Extended /*EncodeClassNames*/);
4164}
4165
4166/// getObjCEncodingForMethodDecl - Return the encoded type for this method
4167/// declaration.
4168bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4169                                              std::string& S,
4170                                              bool Extended) const {
4171  // FIXME: This is not very efficient.
4172  // Encode return type.
4173  getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
4174                                    Decl->getResultType(), S, Extended);
4175  // Compute size of all parameters.
4176  // Start with computing size of a pointer in number of bytes.
4177  // FIXME: There might(should) be a better way of doing this computation!
4178  SourceLocation Loc;
4179  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4180  // The first two arguments (self and _cmd) are pointers; account for
4181  // their size.
4182  CharUnits ParmOffset = 2 * PtrSize;
4183  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4184       E = Decl->sel_param_end(); PI != E; ++PI) {
4185    QualType PType = (*PI)->getType();
4186    CharUnits sz = getObjCEncodingTypeSize(PType);
4187    if (sz.isZero())
4188      return true;
4189
4190    assert (sz.isPositive() &&
4191        "getObjCEncodingForMethodDecl - Incomplete param type");
4192    ParmOffset += sz;
4193  }
4194  S += charUnitsToString(ParmOffset);
4195  S += "@0:";
4196  S += charUnitsToString(PtrSize);
4197
4198  // Argument types.
4199  ParmOffset = 2 * PtrSize;
4200  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4201       E = Decl->sel_param_end(); PI != E; ++PI) {
4202    const ParmVarDecl *PVDecl = *PI;
4203    QualType PType = PVDecl->getOriginalType();
4204    if (const ArrayType *AT =
4205          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4206      // Use array's original type only if it has known number of
4207      // elements.
4208      if (!isa<ConstantArrayType>(AT))
4209        PType = PVDecl->getType();
4210    } else if (PType->isFunctionType())
4211      PType = PVDecl->getType();
4212    getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
4213                                      PType, S, Extended);
4214    S += charUnitsToString(ParmOffset);
4215    ParmOffset += getObjCEncodingTypeSize(PType);
4216  }
4217
4218  return false;
4219}
4220
4221/// getObjCEncodingForPropertyDecl - Return the encoded type for this
4222/// property declaration. If non-NULL, Container must be either an
4223/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4224/// NULL when getting encodings for protocol properties.
4225/// Property attributes are stored as a comma-delimited C string. The simple
4226/// attributes readonly and bycopy are encoded as single characters. The
4227/// parametrized attributes, getter=name, setter=name, and ivar=name, are
4228/// encoded as single characters, followed by an identifier. Property types
4229/// are also encoded as a parametrized attribute. The characters used to encode
4230/// these attributes are defined by the following enumeration:
4231/// @code
4232/// enum PropertyAttributes {
4233/// kPropertyReadOnly = 'R',   // property is read-only.
4234/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4235/// kPropertyByref = '&',  // property is a reference to the value last assigned
4236/// kPropertyDynamic = 'D',    // property is dynamic
4237/// kPropertyGetter = 'G',     // followed by getter selector name
4238/// kPropertySetter = 'S',     // followed by setter selector name
4239/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4240/// kPropertyType = 't'              // followed by old-style type encoding.
4241/// kPropertyWeak = 'W'              // 'weak' property
4242/// kPropertyStrong = 'P'            // property GC'able
4243/// kPropertyNonAtomic = 'N'         // property non-atomic
4244/// };
4245/// @endcode
4246void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4247                                                const Decl *Container,
4248                                                std::string& S) const {
4249  // Collect information from the property implementation decl(s).
4250  bool Dynamic = false;
4251  ObjCPropertyImplDecl *SynthesizePID = 0;
4252
4253  // FIXME: Duplicated code due to poor abstraction.
4254  if (Container) {
4255    if (const ObjCCategoryImplDecl *CID =
4256        dyn_cast<ObjCCategoryImplDecl>(Container)) {
4257      for (ObjCCategoryImplDecl::propimpl_iterator
4258             i = CID->propimpl_begin(), e = CID->propimpl_end();
4259           i != e; ++i) {
4260        ObjCPropertyImplDecl *PID = *i;
4261        if (PID->getPropertyDecl() == PD) {
4262          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4263            Dynamic = true;
4264          } else {
4265            SynthesizePID = PID;
4266          }
4267        }
4268      }
4269    } else {
4270      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4271      for (ObjCCategoryImplDecl::propimpl_iterator
4272             i = OID->propimpl_begin(), e = OID->propimpl_end();
4273           i != e; ++i) {
4274        ObjCPropertyImplDecl *PID = *i;
4275        if (PID->getPropertyDecl() == PD) {
4276          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4277            Dynamic = true;
4278          } else {
4279            SynthesizePID = PID;
4280          }
4281        }
4282      }
4283    }
4284  }
4285
4286  // FIXME: This is not very efficient.
4287  S = "T";
4288
4289  // Encode result type.
4290  // GCC has some special rules regarding encoding of properties which
4291  // closely resembles encoding of ivars.
4292  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4293                             true /* outermost type */,
4294                             true /* encoding for property */);
4295
4296  if (PD->isReadOnly()) {
4297    S += ",R";
4298  } else {
4299    switch (PD->getSetterKind()) {
4300    case ObjCPropertyDecl::Assign: break;
4301    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4302    case ObjCPropertyDecl::Retain: S += ",&"; break;
4303    case ObjCPropertyDecl::Weak:   S += ",W"; break;
4304    }
4305  }
4306
4307  // It really isn't clear at all what this means, since properties
4308  // are "dynamic by default".
4309  if (Dynamic)
4310    S += ",D";
4311
4312  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4313    S += ",N";
4314
4315  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4316    S += ",G";
4317    S += PD->getGetterName().getAsString();
4318  }
4319
4320  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4321    S += ",S";
4322    S += PD->getSetterName().getAsString();
4323  }
4324
4325  if (SynthesizePID) {
4326    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4327    S += ",V";
4328    S += OID->getNameAsString();
4329  }
4330
4331  // FIXME: OBJCGC: weak & strong
4332}
4333
4334/// getLegacyIntegralTypeEncoding -
4335/// Another legacy compatibility encoding: 32-bit longs are encoded as
4336/// 'l' or 'L' , but not always.  For typedefs, we need to use
4337/// 'i' or 'I' instead if encoding a struct field, or a pointer!
4338///
4339void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4340  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4341    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4342      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4343        PointeeTy = UnsignedIntTy;
4344      else
4345        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4346          PointeeTy = IntTy;
4347    }
4348  }
4349}
4350
4351void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
4352                                        const FieldDecl *Field) const {
4353  // We follow the behavior of gcc, expanding structures which are
4354  // directly pointed to, and expanding embedded structures. Note that
4355  // these rules are sufficient to prevent recursive encoding of the
4356  // same type.
4357  getObjCEncodingForTypeImpl(T, S, true, true, Field,
4358                             true /* outermost type */);
4359}
4360
4361static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
4362    switch (T->getAs<BuiltinType>()->getKind()) {
4363    default: llvm_unreachable("Unhandled builtin type kind");
4364    case BuiltinType::Void:       return 'v';
4365    case BuiltinType::Bool:       return 'B';
4366    case BuiltinType::Char_U:
4367    case BuiltinType::UChar:      return 'C';
4368    case BuiltinType::UShort:     return 'S';
4369    case BuiltinType::UInt:       return 'I';
4370    case BuiltinType::ULong:
4371        return C->getIntWidth(T) == 32 ? 'L' : 'Q';
4372    case BuiltinType::UInt128:    return 'T';
4373    case BuiltinType::ULongLong:  return 'Q';
4374    case BuiltinType::Char_S:
4375    case BuiltinType::SChar:      return 'c';
4376    case BuiltinType::Short:      return 's';
4377    case BuiltinType::WChar_S:
4378    case BuiltinType::WChar_U:
4379    case BuiltinType::Int:        return 'i';
4380    case BuiltinType::Long:
4381      return C->getIntWidth(T) == 32 ? 'l' : 'q';
4382    case BuiltinType::LongLong:   return 'q';
4383    case BuiltinType::Int128:     return 't';
4384    case BuiltinType::Float:      return 'f';
4385    case BuiltinType::Double:     return 'd';
4386    case BuiltinType::LongDouble: return 'D';
4387    }
4388}
4389
4390static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
4391  EnumDecl *Enum = ET->getDecl();
4392
4393  // The encoding of an non-fixed enum type is always 'i', regardless of size.
4394  if (!Enum->isFixed())
4395    return 'i';
4396
4397  // The encoding of a fixed enum type matches its fixed underlying type.
4398  return ObjCEncodingForPrimitiveKind(C, Enum->getIntegerType());
4399}
4400
4401static void EncodeBitField(const ASTContext *Ctx, std::string& S,
4402                           QualType T, const FieldDecl *FD) {
4403  assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
4404  S += 'b';
4405  // The NeXT runtime encodes bit fields as b followed by the number of bits.
4406  // The GNU runtime requires more information; bitfields are encoded as b,
4407  // then the offset (in bits) of the first element, then the type of the
4408  // bitfield, then the size in bits.  For example, in this structure:
4409  //
4410  // struct
4411  // {
4412  //    int integer;
4413  //    int flags:2;
4414  // };
4415  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
4416  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
4417  // information is not especially sensible, but we're stuck with it for
4418  // compatibility with GCC, although providing it breaks anything that
4419  // actually uses runtime introspection and wants to work on both runtimes...
4420  if (!Ctx->getLangOptions().NeXTRuntime) {
4421    const RecordDecl *RD = FD->getParent();
4422    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
4423    S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
4424    if (const EnumType *ET = T->getAs<EnumType>())
4425      S += ObjCEncodingForEnumType(Ctx, ET);
4426    else
4427      S += ObjCEncodingForPrimitiveKind(Ctx, T);
4428  }
4429  S += llvm::utostr(FD->getBitWidthValue(*Ctx));
4430}
4431
4432// FIXME: Use SmallString for accumulating string.
4433void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
4434                                            bool ExpandPointedToStructures,
4435                                            bool ExpandStructures,
4436                                            const FieldDecl *FD,
4437                                            bool OutermostType,
4438                                            bool EncodingProperty,
4439                                            bool StructField,
4440                                            bool EncodeBlockParameters,
4441                                            bool EncodeClassNames) const {
4442  if (T->getAs<BuiltinType>()) {
4443    if (FD && FD->isBitField())
4444      return EncodeBitField(this, S, T, FD);
4445    S += ObjCEncodingForPrimitiveKind(this, T);
4446    return;
4447  }
4448
4449  if (const ComplexType *CT = T->getAs<ComplexType>()) {
4450    S += 'j';
4451    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
4452                               false);
4453    return;
4454  }
4455
4456  // encoding for pointer or r3eference types.
