ASTContext.cpp revision 06bfa84588658d721094f383d6950e75100c4c4c
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExternalASTSource.h"
23#include "clang/AST/ASTMutationListener.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/Mangle.h"
26#include "clang/Basic/Builtins.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/TargetInfo.h"
29#include "llvm/ADT/SmallString.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/Support/MathExtras.h"
32#include "llvm/Support/raw_ostream.h"
33#include "CXXABI.h"
34
35using namespace clang;
36
37unsigned ASTContext::NumImplicitDefaultConstructors;
38unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
39unsigned ASTContext::NumImplicitCopyConstructors;
40unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
41unsigned ASTContext::NumImplicitCopyAssignmentOperators;
42unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
43unsigned ASTContext::NumImplicitDestructors;
44unsigned ASTContext::NumImplicitDestructorsDeclared;
45
46enum FloatingRank {
47  FloatRank, DoubleRank, LongDoubleRank
48};
49
50void
51ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
52                                               TemplateTemplateParmDecl *Parm) {
53  ID.AddInteger(Parm->getDepth());
54  ID.AddInteger(Parm->getPosition());
55  ID.AddBoolean(Parm->isParameterPack());
56
57  TemplateParameterList *Params = Parm->getTemplateParameters();
58  ID.AddInteger(Params->size());
59  for (TemplateParameterList::const_iterator P = Params->begin(),
60                                          PEnd = Params->end();
61       P != PEnd; ++P) {
62    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
63      ID.AddInteger(0);
64      ID.AddBoolean(TTP->isParameterPack());
65      continue;
66    }
67
68    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
69      ID.AddInteger(1);
70      ID.AddBoolean(NTTP->isParameterPack());
71      ID.AddPointer(NTTP->getType().getAsOpaquePtr());
72      if (NTTP->isExpandedParameterPack()) {
73        ID.AddBoolean(true);
74        ID.AddInteger(NTTP->getNumExpansionTypes());
75        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I)
76          ID.AddPointer(NTTP->getExpansionType(I).getAsOpaquePtr());
77      } else
78        ID.AddBoolean(false);
79      continue;
80    }
81
82    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
83    ID.AddInteger(2);
84    Profile(ID, TTP);
85  }
86}
87
88TemplateTemplateParmDecl *
89ASTContext::getCanonicalTemplateTemplateParmDecl(
90                                          TemplateTemplateParmDecl *TTP) const {
91  // Check if we already have a canonical template template parameter.
92  llvm::FoldingSetNodeID ID;
93  CanonicalTemplateTemplateParm::Profile(ID, TTP);
94  void *InsertPos = 0;
95  CanonicalTemplateTemplateParm *Canonical
96    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
97  if (Canonical)
98    return Canonical->getParam();
99
100  // Build a canonical template parameter list.
101  TemplateParameterList *Params = TTP->getTemplateParameters();
102  llvm::SmallVector<NamedDecl *, 4> CanonParams;
103  CanonParams.reserve(Params->size());
104  for (TemplateParameterList::const_iterator P = Params->begin(),
105                                          PEnd = Params->end();
106       P != PEnd; ++P) {
107    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
108      CanonParams.push_back(
109                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
110                                               SourceLocation(), TTP->getDepth(),
111                                               TTP->getIndex(), 0, false,
112                                               TTP->isParameterPack()));
113    else if (NonTypeTemplateParmDecl *NTTP
114             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
115      QualType T = getCanonicalType(NTTP->getType());
116      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
117      NonTypeTemplateParmDecl *Param;
118      if (NTTP->isExpandedParameterPack()) {
119        llvm::SmallVector<QualType, 2> ExpandedTypes;
120        llvm::SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
121        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
122          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
123          ExpandedTInfos.push_back(
124                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
125        }
126
127        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
128                                                SourceLocation(),
129                                                NTTP->getDepth(),
130                                                NTTP->getPosition(), 0,
131                                                T,
132                                                TInfo,
133                                                ExpandedTypes.data(),
134                                                ExpandedTypes.size(),
135                                                ExpandedTInfos.data());
136      } else {
137        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
138                                                SourceLocation(),
139                                                NTTP->getDepth(),
140                                                NTTP->getPosition(), 0,
141                                                T,
142                                                NTTP->isParameterPack(),
143                                                TInfo);
144      }
145      CanonParams.push_back(Param);
146
147    } else
148      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
149                                           cast<TemplateTemplateParmDecl>(*P)));
150  }
151
152  TemplateTemplateParmDecl *CanonTTP
153    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
154                                       SourceLocation(), TTP->getDepth(),
155                                       TTP->getPosition(),
156                                       TTP->isParameterPack(),
157                                       0,
158                         TemplateParameterList::Create(*this, SourceLocation(),
159                                                       SourceLocation(),
160                                                       CanonParams.data(),
161                                                       CanonParams.size(),
162                                                       SourceLocation()));
163
164  // Get the new insert position for the node we care about.
165  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
166  assert(Canonical == 0 && "Shouldn't be in the map!");
167  (void)Canonical;
168
169  // Create the canonical template template parameter entry.
170  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
171  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
172  return CanonTTP;
173}
174
175CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
176  if (!LangOpts.CPlusPlus) return 0;
177
178  switch (T.getCXXABI()) {
179  case CXXABI_ARM:
180    return CreateARMCXXABI(*this);
181  case CXXABI_Itanium:
182    return CreateItaniumCXXABI(*this);
183  case CXXABI_Microsoft:
184    return CreateMicrosoftCXXABI(*this);
185  }
186  return 0;
187}
188
189ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
190                       const TargetInfo &t,
191                       IdentifierTable &idents, SelectorTable &sels,
192                       Builtin::Context &builtins,
193                       unsigned size_reserve) :
194  TemplateSpecializationTypes(this_()),
195  DependentTemplateSpecializationTypes(this_()),
196  GlobalNestedNameSpecifier(0), IsInt128Installed(false),
197  CFConstantStringTypeDecl(0), NSConstantStringTypeDecl(0),
198  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0), jmp_bufDecl(0),
199  sigjmp_bufDecl(0), BlockDescriptorType(0), BlockDescriptorExtendedType(0),
200  cudaConfigureCallDecl(0),
201  NullTypeSourceInfo(QualType()),
202  SourceMgr(SM), LangOpts(LOpts), ABI(createCXXABI(t)), Target(t),
203  Idents(idents), Selectors(sels),
204  BuiltinInfo(builtins),
205  DeclarationNames(*this),
206  ExternalSource(0), Listener(0), PrintingPolicy(LOpts),
207  LastSDM(0, 0),
208  UniqueBlockByRefTypeID(0) {
209  ObjCIdRedefinitionType = QualType();
210  ObjCClassRedefinitionType = QualType();
211  ObjCSelRedefinitionType = QualType();
212  if (size_reserve > 0) Types.reserve(size_reserve);
213  TUDecl = TranslationUnitDecl::Create(*this);
214  InitBuiltinTypes();
215}
216
217ASTContext::~ASTContext() {
218  // Release the DenseMaps associated with DeclContext objects.
219  // FIXME: Is this the ideal solution?
220  ReleaseDeclContextMaps();
221
222  // Call all of the deallocation functions.
223  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
224    Deallocations[I].first(Deallocations[I].second);
225
226  // Release all of the memory associated with overridden C++ methods.
227  for (llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::iterator
228         OM = OverriddenMethods.begin(), OMEnd = OverriddenMethods.end();
229       OM != OMEnd; ++OM)
230    OM->second.Destroy();
231
232  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
233  // because they can contain DenseMaps.
234  for (llvm::DenseMap<const ObjCContainerDecl*,
235       const ASTRecordLayout*>::iterator
236       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
237    // Increment in loop to prevent using deallocated memory.
238    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
239      R->Destroy(*this);
240
241  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
242       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
243    // Increment in loop to prevent using deallocated memory.
244    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
245      R->Destroy(*this);
246  }
247
248  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
249                                                    AEnd = DeclAttrs.end();
250       A != AEnd; ++A)
251    A->second->~AttrVec();
252}
253
254void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
255  Deallocations.push_back(std::make_pair(Callback, Data));
256}
257
258void
259ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
260  ExternalSource.reset(Source.take());
261}
262
263void ASTContext::PrintStats() const {
264  fprintf(stderr, "*** AST Context Stats:\n");
265  fprintf(stderr, "  %d types total.\n", (int)Types.size());
266
267  unsigned counts[] = {
268#define TYPE(Name, Parent) 0,
269#define ABSTRACT_TYPE(Name, Parent)
270#include "clang/AST/TypeNodes.def"
271    0 // Extra
272  };
273
274  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
275    Type *T = Types[i];
276    counts[(unsigned)T->getTypeClass()]++;
277  }
278
279  unsigned Idx = 0;
280  unsigned TotalBytes = 0;
281#define TYPE(Name, Parent)                                              \
282  if (counts[Idx])                                                      \
283    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
284  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
285  ++Idx;
286#define ABSTRACT_TYPE(Name, Parent)
287#include "clang/AST/TypeNodes.def"
288
289  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
290
291  // Implicit special member functions.
292  fprintf(stderr, "  %u/%u implicit default constructors created\n",
293          NumImplicitDefaultConstructorsDeclared,
294          NumImplicitDefaultConstructors);
295  fprintf(stderr, "  %u/%u implicit copy constructors created\n",
296          NumImplicitCopyConstructorsDeclared,
297          NumImplicitCopyConstructors);
298  fprintf(stderr, "  %u/%u implicit copy assignment operators created\n",
299          NumImplicitCopyAssignmentOperatorsDeclared,
300          NumImplicitCopyAssignmentOperators);
301  fprintf(stderr, "  %u/%u implicit destructors created\n",
302          NumImplicitDestructorsDeclared, NumImplicitDestructors);
303
304  if (ExternalSource.get()) {
305    fprintf(stderr, "\n");
306    ExternalSource->PrintStats();
307  }
308
309  BumpAlloc.PrintStats();
310}
311
312
313void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
314  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
315  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
316  Types.push_back(Ty);
317}
318
319void ASTContext::InitBuiltinTypes() {
320  assert(VoidTy.isNull() && "Context reinitialized?");
321
322  // C99 6.2.5p19.
323  InitBuiltinType(VoidTy,              BuiltinType::Void);
324
325  // C99 6.2.5p2.
326  InitBuiltinType(BoolTy,              BuiltinType::Bool);
327  // C99 6.2.5p3.
328  if (LangOpts.CharIsSigned)
329    InitBuiltinType(CharTy,            BuiltinType::Char_S);
330  else
331    InitBuiltinType(CharTy,            BuiltinType::Char_U);
332  // C99 6.2.5p4.
333  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
334  InitBuiltinType(ShortTy,             BuiltinType::Short);
335  InitBuiltinType(IntTy,               BuiltinType::Int);
336  InitBuiltinType(LongTy,              BuiltinType::Long);
337  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
338
339  // C99 6.2.5p6.
340  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
341  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
342  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
343  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
344  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
345
346  // C99 6.2.5p10.
347  InitBuiltinType(FloatTy,             BuiltinType::Float);
348  InitBuiltinType(DoubleTy,            BuiltinType::Double);
349  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
350
351  // GNU extension, 128-bit integers.
352  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
353  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
354
355  if (LangOpts.CPlusPlus) { // C++ 3.9.1p5
356    if (!LangOpts.ShortWChar)
357      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
358    else  // -fshort-wchar makes wchar_t be unsigned.
359      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
360  } else // C99
361    WCharTy = getFromTargetType(Target.getWCharType());
362
363  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
364    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
365  else // C99
366    Char16Ty = getFromTargetType(Target.getChar16Type());
367
368  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
369    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
370  else // C99
371    Char32Ty = getFromTargetType(Target.getChar32Type());
372
373  // Placeholder type for type-dependent expressions whose type is
374  // completely unknown. No code should ever check a type against
375  // DependentTy and users should never see it; however, it is here to
376  // help diagnose failures to properly check for type-dependent
377  // expressions.
378  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
379
380  // Placeholder type for functions.
381  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
382
383  // C99 6.2.5p11.
384  FloatComplexTy      = getComplexType(FloatTy);
385  DoubleComplexTy     = getComplexType(DoubleTy);
386  LongDoubleComplexTy = getComplexType(LongDoubleTy);
387
388  BuiltinVaListType = QualType();
389
390  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
391  ObjCIdTypedefType = QualType();
392  ObjCClassTypedefType = QualType();
393  ObjCSelTypedefType = QualType();
394
395  // Builtin types for 'id', 'Class', and 'SEL'.
396  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
397  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
398  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
399
400  ObjCConstantStringType = QualType();
401
402  // void * type
403  VoidPtrTy = getPointerType(VoidTy);
404
405  // nullptr type (C++0x 2.14.7)
406  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
407}
408
409Diagnostic &ASTContext::getDiagnostics() const {
410  return SourceMgr.getDiagnostics();
411}
412
413AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
414  AttrVec *&Result = DeclAttrs[D];
415  if (!Result) {
416    void *Mem = Allocate(sizeof(AttrVec));
417    Result = new (Mem) AttrVec;
418  }
419
420  return *Result;
421}
422
423/// \brief Erase the attributes corresponding to the given declaration.
424void ASTContext::eraseDeclAttrs(const Decl *D) {
425  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
426  if (Pos != DeclAttrs.end()) {
427    Pos->second->~AttrVec();
428    DeclAttrs.erase(Pos);
429  }
430}
431
432
433MemberSpecializationInfo *
434ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
435  assert(Var->isStaticDataMember() && "Not a static data member");
436  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
437    = InstantiatedFromStaticDataMember.find(Var);
438  if (Pos == InstantiatedFromStaticDataMember.end())
439    return 0;
440
441  return Pos->second;
442}
443
444void
445ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
446                                                TemplateSpecializationKind TSK,
447                                          SourceLocation PointOfInstantiation) {
448  assert(Inst->isStaticDataMember() && "Not a static data member");
449  assert(Tmpl->isStaticDataMember() && "Not a static data member");
450  assert(!InstantiatedFromStaticDataMember[Inst] &&
451         "Already noted what static data member was instantiated from");
452  InstantiatedFromStaticDataMember[Inst]
453    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
454}
455
456NamedDecl *
457ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
458  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
459    = InstantiatedFromUsingDecl.find(UUD);
460  if (Pos == InstantiatedFromUsingDecl.end())
461    return 0;
462
463  return Pos->second;
464}
465
466void
467ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
468  assert((isa<UsingDecl>(Pattern) ||
469          isa<UnresolvedUsingValueDecl>(Pattern) ||
470          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
471         "pattern decl is not a using decl");
472  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
473  InstantiatedFromUsingDecl[Inst] = Pattern;
474}
475
476UsingShadowDecl *
477ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
478  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
479    = InstantiatedFromUsingShadowDecl.find(Inst);
480  if (Pos == InstantiatedFromUsingShadowDecl.end())
481    return 0;
482
483  return Pos->second;
484}
485
486void
487ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
488                                               UsingShadowDecl *Pattern) {
489  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
490  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
491}
492
493FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
494  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
495    = InstantiatedFromUnnamedFieldDecl.find(Field);
496  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
497    return 0;
498
499  return Pos->second;
500}
501
502void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
503                                                     FieldDecl *Tmpl) {
504  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
505  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
506  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
507         "Already noted what unnamed field was instantiated from");
508
509  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
510}
511
512ASTContext::overridden_cxx_method_iterator
513ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
514  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
515    = OverriddenMethods.find(Method);
516  if (Pos == OverriddenMethods.end())
517    return 0;
518
519  return Pos->second.begin();
520}
521
522ASTContext::overridden_cxx_method_iterator
523ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
524  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
525    = OverriddenMethods.find(Method);
526  if (Pos == OverriddenMethods.end())
527    return 0;
528
529  return Pos->second.end();
530}
531
532unsigned
533ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
534  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
535    = OverriddenMethods.find(Method);
536  if (Pos == OverriddenMethods.end())
537    return 0;
538
539  return Pos->second.size();
540}
541
542void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
543                                     const CXXMethodDecl *Overridden) {
544  OverriddenMethods[Method].push_back(Overridden);
545}
546
547//===----------------------------------------------------------------------===//
548//                         Type Sizing and Analysis
549//===----------------------------------------------------------------------===//
550
551/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
552/// scalar floating point type.
553const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
554  const BuiltinType *BT = T->getAs<BuiltinType>();
555  assert(BT && "Not a floating point type!");
556  switch (BT->getKind()) {
557  default: assert(0 && "Not a floating point type!");
558  case BuiltinType::Float:      return Target.getFloatFormat();
559  case BuiltinType::Double:     return Target.getDoubleFormat();
560  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
561  }
562}
563
564/// getDeclAlign - Return a conservative estimate of the alignment of the
565/// specified decl.  Note that bitfields do not have a valid alignment, so
566/// this method will assert on them.
567/// If @p RefAsPointee, references are treated like their underlying type
568/// (for alignof), else they're treated like pointers (for CodeGen).
569CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
570  unsigned Align = Target.getCharWidth();
571
572  bool UseAlignAttrOnly = false;
573  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
574    Align = AlignFromAttr;
575
576    // __attribute__((aligned)) can increase or decrease alignment
577    // *except* on a struct or struct member, where it only increases
578    // alignment unless 'packed' is also specified.
579    //
580    // It is an error for [[align]] to decrease alignment, so we can
581    // ignore that possibility;  Sema should diagnose it.
582    if (isa<FieldDecl>(D)) {
583      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
584        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
585    } else {
586      UseAlignAttrOnly = true;
587    }
588  }
589
590  // If we're using the align attribute only, just ignore everything
591  // else about the declaration and its type.
592  if (UseAlignAttrOnly) {
593    // do nothing
594
595  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
596    QualType T = VD->getType();
597    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
598      if (RefAsPointee)
599        T = RT->getPointeeType();
600      else
601        T = getPointerType(RT->getPointeeType());
602    }
603    if (!T->isIncompleteType() && !T->isFunctionType()) {
604      // Adjust alignments of declarations with array type by the
605      // large-array alignment on the target.
606      unsigned MinWidth = Target.getLargeArrayMinWidth();
607      const ArrayType *arrayType;
608      if (MinWidth && (arrayType = getAsArrayType(T))) {
609        if (isa<VariableArrayType>(arrayType))
610          Align = std::max(Align, Target.getLargeArrayAlign());
611        else if (isa<ConstantArrayType>(arrayType) &&
612                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
613          Align = std::max(Align, Target.getLargeArrayAlign());
614
615        // Walk through any array types while we're at it.
616        T = getBaseElementType(arrayType);
617      }
618      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
619    }
620
621    // Fields can be subject to extra alignment constraints, like if
622    // the field is packed, the struct is packed, or the struct has a
623    // a max-field-alignment constraint (#pragma pack).  So calculate
624    // the actual alignment of the field within the struct, and then
625    // (as we're expected to) constrain that by the alignment of the type.
626    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
627      // So calculate the alignment of the field.
628      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
629
630      // Start with the record's overall alignment.
631      unsigned fieldAlign = toBits(layout.getAlignment());
632
633      // Use the GCD of that and the offset within the record.
634      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
635      if (offset > 0) {
636        // Alignment is always a power of 2, so the GCD will be a power of 2,
637        // which means we get to do this crazy thing instead of Euclid's.
638        uint64_t lowBitOfOffset = offset & (~offset + 1);
639        if (lowBitOfOffset < fieldAlign)
640          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
641      }
642
643      Align = std::min(Align, fieldAlign);
644    }
645  }
646
647  return toCharUnitsFromBits(Align);
648}
649
650std::pair<CharUnits, CharUnits>
651ASTContext::getTypeInfoInChars(const Type *T) const {
652  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
653  return std::make_pair(toCharUnitsFromBits(Info.first),
654                        toCharUnitsFromBits(Info.second));
655}
656
657std::pair<CharUnits, CharUnits>
658ASTContext::getTypeInfoInChars(QualType T) const {
659  return getTypeInfoInChars(T.getTypePtr());
660}
661
662/// getTypeSize - Return the size of the specified type, in bits.  This method
663/// does not work on incomplete types.
664///
665/// FIXME: Pointers into different addr spaces could have different sizes and
666/// alignment requirements: getPointerInfo should take an AddrSpace, this
667/// should take a QualType, &c.
668std::pair<uint64_t, unsigned>
669ASTContext::getTypeInfo(const Type *T) const {
670  uint64_t Width=0;
671  unsigned Align=8;
672  switch (T->getTypeClass()) {
673#define TYPE(Class, Base)
674#define ABSTRACT_TYPE(Class, Base)
675#define NON_CANONICAL_TYPE(Class, Base)
676#define DEPENDENT_TYPE(Class, Base) case Type::Class:
677#include "clang/AST/TypeNodes.def"
678    assert(false && "Should not see dependent types");
679    break;
680
681  case Type::FunctionNoProto:
682  case Type::FunctionProto:
683    // GCC extension: alignof(function) = 32 bits
684    Width = 0;
685    Align = 32;
686    break;
687
688  case Type::IncompleteArray:
689  case Type::VariableArray:
690    Width = 0;
691    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
692    break;
693
694  case Type::ConstantArray: {
695    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
696
697    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
698    Width = EltInfo.first*CAT->getSize().getZExtValue();
699    Align = EltInfo.second;
700    break;
701  }
702  case Type::ExtVector:
703  case Type::Vector: {
704    const VectorType *VT = cast<VectorType>(T);
705    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
706    Width = EltInfo.first*VT->getNumElements();
707    Align = Width;
708    // If the alignment is not a power of 2, round up to the next power of 2.
709    // This happens for non-power-of-2 length vectors.
710    if (Align & (Align-1)) {
711      Align = llvm::NextPowerOf2(Align);
712      Width = llvm::RoundUpToAlignment(Width, Align);
713    }
714    break;
715  }
716
717  case Type::Builtin:
718    switch (cast<BuiltinType>(T)->getKind()) {
719    default: assert(0 && "Unknown builtin type!");
720    case BuiltinType::Void:
721      // GCC extension: alignof(void) = 8 bits.
722      Width = 0;
723      Align = 8;
724      break;
725
726    case BuiltinType::Bool:
727      Width = Target.getBoolWidth();
728      Align = Target.getBoolAlign();
729      break;
730    case BuiltinType::Char_S:
731    case BuiltinType::Char_U:
732    case BuiltinType::UChar:
733    case BuiltinType::SChar:
734      Width = Target.getCharWidth();
735      Align = Target.getCharAlign();
736      break;
737    case BuiltinType::WChar_S:
738    case BuiltinType::WChar_U:
739      Width = Target.getWCharWidth();
740      Align = Target.getWCharAlign();
741      break;
742    case BuiltinType::Char16:
743      Width = Target.getChar16Width();
744      Align = Target.getChar16Align();
745      break;
746    case BuiltinType::Char32:
747      Width = Target.getChar32Width();
748      Align = Target.getChar32Align();
749      break;
750    case BuiltinType::UShort:
751    case BuiltinType::Short:
752      Width = Target.getShortWidth();
753      Align = Target.getShortAlign();
754      break;
755    case BuiltinType::UInt:
756    case BuiltinType::Int:
757      Width = Target.getIntWidth();
758      Align = Target.getIntAlign();
759      break;
760    case BuiltinType::ULong:
761    case BuiltinType::Long:
762      Width = Target.getLongWidth();
763      Align = Target.getLongAlign();
764      break;
765    case BuiltinType::ULongLong:
766    case BuiltinType::LongLong:
767      Width = Target.getLongLongWidth();
768      Align = Target.getLongLongAlign();
769      break;
770    case BuiltinType::Int128:
771    case BuiltinType::UInt128:
772      Width = 128;
773      Align = 128; // int128_t is 128-bit aligned on all targets.
774      break;
775    case BuiltinType::Float:
776      Width = Target.getFloatWidth();
777      Align = Target.getFloatAlign();
778      break;
779    case BuiltinType::Double:
780      Width = Target.getDoubleWidth();
781      Align = Target.getDoubleAlign();
782      break;
783    case BuiltinType::LongDouble:
784      Width = Target.getLongDoubleWidth();
785      Align = Target.getLongDoubleAlign();
786      break;
787    case BuiltinType::NullPtr:
788      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
789      Align = Target.getPointerAlign(0); //   == sizeof(void*)
790      break;
791    case BuiltinType::ObjCId:
792    case BuiltinType::ObjCClass:
793    case BuiltinType::ObjCSel:
794      Width = Target.getPointerWidth(0);
795      Align = Target.getPointerAlign(0);
796      break;
797    }
798    break;
799  case Type::ObjCObjectPointer:
800    Width = Target.getPointerWidth(0);
801    Align = Target.getPointerAlign(0);
802    break;
803  case Type::BlockPointer: {
804    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
805    Width = Target.getPointerWidth(AS);
806    Align = Target.getPointerAlign(AS);
807    break;
808  }
809  case Type::LValueReference:
810  case Type::RValueReference: {
811    // alignof and sizeof should never enter this code path here, so we go
812    // the pointer route.
