ASTContext.cpp revision 0c6f8260f7428b81f14f65a0d75cb44bc1d3cd3f
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExternalASTSource.h"
23#include "clang/AST/ASTMutationListener.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/Mangle.h"
26#include "clang/Basic/Builtins.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/TargetInfo.h"
29#include "llvm/ADT/SmallString.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/Support/MathExtras.h"
32#include "llvm/Support/raw_ostream.h"
33#include "CXXABI.h"
34#include <map>
35
36using namespace clang;
37
38unsigned ASTContext::NumImplicitDefaultConstructors;
39unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
40unsigned ASTContext::NumImplicitCopyConstructors;
41unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
42unsigned ASTContext::NumImplicitCopyAssignmentOperators;
43unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
44unsigned ASTContext::NumImplicitDestructors;
45unsigned ASTContext::NumImplicitDestructorsDeclared;
46
47enum FloatingRank {
48  FloatRank, DoubleRank, LongDoubleRank
49};
50
51void
52ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
53                                               TemplateTemplateParmDecl *Parm) {
54  ID.AddInteger(Parm->getDepth());
55  ID.AddInteger(Parm->getPosition());
56  ID.AddBoolean(Parm->isParameterPack());
57
58  TemplateParameterList *Params = Parm->getTemplateParameters();
59  ID.AddInteger(Params->size());
60  for (TemplateParameterList::const_iterator P = Params->begin(),
61                                          PEnd = Params->end();
62       P != PEnd; ++P) {
63    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
64      ID.AddInteger(0);
65      ID.AddBoolean(TTP->isParameterPack());
66      continue;
67    }
68
69    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
70      ID.AddInteger(1);
71      ID.AddBoolean(NTTP->isParameterPack());
72      ID.AddPointer(NTTP->getType().getAsOpaquePtr());
73      if (NTTP->isExpandedParameterPack()) {
74        ID.AddBoolean(true);
75        ID.AddInteger(NTTP->getNumExpansionTypes());
76        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I)
77          ID.AddPointer(NTTP->getExpansionType(I).getAsOpaquePtr());
78      } else
79        ID.AddBoolean(false);
80      continue;
81    }
82
83    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
84    ID.AddInteger(2);
85    Profile(ID, TTP);
86  }
87}
88
89TemplateTemplateParmDecl *
90ASTContext::getCanonicalTemplateTemplateParmDecl(
91                                          TemplateTemplateParmDecl *TTP) const {
92  // Check if we already have a canonical template template parameter.
93  llvm::FoldingSetNodeID ID;
94  CanonicalTemplateTemplateParm::Profile(ID, TTP);
95  void *InsertPos = 0;
96  CanonicalTemplateTemplateParm *Canonical
97    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
98  if (Canonical)
99    return Canonical->getParam();
100
101  // Build a canonical template parameter list.
102  TemplateParameterList *Params = TTP->getTemplateParameters();
103  llvm::SmallVector<NamedDecl *, 4> CanonParams;
104  CanonParams.reserve(Params->size());
105  for (TemplateParameterList::const_iterator P = Params->begin(),
106                                          PEnd = Params->end();
107       P != PEnd; ++P) {
108    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
109      CanonParams.push_back(
110                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
111                                               SourceLocation(),
112                                               SourceLocation(),
113                                               TTP->getDepth(),
114                                               TTP->getIndex(), 0, false,
115                                               TTP->isParameterPack()));
116    else if (NonTypeTemplateParmDecl *NTTP
117             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
118      QualType T = getCanonicalType(NTTP->getType());
119      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
120      NonTypeTemplateParmDecl *Param;
121      if (NTTP->isExpandedParameterPack()) {
122        llvm::SmallVector<QualType, 2> ExpandedTypes;
123        llvm::SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
124        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
125          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
126          ExpandedTInfos.push_back(
127                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
128        }
129
130        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
131                                                SourceLocation(),
132                                                SourceLocation(),
133                                                NTTP->getDepth(),
134                                                NTTP->getPosition(), 0,
135                                                T,
136                                                TInfo,
137                                                ExpandedTypes.data(),
138                                                ExpandedTypes.size(),
139                                                ExpandedTInfos.data());
140      } else {
141        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
142                                                SourceLocation(),
143                                                SourceLocation(),
144                                                NTTP->getDepth(),
145                                                NTTP->getPosition(), 0,
146                                                T,
147                                                NTTP->isParameterPack(),
148                                                TInfo);
149      }
150      CanonParams.push_back(Param);
151
152    } else
153      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
154                                           cast<TemplateTemplateParmDecl>(*P)));
155  }
156
157  TemplateTemplateParmDecl *CanonTTP
158    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
159                                       SourceLocation(), TTP->getDepth(),
160                                       TTP->getPosition(),
161                                       TTP->isParameterPack(),
162                                       0,
163                         TemplateParameterList::Create(*this, SourceLocation(),
164                                                       SourceLocation(),
165                                                       CanonParams.data(),
166                                                       CanonParams.size(),
167                                                       SourceLocation()));
168
169  // Get the new insert position for the node we care about.
170  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
171  assert(Canonical == 0 && "Shouldn't be in the map!");
172  (void)Canonical;
173
174  // Create the canonical template template parameter entry.
175  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
176  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
177  return CanonTTP;
178}
179
180CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
181  if (!LangOpts.CPlusPlus) return 0;
182
183  switch (T.getCXXABI()) {
184  case CXXABI_ARM:
185    return CreateARMCXXABI(*this);
186  case CXXABI_Itanium:
187    return CreateItaniumCXXABI(*this);
188  case CXXABI_Microsoft:
189    return CreateMicrosoftCXXABI(*this);
190  }
191  return 0;
192}
193
194static const LangAS::Map &getAddressSpaceMap(const TargetInfo &T,
195                                             const LangOptions &LOpts) {
196  if (LOpts.FakeAddressSpaceMap) {
197    // The fake address space map must have a distinct entry for each
198    // language-specific address space.
199    static const unsigned FakeAddrSpaceMap[] = {
200      1, // opencl_global
201      2, // opencl_local
202      3  // opencl_constant
203    };
204    return FakeAddrSpaceMap;
205  } else {
206    return T.getAddressSpaceMap();
207  }
208}
209
210ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
211                       const TargetInfo &t,
212                       IdentifierTable &idents, SelectorTable &sels,
213                       Builtin::Context &builtins,
214                       unsigned size_reserve) :
215  FunctionProtoTypes(this_()),
216  TemplateSpecializationTypes(this_()),
217  DependentTemplateSpecializationTypes(this_()),
218  GlobalNestedNameSpecifier(0), IsInt128Installed(false),
219  CFConstantStringTypeDecl(0), NSConstantStringTypeDecl(0),
220  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0), jmp_bufDecl(0),
221  sigjmp_bufDecl(0), BlockDescriptorType(0), BlockDescriptorExtendedType(0),
222  cudaConfigureCallDecl(0),
223  NullTypeSourceInfo(QualType()),
224  SourceMgr(SM), LangOpts(LOpts), ABI(createCXXABI(t)),
225  AddrSpaceMap(getAddressSpaceMap(t, LOpts)), Target(t),
226  Idents(idents), Selectors(sels),
227  BuiltinInfo(builtins),
228  DeclarationNames(*this),
229  ExternalSource(0), Listener(0), PrintingPolicy(LOpts),
230  LastSDM(0, 0),
231  UniqueBlockByRefTypeID(0) {
232  ObjCIdRedefinitionType = QualType();
233  ObjCClassRedefinitionType = QualType();
234  ObjCSelRedefinitionType = QualType();
235  if (size_reserve > 0) Types.reserve(size_reserve);
236  TUDecl = TranslationUnitDecl::Create(*this);
237  InitBuiltinTypes();
238}
239
240ASTContext::~ASTContext() {
241  // Release the DenseMaps associated with DeclContext objects.
242  // FIXME: Is this the ideal solution?
243  ReleaseDeclContextMaps();
244
245  // Call all of the deallocation functions.
246  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
247    Deallocations[I].first(Deallocations[I].second);
248
249  // Release all of the memory associated with overridden C++ methods.
250  for (llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::iterator
251         OM = OverriddenMethods.begin(), OMEnd = OverriddenMethods.end();
252       OM != OMEnd; ++OM)
253    OM->second.Destroy();
254
255  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
256  // because they can contain DenseMaps.
257  for (llvm::DenseMap<const ObjCContainerDecl*,
258       const ASTRecordLayout*>::iterator
259       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
260    // Increment in loop to prevent using deallocated memory.
261    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
262      R->Destroy(*this);
263
264  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
265       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
266    // Increment in loop to prevent using deallocated memory.
267    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
268      R->Destroy(*this);
269  }
270
271  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
272                                                    AEnd = DeclAttrs.end();
273       A != AEnd; ++A)
274    A->second->~AttrVec();
275}
276
277void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
278  Deallocations.push_back(std::make_pair(Callback, Data));
279}
280
281void
282ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
283  ExternalSource.reset(Source.take());
284}
285
286void ASTContext::PrintStats() const {
287  fprintf(stderr, "*** AST Context Stats:\n");
288  fprintf(stderr, "  %d types total.\n", (int)Types.size());
289
290  unsigned counts[] = {
291#define TYPE(Name, Parent) 0,
292#define ABSTRACT_TYPE(Name, Parent)
293#include "clang/AST/TypeNodes.def"
294    0 // Extra
295  };
296
297  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
298    Type *T = Types[i];
299    counts[(unsigned)T->getTypeClass()]++;
300  }
301
302  unsigned Idx = 0;
303  unsigned TotalBytes = 0;
304#define TYPE(Name, Parent)                                              \
305  if (counts[Idx])                                                      \
306    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
307  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
308  ++Idx;
309#define ABSTRACT_TYPE(Name, Parent)
310#include "clang/AST/TypeNodes.def"
311
312  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
313
314  // Implicit special member functions.
315  fprintf(stderr, "  %u/%u implicit default constructors created\n",
316          NumImplicitDefaultConstructorsDeclared,
317          NumImplicitDefaultConstructors);
318  fprintf(stderr, "  %u/%u implicit copy constructors created\n",
319          NumImplicitCopyConstructorsDeclared,
320          NumImplicitCopyConstructors);
321  fprintf(stderr, "  %u/%u implicit copy assignment operators created\n",
322          NumImplicitCopyAssignmentOperatorsDeclared,
323          NumImplicitCopyAssignmentOperators);
324  fprintf(stderr, "  %u/%u implicit destructors created\n",
325          NumImplicitDestructorsDeclared, NumImplicitDestructors);
326
327  if (ExternalSource.get()) {
328    fprintf(stderr, "\n");
329    ExternalSource->PrintStats();
330  }
331
332  BumpAlloc.PrintStats();
333}
334
335
336void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
337  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
338  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
339  Types.push_back(Ty);
340}
341
342void ASTContext::InitBuiltinTypes() {
343  assert(VoidTy.isNull() && "Context reinitialized?");
344
345  // C99 6.2.5p19.
346  InitBuiltinType(VoidTy,              BuiltinType::Void);
347
348  // C99 6.2.5p2.
349  InitBuiltinType(BoolTy,              BuiltinType::Bool);
350  // C99 6.2.5p3.
351  if (LangOpts.CharIsSigned)
352    InitBuiltinType(CharTy,            BuiltinType::Char_S);
353  else
354    InitBuiltinType(CharTy,            BuiltinType::Char_U);
355  // C99 6.2.5p4.
356  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
357  InitBuiltinType(ShortTy,             BuiltinType::Short);
358  InitBuiltinType(IntTy,               BuiltinType::Int);
359  InitBuiltinType(LongTy,              BuiltinType::Long);
360  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
361
362  // C99 6.2.5p6.
363  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
364  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
365  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
366  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
367  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
368
369  // C99 6.2.5p10.
370  InitBuiltinType(FloatTy,             BuiltinType::Float);
371  InitBuiltinType(DoubleTy,            BuiltinType::Double);
372  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
373
374  // GNU extension, 128-bit integers.
375  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
376  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
377
378  if (LangOpts.CPlusPlus) { // C++ 3.9.1p5
379    if (TargetInfo::isTypeSigned(Target.getWCharType()))
380      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
381    else  // -fshort-wchar makes wchar_t be unsigned.
382      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
383  } else // C99
384    WCharTy = getFromTargetType(Target.getWCharType());
385
386  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
387    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
388  else // C99
389    Char16Ty = getFromTargetType(Target.getChar16Type());
390
391  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
392    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
393  else // C99
394    Char32Ty = getFromTargetType(Target.getChar32Type());
395
396  // Placeholder type for type-dependent expressions whose type is
397  // completely unknown. No code should ever check a type against
398  // DependentTy and users should never see it; however, it is here to
399  // help diagnose failures to properly check for type-dependent
400  // expressions.
401  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
402
403  // Placeholder type for functions.
404  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
405
406  // Placeholder type for bound members.
407  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
408
409  // "any" type; useful for debugger-like clients.
410  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
411
412  // C99 6.2.5p11.
413  FloatComplexTy      = getComplexType(FloatTy);
414  DoubleComplexTy     = getComplexType(DoubleTy);
415  LongDoubleComplexTy = getComplexType(LongDoubleTy);
416
417  BuiltinVaListType = QualType();
418
419  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
420  ObjCIdTypedefType = QualType();
421  ObjCClassTypedefType = QualType();
422  ObjCSelTypedefType = QualType();
423
424  // Builtin types for 'id', 'Class', and 'SEL'.
425  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
426  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
427  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
428
429  ObjCConstantStringType = QualType();
430
431  // void * type
432  VoidPtrTy = getPointerType(VoidTy);
433
434  // nullptr type (C++0x 2.14.7)
435  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
436}
437
438Diagnostic &ASTContext::getDiagnostics() const {
439  return SourceMgr.getDiagnostics();
440}
441
442AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
443  AttrVec *&Result = DeclAttrs[D];
444  if (!Result) {
445    void *Mem = Allocate(sizeof(AttrVec));
446    Result = new (Mem) AttrVec;
447  }
448
449  return *Result;
450}
451
452/// \brief Erase the attributes corresponding to the given declaration.
453void ASTContext::eraseDeclAttrs(const Decl *D) {
454  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
455  if (Pos != DeclAttrs.end()) {
456    Pos->second->~AttrVec();
457    DeclAttrs.erase(Pos);
458  }
459}
460
461MemberSpecializationInfo *
462ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
463  assert(Var->isStaticDataMember() && "Not a static data member");
464  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
465    = InstantiatedFromStaticDataMember.find(Var);
466  if (Pos == InstantiatedFromStaticDataMember.end())
467    return 0;
468
469  return Pos->second;
470}
471
472void
473ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
474                                                TemplateSpecializationKind TSK,
475                                          SourceLocation PointOfInstantiation) {
476  assert(Inst->isStaticDataMember() && "Not a static data member");
477  assert(Tmpl->isStaticDataMember() && "Not a static data member");
478  assert(!InstantiatedFromStaticDataMember[Inst] &&
479         "Already noted what static data member was instantiated from");
480  InstantiatedFromStaticDataMember[Inst]
481    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
482}
483
484NamedDecl *
485ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
486  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
487    = InstantiatedFromUsingDecl.find(UUD);
488  if (Pos == InstantiatedFromUsingDecl.end())
489    return 0;
490
491  return Pos->second;
492}
493
494void
495ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
496  assert((isa<UsingDecl>(Pattern) ||
497          isa<UnresolvedUsingValueDecl>(Pattern) ||
498          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
499         "pattern decl is not a using decl");
500  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
501  InstantiatedFromUsingDecl[Inst] = Pattern;
502}
503
504UsingShadowDecl *
505ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
506  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
507    = InstantiatedFromUsingShadowDecl.find(Inst);
508  if (Pos == InstantiatedFromUsingShadowDecl.end())
509    return 0;
510
511  return Pos->second;
512}
513
514void
515ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
516                                               UsingShadowDecl *Pattern) {
517  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
518  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
519}
520
521FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
522  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
523    = InstantiatedFromUnnamedFieldDecl.find(Field);
524  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
525    return 0;
526
527  return Pos->second;
528}
529
530void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
531                                                     FieldDecl *Tmpl) {
532  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
533  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
534  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
535         "Already noted what unnamed field was instantiated from");
536
537  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
538}
539
540bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
541                                    const FieldDecl *LastFD) const {
542  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
543          FD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue() == 0);
544
545}
546
547bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
548                                             const FieldDecl *LastFD) const {
549  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
550          FD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue() == 0 &&
551          LastFD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue() != 0);
552
553}
554
555bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
556                                         const FieldDecl *LastFD) const {
557  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
558          FD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue() &&
559          LastFD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue());
560}
561
562bool ASTContext::NoneBitfieldFollowsBitfield(const FieldDecl *FD,
563                                         const FieldDecl *LastFD) const {
564  return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
565          LastFD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue());
566}
567
568bool ASTContext::BitfieldFollowsNoneBitfield(const FieldDecl *FD,
569                                             const FieldDecl *LastFD) const {
570  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
571          FD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue());
572}
573
574ASTContext::overridden_cxx_method_iterator
575ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
576  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
577    = OverriddenMethods.find(Method);
578  if (Pos == OverriddenMethods.end())
579    return 0;
580
581  return Pos->second.begin();
582}
583
584ASTContext::overridden_cxx_method_iterator
585ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
586  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
587    = OverriddenMethods.find(Method);
588  if (Pos == OverriddenMethods.end())
589    return 0;
590
591  return Pos->second.end();
592}
593
594unsigned
595ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
596  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
597    = OverriddenMethods.find(Method);
598  if (Pos == OverriddenMethods.end())
599    return 0;
600
601  return Pos->second.size();
602}
603
604void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
605                                     const CXXMethodDecl *Overridden) {
606  OverriddenMethods[Method].push_back(Overridden);
607}
608
609//===----------------------------------------------------------------------===//
610//                         Type Sizing and Analysis
611//===----------------------------------------------------------------------===//
612
613/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
614/// scalar floating point type.
615const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
616  const BuiltinType *BT = T->getAs<BuiltinType>();
617  assert(BT && "Not a floating point type!");
618  switch (BT->getKind()) {
619  default: assert(0 && "Not a floating point type!");
620  case BuiltinType::Float:      return Target.getFloatFormat();
621  case BuiltinType::Double:     return Target.getDoubleFormat();
622  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
623  }
624}
625
626/// getDeclAlign - Return a conservative estimate of the alignment of the
627/// specified decl.  Note that bitfields do not have a valid alignment, so
628/// this method will assert on them.
629/// If @p RefAsPointee, references are treated like their underlying type
630/// (for alignof), else they're treated like pointers (for CodeGen).
631CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
632  unsigned Align = Target.getCharWidth();
633
634  bool UseAlignAttrOnly = false;
635  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
636    Align = AlignFromAttr;
637
638    // __attribute__((aligned)) can increase or decrease alignment
639    // *except* on a struct or struct member, where it only increases
640    // alignment unless 'packed' is also specified.
641    //
642    // It is an error for [[align]] to decrease alignment, so we can
643    // ignore that possibility;  Sema should diagnose it.
644    if (isa<FieldDecl>(D)) {
645      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
646        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
647    } else {
648      UseAlignAttrOnly = true;
649    }
650  }
651  else if (isa<FieldDecl>(D))
652      UseAlignAttrOnly =
653        D->hasAttr<PackedAttr>() ||
654        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
655
656  // If we're using the align attribute only, just ignore everything
657  // else about the declaration and its type.
658  if (UseAlignAttrOnly) {
659    // do nothing
660
661  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
662    QualType T = VD->getType();
663    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
664      if (RefAsPointee)
665        T = RT->getPointeeType();
666      else
667        T = getPointerType(RT->getPointeeType());
668    }
669    if (!T->isIncompleteType() && !T->isFunctionType()) {
670      // Adjust alignments of declarations with array type by the
671      // large-array alignment on the target.
672      unsigned MinWidth = Target.getLargeArrayMinWidth();
673      const ArrayType *arrayType;
674      if (MinWidth && (arrayType = getAsArrayType(T))) {
675        if (isa<VariableArrayType>(arrayType))
676          Align = std::max(Align, Target.getLargeArrayAlign());
677        else if (isa<ConstantArrayType>(arrayType) &&
678                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
679          Align = std::max(Align, Target.getLargeArrayAlign());
680
681        // Walk through any array types while we're at it.
682        T = getBaseElementType(arrayType);
683      }
684      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
685    }
686
687    // Fields can be subject to extra alignment constraints, like if
688    // the field is packed, the struct is packed, or the struct has a
689    // a max-field-alignment constraint (#pragma pack).  So calculate
690    // the actual alignment of the field within the struct, and then
691    // (as we're expected to) constrain that by the alignment of the type.
692    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
693      // So calculate the alignment of the field.
694      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
695
696      // Start with the record's overall alignment.
697      unsigned fieldAlign = toBits(layout.getAlignment());
698
699      // Use the GCD of that and the offset within the record.
700      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
701      if (offset > 0) {
702        // Alignment is always a power of 2, so the GCD will be a power of 2,
703        // which means we get to do this crazy thing instead of Euclid's.
704        uint64_t lowBitOfOffset = offset & (~offset + 1);
705        if (lowBitOfOffset < fieldAlign)
706          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
707      }
708
709      Align = std::min(Align, fieldAlign);
710    }
711  }
712
713  return toCharUnitsFromBits(Align);
714}
715
716std::pair<CharUnits, CharUnits>
717ASTContext::getTypeInfoInChars(const Type *T) const {
718  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
719  return std::make_pair(toCharUnitsFromBits(Info.first),
720                        toCharUnitsFromBits(Info.second));
721}
722
723std::pair<CharUnits, CharUnits>
724ASTContext::getTypeInfoInChars(QualType T) const {
725  return getTypeInfoInChars(T.getTypePtr());
726}
727
728/// getTypeSize - Return the size of the specified type, in bits.  This method
729/// does not work on incomplete types.
730///
731/// FIXME: Pointers into different addr spaces could have different sizes and
732/// alignment requirements: getPointerInfo should take an AddrSpace, this
733/// should take a QualType, &c.
734std::pair<uint64_t, unsigned>
735ASTContext::getTypeInfo(const Type *T) const {
736  uint64_t Width=0;
737  unsigned Align=8;
738  switch (T->getTypeClass()) {
739#define TYPE(Class, Base)
740#define ABSTRACT_TYPE(Class, Base)
741#define NON_CANONICAL_TYPE(Class, Base)
742#define DEPENDENT_TYPE(Class, Base) case Type::Class:
743#include "clang/AST/TypeNodes.def"
744    assert(false && "Should not see dependent types");
745    break;
746
747  case Type::FunctionNoProto:
748  case Type::FunctionProto:
749    // GCC extension: alignof(function) = 32 bits
750    Width = 0;
751    Align = 32;
752    break;
753
754  case Type::IncompleteArray:
755  case Type::VariableArray:
756    Width = 0;
757    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
758    break;
759
760  case Type::ConstantArray: {
761    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
762
763    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
764    Width = EltInfo.first*CAT->getSize().getZExtValue();
765    Align = EltInfo.second;
766    Width = llvm::RoundUpToAlignment(Width, Align);
767    break;
768  }
769  case Type::ExtVector:
770  case Type::Vector: {
771    const VectorType *VT = cast<VectorType>(T);
772    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
773    Width = EltInfo.first*VT->getNumElements();
774    Align = Width;
775    // If the alignment is not a power of 2, round up to the next power of 2.
776    // This happens for non-power-of-2 length vectors.
777    if (Align & (Align-1)) {
778      Align = llvm::NextPowerOf2(Align);
779      Width = llvm::RoundUpToAlignment(Width, Align);
780    }
781    break;
782  }
783
784  case Type::Builtin:
785    switch (cast<BuiltinType>(T)->getKind()) {
786    default: assert(0 && "Unknown builtin type!");
787    case BuiltinType::Void:
788      // GCC extension: alignof(void) = 8 bits.
789      Width = 0;
790      Align = 8;
791      break;
792
793    case BuiltinType::Bool:
794      Width = Target.getBoolWidth();
795      Align = Target.getBoolAlign();
796      break;
797    case BuiltinType::Char_S:
798    case BuiltinType::Char_U:
799    case BuiltinType::UChar:
800    case BuiltinType::SChar:
801      Width = Target.getCharWidth();
802      Align = Target.getCharAlign();
803      break;
804    case BuiltinType::WChar_S:
805    case BuiltinType::WChar_U:
806      Width = Target.getWCharWidth();
807      Align = Target.getWCharAlign();
808      break;
809    case BuiltinType::Char16:
810      Width = Target.getChar16Width();
811      Align = Target.getChar16Align();
812      break;
813    case BuiltinType::Char32:
814      Width = Target.getChar32Width();
815      Align = Target.getChar32Align();
816      break;
817    case BuiltinType::UShort:
818    case BuiltinType::Short:
819      Width = Target.getShortWidth();
820      Align = Target.getShortAlign();
821      break;
822    case BuiltinType::UInt:
823    case BuiltinType::Int:
824      Width = Target.getIntWidth();
825      Align = Target.getIntAlign();
826      break;
827    case BuiltinType::ULong:
828    case BuiltinType::Long:
829      Width = Target.getLongWidth();
830      Align = Target.getLongAlign();
831      break;
832    case BuiltinType::ULongLong:
833    case BuiltinType::LongLong:
834      Width = Target.getLongLongWidth();
835      Align = Target.getLongLongAlign();
836      break;
837    case BuiltinType::Int128:
838    case BuiltinType::UInt128:
839      Width = 128;
840      Align = 128; // int128_t is 128-bit aligned on all targets.
841      break;
842    case BuiltinType::Float:
843      Width = Target.getFloatWidth();
844      Align = Target.getFloatAlign();
845      break;
846    case BuiltinType::Double:
847      Width = Target.getDoubleWidth();
848      Align = Target.getDoubleAlign();
849      break;
850    case BuiltinType::LongDouble:
851      Width = Target.getLongDoubleWidth();
852      Align = Target.getLongDoubleAlign();
853      break;
854    case BuiltinType::NullPtr:
855      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
856      Align = Target.getPointerAlign(0); //   == sizeof(void*)
857      break;
858    case BuiltinType::ObjCId:
859    case BuiltinType::ObjCClass:
860    case BuiltinType::ObjCSel:
861      Width = Target.getPointerWidth(0);
862      Align = Target.getPointerAlign(0);
863      break;
864    }
865    break;
866  case Type::ObjCObjectPointer:
867    Width = Target.getPointerWidth(0);
868    Align = Target.getPointerAlign(0);
869    break;
870  case Type::BlockPointer: {
871    unsigned AS = getTargetAddressSpace(
872        cast<BlockPointerType>(T)->getPointeeType());
873    Width = Target.getPointerWidth(AS);
874    Align = Target.getPointerAlign(AS);
875    break;
876  }
877  case Type::LValueReference:
878  case Type::RValueReference: {
879    // alignof and sizeof should never enter this code path here, so we go
880    // the pointer route.
