ASTContext.cpp revision 0d4cb85130d91da61c45aecb9fd31c7097a7cfcc
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExternalASTSource.h"
23#include "clang/AST/ASTMutationListener.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/Mangle.h"
26#include "clang/Basic/Builtins.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/TargetInfo.h"
29#include "llvm/ADT/SmallString.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/Support/MathExtras.h"
32#include "llvm/Support/raw_ostream.h"
33#include "llvm/Support/Capacity.h"
34#include "CXXABI.h"
35#include <map>
36
37using namespace clang;
38
39unsigned ASTContext::NumImplicitDefaultConstructors;
40unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
41unsigned ASTContext::NumImplicitCopyConstructors;
42unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
43unsigned ASTContext::NumImplicitMoveConstructors;
44unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
45unsigned ASTContext::NumImplicitCopyAssignmentOperators;
46unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
47unsigned ASTContext::NumImplicitMoveAssignmentOperators;
48unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
49unsigned ASTContext::NumImplicitDestructors;
50unsigned ASTContext::NumImplicitDestructorsDeclared;
51
52enum FloatingRank {
53  HalfRank, FloatRank, DoubleRank, LongDoubleRank
54};
55
56void
57ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
58                                               TemplateTemplateParmDecl *Parm) {
59  ID.AddInteger(Parm->getDepth());
60  ID.AddInteger(Parm->getPosition());
61  ID.AddBoolean(Parm->isParameterPack());
62
63  TemplateParameterList *Params = Parm->getTemplateParameters();
64  ID.AddInteger(Params->size());
65  for (TemplateParameterList::const_iterator P = Params->begin(),
66                                          PEnd = Params->end();
67       P != PEnd; ++P) {
68    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
69      ID.AddInteger(0);
70      ID.AddBoolean(TTP->isParameterPack());
71      continue;
72    }
73
74    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
75      ID.AddInteger(1);
76      ID.AddBoolean(NTTP->isParameterPack());
77      ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
78      if (NTTP->isExpandedParameterPack()) {
79        ID.AddBoolean(true);
80        ID.AddInteger(NTTP->getNumExpansionTypes());
81        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
82          QualType T = NTTP->getExpansionType(I);
83          ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
84        }
85      } else
86        ID.AddBoolean(false);
87      continue;
88    }
89
90    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
91    ID.AddInteger(2);
92    Profile(ID, TTP);
93  }
94}
95
96TemplateTemplateParmDecl *
97ASTContext::getCanonicalTemplateTemplateParmDecl(
98                                          TemplateTemplateParmDecl *TTP) const {
99  // Check if we already have a canonical template template parameter.
100  llvm::FoldingSetNodeID ID;
101  CanonicalTemplateTemplateParm::Profile(ID, TTP);
102  void *InsertPos = 0;
103  CanonicalTemplateTemplateParm *Canonical
104    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
105  if (Canonical)
106    return Canonical->getParam();
107
108  // Build a canonical template parameter list.
109  TemplateParameterList *Params = TTP->getTemplateParameters();
110  SmallVector<NamedDecl *, 4> CanonParams;
111  CanonParams.reserve(Params->size());
112  for (TemplateParameterList::const_iterator P = Params->begin(),
113                                          PEnd = Params->end();
114       P != PEnd; ++P) {
115    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
116      CanonParams.push_back(
117                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
118                                               SourceLocation(),
119                                               SourceLocation(),
120                                               TTP->getDepth(),
121                                               TTP->getIndex(), 0, false,
122                                               TTP->isParameterPack()));
123    else if (NonTypeTemplateParmDecl *NTTP
124             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
125      QualType T = getCanonicalType(NTTP->getType());
126      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
127      NonTypeTemplateParmDecl *Param;
128      if (NTTP->isExpandedParameterPack()) {
129        SmallVector<QualType, 2> ExpandedTypes;
130        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
131        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
132          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
133          ExpandedTInfos.push_back(
134                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
135        }
136
137        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
138                                                SourceLocation(),
139                                                SourceLocation(),
140                                                NTTP->getDepth(),
141                                                NTTP->getPosition(), 0,
142                                                T,
143                                                TInfo,
144                                                ExpandedTypes.data(),
145                                                ExpandedTypes.size(),
146                                                ExpandedTInfos.data());
147      } else {
148        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
149                                                SourceLocation(),
150                                                SourceLocation(),
151                                                NTTP->getDepth(),
152                                                NTTP->getPosition(), 0,
153                                                T,
154                                                NTTP->isParameterPack(),
155                                                TInfo);
156      }
157      CanonParams.push_back(Param);
158
159    } else
160      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
161                                           cast<TemplateTemplateParmDecl>(*P)));
162  }
163
164  TemplateTemplateParmDecl *CanonTTP
165    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
166                                       SourceLocation(), TTP->getDepth(),
167                                       TTP->getPosition(),
168                                       TTP->isParameterPack(),
169                                       0,
170                         TemplateParameterList::Create(*this, SourceLocation(),
171                                                       SourceLocation(),
172                                                       CanonParams.data(),
173                                                       CanonParams.size(),
174                                                       SourceLocation()));
175
176  // Get the new insert position for the node we care about.