813    unsigned AS = cast<ReferenceType>(T)->getPointeeType().getAddressSpace();
814    Width = Target.getPointerWidth(AS);
815    Align = Target.getPointerAlign(AS);
816    break;
817  }
818  case Type::Pointer: {
819    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
820    Width = Target.getPointerWidth(AS);
821    Align = Target.getPointerAlign(AS);
822    break;
823  }
824  case Type::MemberPointer: {
825    const MemberPointerType *MPT = cast<MemberPointerType>(T);
826    std::pair<uint64_t, unsigned> PtrDiffInfo =
827      getTypeInfo(getPointerDiffType());
828    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
829    Align = PtrDiffInfo.second;
830    break;
831  }
832  case Type::Complex: {
833    // Complex types have the same alignment as their elements, but twice the
834    // size.
835    std::pair<uint64_t, unsigned> EltInfo =
836      getTypeInfo(cast<ComplexType>(T)->getElementType());
837    Width = EltInfo.first*2;
838    Align = EltInfo.second;
839    break;
840  }
841  case Type::ObjCObject:
842    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
843  case Type::ObjCInterface: {
844    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
845    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
846    Width = toBits(Layout.getSize());
847    Align = toBits(Layout.getAlignment());
848    break;
849  }
850  case Type::Record:
851  case Type::Enum: {
852    const TagType *TT = cast<TagType>(T);
853
854    if (TT->getDecl()->isInvalidDecl()) {
855      Width = 1;
856      Align = 1;
857      break;
858    }
859
860    if (const EnumType *ET = dyn_cast<EnumType>(TT))
861      return getTypeInfo(ET->getDecl()->getIntegerType());
862
863    const RecordType *RT = cast<RecordType>(TT);
864    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
865    Width = toBits(Layout.getSize());
866    Align = toBits(Layout.getAlignment());
867    break;
868  }
869
870  case Type::SubstTemplateTypeParm:
871    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
872                       getReplacementType().getTypePtr());
873
874  case Type::Auto: {
875    const AutoType *A = cast<AutoType>(T);
876    assert(A->isDeduced() && "Cannot request the size of a dependent type");
877    return getTypeInfo(A->getDeducedType().getTypePtr());
878  }
879
880  case Type::Paren:
881    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
882
883  case Type::Typedef: {
884    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
885    std::pair<uint64_t, unsigned> Info
886      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
887    // If the typedef has an aligned attribute on it, it overrides any computed
888    // alignment we have.  This violates the GCC documentation (which says that
889    // attribute(aligned) can only round up) but matches its implementation.
890    if (unsigned AttrAlign = Typedef->getMaxAlignment())
891      Align = AttrAlign;
892    else
893      Align = Info.second;
894    Width = Info.first;
895    break;
896  }
897
898  case Type::TypeOfExpr:
899    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
900                         .getTypePtr());
901
902  case Type::TypeOf:
903    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
904
905  case Type::Decltype:
906    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
907                        .getTypePtr());
908
909  case Type::Elaborated:
910    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
911
912  case Type::Attributed:
913    return getTypeInfo(
914                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
915
916  case Type::TemplateSpecialization:
917    assert(getCanonicalType(T) != T &&
918           "Cannot request the size of a dependent type");
919    // FIXME: this is likely to be wrong once we support template
920    // aliases, since a template alias could refer to a typedef that
921    // has an __aligned__ attribute on it.
922    return getTypeInfo(getCanonicalType(T));
923  }
924
925  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
926  return std::make_pair(Width, Align);
927}
928
929/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
930CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
931  return CharUnits::fromQuantity(BitSize / getCharWidth());
932}
933
934/// toBits - Convert a size in characters to a size in characters.
935int64_t ASTContext::toBits(CharUnits CharSize) const {
936  return CharSize.getQuantity() * getCharWidth();
937}
938
939/// getTypeSizeInChars - Return the size of the specified type, in characters.
940/// This method does not work on incomplete types.
941CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
942  return toCharUnitsFromBits(getTypeSize(T));
943}
944CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
945  return toCharUnitsFromBits(getTypeSize(T));
946}
947
948/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
949/// characters. This method does not work on incomplete types.
950CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
951  return toCharUnitsFromBits(getTypeAlign(T));
952}
953CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
954  return toCharUnitsFromBits(getTypeAlign(T));
955}
956
957/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
958/// type for the current target in bits.  This can be different than the ABI
959/// alignment in cases where it is beneficial for performance to overalign
960/// a data type.
961unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
962  unsigned ABIAlign = getTypeAlign(T);
963
964  // Double and long long should be naturally aligned if possible.
965  if (const ComplexType* CT = T->getAs<ComplexType>())
966    T = CT->getElementType().getTypePtr();
967  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
968      T->isSpecificBuiltinType(BuiltinType::LongLong))
969    return std::max(ABIAlign, (unsigned)getTypeSize(T));
970
971  return ABIAlign;
972}
973
974/// ShallowCollectObjCIvars -
975/// Collect all ivars, including those synthesized, in the current class.
976///
977void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
978                            llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) const {
979  // FIXME. This need be removed but there are two many places which
980  // assume const-ness of ObjCInterfaceDecl
981  ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
982  for (ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
983        Iv= Iv->getNextIvar())
984    Ivars.push_back(Iv);
985}
986
987/// DeepCollectObjCIvars -
988/// This routine first collects all declared, but not synthesized, ivars in
989/// super class and then collects all ivars, including those synthesized for
990/// current class. This routine is used for implementation of current class
991/// when all ivars, declared and synthesized are known.
992///
993void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
994                                      bool leafClass,
995                            llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) const {
996  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
997    DeepCollectObjCIvars(SuperClass, false, Ivars);
998  if (!leafClass) {
999    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1000         E = OI->ivar_end(); I != E; ++I)
1001      Ivars.push_back(*I);
1002  }
1003  else
1004    ShallowCollectObjCIvars(OI, Ivars);
1005}
1006
1007/// CollectInheritedProtocols - Collect all protocols in current class and
1008/// those inherited by it.
1009void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1010                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1011  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1012    // We can use protocol_iterator here instead of
1013    // all_referenced_protocol_iterator since we are walking all categories.
1014    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1015         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1016      ObjCProtocolDecl *Proto = (*P);
1017      Protocols.insert(Proto);
1018      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1019           PE = Proto->protocol_end(); P != PE; ++P) {
1020        Protocols.insert(*P);
1021        CollectInheritedProtocols(*P, Protocols);
1022      }
1023    }
1024
1025    // Categories of this Interface.
1026    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
1027         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
1028      CollectInheritedProtocols(CDeclChain, Protocols);
1029    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1030      while (SD) {
1031        CollectInheritedProtocols(SD, Protocols);
1032        SD = SD->getSuperClass();
1033      }
1034  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1035    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1036         PE = OC->protocol_end(); P != PE; ++P) {
1037      ObjCProtocolDecl *Proto = (*P);
1038      Protocols.insert(Proto);
1039      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1040           PE = Proto->protocol_end(); P != PE; ++P)
1041        CollectInheritedProtocols(*P, Protocols);
1042    }
1043  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1044    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1045         PE = OP->protocol_end(); P != PE; ++P) {
1046      ObjCProtocolDecl *Proto = (*P);
1047      Protocols.insert(Proto);
1048      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1049           PE = Proto->protocol_end(); P != PE; ++P)
1050        CollectInheritedProtocols(*P, Protocols);
1051    }
1052  }
1053}
1054
1055unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1056  unsigned count = 0;
1057  // Count ivars declared in class extension.
1058  for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
1059       CDecl = CDecl->getNextClassExtension())
1060    count += CDecl->ivar_size();
1061
1062  // Count ivar defined in this class's implementation.  This
1063  // includes synthesized ivars.
1064  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1065    count += ImplDecl->ivar_size();
1066
1067  return count;
1068}
1069
1070/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1071ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1072  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1073    I = ObjCImpls.find(D);
1074  if (I != ObjCImpls.end())
1075    return cast<ObjCImplementationDecl>(I->second);
1076  return 0;
1077}
1078/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1079ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1080  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1081    I = ObjCImpls.find(D);
1082  if (I != ObjCImpls.end())
1083    return cast<ObjCCategoryImplDecl>(I->second);
1084  return 0;
1085}
1086
1087/// \brief Set the implementation of ObjCInterfaceDecl.
1088void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1089                           ObjCImplementationDecl *ImplD) {
1090  assert(IFaceD && ImplD && "Passed null params");
1091  ObjCImpls[IFaceD] = ImplD;
1092}
1093/// \brief Set the implementation of ObjCCategoryDecl.
1094void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1095                           ObjCCategoryImplDecl *ImplD) {
1096  assert(CatD && ImplD && "Passed null params");
1097  ObjCImpls[CatD] = ImplD;
1098}
1099
1100/// \brief Get the copy initialization expression of VarDecl,or NULL if
1101/// none exists.
1102Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1103  assert(VD && "Passed null params");
1104  assert(VD->hasAttr<BlocksAttr>() &&
1105         "getBlockVarCopyInits - not __block var");
1106  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1107    I = BlockVarCopyInits.find(VD);
1108  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1109}
1110
1111/// \brief Set the copy inialization expression of a block var decl.
1112void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1113  assert(VD && Init && "Passed null params");
1114  assert(VD->hasAttr<BlocksAttr>() &&
1115         "setBlockVarCopyInits - not __block var");
1116  BlockVarCopyInits[VD] = Init;
1117}
1118
1119/// \brief Allocate an uninitialized TypeSourceInfo.
1120///
1121/// The caller should initialize the memory held by TypeSourceInfo using
1122/// the TypeLoc wrappers.
1123///
1124/// \param T the type that will be the basis for type source info. This type
1125/// should refer to how the declarator was written in source code, not to
1126/// what type semantic analysis resolved the declarator to.
1127TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1128                                                 unsigned DataSize) const {
1129  if (!DataSize)
1130    DataSize = TypeLoc::getFullDataSizeForType(T);
1131  else
1132    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1133           "incorrect data size provided to CreateTypeSourceInfo!");
1134
1135  TypeSourceInfo *TInfo =
1136    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1137  new (TInfo) TypeSourceInfo(T);
1138  return TInfo;
1139}
1140
1141TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1142                                                     SourceLocation L) const {
1143  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1144  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1145  return DI;
1146}
1147
1148const ASTRecordLayout &
1149ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1150  return getObjCLayout(D, 0);
1151}
1152
1153const ASTRecordLayout &
1154ASTContext::getASTObjCImplementationLayout(
1155                                        const ObjCImplementationDecl *D) const {
1156  return getObjCLayout(D->getClassInterface(), D);
1157}
1158
1159//===----------------------------------------------------------------------===//
1160//                   Type creation/memoization methods
1161//===----------------------------------------------------------------------===//
1162
1163QualType
1164ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1165  unsigned fastQuals = quals.getFastQualifiers();
1166  quals.removeFastQualifiers();
1167
1168  // Check if we've already instantiated this type.
1169  llvm::FoldingSetNodeID ID;
1170  ExtQuals::Profile(ID, baseType, quals);
1171  void *insertPos = 0;
1172  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1173    assert(eq->getQualifiers() == quals);
1174    return QualType(eq, fastQuals);
1175  }
1176
1177  // If the base type is not canonical, make the appropriate canonical type.
1178  QualType canon;
1179  if (!baseType->isCanonicalUnqualified()) {
1180    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1181    canonSplit.second.addConsistentQualifiers(quals);
1182    canon = getExtQualType(canonSplit.first, canonSplit.second);
1183
1184    // Re-find the insert position.
1185    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1186  }
1187
1188  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1189  ExtQualNodes.InsertNode(eq, insertPos);
1190  return QualType(eq, fastQuals);
1191}
1192
1193QualType
1194ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1195  QualType CanT = getCanonicalType(T);
1196  if (CanT.getAddressSpace() == AddressSpace)
1197    return T;
1198
1199  // If we are composing extended qualifiers together, merge together
1200  // into one ExtQuals node.
1201  QualifierCollector Quals;
1202  const Type *TypeNode = Quals.strip(T);
1203
1204  // If this type already has an address space specified, it cannot get
1205  // another one.
1206  assert(!Quals.hasAddressSpace() &&
1207         "Type cannot be in multiple addr spaces!");
1208  Quals.addAddressSpace(AddressSpace);
1209
1210  return getExtQualType(TypeNode, Quals);
1211}
1212
1213QualType ASTContext::getObjCGCQualType(QualType T,
1214                                       Qualifiers::GC GCAttr) const {
1215  QualType CanT = getCanonicalType(T);
1216  if (CanT.getObjCGCAttr() == GCAttr)
1217    return T;
1218
1219  if (const PointerType *ptr = T->getAs<PointerType>()) {
1220    QualType Pointee = ptr->getPointeeType();
1221    if (Pointee->isAnyPointerType()) {
1222      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1223      return getPointerType(ResultType);
1224    }
1225  }
1226
1227  // If we are composing extended qualifiers together, merge together
1228  // into one ExtQuals node.
1229  QualifierCollector Quals;
1230  const Type *TypeNode = Quals.strip(T);
1231
1232  // If this type already has an ObjCGC specified, it cannot get
1233  // another one.
1234  assert(!Quals.hasObjCGCAttr() &&
1235         "Type cannot have multiple ObjCGCs!");
1236  Quals.addObjCGCAttr(GCAttr);
1237
1238  return getExtQualType(TypeNode, Quals);
1239}
1240
1241const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1242                                                   FunctionType::ExtInfo Info) {
1243  if (T->getExtInfo() == Info)
1244    return T;
1245
1246  QualType Result;
1247  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1248    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1249  } else {
1250    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1251    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1252    EPI.ExtInfo = Info;
1253    Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1254                             FPT->getNumArgs(), EPI);
1255  }
1256
1257  return cast<FunctionType>(Result.getTypePtr());
1258}
1259
1260/// getComplexType - Return the uniqued reference to the type for a complex
1261/// number with the specified element type.
1262QualType ASTContext::getComplexType(QualType T) const {
1263  // Unique pointers, to guarantee there is only one pointer of a particular
1264  // structure.
1265  llvm::FoldingSetNodeID ID;
1266  ComplexType::Profile(ID, T);
1267
1268  void *InsertPos = 0;
1269  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1270    return QualType(CT, 0);
1271
1272  // If the pointee type isn't canonical, this won't be a canonical type either,
1273  // so fill in the canonical type field.
1274  QualType Canonical;
1275  if (!T.isCanonical()) {
1276    Canonical = getComplexType(getCanonicalType(T));
1277
1278    // Get the new insert position for the node we care about.
1279    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1280    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1281  }
1282  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1283  Types.push_back(New);
1284  ComplexTypes.InsertNode(New, InsertPos);
1285  return QualType(New, 0);
1286}
1287
1288/// getPointerType - Return the uniqued reference to the type for a pointer to
1289/// the specified type.
1290QualType ASTContext::getPointerType(QualType T) const {
1291  // Unique pointers, to guarantee there is only one pointer of a particular
1292  // structure.
1293  llvm::FoldingSetNodeID ID;
1294  PointerType::Profile(ID, T);
1295
1296  void *InsertPos = 0;
1297  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1298    return QualType(PT, 0);
1299
1300  // If the pointee type isn't canonical, this won't be a canonical type either,
1301  // so fill in the canonical type field.
1302  QualType Canonical;
1303  if (!T.isCanonical()) {
1304    Canonical = getPointerType(getCanonicalType(T));
1305
1306    // Get the new insert position for the node we care about.
1307    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1308    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1309  }
1310  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1311  Types.push_back(New);
1312  PointerTypes.InsertNode(New, InsertPos);
1313  return QualType(New, 0);
1314}
1315
1316/// getBlockPointerType - Return the uniqued reference to the type for
1317/// a pointer to the specified block.
1318QualType ASTContext::getBlockPointerType(QualType T) const {
1319  assert(T->isFunctionType() && "block of function types only");
1320  // Unique pointers, to guarantee there is only one block of a particular
1321  // structure.
1322  llvm::FoldingSetNodeID ID;
1323  BlockPointerType::Profile(ID, T);
1324
1325  void *InsertPos = 0;
1326  if (BlockPointerType *PT =
1327        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1328    return QualType(PT, 0);
1329
1330  // If the block pointee type isn't canonical, this won't be a canonical
1331  // type either so fill in the canonical type field.
1332  QualType Canonical;
1333  if (!T.isCanonical()) {
1334    Canonical = getBlockPointerType(getCanonicalType(T));
1335
1336    // Get the new insert position for the node we care about.
1337    BlockPointerType *NewIP =
1338      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1339    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1340  }
1341  BlockPointerType *New
1342    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1343  Types.push_back(New);
1344  BlockPointerTypes.InsertNode(New, InsertPos);
1345  return QualType(New, 0);
1346}
1347
1348/// getLValueReferenceType - Return the uniqued reference to the type for an
1349/// lvalue reference to the specified type.
1350QualType
1351ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
1352  // Unique pointers, to guarantee there is only one pointer of a particular
1353  // structure.
1354  llvm::FoldingSetNodeID ID;
1355  ReferenceType::Profile(ID, T, SpelledAsLValue);
1356
1357  void *InsertPos = 0;
1358  if (LValueReferenceType *RT =
1359        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1360    return QualType(RT, 0);
1361
1362  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1363
1364  // If the referencee type isn't canonical, this won't be a canonical type
1365  // either, so fill in the canonical type field.
1366  QualType Canonical;
1367  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1368    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1369    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1370
1371    // Get the new insert position for the node we care about.
1372    LValueReferenceType *NewIP =
1373      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1374    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1375  }
1376
1377  LValueReferenceType *New
1378    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1379                                                     SpelledAsLValue);
1380  Types.push_back(New);
1381  LValueReferenceTypes.InsertNode(New, InsertPos);
1382
1383  return QualType(New, 0);
1384}
1385
1386/// getRValueReferenceType - Return the uniqued reference to the type for an
1387/// rvalue reference to the specified type.
1388QualType ASTContext::getRValueReferenceType(QualType T) const {
1389  // Unique pointers, to guarantee there is only one pointer of a particular
1390  // structure.
1391  llvm::FoldingSetNodeID ID;
1392  ReferenceType::Profile(ID, T, false);
1393
1394  void *InsertPos = 0;
1395  if (RValueReferenceType *RT =
1396        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1397    return QualType(RT, 0);
1398
1399  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1400
1401  // If the referencee type isn't canonical, this won't be a canonical type
1402  // either, so fill in the canonical type field.
1403  QualType Canonical;
1404  if (InnerRef || !T.isCanonical()) {
1405    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1406    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1407
1408    // Get the new insert position for the node we care about.
1409    RValueReferenceType *NewIP =
1410      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1411    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1412  }
1413
1414  RValueReferenceType *New
1415    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1416  Types.push_back(New);
1417  RValueReferenceTypes.InsertNode(New, InsertPos);
1418  return QualType(New, 0);
1419}
1420
1421/// getMemberPointerType - Return the uniqued reference to the type for a
1422/// member pointer to the specified type, in the specified class.
1423QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
1424  // Unique pointers, to guarantee there is only one pointer of a particular
1425  // structure.
1426  llvm::FoldingSetNodeID ID;
1427  MemberPointerType::Profile(ID, T, Cls);
1428
1429  void *InsertPos = 0;
1430  if (MemberPointerType *PT =
1431      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1432    return QualType(PT, 0);
1433
1434  // If the pointee or class type isn't canonical, this won't be a canonical
1435  // type either, so fill in the canonical type field.
1436  QualType Canonical;
1437  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1438    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1439
1440    // Get the new insert position for the node we care about.
1441    MemberPointerType *NewIP =
1442      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1443    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1444  }
1445  MemberPointerType *New
1446    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1447  Types.push_back(New);
1448  MemberPointerTypes.InsertNode(New, InsertPos);
1449  return QualType(New, 0);
1450}
1451
1452/// getConstantArrayType - Return the unique reference to the type for an
1453/// array of the specified element type.
1454QualType ASTContext::getConstantArrayType(QualType EltTy,
1455                                          const llvm::APInt &ArySizeIn,
1456                                          ArrayType::ArraySizeModifier ASM,
1457                                          unsigned IndexTypeQuals) const {
1458  assert((EltTy->isDependentType() ||
1459          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1460         "Constant array of VLAs is illegal!");
1461
1462  // Convert the array size into a canonical width matching the pointer size for
1463  // the target.
1464  llvm::APInt ArySize(ArySizeIn);
1465  ArySize =
1466    ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1467
1468  llvm::FoldingSetNodeID ID;
1469  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
1470
1471  void *InsertPos = 0;
1472  if (ConstantArrayType *ATP =
1473      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1474    return QualType(ATP, 0);
1475
1476  // If the element type isn't canonical or has qualifiers, this won't
1477  // be a canonical type either, so fill in the canonical type field.
1478  QualType Canon;
1479  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1480    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1481    Canon = getConstantArrayType(QualType(canonSplit.first, 0), ArySize,
1482                                 ASM, IndexTypeQuals);
1483    Canon = getQualifiedType(Canon, canonSplit.second);
1484
1485    // Get the new insert position for the node we care about.
1486    ConstantArrayType *NewIP =
1487      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1488    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1489  }
1490
1491  ConstantArrayType *New = new(*this,TypeAlignment)
1492    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
1493  ConstantArrayTypes.InsertNode(New, InsertPos);
1494  Types.push_back(New);
1495  return QualType(New, 0);
1496}
1497
1498/// getVariableArrayDecayedType - Turns the given type, which may be
1499/// variably-modified, into the corresponding type with all the known
1500/// sizes replaced with [*].
1501QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
1502  // Vastly most common case.
1503  if (!type->isVariablyModifiedType()) return type;
1504
1505  QualType result;
1506
1507  SplitQualType split = type.getSplitDesugaredType();
1508  const Type *ty = split.first;
1509  switch (ty->getTypeClass()) {
1510#define TYPE(Class, Base)
1511#define ABSTRACT_TYPE(Class, Base)
1512#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1513#include "clang/AST/TypeNodes.def"
1514    llvm_unreachable("didn't desugar past all non-canonical types?");
1515
1516  // These types should never be variably-modified.
1517  case Type::Builtin:
1518  case Type::Complex:
1519  case Type::Vector:
1520  case Type::ExtVector:
1521  case Type::DependentSizedExtVector:
1522  case Type::ObjCObject:
1523  case Type::ObjCInterface:
1524  case Type::ObjCObjectPointer:
1525  case Type::Record:
1526  case Type::Enum:
1527  case Type::UnresolvedUsing:
1528  case Type::TypeOfExpr:
1529  case Type::TypeOf:
1530  case Type::Decltype:
1531  case Type::DependentName:
1532  case Type::InjectedClassName:
1533  case Type::TemplateSpecialization:
1534  case Type::DependentTemplateSpecialization:
1535  case Type::TemplateTypeParm:
1536  case Type::SubstTemplateTypeParmPack:
1537  case Type::Auto:
1538  case Type::PackExpansion:
1539    llvm_unreachable("type should never be variably-modified");
1540
1541  // These types can be variably-modified but should never need to
1542  // further decay.
1543  case Type::FunctionNoProto:
1544  case Type::FunctionProto:
1545  case Type::BlockPointer:
1546  case Type::MemberPointer:
1547    return type;
1548
1549  // These types can be variably-modified.  All these modifications
1550  // preserve structure except as noted by comments.
1551  // TODO: if we ever care about optimizing VLAs, there are no-op
1552  // optimizations available here.
1553  case Type::Pointer:
1554    result = getPointerType(getVariableArrayDecayedType(
1555                              cast<PointerType>(ty)->getPointeeType()));
1556    break;
1557
1558  case Type::LValueReference: {
1559    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
1560    result = getLValueReferenceType(
1561                 getVariableArrayDecayedType(lv->getPointeeType()),
1562                                    lv->isSpelledAsLValue());
1563    break;
1564  }
1565
1566  case Type::RValueReference: {
1567    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
1568    result = getRValueReferenceType(
1569                 getVariableArrayDecayedType(lv->getPointeeType()));
1570    break;
1571  }
1572
1573  case Type::ConstantArray: {
1574    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
1575    result = getConstantArrayType(
1576                 getVariableArrayDecayedType(cat->getElementType()),
1577                                  cat->getSize(),
1578                                  cat->getSizeModifier(),
1579                                  cat->getIndexTypeCVRQualifiers());
1580    break;
1581  }
1582
1583  case Type::DependentSizedArray: {
1584    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
1585    result = getDependentSizedArrayType(
1586                 getVariableArrayDecayedType(dat->getElementType()),
1587                                        dat->getSizeExpr(),
1588                                        dat->getSizeModifier(),
1589                                        dat->getIndexTypeCVRQualifiers(),
1590                                        dat->getBracketsRange());
1591    break;
1592  }
1593
1594  // Turn incomplete types into [*] types.