4457  QualType PointeeTy;
4458  if (const PointerType *PT = T->getAs<PointerType>()) {
4459    if (PT->isObjCSelType()) {
4460      S += ':';
4461      return;
4462    }
4463    PointeeTy = PT->getPointeeType();
4464  }
4465  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4466    PointeeTy = RT->getPointeeType();
4467  if (!PointeeTy.isNull()) {
4468    bool isReadOnly = false;
4469    // For historical/compatibility reasons, the read-only qualifier of the
4470    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
4471    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
4472    // Also, do not emit the 'r' for anything but the outermost type!
4473    if (isa<TypedefType>(T.getTypePtr())) {
4474      if (OutermostType && T.isConstQualified()) {
4475        isReadOnly = true;
4476        S += 'r';
4477      }
4478    } else if (OutermostType) {
4479      QualType P = PointeeTy;
4480      while (P->getAs<PointerType>())
4481        P = P->getAs<PointerType>()->getPointeeType();
4482      if (P.isConstQualified()) {
4483        isReadOnly = true;
4484        S += 'r';
4485      }
4486    }
4487    if (isReadOnly) {
4488      // Another legacy compatibility encoding. Some ObjC qualifier and type
4489      // combinations need to be rearranged.
4490      // Rewrite "in const" from "nr" to "rn"
4491      if (StringRef(S).endswith("nr"))
4492        S.replace(S.end()-2, S.end(), "rn");
4493    }
4494
4495    if (PointeeTy->isCharType()) {
4496      // char pointer types should be encoded as '*' unless it is a
4497      // type that has been typedef'd to 'BOOL'.
4498      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
4499        S += '*';
4500        return;
4501      }
4502    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
4503      // GCC binary compat: Need to convert "struct objc_class *" to "#".
4504      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
4505        S += '#';
4506        return;
4507      }
4508      // GCC binary compat: Need to convert "struct objc_object *" to "@".
4509      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
4510        S += '@';
4511        return;
4512      }
4513      // fall through...
4514    }
4515    S += '^';
4516    getLegacyIntegralTypeEncoding(PointeeTy);
4517
4518    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
4519                               NULL);
4520    return;
4521  }
4522
4523  if (const ArrayType *AT =
4524      // Ignore type qualifiers etc.
4525        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
4526    if (isa<IncompleteArrayType>(AT) && !StructField) {
4527      // Incomplete arrays are encoded as a pointer to the array element.
4528      S += '^';
4529
4530      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4531                                 false, ExpandStructures, FD);
4532    } else {
4533      S += '[';
4534
4535      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
4536        if (getTypeSize(CAT->getElementType()) == 0)
4537          S += '0';
4538        else
4539          S += llvm::utostr(CAT->getSize().getZExtValue());
4540      } else {
4541        //Variable length arrays are encoded as a regular array with 0 elements.
4542        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
4543               "Unknown array type!");
4544        S += '0';
4545      }
4546
4547      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4548                                 false, ExpandStructures, FD);
4549      S += ']';
4550    }
4551    return;
4552  }
4553
4554  if (T->getAs<FunctionType>()) {
4555    S += '?';
4556    return;
4557  }
4558
4559  if (const RecordType *RTy = T->getAs<RecordType>()) {
4560    RecordDecl *RDecl = RTy->getDecl();
4561    S += RDecl->isUnion() ? '(' : '{';
4562    // Anonymous structures print as '?'
4563    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
4564      S += II->getName();
4565      if (ClassTemplateSpecializationDecl *Spec
4566          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
4567        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
4568        std::string TemplateArgsStr
4569          = TemplateSpecializationType::PrintTemplateArgumentList(
4570                                            TemplateArgs.data(),
4571                                            TemplateArgs.size(),
4572                                            (*this).getPrintingPolicy());
4573
4574        S += TemplateArgsStr;
4575      }
4576    } else {
4577      S += '?';
4578    }
4579    if (ExpandStructures) {
4580      S += '=';
4581      if (!RDecl->isUnion()) {
4582        getObjCEncodingForStructureImpl(RDecl, S, FD);
4583      } else {
4584        for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4585                                     FieldEnd = RDecl->field_end();
4586             Field != FieldEnd; ++Field) {
4587          if (FD) {
4588            S += '"';
4589            S += Field->getNameAsString();
4590            S += '"';
4591          }
4592
4593          // Special case bit-fields.
4594          if (Field->isBitField()) {
4595            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
4596                                       (*Field));
4597          } else {
4598            QualType qt = Field->getType();
4599            getLegacyIntegralTypeEncoding(qt);
4600            getObjCEncodingForTypeImpl(qt, S, false, true,
4601                                       FD, /*OutermostType*/false,
4602                                       /*EncodingProperty*/false,
4603                                       /*StructField*/true);
4604          }
4605        }
4606      }
4607    }
4608    S += RDecl->isUnion() ? ')' : '}';
4609    return;
4610  }
4611
4612  if (const EnumType *ET = T->getAs<EnumType>()) {
4613    if (FD && FD->isBitField())
4614      EncodeBitField(this, S, T, FD);
4615    else
4616      S += ObjCEncodingForEnumType(this, ET);
4617    return;
4618  }
4619
4620  if (const BlockPointerType *BT = T->getAs<BlockPointerType>()) {
4621    S += "@?"; // Unlike a pointer-to-function, which is "^?".
4622    if (EncodeBlockParameters) {
4623      const FunctionType *FT = BT->getPointeeType()->getAs<FunctionType>();
4624
4625      S += '<';
4626      // Block return type
4627      getObjCEncodingForTypeImpl(FT->getResultType(), S,
4628                                 ExpandPointedToStructures, ExpandStructures,
4629                                 FD,
4630                                 false /* OutermostType */,
4631                                 EncodingProperty,
4632                                 false /* StructField */,
4633                                 EncodeBlockParameters,
4634                                 EncodeClassNames);
4635      // Block self
4636      S += "@?";
4637      // Block parameters
4638      if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
4639        for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
4640               E = FPT->arg_type_end(); I && (I != E); ++I) {
4641          getObjCEncodingForTypeImpl(*I, S,
4642                                     ExpandPointedToStructures,
4643                                     ExpandStructures,
4644                                     FD,
4645                                     false /* OutermostType */,
4646                                     EncodingProperty,
4647                                     false /* StructField */,
4648                                     EncodeBlockParameters,
4649                                     EncodeClassNames);
4650        }
4651      }
4652      S += '>';
4653    }
4654    return;
4655  }
4656
4657  // Ignore protocol qualifiers when mangling at this level.
4658  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
4659    T = OT->getBaseType();
4660
4661  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
4662    // @encode(class_name)
4663    ObjCInterfaceDecl *OI = OIT->getDecl();
4664    S += '{';
4665    const IdentifierInfo *II = OI->getIdentifier();
4666    S += II->getName();
4667    S += '=';
4668    SmallVector<const ObjCIvarDecl*, 32> Ivars;
4669    DeepCollectObjCIvars(OI, true, Ivars);
4670    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
4671      const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
4672      if (Field->isBitField())
4673        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
4674      else
4675        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
4676    }
4677    S += '}';
4678    return;
4679  }
4680
4681  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
4682    if (OPT->isObjCIdType()) {
4683      S += '@';
4684      return;
4685    }
4686
4687    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
4688      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
4689      // Since this is a binary compatibility issue, need to consult with runtime
4690      // folks. Fortunately, this is a *very* obsure construct.
4691      S += '#';
4692      return;
4693    }
4694
4695    if (OPT->isObjCQualifiedIdType()) {
4696      getObjCEncodingForTypeImpl(getObjCIdType(), S,
4697                                 ExpandPointedToStructures,
4698                                 ExpandStructures, FD);
4699      if (FD || EncodingProperty || EncodeClassNames) {
4700        // Note that we do extended encoding of protocol qualifer list
4701        // Only when doing ivar or property encoding.
4702        S += '"';
4703        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4704             E = OPT->qual_end(); I != E; ++I) {
4705          S += '<';
4706          S += (*I)->getNameAsString();
4707          S += '>';
4708        }
4709        S += '"';
4710      }
4711      return;
4712    }
4713
4714    QualType PointeeTy = OPT->getPointeeType();
4715    if (!EncodingProperty &&
4716        isa<TypedefType>(PointeeTy.getTypePtr())) {
4717      // Another historical/compatibility reason.
4718      // We encode the underlying type which comes out as
4719      // {...};
4720      S += '^';
4721      getObjCEncodingForTypeImpl(PointeeTy, S,
4722                                 false, ExpandPointedToStructures,
4723                                 NULL);
4724      return;
4725    }
4726
4727    S += '@';
4728    if (OPT->getInterfaceDecl() &&
4729        (FD || EncodingProperty || EncodeClassNames)) {
4730      S += '"';
4731      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
4732      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4733           E = OPT->qual_end(); I != E; ++I) {
4734        S += '<';
4735        S += (*I)->getNameAsString();
4736        S += '>';
4737      }
4738      S += '"';
4739    }
4740    return;
4741  }
4742
4743  // gcc just blithely ignores member pointers.
4744  // TODO: maybe there should be a mangling for these
4745  if (T->getAs<MemberPointerType>())
4746    return;
4747
4748  if (T->isVectorType()) {
4749    // This matches gcc's encoding, even though technically it is
4750    // insufficient.
4751    // FIXME. We should do a better job than gcc.
4752    return;
4753  }
4754
4755  llvm_unreachable("@encode for type not implemented!");
4756}
4757
4758void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
4759                                                 std::string &S,
4760                                                 const FieldDecl *FD,
4761                                                 bool includeVBases) const {
4762  assert(RDecl && "Expected non-null RecordDecl");
4763  assert(!RDecl->isUnion() && "Should not be called for unions");
4764  if (!RDecl->getDefinition())
4765    return;
4766
4767  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
4768  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
4769  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
4770
4771  if (CXXRec) {
4772    for (CXXRecordDecl::base_class_iterator
4773           BI = CXXRec->bases_begin(),
4774           BE = CXXRec->bases_end(); BI != BE; ++BI) {
4775      if (!BI->isVirtual()) {
4776        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4777        if (base->isEmpty())
4778          continue;
4779        uint64_t offs = layout.getBaseClassOffsetInBits(base);
4780        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4781                                  std::make_pair(offs, base));
4782      }
4783    }
4784  }
4785
4786  unsigned i = 0;
4787  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4788                               FieldEnd = RDecl->field_end();
4789       Field != FieldEnd; ++Field, ++i) {
4790    uint64_t offs = layout.getFieldOffset(i);
4791    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4792                              std::make_pair(offs, *Field));
4793  }
4794
4795  if (CXXRec && includeVBases) {
4796    for (CXXRecordDecl::base_class_iterator
4797           BI = CXXRec->vbases_begin(),
4798           BE = CXXRec->vbases_end(); BI != BE; ++BI) {
4799      CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4800      if (base->isEmpty())
4801        continue;
4802      uint64_t offs = layout.getVBaseClassOffsetInBits(base);
4803      if (FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
4804        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
4805                                  std::make_pair(offs, base));
4806    }
4807  }
4808
4809  CharUnits size;
4810  if (CXXRec) {
4811    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
4812  } else {
4813    size = layout.getSize();
4814  }
4815
4816  uint64_t CurOffs = 0;
4817  std::multimap<uint64_t, NamedDecl *>::iterator
4818    CurLayObj = FieldOrBaseOffsets.begin();
4819
4820  if ((CurLayObj != FieldOrBaseOffsets.end() && CurLayObj->first != 0) ||
4821      (CurLayObj == FieldOrBaseOffsets.end() &&
4822         CXXRec && CXXRec->isDynamicClass())) {
4823    assert(CXXRec && CXXRec->isDynamicClass() &&
4824           "Offset 0 was empty but no VTable ?");
4825    if (FD) {
4826      S += "\"_vptr$";
4827      std::string recname = CXXRec->getNameAsString();
4828      if (recname.empty()) recname = "?";
4829      S += recname;
4830      S += '"';
4831    }
4832    S += "^^?";
4833    CurOffs += getTypeSize(VoidPtrTy);
4834  }
4835
4836  if (!RDecl->hasFlexibleArrayMember()) {
4837    // Mark the end of the structure.