177  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
178  assert(Canonical == 0 && "Shouldn't be in the map!");
179  (void)Canonical;
180
181  // Create the canonical template template parameter entry.
182  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
183  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
184  return CanonTTP;
185}
186
187CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
188  if (!LangOpts.CPlusPlus) return 0;
189
190  switch (T.getCXXABI()) {
191  case CXXABI_ARM:
192    return CreateARMCXXABI(*this);
193  case CXXABI_Itanium:
194    return CreateItaniumCXXABI(*this);
195  case CXXABI_Microsoft:
196    return CreateMicrosoftCXXABI(*this);
197  }
198  llvm_unreachable("Invalid CXXABI type!");
199}
200
201static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
202                                             const LangOptions &LOpts) {
203  if (LOpts.FakeAddressSpaceMap) {
204    // The fake address space map must have a distinct entry for each
205    // language-specific address space.
206    static const unsigned FakeAddrSpaceMap[] = {
207      1, // opencl_global
208      2, // opencl_local
209      3  // opencl_constant
210    };
211    return &FakeAddrSpaceMap;
212  } else {
213    return &T.getAddressSpaceMap();
214  }
215}
216
217ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
218                       const TargetInfo *t,
219                       IdentifierTable &idents, SelectorTable &sels,
220                       Builtin::Context &builtins,
221                       unsigned size_reserve,
222                       bool DelayInitialization)
223  : FunctionProtoTypes(this_()),
224    TemplateSpecializationTypes(this_()),
225    DependentTemplateSpecializationTypes(this_()),
226    SubstTemplateTemplateParmPacks(this_()),
227    GlobalNestedNameSpecifier(0),
228    Int128Decl(0), UInt128Decl(0),
229    ObjCIdDecl(0), ObjCSelDecl(0), ObjCClassDecl(0), ObjCProtocolClassDecl(0),
230    CFConstantStringTypeDecl(0), ObjCInstanceTypeDecl(0),
231    FILEDecl(0),
232    jmp_bufDecl(0), sigjmp_bufDecl(0), ucontext_tDecl(0),
233    BlockDescriptorType(0), BlockDescriptorExtendedType(0),
234    cudaConfigureCallDecl(0),
235    NullTypeSourceInfo(QualType()),
236    FirstLocalImport(), LastLocalImport(),
237    SourceMgr(SM), LangOpts(LOpts),
238    AddrSpaceMap(0), Target(t), PrintingPolicy(LOpts),
239    Idents(idents), Selectors(sels),
240    BuiltinInfo(builtins),
241    DeclarationNames(*this),
242    ExternalSource(0), Listener(0),
243    LastSDM(0, 0),
244    UniqueBlockByRefTypeID(0)
245{
246  if (size_reserve > 0) Types.reserve(size_reserve);
247  TUDecl = TranslationUnitDecl::Create(*this);
248
249  if (!DelayInitialization) {
250    assert(t && "No target supplied for ASTContext initialization");
251    InitBuiltinTypes(*t);
252  }
253}
254
255ASTContext::~ASTContext() {
256  // Release the DenseMaps associated with DeclContext objects.
257  // FIXME: Is this the ideal solution?
258  ReleaseDeclContextMaps();
259
260  // Call all of the deallocation functions.
261  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
262    Deallocations[I].first(Deallocations[I].second);
263
264  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
265  // because they can contain DenseMaps.
266  for (llvm::DenseMap<const ObjCContainerDecl*,
267       const ASTRecordLayout*>::iterator
268       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
269    // Increment in loop to prevent using deallocated memory.
270    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
271      R->Destroy(*this);
272
273  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
274       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
275    // Increment in loop to prevent using deallocated memory.