881    unsigned AS = getTargetAddressSpace(
882        cast<ReferenceType>(T)->getPointeeType());
883    Width = Target.getPointerWidth(AS);
884    Align = Target.getPointerAlign(AS);
885    break;
886  }
887  case Type::Pointer: {
888    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
889    Width = Target.getPointerWidth(AS);
890    Align = Target.getPointerAlign(AS);
891    break;
892  }
893  case Type::MemberPointer: {
894    const MemberPointerType *MPT = cast<MemberPointerType>(T);
895    std::pair<uint64_t, unsigned> PtrDiffInfo =
896      getTypeInfo(getPointerDiffType());
897    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
898    Align = PtrDiffInfo.second;
899    break;
900  }
901  case Type::Complex: {
902    // Complex types have the same alignment as their elements, but twice the
903    // size.
904    std::pair<uint64_t, unsigned> EltInfo =
905      getTypeInfo(cast<ComplexType>(T)->getElementType());
906    Width = EltInfo.first*2;
907    Align = EltInfo.second;
908    break;
909  }
910  case Type::ObjCObject:
911    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
912  case Type::ObjCInterface: {
913    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
914    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
915    Width = toBits(Layout.getSize());
916    Align = toBits(Layout.getAlignment());
917    break;
918  }
919  case Type::Record:
920  case Type::Enum: {
921    const TagType *TT = cast<TagType>(T);
922
923    if (TT->getDecl()->isInvalidDecl()) {
924      Width = 8;
925      Align = 8;
926      break;
927    }
928
929    if (const EnumType *ET = dyn_cast<EnumType>(TT))
930      return getTypeInfo(ET->getDecl()->getIntegerType());
931
932    const RecordType *RT = cast<RecordType>(TT);
933    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
934    Width = toBits(Layout.getSize());
935    Align = toBits(Layout.getAlignment());
936    break;
937  }
938
939  case Type::SubstTemplateTypeParm:
940    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
941                       getReplacementType().getTypePtr());
942
943  case Type::Auto: {
944    const AutoType *A = cast<AutoType>(T);
945    assert(A->isDeduced() && "Cannot request the size of a dependent type");
946    return getTypeInfo(A->getDeducedType().getTypePtr());
947  }
948
949  case Type::Paren:
950    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
951
952  case Type::Typedef: {
953    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
954    std::pair<uint64_t, unsigned> Info
955      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
956    // If the typedef has an aligned attribute on it, it overrides any computed
957    // alignment we have.  This violates the GCC documentation (which says that
958    // attribute(aligned) can only round up) but matches its implementation.
959    if (unsigned AttrAlign = Typedef->getMaxAlignment())
960      Align = AttrAlign;
961    else
962      Align = Info.second;
963    Width = Info.first;
964    break;
965  }
966
967  case Type::TypeOfExpr:
968    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
969                         .getTypePtr());
970
971  case Type::TypeOf:
972    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
973
974  case Type::Decltype:
975    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
976                        .getTypePtr());
977
978  case Type::Elaborated:
979    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
980
981  case Type::Attributed:
982    return getTypeInfo(
983                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
984
985  case Type::TemplateSpecialization: {
986    assert(getCanonicalType(T) != T &&
987           "Cannot request the size of a dependent type");
988    const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
989    // A type alias template specialization may refer to a typedef with the
990    // aligned attribute on it.
991    if (TST->isTypeAlias())
992      return getTypeInfo(TST->getAliasedType().getTypePtr());
993    else
994      return getTypeInfo(getCanonicalType(T));
995  }
996
997  }
998
999  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
1000  return std::make_pair(Width, Align);
1001}
1002
1003/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1004CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1005  return CharUnits::fromQuantity(BitSize / getCharWidth());
1006}
1007
1008/// toBits - Convert a size in characters to a size in characters.
1009int64_t ASTContext::toBits(CharUnits CharSize) const {
1010  return CharSize.getQuantity() * getCharWidth();
1011}
1012
1013/// getTypeSizeInChars - Return the size of the specified type, in characters.
1014/// This method does not work on incomplete types.
1015CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1016  return toCharUnitsFromBits(getTypeSize(T));
1017}
1018CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1019  return toCharUnitsFromBits(getTypeSize(T));
1020}
1021
1022/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1023/// characters. This method does not work on incomplete types.
1024CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1025  return toCharUnitsFromBits(getTypeAlign(T));
1026}
1027CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1028  return toCharUnitsFromBits(getTypeAlign(T));
1029}
1030
1031/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1032/// type for the current target in bits.  This can be different than the ABI
1033/// alignment in cases where it is beneficial for performance to overalign
1034/// a data type.
1035unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1036  unsigned ABIAlign = getTypeAlign(T);
1037
1038  // Double and long long should be naturally aligned if possible.
1039  if (const ComplexType* CT = T->getAs<ComplexType>())
1040    T = CT->getElementType().getTypePtr();
1041  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1042      T->isSpecificBuiltinType(BuiltinType::LongLong))
1043    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1044
1045  return ABIAlign;
1046}
1047
1048/// ShallowCollectObjCIvars -
1049/// Collect all ivars, including those synthesized, in the current class.
1050///
1051void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
1052                            llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) const {
1053  // FIXME. This need be removed but there are two many places which
1054  // assume const-ness of ObjCInterfaceDecl
1055  ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1056  for (ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1057        Iv= Iv->getNextIvar())
1058    Ivars.push_back(Iv);
1059}
1060
1061/// DeepCollectObjCIvars -
1062/// This routine first collects all declared, but not synthesized, ivars in
1063/// super class and then collects all ivars, including those synthesized for
1064/// current class. This routine is used for implementation of current class
1065/// when all ivars, declared and synthesized are known.
1066///
1067void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1068                                      bool leafClass,
1069                            llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) const {
1070  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1071    DeepCollectObjCIvars(SuperClass, false, Ivars);
1072  if (!leafClass) {
1073    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1074         E = OI->ivar_end(); I != E; ++I)
1075      Ivars.push_back(*I);
1076  }
1077  else
1078    ShallowCollectObjCIvars(OI, Ivars);
1079}
1080
1081/// CollectInheritedProtocols - Collect all protocols in current class and
1082/// those inherited by it.
1083void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1084                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1085  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1086    // We can use protocol_iterator here instead of
1087    // all_referenced_protocol_iterator since we are walking all categories.
1088    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1089         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1090      ObjCProtocolDecl *Proto = (*P);
1091      Protocols.insert(Proto);
1092      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1093           PE = Proto->protocol_end(); P != PE; ++P) {
1094        Protocols.insert(*P);
1095        CollectInheritedProtocols(*P, Protocols);
1096      }
1097    }
1098
1099    // Categories of this Interface.
1100    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
1101         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
1102      CollectInheritedProtocols(CDeclChain, Protocols);
1103    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1104      while (SD) {
1105        CollectInheritedProtocols(SD, Protocols);
1106        SD = SD->getSuperClass();
1107      }
1108  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1109    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1110         PE = OC->protocol_end(); P != PE; ++P) {
1111      ObjCProtocolDecl *Proto = (*P);
1112      Protocols.insert(Proto);
1113      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1114           PE = Proto->protocol_end(); P != PE; ++P)
1115        CollectInheritedProtocols(*P, Protocols);
1116    }
1117  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1118    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1119         PE = OP->protocol_end(); P != PE; ++P) {
1120      ObjCProtocolDecl *Proto = (*P);
1121      Protocols.insert(Proto);
1122      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1123           PE = Proto->protocol_end(); P != PE; ++P)
1124        CollectInheritedProtocols(*P, Protocols);
1125    }
1126  }
1127}
1128
1129unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1130  unsigned count = 0;
1131  // Count ivars declared in class extension.
1132  for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
1133       CDecl = CDecl->getNextClassExtension())
1134    count += CDecl->ivar_size();
1135
1136  // Count ivar defined in this class's implementation.  This
1137  // includes synthesized ivars.
1138  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1139    count += ImplDecl->ivar_size();
1140
1141  return count;
1142}
1143
1144/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1145ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1146  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1147    I = ObjCImpls.find(D);
1148  if (I != ObjCImpls.end())
1149    return cast<ObjCImplementationDecl>(I->second);
1150  return 0;
1151}
1152/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1153ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1154  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1155    I = ObjCImpls.find(D);
1156  if (I != ObjCImpls.end())
1157    return cast<ObjCCategoryImplDecl>(I->second);
1158  return 0;
1159}
1160
1161/// \brief Set the implementation of ObjCInterfaceDecl.
1162void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1163                           ObjCImplementationDecl *ImplD) {
1164  assert(IFaceD && ImplD && "Passed null params");
1165  ObjCImpls[IFaceD] = ImplD;
1166}
1167/// \brief Set the implementation of ObjCCategoryDecl.
1168void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1169                           ObjCCategoryImplDecl *ImplD) {
1170  assert(CatD && ImplD && "Passed null params");
1171  ObjCImpls[CatD] = ImplD;
1172}
1173
1174/// \brief Get the copy initialization expression of VarDecl,or NULL if
1175/// none exists.
1176Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1177  assert(VD && "Passed null params");
1178  assert(VD->hasAttr<BlocksAttr>() &&
1179         "getBlockVarCopyInits - not __block var");
1180  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1181    I = BlockVarCopyInits.find(VD);
1182  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1183}
1184
1185/// \brief Set the copy inialization expression of a block var decl.
1186void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1187  assert(VD && Init && "Passed null params");
1188  assert(VD->hasAttr<BlocksAttr>() &&
1189         "setBlockVarCopyInits - not __block var");
1190  BlockVarCopyInits[VD] = Init;
1191}
1192
1193/// \brief Allocate an uninitialized TypeSourceInfo.
1194///
1195/// The caller should initialize the memory held by TypeSourceInfo using
1196/// the TypeLoc wrappers.
1197///
1198/// \param T the type that will be the basis for type source info. This type
1199/// should refer to how the declarator was written in source code, not to
1200/// what type semantic analysis resolved the declarator to.
1201TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1202                                                 unsigned DataSize) const {
1203  if (!DataSize)
1204    DataSize = TypeLoc::getFullDataSizeForType(T);
1205  else
1206    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1207           "incorrect data size provided to CreateTypeSourceInfo!");
1208
1209  TypeSourceInfo *TInfo =
1210    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1211  new (TInfo) TypeSourceInfo(T);
1212  return TInfo;
1213}
1214
1215TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1216                                                     SourceLocation L) const {
1217  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1218  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1219  return DI;
1220}
1221
1222const ASTRecordLayout &
1223ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1224  return getObjCLayout(D, 0);
1225}
1226
1227const ASTRecordLayout &
1228ASTContext::getASTObjCImplementationLayout(
1229                                        const ObjCImplementationDecl *D) const {
1230  return getObjCLayout(D->getClassInterface(), D);
1231}
1232
1233//===----------------------------------------------------------------------===//
1234//                   Type creation/memoization methods
1235//===----------------------------------------------------------------------===//
1236
1237QualType
1238ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1239  unsigned fastQuals = quals.getFastQualifiers();
1240  quals.removeFastQualifiers();
1241
1242  // Check if we've already instantiated this type.
1243  llvm::FoldingSetNodeID ID;
1244  ExtQuals::Profile(ID, baseType, quals);
1245  void *insertPos = 0;
1246  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1247    assert(eq->getQualifiers() == quals);
1248    return QualType(eq, fastQuals);
1249  }
1250
1251  // If the base type is not canonical, make the appropriate canonical type.
1252  QualType canon;
1253  if (!baseType->isCanonicalUnqualified()) {
1254    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1255    canonSplit.second.addConsistentQualifiers(quals);
1256    canon = getExtQualType(canonSplit.first, canonSplit.second);
1257
1258    // Re-find the insert position.
1259    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1260  }
1261
1262  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1263  ExtQualNodes.InsertNode(eq, insertPos);
1264  return QualType(eq, fastQuals);
1265}
1266
1267QualType
1268ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1269  QualType CanT = getCanonicalType(T);
1270  if (CanT.getAddressSpace() == AddressSpace)
1271    return T;
1272
1273  // If we are composing extended qualifiers together, merge together
1274  // into one ExtQuals node.
1275  QualifierCollector Quals;
1276  const Type *TypeNode = Quals.strip(T);
1277
1278  // If this type already has an address space specified, it cannot get
1279  // another one.
1280  assert(!Quals.hasAddressSpace() &&
1281         "Type cannot be in multiple addr spaces!");
1282  Quals.addAddressSpace(AddressSpace);
1283
1284  return getExtQualType(TypeNode, Quals);
1285}
1286
1287QualType ASTContext::getObjCGCQualType(QualType T,
1288                                       Qualifiers::GC GCAttr) const {
1289  QualType CanT = getCanonicalType(T);
1290  if (CanT.getObjCGCAttr() == GCAttr)
1291    return T;
1292
1293  if (const PointerType *ptr = T->getAs<PointerType>()) {
1294    QualType Pointee = ptr->getPointeeType();
1295    if (Pointee->isAnyPointerType()) {
1296      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1297      return getPointerType(ResultType);
1298    }
1299  }
1300
1301  // If we are composing extended qualifiers together, merge together
1302  // into one ExtQuals node.
1303  QualifierCollector Quals;
1304  const Type *TypeNode = Quals.strip(T);
1305
1306  // If this type already has an ObjCGC specified, it cannot get
1307  // another one.
1308  assert(!Quals.hasObjCGCAttr() &&
1309         "Type cannot have multiple ObjCGCs!");
1310  Quals.addObjCGCAttr(GCAttr);
1311
1312  return getExtQualType(TypeNode, Quals);
1313}
1314
1315const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1316                                                   FunctionType::ExtInfo Info) {
1317  if (T->getExtInfo() == Info)
1318    return T;
1319
1320  QualType Result;
1321  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1322    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1323  } else {
1324    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1325    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1326    EPI.ExtInfo = Info;
1327    Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1328                             FPT->getNumArgs(), EPI);
1329  }
1330
1331  return cast<FunctionType>(Result.getTypePtr());
1332}
1333
1334/// getComplexType - Return the uniqued reference to the type for a complex
1335/// number with the specified element type.
1336QualType ASTContext::getComplexType(QualType T) const {
1337  // Unique pointers, to guarantee there is only one pointer of a particular
1338  // structure.
1339  llvm::FoldingSetNodeID ID;
1340  ComplexType::Profile(ID, T);
1341
1342  void *InsertPos = 0;
1343  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1344    return QualType(CT, 0);
1345
1346  // If the pointee type isn't canonical, this won't be a canonical type either,
1347  // so fill in the canonical type field.
1348  QualType Canonical;
1349  if (!T.isCanonical()) {
1350    Canonical = getComplexType(getCanonicalType(T));
1351
1352    // Get the new insert position for the node we care about.
1353    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1354    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1355  }
1356  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1357  Types.push_back(New);
1358  ComplexTypes.InsertNode(New, InsertPos);
1359  return QualType(New, 0);
1360}
1361
1362/// getPointerType - Return the uniqued reference to the type for a pointer to
1363/// the specified type.
1364QualType ASTContext::getPointerType(QualType T) const {
1365  // Unique pointers, to guarantee there is only one pointer of a particular
1366  // structure.
1367  llvm::FoldingSetNodeID ID;
1368  PointerType::Profile(ID, T);
1369
1370  void *InsertPos = 0;
1371  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1372    return QualType(PT, 0);
1373
1374  // If the pointee type isn't canonical, this won't be a canonical type either,
1375  // so fill in the canonical type field.
1376  QualType Canonical;
1377  if (!T.isCanonical()) {
1378    Canonical = getPointerType(getCanonicalType(T));
1379
1380    // Get the new insert position for the node we care about.
1381    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1382    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1383  }
1384  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1385  Types.push_back(New);
1386  PointerTypes.InsertNode(New, InsertPos);
1387  return QualType(New, 0);
1388}
1389
1390/// getBlockPointerType - Return the uniqued reference to the type for
1391/// a pointer to the specified block.
1392QualType ASTContext::getBlockPointerType(QualType T) const {
1393  assert(T->isFunctionType() && "block of function types only");
1394  // Unique pointers, to guarantee there is only one block of a particular
1395  // structure.
1396  llvm::FoldingSetNodeID ID;
1397  BlockPointerType::Profile(ID, T);
1398
1399  void *InsertPos = 0;
1400  if (BlockPointerType *PT =
1401        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1402    return QualType(PT, 0);
1403
1404  // If the block pointee type isn't canonical, this won't be a canonical
1405  // type either so fill in the canonical type field.
1406  QualType Canonical;
1407  if (!T.isCanonical()) {
1408    Canonical = getBlockPointerType(getCanonicalType(T));
1409
1410    // Get the new insert position for the node we care about.
1411    BlockPointerType *NewIP =
1412      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1413    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1414  }
1415  BlockPointerType *New
1416    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1417  Types.push_back(New);
1418  BlockPointerTypes.InsertNode(New, InsertPos);
1419  return QualType(New, 0);
1420}
1421
1422/// getLValueReferenceType - Return the uniqued reference to the type for an
1423/// lvalue reference to the specified type.
1424QualType
1425ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
1426  // Unique pointers, to guarantee there is only one pointer of a particular
1427  // structure.
1428  llvm::FoldingSetNodeID ID;
1429  ReferenceType::Profile(ID, T, SpelledAsLValue);
1430
1431  void *InsertPos = 0;
1432  if (LValueReferenceType *RT =
1433        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1434    return QualType(RT, 0);
1435
1436  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1437
1438  // If the referencee type isn't canonical, this won't be a canonical type
1439  // either, so fill in the canonical type field.
1440  QualType Canonical;
1441  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1442    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1443    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1444
1445    // Get the new insert position for the node we care about.
1446    LValueReferenceType *NewIP =
1447      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1448    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1449  }
1450
1451  LValueReferenceType *New
1452    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1453                                                     SpelledAsLValue);
1454  Types.push_back(New);
1455  LValueReferenceTypes.InsertNode(New, InsertPos);
1456
1457  return QualType(New, 0);
1458}
1459
1460/// getRValueReferenceType - Return the uniqued reference to the type for an
1461/// rvalue reference to the specified type.
1462QualType ASTContext::getRValueReferenceType(QualType T) const {
1463  // Unique pointers, to guarantee there is only one pointer of a particular
1464  // structure.
1465  llvm::FoldingSetNodeID ID;
1466  ReferenceType::Profile(ID, T, false);
1467
1468  void *InsertPos = 0;
1469  if (RValueReferenceType *RT =
1470        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1471    return QualType(RT, 0);
1472
1473  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1474
1475  // If the referencee type isn't canonical, this won't be a canonical type
1476  // either, so fill in the canonical type field.
1477  QualType Canonical;
1478  if (InnerRef || !T.isCanonical()) {
1479    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1480    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1481
1482    // Get the new insert position for the node we care about.
1483    RValueReferenceType *NewIP =
1484      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1485    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1486  }
1487
1488  RValueReferenceType *New
1489    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1490  Types.push_back(New);
1491  RValueReferenceTypes.InsertNode(New, InsertPos);
1492  return QualType(New, 0);
1493}
1494
1495/// getMemberPointerType - Return the uniqued reference to the type for a
1496/// member pointer to the specified type, in the specified class.
1497QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
1498  // Unique pointers, to guarantee there is only one pointer of a particular
1499  // structure.
1500  llvm::FoldingSetNodeID ID;
1501  MemberPointerType::Profile(ID, T, Cls);
1502
1503  void *InsertPos = 0;
1504  if (MemberPointerType *PT =
1505      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1506    return QualType(PT, 0);
1507
1508  // If the pointee or class type isn't canonical, this won't be a canonical
1509  // type either, so fill in the canonical type field.
1510  QualType Canonical;
1511  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1512    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1513
1514    // Get the new insert position for the node we care about.
1515    MemberPointerType *NewIP =
1516      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1517    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1518  }
1519  MemberPointerType *New
1520    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1521  Types.push_back(New);
1522  MemberPointerTypes.InsertNode(New, InsertPos);
1523  return QualType(New, 0);
1524}
1525
1526/// getConstantArrayType - Return the unique reference to the type for an
1527/// array of the specified element type.
1528QualType ASTContext::getConstantArrayType(QualType EltTy,
1529                                          const llvm::APInt &ArySizeIn,
1530                                          ArrayType::ArraySizeModifier ASM,
1531                                          unsigned IndexTypeQuals) const {
1532  assert((EltTy->isDependentType() ||
1533          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1534         "Constant array of VLAs is illegal!");
1535
1536  // Convert the array size into a canonical width matching the pointer size for
1537  // the target.
1538  llvm::APInt ArySize(ArySizeIn);
1539  ArySize =
1540    ArySize.zextOrTrunc(Target.getPointerWidth(getTargetAddressSpace(EltTy)));
1541
1542  llvm::FoldingSetNodeID ID;
1543  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
1544
1545  void *InsertPos = 0;
1546  if (ConstantArrayType *ATP =
1547      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1548    return QualType(ATP, 0);
1549
1550  // If the element type isn't canonical or has qualifiers, this won't
1551  // be a canonical type either, so fill in the canonical type field.
1552  QualType Canon;
1553  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1554    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1555    Canon = getConstantArrayType(QualType(canonSplit.first, 0), ArySize,
1556                                 ASM, IndexTypeQuals);
1557    Canon = getQualifiedType(Canon, canonSplit.second);
1558
1559    // Get the new insert position for the node we care about.
1560    ConstantArrayType *NewIP =
1561      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1562    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1563  }
1564
1565  ConstantArrayType *New = new(*this,TypeAlignment)
1566    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
1567  ConstantArrayTypes.InsertNode(New, InsertPos);
1568  Types.push_back(New);
1569  return QualType(New, 0);
1570}
1571
1572/// getVariableArrayDecayedType - Turns the given type, which may be
1573/// variably-modified, into the corresponding type with all the known
1574/// sizes replaced with [*].
1575QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
1576  // Vastly most common case.
1577  if (!type->isVariablyModifiedType()) return type;
1578
1579  QualType result;
1580
1581  SplitQualType split = type.getSplitDesugaredType();
1582  const Type *ty = split.first;
1583  switch (ty->getTypeClass()) {
1584#define TYPE(Class, Base)
1585#define ABSTRACT_TYPE(Class, Base)
1586#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1587#include "clang/AST/TypeNodes.def"
1588    llvm_unreachable("didn't desugar past all non-canonical types?");
1589
1590  // These types should never be variably-modified.
1591  case Type::Builtin:
1592  case Type::Complex:
1593  case Type::Vector:
1594  case Type::ExtVector:
1595  case Type::DependentSizedExtVector:
1596  case Type::ObjCObject:
1597  case Type::ObjCInterface:
1598  case Type::ObjCObjectPointer:
1599  case Type::Record:
1600  case Type::Enum:
1601  case Type::UnresolvedUsing:
1602  case Type::TypeOfExpr:
1603  case Type::TypeOf:
1604  case Type::Decltype:
1605  case Type::DependentName:
1606  case Type::InjectedClassName:
1607  case Type::TemplateSpecialization:
1608  case Type::DependentTemplateSpecialization:
1609  case Type::TemplateTypeParm:
1610  case Type::SubstTemplateTypeParmPack:
1611  case Type::Auto:
1612  case Type::PackExpansion:
1613    llvm_unreachable("type should never be variably-modified");
1614
1615  // These types can be variably-modified but should never need to
1616  // further decay.
1617  case Type::FunctionNoProto:
1618  case Type::FunctionProto:
1619  case Type::BlockPointer:
1620  case Type::MemberPointer:
1621    return type;
1622
1623  // These types can be variably-modified.  All these modifications
1624  // preserve structure except as noted by comments.
1625  // TODO: if we ever care about optimizing VLAs, there are no-op
1626  // optimizations available here.
1627  case Type::Pointer:
1628    result = getPointerType(getVariableArrayDecayedType(
1629                              cast<PointerType>(ty)->getPointeeType()));
1630    break;
1631
1632  case Type::LValueReference: {
1633    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
1634    result = getLValueReferenceType(
1635                 getVariableArrayDecayedType(lv->getPointeeType()),
1636                                    lv->isSpelledAsLValue());
1637    break;
1638  }
1639
1640  case Type::RValueReference: {
1641    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
1642    result = getRValueReferenceType(
1643                 getVariableArrayDecayedType(lv->getPointeeType()));
1644    break;
1645  }
1646
1647  case Type::ConstantArray: {
1648    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
1649    result = getConstantArrayType(
1650                 getVariableArrayDecayedType(cat->getElementType()),
1651                                  cat->getSize(),
1652                                  cat->getSizeModifier(),
1653                                  cat->getIndexTypeCVRQualifiers());
1654    break;
1655  }
1656
1657  case Type::DependentSizedArray: {
1658    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
1659    result = getDependentSizedArrayType(
1660                 getVariableArrayDecayedType(dat->getElementType()),
1661                                        dat->getSizeExpr(),
1662                                        dat->getSizeModifier(),
1663                                        dat->getIndexTypeCVRQualifiers(),
1664                                        dat->getBracketsRange());
1665    break;
1666  }
1667
1668  // Turn incomplete types into [*] types.