4838    uint64_t offs = toBits(size);
4839    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4840                              std::make_pair(offs, (NamedDecl*)0));
4841  }
4842
4843  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
4844    assert(CurOffs <= CurLayObj->first);
4845
4846    if (CurOffs < CurLayObj->first) {
4847      uint64_t padding = CurLayObj->first - CurOffs;
4848      // FIXME: There doesn't seem to be a way to indicate in the encoding that
4849      // packing/alignment of members is different that normal, in which case
4850      // the encoding will be out-of-sync with the real layout.
4851      // If the runtime switches to just consider the size of types without
4852      // taking into account alignment, we could make padding explicit in the
4853      // encoding (e.g. using arrays of chars). The encoding strings would be
4854      // longer then though.
4855      CurOffs += padding;
4856    }
4857
4858    NamedDecl *dcl = CurLayObj->second;
4859    if (dcl == 0)
4860      break; // reached end of structure.
4861
4862    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
4863      // We expand the bases without their virtual bases since those are going
4864      // in the initial structure. Note that this differs from gcc which
4865      // expands virtual bases each time one is encountered in the hierarchy,
4866      // making the encoding type bigger than it really is.
4867      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
4868      assert(!base->isEmpty());
4869      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
4870    } else {
4871      FieldDecl *field = cast<FieldDecl>(dcl);
4872      if (FD) {
4873        S += '"';
4874        S += field->getNameAsString();
4875        S += '"';
4876      }
4877
4878      if (field->isBitField()) {
4879        EncodeBitField(this, S, field->getType(), field);
4880        CurOffs += field->getBitWidthValue(*this);
4881      } else {
4882        QualType qt = field->getType();
4883        getLegacyIntegralTypeEncoding(qt);
4884        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
4885                                   /*OutermostType*/false,
4886                                   /*EncodingProperty*/false,
4887                                   /*StructField*/true);
4888        CurOffs += getTypeSize(field->getType());
4889      }
4890    }
4891  }
4892}
4893
4894void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
4895                                                 std::string& S) const {
4896  if (QT & Decl::OBJC_TQ_In)
4897    S += 'n';
4898  if (QT & Decl::OBJC_TQ_Inout)
4899    S += 'N';
4900  if (QT & Decl::OBJC_TQ_Out)
4901    S += 'o';
4902  if (QT & Decl::OBJC_TQ_Bycopy)
4903    S += 'O';
4904  if (QT & Decl::OBJC_TQ_Byref)
4905    S += 'R';
4906  if (QT & Decl::OBJC_TQ_Oneway)
4907    S += 'V';
4908}
4909
4910void ASTContext::setBuiltinVaListType(QualType T) {
4911  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
4912
4913  BuiltinVaListType = T;
4914}
4915
4916TypedefDecl *ASTContext::getObjCIdDecl() const {
4917  if (!ObjCIdDecl) {
4918    QualType T = getObjCObjectType(ObjCBuiltinIdTy, 0, 0);
4919    T = getObjCObjectPointerType(T);
4920    TypeSourceInfo *IdInfo = getTrivialTypeSourceInfo(T);
4921    ObjCIdDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
4922                                     getTranslationUnitDecl(),
4923                                     SourceLocation(), SourceLocation(),
4924                                     &Idents.get("id"), IdInfo);
4925  }
4926
4927  return ObjCIdDecl;
4928}
4929
4930TypedefDecl *ASTContext::getObjCSelDecl() const {
4931  if (!ObjCSelDecl) {
4932    QualType SelT = getPointerType(ObjCBuiltinSelTy);
4933    TypeSourceInfo *SelInfo = getTrivialTypeSourceInfo(SelT);
4934    ObjCSelDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
4935                                      getTranslationUnitDecl(),
4936                                      SourceLocation(), SourceLocation(),
4937                                      &Idents.get("SEL"), SelInfo);
4938  }
4939  return ObjCSelDecl;
4940}
4941
4942TypedefDecl *ASTContext::getObjCClassDecl() const {
4943  if (!ObjCClassDecl) {
4944    QualType T = getObjCObjectType(ObjCBuiltinClassTy, 0, 0);
4945    T = getObjCObjectPointerType(T);
4946    TypeSourceInfo *ClassInfo = getTrivialTypeSourceInfo(T);
4947    ObjCClassDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
4948                                        getTranslationUnitDecl(),
4949                                        SourceLocation(), SourceLocation(),
4950                                        &Idents.get("Class"), ClassInfo);
4951  }
4952
4953  return ObjCClassDecl;
4954}
4955
4956ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
4957  if (!ObjCProtocolClassDecl) {
4958    ObjCProtocolClassDecl
4959      = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
4960                                  SourceLocation(),
4961                                  &Idents.get("Protocol"),
4962                                  /*PrevDecl=*/0,
4963                                  SourceLocation(), true);
4964  }
4965
4966  return ObjCProtocolClassDecl;
4967}
4968
4969void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
4970  assert(ObjCConstantStringType.isNull() &&
4971         "'NSConstantString' type already set!");
4972
4973  ObjCConstantStringType = getObjCInterfaceType(Decl);
4974}
4975
4976/// \brief Retrieve the template name that corresponds to a non-empty
4977/// lookup.
4978TemplateName
4979ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
4980                                      UnresolvedSetIterator End) const {
4981  unsigned size = End - Begin;
4982  assert(size > 1 && "set is not overloaded!");
4983
4984  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
4985                          size * sizeof(FunctionTemplateDecl*));
4986  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
4987
4988  NamedDecl **Storage = OT->getStorage();
4989  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
4990    NamedDecl *D = *I;
4991    assert(isa<FunctionTemplateDecl>(D) ||
4992           (isa<UsingShadowDecl>(D) &&
4993            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
4994    *Storage++ = D;
4995  }
4996
4997  return TemplateName(OT);
4998}
4999
5000/// \brief Retrieve the template name that represents a qualified
5001/// template name such as \c std::vector.
5002TemplateName
5003ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
5004                                     bool TemplateKeyword,
5005                                     TemplateDecl *Template) const {
5006  assert(NNS && "Missing nested-name-specifier in qualified template name");
5007
5008  // FIXME: Canonicalization?
5009  llvm::FoldingSetNodeID ID;
5010  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
5011
5012  void *InsertPos = 0;
5013  QualifiedTemplateName *QTN =
5014    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5015  if (!QTN) {
5016    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
5017    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
5018  }
5019
5020  return TemplateName(QTN);
5021}
5022
5023/// \brief Retrieve the template name that represents a dependent
5024/// template name such as \c MetaFun::template apply.
5025TemplateName
5026ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5027                                     const IdentifierInfo *Name) const {
5028  assert((!NNS || NNS->isDependent()) &&
5029         "Nested name specifier must be dependent");
5030
5031  llvm::FoldingSetNodeID ID;
5032  DependentTemplateName::Profile(ID, NNS, Name);
5033
5034  void *InsertPos = 0;
5035  DependentTemplateName *QTN =
5036    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5037
5038  if (QTN)
5039    return TemplateName(QTN);
5040
5041  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5042  if (CanonNNS == NNS) {
5043    QTN = new (*this,4) DependentTemplateName(NNS, Name);
5044  } else {
5045    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
5046    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
5047    DependentTemplateName *CheckQTN =
5048      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5049    assert(!CheckQTN && "Dependent type name canonicalization broken");
5050    (void)CheckQTN;
5051  }
5052
5053  DependentTemplateNames.InsertNode(QTN, InsertPos);
5054  return TemplateName(QTN);
5055}
5056
5057/// \brief Retrieve the template name that represents a dependent
5058/// template name such as \c MetaFun::template operator+.
5059TemplateName
5060ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5061                                     OverloadedOperatorKind Operator) const {
5062  assert((!NNS || NNS->isDependent()) &&
5063         "Nested name specifier must be dependent");
5064
5065  llvm::FoldingSetNodeID ID;
5066  DependentTemplateName::Profile(ID, NNS, Operator);
5067
5068  void *InsertPos = 0;
5069  DependentTemplateName *QTN
5070    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5071
5072  if (QTN)
5073    return TemplateName(QTN);
5074
5075  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5076  if (CanonNNS == NNS) {
5077    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
5078  } else {
5079    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
5080    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
5081
5082    DependentTemplateName *CheckQTN
5083      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5084    assert(!CheckQTN && "Dependent template name canonicalization broken");
5085    (void)CheckQTN;
5086  }
5087
5088  DependentTemplateNames.InsertNode(QTN, InsertPos);
5089  return TemplateName(QTN);
5090}
5091
5092TemplateName
5093ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
5094                                         TemplateName replacement) const {
5095  llvm::FoldingSetNodeID ID;
5096  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
5097
5098  void *insertPos = 0;
5099  SubstTemplateTemplateParmStorage *subst
5100    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
5101
5102  if (!subst) {
5103    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
5104    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
5105  }
5106
5107  return TemplateName(subst);
5108}
5109
5110TemplateName
5111ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
5112                                       const TemplateArgument &ArgPack) const {
5113  ASTContext &Self = const_cast<ASTContext &>(*this);
5114  llvm::FoldingSetNodeID ID;
5115  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
5116
5117  void *InsertPos = 0;
5118  SubstTemplateTemplateParmPackStorage *Subst
5119    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
5120
5121  if (!Subst) {
5122    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
5123                                                           ArgPack.pack_size(),
5124                                                         ArgPack.pack_begin());
5125    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
5126  }
5127
5128  return TemplateName(Subst);
5129}
5130
5131/// getFromTargetType - Given one of the integer types provided by
5132/// TargetInfo, produce the corresponding type. The unsigned @p Type
5133/// is actually a value of type @c TargetInfo::IntType.