276    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
277      R->Destroy(*this);
278  }
279
280  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
281                                                    AEnd = DeclAttrs.end();
282       A != AEnd; ++A)
283    A->second->~AttrVec();
284}
285
286void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
287  Deallocations.push_back(std::make_pair(Callback, Data));
288}
289
290void
291ASTContext::setExternalSource(OwningPtr<ExternalASTSource> &Source) {
292  ExternalSource.reset(Source.take());
293}
294
295void ASTContext::PrintStats() const {
296  llvm::errs() << "\n*** AST Context Stats:\n";
297  llvm::errs() << "  " << Types.size() << " types total.\n";
298
299  unsigned counts[] = {
300#define TYPE(Name, Parent) 0,
301#define ABSTRACT_TYPE(Name, Parent)
302#include "clang/AST/TypeNodes.def"
303    0 // Extra
304  };
305
306  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
307    Type *T = Types[i];
308    counts[(unsigned)T->getTypeClass()]++;
309  }
310
311  unsigned Idx = 0;
312  unsigned TotalBytes = 0;
313#define TYPE(Name, Parent)                                              \
314  if (counts[Idx])                                                      \
315    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
316                 << " types\n";                                         \
317  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
318  ++Idx;
319#define ABSTRACT_TYPE(Name, Parent)
320#include "clang/AST/TypeNodes.def"
321
322  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
323
324  // Implicit special member functions.
325  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
326               << NumImplicitDefaultConstructors
327               << " implicit default constructors created\n";
328  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
329               << NumImplicitCopyConstructors
330               << " implicit copy constructors created\n";
331  if (getLangOpts().CPlusPlus)
332    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
333                 << NumImplicitMoveConstructors
334                 << " implicit move constructors created\n";
335  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
336               << NumImplicitCopyAssignmentOperators
337               << " implicit copy assignment operators created\n";
338  if (getLangOpts().CPlusPlus)
339    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
340                 << NumImplicitMoveAssignmentOperators
341                 << " implicit move assignment operators created\n";
342  llvm::errs() << NumImplicitDestructorsDeclared << "/"
343               << NumImplicitDestructors
344               << " implicit destructors created\n";
345
346  if (ExternalSource.get()) {
347    llvm::errs() << "\n";
348    ExternalSource->PrintStats();
349  }
350
351  BumpAlloc.PrintStats();
352}
353
354TypedefDecl *ASTContext::getInt128Decl() const {
355  if (!Int128Decl) {
356    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(Int128Ty);
357    Int128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
358                                     getTranslationUnitDecl(),
359                                     SourceLocation(),
360                                     SourceLocation(),
361                                     &Idents.get("__int128_t"),
362                                     TInfo);
363  }
364
365  return Int128Decl;
366}
367
368TypedefDecl *ASTContext::getUInt128Decl() const {
369  if (!UInt128Decl) {
370    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(UnsignedInt128Ty);
371    UInt128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
372                                     getTranslationUnitDecl(),
373                                     SourceLocation(),
374                                     SourceLocation(),
375                                     &Idents.get("__uint128_t"),
376                                     TInfo);
377  }
378
379  return UInt128Decl;
380}
381
382void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
383  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
384  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
385  Types.push_back(Ty);
386}
387
388void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
389  assert((!this->Target || this->Target == &Target) &&
390         "Incorrect target reinitialization");
391  assert(VoidTy.isNull() && "Context reinitialized?");
392
393  this->Target = &Target;
394
395  ABI.reset(createCXXABI(Target));
396  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
397
398  // C99 6.2.5p19.
399  InitBuiltinType(VoidTy,              BuiltinType::Void);
400
401  // C99 6.2.5p2.
402  InitBuiltinType(BoolTy,              BuiltinType::Bool);
403  // C99 6.2.5p3.
404  if (LangOpts.CharIsSigned)
405    InitBuiltinType(CharTy,            BuiltinType::Char_S);
406  else
407    InitBuiltinType(CharTy,            BuiltinType::Char_U);
408  // C99 6.2.5p4.
409  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
410  InitBuiltinType(ShortTy,             BuiltinType::Short);
411  InitBuiltinType(IntTy,               BuiltinType::Int);
412  InitBuiltinType(LongTy,              BuiltinType::Long);
413  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
414
415  // C99 6.2.5p6.
416  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
417  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
418  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
419  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
420  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
421
422  // C99 6.2.5p10.
423  InitBuiltinType(FloatTy,             BuiltinType::Float);
424  InitBuiltinType(DoubleTy,            BuiltinType::Double);
425  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
426
427  // GNU extension, 128-bit integers.
428  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
429  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
430
431  if (LangOpts.CPlusPlus) { // C++ 3.9.1p5
432    if (TargetInfo::isTypeSigned(Target.getWCharType()))
433      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
434    else  // -fshort-wchar makes wchar_t be unsigned.
435      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
436  } else // C99
437    WCharTy = getFromTargetType(Target.getWCharType());
438
439  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
440    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
441  else // C99
442    Char16Ty = getFromTargetType(Target.getChar16Type());
443
444  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
445    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
446  else // C99
447    Char32Ty = getFromTargetType(Target.getChar32Type());
448
449  // Placeholder type for type-dependent expressions whose type is
450  // completely unknown. No code should ever check a type against
451  // DependentTy and users should never see it; however, it is here to
452  // help diagnose failures to properly check for type-dependent
453  // expressions.