1669  case Type::IncompleteArray: {
1670    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
1671    result = getVariableArrayType(
1672                 getVariableArrayDecayedType(iat->getElementType()),
1673                                  /*size*/ 0,
1674                                  ArrayType::Normal,
1675                                  iat->getIndexTypeCVRQualifiers(),
1676                                  SourceRange());
1677    break;
1678  }
1679
1680  // Turn VLA types into [*] types.
1681  case Type::VariableArray: {
1682    const VariableArrayType *vat = cast<VariableArrayType>(ty);
1683    result = getVariableArrayType(
1684                 getVariableArrayDecayedType(vat->getElementType()),
1685                                  /*size*/ 0,
1686                                  ArrayType::Star,
1687                                  vat->getIndexTypeCVRQualifiers(),
1688                                  vat->getBracketsRange());
1689    break;
1690  }
1691  }
1692
1693  // Apply the top-level qualifiers from the original.
1694  return getQualifiedType(result, split.second);
1695}
1696
1697/// getVariableArrayType - Returns a non-unique reference to the type for a
1698/// variable array of the specified element type.
1699QualType ASTContext::getVariableArrayType(QualType EltTy,
1700                                          Expr *NumElts,
1701                                          ArrayType::ArraySizeModifier ASM,
1702                                          unsigned IndexTypeQuals,
1703                                          SourceRange Brackets) const {
1704  // Since we don't unique expressions, it isn't possible to unique VLA's
1705  // that have an expression provided for their size.
1706  QualType Canon;
1707
1708  // Be sure to pull qualifiers off the element type.
1709  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1710    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1711    Canon = getVariableArrayType(QualType(canonSplit.first, 0), NumElts, ASM,
1712                                 IndexTypeQuals, Brackets);
1713    Canon = getQualifiedType(Canon, canonSplit.second);
1714  }
1715
1716  VariableArrayType *New = new(*this, TypeAlignment)
1717    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
1718
1719  VariableArrayTypes.push_back(New);
1720  Types.push_back(New);
1721  return QualType(New, 0);
1722}
1723
1724/// getDependentSizedArrayType - Returns a non-unique reference to
1725/// the type for a dependently-sized array of the specified element
1726/// type.
1727QualType ASTContext::getDependentSizedArrayType(QualType elementType,
1728                                                Expr *numElements,
1729                                                ArrayType::ArraySizeModifier ASM,
1730                                                unsigned elementTypeQuals,
1731                                                SourceRange brackets) const {
1732  assert((!numElements || numElements->isTypeDependent() ||
1733          numElements->isValueDependent()) &&
1734         "Size must be type- or value-dependent!");
1735
1736  // Dependently-sized array types that do not have a specified number
1737  // of elements will have their sizes deduced from a dependent
1738  // initializer.  We do no canonicalization here at all, which is okay
1739  // because they can't be used in most locations.
1740  if (!numElements) {
1741    DependentSizedArrayType *newType
1742      = new (*this, TypeAlignment)
1743          DependentSizedArrayType(*this, elementType, QualType(),
1744                                  numElements, ASM, elementTypeQuals,
1745                                  brackets);
1746    Types.push_back(newType);
1747    return QualType(newType, 0);
1748  }
1749
1750  // Otherwise, we actually build a new type every time, but we
1751  // also build a canonical type.
1752
1753  SplitQualType canonElementType = getCanonicalType(elementType).split();
1754
1755  void *insertPos = 0;
1756  llvm::FoldingSetNodeID ID;
1757  DependentSizedArrayType::Profile(ID, *this,
1758                                   QualType(canonElementType.first, 0),
1759                                   ASM, elementTypeQuals, numElements);
1760
1761  // Look for an existing type with these properties.
1762  DependentSizedArrayType *canonTy =
1763    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1764
1765  // If we don't have one, build one.
1766  if (!canonTy) {
1767    canonTy = new (*this, TypeAlignment)
1768      DependentSizedArrayType(*this, QualType(canonElementType.first, 0),
1769                              QualType(), numElements, ASM, elementTypeQuals,
1770                              brackets);
1771    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
1772    Types.push_back(canonTy);
1773  }
1774
1775  // Apply qualifiers from the element type to the array.
1776  QualType canon = getQualifiedType(QualType(canonTy,0),
1777                                    canonElementType.second);
1778
1779  // If we didn't need extra canonicalization for the element type,
1780  // then just use that as our result.
1781  if (QualType(canonElementType.first, 0) == elementType)
1782    return canon;
1783
1784  // Otherwise, we need to build a type which follows the spelling
1785  // of the element type.
1786  DependentSizedArrayType *sugaredType
1787    = new (*this, TypeAlignment)
1788        DependentSizedArrayType(*this, elementType, canon, numElements,
1789                                ASM, elementTypeQuals, brackets);
1790  Types.push_back(sugaredType);
1791  return QualType(sugaredType, 0);
1792}
1793
1794QualType ASTContext::getIncompleteArrayType(QualType elementType,
1795                                            ArrayType::ArraySizeModifier ASM,
1796                                            unsigned elementTypeQuals) const {
1797  llvm::FoldingSetNodeID ID;
1798  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
1799
1800  void *insertPos = 0;
1801  if (IncompleteArrayType *iat =
1802       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
1803    return QualType(iat, 0);
1804
1805  // If the element type isn't canonical, this won't be a canonical type
1806  // either, so fill in the canonical type field.  We also have to pull
1807  // qualifiers off the element type.
1808  QualType canon;
1809
1810  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
1811    SplitQualType canonSplit = getCanonicalType(elementType).split();
1812    canon = getIncompleteArrayType(QualType(canonSplit.first, 0),
1813                                   ASM, elementTypeQuals);
1814    canon = getQualifiedType(canon, canonSplit.second);
1815
1816    // Get the new insert position for the node we care about.
1817    IncompleteArrayType *existing =
1818      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1819    assert(!existing && "Shouldn't be in the map!"); (void) existing;
1820  }
1821
1822  IncompleteArrayType *newType = new (*this, TypeAlignment)
1823    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
1824
1825  IncompleteArrayTypes.InsertNode(newType, insertPos);
1826  Types.push_back(newType);
1827  return QualType(newType, 0);
1828}
1829
1830/// getVectorType - Return the unique reference to a vector type of
1831/// the specified element type and size. VectorType must be a built-in type.
1832QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
1833                                   VectorType::VectorKind VecKind) const {
1834  assert(vecType->isBuiltinType());
1835
1836  // Check if we've already instantiated a vector of this type.
1837  llvm::FoldingSetNodeID ID;
1838  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
1839
1840  void *InsertPos = 0;
1841  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1842    return QualType(VTP, 0);
1843
1844  // If the element type isn't canonical, this won't be a canonical type either,
1845  // so fill in the canonical type field.
1846  QualType Canonical;
1847  if (!vecType.isCanonical()) {
1848    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
1849
1850    // Get the new insert position for the node we care about.
1851    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1852    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1853  }
1854  VectorType *New = new (*this, TypeAlignment)
1855    VectorType(vecType, NumElts, Canonical, VecKind);
1856  VectorTypes.InsertNode(New, InsertPos);
1857  Types.push_back(New);
1858  return QualType(New, 0);
1859}
1860
1861/// getExtVectorType - Return the unique reference to an extended vector type of
1862/// the specified element type and size. VectorType must be a built-in type.
1863QualType
1864ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
1865  assert(vecType->isBuiltinType());
1866
1867  // Check if we've already instantiated a vector of this type.
1868  llvm::FoldingSetNodeID ID;
1869  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
1870                      VectorType::GenericVector);
1871  void *InsertPos = 0;
1872  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1873    return QualType(VTP, 0);
1874
1875  // If the element type isn't canonical, this won't be a canonical type either,
1876  // so fill in the canonical type field.
1877  QualType Canonical;
1878  if (!vecType.isCanonical()) {
1879    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1880
1881    // Get the new insert position for the node we care about.
1882    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1883    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1884  }
1885  ExtVectorType *New = new (*this, TypeAlignment)
1886    ExtVectorType(vecType, NumElts, Canonical);
1887  VectorTypes.InsertNode(New, InsertPos);
1888  Types.push_back(New);
1889  return QualType(New, 0);
1890}
1891
1892QualType
1893ASTContext::getDependentSizedExtVectorType(QualType vecType,
1894                                           Expr *SizeExpr,
1895                                           SourceLocation AttrLoc) const {
1896  llvm::FoldingSetNodeID ID;
1897  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1898                                       SizeExpr);
1899
1900  void *InsertPos = 0;
1901  DependentSizedExtVectorType *Canon
1902    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1903  DependentSizedExtVectorType *New;
1904  if (Canon) {
1905    // We already have a canonical version of this array type; use it as
1906    // the canonical type for a newly-built type.
1907    New = new (*this, TypeAlignment)
1908      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
1909                                  SizeExpr, AttrLoc);
1910  } else {
1911    QualType CanonVecTy = getCanonicalType(vecType);
1912    if (CanonVecTy == vecType) {
1913      New = new (*this, TypeAlignment)
1914        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
1915                                    AttrLoc);
1916
1917      DependentSizedExtVectorType *CanonCheck
1918        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1919      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
1920      (void)CanonCheck;
1921      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1922    } else {
1923      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1924                                                      SourceLocation());
1925      New = new (*this, TypeAlignment)
1926        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
1927    }
1928  }
1929
1930  Types.push_back(New);
1931  return QualType(New, 0);
1932}
1933
1934/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1935///
1936QualType
1937ASTContext::getFunctionNoProtoType(QualType ResultTy,
1938                                   const FunctionType::ExtInfo &Info) const {
1939  const CallingConv DefaultCC = Info.getCC();
1940  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
1941                               CC_X86StdCall : DefaultCC;
1942  // Unique functions, to guarantee there is only one function of a particular
1943  // structure.
1944  llvm::FoldingSetNodeID ID;
1945  FunctionNoProtoType::Profile(ID, ResultTy, Info);
1946
1947  void *InsertPos = 0;
1948  if (FunctionNoProtoType *FT =
1949        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1950    return QualType(FT, 0);
1951
1952  QualType Canonical;
1953  if (!ResultTy.isCanonical() ||
1954      getCanonicalCallConv(CallConv) != CallConv) {
1955    Canonical =
1956      getFunctionNoProtoType(getCanonicalType(ResultTy),
1957                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
1958
1959    // Get the new insert position for the node we care about.
1960    FunctionNoProtoType *NewIP =
1961      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1962    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1963  }
1964
1965  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
1966  FunctionNoProtoType *New = new (*this, TypeAlignment)
1967    FunctionNoProtoType(ResultTy, Canonical, newInfo);
1968  Types.push_back(New);
1969  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1970  return QualType(New, 0);
1971}
1972
1973/// getFunctionType - Return a normal function type with a typed argument
1974/// list.  isVariadic indicates whether the argument list includes '...'.
1975QualType
1976ASTContext::getFunctionType(QualType ResultTy,
1977                            const QualType *ArgArray, unsigned NumArgs,
1978                            const FunctionProtoType::ExtProtoInfo &EPI) const {
1979  // Unique functions, to guarantee there is only one function of a particular
1980  // structure.
1981  llvm::FoldingSetNodeID ID;
1982  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI, *this);
1983
1984  void *InsertPos = 0;
1985  if (FunctionProtoType *FTP =
1986        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1987    return QualType(FTP, 0);
1988
1989  // Determine whether the type being created is already canonical or not.
1990  bool isCanonical= EPI.ExceptionSpecType == EST_None && ResultTy.isCanonical();
1991  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1992    if (!ArgArray[i].isCanonicalAsParam())
1993      isCanonical = false;
1994
1995  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
1996  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
1997                               CC_X86StdCall : DefaultCC;
1998
1999  // If this type isn't canonical, get the canonical version of it.
2000  // The exception spec is not part of the canonical type.
2001  QualType Canonical;
2002  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2003    llvm::SmallVector<QualType, 16> CanonicalArgs;
2004    CanonicalArgs.reserve(NumArgs);
2005    for (unsigned i = 0; i != NumArgs; ++i)
2006      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2007
2008    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2009    CanonicalEPI.ExceptionSpecType = EST_None;
2010    CanonicalEPI.NumExceptions = 0;
2011    CanonicalEPI.ExtInfo
2012      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2013
2014    Canonical = getFunctionType(getCanonicalType(ResultTy),
2015                                CanonicalArgs.data(), NumArgs,
2016                                CanonicalEPI);
2017
2018    // Get the new insert position for the node we care about.
2019    FunctionProtoType *NewIP =
2020      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2021    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2022  }
2023
2024  // FunctionProtoType objects are allocated with extra bytes after them
2025  // for two variable size arrays (for parameter and exception types) at the
2026  // end of them. Instead of the exception types, there could be a noexcept
2027  // expression and a context pointer.
2028  size_t Size = sizeof(FunctionProtoType) +
2029                NumArgs * sizeof(QualType);
2030  if (EPI.ExceptionSpecType == EST_Dynamic)
2031    Size += EPI.NumExceptions * sizeof(QualType);
2032  else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2033    Size += sizeof(Expr*);
2034  }
2035  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2036  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2037  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2038  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, newEPI);
2039  Types.push_back(FTP);
2040  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2041  return QualType(FTP, 0);
2042}
2043
2044#ifndef NDEBUG
2045static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2046  if (!isa<CXXRecordDecl>(D)) return false;
2047  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2048  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2049    return true;
2050  if (RD->getDescribedClassTemplate() &&
2051      !isa<ClassTemplateSpecializationDecl>(RD))
2052    return true;
2053  return false;
2054}
2055#endif
2056
2057/// getInjectedClassNameType - Return the unique reference to the
2058/// injected class name type for the specified templated declaration.
2059QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2060                                              QualType TST) const {
2061  assert(NeedsInjectedClassNameType(Decl));
2062  if (Decl->TypeForDecl) {
2063    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2064  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDeclaration()) {
2065    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2066    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2067    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2068  } else {
2069    Type *newType =
2070      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2071    Decl->TypeForDecl = newType;
2072    Types.push_back(newType);
2073  }
2074  return QualType(Decl->TypeForDecl, 0);
2075}
2076
2077/// getTypeDeclType - Return the unique reference to the type for the
2078/// specified type declaration.
2079QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2080  assert(Decl && "Passed null for Decl param");
2081  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2082
2083  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2084    return getTypedefType(Typedef);
2085
2086  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2087         "Template type parameter types are always available.");
2088
2089  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2090    assert(!Record->getPreviousDeclaration() &&
2091           "struct/union has previous declaration");
2092    assert(!NeedsInjectedClassNameType(Record));
2093    return getRecordType(Record);
2094  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2095    assert(!Enum->getPreviousDeclaration() &&
2096           "enum has previous declaration");
2097    return getEnumType(Enum);
2098  } else if (const UnresolvedUsingTypenameDecl *Using =
2099               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2100    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2101    Decl->TypeForDecl = newType;
2102    Types.push_back(newType);
2103  } else
2104    llvm_unreachable("TypeDecl without a type?");
2105
2106  return QualType(Decl->TypeForDecl, 0);
2107}
2108
2109/// getTypedefType - Return the unique reference to the type for the
2110/// specified typedef name decl.
2111QualType
2112ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2113                           QualType Canonical) const {
2114  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2115
2116  if (Canonical.isNull())
2117    Canonical = getCanonicalType(Decl->getUnderlyingType());
2118  TypedefType *newType = new(*this, TypeAlignment)
2119    TypedefType(Type::Typedef, Decl, Canonical);
2120  Decl->TypeForDecl = newType;
2121  Types.push_back(newType);
2122  return QualType(newType, 0);
2123}
2124
2125QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2126  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2127
2128  if (const RecordDecl *PrevDecl = Decl->getPreviousDeclaration())
2129    if (PrevDecl->TypeForDecl)
2130      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2131
2132  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2133  Decl->TypeForDecl = newType;
2134  Types.push_back(newType);
2135  return QualType(newType, 0);
2136}
2137
2138QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2139  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2140
2141  if (const EnumDecl *PrevDecl = Decl->getPreviousDeclaration())
2142    if (PrevDecl->TypeForDecl)
2143      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2144
2145  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2146  Decl->TypeForDecl = newType;
2147  Types.push_back(newType);
2148  return QualType(newType, 0);
2149}
2150
2151QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2152                                       QualType modifiedType,
2153                                       QualType equivalentType) {
2154  llvm::FoldingSetNodeID id;
2155  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2156
2157  void *insertPos = 0;
2158  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2159  if (type) return QualType(type, 0);
2160
2161  QualType canon = getCanonicalType(equivalentType);
2162  type = new (*this, TypeAlignment)
2163           AttributedType(canon, attrKind, modifiedType, equivalentType);
2164
2165  Types.push_back(type);
2166  AttributedTypes.InsertNode(type, insertPos);
2167
2168  return QualType(type, 0);
2169}
2170
2171
2172/// \brief Retrieve a substitution-result type.
2173QualType
2174ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2175                                         QualType Replacement) const {
2176  assert(Replacement.isCanonical()
2177         && "replacement types must always be canonical");
2178
2179  llvm::FoldingSetNodeID ID;
2180  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2181  void *InsertPos = 0;
2182  SubstTemplateTypeParmType *SubstParm
2183    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2184
2185  if (!SubstParm) {
2186    SubstParm = new (*this, TypeAlignment)
2187      SubstTemplateTypeParmType(Parm, Replacement);
2188    Types.push_back(SubstParm);
2189    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2190  }
2191
2192  return QualType(SubstParm, 0);
2193}
2194
2195/// \brief Retrieve a
2196QualType ASTContext::getSubstTemplateTypeParmPackType(
2197                                          const TemplateTypeParmType *Parm,
2198                                              const TemplateArgument &ArgPack) {
2199#ifndef NDEBUG
2200  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2201                                    PEnd = ArgPack.pack_end();
2202       P != PEnd; ++P) {
2203    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2204    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2205  }
2206#endif
2207
2208  llvm::FoldingSetNodeID ID;
2209  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2210  void *InsertPos = 0;
2211  if (SubstTemplateTypeParmPackType *SubstParm
2212        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2213    return QualType(SubstParm, 0);
2214
2215  QualType Canon;
2216  if (!Parm->isCanonicalUnqualified()) {
2217    Canon = getCanonicalType(QualType(Parm, 0));
2218    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2219                                             ArgPack);
2220    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2221  }
2222
2223  SubstTemplateTypeParmPackType *SubstParm
2224    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2225                                                               ArgPack);
2226  Types.push_back(SubstParm);
2227  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2228  return QualType(SubstParm, 0);
2229}
2230
2231/// \brief Retrieve the template type parameter type for a template
2232/// parameter or parameter pack with the given depth, index, and (optionally)
2233/// name.
2234QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2235                                             bool ParameterPack,
2236                                             TemplateTypeParmDecl *TTPDecl) const {
2237  llvm::FoldingSetNodeID ID;
2238  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
2239  void *InsertPos = 0;
2240  TemplateTypeParmType *TypeParm
2241    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2242
2243  if (TypeParm)
2244    return QualType(TypeParm, 0);
2245
2246  if (TTPDecl) {
2247    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2248    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
2249
2250    TemplateTypeParmType *TypeCheck
2251      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2252    assert(!TypeCheck && "Template type parameter canonical type broken");
2253    (void)TypeCheck;
2254  } else
2255    TypeParm = new (*this, TypeAlignment)
2256      TemplateTypeParmType(Depth, Index, ParameterPack);
2257
2258  Types.push_back(TypeParm);
2259  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2260
2261  return QualType(TypeParm, 0);
2262}
2263
2264TypeSourceInfo *
2265ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2266                                              SourceLocation NameLoc,
2267                                        const TemplateArgumentListInfo &Args,
2268                                              QualType Underlying) const {
2269  assert(!Name.getAsDependentTemplateName() &&
2270         "No dependent template names here!");
2271  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
2272
2273  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2274  TemplateSpecializationTypeLoc TL
2275    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
2276  TL.setTemplateNameLoc(NameLoc);
2277  TL.setLAngleLoc(Args.getLAngleLoc());
2278  TL.setRAngleLoc(Args.getRAngleLoc());
2279  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2280    TL.setArgLocInfo(i, Args[i].getLocInfo());
2281  return DI;
2282}
2283
2284QualType
2285ASTContext::getTemplateSpecializationType(TemplateName Template,
2286                                          const TemplateArgumentListInfo &Args,
2287                                          QualType Underlying) const {
2288  assert(!Template.getAsDependentTemplateName() &&
2289         "No dependent template names here!");
2290
2291  unsigned NumArgs = Args.size();
2292
2293  llvm::SmallVector<TemplateArgument, 4> ArgVec;
2294  ArgVec.reserve(NumArgs);
2295  for (unsigned i = 0; i != NumArgs; ++i)
2296    ArgVec.push_back(Args[i].getArgument());
2297
2298  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2299                                       Underlying);
2300}
2301
2302QualType
2303ASTContext::getTemplateSpecializationType(TemplateName Template,
2304                                          const TemplateArgument *Args,
2305                                          unsigned NumArgs,
2306                                          QualType Underlying) const {
2307  assert(!Template.getAsDependentTemplateName() &&
2308         "No dependent template names here!");
2309  // Look through qualified template names.
2310  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2311    Template = TemplateName(QTN->getTemplateDecl());
2312
2313  bool isTypeAlias =
2314    Template.getAsTemplateDecl() &&
2315    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
2316
2317  QualType CanonType;
2318  if (!Underlying.isNull())
2319    CanonType = getCanonicalType(Underlying);
2320  else {
2321    assert(!isTypeAlias &&
2322           "Underlying type for template alias must be computed by caller");
2323    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
2324                                                       NumArgs);
2325  }
2326
2327  // Allocate the (non-canonical) template specialization type, but don't
2328  // try to unique it: these types typically have location information that
2329  // we don't unique and don't want to lose.
2330  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
2331                       sizeof(TemplateArgument) * NumArgs +
2332                       (isTypeAlias ? sizeof(QualType) : 0),
2333                       TypeAlignment);
2334  TemplateSpecializationType *Spec
2335    = new (Mem) TemplateSpecializationType(Template,
2336                                           Args, NumArgs,
2337                                           CanonType,
2338                                         isTypeAlias ? Underlying : QualType());
2339
2340  Types.push_back(Spec);
2341  return QualType(Spec, 0);
2342}
2343
2344QualType
2345ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
2346                                                   const TemplateArgument *Args,
2347                                                   unsigned NumArgs) const {
2348  assert(!Template.getAsDependentTemplateName() &&
2349         "No dependent template names here!");
2350  assert((!Template.getAsTemplateDecl() ||
2351          !isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) &&
2352         "Underlying type for template alias must be computed by caller");
2353
2354  // Look through qualified template names.
2355  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2356    Template = TemplateName(QTN->getTemplateDecl());
2357
2358  // Build the canonical template specialization type.
2359  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
2360  llvm::SmallVector<TemplateArgument, 4> CanonArgs;
2361  CanonArgs.reserve(NumArgs);
2362  for (unsigned I = 0; I != NumArgs; ++I)
2363    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
2364
2365  // Determine whether this canonical template specialization type already
2366  // exists.
2367  llvm::FoldingSetNodeID ID;
2368  TemplateSpecializationType::Profile(ID, CanonTemplate,
2369                                      CanonArgs.data(), NumArgs, *this);
2370
2371  void *InsertPos = 0;
2372  TemplateSpecializationType *Spec
2373    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2374
2375  if (!Spec) {
2376    // Allocate a new canonical template specialization type.