5134CanQualType ASTContext::getFromTargetType(unsigned Type) const {
5135  switch (Type) {
5136  case TargetInfo::NoInt: return CanQualType();
5137  case TargetInfo::SignedShort: return ShortTy;
5138  case TargetInfo::UnsignedShort: return UnsignedShortTy;
5139  case TargetInfo::SignedInt: return IntTy;
5140  case TargetInfo::UnsignedInt: return UnsignedIntTy;
5141  case TargetInfo::SignedLong: return LongTy;
5142  case TargetInfo::UnsignedLong: return UnsignedLongTy;
5143  case TargetInfo::SignedLongLong: return LongLongTy;
5144  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
5145  }
5146
5147  llvm_unreachable("Unhandled TargetInfo::IntType value");
5148}
5149
5150//===----------------------------------------------------------------------===//
5151//                        Type Predicates.
5152//===----------------------------------------------------------------------===//
5153
5154/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
5155/// garbage collection attribute.
5156///
5157Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
5158  if (getLangOptions().getGC() == LangOptions::NonGC)
5159    return Qualifiers::GCNone;
5160
5161  assert(getLangOptions().ObjC1);
5162  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
5163
5164  // Default behaviour under objective-C's gc is for ObjC pointers
5165  // (or pointers to them) be treated as though they were declared
5166  // as __strong.
5167  if (GCAttrs == Qualifiers::GCNone) {
5168    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
5169      return Qualifiers::Strong;
5170    else if (Ty->isPointerType())
5171      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
5172  } else {
5173    // It's not valid to set GC attributes on anything that isn't a
5174    // pointer.
5175#ifndef NDEBUG
5176    QualType CT = Ty->getCanonicalTypeInternal();
5177    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
5178      CT = AT->getElementType();
5179    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
5180#endif
5181  }
5182  return GCAttrs;
5183}
5184
5185//===----------------------------------------------------------------------===//
5186//                        Type Compatibility Testing
5187//===----------------------------------------------------------------------===//
5188
5189/// areCompatVectorTypes - Return true if the two specified vector types are
5190/// compatible.
5191static bool areCompatVectorTypes(const VectorType *LHS,
5192                                 const VectorType *RHS) {
5193  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
5194  return LHS->getElementType() == RHS->getElementType() &&
5195         LHS->getNumElements() == RHS->getNumElements();
5196}
5197
5198bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
5199                                          QualType SecondVec) {
5200  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
5201  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
5202
5203  if (hasSameUnqualifiedType(FirstVec, SecondVec))
5204    return true;
5205
5206  // Treat Neon vector types and most AltiVec vector types as if they are the
5207  // equivalent GCC vector types.
5208  const VectorType *First = FirstVec->getAs<VectorType>();
5209  const VectorType *Second = SecondVec->getAs<VectorType>();
5210  if (First->getNumElements() == Second->getNumElements() &&
5211      hasSameType(First->getElementType(), Second->getElementType()) &&
5212      First->getVectorKind() != VectorType::AltiVecPixel &&
5213      First->getVectorKind() != VectorType::AltiVecBool &&
5214      Second->getVectorKind() != VectorType::AltiVecPixel &&
5215      Second->getVectorKind() != VectorType::AltiVecBool)
5216    return true;
5217
5218  return false;
5219}
5220
5221//===----------------------------------------------------------------------===//
5222// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
5223//===----------------------------------------------------------------------===//
5224
5225/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
5226/// inheritance hierarchy of 'rProto'.
5227bool
5228ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
5229                                           ObjCProtocolDecl *rProto) const {
5230  if (declaresSameEntity(lProto, rProto))
5231    return true;
5232  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
5233       E = rProto->protocol_end(); PI != E; ++PI)
5234    if (ProtocolCompatibleWithProtocol(lProto, *PI))
5235      return true;
5236  return false;
5237}
5238
5239/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
5240/// return true if lhs's protocols conform to rhs's protocol; false
5241/// otherwise.
5242bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
5243  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
5244    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
5245  return false;
5246}
5247
5248/// ObjCQualifiedClassTypesAreCompatible - compare  Class<p,...> and
5249/// Class<p1, ...>.
5250bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
5251                                                      QualType rhs) {
5252  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
5253  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5254  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
5255
5256  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5257       E = lhsQID->qual_end(); I != E; ++I) {
5258    bool match = false;
5259    ObjCProtocolDecl *lhsProto = *I;
5260    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5261         E = rhsOPT->qual_end(); J != E; ++J) {
5262      ObjCProtocolDecl *rhsProto = *J;
5263      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
5264        match = true;
5265        break;
5266      }
5267    }
5268    if (!match)
5269      return false;
5270  }
5271  return true;
5272}
5273
5274/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
5275/// ObjCQualifiedIDType.
5276bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
5277                                                   bool compare) {
5278  // Allow id<P..> and an 'id' or void* type in all cases.
5279  if (lhs->isVoidPointerType() ||
5280      lhs->isObjCIdType() || lhs->isObjCClassType())
5281    return true;
5282  else if (rhs->isVoidPointerType() ||
5283           rhs->isObjCIdType() || rhs->isObjCClassType())
5284    return true;
5285
5286  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
5287    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5288
5289    if (!rhsOPT) return false;
5290
5291    if (rhsOPT->qual_empty()) {
5292      // If the RHS is a unqualified interface pointer "NSString*",
5293      // make sure we check the class hierarchy.
5294      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5295        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5296             E = lhsQID->qual_end(); I != E; ++I) {
5297          // when comparing an id<P> on lhs with a static type on rhs,
5298          // see if static class implements all of id's protocols, directly or
5299          // through its super class and categories.
5300          if (!rhsID->ClassImplementsProtocol(*I, true))
5301            return false;
5302        }
5303      }
5304      // If there are no qualifiers and no interface, we have an 'id'.
5305      return true;
5306    }
5307    // Both the right and left sides have qualifiers.
5308    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5309         E = lhsQID->qual_end(); I != E; ++I) {
5310      ObjCProtocolDecl *lhsProto = *I;
5311      bool match = false;
5312
5313      // when comparing an id<P> on lhs with a static type on rhs,
5314      // see if static class implements all of id's protocols, directly or
5315      // through its super class and categories.
5316      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5317           E = rhsOPT->qual_end(); J != E; ++J) {
5318        ObjCProtocolDecl *rhsProto = *J;
5319        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5320            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5321          match = true;
5322          break;
5323        }
5324      }
5325      // If the RHS is a qualified interface pointer "NSString<P>*",
5326      // make sure we check the class hierarchy.
5327      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5328        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5329             E = lhsQID->qual_end(); I != E; ++I) {
5330          // when comparing an id<P> on lhs with a static type on rhs,
5331          // see if static class implements all of id's protocols, directly or
5332          // through its super class and categories.
5333          if (rhsID->ClassImplementsProtocol(*I, true)) {
5334            match = true;
5335            break;
5336          }
5337        }
5338      }
5339      if (!match)
5340        return false;
5341    }
5342
5343    return true;
5344  }
5345
5346  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
5347  assert(rhsQID && "One of the LHS/RHS should be id<x>");
5348
5349  if (const ObjCObjectPointerType *lhsOPT =
5350        lhs->getAsObjCInterfacePointerType()) {
5351    // If both the right and left sides have qualifiers.
5352    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
5353         E = lhsOPT->qual_end(); I != E; ++I) {
5354      ObjCProtocolDecl *lhsProto = *I;
5355      bool match = false;
5356
5357      // when comparing an id<P> on rhs with a static type on lhs,
5358      // see if static class implements all of id's protocols, directly or
5359      // through its super class and categories.
5360      // First, lhs protocols in the qualifier list must be found, direct
5361      // or indirect in rhs's qualifier list or it is a mismatch.
5362      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5363           E = rhsQID->qual_end(); J != E; ++J) {
5364        ObjCProtocolDecl *rhsProto = *J;
5365        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5366            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5367          match = true;
5368          break;
5369        }
5370      }
5371      if (!match)
5372        return false;
5373    }
5374
5375    // Static class's protocols, or its super class or category protocols
5376    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
5377    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
5378      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5379      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
5380      // This is rather dubious but matches gcc's behavior. If lhs has
5381      // no type qualifier and its class has no static protocol(s)
5382      // assume that it is mismatch.
5383      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
5384        return false;
5385      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5386           LHSInheritedProtocols.begin(),
5387           E = LHSInheritedProtocols.end(); I != E; ++I) {
5388        bool match = false;
5389        ObjCProtocolDecl *lhsProto = (*I);
5390        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5391             E = rhsQID->qual_end(); J != E; ++J) {
5392          ObjCProtocolDecl *rhsProto = *J;
5393          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5394              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5395            match = true;
5396            break;
5397          }
5398        }
5399        if (!match)
5400          return false;
5401      }
5402    }
5403    return true;
5404  }
5405  return false;
5406}
5407
5408/// canAssignObjCInterfaces - Return true if the two interface types are
5409/// compatible for assignment from RHS to LHS.  This handles validation of any
5410/// protocol qualifiers on the LHS or RHS.
5411///
5412bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
5413                                         const ObjCObjectPointerType *RHSOPT) {
5414  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5415  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5416
5417  // If either type represents the built-in 'id' or 'Class' types, return true.
5418  if (LHS->isObjCUnqualifiedIdOrClass() ||
5419      RHS->isObjCUnqualifiedIdOrClass())
5420    return true;
5421
5422  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
5423    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5424                                             QualType(RHSOPT,0),
5425                                             false);
5426
5427  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
5428    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
5429                                                QualType(RHSOPT,0));
5430
5431  // If we have 2 user-defined types, fall into that path.
5432  if (LHS->getInterface() && RHS->getInterface())
5433    return canAssignObjCInterfaces(LHS, RHS);
5434
5435  return false;
5436}
5437
5438/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
5439/// for providing type-safety for objective-c pointers used to pass/return
5440/// arguments in block literals. When passed as arguments, passing 'A*' where
5441/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
5442/// not OK. For the return type, the opposite is not OK.
5443bool ASTContext::canAssignObjCInterfacesInBlockPointer(
5444                                         const ObjCObjectPointerType *LHSOPT,
5445                                         const ObjCObjectPointerType *RHSOPT,
5446                                         bool BlockReturnType) {
5447  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
5448    return true;
5449
5450  if (LHSOPT->isObjCBuiltinType()) {
5451    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
5452  }
5453
5454  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
5455    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5456                                             QualType(RHSOPT,0),
5457                                             false);
5458
5459  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
5460  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
5461  if (LHS && RHS)  { // We have 2 user-defined types.