454  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
455
456  // Placeholder type for functions.
457  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
458
459  // Placeholder type for bound members.
460  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
461
462  // Placeholder type for pseudo-objects.
463  InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
464
465  // "any" type; useful for debugger-like clients.
466  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
467
468  // Placeholder type for unbridged ARC casts.
469  InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
470
471  // C99 6.2.5p11.
472  FloatComplexTy      = getComplexType(FloatTy);
473  DoubleComplexTy     = getComplexType(DoubleTy);
474  LongDoubleComplexTy = getComplexType(LongDoubleTy);
475
476  BuiltinVaListType = QualType();
477
478  // Builtin types for 'id', 'Class', and 'SEL'.
479  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
480  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
481  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
482
483  // Builtin type for __objc_yes and __objc_no
484  ObjCBuiltinBoolTy = SignedCharTy;
485
486  ObjCConstantStringType = QualType();
487
488  // void * type
489  VoidPtrTy = getPointerType(VoidTy);
490
491  // nullptr type (C++0x 2.14.7)
492  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
493
494  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
495  InitBuiltinType(HalfTy, BuiltinType::Half);
496}
497
498DiagnosticsEngine &ASTContext::getDiagnostics() const {
499  return SourceMgr.getDiagnostics();
500}
501
502AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
503  AttrVec *&Result = DeclAttrs[D];
504  if (!Result) {
505    void *Mem = Allocate(sizeof(AttrVec));
506    Result = new (Mem) AttrVec;
507  }
508
509  return *Result;
510}
511
512/// \brief Erase the attributes corresponding to the given declaration.
513void ASTContext::eraseDeclAttrs(const Decl *D) {
514  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
515  if (Pos != DeclAttrs.end()) {
516    Pos->second->~AttrVec();
517    DeclAttrs.erase(Pos);
518  }
519}
520
521MemberSpecializationInfo *
522ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
523  assert(Var->isStaticDataMember() && "Not a static data member");
524  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
525    = InstantiatedFromStaticDataMember.find(Var);
526  if (Pos == InstantiatedFromStaticDataMember.end())
527    return 0;
528
529  return Pos->second;
530}
531
532void
533ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
534                                                TemplateSpecializationKind TSK,
535                                          SourceLocation PointOfInstantiation) {
536  assert(Inst->isStaticDataMember() && "Not a static data member");
537  assert(Tmpl->isStaticDataMember() && "Not a static data member");
538  assert(!InstantiatedFromStaticDataMember[Inst] &&
539         "Already noted what static data member was instantiated from");
540  InstantiatedFromStaticDataMember[Inst]
541    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
542}
543
544FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
545                                                     const FunctionDecl *FD){
546  assert(FD && "Specialization is 0");
547  llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
548    = ClassScopeSpecializationPattern.find(FD);
549  if (Pos == ClassScopeSpecializationPattern.end())
550    return 0;
551
552  return Pos->second;
553}
554
555void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
556                                        FunctionDecl *Pattern) {
557  assert(FD && "Specialization is 0");
558  assert(Pattern && "Class scope specialization pattern is 0");
559  ClassScopeSpecializationPattern[FD] = Pattern;
560}
561
562NamedDecl *
563ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
564  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
565    = InstantiatedFromUsingDecl.find(UUD);
566  if (Pos == InstantiatedFromUsingDecl.end())
567    return 0;
568
569  return Pos->second;
570}
571
572void
573ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
574  assert((isa<UsingDecl>(Pattern) ||
575          isa<UnresolvedUsingValueDecl>(Pattern) ||
576          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
577         "pattern decl is not a using decl");
578  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
579  InstantiatedFromUsingDecl[Inst] = Pattern;
580}
581
582UsingShadowDecl *
583ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
584  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
585    = InstantiatedFromUsingShadowDecl.find(Inst);
586  if (Pos == InstantiatedFromUsingShadowDecl.end())
587    return 0;
588
589  return Pos->second;
590}
591
592void
593ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
594                                               UsingShadowDecl *Pattern) {
595  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
596  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
597}
598
599FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
600  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
601    = InstantiatedFromUnnamedFieldDecl.find(Field);
602  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
603    return 0;
604
605  return Pos->second;
606}
607
608void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
609                                                     FieldDecl *Tmpl) {
610  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
611  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
612  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
613         "Already noted what unnamed field was instantiated from");
614
615  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
616}
617
618bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
619                                    const FieldDecl *LastFD) const {
620  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