2377    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2378                          sizeof(TemplateArgument) * NumArgs),
2379                         TypeAlignment);
2380    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
2381                                                CanonArgs.data(), NumArgs,
2382                                                QualType(), QualType());
2383    Types.push_back(Spec);
2384    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
2385  }
2386
2387  assert(Spec->isDependentType() &&
2388         "Non-dependent template-id type must have a canonical type");
2389  return QualType(Spec, 0);
2390}
2391
2392QualType
2393ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
2394                              NestedNameSpecifier *NNS,
2395                              QualType NamedType) const {
2396  llvm::FoldingSetNodeID ID;
2397  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
2398
2399  void *InsertPos = 0;
2400  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2401  if (T)
2402    return QualType(T, 0);
2403
2404  QualType Canon = NamedType;
2405  if (!Canon.isCanonical()) {
2406    Canon = getCanonicalType(NamedType);
2407    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2408    assert(!CheckT && "Elaborated canonical type broken");
2409    (void)CheckT;
2410  }
2411
2412  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
2413  Types.push_back(T);
2414  ElaboratedTypes.InsertNode(T, InsertPos);
2415  return QualType(T, 0);
2416}
2417
2418QualType
2419ASTContext::getParenType(QualType InnerType) const {
2420  llvm::FoldingSetNodeID ID;
2421  ParenType::Profile(ID, InnerType);
2422
2423  void *InsertPos = 0;
2424  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2425  if (T)
2426    return QualType(T, 0);
2427
2428  QualType Canon = InnerType;
2429  if (!Canon.isCanonical()) {
2430    Canon = getCanonicalType(InnerType);
2431    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2432    assert(!CheckT && "Paren canonical type broken");
2433    (void)CheckT;
2434  }
2435
2436  T = new (*this) ParenType(InnerType, Canon);
2437  Types.push_back(T);
2438  ParenTypes.InsertNode(T, InsertPos);
2439  return QualType(T, 0);
2440}
2441
2442QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
2443                                          NestedNameSpecifier *NNS,
2444                                          const IdentifierInfo *Name,
2445                                          QualType Canon) const {
2446  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2447
2448  if (Canon.isNull()) {
2449    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2450    ElaboratedTypeKeyword CanonKeyword = Keyword;
2451    if (Keyword == ETK_None)
2452      CanonKeyword = ETK_Typename;
2453
2454    if (CanonNNS != NNS || CanonKeyword != Keyword)
2455      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
2456  }
2457
2458  llvm::FoldingSetNodeID ID;
2459  DependentNameType::Profile(ID, Keyword, NNS, Name);
2460
2461  void *InsertPos = 0;
2462  DependentNameType *T
2463    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2464  if (T)
2465    return QualType(T, 0);
2466
2467  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
2468  Types.push_back(T);
2469  DependentNameTypes.InsertNode(T, InsertPos);
2470  return QualType(T, 0);
2471}
2472
2473QualType
2474ASTContext::getDependentTemplateSpecializationType(
2475                                 ElaboratedTypeKeyword Keyword,
2476                                 NestedNameSpecifier *NNS,
2477                                 const IdentifierInfo *Name,
2478                                 const TemplateArgumentListInfo &Args) const {
2479  // TODO: avoid this copy
2480  llvm::SmallVector<TemplateArgument, 16> ArgCopy;
2481  for (unsigned I = 0, E = Args.size(); I != E; ++I)
2482    ArgCopy.push_back(Args[I].getArgument());
2483  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
2484                                                ArgCopy.size(),
2485                                                ArgCopy.data());
2486}
2487
2488QualType
2489ASTContext::getDependentTemplateSpecializationType(
2490                                 ElaboratedTypeKeyword Keyword,
2491                                 NestedNameSpecifier *NNS,
2492                                 const IdentifierInfo *Name,
2493                                 unsigned NumArgs,
2494                                 const TemplateArgument *Args) const {
2495  assert((!NNS || NNS->isDependent()) &&
2496         "nested-name-specifier must be dependent");
2497
2498  llvm::FoldingSetNodeID ID;
2499  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
2500                                               Name, NumArgs, Args);
2501
2502  void *InsertPos = 0;
2503  DependentTemplateSpecializationType *T
2504    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2505  if (T)
2506    return QualType(T, 0);
2507
2508  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2509
2510  ElaboratedTypeKeyword CanonKeyword = Keyword;
2511  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
2512
2513  bool AnyNonCanonArgs = false;
2514  llvm::SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
2515  for (unsigned I = 0; I != NumArgs; ++I) {
2516    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
2517    if (!CanonArgs[I].structurallyEquals(Args[I]))
2518      AnyNonCanonArgs = true;
2519  }
2520
2521  QualType Canon;
2522  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
2523    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
2524                                                   Name, NumArgs,
2525                                                   CanonArgs.data());
2526
2527    // Find the insert position again.
2528    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2529  }
2530
2531  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
2532                        sizeof(TemplateArgument) * NumArgs),
2533                       TypeAlignment);
2534  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
2535                                                    Name, NumArgs, Args, Canon);
2536  Types.push_back(T);
2537  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
2538  return QualType(T, 0);
2539}
2540
2541QualType ASTContext::getPackExpansionType(QualType Pattern,
2542                                      llvm::Optional<unsigned> NumExpansions) {
2543  llvm::FoldingSetNodeID ID;
2544  PackExpansionType::Profile(ID, Pattern, NumExpansions);
2545
2546  assert(Pattern->containsUnexpandedParameterPack() &&
2547         "Pack expansions must expand one or more parameter packs");
2548  void *InsertPos = 0;
2549  PackExpansionType *T
2550    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2551  if (T)
2552    return QualType(T, 0);
2553
2554  QualType Canon;
2555  if (!Pattern.isCanonical()) {
2556    Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
2557
2558    // Find the insert position again.
2559    PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2560  }
2561
2562  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
2563  Types.push_back(T);
2564  PackExpansionTypes.InsertNode(T, InsertPos);
2565  return QualType(T, 0);
2566}
2567
2568/// CmpProtocolNames - Comparison predicate for sorting protocols
2569/// alphabetically.
2570static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2571                            const ObjCProtocolDecl *RHS) {
2572  return LHS->getDeclName() < RHS->getDeclName();
2573}
2574
2575static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
2576                                unsigned NumProtocols) {
2577  if (NumProtocols == 0) return true;
2578
2579  for (unsigned i = 1; i != NumProtocols; ++i)
2580    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
2581      return false;
2582  return true;
2583}
2584
2585static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2586                                   unsigned &NumProtocols) {
2587  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2588
2589  // Sort protocols, keyed by name.
2590  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2591
2592  // Remove duplicates.
2593  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2594  NumProtocols = ProtocolsEnd-Protocols;
2595}
2596
2597QualType ASTContext::getObjCObjectType(QualType BaseType,
2598                                       ObjCProtocolDecl * const *Protocols,
2599                                       unsigned NumProtocols) const {
2600  // If the base type is an interface and there aren't any protocols
2601  // to add, then the interface type will do just fine.
2602  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
2603    return BaseType;
2604
2605  // Look in the folding set for an existing type.
2606  llvm::FoldingSetNodeID ID;
2607  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
2608  void *InsertPos = 0;
2609  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
2610    return QualType(QT, 0);
2611
2612  // Build the canonical type, which has the canonical base type and
2613  // a sorted-and-uniqued list of protocols.
2614  QualType Canonical;
2615  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
2616  if (!ProtocolsSorted || !BaseType.isCanonical()) {
2617    if (!ProtocolsSorted) {
2618      llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
2619                                                     Protocols + NumProtocols);
2620      unsigned UniqueCount = NumProtocols;
2621
2622      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2623      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2624                                    &Sorted[0], UniqueCount);
2625    } else {
2626      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2627                                    Protocols, NumProtocols);
2628    }
2629
2630    // Regenerate InsertPos.
2631    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
2632  }
2633
2634  unsigned Size = sizeof(ObjCObjectTypeImpl);
2635  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
2636  void *Mem = Allocate(Size, TypeAlignment);
2637  ObjCObjectTypeImpl *T =
2638    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
2639
2640  Types.push_back(T);
2641  ObjCObjectTypes.InsertNode(T, InsertPos);
2642  return QualType(T, 0);
2643}
2644
2645/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2646/// the given object type.
2647QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
2648  llvm::FoldingSetNodeID ID;
2649  ObjCObjectPointerType::Profile(ID, ObjectT);
2650
2651  void *InsertPos = 0;
2652  if (ObjCObjectPointerType *QT =
2653              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2654    return QualType(QT, 0);
2655
2656  // Find the canonical object type.
2657  QualType Canonical;
2658  if (!ObjectT.isCanonical()) {
2659    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
2660
2661    // Regenerate InsertPos.
2662    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2663  }
2664
2665  // No match.
2666  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
2667  ObjCObjectPointerType *QType =
2668    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
2669
2670  Types.push_back(QType);
2671  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2672  return QualType(QType, 0);
2673}
2674
2675/// getObjCInterfaceType - Return the unique reference to the type for the
2676/// specified ObjC interface decl. The list of protocols is optional.
2677QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl) const {
2678  if (Decl->TypeForDecl)
2679    return QualType(Decl->TypeForDecl, 0);
2680
2681  // FIXME: redeclarations?
2682  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
2683  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
2684  Decl->TypeForDecl = T;
2685  Types.push_back(T);
2686  return QualType(T, 0);
2687}
2688
2689/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2690/// TypeOfExprType AST's (since expression's are never shared). For example,
2691/// multiple declarations that refer to "typeof(x)" all contain different
2692/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2693/// on canonical type's (which are always unique).
2694QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
2695  TypeOfExprType *toe;
2696  if (tofExpr->isTypeDependent()) {
2697    llvm::FoldingSetNodeID ID;
2698    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2699
2700    void *InsertPos = 0;
2701    DependentTypeOfExprType *Canon
2702      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2703    if (Canon) {
2704      // We already have a "canonical" version of an identical, dependent
2705      // typeof(expr) type. Use that as our canonical type.
2706      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2707                                          QualType((TypeOfExprType*)Canon, 0));
2708    }
2709    else {
2710      // Build a new, canonical typeof(expr) type.
2711      Canon
2712        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2713      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2714      toe = Canon;
2715    }
2716  } else {
2717    QualType Canonical = getCanonicalType(tofExpr->getType());
2718    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2719  }
2720  Types.push_back(toe);
2721  return QualType(toe, 0);
2722}
2723
2724/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2725/// TypeOfType AST's. The only motivation to unique these nodes would be
2726/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2727/// an issue. This doesn't effect the type checker, since it operates
2728/// on canonical type's (which are always unique).
2729QualType ASTContext::getTypeOfType(QualType tofType) const {
2730  QualType Canonical = getCanonicalType(tofType);
2731  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2732  Types.push_back(tot);
2733  return QualType(tot, 0);
2734}
2735
2736/// getDecltypeForExpr - Given an expr, will return the decltype for that
2737/// expression, according to the rules in C++0x [dcl.type.simple]p4
2738static QualType getDecltypeForExpr(const Expr *e, const ASTContext &Context) {
2739  if (e->isTypeDependent())
2740    return Context.DependentTy;
2741
2742  // If e is an id expression or a class member access, decltype(e) is defined
2743  // as the type of the entity named by e.
2744  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2745    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2746      return VD->getType();
2747  }
2748  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2749    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2750      return FD->getType();
2751  }
2752  // If e is a function call or an invocation of an overloaded operator,
2753  // (parentheses around e are ignored), decltype(e) is defined as the
2754  // return type of that function.
2755  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2756    return CE->getCallReturnType();
2757
2758  QualType T = e->getType();
2759
2760  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2761  // defined as T&, otherwise decltype(e) is defined as T.
2762  if (e->isLValue())
2763    T = Context.getLValueReferenceType(T);
2764
2765  return T;
2766}
2767
2768/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2769/// DecltypeType AST's. The only motivation to unique these nodes would be
2770/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2771/// an issue. This doesn't effect the type checker, since it operates
2772/// on canonical type's (which are always unique).
2773QualType ASTContext::getDecltypeType(Expr *e) const {
2774  DecltypeType *dt;
2775  if (e->isTypeDependent()) {
2776    llvm::FoldingSetNodeID ID;
2777    DependentDecltypeType::Profile(ID, *this, e);
2778
2779    void *InsertPos = 0;
2780    DependentDecltypeType *Canon
2781      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2782    if (Canon) {
2783      // We already have a "canonical" version of an equivalent, dependent
2784      // decltype type. Use that as our canonical type.
2785      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2786                                       QualType((DecltypeType*)Canon, 0));
2787    }
2788    else {
2789      // Build a new, canonical typeof(expr) type.
2790      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2791      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2792      dt = Canon;
2793    }
2794  } else {
2795    QualType T = getDecltypeForExpr(e, *this);
2796    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2797  }
2798  Types.push_back(dt);
2799  return QualType(dt, 0);
2800}
2801
2802/// getAutoType - We only unique auto types after they've been deduced.
2803QualType ASTContext::getAutoType(QualType DeducedType) const {
2804  void *InsertPos = 0;
2805  if (!DeducedType.isNull()) {
2806    // Look in the folding set for an existing type.
2807    llvm::FoldingSetNodeID ID;
2808    AutoType::Profile(ID, DeducedType);
2809    if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
2810      return QualType(AT, 0);
2811  }
2812
2813  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
2814  Types.push_back(AT);
2815  if (InsertPos)
2816    AutoTypes.InsertNode(AT, InsertPos);
2817  return QualType(AT, 0);
2818}
2819
2820/// getAutoDeductType - Get type pattern for deducing against 'auto'.
2821QualType ASTContext::getAutoDeductType() const {
2822  if (AutoDeductTy.isNull())
2823    AutoDeductTy = getAutoType(QualType());
2824  assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern");
2825  return AutoDeductTy;
2826}
2827
2828/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
2829QualType ASTContext::getAutoRRefDeductType() const {
2830  if (AutoRRefDeductTy.isNull())
2831    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
2832  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
2833  return AutoRRefDeductTy;
2834}
2835
2836/// getTagDeclType - Return the unique reference to the type for the
2837/// specified TagDecl (struct/union/class/enum) decl.
2838QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
2839  assert (Decl);
2840  // FIXME: What is the design on getTagDeclType when it requires casting
2841  // away const?  mutable?
2842  return getTypeDeclType(const_cast<TagDecl*>(Decl));
2843}
2844
2845/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2846/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2847/// needs to agree with the definition in <stddef.h>.
2848CanQualType ASTContext::getSizeType() const {
2849  return getFromTargetType(Target.getSizeType());
2850}
2851
2852/// getSignedWCharType - Return the type of "signed wchar_t".
2853/// Used when in C++, as a GCC extension.
2854QualType ASTContext::getSignedWCharType() const {
2855  // FIXME: derive from "Target" ?
2856  return WCharTy;
2857}
2858
2859/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2860/// Used when in C++, as a GCC extension.
2861QualType ASTContext::getUnsignedWCharType() const {
2862  // FIXME: derive from "Target" ?
2863  return UnsignedIntTy;
2864}
2865
2866/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2867/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2868QualType ASTContext::getPointerDiffType() const {
2869  return getFromTargetType(Target.getPtrDiffType(0));
2870}
2871
2872//===----------------------------------------------------------------------===//
2873//                              Type Operators
2874//===----------------------------------------------------------------------===//
2875
2876CanQualType ASTContext::getCanonicalParamType(QualType T) const {
2877  // Push qualifiers into arrays, and then discard any remaining
2878  // qualifiers.
2879  T = getCanonicalType(T);
2880  T = getVariableArrayDecayedType(T);
2881  const Type *Ty = T.getTypePtr();
2882  QualType Result;
2883  if (isa<ArrayType>(Ty)) {
2884    Result = getArrayDecayedType(QualType(Ty,0));
2885  } else if (isa<FunctionType>(Ty)) {
2886    Result = getPointerType(QualType(Ty, 0));
2887  } else {
2888    Result = QualType(Ty, 0);
2889  }
2890
2891  return CanQualType::CreateUnsafe(Result);
2892}
2893
2894
2895QualType ASTContext::getUnqualifiedArrayType(QualType type,
2896                                             Qualifiers &quals) {
2897  SplitQualType splitType = type.getSplitUnqualifiedType();
2898
2899  // FIXME: getSplitUnqualifiedType() actually walks all the way to
2900  // the unqualified desugared type and then drops it on the floor.
2901  // We then have to strip that sugar back off with
2902  // getUnqualifiedDesugaredType(), which is silly.
2903  const ArrayType *AT =
2904    dyn_cast<ArrayType>(splitType.first->getUnqualifiedDesugaredType());
2905
2906  // If we don't have an array, just use the results in splitType.
2907  if (!AT) {
2908    quals = splitType.second;
2909    return QualType(splitType.first, 0);
2910  }
2911
2912  // Otherwise, recurse on the array's element type.
2913  QualType elementType = AT->getElementType();
2914  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
2915
2916  // If that didn't change the element type, AT has no qualifiers, so we
2917  // can just use the results in splitType.
2918  if (elementType == unqualElementType) {
2919    assert(quals.empty()); // from the recursive call
2920    quals = splitType.second;
2921    return QualType(splitType.first, 0);
2922  }
2923
2924  // Otherwise, add in the qualifiers from the outermost type, then
2925  // build the type back up.
2926  quals.addConsistentQualifiers(splitType.second);
2927
2928  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
2929    return getConstantArrayType(unqualElementType, CAT->getSize(),
2930                                CAT->getSizeModifier(), 0);
2931  }
2932
2933  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
2934    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
2935  }
2936
2937  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
2938    return getVariableArrayType(unqualElementType,
2939                                VAT->getSizeExpr(),
2940                                VAT->getSizeModifier(),
2941                                VAT->getIndexTypeCVRQualifiers(),
2942                                VAT->getBracketsRange());
2943  }
2944
2945  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
2946  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
2947                                    DSAT->getSizeModifier(), 0,
2948                                    SourceRange());
2949}
2950
2951/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
2952/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
2953/// they point to and return true. If T1 and T2 aren't pointer types
2954/// or pointer-to-member types, or if they are not similar at this
2955/// level, returns false and leaves T1 and T2 unchanged. Top-level
2956/// qualifiers on T1 and T2 are ignored. This function will typically
2957/// be called in a loop that successively "unwraps" pointer and
2958/// pointer-to-member types to compare them at each level.
2959bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
2960  const PointerType *T1PtrType = T1->getAs<PointerType>(),
2961                    *T2PtrType = T2->getAs<PointerType>();
2962  if (T1PtrType && T2PtrType) {
2963    T1 = T1PtrType->getPointeeType();
2964    T2 = T2PtrType->getPointeeType();
2965    return true;
2966  }
2967
2968  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
2969                          *T2MPType = T2->getAs<MemberPointerType>();
2970  if (T1MPType && T2MPType &&
2971      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
2972                             QualType(T2MPType->getClass(), 0))) {
2973    T1 = T1MPType->getPointeeType();
2974    T2 = T2MPType->getPointeeType();
2975    return true;
2976  }
2977
2978  if (getLangOptions().ObjC1) {
2979    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
2980                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
2981    if (T1OPType && T2OPType) {
2982      T1 = T1OPType->getPointeeType();
2983      T2 = T2OPType->getPointeeType();
2984      return true;
2985    }
2986  }
2987
2988  // FIXME: Block pointers, too?
2989
2990  return false;
2991}
2992
2993DeclarationNameInfo
2994ASTContext::getNameForTemplate(TemplateName Name,
2995                               SourceLocation NameLoc) const {
2996  if (TemplateDecl *TD = Name.getAsTemplateDecl())
2997    // DNInfo work in progress: CHECKME: what about DNLoc?
2998    return DeclarationNameInfo(TD->getDeclName(), NameLoc);
2999
3000  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
3001    DeclarationName DName;
3002    if (DTN->isIdentifier()) {
3003      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3004      return DeclarationNameInfo(DName, NameLoc);
3005    } else {
3006      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3007      // DNInfo work in progress: FIXME: source locations?
3008      DeclarationNameLoc DNLoc;
3009      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3010      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3011      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3012    }
3013  }
3014
3015  OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3016  assert(Storage);
3017  // DNInfo work in progress: CHECKME: what about DNLoc?
3018  return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3019}
3020
3021TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3022  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
3023    if (TemplateTemplateParmDecl *TTP
3024                              = dyn_cast<TemplateTemplateParmDecl>(Template))
3025      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3026
3027    // The canonical template name is the canonical template declaration.
3028    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3029  }
3030
3031  if (SubstTemplateTemplateParmPackStorage *SubstPack
3032                                  = Name.getAsSubstTemplateTemplateParmPack()) {
3033    TemplateTemplateParmDecl *CanonParam
3034      = getCanonicalTemplateTemplateParmDecl(SubstPack->getParameterPack());
3035    TemplateArgument CanonArgPack
3036      = getCanonicalTemplateArgument(SubstPack->getArgumentPack());
3037    return getSubstTemplateTemplateParmPack(CanonParam, CanonArgPack);
3038  }
3039
3040  assert(!Name.getAsOverloadedTemplate());
3041
3042  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3043  assert(DTN && "Non-dependent template names must refer to template decls.");
3044  return DTN->CanonicalTemplateName;
3045}
3046
3047bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3048  X = getCanonicalTemplateName(X);
3049  Y = getCanonicalTemplateName(Y);
3050  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3051}
3052
3053TemplateArgument
3054ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3055  switch (Arg.getKind()) {
3056    case TemplateArgument::Null:
3057      return Arg;
3058
3059    case TemplateArgument::Expression:
3060      return Arg;
3061
3062    case TemplateArgument::Declaration:
3063      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
3064
3065    case TemplateArgument::Template:
3066      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3067
3068    case TemplateArgument::TemplateExpansion:
3069      return TemplateArgument(getCanonicalTemplateName(
3070                                         Arg.getAsTemplateOrTemplatePattern()),
3071                              Arg.getNumTemplateExpansions());
3072
3073    case TemplateArgument::Integral:
3074      return TemplateArgument(*Arg.getAsIntegral(),
3075                              getCanonicalType(Arg.getIntegralType()));
3076
3077    case TemplateArgument::Type:
3078      return TemplateArgument(getCanonicalType(Arg.getAsType()));
3079
3080    case TemplateArgument::Pack: {
3081      if (Arg.pack_size() == 0)
3082        return Arg;
3083
3084      TemplateArgument *CanonArgs
3085        = new (*this) TemplateArgument[Arg.pack_size()];
3086      unsigned Idx = 0;
3087      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
3088                                        AEnd = Arg.pack_end();
3089           A != AEnd; (void)++A, ++Idx)
3090        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
3091
3092      return TemplateArgument(CanonArgs, Arg.pack_size());
3093    }
3094  }
3095
3096  // Silence GCC warning
3097  assert(false && "Unhandled template argument kind");
3098  return TemplateArgument();
3099}
3100
3101NestedNameSpecifier *
3102ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
3103  if (!NNS)
3104    return 0;
3105
3106  switch (NNS->getKind()) {
3107  case NestedNameSpecifier::Identifier:
3108    // Canonicalize the prefix but keep the identifier the same.
3109    return NestedNameSpecifier::Create(*this,
3110                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
3111                                       NNS->getAsIdentifier());
3112
3113  case NestedNameSpecifier::Namespace:
3114    // A namespace is canonical; build a nested-name-specifier with
3115    // this namespace and no prefix.
3116    return NestedNameSpecifier::Create(*this, 0,
3117                                 NNS->getAsNamespace()->getOriginalNamespace());
3118
3119  case NestedNameSpecifier::NamespaceAlias:
3120    // A namespace is canonical; build a nested-name-specifier with
3121    // this namespace and no prefix.
3122    return NestedNameSpecifier::Create(*this, 0,
3123                                    NNS->getAsNamespaceAlias()->getNamespace()
3124                                                      ->getOriginalNamespace());
3125
3126  case NestedNameSpecifier::TypeSpec:
3127  case NestedNameSpecifier::TypeSpecWithTemplate: {
3128    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
3129
3130    // If we have some kind of dependent-named type (e.g., "typename T::type"),
3131    // break it apart into its prefix and identifier, then reconsititute those
3132    // as the canonical nested-name-specifier. This is required to canonicalize
3133    // a dependent nested-name-specifier involving typedefs of dependent-name
3134    // types, e.g.,
3135    //   typedef typename T::type T1;
3136    //   typedef typename T1::type T2;
3137    if (const DependentNameType *DNT = T->getAs<DependentNameType>()) {
3138      NestedNameSpecifier *Prefix
3139        = getCanonicalNestedNameSpecifier(DNT->getQualifier());
3140      return NestedNameSpecifier::Create(*this, Prefix,
3141                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
3142    }
3143
3144    // Do the same thing as above, but with dependent-named specializations.
3145    if (const DependentTemplateSpecializationType *DTST
3146          = T->getAs<DependentTemplateSpecializationType>()) {
3147      NestedNameSpecifier *Prefix
3148        = getCanonicalNestedNameSpecifier(DTST->getQualifier());
3149
3150      T = getDependentTemplateSpecializationType(DTST->getKeyword(),
3151                                                 Prefix, DTST->getIdentifier(),
3152                                                 DTST->getNumArgs(),
3153                                                 DTST->getArgs());
3154      T = getCanonicalType(T);
3155    }
3156
3157    return NestedNameSpecifier::Create(*this, 0, false,
3158                                       const_cast<Type*>(T.getTypePtr()));
3159  }
3160
3161  case NestedNameSpecifier::Global:
3162    // The global specifier is canonical and unique.
3163    return NNS;
3164  }
3165
3166  // Required to silence a GCC warning
3167  return 0;
3168}
3169
3170
3171const ArrayType *ASTContext::getAsArrayType(QualType T) const {
3172  // Handle the non-qualified case efficiently.
3173  if (!T.hasLocalQualifiers()) {
3174    // Handle the common positive case fast.
3175    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
3176      return AT;
3177  }
3178
3179  // Handle the common negative case fast.
3180  if (!isa<ArrayType>(T.getCanonicalType()))
3181    return 0;
3182
3183  // Apply any qualifiers from the array type to the element type.  This
3184  // implements C99 6.7.3p8: "If the specification of an array type includes
3185  // any type qualifiers, the element type is so qualified, not the array type."
3186
3187  // If we get here, we either have type qualifiers on the type, or we have
3188  // sugar such as a typedef in the way.  If we have type qualifiers on the type
3189  // we must propagate them down into the element type.
3190
3191  SplitQualType split = T.getSplitDesugaredType();
3192  Qualifiers qs = split.second;
3193
3194  // If we have a simple case, just return now.
3195  const ArrayType *ATy = dyn_cast<ArrayType>(split.first);
3196  if (ATy == 0 || qs.empty())
3197    return ATy;
3198
3199  // Otherwise, we have an array and we have qualifiers on it.  Push the
3200  // qualifiers into the array element type and return a new array type.
3201  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
3202
3203  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
3204    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
3205                                                CAT->getSizeModifier(),
3206                                           CAT->getIndexTypeCVRQualifiers()));
3207  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
3208    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
3209                                                  IAT->getSizeModifier(),
3210                                           IAT->getIndexTypeCVRQualifiers()));
3211
3212  if (const DependentSizedArrayType *DSAT
3213        = dyn_cast<DependentSizedArrayType>(ATy))
3214    return cast<ArrayType>(
3215                     getDependentSizedArrayType(NewEltTy,
3216                                                DSAT->getSizeExpr(),
3217                                                DSAT->getSizeModifier(),
3218                                              DSAT->getIndexTypeCVRQualifiers(),
3219                                                DSAT->getBracketsRange()));
3220
3221  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
3222  return cast<ArrayType>(getVariableArrayType(NewEltTy,
3223                                              VAT->getSizeExpr(),
3224                                              VAT->getSizeModifier(),
3225                                              VAT->getIndexTypeCVRQualifiers(),
3226                                              VAT->getBracketsRange()));
3227}
3228
3229/// getArrayDecayedType - Return the properly qualified result of decaying the
3230/// specified array type to a pointer.  This operation is non-trivial when
3231/// handling typedefs etc.  The canonical type of "T" must be an array type,
3232/// this returns a pointer to a properly qualified element of the array.