1595  case Type::IncompleteArray: {
1596    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
1597    result = getVariableArrayType(
1598                 getVariableArrayDecayedType(iat->getElementType()),
1599                                  /*size*/ 0,
1600                                  ArrayType::Normal,
1601                                  iat->getIndexTypeCVRQualifiers(),
1602                                  SourceRange());
1603    break;
1604  }
1605
1606  // Turn VLA types into [*] types.
1607  case Type::VariableArray: {
1608    const VariableArrayType *vat = cast<VariableArrayType>(ty);
1609    result = getVariableArrayType(
1610                 getVariableArrayDecayedType(vat->getElementType()),
1611                                  /*size*/ 0,
1612                                  ArrayType::Star,
1613                                  vat->getIndexTypeCVRQualifiers(),
1614                                  vat->getBracketsRange());
1615    break;
1616  }
1617  }
1618
1619  // Apply the top-level qualifiers from the original.
1620  return getQualifiedType(result, split.second);
1621}
1622
1623/// getVariableArrayType - Returns a non-unique reference to the type for a
1624/// variable array of the specified element type.
1625QualType ASTContext::getVariableArrayType(QualType EltTy,
1626                                          Expr *NumElts,
1627                                          ArrayType::ArraySizeModifier ASM,
1628                                          unsigned IndexTypeQuals,
1629                                          SourceRange Brackets) const {
1630  // Since we don't unique expressions, it isn't possible to unique VLA's
1631  // that have an expression provided for their size.
1632  QualType Canon;
1633
1634  // Be sure to pull qualifiers off the element type.
1635  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1636    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1637    Canon = getVariableArrayType(QualType(canonSplit.first, 0), NumElts, ASM,
1638                                 IndexTypeQuals, Brackets);
1639    Canon = getQualifiedType(Canon, canonSplit.second);
1640  }
1641
1642  VariableArrayType *New = new(*this, TypeAlignment)
1643    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
1644
1645  VariableArrayTypes.push_back(New);
1646  Types.push_back(New);
1647  return QualType(New, 0);
1648}
1649
1650/// getDependentSizedArrayType - Returns a non-unique reference to
1651/// the type for a dependently-sized array of the specified element
1652/// type.
1653QualType ASTContext::getDependentSizedArrayType(QualType elementType,
1654                                                Expr *numElements,
1655                                                ArrayType::ArraySizeModifier ASM,
1656                                                unsigned elementTypeQuals,
1657                                                SourceRange brackets) const {
1658  assert((!numElements || numElements->isTypeDependent() ||
1659          numElements->isValueDependent()) &&
1660         "Size must be type- or value-dependent!");
1661
1662  // Dependently-sized array types that do not have a specified number
1663  // of elements will have their sizes deduced from a dependent
1664  // initializer.  We do no canonicalization here at all, which is okay
1665  // because they can't be used in most locations.
1666  if (!numElements) {
1667    DependentSizedArrayType *newType
1668      = new (*this, TypeAlignment)
1669          DependentSizedArrayType(*this, elementType, QualType(),
1670                                  numElements, ASM, elementTypeQuals,
1671                                  brackets);
1672    Types.push_back(newType);
1673    return QualType(newType, 0);
1674  }
1675
1676  // Otherwise, we actually build a new type every time, but we
1677  // also build a canonical type.
1678
1679  SplitQualType canonElementType = getCanonicalType(elementType).split();
1680
1681  void *insertPos = 0;
1682  llvm::FoldingSetNodeID ID;
1683  DependentSizedArrayType::Profile(ID, *this,
1684                                   QualType(canonElementType.first, 0),
1685                                   ASM, elementTypeQuals, numElements);
1686
1687  // Look for an existing type with these properties.
1688  DependentSizedArrayType *canonTy =
1689    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1690
1691  // If we don't have one, build one.
1692  if (!canonTy) {
1693    canonTy = new (*this, TypeAlignment)
1694      DependentSizedArrayType(*this, QualType(canonElementType.first, 0),
1695                              QualType(), numElements, ASM, elementTypeQuals,
1696                              brackets);
1697    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
1698    Types.push_back(canonTy);
1699  }
1700
1701  // Apply qualifiers from the element type to the array.
1702  QualType canon = getQualifiedType(QualType(canonTy,0),
1703                                    canonElementType.second);
1704
1705  // If we didn't need extra canonicalization for the element type,
1706  // then just use that as our result.
1707  if (QualType(canonElementType.first, 0) == elementType)
1708    return canon;
1709
1710  // Otherwise, we need to build a type which follows the spelling
1711  // of the element type.
1712  DependentSizedArrayType *sugaredType
1713    = new (*this, TypeAlignment)
1714        DependentSizedArrayType(*this, elementType, canon, numElements,
1715                                ASM, elementTypeQuals, brackets);
1716  Types.push_back(sugaredType);
1717  return QualType(sugaredType, 0);
1718}
1719
1720QualType ASTContext::getIncompleteArrayType(QualType elementType,
1721                                            ArrayType::ArraySizeModifier ASM,
1722                                            unsigned elementTypeQuals) const {
1723  llvm::FoldingSetNodeID ID;
1724  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
1725
1726  void *insertPos = 0;
1727  if (IncompleteArrayType *iat =
1728       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
1729    return QualType(iat, 0);
1730
1731  // If the element type isn't canonical, this won't be a canonical type
1732  // either, so fill in the canonical type field.  We also have to pull
1733  // qualifiers off the element type.
1734  QualType canon;
1735
1736  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
1737    SplitQualType canonSplit = getCanonicalType(elementType).split();
1738    canon = getIncompleteArrayType(QualType(canonSplit.first, 0),
1739                                   ASM, elementTypeQuals);
1740    canon = getQualifiedType(canon, canonSplit.second);
1741
1742    // Get the new insert position for the node we care about.
1743    IncompleteArrayType *existing =
1744      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1745    assert(!existing && "Shouldn't be in the map!"); (void) existing;
1746  }
1747
1748  IncompleteArrayType *newType = new (*this, TypeAlignment)
1749    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
1750
1751  IncompleteArrayTypes.InsertNode(newType, insertPos);
1752  Types.push_back(newType);
1753  return QualType(newType, 0);
1754}
1755
1756/// getVectorType - Return the unique reference to a vector type of
1757/// the specified element type and size. VectorType must be a built-in type.
1758QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
1759                                   VectorType::VectorKind VecKind) const {
1760  assert(vecType->isBuiltinType());
1761
1762  // Check if we've already instantiated a vector of this type.
1763  llvm::FoldingSetNodeID ID;
1764  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
1765
1766  void *InsertPos = 0;
1767  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1768    return QualType(VTP, 0);
1769
1770  // If the element type isn't canonical, this won't be a canonical type either,
1771  // so fill in the canonical type field.
1772  QualType Canonical;
1773  if (!vecType.isCanonical()) {
1774    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
1775
1776    // Get the new insert position for the node we care about.
1777    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1778    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1779  }
1780  VectorType *New = new (*this, TypeAlignment)
1781    VectorType(vecType, NumElts, Canonical, VecKind);
1782  VectorTypes.InsertNode(New, InsertPos);
1783  Types.push_back(New);
1784  return QualType(New, 0);
1785}
1786
1787/// getExtVectorType - Return the unique reference to an extended vector type of
1788/// the specified element type and size. VectorType must be a built-in type.
1789QualType
1790ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
1791  assert(vecType->isBuiltinType());
1792
1793  // Check if we've already instantiated a vector of this type.
1794  llvm::FoldingSetNodeID ID;
1795  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
1796                      VectorType::GenericVector);
1797  void *InsertPos = 0;
1798  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1799    return QualType(VTP, 0);
1800
1801  // If the element type isn't canonical, this won't be a canonical type either,
1802  // so fill in the canonical type field.
1803  QualType Canonical;
1804  if (!vecType.isCanonical()) {
1805    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1806
1807    // Get the new insert position for the node we care about.
1808    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1809    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1810  }
1811  ExtVectorType *New = new (*this, TypeAlignment)
1812    ExtVectorType(vecType, NumElts, Canonical);
1813  VectorTypes.InsertNode(New, InsertPos);
1814  Types.push_back(New);
1815  return QualType(New, 0);
1816}
1817
1818QualType
1819ASTContext::getDependentSizedExtVectorType(QualType vecType,
1820                                           Expr *SizeExpr,
1821                                           SourceLocation AttrLoc) const {
1822  llvm::FoldingSetNodeID ID;
1823  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1824                                       SizeExpr);
1825
1826  void *InsertPos = 0;
1827  DependentSizedExtVectorType *Canon
1828    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1829  DependentSizedExtVectorType *New;
1830  if (Canon) {
1831    // We already have a canonical version of this array type; use it as
1832    // the canonical type for a newly-built type.
1833    New = new (*this, TypeAlignment)
1834      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
1835                                  SizeExpr, AttrLoc);
1836  } else {
1837    QualType CanonVecTy = getCanonicalType(vecType);
1838    if (CanonVecTy == vecType) {
1839      New = new (*this, TypeAlignment)
1840        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
1841                                    AttrLoc);
1842
1843      DependentSizedExtVectorType *CanonCheck
1844        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1845      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
1846      (void)CanonCheck;
1847      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1848    } else {
1849      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1850                                                      SourceLocation());
1851      New = new (*this, TypeAlignment)
1852        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
1853    }
1854  }
1855
1856  Types.push_back(New);
1857  return QualType(New, 0);
1858}
1859
1860/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1861///
1862QualType
1863ASTContext::getFunctionNoProtoType(QualType ResultTy,
1864                                   const FunctionType::ExtInfo &Info) const {
1865  const CallingConv DefaultCC = Info.getCC();
1866  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
1867                               CC_X86StdCall : DefaultCC;
1868  // Unique functions, to guarantee there is only one function of a particular
1869  // structure.
1870  llvm::FoldingSetNodeID ID;
1871  FunctionNoProtoType::Profile(ID, ResultTy, Info);
1872
1873  void *InsertPos = 0;
1874  if (FunctionNoProtoType *FT =
1875        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1876    return QualType(FT, 0);
1877
1878  QualType Canonical;
1879  if (!ResultTy.isCanonical() ||
1880      getCanonicalCallConv(CallConv) != CallConv) {
1881    Canonical =
1882      getFunctionNoProtoType(getCanonicalType(ResultTy),
1883                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
1884
1885    // Get the new insert position for the node we care about.
1886    FunctionNoProtoType *NewIP =
1887      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1888    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1889  }
1890
1891  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
1892  FunctionNoProtoType *New = new (*this, TypeAlignment)
1893    FunctionNoProtoType(ResultTy, Canonical, newInfo);
1894  Types.push_back(New);
1895  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1896  return QualType(New, 0);
1897}
1898
1899/// getFunctionType - Return a normal function type with a typed argument
1900/// list.  isVariadic indicates whether the argument list includes '...'.
1901QualType
1902ASTContext::getFunctionType(QualType ResultTy,
1903                            const QualType *ArgArray, unsigned NumArgs,
1904                            const FunctionProtoType::ExtProtoInfo &EPI) const {
1905  // Unique functions, to guarantee there is only one function of a particular
1906  // structure.
1907  llvm::FoldingSetNodeID ID;
1908  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI);
1909
1910  void *InsertPos = 0;
1911  if (FunctionProtoType *FTP =
1912        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1913    return QualType(FTP, 0);
1914
1915  // Determine whether the type being created is already canonical or not.
1916  bool isCanonical= EPI.ExceptionSpecType == EST_None && ResultTy.isCanonical();
1917  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1918    if (!ArgArray[i].isCanonicalAsParam())
1919      isCanonical = false;
1920
1921  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
1922  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
1923                               CC_X86StdCall : DefaultCC;
1924
1925  // If this type isn't canonical, get the canonical version of it.
1926  // The exception spec is not part of the canonical type.
1927  QualType Canonical;
1928  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
1929    llvm::SmallVector<QualType, 16> CanonicalArgs;
1930    CanonicalArgs.reserve(NumArgs);
1931    for (unsigned i = 0; i != NumArgs; ++i)
1932      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
1933
1934    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
1935    CanonicalEPI.ExceptionSpecType = EST_None;
1936    CanonicalEPI.NumExceptions = 0;
1937    CanonicalEPI.ExtInfo
1938      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
1939
1940    Canonical = getFunctionType(getCanonicalType(ResultTy),
1941                                CanonicalArgs.data(), NumArgs,
1942                                CanonicalEPI);
1943
1944    // Get the new insert position for the node we care about.
1945    FunctionProtoType *NewIP =
1946      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1947    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1948  }
1949
1950  // FunctionProtoType objects are allocated with extra bytes after them
1951  // for two variable size arrays (for parameter and exception types) at the
1952  // end of them.
1953  size_t Size = sizeof(FunctionProtoType) +
1954                NumArgs * sizeof(QualType) +
1955                EPI.NumExceptions * sizeof(QualType);
1956  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
1957  FunctionProtoType::ExtProtoInfo newEPI = EPI;
1958  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
1959  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, newEPI);
1960  Types.push_back(FTP);
1961  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1962  return QualType(FTP, 0);
1963}
1964
1965#ifndef NDEBUG
1966static bool NeedsInjectedClassNameType(const RecordDecl *D) {
1967  if (!isa<CXXRecordDecl>(D)) return false;
1968  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
1969  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
1970    return true;
1971  if (RD->getDescribedClassTemplate() &&
1972      !isa<ClassTemplateSpecializationDecl>(RD))
1973    return true;
1974  return false;
1975}
1976#endif
1977
1978/// getInjectedClassNameType - Return the unique reference to the
1979/// injected class name type for the specified templated declaration.
1980QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
1981                                              QualType TST) const {
1982  assert(NeedsInjectedClassNameType(Decl));
1983  if (Decl->TypeForDecl) {
1984    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
1985  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDeclaration()) {
1986    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
1987    Decl->TypeForDecl = PrevDecl->TypeForDecl;
1988    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
1989  } else {
1990    Type *newType =
1991      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
1992    Decl->TypeForDecl = newType;
1993    Types.push_back(newType);
1994  }
1995  return QualType(Decl->TypeForDecl, 0);
1996}
1997
1998/// getTypeDeclType - Return the unique reference to the type for the
1999/// specified type declaration.
2000QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2001  assert(Decl && "Passed null for Decl param");
2002  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2003
2004  if (const TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
2005    return getTypedefType(Typedef);
2006
2007  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2008         "Template type parameter types are always available.");
2009
2010  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2011    assert(!Record->getPreviousDeclaration() &&
2012           "struct/union has previous declaration");
2013    assert(!NeedsInjectedClassNameType(Record));
2014    return getRecordType(Record);
2015  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2016    assert(!Enum->getPreviousDeclaration() &&
2017           "enum has previous declaration");
2018    return getEnumType(Enum);
2019  } else if (const UnresolvedUsingTypenameDecl *Using =
2020               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2021    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2022    Decl->TypeForDecl = newType;
2023    Types.push_back(newType);
2024  } else
2025    llvm_unreachable("TypeDecl without a type?");
2026
2027  return QualType(Decl->TypeForDecl, 0);
2028}
2029
2030/// getTypedefType - Return the unique reference to the type for the
2031/// specified typename decl.
2032QualType
2033ASTContext::getTypedefType(const TypedefDecl *Decl, QualType Canonical) const {
2034  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2035
2036  if (Canonical.isNull())
2037    Canonical = getCanonicalType(Decl->getUnderlyingType());
2038  TypedefType *newType = new(*this, TypeAlignment)
2039    TypedefType(Type::Typedef, Decl, Canonical);
2040  Decl->TypeForDecl = newType;
2041  Types.push_back(newType);
2042  return QualType(newType, 0);
2043}
2044
2045QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2046  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2047
2048  if (const RecordDecl *PrevDecl = Decl->getPreviousDeclaration())
2049    if (PrevDecl->TypeForDecl)
2050      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2051
2052  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2053  Decl->TypeForDecl = newType;
2054  Types.push_back(newType);
2055  return QualType(newType, 0);
2056}
2057
2058QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2059  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2060
2061  if (const EnumDecl *PrevDecl = Decl->getPreviousDeclaration())
2062    if (PrevDecl->TypeForDecl)
2063      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2064
2065  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2066  Decl->TypeForDecl = newType;
2067  Types.push_back(newType);
2068  return QualType(newType, 0);
2069}
2070
2071QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2072                                       QualType modifiedType,
2073                                       QualType equivalentType) {
2074  llvm::FoldingSetNodeID id;
2075  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2076
2077  void *insertPos = 0;
2078  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2079  if (type) return QualType(type, 0);
2080
2081  QualType canon = getCanonicalType(equivalentType);
2082  type = new (*this, TypeAlignment)
2083           AttributedType(canon, attrKind, modifiedType, equivalentType);
2084
2085  Types.push_back(type);
2086  AttributedTypes.InsertNode(type, insertPos);
2087
2088  return QualType(type, 0);
2089}
2090
2091
2092/// \brief Retrieve a substitution-result type.
2093QualType
2094ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2095                                         QualType Replacement) const {
2096  assert(Replacement.isCanonical()
2097         && "replacement types must always be canonical");
2098
2099  llvm::FoldingSetNodeID ID;
2100  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2101  void *InsertPos = 0;
2102  SubstTemplateTypeParmType *SubstParm
2103    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2104
2105  if (!SubstParm) {
2106    SubstParm = new (*this, TypeAlignment)
2107      SubstTemplateTypeParmType(Parm, Replacement);
2108    Types.push_back(SubstParm);
2109    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2110  }
2111
2112  return QualType(SubstParm, 0);
2113}
2114
2115/// \brief Retrieve a
2116QualType ASTContext::getSubstTemplateTypeParmPackType(
2117                                          const TemplateTypeParmType *Parm,
2118                                              const TemplateArgument &ArgPack) {
2119#ifndef NDEBUG
2120  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2121                                    PEnd = ArgPack.pack_end();
2122       P != PEnd; ++P) {
2123    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2124    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2125  }
2126#endif
2127
2128  llvm::FoldingSetNodeID ID;
2129  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2130  void *InsertPos = 0;
2131  if (SubstTemplateTypeParmPackType *SubstParm
2132        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2133    return QualType(SubstParm, 0);
2134
2135  QualType Canon;
2136  if (!Parm->isCanonicalUnqualified()) {
2137    Canon = getCanonicalType(QualType(Parm, 0));
2138    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2139                                             ArgPack);
2140    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2141  }
2142
2143  SubstTemplateTypeParmPackType *SubstParm
2144    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2145                                                               ArgPack);
2146  Types.push_back(SubstParm);
2147  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2148  return QualType(SubstParm, 0);
2149}
2150
2151/// \brief Retrieve the template type parameter type for a template
2152/// parameter or parameter pack with the given depth, index, and (optionally)
2153/// name.
2154QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2155                                             bool ParameterPack,
2156                                             IdentifierInfo *Name) const {
2157  llvm::FoldingSetNodeID ID;
2158  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
2159  void *InsertPos = 0;
2160  TemplateTypeParmType *TypeParm
2161    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2162
2163  if (TypeParm)
2164    return QualType(TypeParm, 0);
2165
2166  if (Name) {
2167    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2168    TypeParm = new (*this, TypeAlignment)
2169      TemplateTypeParmType(Depth, Index, ParameterPack, Name, Canon);
2170
2171    TemplateTypeParmType *TypeCheck
2172      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2173    assert(!TypeCheck && "Template type parameter canonical type broken");
2174    (void)TypeCheck;
2175  } else
2176    TypeParm = new (*this, TypeAlignment)
2177      TemplateTypeParmType(Depth, Index, ParameterPack);
2178
2179  Types.push_back(TypeParm);
2180  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2181
2182  return QualType(TypeParm, 0);
2183}
2184
2185TypeSourceInfo *
2186ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2187                                              SourceLocation NameLoc,
2188                                        const TemplateArgumentListInfo &Args,
2189                                              QualType CanonType) const {
2190  assert(!Name.getAsDependentTemplateName() &&
2191         "No dependent template names here!");
2192  QualType TST = getTemplateSpecializationType(Name, Args, CanonType);
2193
2194  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2195  TemplateSpecializationTypeLoc TL
2196    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
2197  TL.setTemplateNameLoc(NameLoc);
2198  TL.setLAngleLoc(Args.getLAngleLoc());
2199  TL.setRAngleLoc(Args.getRAngleLoc());
2200  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2201    TL.setArgLocInfo(i, Args[i].getLocInfo());
2202  return DI;
2203}
2204
2205QualType
2206ASTContext::getTemplateSpecializationType(TemplateName Template,
2207                                          const TemplateArgumentListInfo &Args,
2208                                          QualType Canon) const {
2209  assert(!Template.getAsDependentTemplateName() &&
2210         "No dependent template names here!");
2211
2212  unsigned NumArgs = Args.size();
2213
2214  llvm::SmallVector<TemplateArgument, 4> ArgVec;
2215  ArgVec.reserve(NumArgs);
2216  for (unsigned i = 0; i != NumArgs; ++i)
2217    ArgVec.push_back(Args[i].getArgument());
2218
2219  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2220                                       Canon);
2221}
2222
2223QualType
2224ASTContext::getTemplateSpecializationType(TemplateName Template,
2225                                          const TemplateArgument *Args,
2226                                          unsigned NumArgs,
2227                                          QualType Canon) const {
2228  assert(!Template.getAsDependentTemplateName() &&
2229         "No dependent template names here!");
2230  // Look through qualified template names.
2231  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2232    Template = TemplateName(QTN->getTemplateDecl());
2233
2234  if (!Canon.isNull())
2235    Canon = getCanonicalType(Canon);
2236  else
2237    Canon = getCanonicalTemplateSpecializationType(Template, Args, NumArgs);
2238
2239  // Allocate the (non-canonical) template specialization type, but don't
2240  // try to unique it: these types typically have location information that
2241  // we don't unique and don't want to lose.
2242  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2243                        sizeof(TemplateArgument) * NumArgs),
2244                       TypeAlignment);
2245  TemplateSpecializationType *Spec
2246    = new (Mem) TemplateSpecializationType(Template,
2247                                           Args, NumArgs,
2248                                           Canon);
2249
2250  Types.push_back(Spec);
2251  return QualType(Spec, 0);
2252}
2253
2254QualType
2255ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
2256                                                   const TemplateArgument *Args,
2257                                                   unsigned NumArgs) const {
2258  assert(!Template.getAsDependentTemplateName() &&
2259         "No dependent template names here!");
2260  // Look through qualified template names.
2261  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2262    Template = TemplateName(QTN->getTemplateDecl());
2263
2264  // Build the canonical template specialization type.
2265  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
2266  llvm::SmallVector<TemplateArgument, 4> CanonArgs;
2267  CanonArgs.reserve(NumArgs);
2268  for (unsigned I = 0; I != NumArgs; ++I)
2269    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
2270
2271  // Determine whether this canonical template specialization type already
2272  // exists.
2273  llvm::FoldingSetNodeID ID;
2274  TemplateSpecializationType::Profile(ID, CanonTemplate,
2275                                      CanonArgs.data(), NumArgs, *this);
2276
2277  void *InsertPos = 0;
2278  TemplateSpecializationType *Spec
2279    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2280
2281  if (!Spec) {
2282    // Allocate a new canonical template specialization type.