621          FD->getBitWidthValue(*this) == 0);
622}
623
624bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
625                                             const FieldDecl *LastFD) const {
626  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
627          FD->getBitWidthValue(*this) == 0 &&
628          LastFD->getBitWidthValue(*this) != 0);
629}
630
631bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
632                                         const FieldDecl *LastFD) const {
633  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
634          FD->getBitWidthValue(*this) &&
635          LastFD->getBitWidthValue(*this));
636}
637
638bool ASTContext::NonBitfieldFollowsBitfield(const FieldDecl *FD,
639                                         const FieldDecl *LastFD) const {
640  return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
641          LastFD->getBitWidthValue(*this));
642}
643
644bool ASTContext::BitfieldFollowsNonBitfield(const FieldDecl *FD,
645                                             const FieldDecl *LastFD) const {
646  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
647          FD->getBitWidthValue(*this));
648}
649
650ASTContext::overridden_cxx_method_iterator
651ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
652  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
653    = OverriddenMethods.find(Method);
654  if (Pos == OverriddenMethods.end())
655    return 0;
656
657  return Pos->second.begin();
658}
659
660ASTContext::overridden_cxx_method_iterator
661ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
662  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
663    = OverriddenMethods.find(Method);
664  if (Pos == OverriddenMethods.end())
665    return 0;
666
667  return Pos->second.end();
668}
669
670unsigned
671ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
672  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
673    = OverriddenMethods.find(Method);
674  if (Pos == OverriddenMethods.end())
675    return 0;
676
677  return Pos->second.size();
678}
679
680void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
681                                     const CXXMethodDecl *Overridden) {
682  OverriddenMethods[Method].push_back(Overridden);
683}
684
685void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
686  assert(!Import->NextLocalImport && "Import declaration already in the chain");
687  assert(!Import->isFromASTFile() && "Non-local import declaration");
688  if (!FirstLocalImport) {
689    FirstLocalImport = Import;
690    LastLocalImport = Import;
691    return;
692  }
693
694  LastLocalImport->NextLocalImport = Import;
695  LastLocalImport = Import;
696}
697
698//===----------------------------------------------------------------------===//
699//                         Type Sizing and Analysis
700//===----------------------------------------------------------------------===//
701
702/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
703/// scalar floating point type.
704const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
705  const BuiltinType *BT = T->getAs<BuiltinType>();
706  assert(BT && "Not a floating point type!");
707  switch (BT->getKind()) {
708  default: llvm_unreachable("Not a floating point type!");
709  case BuiltinType::Half:       return Target->getHalfFormat();
710  case BuiltinType::Float:      return Target->getFloatFormat();
711  case BuiltinType::Double:     return Target->getDoubleFormat();
712  case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
713  }
714}
715
716/// getDeclAlign - Return a conservative estimate of the alignment of the
717/// specified decl.  Note that bitfields do not have a valid alignment, so
718/// this method will assert on them.
719/// If @p RefAsPointee, references are treated like their underlying type
720/// (for alignof), else they're treated like pointers (for CodeGen).
721CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
722  unsigned Align = Target->getCharWidth();
723
724  bool UseAlignAttrOnly = false;
725  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
726    Align = AlignFromAttr;
727
728    // __attribute__((aligned)) can increase or decrease alignment
729    // *except* on a struct or struct member, where it only increases
730    // alignment unless 'packed' is also specified.
731    //
732    // It is an error for alignas to decrease alignment, so we can
733    // ignore that possibility;  Sema should diagnose it.
734    if (isa<FieldDecl>(D)) {
735      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
736        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
737    } else {
738      UseAlignAttrOnly = true;
739    }
740  }
741  else if (isa<FieldDecl>(D))
742      UseAlignAttrOnly =
743        D->hasAttr<PackedAttr>() ||
744        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
745
746  // If we're using the align attribute only, just ignore everything
747  // else about the declaration and its type.
748  if (UseAlignAttrOnly) {
749    // do nothing
750
751  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
752    QualType T = VD->getType();
753    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
754      if (RefAsPointee)
755        T = RT->getPointeeType();
756      else
757        T = getPointerType(RT->getPointeeType());
758    }
759    if (!T->isIncompleteType() && !T->isFunctionType()) {
760      // Adjust alignments of declarations with array type by the
761      // large-array alignment on the target.
762      unsigned MinWidth = Target->getLargeArrayMinWidth();
763      const ArrayType *arrayType;
764      if (MinWidth && (arrayType = getAsArrayType(T))) {
765        if (isa<VariableArrayType>(arrayType))
766          Align = std::max(Align, Target->getLargeArrayAlign());
767        else if (isa<ConstantArrayType>(arrayType) &&
768                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
769          Align = std::max(Align, Target->getLargeArrayAlign());
770
771        // Walk through any array types while we're at it.