3233///
3234/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
3235QualType ASTContext::getArrayDecayedType(QualType Ty) const {
3236  // Get the element type with 'getAsArrayType' so that we don't lose any
3237  // typedefs in the element type of the array.  This also handles propagation
3238  // of type qualifiers from the array type into the element type if present
3239  // (C99 6.7.3p8).
3240  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
3241  assert(PrettyArrayType && "Not an array type!");
3242
3243  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
3244
3245  // int x[restrict 4] ->  int *restrict
3246  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
3247}
3248
3249QualType ASTContext::getBaseElementType(const ArrayType *array) const {
3250  return getBaseElementType(array->getElementType());
3251}
3252
3253QualType ASTContext::getBaseElementType(QualType type) const {
3254  Qualifiers qs;
3255  while (true) {
3256    SplitQualType split = type.getSplitDesugaredType();
3257    const ArrayType *array = split.first->getAsArrayTypeUnsafe();
3258    if (!array) break;
3259
3260    type = array->getElementType();
3261    qs.addConsistentQualifiers(split.second);
3262  }
3263
3264  return getQualifiedType(type, qs);
3265}
3266
3267/// getConstantArrayElementCount - Returns number of constant array elements.
3268uint64_t
3269ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
3270  uint64_t ElementCount = 1;
3271  do {
3272    ElementCount *= CA->getSize().getZExtValue();
3273    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
3274  } while (CA);
3275  return ElementCount;
3276}
3277
3278/// getFloatingRank - Return a relative rank for floating point types.
3279/// This routine will assert if passed a built-in type that isn't a float.
3280static FloatingRank getFloatingRank(QualType T) {
3281  if (const ComplexType *CT = T->getAs<ComplexType>())
3282    return getFloatingRank(CT->getElementType());
3283
3284  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
3285  switch (T->getAs<BuiltinType>()->getKind()) {
3286  default: assert(0 && "getFloatingRank(): not a floating type");
3287  case BuiltinType::Float:      return FloatRank;
3288  case BuiltinType::Double:     return DoubleRank;
3289  case BuiltinType::LongDouble: return LongDoubleRank;
3290  }
3291}
3292
3293/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
3294/// point or a complex type (based on typeDomain/typeSize).
3295/// 'typeDomain' is a real floating point or complex type.
3296/// 'typeSize' is a real floating point or complex type.
3297QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
3298                                                       QualType Domain) const {
3299  FloatingRank EltRank = getFloatingRank(Size);
3300  if (Domain->isComplexType()) {
3301    switch (EltRank) {
3302    default: assert(0 && "getFloatingRank(): illegal value for rank");
3303    case FloatRank:      return FloatComplexTy;
3304    case DoubleRank:     return DoubleComplexTy;
3305    case LongDoubleRank: return LongDoubleComplexTy;
3306    }
3307  }
3308
3309  assert(Domain->isRealFloatingType() && "Unknown domain!");
3310  switch (EltRank) {
3311  default: assert(0 && "getFloatingRank(): illegal value for rank");
3312  case FloatRank:      return FloatTy;
3313  case DoubleRank:     return DoubleTy;
3314  case LongDoubleRank: return LongDoubleTy;
3315  }
3316}
3317
3318/// getFloatingTypeOrder - Compare the rank of the two specified floating
3319/// point types, ignoring the domain of the type (i.e. 'double' ==
3320/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3321/// LHS < RHS, return -1.
3322int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
3323  FloatingRank LHSR = getFloatingRank(LHS);
3324  FloatingRank RHSR = getFloatingRank(RHS);
3325
3326  if (LHSR == RHSR)
3327    return 0;
3328  if (LHSR > RHSR)
3329    return 1;
3330  return -1;
3331}
3332
3333/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
3334/// routine will assert if passed a built-in type that isn't an integer or enum,
3335/// or if it is not canonicalized.
3336unsigned ASTContext::getIntegerRank(const Type *T) const {
3337  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
3338  if (const EnumType* ET = dyn_cast<EnumType>(T))
3339    T = ET->getDecl()->getPromotionType().getTypePtr();
3340
3341  if (T->isSpecificBuiltinType(BuiltinType::WChar_S) ||
3342      T->isSpecificBuiltinType(BuiltinType::WChar_U))
3343    T = getFromTargetType(Target.getWCharType()).getTypePtr();
3344
3345  if (T->isSpecificBuiltinType(BuiltinType::Char16))
3346    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
3347
3348  if (T->isSpecificBuiltinType(BuiltinType::Char32))
3349    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
3350
3351  switch (cast<BuiltinType>(T)->getKind()) {
3352  default: assert(0 && "getIntegerRank(): not a built-in integer");
3353  case BuiltinType::Bool:
3354    return 1 + (getIntWidth(BoolTy) << 3);
3355  case BuiltinType::Char_S:
3356  case BuiltinType::Char_U:
3357  case BuiltinType::SChar:
3358  case BuiltinType::UChar:
3359    return 2 + (getIntWidth(CharTy) << 3);
3360  case BuiltinType::Short:
3361  case BuiltinType::UShort:
3362    return 3 + (getIntWidth(ShortTy) << 3);
3363  case BuiltinType::Int:
3364  case BuiltinType::UInt:
3365    return 4 + (getIntWidth(IntTy) << 3);
3366  case BuiltinType::Long:
3367  case BuiltinType::ULong:
3368    return 5 + (getIntWidth(LongTy) << 3);
3369  case BuiltinType::LongLong:
3370  case BuiltinType::ULongLong:
3371    return 6 + (getIntWidth(LongLongTy) << 3);
3372  case BuiltinType::Int128:
3373  case BuiltinType::UInt128:
3374    return 7 + (getIntWidth(Int128Ty) << 3);
3375  }
3376}
3377
3378/// \brief Whether this is a promotable bitfield reference according
3379/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
3380///
3381/// \returns the type this bit-field will promote to, or NULL if no
3382/// promotion occurs.
3383QualType ASTContext::isPromotableBitField(Expr *E) const {
3384  if (E->isTypeDependent() || E->isValueDependent())
3385    return QualType();
3386
3387  FieldDecl *Field = E->getBitField();
3388  if (!Field)
3389    return QualType();
3390
3391  QualType FT = Field->getType();
3392
3393  llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
3394  uint64_t BitWidth = BitWidthAP.getZExtValue();
3395  uint64_t IntSize = getTypeSize(IntTy);
3396  // GCC extension compatibility: if the bit-field size is less than or equal
3397  // to the size of int, it gets promoted no matter what its type is.
3398  // For instance, unsigned long bf : 4 gets promoted to signed int.
3399  if (BitWidth < IntSize)
3400    return IntTy;
3401
3402  if (BitWidth == IntSize)
3403    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
3404
3405  // Types bigger than int are not subject to promotions, and therefore act
3406  // like the base type.
3407  // FIXME: This doesn't quite match what gcc does, but what gcc does here
3408  // is ridiculous.
3409  return QualType();
3410}
3411
3412/// getPromotedIntegerType - Returns the type that Promotable will
3413/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
3414/// integer type.
3415QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
3416  assert(!Promotable.isNull());
3417  assert(Promotable->isPromotableIntegerType());
3418  if (const EnumType *ET = Promotable->getAs<EnumType>())
3419    return ET->getDecl()->getPromotionType();
3420  if (Promotable->isSignedIntegerType())
3421    return IntTy;
3422  uint64_t PromotableSize = getTypeSize(Promotable);
3423  uint64_t IntSize = getTypeSize(IntTy);
3424  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
3425  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
3426}
3427
3428/// getIntegerTypeOrder - Returns the highest ranked integer type:
3429/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3430/// LHS < RHS, return -1.
3431int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
3432  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
3433  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
3434  if (LHSC == RHSC) return 0;
3435
3436  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
3437  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
3438
3439  unsigned LHSRank = getIntegerRank(LHSC);
3440  unsigned RHSRank = getIntegerRank(RHSC);
3441
3442  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
3443    if (LHSRank == RHSRank) return 0;
3444    return LHSRank > RHSRank ? 1 : -1;
3445  }
3446
3447  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
3448  if (LHSUnsigned) {
3449    // If the unsigned [LHS] type is larger, return it.
3450    if (LHSRank >= RHSRank)
3451      return 1;
3452
3453    // If the signed type can represent all values of the unsigned type, it
3454    // wins.  Because we are dealing with 2's complement and types that are
3455    // powers of two larger than each other, this is always safe.
3456    return -1;
3457  }
3458
3459  // If the unsigned [RHS] type is larger, return it.
3460  if (RHSRank >= LHSRank)
3461    return -1;
3462
3463  // If the signed type can represent all values of the unsigned type, it
3464  // wins.  Because we are dealing with 2's complement and types that are
3465  // powers of two larger than each other, this is always safe.
3466  return 1;
3467}
3468
3469static RecordDecl *
3470CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
3471                 DeclContext *DC, IdentifierInfo *Id) {
3472  SourceLocation Loc;
3473  if (Ctx.getLangOptions().CPlusPlus)
3474    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3475  else
3476    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3477}
3478
3479// getCFConstantStringType - Return the type used for constant CFStrings.
3480QualType ASTContext::getCFConstantStringType() const {
3481  if (!CFConstantStringTypeDecl) {
3482    CFConstantStringTypeDecl =
3483      CreateRecordDecl(*this, TTK_Struct, TUDecl,
3484                       &Idents.get("NSConstantString"));
3485    CFConstantStringTypeDecl->startDefinition();
3486
3487    QualType FieldTypes[4];
3488
3489    // const int *isa;
3490    FieldTypes[0] = getPointerType(IntTy.withConst());
3491    // int flags;
3492    FieldTypes[1] = IntTy;
3493    // const char *str;
3494    FieldTypes[2] = getPointerType(CharTy.withConst());
3495    // long length;
3496    FieldTypes[3] = LongTy;
3497
3498    // Create fields
3499    for (unsigned i = 0; i < 4; ++i) {
3500      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
3501                                           SourceLocation(),
3502                                           SourceLocation(), 0,
3503                                           FieldTypes[i], /*TInfo=*/0,
3504                                           /*BitWidth=*/0,
3505                                           /*Mutable=*/false);
3506      Field->setAccess(AS_public);
3507      CFConstantStringTypeDecl->addDecl(Field);
3508    }
3509
3510    CFConstantStringTypeDecl->completeDefinition();
3511  }
3512
3513  return getTagDeclType(CFConstantStringTypeDecl);
3514}
3515
3516void ASTContext::setCFConstantStringType(QualType T) {
3517  const RecordType *Rec = T->getAs<RecordType>();
3518  assert(Rec && "Invalid CFConstantStringType");
3519  CFConstantStringTypeDecl = Rec->getDecl();
3520}
3521
3522// getNSConstantStringType - Return the type used for constant NSStrings.
3523QualType ASTContext::getNSConstantStringType() const {
3524  if (!NSConstantStringTypeDecl) {
3525    NSConstantStringTypeDecl =
3526    CreateRecordDecl(*this, TTK_Struct, TUDecl,
3527                     &Idents.get("__builtin_NSString"));
3528    NSConstantStringTypeDecl->startDefinition();
3529
3530    QualType FieldTypes[3];
3531
3532    // const int *isa;
3533    FieldTypes[0] = getPointerType(IntTy.withConst());
3534    // const char *str;
3535    FieldTypes[1] = getPointerType(CharTy.withConst());
3536    // unsigned int length;
3537    FieldTypes[2] = UnsignedIntTy;
3538
3539    // Create fields
3540    for (unsigned i = 0; i < 3; ++i) {
3541      FieldDecl *Field = FieldDecl::Create(*this, NSConstantStringTypeDecl,
3542                                           SourceLocation(),
3543                                           SourceLocation(), 0,
3544                                           FieldTypes[i], /*TInfo=*/0,
3545                                           /*BitWidth=*/0,
3546                                           /*Mutable=*/false);
3547      Field->setAccess(AS_public);
3548      NSConstantStringTypeDecl->addDecl(Field);
3549    }
3550
3551    NSConstantStringTypeDecl->completeDefinition();
3552  }
3553
3554  return getTagDeclType(NSConstantStringTypeDecl);
3555}
3556
3557void ASTContext::setNSConstantStringType(QualType T) {
3558  const RecordType *Rec = T->getAs<RecordType>();
3559  assert(Rec && "Invalid NSConstantStringType");
3560  NSConstantStringTypeDecl = Rec->getDecl();
3561}
3562
3563QualType ASTContext::getObjCFastEnumerationStateType() const {
3564  if (!ObjCFastEnumerationStateTypeDecl) {
3565    ObjCFastEnumerationStateTypeDecl =
3566      CreateRecordDecl(*this, TTK_Struct, TUDecl,
3567                       &Idents.get("__objcFastEnumerationState"));
3568    ObjCFastEnumerationStateTypeDecl->startDefinition();
3569
3570    QualType FieldTypes[] = {
3571      UnsignedLongTy,
3572      getPointerType(ObjCIdTypedefType),
3573      getPointerType(UnsignedLongTy),
3574      getConstantArrayType(UnsignedLongTy,
3575                           llvm::APInt(32, 5), ArrayType::Normal, 0)
3576    };
3577
3578    for (size_t i = 0; i < 4; ++i) {
3579      FieldDecl *Field = FieldDecl::Create(*this,
3580                                           ObjCFastEnumerationStateTypeDecl,
3581                                           SourceLocation(),
3582                                           SourceLocation(), 0,
3583                                           FieldTypes[i], /*TInfo=*/0,
3584                                           /*BitWidth=*/0,
3585                                           /*Mutable=*/false);
3586      Field->setAccess(AS_public);
3587      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
3588    }
3589
3590    ObjCFastEnumerationStateTypeDecl->completeDefinition();
3591  }
3592
3593  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
3594}
3595
3596QualType ASTContext::getBlockDescriptorType() const {
3597  if (BlockDescriptorType)
3598    return getTagDeclType(BlockDescriptorType);
3599
3600  RecordDecl *T;
3601  // FIXME: Needs the FlagAppleBlock bit.
3602  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
3603                       &Idents.get("__block_descriptor"));
3604  T->startDefinition();
3605
3606  QualType FieldTypes[] = {
3607    UnsignedLongTy,
3608    UnsignedLongTy,
3609  };
3610
3611  const char *FieldNames[] = {
3612    "reserved",
3613    "Size"
3614  };
3615
3616  for (size_t i = 0; i < 2; ++i) {
3617    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3618                                         SourceLocation(),
3619                                         &Idents.get(FieldNames[i]),
3620                                         FieldTypes[i], /*TInfo=*/0,
3621                                         /*BitWidth=*/0,
3622                                         /*Mutable=*/false);
3623    Field->setAccess(AS_public);
3624    T->addDecl(Field);
3625  }
3626
3627  T->completeDefinition();
3628
3629  BlockDescriptorType = T;
3630
3631  return getTagDeclType(BlockDescriptorType);
3632}
3633
3634void ASTContext::setBlockDescriptorType(QualType T) {
3635  const RecordType *Rec = T->getAs<RecordType>();
3636  assert(Rec && "Invalid BlockDescriptorType");
3637  BlockDescriptorType = Rec->getDecl();
3638}
3639
3640QualType ASTContext::getBlockDescriptorExtendedType() const {
3641  if (BlockDescriptorExtendedType)
3642    return getTagDeclType(BlockDescriptorExtendedType);
3643
3644  RecordDecl *T;
3645  // FIXME: Needs the FlagAppleBlock bit.
3646  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
3647                       &Idents.get("__block_descriptor_withcopydispose"));
3648  T->startDefinition();
3649
3650  QualType FieldTypes[] = {
3651    UnsignedLongTy,
3652    UnsignedLongTy,
3653    getPointerType(VoidPtrTy),
3654    getPointerType(VoidPtrTy)
3655  };
3656
3657  const char *FieldNames[] = {
3658    "reserved",
3659    "Size",
3660    "CopyFuncPtr",
3661    "DestroyFuncPtr"
3662  };
3663
3664  for (size_t i = 0; i < 4; ++i) {
3665    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3666                                         SourceLocation(),
3667                                         &Idents.get(FieldNames[i]),
3668                                         FieldTypes[i], /*TInfo=*/0,
3669                                         /*BitWidth=*/0,
3670                                         /*Mutable=*/false);
3671    Field->setAccess(AS_public);
3672    T->addDecl(Field);
3673  }
3674
3675  T->completeDefinition();
3676
3677  BlockDescriptorExtendedType = T;
3678
3679  return getTagDeclType(BlockDescriptorExtendedType);
3680}
3681
3682void ASTContext::setBlockDescriptorExtendedType(QualType T) {
3683  const RecordType *Rec = T->getAs<RecordType>();
3684  assert(Rec && "Invalid BlockDescriptorType");
3685  BlockDescriptorExtendedType = Rec->getDecl();
3686}
3687
3688bool ASTContext::BlockRequiresCopying(QualType Ty) const {
3689  if (Ty->isBlockPointerType())
3690    return true;
3691  if (isObjCNSObjectType(Ty))
3692    return true;
3693  if (Ty->isObjCObjectPointerType())
3694    return true;
3695  if (getLangOptions().CPlusPlus) {
3696    if (const RecordType *RT = Ty->getAs<RecordType>()) {
3697      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3698      return RD->hasConstCopyConstructor(*this);
3699
3700    }
3701  }
3702  return false;
3703}
3704
3705QualType
3706ASTContext::BuildByRefType(llvm::StringRef DeclName, QualType Ty) const {
3707  //  type = struct __Block_byref_1_X {
3708  //    void *__isa;
3709  //    struct __Block_byref_1_X *__forwarding;
3710  //    unsigned int __flags;
3711  //    unsigned int __size;
3712  //    void *__copy_helper;            // as needed
3713  //    void *__destroy_help            // as needed
3714  //    int X;
3715  //  } *
3716
3717  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
3718
3719  // FIXME: Move up
3720  llvm::SmallString<36> Name;
3721  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
3722                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
3723  RecordDecl *T;
3724  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get(Name.str()));
3725  T->startDefinition();
3726  QualType Int32Ty = IntTy;
3727  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
3728  QualType FieldTypes[] = {
3729    getPointerType(VoidPtrTy),
3730    getPointerType(getTagDeclType(T)),
3731    Int32Ty,
3732    Int32Ty,
3733    getPointerType(VoidPtrTy),
3734    getPointerType(VoidPtrTy),
3735    Ty
3736  };
3737
3738  llvm::StringRef FieldNames[] = {
3739    "__isa",
3740    "__forwarding",
3741    "__flags",
3742    "__size",
3743    "__copy_helper",
3744    "__destroy_helper",
3745    DeclName,
3746  };
3747
3748  for (size_t i = 0; i < 7; ++i) {
3749    if (!HasCopyAndDispose && i >=4 && i <= 5)
3750      continue;
3751    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3752                                         SourceLocation(),
3753                                         &Idents.get(FieldNames[i]),
3754                                         FieldTypes[i], /*TInfo=*/0,
3755                                         /*BitWidth=*/0, /*Mutable=*/false);
3756    Field->setAccess(AS_public);
3757    T->addDecl(Field);
3758  }
3759
3760  T->completeDefinition();
3761
3762  return getPointerType(getTagDeclType(T));
3763}
3764
3765void ASTContext::setObjCFastEnumerationStateType(QualType T) {
3766  const RecordType *Rec = T->getAs<RecordType>();
3767  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
3768  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
3769}
3770
3771// This returns true if a type has been typedefed to BOOL:
3772// typedef <type> BOOL;
3773static bool isTypeTypedefedAsBOOL(QualType T) {
3774  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3775    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3776      return II->isStr("BOOL");
3777
3778  return false;
3779}
3780
3781/// getObjCEncodingTypeSize returns size of type for objective-c encoding
3782/// purpose.
3783CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
3784  CharUnits sz = getTypeSizeInChars(type);
3785
3786  // Make all integer and enum types at least as large as an int
3787  if (sz.isPositive() && type->isIntegralOrEnumerationType())
3788    sz = std::max(sz, getTypeSizeInChars(IntTy));
3789  // Treat arrays as pointers, since that's how they're passed in.
3790  else if (type->isArrayType())
3791    sz = getTypeSizeInChars(VoidPtrTy);
3792  return sz;
3793}
3794
3795static inline
3796std::string charUnitsToString(const CharUnits &CU) {
3797  return llvm::itostr(CU.getQuantity());
3798}
3799
3800/// getObjCEncodingForBlock - Return the encoded type for this block
3801/// declaration.
3802std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
3803  std::string S;
3804
3805  const BlockDecl *Decl = Expr->getBlockDecl();
3806  QualType BlockTy =
3807      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
3808  // Encode result type.
3809  getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
3810  // Compute size of all parameters.
3811  // Start with computing size of a pointer in number of bytes.
3812  // FIXME: There might(should) be a better way of doing this computation!
3813  SourceLocation Loc;
3814  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3815  CharUnits ParmOffset = PtrSize;
3816  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
3817       E = Decl->param_end(); PI != E; ++PI) {
3818    QualType PType = (*PI)->getType();
3819    CharUnits sz = getObjCEncodingTypeSize(PType);
3820    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
3821    ParmOffset += sz;
3822  }
3823  // Size of the argument frame
3824  S += charUnitsToString(ParmOffset);
3825  // Block pointer and offset.
3826  S += "@?0";
3827  ParmOffset = PtrSize;
3828
3829  // Argument types.
3830  ParmOffset = PtrSize;
3831  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
3832       Decl->param_end(); PI != E; ++PI) {
3833    ParmVarDecl *PVDecl = *PI;
3834    QualType PType = PVDecl->getOriginalType();
3835    if (const ArrayType *AT =
3836          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3837      // Use array's original type only if it has known number of
3838      // elements.
3839      if (!isa<ConstantArrayType>(AT))
3840        PType = PVDecl->getType();
3841    } else if (PType->isFunctionType())
3842      PType = PVDecl->getType();
3843    getObjCEncodingForType(PType, S);
3844    S += charUnitsToString(ParmOffset);
3845    ParmOffset += getObjCEncodingTypeSize(PType);
3846  }
3847
3848  return S;
3849}
3850
3851void ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
3852                                                std::string& S) {
3853  // Encode result type.
3854  getObjCEncodingForType(Decl->getResultType(), S);
3855  CharUnits ParmOffset;
3856  // Compute size of all parameters.
3857  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
3858       E = Decl->param_end(); PI != E; ++PI) {
3859    QualType PType = (*PI)->getType();
3860    CharUnits sz = getObjCEncodingTypeSize(PType);
3861    assert (sz.isPositive() &&
3862        "getObjCEncodingForMethodDecl - Incomplete param type");
3863    ParmOffset += sz;
3864  }
3865  S += charUnitsToString(ParmOffset);
3866  ParmOffset = CharUnits::Zero();
3867
3868  // Argument types.
3869  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
3870       E = Decl->param_end(); PI != E; ++PI) {
3871    ParmVarDecl *PVDecl = *PI;
3872    QualType PType = PVDecl->getOriginalType();
3873    if (const ArrayType *AT =
3874          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3875      // Use array's original type only if it has known number of
3876      // elements.
3877      if (!isa<ConstantArrayType>(AT))
3878        PType = PVDecl->getType();
3879    } else if (PType->isFunctionType())
3880      PType = PVDecl->getType();
3881    getObjCEncodingForType(PType, S);
3882    S += charUnitsToString(ParmOffset);
3883    ParmOffset += getObjCEncodingTypeSize(PType);
3884  }
3885}
3886
3887/// getObjCEncodingForMethodDecl - Return the encoded type for this method
3888/// declaration.
3889void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
3890                                              std::string& S) const {
3891  // FIXME: This is not very efficient.
3892  // Encode type qualifer, 'in', 'inout', etc. for the return type.
3893  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
3894  // Encode result type.
3895  getObjCEncodingForType(Decl->getResultType(), S);
3896  // Compute size of all parameters.
3897  // Start with computing size of a pointer in number of bytes.
3898  // FIXME: There might(should) be a better way of doing this computation!
3899  SourceLocation Loc;
3900  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3901  // The first two arguments (self and _cmd) are pointers; account for
3902  // their size.
3903  CharUnits ParmOffset = 2 * PtrSize;
3904  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3905       E = Decl->sel_param_end(); PI != E; ++PI) {
3906    QualType PType = (*PI)->getType();
3907    CharUnits sz = getObjCEncodingTypeSize(PType);
3908    assert (sz.isPositive() &&
3909        "getObjCEncodingForMethodDecl - Incomplete param type");
3910    ParmOffset += sz;
3911  }
3912  S += charUnitsToString(ParmOffset);
3913  S += "@0:";
3914  S += charUnitsToString(PtrSize);
3915
3916  // Argument types.
3917  ParmOffset = 2 * PtrSize;
3918  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3919       E = Decl->sel_param_end(); PI != E; ++PI) {
3920    ParmVarDecl *PVDecl = *PI;
3921    QualType PType = PVDecl->getOriginalType();
3922    if (const ArrayType *AT =
3923          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3924      // Use array's original type only if it has known number of
3925      // elements.
3926      if (!isa<ConstantArrayType>(AT))
3927        PType = PVDecl->getType();
3928    } else if (PType->isFunctionType())
3929      PType = PVDecl->getType();
3930    // Process argument qualifiers for user supplied arguments; such as,
3931    // 'in', 'inout', etc.
3932    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
3933    getObjCEncodingForType(PType, S);
3934    S += charUnitsToString(ParmOffset);
3935    ParmOffset += getObjCEncodingTypeSize(PType);
3936  }
3937}
3938
3939/// getObjCEncodingForPropertyDecl - Return the encoded type for this
3940/// property declaration. If non-NULL, Container must be either an
3941/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
3942/// NULL when getting encodings for protocol properties.