2283    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2284                          sizeof(TemplateArgument) * NumArgs),
2285                         TypeAlignment);
2286    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
2287                                                CanonArgs.data(), NumArgs,
2288                                                QualType());
2289    Types.push_back(Spec);
2290    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
2291  }
2292
2293  assert(Spec->isDependentType() &&
2294         "Non-dependent template-id type must have a canonical type");
2295  return QualType(Spec, 0);
2296}
2297
2298QualType
2299ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
2300                              NestedNameSpecifier *NNS,
2301                              QualType NamedType) const {
2302  llvm::FoldingSetNodeID ID;
2303  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
2304
2305  void *InsertPos = 0;
2306  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2307  if (T)
2308    return QualType(T, 0);
2309
2310  QualType Canon = NamedType;
2311  if (!Canon.isCanonical()) {
2312    Canon = getCanonicalType(NamedType);
2313    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2314    assert(!CheckT && "Elaborated canonical type broken");
2315    (void)CheckT;
2316  }
2317
2318  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
2319  Types.push_back(T);
2320  ElaboratedTypes.InsertNode(T, InsertPos);
2321  return QualType(T, 0);
2322}
2323
2324QualType
2325ASTContext::getParenType(QualType InnerType) const {
2326  llvm::FoldingSetNodeID ID;
2327  ParenType::Profile(ID, InnerType);
2328
2329  void *InsertPos = 0;
2330  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2331  if (T)
2332    return QualType(T, 0);
2333
2334  QualType Canon = InnerType;
2335  if (!Canon.isCanonical()) {
2336    Canon = getCanonicalType(InnerType);
2337    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2338    assert(!CheckT && "Paren canonical type broken");
2339    (void)CheckT;
2340  }
2341
2342  T = new (*this) ParenType(InnerType, Canon);
2343  Types.push_back(T);
2344  ParenTypes.InsertNode(T, InsertPos);
2345  return QualType(T, 0);
2346}
2347
2348QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
2349                                          NestedNameSpecifier *NNS,
2350                                          const IdentifierInfo *Name,
2351                                          QualType Canon) const {
2352  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2353
2354  if (Canon.isNull()) {
2355    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2356    ElaboratedTypeKeyword CanonKeyword = Keyword;
2357    if (Keyword == ETK_None)
2358      CanonKeyword = ETK_Typename;
2359
2360    if (CanonNNS != NNS || CanonKeyword != Keyword)
2361      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
2362  }
2363
2364  llvm::FoldingSetNodeID ID;
2365  DependentNameType::Profile(ID, Keyword, NNS, Name);
2366
2367  void *InsertPos = 0;
2368  DependentNameType *T
2369    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2370  if (T)
2371    return QualType(T, 0);
2372
2373  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
2374  Types.push_back(T);
2375  DependentNameTypes.InsertNode(T, InsertPos);
2376  return QualType(T, 0);
2377}
2378
2379QualType
2380ASTContext::getDependentTemplateSpecializationType(
2381                                 ElaboratedTypeKeyword Keyword,
2382                                 NestedNameSpecifier *NNS,
2383                                 const IdentifierInfo *Name,
2384                                 const TemplateArgumentListInfo &Args) const {
2385  // TODO: avoid this copy
2386  llvm::SmallVector<TemplateArgument, 16> ArgCopy;
2387  for (unsigned I = 0, E = Args.size(); I != E; ++I)
2388    ArgCopy.push_back(Args[I].getArgument());
2389  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
2390                                                ArgCopy.size(),
2391                                                ArgCopy.data());
2392}
2393
2394QualType
2395ASTContext::getDependentTemplateSpecializationType(
2396                                 ElaboratedTypeKeyword Keyword,
2397                                 NestedNameSpecifier *NNS,
2398                                 const IdentifierInfo *Name,
2399                                 unsigned NumArgs,
2400                                 const TemplateArgument *Args) const {
2401  assert((!NNS || NNS->isDependent()) &&
2402         "nested-name-specifier must be dependent");
2403
2404  llvm::FoldingSetNodeID ID;
2405  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
2406                                               Name, NumArgs, Args);
2407
2408  void *InsertPos = 0;
2409  DependentTemplateSpecializationType *T
2410    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2411  if (T)
2412    return QualType(T, 0);
2413
2414  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2415
2416  ElaboratedTypeKeyword CanonKeyword = Keyword;
2417  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
2418
2419  bool AnyNonCanonArgs = false;
2420  llvm::SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
2421  for (unsigned I = 0; I != NumArgs; ++I) {
2422    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
2423    if (!CanonArgs[I].structurallyEquals(Args[I]))
2424      AnyNonCanonArgs = true;
2425  }
2426
2427  QualType Canon;
2428  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
2429    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
2430                                                   Name, NumArgs,
2431                                                   CanonArgs.data());
2432
2433    // Find the insert position again.
2434    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2435  }
2436
2437  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
2438                        sizeof(TemplateArgument) * NumArgs),
2439                       TypeAlignment);
2440  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
2441                                                    Name, NumArgs, Args, Canon);
2442  Types.push_back(T);
2443  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
2444  return QualType(T, 0);
2445}
2446
2447QualType ASTContext::getPackExpansionType(QualType Pattern,
2448                                      llvm::Optional<unsigned> NumExpansions) {
2449  llvm::FoldingSetNodeID ID;
2450  PackExpansionType::Profile(ID, Pattern, NumExpansions);
2451
2452  assert(Pattern->containsUnexpandedParameterPack() &&
2453         "Pack expansions must expand one or more parameter packs");
2454  void *InsertPos = 0;
2455  PackExpansionType *T
2456    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2457  if (T)
2458    return QualType(T, 0);
2459
2460  QualType Canon;
2461  if (!Pattern.isCanonical()) {
2462    Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
2463
2464    // Find the insert position again.
2465    PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2466  }
2467
2468  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
2469  Types.push_back(T);
2470  PackExpansionTypes.InsertNode(T, InsertPos);
2471  return QualType(T, 0);
2472}
2473
2474/// CmpProtocolNames - Comparison predicate for sorting protocols
2475/// alphabetically.
2476static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2477                            const ObjCProtocolDecl *RHS) {
2478  return LHS->getDeclName() < RHS->getDeclName();
2479}
2480
2481static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
2482                                unsigned NumProtocols) {
2483  if (NumProtocols == 0) return true;
2484
2485  for (unsigned i = 1; i != NumProtocols; ++i)
2486    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
2487      return false;
2488  return true;
2489}
2490
2491static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2492                                   unsigned &NumProtocols) {
2493  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2494
2495  // Sort protocols, keyed by name.
2496  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2497
2498  // Remove duplicates.
2499  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2500  NumProtocols = ProtocolsEnd-Protocols;
2501}
2502
2503QualType ASTContext::getObjCObjectType(QualType BaseType,
2504                                       ObjCProtocolDecl * const *Protocols,
2505                                       unsigned NumProtocols) const {
2506  // If the base type is an interface and there aren't any protocols
2507  // to add, then the interface type will do just fine.
2508  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
2509    return BaseType;
2510
2511  // Look in the folding set for an existing type.
2512  llvm::FoldingSetNodeID ID;
2513  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
2514  void *InsertPos = 0;
2515  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
2516    return QualType(QT, 0);
2517
2518  // Build the canonical type, which has the canonical base type and
2519  // a sorted-and-uniqued list of protocols.
2520  QualType Canonical;
2521  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
2522  if (!ProtocolsSorted || !BaseType.isCanonical()) {
2523    if (!ProtocolsSorted) {
2524      llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
2525                                                     Protocols + NumProtocols);
2526      unsigned UniqueCount = NumProtocols;
2527
2528      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2529      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2530                                    &Sorted[0], UniqueCount);
2531    } else {
2532      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2533                                    Protocols, NumProtocols);
2534    }
2535
2536    // Regenerate InsertPos.
2537    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
2538  }
2539
2540  unsigned Size = sizeof(ObjCObjectTypeImpl);
2541  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
2542  void *Mem = Allocate(Size, TypeAlignment);
2543  ObjCObjectTypeImpl *T =
2544    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
2545
2546  Types.push_back(T);
2547  ObjCObjectTypes.InsertNode(T, InsertPos);
2548  return QualType(T, 0);
2549}
2550
2551/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2552/// the given object type.
2553QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
2554  llvm::FoldingSetNodeID ID;
2555  ObjCObjectPointerType::Profile(ID, ObjectT);
2556
2557  void *InsertPos = 0;
2558  if (ObjCObjectPointerType *QT =
2559              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2560    return QualType(QT, 0);
2561
2562  // Find the canonical object type.
2563  QualType Canonical;
2564  if (!ObjectT.isCanonical()) {
2565    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
2566
2567    // Regenerate InsertPos.
2568    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2569  }
2570
2571  // No match.
2572  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
2573  ObjCObjectPointerType *QType =
2574    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
2575
2576  Types.push_back(QType);
2577  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2578  return QualType(QType, 0);
2579}
2580
2581/// getObjCInterfaceType - Return the unique reference to the type for the
2582/// specified ObjC interface decl. The list of protocols is optional.
2583QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl) const {
2584  if (Decl->TypeForDecl)
2585    return QualType(Decl->TypeForDecl, 0);
2586
2587  // FIXME: redeclarations?
2588  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
2589  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
2590  Decl->TypeForDecl = T;
2591  Types.push_back(T);
2592  return QualType(T, 0);
2593}
2594
2595/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2596/// TypeOfExprType AST's (since expression's are never shared). For example,
2597/// multiple declarations that refer to "typeof(x)" all contain different
2598/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2599/// on canonical type's (which are always unique).
2600QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
2601  TypeOfExprType *toe;
2602  if (tofExpr->isTypeDependent()) {
2603    llvm::FoldingSetNodeID ID;
2604    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2605
2606    void *InsertPos = 0;
2607    DependentTypeOfExprType *Canon
2608      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2609    if (Canon) {
2610      // We already have a "canonical" version of an identical, dependent
2611      // typeof(expr) type. Use that as our canonical type.
2612      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2613                                          QualType((TypeOfExprType*)Canon, 0));
2614    }
2615    else {
2616      // Build a new, canonical typeof(expr) type.
2617      Canon
2618        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2619      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2620      toe = Canon;
2621    }
2622  } else {
2623    QualType Canonical = getCanonicalType(tofExpr->getType());
2624    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2625  }
2626  Types.push_back(toe);
2627  return QualType(toe, 0);
2628}
2629
2630/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2631/// TypeOfType AST's. The only motivation to unique these nodes would be
2632/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2633/// an issue. This doesn't effect the type checker, since it operates
2634/// on canonical type's (which are always unique).
2635QualType ASTContext::getTypeOfType(QualType tofType) const {
2636  QualType Canonical = getCanonicalType(tofType);
2637  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2638  Types.push_back(tot);
2639  return QualType(tot, 0);
2640}
2641
2642/// getDecltypeForExpr - Given an expr, will return the decltype for that
2643/// expression, according to the rules in C++0x [dcl.type.simple]p4
2644static QualType getDecltypeForExpr(const Expr *e, const ASTContext &Context) {
2645  if (e->isTypeDependent())
2646    return Context.DependentTy;
2647
2648  // If e is an id expression or a class member access, decltype(e) is defined
2649  // as the type of the entity named by e.
2650  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2651    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2652      return VD->getType();
2653  }
2654  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2655    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2656      return FD->getType();
2657  }
2658  // If e is a function call or an invocation of an overloaded operator,
2659  // (parentheses around e are ignored), decltype(e) is defined as the
2660  // return type of that function.
2661  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2662    return CE->getCallReturnType();
2663
2664  QualType T = e->getType();
2665
2666  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2667  // defined as T&, otherwise decltype(e) is defined as T.
2668  if (e->isLValue())
2669    T = Context.getLValueReferenceType(T);
2670
2671  return T;
2672}
2673
2674/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2675/// DecltypeType AST's. The only motivation to unique these nodes would be
2676/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2677/// an issue. This doesn't effect the type checker, since it operates
2678/// on canonical type's (which are always unique).
2679QualType ASTContext::getDecltypeType(Expr *e) const {
2680  DecltypeType *dt;
2681  if (e->isTypeDependent()) {
2682    llvm::FoldingSetNodeID ID;
2683    DependentDecltypeType::Profile(ID, *this, e);
2684
2685    void *InsertPos = 0;
2686    DependentDecltypeType *Canon
2687      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2688    if (Canon) {
2689      // We already have a "canonical" version of an equivalent, dependent
2690      // decltype type. Use that as our canonical type.
2691      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2692                                       QualType((DecltypeType*)Canon, 0));
2693    }
2694    else {
2695      // Build a new, canonical typeof(expr) type.
2696      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2697      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2698      dt = Canon;
2699    }
2700  } else {
2701    QualType T = getDecltypeForExpr(e, *this);
2702    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2703  }
2704  Types.push_back(dt);
2705  return QualType(dt, 0);
2706}
2707
2708/// getAutoType - We only unique auto types after they've been deduced.
2709QualType ASTContext::getAutoType(QualType DeducedType) const {
2710  void *InsertPos = 0;
2711  if (!DeducedType.isNull()) {
2712    // Look in the folding set for an existing type.
2713    llvm::FoldingSetNodeID ID;
2714    AutoType::Profile(ID, DeducedType);
2715    if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
2716      return QualType(AT, 0);
2717  }
2718
2719  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
2720  Types.push_back(AT);
2721  if (InsertPos)
2722    AutoTypes.InsertNode(AT, InsertPos);
2723  return QualType(AT, 0);
2724}
2725
2726/// getTagDeclType - Return the unique reference to the type for the
2727/// specified TagDecl (struct/union/class/enum) decl.
2728QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
2729  assert (Decl);
2730  // FIXME: What is the design on getTagDeclType when it requires casting
2731  // away const?  mutable?
2732  return getTypeDeclType(const_cast<TagDecl*>(Decl));
2733}
2734
2735/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2736/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2737/// needs to agree with the definition in <stddef.h>.
2738CanQualType ASTContext::getSizeType() const {
2739  return getFromTargetType(Target.getSizeType());
2740}
2741
2742/// getSignedWCharType - Return the type of "signed wchar_t".
2743/// Used when in C++, as a GCC extension.
2744QualType ASTContext::getSignedWCharType() const {
2745  // FIXME: derive from "Target" ?
2746  return WCharTy;
2747}
2748
2749/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2750/// Used when in C++, as a GCC extension.
2751QualType ASTContext::getUnsignedWCharType() const {
2752  // FIXME: derive from "Target" ?
2753  return UnsignedIntTy;
2754}
2755
2756/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2757/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2758QualType ASTContext::getPointerDiffType() const {
2759  return getFromTargetType(Target.getPtrDiffType(0));
2760}
2761
2762//===----------------------------------------------------------------------===//
2763//                              Type Operators
2764//===----------------------------------------------------------------------===//
2765
2766CanQualType ASTContext::getCanonicalParamType(QualType T) const {
2767  // Push qualifiers into arrays, and then discard any remaining
2768  // qualifiers.
2769  T = getCanonicalType(T);
2770  T = getVariableArrayDecayedType(T);
2771  const Type *Ty = T.getTypePtr();
2772  QualType Result;
2773  if (isa<ArrayType>(Ty)) {
2774    Result = getArrayDecayedType(QualType(Ty,0));
2775  } else if (isa<FunctionType>(Ty)) {
2776    Result = getPointerType(QualType(Ty, 0));
2777  } else {
2778    Result = QualType(Ty, 0);
2779  }
2780
2781  return CanQualType::CreateUnsafe(Result);
2782}
2783
2784
2785QualType ASTContext::getUnqualifiedArrayType(QualType type,
2786                                             Qualifiers &quals) {
2787  SplitQualType splitType = type.getSplitUnqualifiedType();
2788
2789  // FIXME: getSplitUnqualifiedType() actually walks all the way to
2790  // the unqualified desugared type and then drops it on the floor.
2791  // We then have to strip that sugar back off with
2792  // getUnqualifiedDesugaredType(), which is silly.
2793  const ArrayType *AT =
2794    dyn_cast<ArrayType>(splitType.first->getUnqualifiedDesugaredType());
2795
2796  // If we don't have an array, just use the results in splitType.
2797  if (!AT) {
2798    quals = splitType.second;
2799    return QualType(splitType.first, 0);
2800  }
2801
2802  // Otherwise, recurse on the array's element type.
2803  QualType elementType = AT->getElementType();
2804  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
2805
2806  // If that didn't change the element type, AT has no qualifiers, so we
2807  // can just use the results in splitType.
2808  if (elementType == unqualElementType) {
2809    assert(quals.empty()); // from the recursive call
2810    quals = splitType.second;
2811    return QualType(splitType.first, 0);
2812  }
2813
2814  // Otherwise, add in the qualifiers from the outermost type, then
2815  // build the type back up.
2816  quals.addConsistentQualifiers(splitType.second);
2817
2818  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
2819    return getConstantArrayType(unqualElementType, CAT->getSize(),
2820                                CAT->getSizeModifier(), 0);
2821  }
2822
2823  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
2824    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
2825  }
2826
2827  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
2828    return getVariableArrayType(unqualElementType,
2829                                VAT->getSizeExpr(),
2830                                VAT->getSizeModifier(),
2831                                VAT->getIndexTypeCVRQualifiers(),
2832                                VAT->getBracketsRange());
2833  }
2834
2835  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
2836  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
2837                                    DSAT->getSizeModifier(), 0,
2838                                    SourceRange());
2839}
2840
2841/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
2842/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
2843/// they point to and return true. If T1 and T2 aren't pointer types
2844/// or pointer-to-member types, or if they are not similar at this
2845/// level, returns false and leaves T1 and T2 unchanged. Top-level
2846/// qualifiers on T1 and T2 are ignored. This function will typically
2847/// be called in a loop that successively "unwraps" pointer and
2848/// pointer-to-member types to compare them at each level.
2849bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
2850  const PointerType *T1PtrType = T1->getAs<PointerType>(),
2851                    *T2PtrType = T2->getAs<PointerType>();
2852  if (T1PtrType && T2PtrType) {
2853    T1 = T1PtrType->getPointeeType();
2854    T2 = T2PtrType->getPointeeType();
2855    return true;
2856  }
2857
2858  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
2859                          *T2MPType = T2->getAs<MemberPointerType>();
2860  if (T1MPType && T2MPType &&
2861      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
2862                             QualType(T2MPType->getClass(), 0))) {
2863    T1 = T1MPType->getPointeeType();
2864    T2 = T2MPType->getPointeeType();
2865    return true;
2866  }
2867
2868  if (getLangOptions().ObjC1) {
2869    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
2870                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
2871    if (T1OPType && T2OPType) {
2872      T1 = T1OPType->getPointeeType();
2873      T2 = T2OPType->getPointeeType();
2874      return true;
2875    }
2876  }
2877
2878  // FIXME: Block pointers, too?
2879
2880  return false;
2881}
2882
2883DeclarationNameInfo
2884ASTContext::getNameForTemplate(TemplateName Name,
2885                               SourceLocation NameLoc) const {
2886  if (TemplateDecl *TD = Name.getAsTemplateDecl())
2887    // DNInfo work in progress: CHECKME: what about DNLoc?
2888    return DeclarationNameInfo(TD->getDeclName(), NameLoc);
2889
2890  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
2891    DeclarationName DName;
2892    if (DTN->isIdentifier()) {
2893      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
2894      return DeclarationNameInfo(DName, NameLoc);
2895    } else {
2896      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
2897      // DNInfo work in progress: FIXME: source locations?
2898      DeclarationNameLoc DNLoc;
2899      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
2900      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
2901      return DeclarationNameInfo(DName, NameLoc, DNLoc);
2902    }
2903  }
2904
2905  OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
2906  assert(Storage);
2907  // DNInfo work in progress: CHECKME: what about DNLoc?
2908  return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
2909}
2910
2911TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
2912  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
2913    if (TemplateTemplateParmDecl *TTP
2914                              = dyn_cast<TemplateTemplateParmDecl>(Template))
2915      Template = getCanonicalTemplateTemplateParmDecl(TTP);
2916
2917    // The canonical template name is the canonical template declaration.
2918    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
2919  }
2920
2921  if (SubstTemplateTemplateParmPackStorage *SubstPack
2922                                  = Name.getAsSubstTemplateTemplateParmPack()) {
2923    TemplateTemplateParmDecl *CanonParam
2924      = getCanonicalTemplateTemplateParmDecl(SubstPack->getParameterPack());
2925    TemplateArgument CanonArgPack
2926      = getCanonicalTemplateArgument(SubstPack->getArgumentPack());
2927    return getSubstTemplateTemplateParmPack(CanonParam, CanonArgPack);
2928  }
2929
2930  assert(!Name.getAsOverloadedTemplate());
2931
2932  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
2933  assert(DTN && "Non-dependent template names must refer to template decls.");
2934  return DTN->CanonicalTemplateName;
2935}
2936
2937bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
2938  X = getCanonicalTemplateName(X);
2939  Y = getCanonicalTemplateName(Y);
2940  return X.getAsVoidPointer() == Y.getAsVoidPointer();
2941}
2942
2943TemplateArgument
2944ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
2945  switch (Arg.getKind()) {
2946    case TemplateArgument::Null:
2947      return Arg;
2948
2949    case TemplateArgument::Expression:
2950      return Arg;
2951
2952    case TemplateArgument::Declaration:
2953      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
2954
2955    case TemplateArgument::Template:
2956      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
2957
2958    case TemplateArgument::TemplateExpansion:
2959      return TemplateArgument(getCanonicalTemplateName(
2960                                         Arg.getAsTemplateOrTemplatePattern()),
2961                              Arg.getNumTemplateExpansions());
2962
2963    case TemplateArgument::Integral:
2964      return TemplateArgument(*Arg.getAsIntegral(),
2965                              getCanonicalType(Arg.getIntegralType()));
2966
2967    case TemplateArgument::Type:
2968      return TemplateArgument(getCanonicalType(Arg.getAsType()));
2969
2970    case TemplateArgument::Pack: {
2971      if (Arg.pack_size() == 0)
2972        return Arg;
2973
2974      TemplateArgument *CanonArgs
2975        = new (*this) TemplateArgument[Arg.pack_size()];
2976      unsigned Idx = 0;
2977      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
2978                                        AEnd = Arg.pack_end();
2979           A != AEnd; (void)++A, ++Idx)
2980        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
2981
2982      return TemplateArgument(CanonArgs, Arg.pack_size());
2983    }
2984  }
2985
2986  // Silence GCC warning
2987  assert(false && "Unhandled template argument kind");
2988  return TemplateArgument();
2989}
2990
2991NestedNameSpecifier *
2992ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
2993  if (!NNS)
2994    return 0;
2995
2996  switch (NNS->getKind()) {
2997  case NestedNameSpecifier::Identifier:
2998    // Canonicalize the prefix but keep the identifier the same.
2999    return NestedNameSpecifier::Create(*this,
3000                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
3001                                       NNS->getAsIdentifier());
3002
3003  case NestedNameSpecifier::Namespace:
3004    // A namespace is canonical; build a nested-name-specifier with
3005    // this namespace and no prefix.
3006    return NestedNameSpecifier::Create(*this, 0,
3007                                 NNS->getAsNamespace()->getOriginalNamespace());
3008
3009  case NestedNameSpecifier::NamespaceAlias:
3010    // A namespace is canonical; build a nested-name-specifier with
3011    // this namespace and no prefix.
3012    return NestedNameSpecifier::Create(*this, 0,
3013                                    NNS->getAsNamespaceAlias()->getNamespace()
3014                                                      ->getOriginalNamespace());
3015
3016  case NestedNameSpecifier::TypeSpec:
3017  case NestedNameSpecifier::TypeSpecWithTemplate: {
3018    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
3019
3020    // If we have some kind of dependent-named type (e.g., "typename T::type"),
3021    // break it apart into its prefix and identifier, then reconsititute those
3022    // as the canonical nested-name-specifier. This is required to canonicalize
3023    // a dependent nested-name-specifier involving typedefs of dependent-name
3024    // types, e.g.,
3025    //   typedef typename T::type T1;
3026    //   typedef typename T1::type T2;
3027    if (const DependentNameType *DNT = T->getAs<DependentNameType>()) {
3028      NestedNameSpecifier *Prefix
3029        = getCanonicalNestedNameSpecifier(DNT->getQualifier());
3030      return NestedNameSpecifier::Create(*this, Prefix,
3031                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
3032    }
3033
3034    // Do the same thing as above, but with dependent-named specializations.
3035    if (const DependentTemplateSpecializationType *DTST
3036          = T->getAs<DependentTemplateSpecializationType>()) {
3037      NestedNameSpecifier *Prefix
3038        = getCanonicalNestedNameSpecifier(DTST->getQualifier());
3039
3040      T = getDependentTemplateSpecializationType(DTST->getKeyword(),
3041                                                 Prefix, DTST->getIdentifier(),
3042                                                 DTST->getNumArgs(),
3043                                                 DTST->getArgs());
3044      T = getCanonicalType(T);
3045    }
3046
3047    return NestedNameSpecifier::Create(*this, 0, false,
3048                                       const_cast<Type*>(T.getTypePtr()));
3049  }
3050
3051  case NestedNameSpecifier::Global:
3052    // The global specifier is canonical and unique.
3053    return NNS;
3054  }
3055
3056  // Required to silence a GCC warning
3057  return 0;
3058}
3059
3060
3061const ArrayType *ASTContext::getAsArrayType(QualType T) const {
3062  // Handle the non-qualified case efficiently.
3063  if (!T.hasLocalQualifiers()) {
3064    // Handle the common positive case fast.