772        T = getBaseElementType(arrayType);
773      }
774      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
775    }
776
777    // Fields can be subject to extra alignment constraints, like if
778    // the field is packed, the struct is packed, or the struct has a
779    // a max-field-alignment constraint (#pragma pack).  So calculate
780    // the actual alignment of the field within the struct, and then
781    // (as we're expected to) constrain that by the alignment of the type.
782    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
783      // So calculate the alignment of the field.
784      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
785
786      // Start with the record's overall alignment.
787      unsigned fieldAlign = toBits(layout.getAlignment());
788
789      // Use the GCD of that and the offset within the record.
790      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
791      if (offset > 0) {
792        // Alignment is always a power of 2, so the GCD will be a power of 2,
793        // which means we get to do this crazy thing instead of Euclid's.
794        uint64_t lowBitOfOffset = offset & (~offset + 1);
795        if (lowBitOfOffset < fieldAlign)
796          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
797      }
798
799      Align = std::min(Align, fieldAlign);
800    }
801  }
802
803  return toCharUnitsFromBits(Align);
804}
805
806std::pair<CharUnits, CharUnits>
807ASTContext::getTypeInfoInChars(const Type *T) const {
808  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
809  return std::make_pair(toCharUnitsFromBits(Info.first),
810                        toCharUnitsFromBits(Info.second));
811}
812
813std::pair<CharUnits, CharUnits>
814ASTContext::getTypeInfoInChars(QualType T) const {
815  return getTypeInfoInChars(T.getTypePtr());
816}
817
818std::pair<uint64_t, unsigned> ASTContext::getTypeInfo(const Type *T) const {
819  TypeInfoMap::iterator it = MemoizedTypeInfo.find(T);
820  if (it != MemoizedTypeInfo.end())
821    return it->second;
822
823  std::pair<uint64_t, unsigned> Info = getTypeInfoImpl(T);
824  MemoizedTypeInfo.insert(std::make_pair(T, Info));
825  return Info;
826}
827
828/// getTypeInfoImpl - Return the size of the specified type, in bits.  This
829/// method does not work on incomplete types.
830///
831/// FIXME: Pointers into different addr spaces could have different sizes and
832/// alignment requirements: getPointerInfo should take an AddrSpace, this
833/// should take a QualType, &c.
834std::pair<uint64_t, unsigned>
835ASTContext::getTypeInfoImpl(const Type *T) const {
836  uint64_t Width=0;
837  unsigned Align=8;
838  switch (T->getTypeClass()) {
839#define TYPE(Class, Base)
840#define ABSTRACT_TYPE(Class, Base)
841#define NON_CANONICAL_TYPE(Class, Base)
842#define DEPENDENT_TYPE(Class, Base) case Type::Class:
843#include "clang/AST/TypeNodes.def"
844    llvm_unreachable("Should not see dependent types");
845
846  case Type::FunctionNoProto:
847  case Type::FunctionProto:
848    // GCC extension: alignof(function) = 32 bits
849    Width = 0;
850    Align = 32;
851    break;
852
853  case Type::IncompleteArray:
854  case Type::VariableArray:
855    Width = 0;
856    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
857    break;
858
859  case Type::ConstantArray: {
860    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
861
862    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
863    uint64_t Size = CAT->getSize().getZExtValue();
864    assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) &&
865           "Overflow in array type bit size evaluation");
866    Width = EltInfo.first*Size;
867    Align = EltInfo.second;
868    Width = llvm::RoundUpToAlignment(Width, Align);
869    break;
870  }
871  case Type::ExtVector:
872  case Type::Vector: {
873    const VectorType *VT = cast<VectorType>(T);
874    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
875    Width = EltInfo.first*VT->getNumElements();
876    Align = Width;
877    // If the alignment is not a power of 2, round up to the next power of 2.
878    // This happens for non-power-of-2 length vectors.
879    if (Align & (Align-1)) {
880      Align = llvm::NextPowerOf2(Align);
881      Width = llvm::RoundUpToAlignment(Width, Align);
882    }
883    break;
884  }
885
886  case Type::Builtin:
887    switch (cast<BuiltinType>(T)->getKind()) {
888    default: llvm_unreachable("Unknown builtin type!");
889    case BuiltinType::Void:
890      // GCC extension: alignof(void) = 8 bits.