3943/// Property attributes are stored as a comma-delimited C string. The simple
3944/// attributes readonly and bycopy are encoded as single characters. The
3945/// parametrized attributes, getter=name, setter=name, and ivar=name, are
3946/// encoded as single characters, followed by an identifier. Property types
3947/// are also encoded as a parametrized attribute. The characters used to encode
3948/// these attributes are defined by the following enumeration:
3949/// @code
3950/// enum PropertyAttributes {
3951/// kPropertyReadOnly = 'R',   // property is read-only.
3952/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
3953/// kPropertyByref = '&',  // property is a reference to the value last assigned
3954/// kPropertyDynamic = 'D',    // property is dynamic
3955/// kPropertyGetter = 'G',     // followed by getter selector name
3956/// kPropertySetter = 'S',     // followed by setter selector name
3957/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
3958/// kPropertyType = 't'              // followed by old-style type encoding.
3959/// kPropertyWeak = 'W'              // 'weak' property
3960/// kPropertyStrong = 'P'            // property GC'able
3961/// kPropertyNonAtomic = 'N'         // property non-atomic
3962/// };
3963/// @endcode
3964void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
3965                                                const Decl *Container,
3966                                                std::string& S) const {
3967  // Collect information from the property implementation decl(s).
3968  bool Dynamic = false;
3969  ObjCPropertyImplDecl *SynthesizePID = 0;
3970
3971  // FIXME: Duplicated code due to poor abstraction.
3972  if (Container) {
3973    if (const ObjCCategoryImplDecl *CID =
3974        dyn_cast<ObjCCategoryImplDecl>(Container)) {
3975      for (ObjCCategoryImplDecl::propimpl_iterator
3976             i = CID->propimpl_begin(), e = CID->propimpl_end();
3977           i != e; ++i) {
3978        ObjCPropertyImplDecl *PID = *i;
3979        if (PID->getPropertyDecl() == PD) {
3980          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3981            Dynamic = true;
3982          } else {
3983            SynthesizePID = PID;
3984          }
3985        }
3986      }
3987    } else {
3988      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
3989      for (ObjCCategoryImplDecl::propimpl_iterator
3990             i = OID->propimpl_begin(), e = OID->propimpl_end();
3991           i != e; ++i) {
3992        ObjCPropertyImplDecl *PID = *i;
3993        if (PID->getPropertyDecl() == PD) {
3994          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3995            Dynamic = true;
3996          } else {
3997            SynthesizePID = PID;
3998          }
3999        }
4000      }
4001    }
4002  }
4003
4004  // FIXME: This is not very efficient.
4005  S = "T";
4006
4007  // Encode result type.
4008  // GCC has some special rules regarding encoding of properties which
4009  // closely resembles encoding of ivars.
4010  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4011                             true /* outermost type */,
4012                             true /* encoding for property */);
4013
4014  if (PD->isReadOnly()) {
4015    S += ",R";
4016  } else {
4017    switch (PD->getSetterKind()) {
4018    case ObjCPropertyDecl::Assign: break;
4019    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4020    case ObjCPropertyDecl::Retain: S += ",&"; break;
4021    }
4022  }
4023
4024  // It really isn't clear at all what this means, since properties
4025  // are "dynamic by default".
4026  if (Dynamic)
4027    S += ",D";
4028
4029  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4030    S += ",N";
4031
4032  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4033    S += ",G";
4034    S += PD->getGetterName().getAsString();
4035  }
4036
4037  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4038    S += ",S";
4039    S += PD->getSetterName().getAsString();
4040  }
4041
4042  if (SynthesizePID) {
4043    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4044    S += ",V";
4045    S += OID->getNameAsString();
4046  }
4047
4048  // FIXME: OBJCGC: weak & strong
4049}
4050
4051/// getLegacyIntegralTypeEncoding -
4052/// Another legacy compatibility encoding: 32-bit longs are encoded as
4053/// 'l' or 'L' , but not always.  For typedefs, we need to use
4054/// 'i' or 'I' instead if encoding a struct field, or a pointer!
4055///
4056void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4057  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4058    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4059      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4060        PointeeTy = UnsignedIntTy;
4061      else
4062        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4063          PointeeTy = IntTy;
4064    }
4065  }
4066}
4067
4068void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
4069                                        const FieldDecl *Field) const {
4070  // We follow the behavior of gcc, expanding structures which are
4071  // directly pointed to, and expanding embedded structures. Note that
4072  // these rules are sufficient to prevent recursive encoding of the
4073  // same type.
4074  getObjCEncodingForTypeImpl(T, S, true, true, Field,
4075                             true /* outermost type */);
4076}
4077
4078static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
4079    switch (T->getAs<BuiltinType>()->getKind()) {
4080    default: assert(0 && "Unhandled builtin type kind");
4081    case BuiltinType::Void:       return 'v';
4082    case BuiltinType::Bool:       return 'B';
4083    case BuiltinType::Char_U:
4084    case BuiltinType::UChar:      return 'C';
4085    case BuiltinType::UShort:     return 'S';
4086    case BuiltinType::UInt:       return 'I';
4087    case BuiltinType::ULong:
4088        return C->getIntWidth(T) == 32 ? 'L' : 'Q';
4089    case BuiltinType::UInt128:    return 'T';
4090    case BuiltinType::ULongLong:  return 'Q';
4091    case BuiltinType::Char_S:
4092    case BuiltinType::SChar:      return 'c';
4093    case BuiltinType::Short:      return 's';
4094    case BuiltinType::WChar_S:
4095    case BuiltinType::WChar_U:
4096    case BuiltinType::Int:        return 'i';
4097    case BuiltinType::Long:
4098      return C->getIntWidth(T) == 32 ? 'l' : 'q';
4099    case BuiltinType::LongLong:   return 'q';
4100    case BuiltinType::Int128:     return 't';
4101    case BuiltinType::Float:      return 'f';
4102    case BuiltinType::Double:     return 'd';
4103    case BuiltinType::LongDouble: return 'D';
4104    }
4105}
4106
4107static void EncodeBitField(const ASTContext *Ctx, std::string& S,
4108                           QualType T, const FieldDecl *FD) {
4109  const Expr *E = FD->getBitWidth();
4110  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
4111  S += 'b';
4112  // The NeXT runtime encodes bit fields as b followed by the number of bits.
4113  // The GNU runtime requires more information; bitfields are encoded as b,
4114  // then the offset (in bits) of the first element, then the type of the
4115  // bitfield, then the size in bits.  For example, in this structure:
4116  //
4117  // struct
4118  // {
4119  //    int integer;
4120  //    int flags:2;
4121  // };
4122  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
4123  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
4124  // information is not especially sensible, but we're stuck with it for
4125  // compatibility with GCC, although providing it breaks anything that
4126  // actually uses runtime introspection and wants to work on both runtimes...
4127  if (!Ctx->getLangOptions().NeXTRuntime) {
4128    const RecordDecl *RD = FD->getParent();
4129    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
4130    // FIXME: This same linear search is also used in ExprConstant - it might
4131    // be better if the FieldDecl stored its offset.  We'd be increasing the
4132    // size of the object slightly, but saving some time every time it is used.
4133    unsigned i = 0;
4134    for (RecordDecl::field_iterator Field = RD->field_begin(),
4135                                 FieldEnd = RD->field_end();
4136         Field != FieldEnd; (void)++Field, ++i) {
4137      if (*Field == FD)
4138        break;
4139    }
4140    S += llvm::utostr(RL.getFieldOffset(i));
4141    if (T->isEnumeralType())
4142      S += 'i';
4143    else
4144      S += ObjCEncodingForPrimitiveKind(Ctx, T);
4145  }
4146  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
4147  S += llvm::utostr(N);
4148}
4149
4150// FIXME: Use SmallString for accumulating string.
4151void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
4152                                            bool ExpandPointedToStructures,
4153                                            bool ExpandStructures,
4154                                            const FieldDecl *FD,
4155                                            bool OutermostType,
4156                                            bool EncodingProperty,
4157                                            bool StructField) const {
4158  if (T->getAs<BuiltinType>()) {
4159    if (FD && FD->isBitField())
4160      return EncodeBitField(this, S, T, FD);
4161    S += ObjCEncodingForPrimitiveKind(this, T);
4162    return;
4163  }
4164
4165  if (const ComplexType *CT = T->getAs<ComplexType>()) {
4166    S += 'j';
4167    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
4168                               false);
4169    return;
4170  }
4171
4172  // encoding for pointer or r3eference types.
4173  QualType PointeeTy;
4174  if (const PointerType *PT = T->getAs<PointerType>()) {
4175    if (PT->isObjCSelType()) {
4176      S += ':';
4177      return;
4178    }
4179    PointeeTy = PT->getPointeeType();
4180  }
4181  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4182    PointeeTy = RT->getPointeeType();
4183  if (!PointeeTy.isNull()) {
4184    bool isReadOnly = false;
4185    // For historical/compatibility reasons, the read-only qualifier of the
4186    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
4187    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
4188    // Also, do not emit the 'r' for anything but the outermost type!
4189    if (isa<TypedefType>(T.getTypePtr())) {
4190      if (OutermostType && T.isConstQualified()) {
4191        isReadOnly = true;
4192        S += 'r';
4193      }
4194    } else if (OutermostType) {
4195      QualType P = PointeeTy;
4196      while (P->getAs<PointerType>())
4197        P = P->getAs<PointerType>()->getPointeeType();
4198      if (P.isConstQualified()) {
4199        isReadOnly = true;
4200        S += 'r';
4201      }
4202    }
4203    if (isReadOnly) {
4204      // Another legacy compatibility encoding. Some ObjC qualifier and type
4205      // combinations need to be rearranged.
4206      // Rewrite "in const" from "nr" to "rn"
4207      if (llvm::StringRef(S).endswith("nr"))
4208        S.replace(S.end()-2, S.end(), "rn");
4209    }
4210
4211    if (PointeeTy->isCharType()) {
4212      // char pointer types should be encoded as '*' unless it is a
4213      // type that has been typedef'd to 'BOOL'.
4214      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
4215        S += '*';
4216        return;
4217      }
4218    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
4219      // GCC binary compat: Need to convert "struct objc_class *" to "#".
4220      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
4221        S += '#';
4222        return;
4223      }
4224      // GCC binary compat: Need to convert "struct objc_object *" to "@".
4225      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
4226        S += '@';
4227        return;
4228      }
4229      // fall through...
4230    }
4231    S += '^';
4232    getLegacyIntegralTypeEncoding(PointeeTy);
4233
4234    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
4235                               NULL);
4236    return;
4237  }
4238
4239  if (const ArrayType *AT =
4240      // Ignore type qualifiers etc.
4241        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
4242    if (isa<IncompleteArrayType>(AT) && !StructField) {
4243      // Incomplete arrays are encoded as a pointer to the array element.
4244      S += '^';
4245
4246      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4247                                 false, ExpandStructures, FD);
4248    } else {
4249      S += '[';
4250
4251      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
4252        if (getTypeSize(CAT->getElementType()) == 0)
4253          S += '0';
4254        else
4255          S += llvm::utostr(CAT->getSize().getZExtValue());
4256      } else {
4257        //Variable length arrays are encoded as a regular array with 0 elements.
4258        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
4259               "Unknown array type!");
4260        S += '0';
4261      }
4262
4263      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4264                                 false, ExpandStructures, FD);
4265      S += ']';
4266    }
4267    return;
4268  }
4269
4270  if (T->getAs<FunctionType>()) {
4271    S += '?';
4272    return;
4273  }
4274
4275  if (const RecordType *RTy = T->getAs<RecordType>()) {
4276    RecordDecl *RDecl = RTy->getDecl();
4277    S += RDecl->isUnion() ? '(' : '{';
4278    // Anonymous structures print as '?'
4279    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
4280      S += II->getName();
4281      if (ClassTemplateSpecializationDecl *Spec
4282          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
4283        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
4284        std::string TemplateArgsStr
4285          = TemplateSpecializationType::PrintTemplateArgumentList(
4286                                            TemplateArgs.data(),
4287                                            TemplateArgs.size(),
4288                                            (*this).PrintingPolicy);
4289
4290        S += TemplateArgsStr;
4291      }
4292    } else {
4293      S += '?';
4294    }
4295    if (ExpandStructures) {
4296      S += '=';
4297      if (!RDecl->isUnion()) {
4298        getObjCEncodingForStructureImpl(RDecl, S, FD);
4299      } else {
4300        for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4301                                     FieldEnd = RDecl->field_end();
4302             Field != FieldEnd; ++Field) {
4303          if (FD) {
4304            S += '"';
4305            S += Field->getNameAsString();
4306            S += '"';
4307          }
4308
4309          // Special case bit-fields.
4310          if (Field->isBitField()) {
4311            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
4312                                       (*Field));
4313          } else {
4314            QualType qt = Field->getType();
4315            getLegacyIntegralTypeEncoding(qt);
4316            getObjCEncodingForTypeImpl(qt, S, false, true,
4317                                       FD, /*OutermostType*/false,
4318                                       /*EncodingProperty*/false,
4319                                       /*StructField*/true);
4320          }
4321        }
4322      }
4323    }
4324    S += RDecl->isUnion() ? ')' : '}';
4325    return;
4326  }
4327
4328  if (T->isEnumeralType()) {
4329    if (FD && FD->isBitField())
4330      EncodeBitField(this, S, T, FD);
4331    else
4332      S += 'i';
4333    return;
4334  }
4335
4336  if (T->isBlockPointerType()) {
4337    S += "@?"; // Unlike a pointer-to-function, which is "^?".
4338    return;
4339  }
4340
4341  // Ignore protocol qualifiers when mangling at this level.
4342  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
4343    T = OT->getBaseType();
4344
4345  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
4346    // @encode(class_name)
4347    ObjCInterfaceDecl *OI = OIT->getDecl();
4348    S += '{';
4349    const IdentifierInfo *II = OI->getIdentifier();
4350    S += II->getName();
4351    S += '=';
4352    llvm::SmallVector<ObjCIvarDecl*, 32> Ivars;
4353    DeepCollectObjCIvars(OI, true, Ivars);
4354    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
4355      FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
4356      if (Field->isBitField())
4357        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
4358      else
4359        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
4360    }
4361    S += '}';
4362    return;
4363  }
4364
4365  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
4366    if (OPT->isObjCIdType()) {
4367      S += '@';
4368      return;
4369    }
4370
4371    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
4372      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
4373      // Since this is a binary compatibility issue, need to consult with runtime
4374      // folks. Fortunately, this is a *very* obsure construct.
4375      S += '#';
4376      return;
4377    }
4378
4379    if (OPT->isObjCQualifiedIdType()) {
4380      getObjCEncodingForTypeImpl(getObjCIdType(), S,
4381                                 ExpandPointedToStructures,
4382                                 ExpandStructures, FD);
4383      if (FD || EncodingProperty) {
4384        // Note that we do extended encoding of protocol qualifer list
4385        // Only when doing ivar or property encoding.
4386        S += '"';
4387        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4388             E = OPT->qual_end(); I != E; ++I) {
4389          S += '<';
4390          S += (*I)->getNameAsString();
4391          S += '>';
4392        }
4393        S += '"';
4394      }
4395      return;
4396    }
4397
4398    QualType PointeeTy = OPT->getPointeeType();
4399    if (!EncodingProperty &&
4400        isa<TypedefType>(PointeeTy.getTypePtr())) {
4401      // Another historical/compatibility reason.
4402      // We encode the underlying type which comes out as
4403      // {...};
4404      S += '^';
4405      getObjCEncodingForTypeImpl(PointeeTy, S,
4406                                 false, ExpandPointedToStructures,
4407                                 NULL);
4408      return;
4409    }
4410
4411    S += '@';
4412    if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
4413      S += '"';
4414      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
4415      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4416           E = OPT->qual_end(); I != E; ++I) {
4417        S += '<';
4418        S += (*I)->getNameAsString();
4419        S += '>';
4420      }
4421      S += '"';
4422    }
4423    return;
4424  }
4425
4426  // gcc just blithely ignores member pointers.
4427  // TODO: maybe there should be a mangling for these
4428  if (T->getAs<MemberPointerType>())
4429    return;
4430
4431  if (T->isVectorType()) {
4432    // This matches gcc's encoding, even though technically it is
4433    // insufficient.
4434    // FIXME. We should do a better job than gcc.
4435    return;
4436  }
4437
4438  assert(0 && "@encode for type not implemented!");
4439}
4440
4441void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
4442                                                 std::string &S,
4443                                                 const FieldDecl *FD,
4444                                                 bool includeVBases) const {
4445  assert(RDecl && "Expected non-null RecordDecl");
4446  assert(!RDecl->isUnion() && "Should not be called for unions");
4447  if (!RDecl->getDefinition())
4448    return;
4449
4450  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
4451  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
4452  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
4453
4454  if (CXXRec) {
4455    for (CXXRecordDecl::base_class_iterator
4456           BI = CXXRec->bases_begin(),
4457           BE = CXXRec->bases_end(); BI != BE; ++BI) {
4458      if (!BI->isVirtual()) {
4459        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4460        uint64_t offs = layout.getBaseClassOffsetInBits(base);
4461        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4462                                  std::make_pair(offs, base));
4463      }
4464    }
4465  }
4466
4467  unsigned i = 0;
4468  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4469                               FieldEnd = RDecl->field_end();
4470       Field != FieldEnd; ++Field, ++i) {
4471    uint64_t offs = layout.getFieldOffset(i);
4472    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4473                              std::make_pair(offs, *Field));
4474  }
4475
4476  if (CXXRec && includeVBases) {
4477    for (CXXRecordDecl::base_class_iterator
4478           BI = CXXRec->vbases_begin(),
4479           BE = CXXRec->vbases_end(); BI != BE; ++BI) {
4480      CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4481      uint64_t offs = layout.getVBaseClassOffsetInBits(base);
4482      FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4483                                std::make_pair(offs, base));
4484    }
4485  }
4486
4487  CharUnits size;
4488  if (CXXRec) {
4489    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
4490  } else {
4491    size = layout.getSize();
4492  }
4493
4494  uint64_t CurOffs = 0;
4495  std::map<uint64_t, NamedDecl *>::iterator
4496    CurLayObj = FieldOrBaseOffsets.begin();
4497
4498  if (CurLayObj != FieldOrBaseOffsets.end() && CurLayObj->first != 0) {
4499    assert(CXXRec && CXXRec->isDynamicClass() &&
4500           "Offset 0 was empty but no VTable ?");
4501    if (FD) {
4502      S += "\"_vptr$";
4503      std::string recname = CXXRec->getNameAsString();
4504      if (recname.empty()) recname = "?";
4505      S += recname;
4506      S += '"';
4507    }
4508    S += "^^?";
4509    CurOffs += getTypeSize(VoidPtrTy);
4510  }
4511
4512  if (!RDecl->hasFlexibleArrayMember()) {
4513    // Mark the end of the structure.
4514    uint64_t offs = toBits(size);
4515    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4516                              std::make_pair(offs, (NamedDecl*)0));
4517  }
4518
4519  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
4520    assert(CurOffs <= CurLayObj->first);
4521
4522    if (CurOffs < CurLayObj->first) {
4523      uint64_t padding = CurLayObj->first - CurOffs;
4524      // FIXME: There doesn't seem to be a way to indicate in the encoding that
4525      // packing/alignment of members is different that normal, in which case
4526      // the encoding will be out-of-sync with the real layout.
4527      // If the runtime switches to just consider the size of types without
4528      // taking into account alignment, we could make padding explicit in the
4529      // encoding (e.g. using arrays of chars). The encoding strings would be
4530      // longer then though.
4531      CurOffs += padding;
4532    }
4533
4534    NamedDecl *dcl = CurLayObj->second;
4535    if (dcl == 0)
4536      break; // reached end of structure.
4537
4538    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
4539      // We expand the bases without their virtual bases since those are going
4540      // in the initial structure. Note that this differs from gcc which
4541      // expands virtual bases each time one is encountered in the hierarchy,
4542      // making the encoding type bigger than it really is.
4543      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
4544      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
4545    } else {
4546      FieldDecl *field = cast<FieldDecl>(dcl);
4547      if (FD) {
4548        S += '"';
4549        S += field->getNameAsString();
4550        S += '"';
4551      }
4552
4553      if (field->isBitField()) {
4554        EncodeBitField(this, S, field->getType(), field);
4555        CurOffs += field->getBitWidth()->EvaluateAsInt(*this).getZExtValue();
4556      } else {
4557        QualType qt = field->getType();
4558        getLegacyIntegralTypeEncoding(qt);
4559        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
4560                                   /*OutermostType*/false,
4561                                   /*EncodingProperty*/false,
4562                                   /*StructField*/true);
4563        CurOffs += getTypeSize(field->getType());
4564      }
4565    }
4566  }
4567}
4568
4569void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
4570                                                 std::string& S) const {
4571  if (QT & Decl::OBJC_TQ_In)
4572    S += 'n';
4573  if (QT & Decl::OBJC_TQ_Inout)
4574    S += 'N';
4575  if (QT & Decl::OBJC_TQ_Out)
4576    S += 'o';
4577  if (QT & Decl::OBJC_TQ_Bycopy)
4578    S += 'O';
4579  if (QT & Decl::OBJC_TQ_Byref)
4580    S += 'R';
4581  if (QT & Decl::OBJC_TQ_Oneway)
4582    S += 'V';
4583}
4584
4585void ASTContext::setBuiltinVaListType(QualType T) {
4586  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
4587
4588  BuiltinVaListType = T;
4589}
4590
4591void ASTContext::setObjCIdType(QualType T) {
4592  ObjCIdTypedefType = T;
4593}
4594
4595void ASTContext::setObjCSelType(QualType T) {
4596  ObjCSelTypedefType = T;
4597}
4598
4599void ASTContext::setObjCProtoType(QualType QT) {
4600  ObjCProtoType = QT;
4601}
4602
4603void ASTContext::setObjCClassType(QualType T) {
4604  ObjCClassTypedefType = T;
4605}
4606
4607void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
4608  assert(ObjCConstantStringType.isNull() &&
4609         "'NSConstantString' type already set!");
4610
4611  ObjCConstantStringType = getObjCInterfaceType(Decl);
4612}
4613
4614/// \brief Retrieve the template name that corresponds to a non-empty
4615/// lookup.
4616TemplateName
4617ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
4618                                      UnresolvedSetIterator End) const {
4619  unsigned size = End - Begin;
4620  assert(size > 1 && "set is not overloaded!");
4621
4622  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
4623                          size * sizeof(FunctionTemplateDecl*));
4624  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
4625
4626  NamedDecl **Storage = OT->getStorage();
4627  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
4628    NamedDecl *D = *I;
4629    assert(isa<FunctionTemplateDecl>(D) ||
4630           (isa<UsingShadowDecl>(D) &&
4631            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
4632    *Storage++ = D;
4633  }
4634
4635  return TemplateName(OT);
4636}
4637
4638/// \brief Retrieve the template name that represents a qualified
4639/// template name such as \c std::vector.
4640TemplateName
4641ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
4642                                     bool TemplateKeyword,
4643                                     TemplateDecl *Template) const {
4644  assert(NNS && "Missing nested-name-specifier in qualified template name");
4645
4646  // FIXME: Canonicalization?
4647  llvm::FoldingSetNodeID ID;
4648  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
4649
4650  void *InsertPos = 0;
4651  QualifiedTemplateName *QTN =
4652    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4653  if (!QTN) {
4654    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
4655    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
4656  }
4657
4658  return TemplateName(QTN);
4659}
4660
4661/// \brief Retrieve the template name that represents a dependent
4662/// template name such as \c MetaFun::template apply.
4663TemplateName
4664ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4665                                     const IdentifierInfo *Name) const {
4666  assert((!NNS || NNS->isDependent()) &&
4667         "Nested name specifier must be dependent");
4668
4669  llvm::FoldingSetNodeID ID;
4670  DependentTemplateName::Profile(ID, NNS, Name);
4671
4672  void *InsertPos = 0;
4673  DependentTemplateName *QTN =
4674    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4675
4676  if (QTN)
4677    return TemplateName(QTN);
4678
4679  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4680  if (CanonNNS == NNS) {
4681    QTN = new (*this,4) DependentTemplateName(NNS, Name);
4682  } else {
4683    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
4684    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
4685    DependentTemplateName *CheckQTN =
4686      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4687    assert(!CheckQTN && "Dependent type name canonicalization broken");
4688    (void)CheckQTN;
4689  }
4690
4691  DependentTemplateNames.InsertNode(QTN, InsertPos);
4692  return TemplateName(QTN);
4693}
4694
4695/// \brief Retrieve the template name that represents a dependent
4696/// template name such as \c MetaFun::template operator+.
4697TemplateName
4698ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4699                                     OverloadedOperatorKind Operator) const {
4700  assert((!NNS || NNS->isDependent()) &&
4701         "Nested name specifier must be dependent");
4702
4703  llvm::FoldingSetNodeID ID;
4704  DependentTemplateName::Profile(ID, NNS, Operator);
4705
4706  void *InsertPos = 0;
4707  DependentTemplateName *QTN
4708    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4709
4710  if (QTN)
4711    return TemplateName(QTN);
4712
4713  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4714  if (CanonNNS == NNS) {
4715    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
4716  } else {
4717    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
4718    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
4719
4720    DependentTemplateName *CheckQTN
4721      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4722    assert(!CheckQTN && "Dependent template name canonicalization broken");
4723    (void)CheckQTN;
4724  }
4725
4726  DependentTemplateNames.InsertNode(QTN, InsertPos);
4727  return TemplateName(QTN);
4728}
4729
4730TemplateName
4731ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
4732                                       const TemplateArgument &ArgPack) const {
4733  ASTContext &Self = const_cast<ASTContext &>(*this);
4734  llvm::FoldingSetNodeID ID;
4735  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
4736
4737  void *InsertPos = 0;
4738  SubstTemplateTemplateParmPackStorage *Subst
4739    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
4740
4741  if (!Subst) {
4742    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Self, Param,
4743                                                           ArgPack.pack_size(),
4744                                                         ArgPack.pack_begin());
4745    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
4746  }
4747
4748  return TemplateName(Subst);
4749}
4750
4751/// getFromTargetType - Given one of the integer types provided by
4752/// TargetInfo, produce the corresponding type. The unsigned @p Type
4753/// is actually a value of type @c TargetInfo::IntType.