5462    if (LHS != RHS) {
5463      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
5464        return BlockReturnType;
5465      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
5466        return !BlockReturnType;
5467    }
5468    else
5469      return true;
5470  }
5471  return false;
5472}
5473
5474/// getIntersectionOfProtocols - This routine finds the intersection of set
5475/// of protocols inherited from two distinct objective-c pointer objects.
5476/// It is used to build composite qualifier list of the composite type of
5477/// the conditional expression involving two objective-c pointer objects.
5478static
5479void getIntersectionOfProtocols(ASTContext &Context,
5480                                const ObjCObjectPointerType *LHSOPT,
5481                                const ObjCObjectPointerType *RHSOPT,
5482      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
5483
5484  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5485  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5486  assert(LHS->getInterface() && "LHS must have an interface base");
5487  assert(RHS->getInterface() && "RHS must have an interface base");
5488
5489  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
5490  unsigned LHSNumProtocols = LHS->getNumProtocols();
5491  if (LHSNumProtocols > 0)
5492    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
5493  else {
5494    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5495    Context.CollectInheritedProtocols(LHS->getInterface(),
5496                                      LHSInheritedProtocols);
5497    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
5498                                LHSInheritedProtocols.end());
5499  }
5500
5501  unsigned RHSNumProtocols = RHS->getNumProtocols();
5502  if (RHSNumProtocols > 0) {
5503    ObjCProtocolDecl **RHSProtocols =
5504      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
5505    for (unsigned i = 0; i < RHSNumProtocols; ++i)
5506      if (InheritedProtocolSet.count(RHSProtocols[i]))
5507        IntersectionOfProtocols.push_back(RHSProtocols[i]);
5508  } else {
5509    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
5510    Context.CollectInheritedProtocols(RHS->getInterface(),
5511                                      RHSInheritedProtocols);
5512    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5513         RHSInheritedProtocols.begin(),
5514         E = RHSInheritedProtocols.end(); I != E; ++I)
5515      if (InheritedProtocolSet.count((*I)))
5516        IntersectionOfProtocols.push_back((*I));
5517  }
5518}
5519
5520/// areCommonBaseCompatible - Returns common base class of the two classes if
5521/// one found. Note that this is O'2 algorithm. But it will be called as the
5522/// last type comparison in a ?-exp of ObjC pointer types before a
5523/// warning is issued. So, its invokation is extremely rare.
5524QualType ASTContext::areCommonBaseCompatible(
5525                                          const ObjCObjectPointerType *Lptr,
5526                                          const ObjCObjectPointerType *Rptr) {
5527  const ObjCObjectType *LHS = Lptr->getObjectType();
5528  const ObjCObjectType *RHS = Rptr->getObjectType();
5529  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
5530  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
5531  if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
5532    return QualType();
5533
5534  do {
5535    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
5536    if (canAssignObjCInterfaces(LHS, RHS)) {
5537      SmallVector<ObjCProtocolDecl *, 8> Protocols;
5538      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
5539
5540      QualType Result = QualType(LHS, 0);
5541      if (!Protocols.empty())
5542        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
5543      Result = getObjCObjectPointerType(Result);
5544      return Result;
5545    }
5546  } while ((LDecl = LDecl->getSuperClass()));
5547
5548  return QualType();
5549}
5550
5551bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
5552                                         const ObjCObjectType *RHS) {
5553  assert(LHS->getInterface() && "LHS is not an interface type");
5554  assert(RHS->getInterface() && "RHS is not an interface type");
5555
5556  // Verify that the base decls are compatible: the RHS must be a subclass of
5557  // the LHS.
5558  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
5559    return false;
5560
5561  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
5562  // protocol qualified at all, then we are good.
5563  if (LHS->getNumProtocols() == 0)
5564    return true;
5565
5566  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
5567  // more detailed analysis is required.
5568  if (RHS->getNumProtocols() == 0) {
5569    // OK, if LHS is a superclass of RHS *and*
5570    // this superclass is assignment compatible with LHS.
5571    // false otherwise.
5572    bool IsSuperClass =
5573      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
5574    if (IsSuperClass) {
5575      // OK if conversion of LHS to SuperClass results in narrowing of types
5576      // ; i.e., SuperClass may implement at least one of the protocols
5577      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
5578      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
5579      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
5580      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
5581      // If super class has no protocols, it is not a match.
5582      if (SuperClassInheritedProtocols.empty())
5583        return false;
5584
5585      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5586           LHSPE = LHS->qual_end();
5587           LHSPI != LHSPE; LHSPI++) {
5588        bool SuperImplementsProtocol = false;
5589        ObjCProtocolDecl *LHSProto = (*LHSPI);
5590
5591        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5592             SuperClassInheritedProtocols.begin(),
5593             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
5594          ObjCProtocolDecl *SuperClassProto = (*I);
5595          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
5596            SuperImplementsProtocol = true;
5597            break;
5598          }
5599        }
5600        if (!SuperImplementsProtocol)
5601          return false;
5602      }
5603      return true;
5604    }
5605    return false;
5606  }
5607
5608  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5609                                     LHSPE = LHS->qual_end();
5610       LHSPI != LHSPE; LHSPI++) {
5611    bool RHSImplementsProtocol = false;
5612
5613    // If the RHS doesn't implement the protocol on the left, the types
5614    // are incompatible.
5615    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
5616                                       RHSPE = RHS->qual_end();
5617         RHSPI != RHSPE; RHSPI++) {
5618      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
5619        RHSImplementsProtocol = true;
5620        break;
5621      }
5622    }
5623    // FIXME: For better diagnostics, consider passing back the protocol name.
5624    if (!RHSImplementsProtocol)
5625      return false;
5626  }
5627  // The RHS implements all protocols listed on the LHS.
5628  return true;
5629}
5630
5631bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
5632  // get the "pointed to" types
5633  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
5634  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
5635
5636  if (!LHSOPT || !RHSOPT)
5637    return false;
5638
5639  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
5640         canAssignObjCInterfaces(RHSOPT, LHSOPT);
5641}
5642
5643bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
5644  return canAssignObjCInterfaces(
5645                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
5646                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
5647}
5648
5649/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
5650/// both shall have the identically qualified version of a compatible type.
5651/// C99 6.2.7p1: Two types have compatible types if their types are the
5652/// same. See 6.7.[2,3,5] for additional rules.
5653bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
5654                                    bool CompareUnqualified) {
5655  if (getLangOptions().CPlusPlus)
5656    return hasSameType(LHS, RHS);
5657
5658  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
5659}
5660
5661bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
5662  return typesAreCompatible(LHS, RHS);
5663}
5664
5665bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
5666  return !mergeTypes(LHS, RHS, true).isNull();
5667}
5668
5669/// mergeTransparentUnionType - if T is a transparent union type and a member
5670/// of T is compatible with SubType, return the merged type, else return
5671/// QualType()
5672QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
5673                                               bool OfBlockPointer,
5674                                               bool Unqualified) {
5675  if (const RecordType *UT = T->getAsUnionType()) {
5676    RecordDecl *UD = UT->getDecl();
5677    if (UD->hasAttr<TransparentUnionAttr>()) {
5678      for (RecordDecl::field_iterator it = UD->field_begin(),
5679           itend = UD->field_end(); it != itend; ++it) {
5680        QualType ET = it->getType().getUnqualifiedType();
5681        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
5682        if (!MT.isNull())
5683          return MT;
5684      }
5685    }
5686  }
5687
5688  return QualType();
5689}
5690
5691/// mergeFunctionArgumentTypes - merge two types which appear as function
5692/// argument types
5693QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
5694                                                bool OfBlockPointer,
5695                                                bool Unqualified) {
5696  // GNU extension: two types are compatible if they appear as a function
5697  // argument, one of the types is a transparent union type and the other
5698  // type is compatible with a union member
5699  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
5700                                              Unqualified);
5701  if (!lmerge.isNull())
5702    return lmerge;
5703
5704  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
5705                                              Unqualified);
5706  if (!rmerge.isNull())
5707    return rmerge;
5708
5709  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
5710}
5711
5712QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
5713                                        bool OfBlockPointer,
5714                                        bool Unqualified) {
5715  const FunctionType *lbase = lhs->getAs<FunctionType>();
5716  const FunctionType *rbase = rhs->getAs<FunctionType>();
5717  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
5718  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
5719  bool allLTypes = true;
5720  bool allRTypes = true;
5721
5722  // Check return type
5723  QualType retType;
5724  if (OfBlockPointer) {
5725    QualType RHS = rbase->getResultType();
5726    QualType LHS = lbase->getResultType();
5727    bool UnqualifiedResult = Unqualified;
5728    if (!UnqualifiedResult)
5729      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
5730    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
5731  }
5732  else
5733    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
5734                         Unqualified);
5735  if (retType.isNull()) return QualType();
5736
5737  if (Unqualified)
5738    retType = retType.getUnqualifiedType();
5739
5740  CanQualType LRetType = getCanonicalType(lbase->getResultType());
5741  CanQualType RRetType = getCanonicalType(rbase->getResultType());
5742  if (Unqualified) {
5743    LRetType = LRetType.getUnqualifiedType();
5744    RRetType = RRetType.getUnqualifiedType();
5745  }
5746
5747  if (getCanonicalType(retType) != LRetType)
5748    allLTypes = false;
5749  if (getCanonicalType(retType) != RRetType)
5750    allRTypes = false;
5751
5752  // FIXME: double check this
5753  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
5754  //                           rbase->getRegParmAttr() != 0 &&
5755  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
5756  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
5757  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
5758
5759  // Compatible functions must have compatible calling conventions
5760  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
5761    return QualType();
5762
5763  // Regparm is part of the calling convention.
5764  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
5765    return QualType();
5766  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
5767    return QualType();
5768
5769  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
5770    return QualType();
5771
5772  // functypes which return are preferred over those that do not.