3065    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
3066      return AT;
3067  }
3068
3069  // Handle the common negative case fast.
3070  if (!isa<ArrayType>(T.getCanonicalType()))
3071    return 0;
3072
3073  // Apply any qualifiers from the array type to the element type.  This
3074  // implements C99 6.7.3p8: "If the specification of an array type includes
3075  // any type qualifiers, the element type is so qualified, not the array type."
3076
3077  // If we get here, we either have type qualifiers on the type, or we have
3078  // sugar such as a typedef in the way.  If we have type qualifiers on the type
3079  // we must propagate them down into the element type.
3080
3081  SplitQualType split = T.getSplitDesugaredType();
3082  Qualifiers qs = split.second;
3083
3084  // If we have a simple case, just return now.
3085  const ArrayType *ATy = dyn_cast<ArrayType>(split.first);
3086  if (ATy == 0 || qs.empty())
3087    return ATy;
3088
3089  // Otherwise, we have an array and we have qualifiers on it.  Push the
3090  // qualifiers into the array element type and return a new array type.
3091  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
3092
3093  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
3094    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
3095                                                CAT->getSizeModifier(),
3096                                           CAT->getIndexTypeCVRQualifiers()));
3097  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
3098    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
3099                                                  IAT->getSizeModifier(),
3100                                           IAT->getIndexTypeCVRQualifiers()));
3101
3102  if (const DependentSizedArrayType *DSAT
3103        = dyn_cast<DependentSizedArrayType>(ATy))
3104    return cast<ArrayType>(
3105                     getDependentSizedArrayType(NewEltTy,
3106                                                DSAT->getSizeExpr(),
3107                                                DSAT->getSizeModifier(),
3108                                              DSAT->getIndexTypeCVRQualifiers(),
3109                                                DSAT->getBracketsRange()));
3110
3111  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
3112  return cast<ArrayType>(getVariableArrayType(NewEltTy,
3113                                              VAT->getSizeExpr(),
3114                                              VAT->getSizeModifier(),
3115                                              VAT->getIndexTypeCVRQualifiers(),
3116                                              VAT->getBracketsRange()));
3117}
3118
3119/// getArrayDecayedType - Return the properly qualified result of decaying the
3120/// specified array type to a pointer.  This operation is non-trivial when
3121/// handling typedefs etc.  The canonical type of "T" must be an array type,
3122/// this returns a pointer to a properly qualified element of the array.
3123///
3124/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
3125QualType ASTContext::getArrayDecayedType(QualType Ty) const {
3126  // Get the element type with 'getAsArrayType' so that we don't lose any
3127  // typedefs in the element type of the array.  This also handles propagation
3128  // of type qualifiers from the array type into the element type if present
3129  // (C99 6.7.3p8).
3130  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
3131  assert(PrettyArrayType && "Not an array type!");
3132
3133  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
3134
3135  // int x[restrict 4] ->  int *restrict
3136  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
3137}
3138
3139QualType ASTContext::getBaseElementType(const ArrayType *array) const {
3140  return getBaseElementType(array->getElementType());
3141}
3142
3143QualType ASTContext::getBaseElementType(QualType type) const {
3144  Qualifiers qs;
3145  while (true) {
3146    SplitQualType split = type.getSplitDesugaredType();
3147    const ArrayType *array = split.first->getAsArrayTypeUnsafe();
3148    if (!array) break;
3149
3150    type = array->getElementType();
3151    qs.addConsistentQualifiers(split.second);
3152  }
3153
3154  return getQualifiedType(type, qs);
3155}
3156
3157/// getConstantArrayElementCount - Returns number of constant array elements.
3158uint64_t
3159ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
3160  uint64_t ElementCount = 1;
3161  do {
3162    ElementCount *= CA->getSize().getZExtValue();
3163    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
3164  } while (CA);
3165  return ElementCount;
3166}
3167
3168/// getFloatingRank - Return a relative rank for floating point types.
3169/// This routine will assert if passed a built-in type that isn't a float.
3170static FloatingRank getFloatingRank(QualType T) {
3171  if (const ComplexType *CT = T->getAs<ComplexType>())
3172    return getFloatingRank(CT->getElementType());
3173
3174  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
3175  switch (T->getAs<BuiltinType>()->getKind()) {
3176  default: assert(0 && "getFloatingRank(): not a floating type");
3177  case BuiltinType::Float:      return FloatRank;
3178  case BuiltinType::Double:     return DoubleRank;
3179  case BuiltinType::LongDouble: return LongDoubleRank;
3180  }
3181}
3182
3183/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
3184/// point or a complex type (based on typeDomain/typeSize).
3185/// 'typeDomain' is a real floating point or complex type.
3186/// 'typeSize' is a real floating point or complex type.
3187QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
3188                                                       QualType Domain) const {
3189  FloatingRank EltRank = getFloatingRank(Size);
3190  if (Domain->isComplexType()) {
3191    switch (EltRank) {
3192    default: assert(0 && "getFloatingRank(): illegal value for rank");
3193    case FloatRank:      return FloatComplexTy;
3194    case DoubleRank:     return DoubleComplexTy;
3195    case LongDoubleRank: return LongDoubleComplexTy;
3196    }
3197  }
3198
3199  assert(Domain->isRealFloatingType() && "Unknown domain!");
3200  switch (EltRank) {
3201  default: assert(0 && "getFloatingRank(): illegal value for rank");
3202  case FloatRank:      return FloatTy;
3203  case DoubleRank:     return DoubleTy;
3204  case LongDoubleRank: return LongDoubleTy;
3205  }
3206}
3207
3208/// getFloatingTypeOrder - Compare the rank of the two specified floating
3209/// point types, ignoring the domain of the type (i.e. 'double' ==
3210/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3211/// LHS < RHS, return -1.
3212int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
3213  FloatingRank LHSR = getFloatingRank(LHS);
3214  FloatingRank RHSR = getFloatingRank(RHS);
3215
3216  if (LHSR == RHSR)
3217    return 0;
3218  if (LHSR > RHSR)
3219    return 1;
3220  return -1;
3221}
3222
3223/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
3224/// routine will assert if passed a built-in type that isn't an integer or enum,
3225/// or if it is not canonicalized.
3226unsigned ASTContext::getIntegerRank(const Type *T) const {
3227  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
3228  if (const EnumType* ET = dyn_cast<EnumType>(T))
3229    T = ET->getDecl()->getPromotionType().getTypePtr();
3230
3231  if (T->isSpecificBuiltinType(BuiltinType::WChar_S) ||
3232      T->isSpecificBuiltinType(BuiltinType::WChar_U))
3233    T = getFromTargetType(Target.getWCharType()).getTypePtr();
3234
3235  if (T->isSpecificBuiltinType(BuiltinType::Char16))
3236    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
3237
3238  if (T->isSpecificBuiltinType(BuiltinType::Char32))
3239    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
3240
3241  switch (cast<BuiltinType>(T)->getKind()) {
3242  default: assert(0 && "getIntegerRank(): not a built-in integer");
3243  case BuiltinType::Bool:
3244    return 1 + (getIntWidth(BoolTy) << 3);
3245  case BuiltinType::Char_S:
3246  case BuiltinType::Char_U:
3247  case BuiltinType::SChar:
3248  case BuiltinType::UChar:
3249    return 2 + (getIntWidth(CharTy) << 3);
3250  case BuiltinType::Short:
3251  case BuiltinType::UShort:
3252    return 3 + (getIntWidth(ShortTy) << 3);
3253  case BuiltinType::Int:
3254  case BuiltinType::UInt:
3255    return 4 + (getIntWidth(IntTy) << 3);
3256  case BuiltinType::Long:
3257  case BuiltinType::ULong:
3258    return 5 + (getIntWidth(LongTy) << 3);
3259  case BuiltinType::LongLong:
3260  case BuiltinType::ULongLong:
3261    return 6 + (getIntWidth(LongLongTy) << 3);
3262  case BuiltinType::Int128:
3263  case BuiltinType::UInt128:
3264    return 7 + (getIntWidth(Int128Ty) << 3);
3265  }
3266}
3267
3268/// \brief Whether this is a promotable bitfield reference according
3269/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
3270///
3271/// \returns the type this bit-field will promote to, or NULL if no
3272/// promotion occurs.
3273QualType ASTContext::isPromotableBitField(Expr *E) const {
3274  if (E->isTypeDependent() || E->isValueDependent())
3275    return QualType();
3276
3277  FieldDecl *Field = E->getBitField();
3278  if (!Field)
3279    return QualType();
3280
3281  QualType FT = Field->getType();
3282
3283  llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
3284  uint64_t BitWidth = BitWidthAP.getZExtValue();
3285  uint64_t IntSize = getTypeSize(IntTy);
3286  // GCC extension compatibility: if the bit-field size is less than or equal
3287  // to the size of int, it gets promoted no matter what its type is.
3288  // For instance, unsigned long bf : 4 gets promoted to signed int.
3289  if (BitWidth < IntSize)
3290    return IntTy;
3291
3292  if (BitWidth == IntSize)
3293    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
3294
3295  // Types bigger than int are not subject to promotions, and therefore act
3296  // like the base type.
3297  // FIXME: This doesn't quite match what gcc does, but what gcc does here
3298  // is ridiculous.
3299  return QualType();
3300}
3301
3302/// getPromotedIntegerType - Returns the type that Promotable will
3303/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
3304/// integer type.
3305QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
3306  assert(!Promotable.isNull());
3307  assert(Promotable->isPromotableIntegerType());
3308  if (const EnumType *ET = Promotable->getAs<EnumType>())
3309    return ET->getDecl()->getPromotionType();
3310  if (Promotable->isSignedIntegerType())
3311    return IntTy;
3312  uint64_t PromotableSize = getTypeSize(Promotable);
3313  uint64_t IntSize = getTypeSize(IntTy);
3314  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
3315  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
3316}
3317
3318/// getIntegerTypeOrder - Returns the highest ranked integer type:
3319/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3320/// LHS < RHS, return -1.
3321int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
3322  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
3323  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
3324  if (LHSC == RHSC) return 0;
3325
3326  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
3327  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
3328
3329  unsigned LHSRank = getIntegerRank(LHSC);
3330  unsigned RHSRank = getIntegerRank(RHSC);
3331
3332  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
3333    if (LHSRank == RHSRank) return 0;
3334    return LHSRank > RHSRank ? 1 : -1;
3335  }
3336
3337  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
3338  if (LHSUnsigned) {
3339    // If the unsigned [LHS] type is larger, return it.
3340    if (LHSRank >= RHSRank)
3341      return 1;
3342
3343    // If the signed type can represent all values of the unsigned type, it
3344    // wins.  Because we are dealing with 2's complement and types that are
3345    // powers of two larger than each other, this is always safe.
3346    return -1;
3347  }
3348
3349  // If the unsigned [RHS] type is larger, return it.
3350  if (RHSRank >= LHSRank)
3351    return -1;
3352
3353  // If the signed type can represent all values of the unsigned type, it
3354  // wins.  Because we are dealing with 2's complement and types that are
3355  // powers of two larger than each other, this is always safe.
3356  return 1;
3357}
3358
3359static RecordDecl *
3360CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK, DeclContext *DC,
3361                 SourceLocation L, IdentifierInfo *Id) {
3362  if (Ctx.getLangOptions().CPlusPlus)
3363    return CXXRecordDecl::Create(Ctx, TK, DC, L, Id);
3364  else
3365    return RecordDecl::Create(Ctx, TK, DC, L, Id);
3366}
3367
3368// getCFConstantStringType - Return the type used for constant CFStrings.
3369QualType ASTContext::getCFConstantStringType() const {
3370  if (!CFConstantStringTypeDecl) {
3371    CFConstantStringTypeDecl =
3372      CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3373                       &Idents.get("NSConstantString"));
3374    CFConstantStringTypeDecl->startDefinition();
3375
3376    QualType FieldTypes[4];
3377
3378    // const int *isa;
3379    FieldTypes[0] = getPointerType(IntTy.withConst());
3380    // int flags;
3381    FieldTypes[1] = IntTy;
3382    // const char *str;
3383    FieldTypes[2] = getPointerType(CharTy.withConst());
3384    // long length;
3385    FieldTypes[3] = LongTy;
3386
3387    // Create fields
3388    for (unsigned i = 0; i < 4; ++i) {
3389      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
3390                                           SourceLocation(), 0,
3391                                           FieldTypes[i], /*TInfo=*/0,
3392                                           /*BitWidth=*/0,
3393                                           /*Mutable=*/false);
3394      Field->setAccess(AS_public);
3395      CFConstantStringTypeDecl->addDecl(Field);
3396    }
3397
3398    CFConstantStringTypeDecl->completeDefinition();
3399  }
3400
3401  return getTagDeclType(CFConstantStringTypeDecl);
3402}
3403
3404void ASTContext::setCFConstantStringType(QualType T) {
3405  const RecordType *Rec = T->getAs<RecordType>();
3406  assert(Rec && "Invalid CFConstantStringType");
3407  CFConstantStringTypeDecl = Rec->getDecl();
3408}
3409
3410// getNSConstantStringType - Return the type used for constant NSStrings.
3411QualType ASTContext::getNSConstantStringType() const {
3412  if (!NSConstantStringTypeDecl) {
3413    NSConstantStringTypeDecl =
3414    CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3415                     &Idents.get("__builtin_NSString"));
3416    NSConstantStringTypeDecl->startDefinition();
3417
3418    QualType FieldTypes[3];
3419
3420    // const int *isa;
3421    FieldTypes[0] = getPointerType(IntTy.withConst());
3422    // const char *str;
3423    FieldTypes[1] = getPointerType(CharTy.withConst());
3424    // unsigned int length;
3425    FieldTypes[2] = UnsignedIntTy;
3426
3427    // Create fields
3428    for (unsigned i = 0; i < 3; ++i) {
3429      FieldDecl *Field = FieldDecl::Create(*this, NSConstantStringTypeDecl,
3430                                           SourceLocation(), 0,
3431                                           FieldTypes[i], /*TInfo=*/0,
3432                                           /*BitWidth=*/0,
3433                                           /*Mutable=*/false);
3434      Field->setAccess(AS_public);
3435      NSConstantStringTypeDecl->addDecl(Field);
3436    }
3437
3438    NSConstantStringTypeDecl->completeDefinition();
3439  }
3440
3441  return getTagDeclType(NSConstantStringTypeDecl);
3442}
3443
3444void ASTContext::setNSConstantStringType(QualType T) {
3445  const RecordType *Rec = T->getAs<RecordType>();
3446  assert(Rec && "Invalid NSConstantStringType");
3447  NSConstantStringTypeDecl = Rec->getDecl();
3448}
3449
3450QualType ASTContext::getObjCFastEnumerationStateType() const {
3451  if (!ObjCFastEnumerationStateTypeDecl) {
3452    ObjCFastEnumerationStateTypeDecl =
3453      CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3454                       &Idents.get("__objcFastEnumerationState"));
3455    ObjCFastEnumerationStateTypeDecl->startDefinition();
3456
3457    QualType FieldTypes[] = {
3458      UnsignedLongTy,
3459      getPointerType(ObjCIdTypedefType),
3460      getPointerType(UnsignedLongTy),
3461      getConstantArrayType(UnsignedLongTy,
3462                           llvm::APInt(32, 5), ArrayType::Normal, 0)
3463    };
3464
3465    for (size_t i = 0; i < 4; ++i) {
3466      FieldDecl *Field = FieldDecl::Create(*this,
3467                                           ObjCFastEnumerationStateTypeDecl,
3468                                           SourceLocation(), 0,
3469                                           FieldTypes[i], /*TInfo=*/0,
3470                                           /*BitWidth=*/0,
3471                                           /*Mutable=*/false);
3472      Field->setAccess(AS_public);
3473      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
3474    }
3475
3476    ObjCFastEnumerationStateTypeDecl->completeDefinition();
3477  }
3478
3479  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
3480}
3481
3482QualType ASTContext::getBlockDescriptorType() const {
3483  if (BlockDescriptorType)
3484    return getTagDeclType(BlockDescriptorType);
3485
3486  RecordDecl *T;
3487  // FIXME: Needs the FlagAppleBlock bit.
3488  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3489                       &Idents.get("__block_descriptor"));
3490  T->startDefinition();
3491
3492  QualType FieldTypes[] = {
3493    UnsignedLongTy,
3494    UnsignedLongTy,
3495  };
3496
3497  const char *FieldNames[] = {
3498    "reserved",
3499    "Size"
3500  };
3501
3502  for (size_t i = 0; i < 2; ++i) {
3503    FieldDecl *Field = FieldDecl::Create(*this,
3504                                         T,
3505                                         SourceLocation(),
3506                                         &Idents.get(FieldNames[i]),
3507                                         FieldTypes[i], /*TInfo=*/0,
3508                                         /*BitWidth=*/0,
3509                                         /*Mutable=*/false);
3510    Field->setAccess(AS_public);
3511    T->addDecl(Field);
3512  }
3513
3514  T->completeDefinition();
3515
3516  BlockDescriptorType = T;
3517
3518  return getTagDeclType(BlockDescriptorType);
3519}
3520
3521void ASTContext::setBlockDescriptorType(QualType T) {
3522  const RecordType *Rec = T->getAs<RecordType>();
3523  assert(Rec && "Invalid BlockDescriptorType");
3524  BlockDescriptorType = Rec->getDecl();
3525}
3526
3527QualType ASTContext::getBlockDescriptorExtendedType() const {
3528  if (BlockDescriptorExtendedType)
3529    return getTagDeclType(BlockDescriptorExtendedType);
3530
3531  RecordDecl *T;
3532  // FIXME: Needs the FlagAppleBlock bit.
3533  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3534                       &Idents.get("__block_descriptor_withcopydispose"));
3535  T->startDefinition();
3536
3537  QualType FieldTypes[] = {
3538    UnsignedLongTy,
3539    UnsignedLongTy,
3540    getPointerType(VoidPtrTy),
3541    getPointerType(VoidPtrTy)
3542  };
3543
3544  const char *FieldNames[] = {
3545    "reserved",
3546    "Size",
3547    "CopyFuncPtr",
3548    "DestroyFuncPtr"
3549  };
3550
3551  for (size_t i = 0; i < 4; ++i) {
3552    FieldDecl *Field = FieldDecl::Create(*this,
3553                                         T,
3554                                         SourceLocation(),
3555                                         &Idents.get(FieldNames[i]),
3556                                         FieldTypes[i], /*TInfo=*/0,
3557                                         /*BitWidth=*/0,
3558                                         /*Mutable=*/false);
3559    Field->setAccess(AS_public);
3560    T->addDecl(Field);
3561  }
3562
3563  T->completeDefinition();
3564
3565  BlockDescriptorExtendedType = T;
3566
3567  return getTagDeclType(BlockDescriptorExtendedType);
3568}
3569
3570void ASTContext::setBlockDescriptorExtendedType(QualType T) {
3571  const RecordType *Rec = T->getAs<RecordType>();
3572  assert(Rec && "Invalid BlockDescriptorType");
3573  BlockDescriptorExtendedType = Rec->getDecl();
3574}
3575
3576bool ASTContext::BlockRequiresCopying(QualType Ty) const {
3577  if (Ty->isBlockPointerType())
3578    return true;
3579  if (isObjCNSObjectType(Ty))
3580    return true;
3581  if (Ty->isObjCObjectPointerType())
3582    return true;
3583  if (getLangOptions().CPlusPlus) {
3584    if (const RecordType *RT = Ty->getAs<RecordType>()) {
3585      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3586      return RD->hasConstCopyConstructor(*this);
3587
3588    }
3589  }
3590  return false;
3591}
3592
3593QualType
3594ASTContext::BuildByRefType(llvm::StringRef DeclName, QualType Ty) const {
3595  //  type = struct __Block_byref_1_X {
3596  //    void *__isa;
3597  //    struct __Block_byref_1_X *__forwarding;
3598  //    unsigned int __flags;
3599  //    unsigned int __size;
3600  //    void *__copy_helper;            // as needed
3601  //    void *__destroy_help            // as needed
3602  //    int X;
3603  //  } *
3604
3605  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
3606
3607  // FIXME: Move up
3608  llvm::SmallString<36> Name;
3609  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
3610                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
3611  RecordDecl *T;
3612  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3613                       &Idents.get(Name.str()));
3614  T->startDefinition();
3615  QualType Int32Ty = IntTy;
3616  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
3617  QualType FieldTypes[] = {
3618    getPointerType(VoidPtrTy),
3619    getPointerType(getTagDeclType(T)),
3620    Int32Ty,
3621    Int32Ty,
3622    getPointerType(VoidPtrTy),
3623    getPointerType(VoidPtrTy),
3624    Ty
3625  };
3626
3627  llvm::StringRef FieldNames[] = {
3628    "__isa",
3629    "__forwarding",
3630    "__flags",
3631    "__size",
3632    "__copy_helper",
3633    "__destroy_helper",
3634    DeclName,
3635  };
3636
3637  for (size_t i = 0; i < 7; ++i) {
3638    if (!HasCopyAndDispose && i >=4 && i <= 5)
3639      continue;
3640    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3641                                         &Idents.get(FieldNames[i]),
3642                                         FieldTypes[i], /*TInfo=*/0,
3643                                         /*BitWidth=*/0, /*Mutable=*/false);
3644    Field->setAccess(AS_public);
3645    T->addDecl(Field);
3646  }
3647
3648  T->completeDefinition();
3649
3650  return getPointerType(getTagDeclType(T));
3651}
3652
3653void ASTContext::setObjCFastEnumerationStateType(QualType T) {
3654  const RecordType *Rec = T->getAs<RecordType>();
3655  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
3656  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
3657}
3658
3659// This returns true if a type has been typedefed to BOOL:
3660// typedef <type> BOOL;
3661static bool isTypeTypedefedAsBOOL(QualType T) {
3662  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3663    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3664      return II->isStr("BOOL");
3665
3666  return false;
3667}
3668
3669/// getObjCEncodingTypeSize returns size of type for objective-c encoding
3670/// purpose.
3671CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
3672  CharUnits sz = getTypeSizeInChars(type);
3673
3674  // Make all integer and enum types at least as large as an int
3675  if (sz.isPositive() && type->isIntegralOrEnumerationType())
3676    sz = std::max(sz, getTypeSizeInChars(IntTy));
3677  // Treat arrays as pointers, since that's how they're passed in.
3678  else if (type->isArrayType())
3679    sz = getTypeSizeInChars(VoidPtrTy);
3680  return sz;
3681}
3682
3683static inline
3684std::string charUnitsToString(const CharUnits &CU) {
3685  return llvm::itostr(CU.getQuantity());
3686}
3687
3688/// getObjCEncodingForBlock - Return the encoded type for this block
3689/// declaration.
3690std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
3691  std::string S;
3692
3693  const BlockDecl *Decl = Expr->getBlockDecl();
3694  QualType BlockTy =
3695      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
3696  // Encode result type.
3697  getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
3698  // Compute size of all parameters.
3699  // Start with computing size of a pointer in number of bytes.
3700  // FIXME: There might(should) be a better way of doing this computation!
3701  SourceLocation Loc;
3702  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3703  CharUnits ParmOffset = PtrSize;
3704  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
3705       E = Decl->param_end(); PI != E; ++PI) {
3706    QualType PType = (*PI)->getType();
3707    CharUnits sz = getObjCEncodingTypeSize(PType);
3708    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
3709    ParmOffset += sz;
3710  }
3711  // Size of the argument frame
3712  S += charUnitsToString(ParmOffset);
3713  // Block pointer and offset.
3714  S += "@?0";
3715  ParmOffset = PtrSize;
3716
3717  // Argument types.
3718  ParmOffset = PtrSize;
3719  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
3720       Decl->param_end(); PI != E; ++PI) {
3721    ParmVarDecl *PVDecl = *PI;
3722    QualType PType = PVDecl->getOriginalType();
3723    if (const ArrayType *AT =
3724          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3725      // Use array's original type only if it has known number of
3726      // elements.
3727      if (!isa<ConstantArrayType>(AT))
3728        PType = PVDecl->getType();
3729    } else if (PType->isFunctionType())
3730      PType = PVDecl->getType();
3731    getObjCEncodingForType(PType, S);
3732    S += charUnitsToString(ParmOffset);
3733    ParmOffset += getObjCEncodingTypeSize(PType);
3734  }
3735
3736  return S;
3737}
3738
3739void ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
3740                                                std::string& S) {
3741  // Encode result type.
3742  getObjCEncodingForType(Decl->getResultType(), S);
3743  CharUnits ParmOffset;
3744  // Compute size of all parameters.