4754CanQualType ASTContext::getFromTargetType(unsigned Type) const {
4755  switch (Type) {
4756  case TargetInfo::NoInt: return CanQualType();
4757  case TargetInfo::SignedShort: return ShortTy;
4758  case TargetInfo::UnsignedShort: return UnsignedShortTy;
4759  case TargetInfo::SignedInt: return IntTy;
4760  case TargetInfo::UnsignedInt: return UnsignedIntTy;
4761  case TargetInfo::SignedLong: return LongTy;
4762  case TargetInfo::UnsignedLong: return UnsignedLongTy;
4763  case TargetInfo::SignedLongLong: return LongLongTy;
4764  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
4765  }
4766
4767  assert(false && "Unhandled TargetInfo::IntType value");
4768  return CanQualType();
4769}
4770
4771//===----------------------------------------------------------------------===//
4772//                        Type Predicates.
4773//===----------------------------------------------------------------------===//
4774
4775/// isObjCNSObjectType - Return true if this is an NSObject object using
4776/// NSObject attribute on a c-style pointer type.
4777/// FIXME - Make it work directly on types.
4778/// FIXME: Move to Type.
4779///
4780bool ASTContext::isObjCNSObjectType(QualType Ty) const {
4781  if (const TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
4782    if (TypedefNameDecl *TD = TDT->getDecl())
4783      if (TD->getAttr<ObjCNSObjectAttr>())
4784        return true;
4785  }
4786  return false;
4787}
4788
4789/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
4790/// garbage collection attribute.
4791///
4792Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
4793  if (getLangOptions().getGCMode() == LangOptions::NonGC)
4794    return Qualifiers::GCNone;
4795
4796  assert(getLangOptions().ObjC1);
4797  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
4798
4799  // Default behaviour under objective-C's gc is for ObjC pointers
4800  // (or pointers to them) be treated as though they were declared
4801  // as __strong.
4802  if (GCAttrs == Qualifiers::GCNone) {
4803    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4804      return Qualifiers::Strong;
4805    else if (Ty->isPointerType())
4806      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
4807  } else {
4808    // It's not valid to set GC attributes on anything that isn't a
4809    // pointer.
4810#ifndef NDEBUG
4811    QualType CT = Ty->getCanonicalTypeInternal();
4812    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
4813      CT = AT->getElementType();
4814    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
4815#endif
4816  }
4817  return GCAttrs;
4818}
4819
4820//===----------------------------------------------------------------------===//
4821//                        Type Compatibility Testing
4822//===----------------------------------------------------------------------===//
4823
4824/// areCompatVectorTypes - Return true if the two specified vector types are
4825/// compatible.
4826static bool areCompatVectorTypes(const VectorType *LHS,
4827                                 const VectorType *RHS) {
4828  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
4829  return LHS->getElementType() == RHS->getElementType() &&
4830         LHS->getNumElements() == RHS->getNumElements();
4831}
4832
4833bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
4834                                          QualType SecondVec) {
4835  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
4836  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
4837
4838  if (hasSameUnqualifiedType(FirstVec, SecondVec))
4839    return true;
4840
4841  // Treat Neon vector types and most AltiVec vector types as if they are the
4842  // equivalent GCC vector types.
4843  const VectorType *First = FirstVec->getAs<VectorType>();
4844  const VectorType *Second = SecondVec->getAs<VectorType>();
4845  if (First->getNumElements() == Second->getNumElements() &&
4846      hasSameType(First->getElementType(), Second->getElementType()) &&
4847      First->getVectorKind() != VectorType::AltiVecPixel &&
4848      First->getVectorKind() != VectorType::AltiVecBool &&
4849      Second->getVectorKind() != VectorType::AltiVecPixel &&
4850      Second->getVectorKind() != VectorType::AltiVecBool)
4851    return true;
4852
4853  return false;
4854}
4855
4856//===----------------------------------------------------------------------===//
4857// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
4858//===----------------------------------------------------------------------===//
4859
4860/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
4861/// inheritance hierarchy of 'rProto'.
4862bool
4863ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
4864                                           ObjCProtocolDecl *rProto) const {
4865  if (lProto == rProto)
4866    return true;
4867  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
4868       E = rProto->protocol_end(); PI != E; ++PI)
4869    if (ProtocolCompatibleWithProtocol(lProto, *PI))
4870      return true;
4871  return false;
4872}
4873
4874/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
4875/// return true if lhs's protocols conform to rhs's protocol; false
4876/// otherwise.
4877bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
4878  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
4879    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
4880  return false;
4881}
4882
4883/// ObjCQualifiedClassTypesAreCompatible - compare  Class<p,...> and
4884/// Class<p1, ...>.
4885bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
4886                                                      QualType rhs) {
4887  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
4888  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
4889  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
4890
4891  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4892       E = lhsQID->qual_end(); I != E; ++I) {
4893    bool match = false;
4894    ObjCProtocolDecl *lhsProto = *I;
4895    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
4896         E = rhsOPT->qual_end(); J != E; ++J) {
4897      ObjCProtocolDecl *rhsProto = *J;
4898      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
4899        match = true;
4900        break;
4901      }
4902    }
4903    if (!match)
4904      return false;
4905  }
4906  return true;
4907}
4908
4909/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
4910/// ObjCQualifiedIDType.
4911bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
4912                                                   bool compare) {
4913  // Allow id<P..> and an 'id' or void* type in all cases.
4914  if (lhs->isVoidPointerType() ||
4915      lhs->isObjCIdType() || lhs->isObjCClassType())
4916    return true;
4917  else if (rhs->isVoidPointerType() ||
4918           rhs->isObjCIdType() || rhs->isObjCClassType())
4919    return true;
4920
4921  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
4922    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
4923
4924    if (!rhsOPT) return false;
4925
4926    if (rhsOPT->qual_empty()) {
4927      // If the RHS is a unqualified interface pointer "NSString*",
4928      // make sure we check the class hierarchy.
4929      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4930        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4931             E = lhsQID->qual_end(); I != E; ++I) {
4932          // when comparing an id<P> on lhs with a static type on rhs,
4933          // see if static class implements all of id's protocols, directly or
4934          // through its super class and categories.
4935          if (!rhsID->ClassImplementsProtocol(*I, true))
4936            return false;
4937        }
4938      }
4939      // If there are no qualifiers and no interface, we have an 'id'.
4940      return true;
4941    }
4942    // Both the right and left sides have qualifiers.
4943    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4944         E = lhsQID->qual_end(); I != E; ++I) {
4945      ObjCProtocolDecl *lhsProto = *I;
4946      bool match = false;
4947
4948      // when comparing an id<P> on lhs with a static type on rhs,
4949      // see if static class implements all of id's protocols, directly or
4950      // through its super class and categories.
4951      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
4952           E = rhsOPT->qual_end(); J != E; ++J) {
4953        ObjCProtocolDecl *rhsProto = *J;
4954        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4955            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4956          match = true;
4957          break;
4958        }
4959      }
4960      // If the RHS is a qualified interface pointer "NSString<P>*",
4961      // make sure we check the class hierarchy.
4962      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4963        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4964             E = lhsQID->qual_end(); I != E; ++I) {
4965          // when comparing an id<P> on lhs with a static type on rhs,
4966          // see if static class implements all of id's protocols, directly or
4967          // through its super class and categories.
4968          if (rhsID->ClassImplementsProtocol(*I, true)) {
4969            match = true;
4970            break;
4971          }
4972        }
4973      }
4974      if (!match)
4975        return false;
4976    }
4977
4978    return true;
4979  }
4980
4981  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
4982  assert(rhsQID && "One of the LHS/RHS should be id<x>");
4983
4984  if (const ObjCObjectPointerType *lhsOPT =
4985        lhs->getAsObjCInterfacePointerType()) {
4986    // If both the right and left sides have qualifiers.
4987    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
4988         E = lhsOPT->qual_end(); I != E; ++I) {
4989      ObjCProtocolDecl *lhsProto = *I;
4990      bool match = false;
4991
4992      // when comparing an id<P> on rhs with a static type on lhs,
4993      // see if static class implements all of id's protocols, directly or
4994      // through its super class and categories.
4995      // First, lhs protocols in the qualifier list must be found, direct
4996      // or indirect in rhs's qualifier list or it is a mismatch.
4997      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
4998           E = rhsQID->qual_end(); J != E; ++J) {
4999        ObjCProtocolDecl *rhsProto = *J;
5000        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5001            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5002          match = true;
5003          break;
5004        }
5005      }
5006      if (!match)
5007        return false;
5008    }
5009
5010    // Static class's protocols, or its super class or category protocols
5011    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
5012    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
5013      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5014      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
5015      // This is rather dubious but matches gcc's behavior. If lhs has
5016      // no type qualifier and its class has no static protocol(s)
5017      // assume that it is mismatch.
5018      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
5019        return false;
5020      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5021           LHSInheritedProtocols.begin(),
5022           E = LHSInheritedProtocols.end(); I != E; ++I) {
5023        bool match = false;
5024        ObjCProtocolDecl *lhsProto = (*I);
5025        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5026             E = rhsQID->qual_end(); J != E; ++J) {
5027          ObjCProtocolDecl *rhsProto = *J;
5028          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5029              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5030            match = true;
5031            break;
5032          }
5033        }
5034        if (!match)
5035          return false;
5036      }
5037    }
5038    return true;
5039  }
5040  return false;
5041}
5042
5043/// canAssignObjCInterfaces - Return true if the two interface types are
5044/// compatible for assignment from RHS to LHS.  This handles validation of any
5045/// protocol qualifiers on the LHS or RHS.
5046///
5047bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
5048                                         const ObjCObjectPointerType *RHSOPT) {
5049  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5050  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5051
5052  // If either type represents the built-in 'id' or 'Class' types, return true.
5053  if (LHS->isObjCUnqualifiedIdOrClass() ||
5054      RHS->isObjCUnqualifiedIdOrClass())
5055    return true;
5056
5057  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
5058    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5059                                             QualType(RHSOPT,0),
5060                                             false);
5061
5062  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
5063    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
5064                                                QualType(RHSOPT,0));
5065
5066  // If we have 2 user-defined types, fall into that path.
5067  if (LHS->getInterface() && RHS->getInterface())
5068    return canAssignObjCInterfaces(LHS, RHS);
5069
5070  return false;
5071}
5072
5073/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
5074/// for providing type-safety for objective-c pointers used to pass/return
5075/// arguments in block literals. When passed as arguments, passing 'A*' where
5076/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
5077/// not OK. For the return type, the opposite is not OK.
5078bool ASTContext::canAssignObjCInterfacesInBlockPointer(
5079                                         const ObjCObjectPointerType *LHSOPT,
5080                                         const ObjCObjectPointerType *RHSOPT,
5081                                         bool BlockReturnType) {
5082  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
5083    return true;
5084
5085  if (LHSOPT->isObjCBuiltinType()) {
5086    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
5087  }
5088
5089  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
5090    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5091                                             QualType(RHSOPT,0),
5092                                             false);
5093
5094  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
5095  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
5096  if (LHS && RHS)  { // We have 2 user-defined types.
5097    if (LHS != RHS) {
5098      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
5099        return BlockReturnType;
5100      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
5101        return !BlockReturnType;
5102    }
5103    else
5104      return true;
5105  }
5106  return false;
5107}
5108
5109/// getIntersectionOfProtocols - This routine finds the intersection of set
5110/// of protocols inherited from two distinct objective-c pointer objects.
5111/// It is used to build composite qualifier list of the composite type of
5112/// the conditional expression involving two objective-c pointer objects.
5113static
5114void getIntersectionOfProtocols(ASTContext &Context,
5115                                const ObjCObjectPointerType *LHSOPT,
5116                                const ObjCObjectPointerType *RHSOPT,
5117      llvm::SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
5118
5119  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5120  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5121  assert(LHS->getInterface() && "LHS must have an interface base");
5122  assert(RHS->getInterface() && "RHS must have an interface base");
5123
5124  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
5125  unsigned LHSNumProtocols = LHS->getNumProtocols();
5126  if (LHSNumProtocols > 0)
5127    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
5128  else {
5129    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5130    Context.CollectInheritedProtocols(LHS->getInterface(),
5131                                      LHSInheritedProtocols);
5132    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
5133                                LHSInheritedProtocols.end());
5134  }
5135
5136  unsigned RHSNumProtocols = RHS->getNumProtocols();
5137  if (RHSNumProtocols > 0) {
5138    ObjCProtocolDecl **RHSProtocols =
5139      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
5140    for (unsigned i = 0; i < RHSNumProtocols; ++i)
5141      if (InheritedProtocolSet.count(RHSProtocols[i]))
5142        IntersectionOfProtocols.push_back(RHSProtocols[i]);
5143  }
5144  else {
5145    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
5146    Context.CollectInheritedProtocols(RHS->getInterface(),
5147                                      RHSInheritedProtocols);
5148    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5149         RHSInheritedProtocols.begin(),
5150         E = RHSInheritedProtocols.end(); I != E; ++I)
5151      if (InheritedProtocolSet.count((*I)))
5152        IntersectionOfProtocols.push_back((*I));
5153  }
5154}
5155
5156/// areCommonBaseCompatible - Returns common base class of the two classes if
5157/// one found. Note that this is O'2 algorithm. But it will be called as the
5158/// last type comparison in a ?-exp of ObjC pointer types before a
5159/// warning is issued. So, its invokation is extremely rare.
5160QualType ASTContext::areCommonBaseCompatible(
5161                                          const ObjCObjectPointerType *Lptr,
5162                                          const ObjCObjectPointerType *Rptr) {
5163  const ObjCObjectType *LHS = Lptr->getObjectType();
5164  const ObjCObjectType *RHS = Rptr->getObjectType();
5165  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
5166  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
5167  if (!LDecl || !RDecl || (LDecl == RDecl))
5168    return QualType();
5169
5170  do {
5171    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
5172    if (canAssignObjCInterfaces(LHS, RHS)) {
5173      llvm::SmallVector<ObjCProtocolDecl *, 8> Protocols;
5174      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
5175
5176      QualType Result = QualType(LHS, 0);
5177      if (!Protocols.empty())
5178        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
5179      Result = getObjCObjectPointerType(Result);
5180      return Result;
5181    }
5182  } while ((LDecl = LDecl->getSuperClass()));
5183
5184  return QualType();
5185}
5186
5187bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
5188                                         const ObjCObjectType *RHS) {
5189  assert(LHS->getInterface() && "LHS is not an interface type");
5190  assert(RHS->getInterface() && "RHS is not an interface type");
5191
5192  // Verify that the base decls are compatible: the RHS must be a subclass of
5193  // the LHS.
5194  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
5195    return false;
5196
5197  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
5198  // protocol qualified at all, then we are good.
5199  if (LHS->getNumProtocols() == 0)
5200    return true;
5201
5202  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
5203  // more detailed analysis is required.
5204  if (RHS->getNumProtocols() == 0) {
5205    // OK, if LHS is a superclass of RHS *and*
5206    // this superclass is assignment compatible with LHS.
5207    // false otherwise.
5208    bool IsSuperClass =
5209      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
5210    if (IsSuperClass) {
5211      // OK if conversion of LHS to SuperClass results in narrowing of types
5212      // ; i.e., SuperClass may implement at least one of the protocols
5213      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
5214      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
5215      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
5216      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
5217      // If super class has no protocols, it is not a match.
5218      if (SuperClassInheritedProtocols.empty())
5219        return false;
5220
5221      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5222           LHSPE = LHS->qual_end();
5223           LHSPI != LHSPE; LHSPI++) {
5224        bool SuperImplementsProtocol = false;
5225        ObjCProtocolDecl *LHSProto = (*LHSPI);
5226
5227        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5228             SuperClassInheritedProtocols.begin(),
5229             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
5230          ObjCProtocolDecl *SuperClassProto = (*I);
5231          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
5232            SuperImplementsProtocol = true;
5233            break;
5234          }
5235        }
5236        if (!SuperImplementsProtocol)
5237          return false;
5238      }
5239      return true;
5240    }
5241    return false;
5242  }
5243
5244  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5245                                     LHSPE = LHS->qual_end();
5246       LHSPI != LHSPE; LHSPI++) {
5247    bool RHSImplementsProtocol = false;
5248
5249    // If the RHS doesn't implement the protocol on the left, the types
5250    // are incompatible.
5251    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
5252                                       RHSPE = RHS->qual_end();
5253         RHSPI != RHSPE; RHSPI++) {
5254      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
5255        RHSImplementsProtocol = true;
5256        break;
5257      }
5258    }
5259    // FIXME: For better diagnostics, consider passing back the protocol name.
5260    if (!RHSImplementsProtocol)
5261      return false;
5262  }
5263  // The RHS implements all protocols listed on the LHS.
5264  return true;
5265}
5266
5267bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
5268  // get the "pointed to" types
5269  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
5270  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
5271
5272  if (!LHSOPT || !RHSOPT)
5273    return false;
5274
5275  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
5276         canAssignObjCInterfaces(RHSOPT, LHSOPT);
5277}
5278
5279bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
5280  return canAssignObjCInterfaces(
5281                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
5282                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
5283}
5284
5285/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
5286/// both shall have the identically qualified version of a compatible type.
5287/// C99 6.2.7p1: Two types have compatible types if their types are the
5288/// same. See 6.7.[2,3,5] for additional rules.
5289bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
5290                                    bool CompareUnqualified) {
5291  if (getLangOptions().CPlusPlus)
5292    return hasSameType(LHS, RHS);
5293
5294  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
5295}
5296
5297bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
5298  return !mergeTypes(LHS, RHS, true).isNull();
5299}
5300
5301/// mergeTransparentUnionType - if T is a transparent union type and a member
5302/// of T is compatible with SubType, return the merged type, else return
5303/// QualType()
5304QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
5305                                               bool OfBlockPointer,
5306                                               bool Unqualified) {
5307  if (const RecordType *UT = T->getAsUnionType()) {
5308    RecordDecl *UD = UT->getDecl();
5309    if (UD->hasAttr<TransparentUnionAttr>()) {
5310      for (RecordDecl::field_iterator it = UD->field_begin(),
5311           itend = UD->field_end(); it != itend; ++it) {
5312        QualType ET = it->getType().getUnqualifiedType();
5313        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
5314        if (!MT.isNull())
5315          return MT;
5316      }
5317    }
5318  }
5319
5320  return QualType();
5321}
5322
5323/// mergeFunctionArgumentTypes - merge two types which appear as function
5324/// argument types
5325QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
5326                                                bool OfBlockPointer,
5327                                                bool Unqualified) {
5328  // GNU extension: two types are compatible if they appear as a function
5329  // argument, one of the types is a transparent union type and the other
5330  // type is compatible with a union member
5331  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
5332                                              Unqualified);
5333  if (!lmerge.isNull())
5334    return lmerge;
5335
5336  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
5337                                              Unqualified);
5338  if (!rmerge.isNull())
5339    return rmerge;
5340
5341  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
5342}
5343
5344QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
5345                                        bool OfBlockPointer,
5346                                        bool Unqualified) {
5347  const FunctionType *lbase = lhs->getAs<FunctionType>();
5348  const FunctionType *rbase = rhs->getAs<FunctionType>();
5349  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
5350  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
5351  bool allLTypes = true;
5352  bool allRTypes = true;
5353
5354  // Check return type
5355  QualType retType;
5356  if (OfBlockPointer) {
5357    QualType RHS = rbase->getResultType();
5358    QualType LHS = lbase->getResultType();
5359    bool UnqualifiedResult = Unqualified;
5360    if (!UnqualifiedResult)
5361      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
5362    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
5363  }
5364  else
5365    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
5366                         Unqualified);
5367  if (retType.isNull()) return QualType();
5368
5369  if (Unqualified)
5370    retType = retType.getUnqualifiedType();
5371
5372  CanQualType LRetType = getCanonicalType(lbase->getResultType());
5373  CanQualType RRetType = getCanonicalType(rbase->getResultType());
5374  if (Unqualified) {
5375    LRetType = LRetType.getUnqualifiedType();
5376    RRetType = RRetType.getUnqualifiedType();
5377  }
5378
5379  if (getCanonicalType(retType) != LRetType)
5380    allLTypes = false;
5381  if (getCanonicalType(retType) != RRetType)
5382    allRTypes = false;
5383
5384  // FIXME: double check this
5385  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
5386  //                           rbase->getRegParmAttr() != 0 &&
5387  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
5388  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
5389  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
5390
5391  // Compatible functions must have compatible calling conventions
5392  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
5393    return QualType();
5394
5395  // Regparm is part of the calling convention.
5396  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
5397    return QualType();
5398  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
5399    return QualType();
5400
5401  // It's noreturn if either type is.
5402  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
5403  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
5404  if (NoReturn != lbaseInfo.getNoReturn())
5405    allLTypes = false;
5406  if (NoReturn != rbaseInfo.getNoReturn())
5407    allRTypes = false;
5408
5409  FunctionType::ExtInfo einfo(NoReturn,
5410                              lbaseInfo.getHasRegParm(),
5411                              lbaseInfo.getRegParm(),
5412                              lbaseInfo.getCC());
5413
5414  if (lproto && rproto) { // two C99 style function prototypes
5415    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
5416           "C++ shouldn't be here");
5417    unsigned lproto_nargs = lproto->getNumArgs();
5418    unsigned rproto_nargs = rproto->getNumArgs();
5419
5420    // Compatible functions must have the same number of arguments
5421    if (lproto_nargs != rproto_nargs)
5422      return QualType();
5423
5424    // Variadic and non-variadic functions aren't compatible
5425    if (lproto->isVariadic() != rproto->isVariadic())
5426      return QualType();
5427
5428    if (lproto->getTypeQuals() != rproto->getTypeQuals())
5429      return QualType();
5430
5431    // Check argument compatibility
5432    llvm::SmallVector<QualType, 10> types;
5433    for (unsigned i = 0; i < lproto_nargs; i++) {
5434      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
5435      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
5436      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
5437                                                    OfBlockPointer,
5438                                                    Unqualified);
5439      if (argtype.isNull()) return QualType();
5440
5441      if (Unqualified)
5442        argtype = argtype.getUnqualifiedType();
5443
5444      types.push_back(argtype);
5445      if (Unqualified) {
5446        largtype = largtype.getUnqualifiedType();
5447        rargtype = rargtype.getUnqualifiedType();
5448      }
5449
5450      if (getCanonicalType(argtype) != getCanonicalType(largtype))
5451        allLTypes = false;
5452      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
5453        allRTypes = false;
5454    }
5455    if (allLTypes) return lhs;
5456    if (allRTypes) return rhs;
5457
5458    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
5459    EPI.ExtInfo = einfo;
5460    return getFunctionType(retType, types.begin(), types.size(), EPI);
5461  }
5462
5463  if (lproto) allRTypes = false;
5464  if (rproto) allLTypes = false;
5465
5466  const FunctionProtoType *proto = lproto ? lproto : rproto;
5467  if (proto) {
5468    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
5469    if (proto->isVariadic()) return QualType();
5470    // Check that the types are compatible with the types that
5471    // would result from default argument promotions (C99 6.7.5.3p15).
5472    // The only types actually affected are promotable integer
5473    // types and floats, which would be passed as a different
5474    // type depending on whether the prototype is visible.
5475    unsigned proto_nargs = proto->getNumArgs();
5476    for (unsigned i = 0; i < proto_nargs; ++i) {
5477      QualType argTy = proto->getArgType(i);
5478
5479      // Look at the promotion type of enum types, since that is the type used
5480      // to pass enum values.
5481      if (const EnumType *Enum = argTy->getAs<EnumType>())
5482        argTy = Enum->getDecl()->getPromotionType();
5483
5484      if (argTy->isPromotableIntegerType() ||
5485          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
5486        return QualType();
5487    }
5488
5489    if (allLTypes) return lhs;
5490    if (allRTypes) return rhs;
5491
5492    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
5493    EPI.ExtInfo = einfo;
5494    return getFunctionType(retType, proto->arg_type_begin(),
5495                           proto->getNumArgs(), EPI);
5496  }
5497
5498  if (allLTypes) return lhs;
5499  if (allRTypes) return rhs;
5500  return getFunctionNoProtoType(retType, einfo);
5501}
5502
5503QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
5504                                bool OfBlockPointer,
5505                                bool Unqualified, bool BlockReturnType) {
5506  // C++ [expr]: If an expression initially has the type "reference to T", the
5507  // type is adjusted to "T" prior to any further analysis, the expression
5508  // designates the object or function denoted by the reference, and the
5509  // expression is an lvalue unless the reference is an rvalue reference and
5510  // the expression is a function call (possibly inside parentheses).
5511  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
5512  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
5513
5514  if (Unqualified) {
5515    LHS = LHS.getUnqualifiedType();
5516    RHS = RHS.getUnqualifiedType();
5517  }
5518
5519  QualType LHSCan = getCanonicalType(LHS),
5520           RHSCan = getCanonicalType(RHS);
5521
5522  // If two types are identical, they are compatible.
5523  if (LHSCan == RHSCan)
5524    return LHS;
5525
5526  // If the qualifiers are different, the types aren't compatible... mostly.
5527  Qualifiers LQuals = LHSCan.getLocalQualifiers();
5528  Qualifiers RQuals = RHSCan.getLocalQualifiers();
5529  if (LQuals != RQuals) {
5530    // If any of these qualifiers are different, we have a type
5531    // mismatch.