5773  if (lbaseInfo.getNoReturn() && !rbaseInfo.getNoReturn())
5774    allLTypes = false;
5775  else if (!lbaseInfo.getNoReturn() && rbaseInfo.getNoReturn())
5776    allRTypes = false;
5777  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
5778  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
5779
5780  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
5781
5782  if (lproto && rproto) { // two C99 style function prototypes
5783    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
5784           "C++ shouldn't be here");
5785    unsigned lproto_nargs = lproto->getNumArgs();
5786    unsigned rproto_nargs = rproto->getNumArgs();
5787
5788    // Compatible functions must have the same number of arguments
5789    if (lproto_nargs != rproto_nargs)
5790      return QualType();
5791
5792    // Variadic and non-variadic functions aren't compatible
5793    if (lproto->isVariadic() != rproto->isVariadic())
5794      return QualType();
5795
5796    if (lproto->getTypeQuals() != rproto->getTypeQuals())
5797      return QualType();
5798
5799    if (LangOpts.ObjCAutoRefCount &&
5800        !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
5801      return QualType();
5802
5803    // Check argument compatibility
5804    SmallVector<QualType, 10> types;
5805    for (unsigned i = 0; i < lproto_nargs; i++) {
5806      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
5807      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
5808      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
5809                                                    OfBlockPointer,
5810                                                    Unqualified);
5811      if (argtype.isNull()) return QualType();
5812
5813      if (Unqualified)
5814        argtype = argtype.getUnqualifiedType();
5815
5816      types.push_back(argtype);
5817      if (Unqualified) {
5818        largtype = largtype.getUnqualifiedType();
5819        rargtype = rargtype.getUnqualifiedType();
5820      }
5821
5822      if (getCanonicalType(argtype) != getCanonicalType(largtype))
5823        allLTypes = false;
5824      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
5825        allRTypes = false;
5826    }
5827
5828    if (allLTypes) return lhs;
5829    if (allRTypes) return rhs;
5830
5831    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
5832    EPI.ExtInfo = einfo;
5833    return getFunctionType(retType, types.begin(), types.size(), EPI);
5834  }
5835
5836  if (lproto) allRTypes = false;
5837  if (rproto) allLTypes = false;
5838
5839  const FunctionProtoType *proto = lproto ? lproto : rproto;
5840  if (proto) {
5841    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
5842    if (proto->isVariadic()) return QualType();
5843    // Check that the types are compatible with the types that
5844    // would result from default argument promotions (C99 6.7.5.3p15).
5845    // The only types actually affected are promotable integer
5846    // types and floats, which would be passed as a different
5847    // type depending on whether the prototype is visible.
5848    unsigned proto_nargs = proto->getNumArgs();
5849    for (unsigned i = 0; i < proto_nargs; ++i) {
5850      QualType argTy = proto->getArgType(i);
5851
5852      // Look at the promotion type of enum types, since that is the type used
5853      // to pass enum values.
5854      if (const EnumType *Enum = argTy->getAs<EnumType>())
5855        argTy = Enum->getDecl()->getPromotionType();
5856
5857      if (argTy->isPromotableIntegerType() ||
5858          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
5859        return QualType();
5860    }
5861
5862    if (allLTypes) return lhs;
5863    if (allRTypes) return rhs;
5864
5865    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
5866    EPI.ExtInfo = einfo;
5867    return getFunctionType(retType, proto->arg_type_begin(),
5868                           proto->getNumArgs(), EPI);
5869  }
5870
5871  if (allLTypes) return lhs;
5872  if (allRTypes) return rhs;
5873  return getFunctionNoProtoType(retType, einfo);
5874}
5875
5876QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
5877                                bool OfBlockPointer,
5878                                bool Unqualified, bool BlockReturnType) {
5879  // C++ [expr]: If an expression initially has the type "reference to T", the
5880  // type is adjusted to "T" prior to any further analysis, the expression
5881  // designates the object or function denoted by the reference, and the
5882  // expression is an lvalue unless the reference is an rvalue reference and
5883  // the expression is a function call (possibly inside parentheses).
5884  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
5885  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
5886
5887  if (Unqualified) {
5888    LHS = LHS.getUnqualifiedType();
5889    RHS = RHS.getUnqualifiedType();
5890  }
5891
5892  QualType LHSCan = getCanonicalType(LHS),
5893           RHSCan = getCanonicalType(RHS);
5894
5895  // If two types are identical, they are compatible.
5896  if (LHSCan == RHSCan)
5897    return LHS;
5898
5899  // If the qualifiers are different, the types aren't compatible... mostly.
5900  Qualifiers LQuals = LHSCan.getLocalQualifiers();
5901  Qualifiers RQuals = RHSCan.getLocalQualifiers();
5902  if (LQuals != RQuals) {
5903    // If any of these qualifiers are different, we have a type
5904    // mismatch.
5905    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
5906        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
5907        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
5908      return QualType();
5909
5910    // Exactly one GC qualifier difference is allowed: __strong is
5911    // okay if the other type has no GC qualifier but is an Objective
5912    // C object pointer (i.e. implicitly strong by default).  We fix
5913    // this by pretending that the unqualified type was actually
5914    // qualified __strong.
5915    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
5916    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
5917    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
5918
5919    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
5920      return QualType();
5921
5922    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
5923      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
5924    }
5925    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
5926      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
5927    }
5928    return QualType();
5929  }
5930
5931  // Okay, qualifiers are equal.
5932
5933  Type::TypeClass LHSClass = LHSCan->getTypeClass();
5934  Type::TypeClass RHSClass = RHSCan->getTypeClass();
5935
5936  // We want to consider the two function types to be the same for these
5937  // comparisons, just force one to the other.
5938  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
5939  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
5940
5941  // Same as above for arrays
5942  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
5943    LHSClass = Type::ConstantArray;
5944  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
5945    RHSClass = Type::ConstantArray;
5946
5947  // ObjCInterfaces are just specialized ObjCObjects.
5948  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
5949  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
5950
5951  // Canonicalize ExtVector -> Vector.
5952  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
5953  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
5954
5955  // If the canonical type classes don't match.
5956  if (LHSClass != RHSClass) {
5957    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
5958    // a signed integer type, or an unsigned integer type.
5959    // Compatibility is based on the underlying type, not the promotion
5960    // type.
5961    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
5962      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
5963        return RHS;
5964    }
5965    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
5966      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
5967        return LHS;
5968    }
5969    // allow block pointer type to match an 'id' type.
5970    if (OfBlockPointer && !BlockReturnType) {
5971       if (LHS->isObjCIdType() && RHS->isBlockPointerType())
5972         return LHS;
5973      if (RHS->isObjCIdType() && LHS->isBlockPointerType())
5974        return RHS;
5975    }
5976
5977    return QualType();
5978  }
5979
5980  // The canonical type classes match.
5981  switch (LHSClass) {
5982#define TYPE(Class, Base)
5983#define ABSTRACT_TYPE(Class, Base)
5984#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
5985#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
5986#define DEPENDENT_TYPE(Class, Base) case Type::Class:
5987#include "clang/AST/TypeNodes.def"
5988    llvm_unreachable("Non-canonical and dependent types shouldn't get here");
5989
5990  case Type::LValueReference:
5991  case Type::RValueReference:
5992  case Type::MemberPointer:
5993    llvm_unreachable("C++ should never be in mergeTypes");
5994
5995  case Type::ObjCInterface:
5996  case Type::IncompleteArray:
5997  case Type::VariableArray:
5998  case Type::FunctionProto:
5999  case Type::ExtVector:
6000    llvm_unreachable("Types are eliminated above");
6001
6002  case Type::Pointer:
6003  {
6004    // Merge two pointer types, while trying to preserve typedef info
6005    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
6006    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
6007    if (Unqualified) {
6008      LHSPointee = LHSPointee.getUnqualifiedType();
6009      RHSPointee = RHSPointee.getUnqualifiedType();
6010    }
6011    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
6012                                     Unqualified);
6013    if (ResultType.isNull()) return QualType();
6014    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
6015      return LHS;
6016    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
6017      return RHS;
6018    return getPointerType(ResultType);
6019  }
6020  case Type::BlockPointer:
6021  {
6022    // Merge two block pointer types, while trying to preserve typedef info
6023    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
6024    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
6025    if (Unqualified) {
6026      LHSPointee = LHSPointee.getUnqualifiedType();
6027      RHSPointee = RHSPointee.getUnqualifiedType();
6028    }
6029    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
6030                                     Unqualified);
6031    if (ResultType.isNull()) return QualType();
6032    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
6033      return LHS;
6034    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
6035      return RHS;
6036    return getBlockPointerType(ResultType);
6037  }
6038  case Type::Atomic:
6039  {
6040    // Merge two pointer types, while trying to preserve typedef info
6041    QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
6042    QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
6043    if (Unqualified) {
6044      LHSValue = LHSValue.getUnqualifiedType();
6045      RHSValue = RHSValue.getUnqualifiedType();
6046    }
6047    QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
6048                                     Unqualified);
6049    if (ResultType.isNull()) return QualType();
6050    if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
6051      return LHS;
6052    if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
6053      return RHS;
6054    return getAtomicType(ResultType);
6055  }
6056  case Type::ConstantArray:
6057  {
6058    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
6059    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
6060    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
6061      return QualType();
6062
6063    QualType LHSElem = getAsArrayType(LHS)->getElementType();
6064    QualType RHSElem = getAsArrayType(RHS)->getElementType();
6065    if (Unqualified) {
6066      LHSElem = LHSElem.getUnqualifiedType();
6067      RHSElem = RHSElem.getUnqualifiedType();
6068    }
6069
6070    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
6071    if (ResultType.isNull()) return QualType();
6072    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6073      return LHS;
6074    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6075      return RHS;
6076    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
6077                                          ArrayType::ArraySizeModifier(), 0);
6078    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
6079                                          ArrayType::ArraySizeModifier(), 0);
6080    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
6081    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
6082    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6083      return LHS;
6084    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6085      return RHS;
6086    if (LVAT) {
6087      // FIXME: This isn't correct! But tricky to implement because
6088      // the array's size has to be the size of LHS, but the type
6089      // has to be different.
6090      return LHS;
6091    }
6092    if (RVAT) {
6093      // FIXME: This isn't correct! But tricky to implement because
6094      // the array's size has to be the size of RHS, but the type
6095      // has to be different.
6096      return RHS;
6097    }
6098    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
6099    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
6100    return getIncompleteArrayType(ResultType,
6101                                  ArrayType::ArraySizeModifier(), 0);
6102  }
6103  case Type::FunctionNoProto:
6104    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
6105  case Type::Record:
6106  case Type::Enum:
6107    return QualType();
6108  case Type::Builtin:
6109    // Only exactly equal builtin types are compatible, which is tested above.
6110    return QualType();
6111  case Type::Complex:
6112    // Distinct complex types are incompatible.
6113    return QualType();
6114  case Type::Vector:
6115    // FIXME: The merged type should be an ExtVector!
6116    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
6117                             RHSCan->getAs<VectorType>()))
6118      return LHS;
6119    return QualType();
6120  case Type::ObjCObject: {
6121    // Check if the types are assignment compatible.
6122    // FIXME: This should be type compatibility, e.g. whether
6123    // "LHS x; RHS x;" at global scope is legal.