891      Width = 0;
892      Align = 8;
893      break;
894
895    case BuiltinType::Bool:
896      Width = Target->getBoolWidth();
897      Align = Target->getBoolAlign();
898      break;
899    case BuiltinType::Char_S:
900    case BuiltinType::Char_U:
901    case BuiltinType::UChar:
902    case BuiltinType::SChar:
903      Width = Target->getCharWidth();
904      Align = Target->getCharAlign();
905      break;
906    case BuiltinType::WChar_S:
907    case BuiltinType::WChar_U:
908      Width = Target->getWCharWidth();
909      Align = Target->getWCharAlign();
910      break;
911    case BuiltinType::Char16:
912      Width = Target->getChar16Width();
913      Align = Target->getChar16Align();
914      break;
915    case BuiltinType::Char32:
916      Width = Target->getChar32Width();
917      Align = Target->getChar32Align();
918      break;
919    case BuiltinType::UShort:
920    case BuiltinType::Short:
921      Width = Target->getShortWidth();
922      Align = Target->getShortAlign();
923      break;
924    case BuiltinType::UInt:
925    case BuiltinType::Int:
926      Width = Target->getIntWidth();
927      Align = Target->getIntAlign();
928      break;
929    case BuiltinType::ULong:
930    case BuiltinType::Long:
931      Width = Target->getLongWidth();
932      Align = Target->getLongAlign();
933      break;
934    case BuiltinType::ULongLong:
935    case BuiltinType::LongLong:
936      Width = Target->getLongLongWidth();
937      Align = Target->getLongLongAlign();
938      break;
939    case BuiltinType::Int128:
940    case BuiltinType::UInt128:
941      Width = 128;
942      Align = 128; // int128_t is 128-bit aligned on all targets.
943      break;
944    case BuiltinType::Half:
945      Width = Target->getHalfWidth();
946      Align = Target->getHalfAlign();
947      break;
948    case BuiltinType::Float:
949      Width = Target->getFloatWidth();
950      Align = Target->getFloatAlign();
951      break;
952    case BuiltinType::Double:
953      Width = Target->getDoubleWidth();
954      Align = Target->getDoubleAlign();
955      break;
956    case BuiltinType::LongDouble:
957      Width = Target->getLongDoubleWidth();
958      Align = Target->getLongDoubleAlign();
959      break;
960    case BuiltinType::NullPtr:
961      Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
962      Align = Target->getPointerAlign(0); //   == sizeof(void*)
963      break;
964    case BuiltinType::ObjCId:
965    case BuiltinType::ObjCClass:
966    case BuiltinType::ObjCSel:
967      Width = Target->getPointerWidth(0);
968      Align = Target->getPointerAlign(0);
969      break;
970    }
971    break;
972  case Type::ObjCObjectPointer:
973    Width = Target->getPointerWidth(0);
974    Align = Target->getPointerAlign(0);
975    break;
976  case Type::BlockPointer: {
977    unsigned AS = getTargetAddressSpace(
978        cast<BlockPointerType>(T)->getPointeeType());
979    Width = Target->getPointerWidth(AS);
980    Align = Target->getPointerAlign(AS);
981    break;
982  }
983  case Type::LValueReference:
984  case Type::RValueReference: {
985    // alignof and sizeof should never enter this code path here, so we go
986    // the pointer route.
987    unsigned AS = getTargetAddressSpace(
988        cast<ReferenceType>(T)->getPointeeType());
989    Width = Target->getPointerWidth(AS);
990    Align = Target->getPointerAlign(AS);
991    break;
992  }
993  case Type::Pointer: {
994    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
995    Width = Target->getPointerWidth(AS);
996    Align = Target->getPointerAlign(AS);
997    break;
998  }
999  case Type::MemberPointer: {
1000    const MemberPointerType *MPT = cast<MemberPointerType>(T);
1001    std::pair<uint64_t, unsigned> PtrDiffInfo =
1002      getTypeInfo(getPointerDiffType());
1003    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
1004    Align = PtrDiffInfo.second;
1005    break;
1006  }
1007  case Type::Complex: {
1008    // Complex types have the same alignment as their elements, but twice the
1009    // size.