5532    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
5533        LQuals.getAddressSpace() != RQuals.getAddressSpace())
5534      return QualType();
5535
5536    // Exactly one GC qualifier difference is allowed: __strong is
5537    // okay if the other type has no GC qualifier but is an Objective
5538    // C object pointer (i.e. implicitly strong by default).  We fix
5539    // this by pretending that the unqualified type was actually
5540    // qualified __strong.
5541    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
5542    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
5543    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
5544
5545    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
5546      return QualType();
5547
5548    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
5549      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
5550    }
5551    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
5552      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
5553    }
5554    return QualType();
5555  }
5556
5557  // Okay, qualifiers are equal.
5558
5559  Type::TypeClass LHSClass = LHSCan->getTypeClass();
5560  Type::TypeClass RHSClass = RHSCan->getTypeClass();
5561
5562  // We want to consider the two function types to be the same for these
5563  // comparisons, just force one to the other.
5564  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
5565  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
5566
5567  // Same as above for arrays
5568  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
5569    LHSClass = Type::ConstantArray;
5570  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
5571    RHSClass = Type::ConstantArray;
5572
5573  // ObjCInterfaces are just specialized ObjCObjects.
5574  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
5575  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
5576
5577  // Canonicalize ExtVector -> Vector.
5578  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
5579  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
5580
5581  // If the canonical type classes don't match.
5582  if (LHSClass != RHSClass) {
5583    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
5584    // a signed integer type, or an unsigned integer type.
5585    // Compatibility is based on the underlying type, not the promotion
5586    // type.
5587    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
5588      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
5589        return RHS;
5590    }
5591    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
5592      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
5593        return LHS;
5594    }
5595
5596    return QualType();
5597  }
5598
5599  // The canonical type classes match.
5600  switch (LHSClass) {
5601#define TYPE(Class, Base)
5602#define ABSTRACT_TYPE(Class, Base)
5603#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
5604#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
5605#define DEPENDENT_TYPE(Class, Base) case Type::Class:
5606#include "clang/AST/TypeNodes.def"
5607    assert(false && "Non-canonical and dependent types shouldn't get here");
5608    return QualType();
5609
5610  case Type::LValueReference:
5611  case Type::RValueReference:
5612  case Type::MemberPointer:
5613    assert(false && "C++ should never be in mergeTypes");
5614    return QualType();
5615
5616  case Type::ObjCInterface:
5617  case Type::IncompleteArray:
5618  case Type::VariableArray:
5619  case Type::FunctionProto:
5620  case Type::ExtVector:
5621    assert(false && "Types are eliminated above");
5622    return QualType();
5623
5624  case Type::Pointer:
5625  {
5626    // Merge two pointer types, while trying to preserve typedef info
5627    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
5628    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
5629    if (Unqualified) {
5630      LHSPointee = LHSPointee.getUnqualifiedType();
5631      RHSPointee = RHSPointee.getUnqualifiedType();
5632    }
5633    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
5634                                     Unqualified);
5635    if (ResultType.isNull()) return QualType();
5636    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5637      return LHS;
5638    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5639      return RHS;
5640    return getPointerType(ResultType);
5641  }
5642  case Type::BlockPointer:
5643  {
5644    // Merge two block pointer types, while trying to preserve typedef info
5645    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
5646    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
5647    if (Unqualified) {
5648      LHSPointee = LHSPointee.getUnqualifiedType();
5649      RHSPointee = RHSPointee.getUnqualifiedType();
5650    }
5651    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
5652                                     Unqualified);
5653    if (ResultType.isNull()) return QualType();
5654    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5655      return LHS;
5656    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5657      return RHS;
5658    return getBlockPointerType(ResultType);
5659  }
5660  case Type::ConstantArray:
5661  {
5662    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
5663    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
5664    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
5665      return QualType();
5666
5667    QualType LHSElem = getAsArrayType(LHS)->getElementType();
5668    QualType RHSElem = getAsArrayType(RHS)->getElementType();
5669    if (Unqualified) {
5670      LHSElem = LHSElem.getUnqualifiedType();
5671      RHSElem = RHSElem.getUnqualifiedType();
5672    }
5673
5674    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
5675    if (ResultType.isNull()) return QualType();
5676    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
5677      return LHS;
5678    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
5679      return RHS;
5680    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
5681                                          ArrayType::ArraySizeModifier(), 0);
5682    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
5683                                          ArrayType::ArraySizeModifier(), 0);
5684    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
5685    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
5686    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
5687      return LHS;
5688    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
5689      return RHS;
5690    if (LVAT) {
5691      // FIXME: This isn't correct! But tricky to implement because
5692      // the array's size has to be the size of LHS, but the type
5693      // has to be different.
5694      return LHS;
5695    }
5696    if (RVAT) {
5697      // FIXME: This isn't correct! But tricky to implement because
5698      // the array's size has to be the size of RHS, but the type
5699      // has to be different.
5700      return RHS;
5701    }
5702    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
5703    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
5704    return getIncompleteArrayType(ResultType,
5705                                  ArrayType::ArraySizeModifier(), 0);
5706  }
5707  case Type::FunctionNoProto:
5708    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
5709  case Type::Record:
5710  case Type::Enum:
5711    return QualType();
5712  case Type::Builtin:
5713    // Only exactly equal builtin types are compatible, which is tested above.
5714    return QualType();
5715  case Type::Complex:
5716    // Distinct complex types are incompatible.
5717    return QualType();
5718  case Type::Vector:
5719    // FIXME: The merged type should be an ExtVector!
5720    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
5721                             RHSCan->getAs<VectorType>()))
5722      return LHS;
5723    return QualType();
5724  case Type::ObjCObject: {
5725    // Check if the types are assignment compatible.
5726    // FIXME: This should be type compatibility, e.g. whether
5727    // "LHS x; RHS x;" at global scope is legal.
5728    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
5729    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
5730    if (canAssignObjCInterfaces(LHSIface, RHSIface))
5731      return LHS;
5732
5733    return QualType();
5734  }
5735  case Type::ObjCObjectPointer: {
5736    if (OfBlockPointer) {
5737      if (canAssignObjCInterfacesInBlockPointer(
5738                                          LHS->getAs<ObjCObjectPointerType>(),
5739                                          RHS->getAs<ObjCObjectPointerType>(),
5740                                          BlockReturnType))
5741      return LHS;
5742      return QualType();
5743    }
5744    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
5745                                RHS->getAs<ObjCObjectPointerType>()))
5746      return LHS;
5747
5748    return QualType();
5749    }
5750  }
5751
5752  return QualType();
5753}
5754
5755/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
5756/// 'RHS' attributes and returns the merged version; including for function
5757/// return types.
5758QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
5759  QualType LHSCan = getCanonicalType(LHS),
5760  RHSCan = getCanonicalType(RHS);
5761  // If two types are identical, they are compatible.
5762  if (LHSCan == RHSCan)
5763    return LHS;
5764  if (RHSCan->isFunctionType()) {
5765    if (!LHSCan->isFunctionType())
5766      return QualType();
5767    QualType OldReturnType =
5768      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
5769    QualType NewReturnType =
5770      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
5771    QualType ResReturnType =
5772      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
5773    if (ResReturnType.isNull())
5774      return QualType();
5775    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
5776      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
5777      // In either case, use OldReturnType to build the new function type.
5778      const FunctionType *F = LHS->getAs<FunctionType>();
5779      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
5780        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5781        EPI.ExtInfo = getFunctionExtInfo(LHS);
5782        QualType ResultType
5783          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
5784                            FPT->getNumArgs(), EPI);
5785        return ResultType;
5786      }
5787    }
5788    return QualType();
5789  }
5790
5791  // If the qualifiers are different, the types can still be merged.
5792  Qualifiers LQuals = LHSCan.getLocalQualifiers();
5793  Qualifiers RQuals = RHSCan.getLocalQualifiers();
5794  if (LQuals != RQuals) {
5795    // If any of these qualifiers are different, we have a type mismatch.
5796    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
5797        LQuals.getAddressSpace() != RQuals.getAddressSpace())
5798      return QualType();
5799
5800    // Exactly one GC qualifier difference is allowed: __strong is
5801    // okay if the other type has no GC qualifier but is an Objective
5802    // C object pointer (i.e. implicitly strong by default).  We fix
5803    // this by pretending that the unqualified type was actually
5804    // qualified __strong.
5805    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
5806    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
5807    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
5808
5809    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
5810      return QualType();
5811
5812    if (GC_L == Qualifiers::Strong)
5813      return LHS;
5814    if (GC_R == Qualifiers::Strong)
5815      return RHS;
5816    return QualType();
5817  }
5818
5819  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
5820    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
5821    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
5822    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
5823    if (ResQT == LHSBaseQT)
5824      return LHS;
5825    if (ResQT == RHSBaseQT)
5826      return RHS;
5827  }
5828  return QualType();
5829}
5830
5831//===----------------------------------------------------------------------===//
5832//                         Integer Predicates
5833//===----------------------------------------------------------------------===//
5834
5835unsigned ASTContext::getIntWidth(QualType T) const {
5836  if (const EnumType *ET = dyn_cast<EnumType>(T))
5837    T = ET->getDecl()->getIntegerType();
5838  if (T->isBooleanType())
5839    return 1;
5840  // For builtin types, just use the standard type sizing method
5841  return (unsigned)getTypeSize(T);
5842}
5843
5844QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
5845  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
5846
5847  // Turn <4 x signed int> -> <4 x unsigned int>
5848  if (const VectorType *VTy = T->getAs<VectorType>())
5849    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
5850                         VTy->getNumElements(), VTy->getVectorKind());
5851
5852  // For enums, we return the unsigned version of the base type.
5853  if (const EnumType *ETy = T->getAs<EnumType>())
5854    T = ETy->getDecl()->getIntegerType();
5855
5856  const BuiltinType *BTy = T->getAs<BuiltinType>();
5857  assert(BTy && "Unexpected signed integer type");
5858  switch (BTy->getKind()) {
5859  case BuiltinType::Char_S:
5860  case BuiltinType::SChar:
5861    return UnsignedCharTy;
5862  case BuiltinType::Short:
5863    return UnsignedShortTy;
5864  case BuiltinType::Int:
5865    return UnsignedIntTy;
5866  case BuiltinType::Long:
5867    return UnsignedLongTy;
5868  case BuiltinType::LongLong:
5869    return UnsignedLongLongTy;
5870  case BuiltinType::Int128:
5871    return UnsignedInt128Ty;
5872  default:
5873    assert(0 && "Unexpected signed integer type");
5874    return QualType();
5875  }
5876}
5877
5878ASTMutationListener::~ASTMutationListener() { }
5879
5880
5881//===----------------------------------------------------------------------===//
5882//                          Builtin Type Computation
5883//===----------------------------------------------------------------------===//
5884
5885/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
5886/// pointer over the consumed characters.  This returns the resultant type.  If
5887/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
5888/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
5889/// a vector of "i*".
5890///
5891/// RequiresICE is filled in on return to indicate whether the value is required
5892/// to be an Integer Constant Expression.
5893static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
5894                                  ASTContext::GetBuiltinTypeError &Error,
5895                                  bool &RequiresICE,
5896                                  bool AllowTypeModifiers) {
5897  // Modifiers.
5898  int HowLong = 0;
5899  bool Signed = false, Unsigned = false;
5900  RequiresICE = false;
5901
5902  // Read the prefixed modifiers first.
5903  bool Done = false;
5904  while (!Done) {
5905    switch (*Str++) {
5906    default: Done = true; --Str; break;
5907    case 'I':
5908      RequiresICE = true;
5909      break;
5910    case 'S':
5911      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
5912      assert(!Signed && "Can't use 'S' modifier multiple times!");
5913      Signed = true;
5914      break;
5915    case 'U':
5916      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
5917      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
5918      Unsigned = true;
5919      break;
5920    case 'L':
5921      assert(HowLong <= 2 && "Can't have LLLL modifier");
5922      ++HowLong;
5923      break;
5924    }
5925  }
5926
5927  QualType Type;
5928
5929  // Read the base type.
5930  switch (*Str++) {
5931  default: assert(0 && "Unknown builtin type letter!");
5932  case 'v':
5933    assert(HowLong == 0 && !Signed && !Unsigned &&
5934           "Bad modifiers used with 'v'!");
5935    Type = Context.VoidTy;
5936    break;
5937  case 'f':
5938    assert(HowLong == 0 && !Signed && !Unsigned &&
5939           "Bad modifiers used with 'f'!");
5940    Type = Context.FloatTy;
5941    break;
5942  case 'd':
5943    assert(HowLong < 2 && !Signed && !Unsigned &&
5944           "Bad modifiers used with 'd'!");
5945    if (HowLong)
5946      Type = Context.LongDoubleTy;
5947    else
5948      Type = Context.DoubleTy;
5949    break;
5950  case 's':
5951    assert(HowLong == 0 && "Bad modifiers used with 's'!");
5952    if (Unsigned)
5953      Type = Context.UnsignedShortTy;
5954    else
5955      Type = Context.ShortTy;
5956    break;
5957  case 'i':
5958    if (HowLong == 3)
5959      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
5960    else if (HowLong == 2)
5961      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
5962    else if (HowLong == 1)
5963      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
5964    else
5965      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
5966    break;
5967  case 'c':
5968    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
5969    if (Signed)
5970      Type = Context.SignedCharTy;
5971    else if (Unsigned)
5972      Type = Context.UnsignedCharTy;
5973    else
5974      Type = Context.CharTy;
5975    break;
5976  case 'b': // boolean
5977    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
5978    Type = Context.BoolTy;
5979    break;
5980  case 'z':  // size_t.
5981    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
5982    Type = Context.getSizeType();
5983    break;
5984  case 'F':
5985    Type = Context.getCFConstantStringType();
5986    break;
5987  case 'G':
5988    Type = Context.getObjCIdType();
5989    break;
5990  case 'H':
5991    Type = Context.getObjCSelType();
5992    break;
5993  case 'a':
5994    Type = Context.getBuiltinVaListType();
5995    assert(!Type.isNull() && "builtin va list type not initialized!");
5996    break;
5997  case 'A':
5998    // This is a "reference" to a va_list; however, what exactly
5999    // this means depends on how va_list is defined. There are two
6000    // different kinds of va_list: ones passed by value, and ones
6001    // passed by reference.  An example of a by-value va_list is
6002    // x86, where va_list is a char*. An example of by-ref va_list
6003    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
6004    // we want this argument to be a char*&; for x86-64, we want
6005    // it to be a __va_list_tag*.
6006    Type = Context.getBuiltinVaListType();
6007    assert(!Type.isNull() && "builtin va list type not initialized!");
6008    if (Type->isArrayType())
6009      Type = Context.getArrayDecayedType(Type);
6010    else
6011      Type = Context.getLValueReferenceType(Type);
6012    break;
6013  case 'V': {
6014    char *End;
6015    unsigned NumElements = strtoul(Str, &End, 10);
6016    assert(End != Str && "Missing vector size");
6017    Str = End;
6018
6019    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
6020                                             RequiresICE, false);
6021    assert(!RequiresICE && "Can't require vector ICE");
6022
6023    // TODO: No way to make AltiVec vectors in builtins yet.
6024    Type = Context.getVectorType(ElementType, NumElements,
6025                                 VectorType::GenericVector);
6026    break;
6027  }
6028  case 'X': {
6029    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
6030                                             false);
6031    assert(!RequiresICE && "Can't require complex ICE");
6032    Type = Context.getComplexType(ElementType);
6033    break;
6034  }
6035  case 'P':
6036    Type = Context.getFILEType();
6037    if (Type.isNull()) {
6038      Error = ASTContext::GE_Missing_stdio;
6039      return QualType();
6040    }
6041    break;
6042  case 'J':
6043    if (Signed)
6044      Type = Context.getsigjmp_bufType();
6045    else
6046      Type = Context.getjmp_bufType();
6047
6048    if (Type.isNull()) {
6049      Error = ASTContext::GE_Missing_setjmp;
6050      return QualType();
6051    }
6052    break;
6053  }
6054
6055  // If there are modifiers and if we're allowed to parse them, go for it.
6056  Done = !AllowTypeModifiers;
6057  while (!Done) {
6058    switch (char c = *Str++) {
6059    default: Done = true; --Str; break;
6060    case '*':
6061    case '&': {
6062      // Both pointers and references can have their pointee types
6063      // qualified with an address space.
6064      char *End;
6065      unsigned AddrSpace = strtoul(Str, &End, 10);
6066      if (End != Str && AddrSpace != 0) {
6067        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
6068        Str = End;
6069      }
6070      if (c == '*')
6071        Type = Context.getPointerType(Type);
6072      else
6073        Type = Context.getLValueReferenceType(Type);
6074      break;
6075    }
6076    // FIXME: There's no way to have a built-in with an rvalue ref arg.
6077    case 'C':
6078      Type = Type.withConst();
6079      break;
6080    case 'D':
6081      Type = Context.getVolatileType(Type);
6082      break;
6083    }
6084  }
6085
6086  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
6087         "Integer constant 'I' type must be an integer");
6088
6089  return Type;
6090}
6091
6092/// GetBuiltinType - Return the type for the specified builtin.
6093QualType ASTContext::GetBuiltinType(unsigned Id,
6094                                    GetBuiltinTypeError &Error,
6095                                    unsigned *IntegerConstantArgs) const {
6096  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
6097
6098  llvm::SmallVector<QualType, 8> ArgTypes;
6099
6100  bool RequiresICE = false;
6101  Error = GE_None;
6102  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
6103                                       RequiresICE, true);
6104  if (Error != GE_None)
6105    return QualType();
6106
6107  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
6108
6109  while (TypeStr[0] && TypeStr[0] != '.') {
6110    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
6111    if (Error != GE_None)
6112      return QualType();
6113
6114    // If this argument is required to be an IntegerConstantExpression and the
6115    // caller cares, fill in the bitmask we return.
6116    if (RequiresICE && IntegerConstantArgs)
6117      *IntegerConstantArgs |= 1 << ArgTypes.size();
6118
6119    // Do array -> pointer decay.  The builtin should use the decayed type.
6120    if (Ty->isArrayType())
6121      Ty = getArrayDecayedType(Ty);
6122
6123    ArgTypes.push_back(Ty);
6124  }
6125
6126  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
6127         "'.' should only occur at end of builtin type list!");
6128
6129  FunctionType::ExtInfo EI;
6130  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
6131
6132  bool Variadic = (TypeStr[0] == '.');
6133
6134  // We really shouldn't be making a no-proto type here, especially in C++.
6135  if (ArgTypes.empty() && Variadic)
6136    return getFunctionNoProtoType(ResType, EI);
6137
6138  FunctionProtoType::ExtProtoInfo EPI;
6139  EPI.ExtInfo = EI;
6140  EPI.Variadic = Variadic;
6141
6142  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
6143}
6144
6145GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
6146  GVALinkage External = GVA_StrongExternal;
6147
6148  Linkage L = FD->getLinkage();
6149  switch (L) {
6150  case NoLinkage:
6151  case InternalLinkage:
6152  case UniqueExternalLinkage:
6153    return GVA_Internal;
6154
6155  case ExternalLinkage:
6156    switch (FD->getTemplateSpecializationKind()) {
6157    case TSK_Undeclared:
6158    case TSK_ExplicitSpecialization:
6159      External = GVA_StrongExternal;
6160      break;
6161
6162    case TSK_ExplicitInstantiationDefinition:
6163      return GVA_ExplicitTemplateInstantiation;
6164
6165    case TSK_ExplicitInstantiationDeclaration:
6166    case TSK_ImplicitInstantiation:
6167      External = GVA_TemplateInstantiation;
6168      break;
6169    }
6170  }
6171
6172  if (!FD->isInlined())
6173    return External;
6174
6175  if (!getLangOptions().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
6176    // GNU or C99 inline semantics. Determine whether this symbol should be
6177    // externally visible.
6178    if (FD->isInlineDefinitionExternallyVisible())
6179      return External;
6180
6181    // C99 inline semantics, where the symbol is not externally visible.
6182    return GVA_C99Inline;
6183  }
6184
6185  // C++0x [temp.explicit]p9:
6186  //   [ Note: The intent is that an inline function that is the subject of
6187  //   an explicit instantiation declaration will still be implicitly
6188  //   instantiated when used so that the body can be considered for
6189  //   inlining, but that no out-of-line copy of the inline function would be
6190  //   generated in the translation unit. -- end note ]
6191  if (FD->getTemplateSpecializationKind()
6192                                       == TSK_ExplicitInstantiationDeclaration)
6193    return GVA_C99Inline;
6194
6195  return GVA_CXXInline;
6196}
6197
6198GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
6199  // If this is a static data member, compute the kind of template
6200  // specialization. Otherwise, this variable is not part of a
6201  // template.
6202  TemplateSpecializationKind TSK = TSK_Undeclared;
6203  if (VD->isStaticDataMember())
6204    TSK = VD->getTemplateSpecializationKind();
6205
6206  Linkage L = VD->getLinkage();
6207  if (L == ExternalLinkage && getLangOptions().CPlusPlus &&
6208      VD->getType()->getLinkage() == UniqueExternalLinkage)
6209    L = UniqueExternalLinkage;
6210
6211  switch (L) {
6212  case NoLinkage:
6213  case InternalLinkage:
6214  case UniqueExternalLinkage:
6215    return GVA_Internal;
6216
6217  case ExternalLinkage:
6218    switch (TSK) {
6219    case TSK_Undeclared:
6220    case TSK_ExplicitSpecialization:
6221      return GVA_StrongExternal;
6222
6223    case TSK_ExplicitInstantiationDeclaration:
6224      llvm_unreachable("Variable should not be instantiated");
6225      // Fall through to treat this like any other instantiation.
6226
6227    case TSK_ExplicitInstantiationDefinition:
6228      return GVA_ExplicitTemplateInstantiation;
6229
6230    case TSK_ImplicitInstantiation:
6231      return GVA_TemplateInstantiation;
6232    }
6233  }
6234
6235  return GVA_StrongExternal;
6236}
6237
6238bool ASTContext::DeclMustBeEmitted(const Decl *D) {
6239  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
6240    if (!VD->isFileVarDecl())
6241      return false;
6242  } else if (!isa<FunctionDecl>(D))
6243    return false;
6244
6245  // Weak references don't produce any output by themselves.
6246  if (D->hasAttr<WeakRefAttr>())
6247    return false;
6248
6249  // Aliases and used decls are required.
6250  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
6251    return true;
6252
6253  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6254    // Forward declarations aren't required.
6255    if (!FD->doesThisDeclarationHaveABody())
6256      return false;
6257
6258    // Constructors and destructors are required.
6259    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
6260      return true;
6261
6262    // The key function for a class is required.
6263    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
6264      const CXXRecordDecl *RD = MD->getParent();
6265      if (MD->isOutOfLine() && RD->isDynamicClass()) {
6266        const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
6267        if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
6268          return true;
6269      }
6270    }
6271
6272    GVALinkage Linkage = GetGVALinkageForFunction(FD);
6273
6274    // static, static inline, always_inline, and extern inline functions can
6275    // always be deferred.  Normal inline functions can be deferred in C99/C++.
6276    // Implicit template instantiations can also be deferred in C++.
6277    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
6278        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
6279      return false;
6280    return true;
6281  }
6282
6283  const VarDecl *VD = cast<VarDecl>(D);
6284  assert(VD->isFileVarDecl() && "Expected file scoped var");
6285
6286  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
6287    return false;
6288
6289  // Structs that have non-trivial constructors or destructors are required.
6290
6291  // FIXME: Handle references.
6292  // FIXME: Be more selective about which constructors we care about.
6293  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
6294    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
6295      if (RD->hasDefinition() && !(RD->hasTrivialDefaultConstructor() &&
6296                                   RD->hasTrivialCopyConstructor() &&
6297                                   RD->hasTrivialMoveConstructor() &&
6298                                   RD->hasTrivialDestructor()))
6299        return true;
6300    }
6301  }
6302
6303  GVALinkage L = GetGVALinkageForVariable(VD);
6304  if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
6305    if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
6306      return false;
6307  }
6308
6309  return true;
6310}
6311
6312CallingConv ASTContext::getDefaultMethodCallConv() {
6313  // Pass through to the C++ ABI object
6314  return ABI->getDefaultMethodCallConv();
6315}
6316
6317bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
6318  // Pass through to the C++ ABI object
6319  return ABI->isNearlyEmpty(RD);
6320}
6321
6322MangleContext *ASTContext::createMangleContext() {
6323  switch (Target.getCXXABI()) {
6324  case CXXABI_ARM:
6325  case CXXABI_Itanium:
6326    return createItaniumMangleContext(*this, getDiagnostics());
6327  case CXXABI_Microsoft:
6328    return createMicrosoftMangleContext(*this, getDiagnostics());
6329  }
6330  assert(0 && "Unsupported ABI");
6331  return 0;
6332}
6333
6334CXXABI::~CXXABI() {}
6335
6336size_t ASTContext::getSideTableAllocatedMemory() const {
6337  size_t bytes = 0;
6338  bytes += ASTRecordLayouts.getMemorySize();
6339  bytes += ObjCLayouts.getMemorySize();
6340  bytes += KeyFunctions.getMemorySize();
6341  bytes += ObjCImpls.getMemorySize();
6342  bytes += BlockVarCopyInits.getMemorySize();
6343  bytes += DeclAttrs.getMemorySize();
6344  bytes += InstantiatedFromStaticDataMember.getMemorySize();
6345  bytes += InstantiatedFromUsingDecl.getMemorySize();
6346  bytes += InstantiatedFromUsingShadowDecl.getMemorySize();
6347  bytes += InstantiatedFromUnnamedFieldDecl.getMemorySize();
6348  return bytes;
6349}
6350
6351