3745  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
3746       E = Decl->param_end(); PI != E; ++PI) {
3747    QualType PType = (*PI)->getType();
3748    CharUnits sz = getObjCEncodingTypeSize(PType);
3749    assert (sz.isPositive() &&
3750        "getObjCEncodingForMethodDecl - Incomplete param type");
3751    ParmOffset += sz;
3752  }
3753  S += charUnitsToString(ParmOffset);
3754  ParmOffset = CharUnits::Zero();
3755
3756  // Argument types.
3757  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
3758       E = Decl->param_end(); PI != E; ++PI) {
3759    ParmVarDecl *PVDecl = *PI;
3760    QualType PType = PVDecl->getOriginalType();
3761    if (const ArrayType *AT =
3762          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3763      // Use array's original type only if it has known number of
3764      // elements.
3765      if (!isa<ConstantArrayType>(AT))
3766        PType = PVDecl->getType();
3767    } else if (PType->isFunctionType())
3768      PType = PVDecl->getType();
3769    getObjCEncodingForType(PType, S);
3770    S += charUnitsToString(ParmOffset);
3771    ParmOffset += getObjCEncodingTypeSize(PType);
3772  }
3773}
3774
3775/// getObjCEncodingForMethodDecl - Return the encoded type for this method
3776/// declaration.
3777void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
3778                                              std::string& S) const {
3779  // FIXME: This is not very efficient.
3780  // Encode type qualifer, 'in', 'inout', etc. for the return type.
3781  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
3782  // Encode result type.
3783  getObjCEncodingForType(Decl->getResultType(), S);
3784  // Compute size of all parameters.
3785  // Start with computing size of a pointer in number of bytes.
3786  // FIXME: There might(should) be a better way of doing this computation!
3787  SourceLocation Loc;
3788  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3789  // The first two arguments (self and _cmd) are pointers; account for
3790  // their size.
3791  CharUnits ParmOffset = 2 * PtrSize;
3792  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3793       E = Decl->sel_param_end(); PI != E; ++PI) {
3794    QualType PType = (*PI)->getType();
3795    CharUnits sz = getObjCEncodingTypeSize(PType);
3796    assert (sz.isPositive() &&
3797        "getObjCEncodingForMethodDecl - Incomplete param type");
3798    ParmOffset += sz;
3799  }
3800  S += charUnitsToString(ParmOffset);
3801  S += "@0:";
3802  S += charUnitsToString(PtrSize);
3803
3804  // Argument types.
3805  ParmOffset = 2 * PtrSize;
3806  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3807       E = Decl->sel_param_end(); PI != E; ++PI) {
3808    ParmVarDecl *PVDecl = *PI;
3809    QualType PType = PVDecl->getOriginalType();
3810    if (const ArrayType *AT =
3811          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3812      // Use array's original type only if it has known number of
3813      // elements.
3814      if (!isa<ConstantArrayType>(AT))
3815        PType = PVDecl->getType();
3816    } else if (PType->isFunctionType())
3817      PType = PVDecl->getType();
3818    // Process argument qualifiers for user supplied arguments; such as,
3819    // 'in', 'inout', etc.
3820    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
3821    getObjCEncodingForType(PType, S);
3822    S += charUnitsToString(ParmOffset);
3823    ParmOffset += getObjCEncodingTypeSize(PType);
3824  }
3825}
3826
3827/// getObjCEncodingForPropertyDecl - Return the encoded type for this
3828/// property declaration. If non-NULL, Container must be either an
3829/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
3830/// NULL when getting encodings for protocol properties.
3831/// Property attributes are stored as a comma-delimited C string. The simple
3832/// attributes readonly and bycopy are encoded as single characters. The
3833/// parametrized attributes, getter=name, setter=name, and ivar=name, are
3834/// encoded as single characters, followed by an identifier. Property types
3835/// are also encoded as a parametrized attribute. The characters used to encode
3836/// these attributes are defined by the following enumeration:
3837/// @code
3838/// enum PropertyAttributes {
3839/// kPropertyReadOnly = 'R',   // property is read-only.
3840/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
3841/// kPropertyByref = '&',  // property is a reference to the value last assigned
3842/// kPropertyDynamic = 'D',    // property is dynamic
3843/// kPropertyGetter = 'G',     // followed by getter selector name
3844/// kPropertySetter = 'S',     // followed by setter selector name
3845/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
3846/// kPropertyType = 't'              // followed by old-style type encoding.
3847/// kPropertyWeak = 'W'              // 'weak' property
3848/// kPropertyStrong = 'P'            // property GC'able
3849/// kPropertyNonAtomic = 'N'         // property non-atomic
3850/// };
3851/// @endcode
3852void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
3853                                                const Decl *Container,
3854                                                std::string& S) const {
3855  // Collect information from the property implementation decl(s).
3856  bool Dynamic = false;
3857  ObjCPropertyImplDecl *SynthesizePID = 0;
3858
3859  // FIXME: Duplicated code due to poor abstraction.
3860  if (Container) {
3861    if (const ObjCCategoryImplDecl *CID =
3862        dyn_cast<ObjCCategoryImplDecl>(Container)) {
3863      for (ObjCCategoryImplDecl::propimpl_iterator
3864             i = CID->propimpl_begin(), e = CID->propimpl_end();
3865           i != e; ++i) {
3866        ObjCPropertyImplDecl *PID = *i;
3867        if (PID->getPropertyDecl() == PD) {
3868          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3869            Dynamic = true;
3870          } else {
3871            SynthesizePID = PID;
3872          }
3873        }
3874      }
3875    } else {
3876      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
3877      for (ObjCCategoryImplDecl::propimpl_iterator
3878             i = OID->propimpl_begin(), e = OID->propimpl_end();
3879           i != e; ++i) {
3880        ObjCPropertyImplDecl *PID = *i;
3881        if (PID->getPropertyDecl() == PD) {
3882          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3883            Dynamic = true;
3884          } else {
3885            SynthesizePID = PID;
3886          }
3887        }
3888      }
3889    }
3890  }
3891
3892  // FIXME: This is not very efficient.
3893  S = "T";
3894
3895  // Encode result type.
3896  // GCC has some special rules regarding encoding of properties which
3897  // closely resembles encoding of ivars.
3898  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
3899                             true /* outermost type */,
3900                             true /* encoding for property */);
3901
3902  if (PD->isReadOnly()) {
3903    S += ",R";
3904  } else {
3905    switch (PD->getSetterKind()) {
3906    case ObjCPropertyDecl::Assign: break;
3907    case ObjCPropertyDecl::Copy:   S += ",C"; break;
3908    case ObjCPropertyDecl::Retain: S += ",&"; break;
3909    }
3910  }
3911
3912  // It really isn't clear at all what this means, since properties
3913  // are "dynamic by default".
3914  if (Dynamic)
3915    S += ",D";
3916
3917  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
3918    S += ",N";
3919
3920  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
3921    S += ",G";
3922    S += PD->getGetterName().getAsString();
3923  }
3924
3925  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
3926    S += ",S";
3927    S += PD->getSetterName().getAsString();
3928  }
3929
3930  if (SynthesizePID) {
3931    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
3932    S += ",V";
3933    S += OID->getNameAsString();
3934  }
3935
3936  // FIXME: OBJCGC: weak & strong
3937}
3938
3939/// getLegacyIntegralTypeEncoding -
3940/// Another legacy compatibility encoding: 32-bit longs are encoded as
3941/// 'l' or 'L' , but not always.  For typedefs, we need to use
3942/// 'i' or 'I' instead if encoding a struct field, or a pointer!
3943///
3944void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
3945  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
3946    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
3947      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
3948        PointeeTy = UnsignedIntTy;
3949      else
3950        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
3951          PointeeTy = IntTy;
3952    }
3953  }
3954}
3955
3956void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
3957                                        const FieldDecl *Field) const {
3958  // We follow the behavior of gcc, expanding structures which are
3959  // directly pointed to, and expanding embedded structures. Note that
3960  // these rules are sufficient to prevent recursive encoding of the
3961  // same type.
3962  getObjCEncodingForTypeImpl(T, S, true, true, Field,
3963                             true /* outermost type */);
3964}
3965
3966static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
3967    switch (T->getAs<BuiltinType>()->getKind()) {
3968    default: assert(0 && "Unhandled builtin type kind");
3969    case BuiltinType::Void:       return 'v';
3970    case BuiltinType::Bool:       return 'B';
3971    case BuiltinType::Char_U:
3972    case BuiltinType::UChar:      return 'C';
3973    case BuiltinType::UShort:     return 'S';
3974    case BuiltinType::UInt:       return 'I';
3975    case BuiltinType::ULong:
3976        return C->getIntWidth(T) == 32 ? 'L' : 'Q';
3977    case BuiltinType::UInt128:    return 'T';
3978    case BuiltinType::ULongLong:  return 'Q';
3979    case BuiltinType::Char_S:
3980    case BuiltinType::SChar:      return 'c';
3981    case BuiltinType::Short:      return 's';
3982    case BuiltinType::WChar_S:
3983    case BuiltinType::WChar_U:
3984    case BuiltinType::Int:        return 'i';
3985    case BuiltinType::Long:
3986      return C->getIntWidth(T) == 32 ? 'l' : 'q';
3987    case BuiltinType::LongLong:   return 'q';
3988    case BuiltinType::Int128:     return 't';
3989    case BuiltinType::Float:      return 'f';
3990    case BuiltinType::Double:     return 'd';
3991    case BuiltinType::LongDouble: return 'D';
3992    }
3993}
3994
3995static void EncodeBitField(const ASTContext *Ctx, std::string& S,
3996                           QualType T, const FieldDecl *FD) {
3997  const Expr *E = FD->getBitWidth();
3998  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
3999  S += 'b';
4000  // The NeXT runtime encodes bit fields as b followed by the number of bits.
4001  // The GNU runtime requires more information; bitfields are encoded as b,
4002  // then the offset (in bits) of the first element, then the type of the
4003  // bitfield, then the size in bits.  For example, in this structure:
4004  //
4005  // struct
4006  // {
4007  //    int integer;
4008  //    int flags:2;
4009  // };
4010  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
4011  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
4012  // information is not especially sensible, but we're stuck with it for
4013  // compatibility with GCC, although providing it breaks anything that
4014  // actually uses runtime introspection and wants to work on both runtimes...
4015  if (!Ctx->getLangOptions().NeXTRuntime) {
4016    const RecordDecl *RD = FD->getParent();
4017    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
4018    // FIXME: This same linear search is also used in ExprConstant - it might
4019    // be better if the FieldDecl stored its offset.  We'd be increasing the
4020    // size of the object slightly, but saving some time every time it is used.
4021    unsigned i = 0;
4022    for (RecordDecl::field_iterator Field = RD->field_begin(),
4023                                 FieldEnd = RD->field_end();
4024         Field != FieldEnd; (void)++Field, ++i) {
4025      if (*Field == FD)
4026        break;
4027    }
4028    S += llvm::utostr(RL.getFieldOffset(i));
4029    if (T->isEnumeralType())
4030      S += 'i';
4031    else
4032      S += ObjCEncodingForPrimitiveKind(Ctx, T);
4033  }
4034  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
4035  S += llvm::utostr(N);
4036}
4037
4038// FIXME: Use SmallString for accumulating string.
4039void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
4040                                            bool ExpandPointedToStructures,
4041                                            bool ExpandStructures,
4042                                            const FieldDecl *FD,
4043                                            bool OutermostType,
4044                                            bool EncodingProperty) const {
4045  if (T->getAs<BuiltinType>()) {
4046    if (FD && FD->isBitField())
4047      return EncodeBitField(this, S, T, FD);
4048    S += ObjCEncodingForPrimitiveKind(this, T);
4049    return;
4050  }
4051
4052  if (const ComplexType *CT = T->getAs<ComplexType>()) {
4053    S += 'j';
4054    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
4055                               false);
4056    return;
4057  }
4058
4059  // encoding for pointer or r3eference types.
4060  QualType PointeeTy;
4061  if (const PointerType *PT = T->getAs<PointerType>()) {
4062    if (PT->isObjCSelType()) {
4063      S += ':';
4064      return;
4065    }
4066    PointeeTy = PT->getPointeeType();
4067  }
4068  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4069    PointeeTy = RT->getPointeeType();
4070  if (!PointeeTy.isNull()) {
4071    bool isReadOnly = false;
4072    // For historical/compatibility reasons, the read-only qualifier of the
4073    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
4074    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
4075    // Also, do not emit the 'r' for anything but the outermost type!
4076    if (isa<TypedefType>(T.getTypePtr())) {
4077      if (OutermostType && T.isConstQualified()) {
4078        isReadOnly = true;
4079        S += 'r';
4080      }
4081    } else if (OutermostType) {
4082      QualType P = PointeeTy;
4083      while (P->getAs<PointerType>())
4084        P = P->getAs<PointerType>()->getPointeeType();
4085      if (P.isConstQualified()) {
4086        isReadOnly = true;
4087        S += 'r';
4088      }
4089    }
4090    if (isReadOnly) {
4091      // Another legacy compatibility encoding. Some ObjC qualifier and type
4092      // combinations need to be rearranged.
4093      // Rewrite "in const" from "nr" to "rn"
4094      if (llvm::StringRef(S).endswith("nr"))
4095        S.replace(S.end()-2, S.end(), "rn");
4096    }
4097
4098    if (PointeeTy->isCharType()) {
4099      // char pointer types should be encoded as '*' unless it is a
4100      // type that has been typedef'd to 'BOOL'.
4101      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
4102        S += '*';
4103        return;
4104      }
4105    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
4106      // GCC binary compat: Need to convert "struct objc_class *" to "#".
4107      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
4108        S += '#';
4109        return;
4110      }
4111      // GCC binary compat: Need to convert "struct objc_object *" to "@".
4112      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
4113        S += '@';
4114        return;
4115      }
4116      // fall through...
4117    }
4118    S += '^';
4119    getLegacyIntegralTypeEncoding(PointeeTy);
4120
4121    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
4122                               NULL);
4123    return;
4124  }
4125
4126  if (const ArrayType *AT =
4127      // Ignore type qualifiers etc.
4128        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
4129    if (isa<IncompleteArrayType>(AT)) {
4130      // Incomplete arrays are encoded as a pointer to the array element.
4131      S += '^';
4132
4133      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4134                                 false, ExpandStructures, FD);
4135    } else {
4136      S += '[';
4137
4138      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
4139        S += llvm::utostr(CAT->getSize().getZExtValue());
4140      else {
4141        //Variable length arrays are encoded as a regular array with 0 elements.
4142        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
4143        S += '0';
4144      }
4145
4146      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4147                                 false, ExpandStructures, FD);
4148      S += ']';
4149    }
4150    return;
4151  }
4152
4153  if (T->getAs<FunctionType>()) {
4154    S += '?';
4155    return;
4156  }
4157
4158  if (const RecordType *RTy = T->getAs<RecordType>()) {
4159    RecordDecl *RDecl = RTy->getDecl();
4160    S += RDecl->isUnion() ? '(' : '{';
4161    // Anonymous structures print as '?'
4162    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
4163      S += II->getName();
4164      if (ClassTemplateSpecializationDecl *Spec
4165          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
4166        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
4167        std::string TemplateArgsStr
4168          = TemplateSpecializationType::PrintTemplateArgumentList(
4169                                            TemplateArgs.data(),
4170                                            TemplateArgs.size(),
4171                                            (*this).PrintingPolicy);
4172
4173        S += TemplateArgsStr;
4174      }
4175    } else {
4176      S += '?';
4177    }
4178    if (ExpandStructures) {
4179      S += '=';
4180      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4181                                   FieldEnd = RDecl->field_end();
4182           Field != FieldEnd; ++Field) {
4183        if (FD) {
4184          S += '"';
4185          S += Field->getNameAsString();
4186          S += '"';
4187        }
4188
4189        // Special case bit-fields.
4190        if (Field->isBitField()) {
4191          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
4192                                     (*Field));
4193        } else {
4194          QualType qt = Field->getType();
4195          getLegacyIntegralTypeEncoding(qt);
4196          getObjCEncodingForTypeImpl(qt, S, false, true,
4197                                     FD);
4198        }
4199      }
4200    }
4201    S += RDecl->isUnion() ? ')' : '}';
4202    return;
4203  }
4204
4205  if (T->isEnumeralType()) {
4206    if (FD && FD->isBitField())
4207      EncodeBitField(this, S, T, FD);
4208    else
4209      S += 'i';
4210    return;
4211  }
4212
4213  if (T->isBlockPointerType()) {
4214    S += "@?"; // Unlike a pointer-to-function, which is "^?".
4215    return;
4216  }
4217
4218  // Ignore protocol qualifiers when mangling at this level.
4219  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
4220    T = OT->getBaseType();
4221
4222  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
4223    // @encode(class_name)
4224    ObjCInterfaceDecl *OI = OIT->getDecl();
4225    S += '{';
4226    const IdentifierInfo *II = OI->getIdentifier();
4227    S += II->getName();
4228    S += '=';
4229    llvm::SmallVector<ObjCIvarDecl*, 32> Ivars;
4230    DeepCollectObjCIvars(OI, true, Ivars);
4231    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
4232      FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
4233      if (Field->isBitField())
4234        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
4235      else
4236        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
4237    }
4238    S += '}';
4239    return;
4240  }
4241
4242  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
4243    if (OPT->isObjCIdType()) {
4244      S += '@';
4245      return;
4246    }
4247
4248    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
4249      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
4250      // Since this is a binary compatibility issue, need to consult with runtime
4251      // folks. Fortunately, this is a *very* obsure construct.
4252      S += '#';
4253      return;
4254    }
4255
4256    if (OPT->isObjCQualifiedIdType()) {
4257      getObjCEncodingForTypeImpl(getObjCIdType(), S,
4258                                 ExpandPointedToStructures,
4259                                 ExpandStructures, FD);
4260      if (FD || EncodingProperty) {
4261        // Note that we do extended encoding of protocol qualifer list
4262        // Only when doing ivar or property encoding.
4263        S += '"';
4264        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4265             E = OPT->qual_end(); I != E; ++I) {
4266          S += '<';
4267          S += (*I)->getNameAsString();
4268          S += '>';
4269        }
4270        S += '"';
4271      }
4272      return;
4273    }
4274
4275    QualType PointeeTy = OPT->getPointeeType();
4276    if (!EncodingProperty &&
4277        isa<TypedefType>(PointeeTy.getTypePtr())) {
4278      // Another historical/compatibility reason.
4279      // We encode the underlying type which comes out as
4280      // {...};
4281      S += '^';
4282      getObjCEncodingForTypeImpl(PointeeTy, S,
4283                                 false, ExpandPointedToStructures,
4284                                 NULL);
4285      return;
4286    }
4287
4288    S += '@';
4289    if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
4290      S += '"';
4291      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
4292      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4293           E = OPT->qual_end(); I != E; ++I) {
4294        S += '<';
4295        S += (*I)->getNameAsString();
4296        S += '>';
4297      }
4298      S += '"';
4299    }
4300    return;
4301  }
4302
4303  // gcc just blithely ignores member pointers.
4304  // TODO: maybe there should be a mangling for these
4305  if (T->getAs<MemberPointerType>())
4306    return;
4307
4308  if (T->isVectorType()) {
4309    // This matches gcc's encoding, even though technically it is
4310    // insufficient.
4311    // FIXME. We should do a better job than gcc.
4312    return;
4313  }
4314
4315  assert(0 && "@encode for type not implemented!");
4316}
4317
4318void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
4319                                                 std::string& S) const {
4320  if (QT & Decl::OBJC_TQ_In)
4321    S += 'n';
4322  if (QT & Decl::OBJC_TQ_Inout)
4323    S += 'N';
4324  if (QT & Decl::OBJC_TQ_Out)
4325    S += 'o';
4326  if (QT & Decl::OBJC_TQ_Bycopy)
4327    S += 'O';
4328  if (QT & Decl::OBJC_TQ_Byref)
4329    S += 'R';
4330  if (QT & Decl::OBJC_TQ_Oneway)
4331    S += 'V';
4332}
4333
4334void ASTContext::setBuiltinVaListType(QualType T) {
4335  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
4336
4337  BuiltinVaListType = T;
4338}
4339
4340void ASTContext::setObjCIdType(QualType T) {
4341  ObjCIdTypedefType = T;
4342}
4343
4344void ASTContext::setObjCSelType(QualType T) {
4345  ObjCSelTypedefType = T;
4346}
4347
4348void ASTContext::setObjCProtoType(QualType QT) {
4349  ObjCProtoType = QT;
4350}
4351
4352void ASTContext::setObjCClassType(QualType T) {
4353  ObjCClassTypedefType = T;
4354}
4355
4356void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
4357  assert(ObjCConstantStringType.isNull() &&
4358         "'NSConstantString' type already set!");
4359
4360  ObjCConstantStringType = getObjCInterfaceType(Decl);
4361}
4362
4363/// \brief Retrieve the template name that corresponds to a non-empty
4364/// lookup.
4365TemplateName
4366ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
4367                                      UnresolvedSetIterator End) const {
4368  unsigned size = End - Begin;
4369  assert(size > 1 && "set is not overloaded!");
4370
4371  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
4372                          size * sizeof(FunctionTemplateDecl*));
4373  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
4374
4375  NamedDecl **Storage = OT->getStorage();
4376  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
4377    NamedDecl *D = *I;
4378    assert(isa<FunctionTemplateDecl>(D) ||
4379           (isa<UsingShadowDecl>(D) &&
4380            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
4381    *Storage++ = D;
4382  }
4383
4384  return TemplateName(OT);
4385}
4386
4387/// \brief Retrieve the template name that represents a qualified
4388/// template name such as \c std::vector.
4389TemplateName
4390ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
4391                                     bool TemplateKeyword,
4392                                     TemplateDecl *Template) const {
4393  assert(NNS && "Missing nested-name-specifier in qualified template name");
4394
4395  // FIXME: Canonicalization?
4396  llvm::FoldingSetNodeID ID;
4397  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
4398
4399  void *InsertPos = 0;
4400  QualifiedTemplateName *QTN =
4401    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4402  if (!QTN) {
4403    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
4404    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
4405  }
4406
4407  return TemplateName(QTN);
4408}
4409
4410/// \brief Retrieve the template name that represents a dependent
4411/// template name such as \c MetaFun::template apply.
4412TemplateName
4413ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4414                                     const IdentifierInfo *Name) const {
4415  assert((!NNS || NNS->isDependent()) &&
4416         "Nested name specifier must be dependent");
4417
4418  llvm::FoldingSetNodeID ID;
4419  DependentTemplateName::Profile(ID, NNS, Name);
4420
4421  void *InsertPos = 0;
4422  DependentTemplateName *QTN =
4423    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4424
4425  if (QTN)
4426    return TemplateName(QTN);
4427
4428  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4429  if (CanonNNS == NNS) {
4430    QTN = new (*this,4) DependentTemplateName(NNS, Name);
4431  } else {
4432    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
4433    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
4434    DependentTemplateName *CheckQTN =
4435      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4436    assert(!CheckQTN && "Dependent type name canonicalization broken");
4437    (void)CheckQTN;
4438  }
4439
4440  DependentTemplateNames.InsertNode(QTN, InsertPos);
4441  return TemplateName(QTN);
4442}
4443
4444/// \brief Retrieve the template name that represents a dependent
4445/// template name such as \c MetaFun::template operator+.
4446TemplateName
4447ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4448                                     OverloadedOperatorKind Operator) const {
4449  assert((!NNS || NNS->isDependent()) &&
4450         "Nested name specifier must be dependent");
4451
4452  llvm::FoldingSetNodeID ID;
4453  DependentTemplateName::Profile(ID, NNS, Operator);
4454
4455  void *InsertPos = 0;
4456  DependentTemplateName *QTN
4457    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4458
4459  if (QTN)
4460    return TemplateName(QTN);
4461
4462  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4463  if (CanonNNS == NNS) {
4464    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
4465  } else {
4466    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
4467    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
4468
4469    DependentTemplateName *CheckQTN
4470      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4471    assert(!CheckQTN && "Dependent template name canonicalization broken");
4472    (void)CheckQTN;
4473  }
4474
4475  DependentTemplateNames.InsertNode(QTN, InsertPos);
4476  return TemplateName(QTN);
4477}
4478
4479TemplateName
4480ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
4481                                       const TemplateArgument &ArgPack) const {
4482  ASTContext &Self = const_cast<ASTContext &>(*this);
4483  llvm::FoldingSetNodeID ID;
4484  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
4485
4486  void *InsertPos = 0;
4487  SubstTemplateTemplateParmPackStorage *Subst
4488    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
4489
4490  if (!Subst) {
4491    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Self, Param,
4492                                                           ArgPack.pack_size(),
4493                                                         ArgPack.pack_begin());
4494    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
4495  }
4496
4497  return TemplateName(Subst);
4498}
4499
4500/// getFromTargetType - Given one of the integer types provided by
4501/// TargetInfo, produce the corresponding type. The unsigned @p Type
4502/// is actually a value of type @c TargetInfo::IntType.