6124    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
6125    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
6126    if (canAssignObjCInterfaces(LHSIface, RHSIface))
6127      return LHS;
6128
6129    return QualType();
6130  }
6131  case Type::ObjCObjectPointer: {
6132    if (OfBlockPointer) {
6133      if (canAssignObjCInterfacesInBlockPointer(
6134                                          LHS->getAs<ObjCObjectPointerType>(),
6135                                          RHS->getAs<ObjCObjectPointerType>(),
6136                                          BlockReturnType))
6137        return LHS;
6138      return QualType();
6139    }
6140    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
6141                                RHS->getAs<ObjCObjectPointerType>()))
6142      return LHS;
6143
6144    return QualType();
6145  }
6146  }
6147
6148  llvm_unreachable("Invalid Type::Class!");
6149}
6150
6151bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
6152                   const FunctionProtoType *FromFunctionType,
6153                   const FunctionProtoType *ToFunctionType) {
6154  if (FromFunctionType->hasAnyConsumedArgs() !=
6155      ToFunctionType->hasAnyConsumedArgs())
6156    return false;
6157  FunctionProtoType::ExtProtoInfo FromEPI =
6158    FromFunctionType->getExtProtoInfo();
6159  FunctionProtoType::ExtProtoInfo ToEPI =
6160    ToFunctionType->getExtProtoInfo();
6161  if (FromEPI.ConsumedArguments && ToEPI.ConsumedArguments)
6162    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
6163         ArgIdx != NumArgs; ++ArgIdx)  {
6164      if (FromEPI.ConsumedArguments[ArgIdx] !=
6165          ToEPI.ConsumedArguments[ArgIdx])
6166        return false;
6167    }
6168  return true;
6169}
6170
6171/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
6172/// 'RHS' attributes and returns the merged version; including for function
6173/// return types.
6174QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
6175  QualType LHSCan = getCanonicalType(LHS),
6176  RHSCan = getCanonicalType(RHS);
6177  // If two types are identical, they are compatible.
6178  if (LHSCan == RHSCan)
6179    return LHS;
6180  if (RHSCan->isFunctionType()) {
6181    if (!LHSCan->isFunctionType())
6182      return QualType();
6183    QualType OldReturnType =
6184      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
6185    QualType NewReturnType =
6186      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
6187    QualType ResReturnType =
6188      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
6189    if (ResReturnType.isNull())
6190      return QualType();
6191    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
6192      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
6193      // In either case, use OldReturnType to build the new function type.
6194      const FunctionType *F = LHS->getAs<FunctionType>();
6195      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
6196        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6197        EPI.ExtInfo = getFunctionExtInfo(LHS);
6198        QualType ResultType
6199          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
6200                            FPT->getNumArgs(), EPI);
6201        return ResultType;
6202      }
6203    }
6204    return QualType();
6205  }
6206
6207  // If the qualifiers are different, the types can still be merged.
6208  Qualifiers LQuals = LHSCan.getLocalQualifiers();
6209  Qualifiers RQuals = RHSCan.getLocalQualifiers();
6210  if (LQuals != RQuals) {
6211    // If any of these qualifiers are different, we have a type mismatch.
6212    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
6213        LQuals.getAddressSpace() != RQuals.getAddressSpace())
6214      return QualType();
6215
6216    // Exactly one GC qualifier difference is allowed: __strong is
6217    // okay if the other type has no GC qualifier but is an Objective
6218    // C object pointer (i.e. implicitly strong by default).  We fix
6219    // this by pretending that the unqualified type was actually
6220    // qualified __strong.
6221    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
6222    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
6223    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
6224
6225    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
6226      return QualType();
6227
6228    if (GC_L == Qualifiers::Strong)
6229      return LHS;
6230    if (GC_R == Qualifiers::Strong)
6231      return RHS;
6232    return QualType();
6233  }
6234
6235  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
6236    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6237    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6238    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
6239    if (ResQT == LHSBaseQT)
6240      return LHS;
6241    if (ResQT == RHSBaseQT)
6242      return RHS;
6243  }
6244  return QualType();
6245}
6246
6247//===----------------------------------------------------------------------===//
6248//                         Integer Predicates
6249//===----------------------------------------------------------------------===//
6250
6251unsigned ASTContext::getIntWidth(QualType T) const {
6252  if (const EnumType *ET = dyn_cast<EnumType>(T))
6253    T = ET->getDecl()->getIntegerType();
6254  if (T->isBooleanType())
6255    return 1;
6256  // For builtin types, just use the standard type sizing method
6257  return (unsigned)getTypeSize(T);
6258}
6259
6260QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
6261  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
6262
6263  // Turn <4 x signed int> -> <4 x unsigned int>
6264  if (const VectorType *VTy = T->getAs<VectorType>())
6265    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
6266                         VTy->getNumElements(), VTy->getVectorKind());
6267
6268  // For enums, we return the unsigned version of the base type.
6269  if (const EnumType *ETy = T->getAs<EnumType>())
6270    T = ETy->getDecl()->getIntegerType();
6271
6272  const BuiltinType *BTy = T->getAs<BuiltinType>();
6273  assert(BTy && "Unexpected signed integer type");
6274  switch (BTy->getKind()) {
6275  case BuiltinType::Char_S:
6276  case BuiltinType::SChar:
6277    return UnsignedCharTy;
6278  case BuiltinType::Short:
6279    return UnsignedShortTy;
6280  case BuiltinType::Int:
6281    return UnsignedIntTy;
6282  case BuiltinType::Long:
6283    return UnsignedLongTy;
6284  case BuiltinType::LongLong:
6285    return UnsignedLongLongTy;
6286  case BuiltinType::Int128:
6287    return UnsignedInt128Ty;
6288  default:
6289    llvm_unreachable("Unexpected signed integer type");
6290  }
6291}
6292
6293ASTMutationListener::~ASTMutationListener() { }
6294
6295
6296//===----------------------------------------------------------------------===//
6297//                          Builtin Type Computation
6298//===----------------------------------------------------------------------===//
6299
6300/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
6301/// pointer over the consumed characters.  This returns the resultant type.  If
6302/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
6303/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
6304/// a vector of "i*".
6305///
6306/// RequiresICE is filled in on return to indicate whether the value is required
6307/// to be an Integer Constant Expression.
6308static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
6309                                  ASTContext::GetBuiltinTypeError &Error,
6310                                  bool &RequiresICE,
6311                                  bool AllowTypeModifiers) {
6312  // Modifiers.
6313  int HowLong = 0;
6314  bool Signed = false, Unsigned = false;
6315  RequiresICE = false;
6316
6317  // Read the prefixed modifiers first.
6318  bool Done = false;
6319  while (!Done) {
6320    switch (*Str++) {
6321    default: Done = true; --Str; break;
6322    case 'I':
6323      RequiresICE = true;
6324      break;
6325    case 'S':
6326      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
6327      assert(!Signed && "Can't use 'S' modifier multiple times!");
6328      Signed = true;
6329      break;
6330    case 'U':
6331      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
6332      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
6333      Unsigned = true;
6334      break;
6335    case 'L':
6336      assert(HowLong <= 2 && "Can't have LLLL modifier");
6337      ++HowLong;
6338      break;
6339    }
6340  }
6341
6342  QualType Type;
6343
6344  // Read the base type.
6345  switch (*Str++) {
6346  default: llvm_unreachable("Unknown builtin type letter!");
6347  case 'v':
6348    assert(HowLong == 0 && !Signed && !Unsigned &&
6349           "Bad modifiers used with 'v'!");
6350    Type = Context.VoidTy;
6351    break;
6352  case 'f':
6353    assert(HowLong == 0 && !Signed && !Unsigned &&
6354           "Bad modifiers used with 'f'!");
6355    Type = Context.FloatTy;
6356    break;
6357  case 'd':
6358    assert(HowLong < 2 && !Signed && !Unsigned &&
6359           "Bad modifiers used with 'd'!");
6360    if (HowLong)
6361      Type = Context.LongDoubleTy;
6362    else
6363      Type = Context.DoubleTy;
6364    break;
6365  case 's':
6366    assert(HowLong == 0 && "Bad modifiers used with 's'!");
6367    if (Unsigned)
6368      Type = Context.UnsignedShortTy;
6369    else
6370      Type = Context.ShortTy;
6371    break;
6372  case 'i':
6373    if (HowLong == 3)
6374      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
6375    else if (HowLong == 2)
6376      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
6377    else if (HowLong == 1)
6378      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
6379    else
6380      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
6381    break;
6382  case 'c':
6383    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
6384    if (Signed)
6385      Type = Context.SignedCharTy;
6386    else if (Unsigned)
6387      Type = Context.UnsignedCharTy;
6388    else
6389      Type = Context.CharTy;
6390    break;
6391  case 'b': // boolean
6392    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
6393    Type = Context.BoolTy;
6394    break;
6395  case 'z':  // size_t.
6396    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
6397    Type = Context.getSizeType();
6398    break;
6399  case 'F':
6400    Type = Context.getCFConstantStringType();
6401    break;
6402  case 'G':
6403    Type = Context.getObjCIdType();
6404    break;
6405  case 'H':
6406    Type = Context.getObjCSelType();
6407    break;
6408  case 'a':
6409    Type = Context.getBuiltinVaListType();
6410    assert(!Type.isNull() && "builtin va list type not initialized!");
6411    break;
6412  case 'A':
6413    // This is a "reference" to a va_list; however, what exactly
6414    // this means depends on how va_list is defined. There are two
6415    // different kinds of va_list: ones passed by value, and ones
6416    // passed by reference.  An example of a by-value va_list is
6417    // x86, where va_list is a char*. An example of by-ref va_list
6418    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
6419    // we want this argument to be a char*&; for x86-64, we want
6420    // it to be a __va_list_tag*.
6421    Type = Context.getBuiltinVaListType();
6422    assert(!Type.isNull() && "builtin va list type not initialized!");
6423    if (Type->isArrayType())
6424      Type = Context.getArrayDecayedType(Type);
6425    else
6426      Type = Context.getLValueReferenceType(Type);
6427    break;
6428  case 'V': {
6429    char *End;
6430    unsigned NumElements = strtoul(Str, &End, 10);
6431    assert(End != Str && "Missing vector size");
6432    Str = End;
6433
6434    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
6435                                             RequiresICE, false);
6436    assert(!RequiresICE && "Can't require vector ICE");
6437
6438    // TODO: No way to make AltiVec vectors in builtins yet.
6439    Type = Context.getVectorType(ElementType, NumElements,
6440                                 VectorType::GenericVector);
6441    break;
6442  }
6443  case 'X': {
6444    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
6445                                             false);
6446    assert(!RequiresICE && "Can't require complex ICE");
6447    Type = Context.getComplexType(ElementType);
6448    break;
6449  }
6450  case 'Y' : {
6451    Type = Context.getPointerDiffType();
6452    break;
6453  }
6454  case 'P':
6455    Type = Context.getFILEType();
6456    if (Type.isNull()) {
6457      Error = ASTContext::GE_Missing_stdio;
6458      return QualType();
6459    }
6460    break;
6461  case 'J':
6462    if (Signed)
6463      Type = Context.getsigjmp_bufType();
6464    else
6465      Type = Context.getjmp_bufType();
6466
6467    if (Type.isNull()) {
6468      Error = ASTContext::GE_Missing_setjmp;
6469      return QualType();
6470    }
6471    break;
6472  case 'K':
6473    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
6474    Type = Context.getucontext_tType();
6475
6476    if (Type.isNull()) {
6477      Error = ASTContext::GE_Missing_ucontext;
6478      return QualType();
6479    }
6480    break;
6481  }
6482
6483  // If there are modifiers and if we're allowed to parse them, go for it.