4503CanQualType ASTContext::getFromTargetType(unsigned Type) const {
4504  switch (Type) {
4505  case TargetInfo::NoInt: return CanQualType();
4506  case TargetInfo::SignedShort: return ShortTy;
4507  case TargetInfo::UnsignedShort: return UnsignedShortTy;
4508  case TargetInfo::SignedInt: return IntTy;
4509  case TargetInfo::UnsignedInt: return UnsignedIntTy;
4510  case TargetInfo::SignedLong: return LongTy;
4511  case TargetInfo::UnsignedLong: return UnsignedLongTy;
4512  case TargetInfo::SignedLongLong: return LongLongTy;
4513  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
4514  }
4515
4516  assert(false && "Unhandled TargetInfo::IntType value");
4517  return CanQualType();
4518}
4519
4520//===----------------------------------------------------------------------===//
4521//                        Type Predicates.
4522//===----------------------------------------------------------------------===//
4523
4524/// isObjCNSObjectType - Return true if this is an NSObject object using
4525/// NSObject attribute on a c-style pointer type.
4526/// FIXME - Make it work directly on types.
4527/// FIXME: Move to Type.
4528///
4529bool ASTContext::isObjCNSObjectType(QualType Ty) const {
4530  if (const TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
4531    if (TypedefDecl *TD = TDT->getDecl())
4532      if (TD->getAttr<ObjCNSObjectAttr>())
4533        return true;
4534  }
4535  return false;
4536}
4537
4538/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
4539/// garbage collection attribute.
4540///
4541Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
4542  if (getLangOptions().getGCMode() == LangOptions::NonGC)
4543    return Qualifiers::GCNone;
4544
4545  assert(getLangOptions().ObjC1);
4546  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
4547
4548  // Default behaviour under objective-C's gc is for ObjC pointers
4549  // (or pointers to them) be treated as though they were declared
4550  // as __strong.
4551  if (GCAttrs == Qualifiers::GCNone) {
4552    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4553      return Qualifiers::Strong;
4554    else if (Ty->isPointerType())
4555      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
4556  } else {
4557    // It's not valid to set GC attributes on anything that isn't a
4558    // pointer.
4559#ifndef NDEBUG
4560    QualType CT = Ty->getCanonicalTypeInternal();
4561    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
4562      CT = AT->getElementType();
4563    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
4564#endif
4565  }
4566  return GCAttrs;
4567}
4568
4569//===----------------------------------------------------------------------===//
4570//                        Type Compatibility Testing
4571//===----------------------------------------------------------------------===//
4572
4573/// areCompatVectorTypes - Return true if the two specified vector types are
4574/// compatible.
4575static bool areCompatVectorTypes(const VectorType *LHS,
4576                                 const VectorType *RHS) {
4577  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
4578  return LHS->getElementType() == RHS->getElementType() &&
4579         LHS->getNumElements() == RHS->getNumElements();
4580}
4581
4582bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
4583                                          QualType SecondVec) {
4584  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
4585  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
4586
4587  if (hasSameUnqualifiedType(FirstVec, SecondVec))
4588    return true;
4589
4590  // Treat Neon vector types and most AltiVec vector types as if they are the
4591  // equivalent GCC vector types.
4592  const VectorType *First = FirstVec->getAs<VectorType>();
4593  const VectorType *Second = SecondVec->getAs<VectorType>();
4594  if (First->getNumElements() == Second->getNumElements() &&
4595      hasSameType(First->getElementType(), Second->getElementType()) &&
4596      First->getVectorKind() != VectorType::AltiVecPixel &&
4597      First->getVectorKind() != VectorType::AltiVecBool &&
4598      Second->getVectorKind() != VectorType::AltiVecPixel &&
4599      Second->getVectorKind() != VectorType::AltiVecBool)
4600    return true;
4601
4602  return false;
4603}
4604
4605//===----------------------------------------------------------------------===//
4606// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
4607//===----------------------------------------------------------------------===//
4608
4609/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
4610/// inheritance hierarchy of 'rProto'.
4611bool
4612ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
4613                                           ObjCProtocolDecl *rProto) const {
4614  if (lProto == rProto)
4615    return true;
4616  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
4617       E = rProto->protocol_end(); PI != E; ++PI)
4618    if (ProtocolCompatibleWithProtocol(lProto, *PI))
4619      return true;
4620  return false;
4621}
4622
4623/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
4624/// return true if lhs's protocols conform to rhs's protocol; false
4625/// otherwise.
4626bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
4627  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
4628    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
4629  return false;
4630}
4631
4632/// ObjCQualifiedClassTypesAreCompatible - compare  Class<p,...> and
4633/// Class<p1, ...>.
4634bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
4635                                                      QualType rhs) {
4636  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
4637  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
4638  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
4639
4640  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4641       E = lhsQID->qual_end(); I != E; ++I) {
4642    bool match = false;
4643    ObjCProtocolDecl *lhsProto = *I;
4644    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
4645         E = rhsOPT->qual_end(); J != E; ++J) {
4646      ObjCProtocolDecl *rhsProto = *J;
4647      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
4648        match = true;
4649        break;
4650      }
4651    }
4652    if (!match)
4653      return false;
4654  }
4655  return true;
4656}
4657
4658/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
4659/// ObjCQualifiedIDType.
4660bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
4661                                                   bool compare) {
4662  // Allow id<P..> and an 'id' or void* type in all cases.
4663  if (lhs->isVoidPointerType() ||
4664      lhs->isObjCIdType() || lhs->isObjCClassType())
4665    return true;
4666  else if (rhs->isVoidPointerType() ||
4667           rhs->isObjCIdType() || rhs->isObjCClassType())
4668    return true;
4669
4670  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
4671    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
4672
4673    if (!rhsOPT) return false;
4674
4675    if (rhsOPT->qual_empty()) {
4676      // If the RHS is a unqualified interface pointer "NSString*",
4677      // make sure we check the class hierarchy.
4678      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4679        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4680             E = lhsQID->qual_end(); I != E; ++I) {
4681          // when comparing an id<P> on lhs with a static type on rhs,
4682          // see if static class implements all of id's protocols, directly or
4683          // through its super class and categories.
4684          if (!rhsID->ClassImplementsProtocol(*I, true))
4685            return false;
4686        }
4687      }
4688      // If there are no qualifiers and no interface, we have an 'id'.
4689      return true;
4690    }
4691    // Both the right and left sides have qualifiers.
4692    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4693         E = lhsQID->qual_end(); I != E; ++I) {
4694      ObjCProtocolDecl *lhsProto = *I;
4695      bool match = false;
4696
4697      // when comparing an id<P> on lhs with a static type on rhs,
4698      // see if static class implements all of id's protocols, directly or
4699      // through its super class and categories.
4700      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
4701           E = rhsOPT->qual_end(); J != E; ++J) {
4702        ObjCProtocolDecl *rhsProto = *J;
4703        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4704            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4705          match = true;
4706          break;
4707        }
4708      }
4709      // If the RHS is a qualified interface pointer "NSString<P>*",
4710      // make sure we check the class hierarchy.
4711      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4712        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4713             E = lhsQID->qual_end(); I != E; ++I) {
4714          // when comparing an id<P> on lhs with a static type on rhs,
4715          // see if static class implements all of id's protocols, directly or
4716          // through its super class and categories.
4717          if (rhsID->ClassImplementsProtocol(*I, true)) {
4718            match = true;
4719            break;
4720          }
4721        }
4722      }
4723      if (!match)
4724        return false;
4725    }
4726
4727    return true;
4728  }
4729
4730  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
4731  assert(rhsQID && "One of the LHS/RHS should be id<x>");
4732
4733  if (const ObjCObjectPointerType *lhsOPT =
4734        lhs->getAsObjCInterfacePointerType()) {
4735    // If both the right and left sides have qualifiers.
4736    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
4737         E = lhsOPT->qual_end(); I != E; ++I) {
4738      ObjCProtocolDecl *lhsProto = *I;
4739      bool match = false;
4740
4741      // when comparing an id<P> on rhs with a static type on lhs,
4742      // see if static class implements all of id's protocols, directly or
4743      // through its super class and categories.
4744      // First, lhs protocols in the qualifier list must be found, direct
4745      // or indirect in rhs's qualifier list or it is a mismatch.
4746      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
4747           E = rhsQID->qual_end(); J != E; ++J) {
4748        ObjCProtocolDecl *rhsProto = *J;
4749        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4750            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4751          match = true;
4752          break;
4753        }
4754      }
4755      if (!match)
4756        return false;
4757    }
4758
4759    // Static class's protocols, or its super class or category protocols
4760    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
4761    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
4762      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
4763      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
4764      // This is rather dubious but matches gcc's behavior. If lhs has
4765      // no type qualifier and its class has no static protocol(s)
4766      // assume that it is mismatch.
4767      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
4768        return false;
4769      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
4770           LHSInheritedProtocols.begin(),
4771           E = LHSInheritedProtocols.end(); I != E; ++I) {
4772        bool match = false;
4773        ObjCProtocolDecl *lhsProto = (*I);
4774        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
4775             E = rhsQID->qual_end(); J != E; ++J) {
4776          ObjCProtocolDecl *rhsProto = *J;
4777          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4778              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4779            match = true;
4780            break;
4781          }
4782        }
4783        if (!match)
4784          return false;
4785      }
4786    }
4787    return true;
4788  }
4789  return false;
4790}
4791
4792/// canAssignObjCInterfaces - Return true if the two interface types are
4793/// compatible for assignment from RHS to LHS.  This handles validation of any
4794/// protocol qualifiers on the LHS or RHS.
4795///
4796bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
4797                                         const ObjCObjectPointerType *RHSOPT) {
4798  const ObjCObjectType* LHS = LHSOPT->getObjectType();
4799  const ObjCObjectType* RHS = RHSOPT->getObjectType();
4800
4801  // If either type represents the built-in 'id' or 'Class' types, return true.
4802  if (LHS->isObjCUnqualifiedIdOrClass() ||
4803      RHS->isObjCUnqualifiedIdOrClass())
4804    return true;
4805
4806  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
4807    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4808                                             QualType(RHSOPT,0),
4809                                             false);
4810
4811  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
4812    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
4813                                                QualType(RHSOPT,0));
4814
4815  // If we have 2 user-defined types, fall into that path.
4816  if (LHS->getInterface() && RHS->getInterface())
4817    return canAssignObjCInterfaces(LHS, RHS);
4818
4819  return false;
4820}
4821
4822/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
4823/// for providing type-safty for objective-c pointers used to pass/return
4824/// arguments in block literals. When passed as arguments, passing 'A*' where
4825/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
4826/// not OK. For the return type, the opposite is not OK.
4827bool ASTContext::canAssignObjCInterfacesInBlockPointer(
4828                                         const ObjCObjectPointerType *LHSOPT,
4829                                         const ObjCObjectPointerType *RHSOPT) {
4830  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
4831    return true;
4832
4833  if (LHSOPT->isObjCBuiltinType()) {
4834    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
4835  }
4836
4837  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
4838    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4839                                             QualType(RHSOPT,0),
4840                                             false);
4841
4842  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4843  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4844  if (LHS && RHS)  { // We have 2 user-defined types.
4845    if (LHS != RHS) {
4846      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
4847        return false;
4848      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
4849        return true;
4850    }
4851    else
4852      return true;
4853  }
4854  return false;
4855}
4856
4857/// getIntersectionOfProtocols - This routine finds the intersection of set
4858/// of protocols inherited from two distinct objective-c pointer objects.
4859/// It is used to build composite qualifier list of the composite type of
4860/// the conditional expression involving two objective-c pointer objects.
4861static
4862void getIntersectionOfProtocols(ASTContext &Context,
4863                                const ObjCObjectPointerType *LHSOPT,
4864                                const ObjCObjectPointerType *RHSOPT,
4865      llvm::SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
4866
4867  const ObjCObjectType* LHS = LHSOPT->getObjectType();
4868  const ObjCObjectType* RHS = RHSOPT->getObjectType();
4869  assert(LHS->getInterface() && "LHS must have an interface base");
4870  assert(RHS->getInterface() && "RHS must have an interface base");
4871
4872  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
4873  unsigned LHSNumProtocols = LHS->getNumProtocols();
4874  if (LHSNumProtocols > 0)
4875    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
4876  else {
4877    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
4878    Context.CollectInheritedProtocols(LHS->getInterface(),
4879                                      LHSInheritedProtocols);
4880    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
4881                                LHSInheritedProtocols.end());
4882  }
4883
4884  unsigned RHSNumProtocols = RHS->getNumProtocols();
4885  if (RHSNumProtocols > 0) {
4886    ObjCProtocolDecl **RHSProtocols =
4887      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
4888    for (unsigned i = 0; i < RHSNumProtocols; ++i)
4889      if (InheritedProtocolSet.count(RHSProtocols[i]))
4890        IntersectionOfProtocols.push_back(RHSProtocols[i]);
4891  }
4892  else {
4893    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
4894    Context.CollectInheritedProtocols(RHS->getInterface(),
4895                                      RHSInheritedProtocols);
4896    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
4897         RHSInheritedProtocols.begin(),
4898         E = RHSInheritedProtocols.end(); I != E; ++I)
4899      if (InheritedProtocolSet.count((*I)))
4900        IntersectionOfProtocols.push_back((*I));
4901  }
4902}
4903
4904/// areCommonBaseCompatible - Returns common base class of the two classes if
4905/// one found. Note that this is O'2 algorithm. But it will be called as the
4906/// last type comparison in a ?-exp of ObjC pointer types before a
4907/// warning is issued. So, its invokation is extremely rare.
4908QualType ASTContext::areCommonBaseCompatible(
4909                                          const ObjCObjectPointerType *Lptr,
4910                                          const ObjCObjectPointerType *Rptr) {
4911  const ObjCObjectType *LHS = Lptr->getObjectType();
4912  const ObjCObjectType *RHS = Rptr->getObjectType();
4913  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
4914  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
4915  if (!LDecl || !RDecl)
4916    return QualType();
4917
4918  while ((LDecl = LDecl->getSuperClass())) {
4919    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
4920    if (canAssignObjCInterfaces(LHS, RHS)) {
4921      llvm::SmallVector<ObjCProtocolDecl *, 8> Protocols;
4922      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
4923
4924      QualType Result = QualType(LHS, 0);
4925      if (!Protocols.empty())
4926        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
4927      Result = getObjCObjectPointerType(Result);
4928      return Result;
4929    }
4930  }
4931
4932  return QualType();
4933}
4934
4935bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
4936                                         const ObjCObjectType *RHS) {
4937  assert(LHS->getInterface() && "LHS is not an interface type");
4938  assert(RHS->getInterface() && "RHS is not an interface type");
4939
4940  // Verify that the base decls are compatible: the RHS must be a subclass of
4941  // the LHS.
4942  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
4943    return false;
4944
4945  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
4946  // protocol qualified at all, then we are good.
4947  if (LHS->getNumProtocols() == 0)
4948    return true;
4949
4950  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
4951  // isn't a superset.
4952  if (RHS->getNumProtocols() == 0)
4953    return true;  // FIXME: should return false!
4954
4955  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
4956                                     LHSPE = LHS->qual_end();
4957       LHSPI != LHSPE; LHSPI++) {
4958    bool RHSImplementsProtocol = false;
4959
4960    // If the RHS doesn't implement the protocol on the left, the types
4961    // are incompatible.
4962    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
4963                                       RHSPE = RHS->qual_end();
4964         RHSPI != RHSPE; RHSPI++) {
4965      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
4966        RHSImplementsProtocol = true;
4967        break;
4968      }
4969    }
4970    // FIXME: For better diagnostics, consider passing back the protocol name.
4971    if (!RHSImplementsProtocol)
4972      return false;
4973  }
4974  // The RHS implements all protocols listed on the LHS.
4975  return true;
4976}
4977
4978bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
4979  // get the "pointed to" types
4980  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
4981  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
4982
4983  if (!LHSOPT || !RHSOPT)
4984    return false;
4985
4986  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
4987         canAssignObjCInterfaces(RHSOPT, LHSOPT);
4988}
4989
4990bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
4991  return canAssignObjCInterfaces(
4992                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
4993                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
4994}
4995
4996/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
4997/// both shall have the identically qualified version of a compatible type.
4998/// C99 6.2.7p1: Two types have compatible types if their types are the
4999/// same. See 6.7.[2,3,5] for additional rules.
5000bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
5001                                    bool CompareUnqualified) {
5002  if (getLangOptions().CPlusPlus)
5003    return hasSameType(LHS, RHS);
5004
5005  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
5006}
5007
5008bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
5009  return !mergeTypes(LHS, RHS, true).isNull();
5010}
5011
5012/// mergeTransparentUnionType - if T is a transparent union type and a member
5013/// of T is compatible with SubType, return the merged type, else return
5014/// QualType()
5015QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
5016                                               bool OfBlockPointer,
5017                                               bool Unqualified) {
5018  if (const RecordType *UT = T->getAsUnionType()) {
5019    RecordDecl *UD = UT->getDecl();
5020    if (UD->hasAttr<TransparentUnionAttr>()) {
5021      for (RecordDecl::field_iterator it = UD->field_begin(),
5022           itend = UD->field_end(); it != itend; ++it) {
5023        QualType ET = it->getType().getUnqualifiedType();
5024        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
5025        if (!MT.isNull())
5026          return MT;
5027      }
5028    }
5029  }
5030
5031  return QualType();
5032}
5033
5034/// mergeFunctionArgumentTypes - merge two types which appear as function
5035/// argument types
5036QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
5037                                                bool OfBlockPointer,
5038                                                bool Unqualified) {
5039  // GNU extension: two types are compatible if they appear as a function
5040  // argument, one of the types is a transparent union type and the other
5041  // type is compatible with a union member
5042  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
5043                                              Unqualified);
5044  if (!lmerge.isNull())
5045    return lmerge;
5046
5047  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
5048                                              Unqualified);
5049  if (!rmerge.isNull())
5050    return rmerge;
5051
5052  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
5053}
5054
5055QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
5056                                        bool OfBlockPointer,
5057                                        bool Unqualified) {
5058  const FunctionType *lbase = lhs->getAs<FunctionType>();
5059  const FunctionType *rbase = rhs->getAs<FunctionType>();
5060  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
5061  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
5062  bool allLTypes = true;
5063  bool allRTypes = true;
5064
5065  // Check return type
5066  QualType retType;
5067  if (OfBlockPointer) {
5068    QualType RHS = rbase->getResultType();
5069    QualType LHS = lbase->getResultType();
5070    bool UnqualifiedResult = Unqualified;
5071    if (!UnqualifiedResult)
5072      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
5073    retType = mergeTypes(RHS, LHS, true, UnqualifiedResult);
5074  }
5075  else
5076    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
5077                         Unqualified);
5078  if (retType.isNull()) return QualType();
5079
5080  if (Unqualified)
5081    retType = retType.getUnqualifiedType();
5082
5083  CanQualType LRetType = getCanonicalType(lbase->getResultType());
5084  CanQualType RRetType = getCanonicalType(rbase->getResultType());
5085  if (Unqualified) {
5086    LRetType = LRetType.getUnqualifiedType();
5087    RRetType = RRetType.getUnqualifiedType();
5088  }
5089
5090  if (getCanonicalType(retType) != LRetType)
5091    allLTypes = false;
5092  if (getCanonicalType(retType) != RRetType)
5093    allRTypes = false;
5094
5095  // FIXME: double check this
5096  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
5097  //                           rbase->getRegParmAttr() != 0 &&
5098  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
5099  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
5100  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
5101
5102  // Compatible functions must have compatible calling conventions
5103  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
5104    return QualType();
5105
5106  // Regparm is part of the calling convention.
5107  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
5108    return QualType();
5109
5110  // It's noreturn if either type is.
5111  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
5112  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
5113  if (NoReturn != lbaseInfo.getNoReturn())
5114    allLTypes = false;
5115  if (NoReturn != rbaseInfo.getNoReturn())
5116    allRTypes = false;
5117
5118  FunctionType::ExtInfo einfo(NoReturn,
5119                              lbaseInfo.getRegParm(),
5120                              lbaseInfo.getCC());
5121
5122  if (lproto && rproto) { // two C99 style function prototypes
5123    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
5124           "C++ shouldn't be here");
5125    unsigned lproto_nargs = lproto->getNumArgs();
5126    unsigned rproto_nargs = rproto->getNumArgs();
5127
5128    // Compatible functions must have the same number of arguments
5129    if (lproto_nargs != rproto_nargs)
5130      return QualType();
5131
5132    // Variadic and non-variadic functions aren't compatible
5133    if (lproto->isVariadic() != rproto->isVariadic())
5134      return QualType();
5135
5136    if (lproto->getTypeQuals() != rproto->getTypeQuals())
5137      return QualType();
5138
5139    // Check argument compatibility
5140    llvm::SmallVector<QualType, 10> types;
5141    for (unsigned i = 0; i < lproto_nargs; i++) {
5142      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
5143      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
5144      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
5145                                                    OfBlockPointer,
5146                                                    Unqualified);
5147      if (argtype.isNull()) return QualType();
5148
5149      if (Unqualified)
5150        argtype = argtype.getUnqualifiedType();
5151
5152      types.push_back(argtype);
5153      if (Unqualified) {
5154        largtype = largtype.getUnqualifiedType();
5155        rargtype = rargtype.getUnqualifiedType();
5156      }
5157
5158      if (getCanonicalType(argtype) != getCanonicalType(largtype))
5159        allLTypes = false;
5160      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
5161        allRTypes = false;
5162    }
5163    if (allLTypes) return lhs;
5164    if (allRTypes) return rhs;
5165
5166    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
5167    EPI.ExtInfo = einfo;
5168    return getFunctionType(retType, types.begin(), types.size(), EPI);
5169  }
5170
5171  if (lproto) allRTypes = false;
5172  if (rproto) allLTypes = false;
5173
5174  const FunctionProtoType *proto = lproto ? lproto : rproto;
5175  if (proto) {
5176    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
5177    if (proto->isVariadic()) return QualType();
5178    // Check that the types are compatible with the types that
5179    // would result from default argument promotions (C99 6.7.5.3p15).
5180    // The only types actually affected are promotable integer
5181    // types and floats, which would be passed as a different
5182    // type depending on whether the prototype is visible.
5183    unsigned proto_nargs = proto->getNumArgs();
5184    for (unsigned i = 0; i < proto_nargs; ++i) {
5185      QualType argTy = proto->getArgType(i);
5186
5187      // Look at the promotion type of enum types, since that is the type used
5188      // to pass enum values.
5189      if (const EnumType *Enum = argTy->getAs<EnumType>())
5190        argTy = Enum->getDecl()->getPromotionType();
5191
5192      if (argTy->isPromotableIntegerType() ||
5193          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
5194        return QualType();
5195    }
5196
5197    if (allLTypes) return lhs;
5198    if (allRTypes) return rhs;
5199
5200    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
5201    EPI.ExtInfo = einfo;
5202    return getFunctionType(retType, proto->arg_type_begin(),
5203                           proto->getNumArgs(), EPI);
5204  }
5205
5206  if (allLTypes) return lhs;
5207  if (allRTypes) return rhs;
5208  return getFunctionNoProtoType(retType, einfo);
5209}
5210
5211QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
5212                                bool OfBlockPointer,
5213                                bool Unqualified) {
5214  // C++ [expr]: If an expression initially has the type "reference to T", the
5215  // type is adjusted to "T" prior to any further analysis, the expression
5216  // designates the object or function denoted by the reference, and the
5217  // expression is an lvalue unless the reference is an rvalue reference and
5218  // the expression is a function call (possibly inside parentheses).
5219  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
5220  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
5221
5222  if (Unqualified) {
5223    LHS = LHS.getUnqualifiedType();
5224    RHS = RHS.getUnqualifiedType();
5225  }
5226
5227  QualType LHSCan = getCanonicalType(LHS),
5228           RHSCan = getCanonicalType(RHS);
5229
5230  // If two types are identical, they are compatible.
5231  if (LHSCan == RHSCan)
5232    return LHS;
5233
5234  // If the qualifiers are different, the types aren't compatible... mostly.
5235  Qualifiers LQuals = LHSCan.getLocalQualifiers();
5236  Qualifiers RQuals = RHSCan.getLocalQualifiers();
5237  if (LQuals != RQuals) {
5238    // If any of these qualifiers are different, we have a type
5239    // mismatch.
5240    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
5241        LQuals.getAddressSpace() != RQuals.getAddressSpace())
5242      return QualType();
5243
5244    // Exactly one GC qualifier difference is allowed: __strong is
5245    // okay if the other type has no GC qualifier but is an Objective
5246    // C object pointer (i.e. implicitly strong by default).  We fix
5247    // this by pretending that the unqualified type was actually
5248    // qualified __strong.
5249    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
5250    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
5251    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
5252
5253    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
5254      return QualType();
5255
5256    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
5257      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
5258    }
5259    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
5260      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
5261    }
5262    return QualType();
5263  }
5264
5265  // Okay, qualifiers are equal.
5266
5267  Type::TypeClass LHSClass = LHSCan->getTypeClass();
5268  Type::TypeClass RHSClass = RHSCan->getTypeClass();
5269
5270  // We want to consider the two function types to be the same for these
5271  // comparisons, just force one to the other.
5272  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
5273  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
5274
5275  // Same as above for arrays
5276  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
5277    LHSClass = Type::ConstantArray;
5278  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
5279    RHSClass = Type::ConstantArray;
5280
5281  // ObjCInterfaces are just specialized ObjCObjects.
5282  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
5283  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
5284
5285  // Canonicalize ExtVector -> Vector.
5286  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
5287  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
5288
5289  // If the canonical type classes don't match.
5290  if (LHSClass != RHSClass) {
5291    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
5292    // a signed integer type, or an unsigned integer type.
5293    // Compatibility is based on the underlying type, not the promotion
5294    // type.
5295    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
5296      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
5297        return RHS;
5298    }
5299    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
5300      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
5301        return LHS;
5302    }
5303
5304    return QualType();
5305  }
5306
5307  // The canonical type classes match.
5308  switch (LHSClass) {
5309#define TYPE(Class, Base)
5310#define ABSTRACT_TYPE(Class, Base)
5311#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
5312#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
5313#define DEPENDENT_TYPE(Class, Base) case Type::Class:
5314#include "clang/AST/TypeNodes.def"
5315    assert(false && "Non-canonical and dependent types shouldn't get here");
5316    return QualType();
5317
5318  case Type::LValueReference:
5319  case Type::RValueReference:
5320  case Type::MemberPointer:
5321    assert(false && "C++ should never be in mergeTypes");
5322    return QualType();
5323
5324  case Type::ObjCInterface:
5325  case Type::IncompleteArray:
5326  case Type::VariableArray:
5327  case Type::FunctionProto:
5328  case Type::ExtVector:
5329    assert(false && "Types are eliminated above");
5330    return QualType();
5331
5332  case Type::Pointer:
5333  {
5334    // Merge two pointer types, while trying to preserve typedef info
5335    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
5336    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
5337    if (Unqualified) {
5338      LHSPointee = LHSPointee.getUnqualifiedType();
5339      RHSPointee = RHSPointee.getUnqualifiedType();
5340    }
5341    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
5342                                     Unqualified);
5343    if (ResultType.isNull()) return QualType();
5344    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5345      return LHS;
5346    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5347      return RHS;
5348    return getPointerType(ResultType);
5349  }
5350  case Type::BlockPointer:
5351  {
5352    // Merge two block pointer types, while trying to preserve typedef info
5353    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
5354    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
5355    if (Unqualified) {
5356      LHSPointee = LHSPointee.getUnqualifiedType();
5357      RHSPointee = RHSPointee.getUnqualifiedType();
5358    }
5359    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
5360                                     Unqualified);
5361    if (ResultType.isNull()) return QualType();
5362    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5363      return LHS;
5364    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5365      return RHS;
5366    return getBlockPointerType(ResultType);
5367  }
5368  case Type::ConstantArray:
5369  {
5370    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
5371    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
5372    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
5373      return QualType();
5374
5375    QualType LHSElem = getAsArrayType(LHS)->getElementType();
5376    QualType RHSElem = getAsArrayType(RHS)->getElementType();
5377    if (Unqualified) {
5378      LHSElem = LHSElem.getUnqualifiedType();
5379      RHSElem = RHSElem.getUnqualifiedType();
5380    }
5381
5382    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
5383    if (ResultType.isNull()) return QualType();
5384    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
5385      return LHS;
5386    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
5387      return RHS;
5388    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
5389                                          ArrayType::ArraySizeModifier(), 0);
5390    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
5391                                          ArrayType::ArraySizeModifier(), 0);
5392    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
5393    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
5394    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
5395      return LHS;
5396    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
5397      return RHS;
5398    if (LVAT) {
5399      // FIXME: This isn't correct! But tricky to implement because
5400      // the array's size has to be the size of LHS, but the type
5401      // has to be different.
5402      return LHS;
5403    }
5404    if (RVAT) {
5405      // FIXME: This isn't correct! But tricky to implement because
5406      // the array's size has to be the size of RHS, but the type
5407      // has to be different.
5408      return RHS;
5409    }
5410    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
5411    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
5412    return getIncompleteArrayType(ResultType,
5413                                  ArrayType::ArraySizeModifier(), 0);
5414  }
5415  case Type::FunctionNoProto:
5416    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
5417  case Type::Record:
5418  case Type::Enum:
5419    return QualType();
5420  case Type::Builtin:
5421    // Only exactly equal builtin types are compatible, which is tested above.
5422    return QualType();
5423  case Type::Complex:
5424    // Distinct complex types are incompatible.
5425    return QualType();
5426  case Type::Vector:
5427    // FIXME: The merged type should be an ExtVector!
5428    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
5429                             RHSCan->getAs<VectorType>()))
5430      return LHS;
5431    return QualType();
5432  case Type::ObjCObject: {
5433    // Check if the types are assignment compatible.
5434    // FIXME: This should be type compatibility, e.g. whether
5435    // "LHS x; RHS x;" at global scope is legal.
5436    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
5437    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
5438    if (canAssignObjCInterfaces(LHSIface, RHSIface))
5439      return LHS;
5440
5441    return QualType();
5442  }
5443  case Type::ObjCObjectPointer: {
5444    if (OfBlockPointer) {
5445      if (canAssignObjCInterfacesInBlockPointer(
5446                                          LHS->getAs<ObjCObjectPointerType>(),
5447                                          RHS->getAs<ObjCObjectPointerType>()))
5448      return LHS;
5449      return QualType();
5450    }
5451    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
5452                                RHS->getAs<ObjCObjectPointerType>()))
5453      return LHS;
5454
5455    return QualType();
5456    }
5457  }
5458
5459  return QualType();
5460}
5461
5462/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
5463/// 'RHS' attributes and returns the merged version; including for function
5464/// return types.
5465QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
5466  QualType LHSCan = getCanonicalType(LHS),
5467  RHSCan = getCanonicalType(RHS);
5468  // If two types are identical, they are compatible.
5469  if (LHSCan == RHSCan)
5470    return LHS;
5471  if (RHSCan->isFunctionType()) {
5472    if (!LHSCan->isFunctionType())
5473      return QualType();
5474    QualType OldReturnType =
5475      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
5476    QualType NewReturnType =
5477      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
5478    QualType ResReturnType =
5479      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
5480    if (ResReturnType.isNull())
5481      return QualType();
5482    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
5483      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
5484      // In either case, use OldReturnType to build the new function type.
5485      const FunctionType *F = LHS->getAs<FunctionType>();
5486      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
5487        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5488        EPI.ExtInfo = getFunctionExtInfo(LHS);
5489        QualType ResultType
5490          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
5491                            FPT->getNumArgs(), EPI);
5492        return ResultType;
5493      }
5494    }
5495    return QualType();
5496  }
5497
5498  // If the qualifiers are different, the types can still be merged.
5499  Qualifiers LQuals = LHSCan.getLocalQualifiers();
5500  Qualifiers RQuals = RHSCan.getLocalQualifiers();
5501  if (LQuals != RQuals) {
5502    // If any of these qualifiers are different, we have a type mismatch.
5503    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
5504        LQuals.getAddressSpace() != RQuals.getAddressSpace())
5505      return QualType();
5506
5507    // Exactly one GC qualifier difference is allowed: __strong is
5508    // okay if the other type has no GC qualifier but is an Objective
5509    // C object pointer (i.e. implicitly strong by default).  We fix
5510    // this by pretending that the unqualified type was actually
5511    // qualified __strong.
5512    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
5513    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
5514    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
5515
5516    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
5517      return QualType();
5518
5519    if (GC_L == Qualifiers::Strong)
5520      return LHS;
5521    if (GC_R == Qualifiers::Strong)
5522      return RHS;
5523    return QualType();
5524  }
5525
5526  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
5527    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
5528    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
5529    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
5530    if (ResQT == LHSBaseQT)
5531      return LHS;
5532    if (ResQT == RHSBaseQT)
5533      return RHS;
5534  }
5535  return QualType();
5536}
5537
5538//===----------------------------------------------------------------------===//
5539//                         Integer Predicates
5540//===----------------------------------------------------------------------===//
5541
5542unsigned ASTContext::getIntWidth(QualType T) const {
5543  if (const EnumType *ET = dyn_cast<EnumType>(T))
5544    T = ET->getDecl()->getIntegerType();
5545  if (T->isBooleanType())
5546    return 1;
5547  // For builtin types, just use the standard type sizing method
5548  return (unsigned)getTypeSize(T);
5549}
5550
5551QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
5552  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
5553
5554  // Turn <4 x signed int> -> <4 x unsigned int>
5555  if (const VectorType *VTy = T->getAs<VectorType>())
5556    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
5557                         VTy->getNumElements(), VTy->getVectorKind());
5558
5559  // For enums, we return the unsigned version of the base type.
5560  if (const EnumType *ETy = T->getAs<EnumType>())
5561    T = ETy->getDecl()->getIntegerType();
5562
5563  const BuiltinType *BTy = T->getAs<BuiltinType>();
5564  assert(BTy && "Unexpected signed integer type");
5565  switch (BTy->getKind()) {
5566  case BuiltinType::Char_S:
5567  case BuiltinType::SChar:
5568    return UnsignedCharTy;
5569  case BuiltinType::Short:
5570    return UnsignedShortTy;
5571  case BuiltinType::Int:
5572    return UnsignedIntTy;
5573  case BuiltinType::Long:
5574    return UnsignedLongTy;
5575  case BuiltinType::LongLong:
5576    return UnsignedLongLongTy;
5577  case BuiltinType::Int128:
5578    return UnsignedInt128Ty;
5579  default:
5580    assert(0 && "Unexpected signed integer type");
5581    return QualType();
5582  }
5583}
5584
5585ASTMutationListener::~ASTMutationListener() { }
5586
5587
5588//===----------------------------------------------------------------------===//
5589//                          Builtin Type Computation
5590//===----------------------------------------------------------------------===//
5591
5592/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
5593/// pointer over the consumed characters.  This returns the resultant type.  If
5594/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
5595/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
5596/// a vector of "i*".
5597///
5598/// RequiresICE is filled in on return to indicate whether the value is required
5599/// to be an Integer Constant Expression.
5600static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
5601                                  ASTContext::GetBuiltinTypeError &Error,
5602                                  bool &RequiresICE,
5603                                  bool AllowTypeModifiers) {
5604  // Modifiers.
5605  int HowLong = 0;
5606  bool Signed = false, Unsigned = false;
5607  RequiresICE = false;
5608
5609  // Read the prefixed modifiers first.
5610  bool Done = false;
5611  while (!Done) {
5612    switch (*Str++) {
5613    default: Done = true; --Str; break;
5614    case 'I':
5615      RequiresICE = true;
5616      break;
5617    case 'S':
5618      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
5619      assert(!Signed && "Can't use 'S' modifier multiple times!");
5620      Signed = true;
5621      break;
5622    case 'U':
5623      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
5624      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
5625      Unsigned = true;
5626      break;
5627    case 'L':
5628      assert(HowLong <= 2 && "Can't have LLLL modifier");
5629      ++HowLong;
5630      break;
5631    }
5632  }
5633
5634  QualType Type;
5635
5636  // Read the base type.
5637  switch (*Str++) {
5638  default: assert(0 && "Unknown builtin type letter!");
5639  case 'v':
5640    assert(HowLong == 0 && !Signed && !Unsigned &&
5641           "Bad modifiers used with 'v'!");
5642    Type = Context.VoidTy;
5643    break;
5644  case 'f':
5645    assert(HowLong == 0 && !Signed && !Unsigned &&
5646           "Bad modifiers used with 'f'!");
5647    Type = Context.FloatTy;
5648    break;
5649  case 'd':
5650    assert(HowLong < 2 && !Signed && !Unsigned &&
5651           "Bad modifiers used with 'd'!");
5652    if (HowLong)
5653      Type = Context.LongDoubleTy;
5654    else
5655      Type = Context.DoubleTy;
5656    break;
5657  case 's':
5658    assert(HowLong == 0 && "Bad modifiers used with 's'!");
5659    if (Unsigned)
5660      Type = Context.UnsignedShortTy;
5661    else
5662      Type = Context.ShortTy;
5663    break;
5664  case 'i':
5665    if (HowLong == 3)
5666      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
5667    else if (HowLong == 2)
5668      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
5669    else if (HowLong == 1)
5670      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
5671    else
5672      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
5673    break;
5674  case 'c':
5675    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
5676    if (Signed)
5677      Type = Context.SignedCharTy;
5678    else if (Unsigned)
5679      Type = Context.UnsignedCharTy;
5680    else
5681      Type = Context.CharTy;
5682    break;
5683  case 'b': // boolean
5684    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
5685    Type = Context.BoolTy;
5686    break;
5687  case 'z':  // size_t.
5688    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
5689    Type = Context.getSizeType();
5690    break;
5691  case 'F':
5692    Type = Context.getCFConstantStringType();
5693    break;
5694  case 'G':
5695    Type = Context.getObjCIdType();
5696    break;
5697  case 'H':
5698    Type = Context.getObjCSelType();
5699    break;
5700  case 'a':
5701    Type = Context.getBuiltinVaListType();
5702    assert(!Type.isNull() && "builtin va list type not initialized!");
5703    break;
5704  case 'A':
5705    // This is a "reference" to a va_list; however, what exactly
5706    // this means depends on how va_list is defined. There are two
5707    // different kinds of va_list: ones passed by value, and ones
5708    // passed by reference.  An example of a by-value va_list is
5709    // x86, where va_list is a char*. An example of by-ref va_list
5710    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
5711    // we want this argument to be a char*&; for x86-64, we want
5712    // it to be a __va_list_tag*.
5713    Type = Context.getBuiltinVaListType();
5714    assert(!Type.isNull() && "builtin va list type not initialized!");
5715    if (Type->isArrayType())
5716      Type = Context.getArrayDecayedType(Type);
5717    else
5718      Type = Context.getLValueReferenceType(Type);
5719    break;
5720  case 'V': {
5721    char *End;
5722    unsigned NumElements = strtoul(Str, &End, 10);
5723    assert(End != Str && "Missing vector size");
5724    Str = End;
5725
5726    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
5727                                             RequiresICE, false);
5728    assert(!RequiresICE && "Can't require vector ICE");
5729
5730    // TODO: No way to make AltiVec vectors in builtins yet.
5731    Type = Context.getVectorType(ElementType, NumElements,
5732                                 VectorType::GenericVector);
5733    break;
5734  }
5735  case 'X': {
5736    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
5737                                             false);
5738    assert(!RequiresICE && "Can't require complex ICE");
5739    Type = Context.getComplexType(ElementType);
5740    break;
5741  }
5742  case 'P':
5743    Type = Context.getFILEType();
5744    if (Type.isNull()) {
5745      Error = ASTContext::GE_Missing_stdio;
5746      return QualType();
5747    }
5748    break;
5749  case 'J':
5750    if (Signed)
5751      Type = Context.getsigjmp_bufType();
5752    else
5753      Type = Context.getjmp_bufType();
5754
5755    if (Type.isNull()) {
5756      Error = ASTContext::GE_Missing_setjmp;
5757      return QualType();
5758    }
5759    break;
5760  }
5761
5762  // If there are modifiers and if we're allowed to parse them, go for it.
5763  Done = !AllowTypeModifiers;
5764  while (!Done) {
5765    switch (char c = *Str++) {
5766    default: Done = true; --Str; break;
5767    case '*':
5768    case '&': {
5769      // Both pointers and references can have their pointee types
5770      // qualified with an address space.
5771      char *End;
5772      unsigned AddrSpace = strtoul(Str, &End, 10);
5773      if (End != Str && AddrSpace != 0) {
5774        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
5775        Str = End;
5776      }
5777      if (c == '*')
5778        Type = Context.getPointerType(Type);
5779      else
5780        Type = Context.getLValueReferenceType(Type);
5781      break;
5782    }
5783    // FIXME: There's no way to have a built-in with an rvalue ref arg.
5784    case 'C':
5785      Type = Type.withConst();
5786      break;
5787    case 'D':
5788      Type = Context.getVolatileType(Type);
5789      break;
5790    }
5791  }
5792
5793  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
5794         "Integer constant 'I' type must be an integer");
5795
5796  return Type;
5797}
5798
5799/// GetBuiltinType - Return the type for the specified builtin.
5800QualType ASTContext::GetBuiltinType(unsigned Id,
5801                                    GetBuiltinTypeError &Error,
5802                                    unsigned *IntegerConstantArgs) const {
5803  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
5804
5805  llvm::SmallVector<QualType, 8> ArgTypes;
5806
5807  bool RequiresICE = false;
5808  Error = GE_None;
5809  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
5810                                       RequiresICE, true);
5811  if (Error != GE_None)
5812    return QualType();
5813
5814  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
5815
5816  while (TypeStr[0] && TypeStr[0] != '.') {
5817    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
5818    if (Error != GE_None)
5819      return QualType();
5820
5821    // If this argument is required to be an IntegerConstantExpression and the
5822    // caller cares, fill in the bitmask we return.
5823    if (RequiresICE && IntegerConstantArgs)
5824      *IntegerConstantArgs |= 1 << ArgTypes.size();
5825
5826    // Do array -> pointer decay.  The builtin should use the decayed type.
5827    if (Ty->isArrayType())
5828      Ty = getArrayDecayedType(Ty);
5829
5830    ArgTypes.push_back(Ty);
5831  }
5832
5833  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
5834         "'.' should only occur at end of builtin type list!");
5835
5836  FunctionType::ExtInfo EI;
5837  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
5838
5839  bool Variadic = (TypeStr[0] == '.');
5840
5841  // We really shouldn't be making a no-proto type here, especially in C++.
5842  if (ArgTypes.empty() && Variadic)
5843    return getFunctionNoProtoType(ResType, EI);
5844
5845  FunctionProtoType::ExtProtoInfo EPI;
5846  EPI.ExtInfo = EI;
5847  EPI.Variadic = Variadic;
5848
5849  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
5850}
5851
5852GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
5853  GVALinkage External = GVA_StrongExternal;
5854
5855  Linkage L = FD->getLinkage();
5856  switch (L) {
5857  case NoLinkage:
5858  case InternalLinkage:
5859  case UniqueExternalLinkage:
5860    return GVA_Internal;
5861
5862  case ExternalLinkage:
5863    switch (FD->getTemplateSpecializationKind()) {
5864    case TSK_Undeclared:
5865    case TSK_ExplicitSpecialization:
5866      External = GVA_StrongExternal;
5867      break;
5868
5869    case TSK_ExplicitInstantiationDefinition:
5870      return GVA_ExplicitTemplateInstantiation;
5871
5872    case TSK_ExplicitInstantiationDeclaration:
5873    case TSK_ImplicitInstantiation:
5874      External = GVA_TemplateInstantiation;
5875      break;
5876    }
5877  }
5878
5879  if (!FD->isInlined())
5880    return External;
5881
5882  if (!getLangOptions().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
5883    // GNU or C99 inline semantics. Determine whether this symbol should be
5884    // externally visible.
5885    if (FD->isInlineDefinitionExternallyVisible())
5886      return External;
5887
5888    // C99 inline semantics, where the symbol is not externally visible.
5889    return GVA_C99Inline;
5890  }
5891
5892  // C++0x [temp.explicit]p9:
5893  //   [ Note: The intent is that an inline function that is the subject of
5894  //   an explicit instantiation declaration will still be implicitly
5895  //   instantiated when used so that the body can be considered for
5896  //   inlining, but that no out-of-line copy of the inline function would be
5897  //   generated in the translation unit. -- end note ]
5898  if (FD->getTemplateSpecializationKind()
5899                                       == TSK_ExplicitInstantiationDeclaration)
5900    return GVA_C99Inline;
5901
5902  return GVA_CXXInline;
5903}
5904
5905GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
5906  // If this is a static data member, compute the kind of template
5907  // specialization. Otherwise, this variable is not part of a
5908  // template.
5909  TemplateSpecializationKind TSK = TSK_Undeclared;
5910  if (VD->isStaticDataMember())
5911    TSK = VD->getTemplateSpecializationKind();
5912
5913  Linkage L = VD->getLinkage();
5914  if (L == ExternalLinkage && getLangOptions().CPlusPlus &&
5915      VD->getType()->getLinkage() == UniqueExternalLinkage)
5916    L = UniqueExternalLinkage;
5917
5918  switch (L) {
5919  case NoLinkage:
5920  case InternalLinkage:
5921  case UniqueExternalLinkage:
5922    return GVA_Internal;
5923
5924  case ExternalLinkage:
5925    switch (TSK) {
5926    case TSK_Undeclared:
5927    case TSK_ExplicitSpecialization:
5928      return GVA_StrongExternal;
5929
5930    case TSK_ExplicitInstantiationDeclaration:
5931      llvm_unreachable("Variable should not be instantiated");
5932      // Fall through to treat this like any other instantiation.
5933
5934    case TSK_ExplicitInstantiationDefinition:
5935      return GVA_ExplicitTemplateInstantiation;
5936
5937    case TSK_ImplicitInstantiation:
5938      return GVA_TemplateInstantiation;
5939    }
5940  }
5941
5942  return GVA_StrongExternal;
5943}
5944
5945bool ASTContext::DeclMustBeEmitted(const Decl *D) {
5946  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
5947    if (!VD->isFileVarDecl())
5948      return false;
5949  } else if (!isa<FunctionDecl>(D))
5950    return false;
5951
5952  // Weak references don't produce any output by themselves.
5953  if (D->hasAttr<WeakRefAttr>())
5954    return false;
5955
5956  // Aliases and used decls are required.
5957  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
5958    return true;
5959
5960  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5961    // Forward declarations aren't required.
5962    if (!FD->isThisDeclarationADefinition())
5963      return false;
5964
5965    // Constructors and destructors are required.
5966    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
5967      return true;
5968
5969    // The key function for a class is required.
5970    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5971      const CXXRecordDecl *RD = MD->getParent();
5972      if (MD->isOutOfLine() && RD->isDynamicClass()) {
5973        const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
5974        if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
5975          return true;
5976      }
5977    }
5978
5979    GVALinkage Linkage = GetGVALinkageForFunction(FD);
5980
5981    // static, static inline, always_inline, and extern inline functions can
5982    // always be deferred.  Normal inline functions can be deferred in C99/C++.
5983    // Implicit template instantiations can also be deferred in C++.
5984    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
5985        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
5986      return false;
5987    return true;
5988  }
5989
5990  const VarDecl *VD = cast<VarDecl>(D);
5991  assert(VD->isFileVarDecl() && "Expected file scoped var");
5992
5993  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
5994    return false;
5995
5996  // Structs that have non-trivial constructors or destructors are required.
5997
5998  // FIXME: Handle references.
5999  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
6000    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
6001      if (RD->hasDefinition() &&
6002          (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()))
6003        return true;
6004    }
6005  }
6006
6007  GVALinkage L = GetGVALinkageForVariable(VD);
6008  if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
6009    if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
6010      return false;
6011  }
6012
6013  return true;
6014}
6015
6016CallingConv ASTContext::getDefaultMethodCallConv() {
6017  // Pass through to the C++ ABI object
6018  return ABI->getDefaultMethodCallConv();
6019}
6020
6021bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
6022  // Pass through to the C++ ABI object
6023  return ABI->isNearlyEmpty(RD);
6024}
6025
6026MangleContext *ASTContext::createMangleContext() {
6027  switch (Target.getCXXABI()) {
6028  case CXXABI_ARM:
6029  case CXXABI_Itanium:
6030    return createItaniumMangleContext(*this, getDiagnostics());
6031  case CXXABI_Microsoft:
6032    return createMicrosoftMangleContext(*this, getDiagnostics());
6033  }
6034  assert(0 && "Unsupported ABI");
6035  return 0;
6036}
6037
6038CXXABI::~CXXABI() {}
6039