6484  Done = !AllowTypeModifiers;
6485  while (!Done) {
6486    switch (char c = *Str++) {
6487    default: Done = true; --Str; break;
6488    case '*':
6489    case '&': {
6490      // Both pointers and references can have their pointee types
6491      // qualified with an address space.
6492      char *End;
6493      unsigned AddrSpace = strtoul(Str, &End, 10);
6494      if (End != Str && AddrSpace != 0) {
6495        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
6496        Str = End;
6497      }
6498      if (c == '*')
6499        Type = Context.getPointerType(Type);
6500      else
6501        Type = Context.getLValueReferenceType(Type);
6502      break;
6503    }
6504    // FIXME: There's no way to have a built-in with an rvalue ref arg.
6505    case 'C':
6506      Type = Type.withConst();
6507      break;
6508    case 'D':
6509      Type = Context.getVolatileType(Type);
6510      break;
6511    case 'R':
6512      Type = Type.withRestrict();
6513      break;
6514    }
6515  }
6516
6517  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
6518         "Integer constant 'I' type must be an integer");
6519
6520  return Type;
6521}
6522
6523/// GetBuiltinType - Return the type for the specified builtin.
6524QualType ASTContext::GetBuiltinType(unsigned Id,
6525                                    GetBuiltinTypeError &Error,
6526                                    unsigned *IntegerConstantArgs) const {
6527  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
6528
6529  SmallVector<QualType, 8> ArgTypes;
6530
6531  bool RequiresICE = false;
6532  Error = GE_None;
6533  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
6534                                       RequiresICE, true);
6535  if (Error != GE_None)
6536    return QualType();
6537
6538  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
6539
6540  while (TypeStr[0] && TypeStr[0] != '.') {
6541    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
6542    if (Error != GE_None)
6543      return QualType();
6544
6545    // If this argument is required to be an IntegerConstantExpression and the
6546    // caller cares, fill in the bitmask we return.
6547    if (RequiresICE && IntegerConstantArgs)
6548      *IntegerConstantArgs |= 1 << ArgTypes.size();
6549
6550    // Do array -> pointer decay.  The builtin should use the decayed type.
6551    if (Ty->isArrayType())
6552      Ty = getArrayDecayedType(Ty);
6553
6554    ArgTypes.push_back(Ty);
6555  }
6556
6557  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
6558         "'.' should only occur at end of builtin type list!");
6559
6560  FunctionType::ExtInfo EI;
6561  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
6562
6563  bool Variadic = (TypeStr[0] == '.');
6564
6565  // We really shouldn't be making a no-proto type here, especially in C++.
6566  if (ArgTypes.empty() && Variadic)
6567    return getFunctionNoProtoType(ResType, EI);
6568
6569  FunctionProtoType::ExtProtoInfo EPI;
6570  EPI.ExtInfo = EI;
6571  EPI.Variadic = Variadic;
6572
6573  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
6574}
6575
6576GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
6577  GVALinkage External = GVA_StrongExternal;
6578
6579  Linkage L = FD->getLinkage();
6580  switch (L) {
6581  case NoLinkage:
6582  case InternalLinkage:
6583  case UniqueExternalLinkage:
6584    return GVA_Internal;
6585
6586  case ExternalLinkage:
6587    switch (FD->getTemplateSpecializationKind()) {
6588    case TSK_Undeclared:
6589    case TSK_ExplicitSpecialization:
6590      External = GVA_StrongExternal;
6591      break;
6592
6593    case TSK_ExplicitInstantiationDefinition:
6594      return GVA_ExplicitTemplateInstantiation;
6595
6596    case TSK_ExplicitInstantiationDeclaration:
6597    case TSK_ImplicitInstantiation:
6598      External = GVA_TemplateInstantiation;
6599      break;
6600    }
6601  }
6602
6603  if (!FD->isInlined())
6604    return External;
6605
6606  if (!getLangOptions().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
6607    // GNU or C99 inline semantics. Determine whether this symbol should be
6608    // externally visible.
6609    if (FD->isInlineDefinitionExternallyVisible())
6610      return External;
6611
6612    // C99 inline semantics, where the symbol is not externally visible.
6613    return GVA_C99Inline;
6614  }
6615
6616  // C++0x [temp.explicit]p9:
6617  //   [ Note: The intent is that an inline function that is the subject of
6618  //   an explicit instantiation declaration will still be implicitly
6619  //   instantiated when used so that the body can be considered for
6620  //   inlining, but that no out-of-line copy of the inline function would be
6621  //   generated in the translation unit. -- end note ]
6622  if (FD->getTemplateSpecializationKind()
6623                                       == TSK_ExplicitInstantiationDeclaration)
6624    return GVA_C99Inline;
6625
6626  return GVA_CXXInline;
6627}
6628
6629GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
6630  // If this is a static data member, compute the kind of template
6631  // specialization. Otherwise, this variable is not part of a
6632  // template.
6633  TemplateSpecializationKind TSK = TSK_Undeclared;
6634  if (VD->isStaticDataMember())
6635    TSK = VD->getTemplateSpecializationKind();
6636
6637  Linkage L = VD->getLinkage();
6638  if (L == ExternalLinkage && getLangOptions().CPlusPlus &&
6639      VD->getType()->getLinkage() == UniqueExternalLinkage)
6640    L = UniqueExternalLinkage;
6641
6642  switch (L) {
6643  case NoLinkage:
6644  case InternalLinkage:
6645  case UniqueExternalLinkage:
6646    return GVA_Internal;
6647
6648  case ExternalLinkage:
6649    switch (TSK) {
6650    case TSK_Undeclared:
6651    case TSK_ExplicitSpecialization:
6652      return GVA_StrongExternal;
6653
6654    case TSK_ExplicitInstantiationDeclaration:
6655      llvm_unreachable("Variable should not be instantiated");
6656      // Fall through to treat this like any other instantiation.
6657
6658    case TSK_ExplicitInstantiationDefinition:
6659      return GVA_ExplicitTemplateInstantiation;
6660
6661    case TSK_ImplicitInstantiation:
6662      return GVA_TemplateInstantiation;
6663    }
6664  }
6665
6666  llvm_unreachable("Invalid Linkage!");
6667}
6668
6669bool ASTContext::DeclMustBeEmitted(const Decl *D) {
6670  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
6671    if (!VD->isFileVarDecl())
6672      return false;
6673  } else if (!isa<FunctionDecl>(D))
6674    return false;
6675
6676  // Weak references don't produce any output by themselves.
6677  if (D->hasAttr<WeakRefAttr>())
6678    return false;
6679
6680  // Aliases and used decls are required.
6681  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
6682    return true;
6683
6684  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6685    // Forward declarations aren't required.
6686    if (!FD->doesThisDeclarationHaveABody())
6687      return FD->doesDeclarationForceExternallyVisibleDefinition();
6688
6689    // Constructors and destructors are required.
6690    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
6691      return true;
6692
6693    // The key function for a class is required.
6694    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
6695      const CXXRecordDecl *RD = MD->getParent();
6696      if (MD->isOutOfLine() && RD->isDynamicClass()) {
6697        const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
6698        if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
6699          return true;
6700      }
6701    }
6702
6703    GVALinkage Linkage = GetGVALinkageForFunction(FD);
6704
6705    // static, static inline, always_inline, and extern inline functions can
6706    // always be deferred.  Normal inline functions can be deferred in C99/C++.
6707    // Implicit template instantiations can also be deferred in C++.
6708    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
6709        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
6710      return false;
6711    return true;
6712  }
6713
6714  const VarDecl *VD = cast<VarDecl>(D);
6715  assert(VD->isFileVarDecl() && "Expected file scoped var");
6716
6717  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
6718    return false;
6719
6720  // Structs that have non-trivial constructors or destructors are required.
6721
6722  // FIXME: Handle references.
6723  // FIXME: Be more selective about which constructors we care about.
6724  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
6725    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
6726      if (RD->hasDefinition() && !(RD->hasTrivialDefaultConstructor() &&
6727                                   RD->hasTrivialCopyConstructor() &&
6728                                   RD->hasTrivialMoveConstructor() &&
6729                                   RD->hasTrivialDestructor()))
6730        return true;
6731    }
6732  }
6733
6734  GVALinkage L = GetGVALinkageForVariable(VD);
6735  if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
6736    if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
6737      return false;
6738  }
6739
6740  return true;
6741}
6742
6743CallingConv ASTContext::getDefaultMethodCallConv() {
6744  // Pass through to the C++ ABI object
6745  return ABI->getDefaultMethodCallConv();
6746}
6747
6748bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
6749  // Pass through to the C++ ABI object
6750  return ABI->isNearlyEmpty(RD);
6751}
6752
6753MangleContext *ASTContext::createMangleContext() {
6754  switch (Target->getCXXABI()) {
6755  case CXXABI_ARM:
6756  case CXXABI_Itanium:
6757    return createItaniumMangleContext(*this, getDiagnostics());
6758  case CXXABI_Microsoft:
6759    return createMicrosoftMangleContext(*this, getDiagnostics());
6760  }
6761  llvm_unreachable("Unsupported ABI");
6762}
6763
6764CXXABI::~CXXABI() {}
6765
6766size_t ASTContext::getSideTableAllocatedMemory() const {
6767  return ASTRecordLayouts.getMemorySize()
6768    + llvm::capacity_in_bytes(ObjCLayouts)
6769    + llvm::capacity_in_bytes(KeyFunctions)
6770    + llvm::capacity_in_bytes(ObjCImpls)
6771    + llvm::capacity_in_bytes(BlockVarCopyInits)
6772    + llvm::capacity_in_bytes(DeclAttrs)
6773    + llvm::capacity_in_bytes(InstantiatedFromStaticDataMember)
6774    + llvm::capacity_in_bytes(InstantiatedFromUsingDecl)
6775    + llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl)
6776    + llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl)
6777    + llvm::capacity_in_bytes(OverriddenMethods)
6778    + llvm::capacity_in_bytes(Types)
6779    + llvm::capacity_in_bytes(VariableArrayTypes)
6780    + llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
6781}
6782
6783void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
6784  ParamIndices[D] = index;
6785}
6786
6787unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
6788  ParameterIndexTable::const_iterator I = ParamIndices.find(D);
6789  assert(I != ParamIndices.end() &&
6790         "ParmIndices lacks entry set by ParmVarDecl");
6791  return I->second;
6792}
6793