1010    std::pair<uint64_t, unsigned> EltInfo =
1011      getTypeInfo(cast<ComplexType>(T)->getElementType());
1012    Width = EltInfo.first*2;
1013    Align = EltInfo.second;
1014    break;
1015  }
1016  case Type::ObjCObject:
1017    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1018  case Type::ObjCInterface: {
1019    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1020    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1021    Width = toBits(Layout.getSize());
1022    Align = toBits(Layout.getAlignment());
1023    break;
1024  }
1025  case Type::Record:
1026  case Type::Enum: {
1027    const TagType *TT = cast<TagType>(T);
1028
1029    if (TT->getDecl()->isInvalidDecl()) {
1030      Width = 8;
1031      Align = 8;
1032      break;
1033    }
1034
1035    if (const EnumType *ET = dyn_cast<EnumType>(TT))
1036      return getTypeInfo(ET->getDecl()->getIntegerType());
1037
1038    const RecordType *RT = cast<RecordType>(TT);
1039    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1040    Width = toBits(Layout.getSize());
1041    Align = toBits(Layout.getAlignment());
1042    break;
1043  }
1044
1045  case Type::SubstTemplateTypeParm:
1046    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1047                       getReplacementType().getTypePtr());
1048
1049  case Type::Auto: {
1050    const AutoType *A = cast<AutoType>(T);
1051    assert(A->isDeduced() && "Cannot request the size of a dependent type");
1052    return getTypeInfo(A->getDeducedType().getTypePtr());
1053  }
1054
1055  case Type::Paren:
1056    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1057
1058  case Type::Typedef: {
1059    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1060    std::pair<uint64_t, unsigned> Info
1061      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1062    // If the typedef has an aligned attribute on it, it overrides any computed
1063    // alignment we have.  This violates the GCC documentation (which says that
1064    // attribute(aligned) can only round up) but matches its implementation.
1065    if (unsigned AttrAlign = Typedef->getMaxAlignment())
1066      Align = AttrAlign;
1067    else
1068      Align = Info.second;
1069    Width = Info.first;
1070    break;
1071  }
1072
1073  case Type::TypeOfExpr:
1074    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
1075                         .getTypePtr());
1076
1077  case Type::TypeOf:
1078    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
1079
1080  case Type::Decltype:
1081    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
1082                        .getTypePtr());
1083
1084  case Type::UnaryTransform:
1085    return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
1086
1087  case Type::Elaborated:
1088    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1089
1090  case Type::Attributed:
1091    return getTypeInfo(
1092                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1093
1094  case Type::TemplateSpecialization: {
1095    assert(getCanonicalType(T) != T &&
1096           "Cannot request the size of a dependent type");
1097    const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1098    // A type alias template specialization may refer to a typedef with the
1099    // aligned attribute on it.
1100    if (TST->isTypeAlias())
1101      return getTypeInfo(TST->getAliasedType().getTypePtr());
1102    else
1103      return getTypeInfo(getCanonicalType(T));
1104  }
1105
1106  case Type::Atomic: {
1107    std::pair<uint64_t, unsigned> Info
1108      = getTypeInfo(cast<AtomicType>(T)->getValueType());
1109    Width = Info.first;
1110    Align = Info.second;
1111    if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth() &&
1112        llvm::isPowerOf2_64(Width)) {
1113      // We can potentially perform lock-free atomic operations for this
1114      // type; promote the alignment appropriately.
1115      // FIXME: We could potentially promote the width here as well...
1116      // is that worthwhile?  (Non-struct atomic types generally have
1117      // power-of-two size anyway, but structs might not.  Requires a bit
1118      // of implementation work to make sure we zero out the extra bits.)
1119      Align = static_cast<unsigned>(Width);
1120    }
1121  }
1122
1123  }
1124
1125  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1126  return std::make_pair(Width, Align);
1127}
1128
1129/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1130CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1131  return CharUnits::fromQuantity(BitSize / getCharWidth());
1132}
1133
1134/// toBits - Convert a size in characters to a size in characters.
1135int64_t ASTContext::toBits(CharUnits CharSize) const {
1136  return CharSize.getQuantity() * getCharWidth();
1137}
1138
1139/// getTypeSizeInChars - Return the size of the specified type, in characters.
1140/// This method does not work on incomplete types.
1141CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1142  return toCharUnitsFromBits(getTypeSize(T));
1143}
1144CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1145  return toCharUnitsFromBits(getTypeSize(T));
1146}
1147
1148/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1149/// characters. This method does not work on incomplete types.
1150CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1151  return toCharUnitsFromBits(getTypeAlign(T));
1152}
1153CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1154  return toCharUnitsFromBits(getTypeAlign(T));
1155}
1156
1157/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1158/// type for the current target in bits.  This can be different than the ABI
1159/// alignment in cases where it is beneficial for performance to overalign
1160/// a data type.
1161unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1162  unsigned ABIAlign = getTypeAlign(T);
1163
1164  // Double and long long should be naturally aligned if possible.
1165  if (const ComplexType* CT = T->getAs<ComplexType>())
1166    T = CT->getElementType().getTypePtr();
1167  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1168      T->isSpecificBuiltinType(BuiltinType::LongLong) ||
1169      T->isSpecificBuiltinType(BuiltinType::ULongLong))
1170    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1171
1172  return ABIAlign;
1173}
1174
1175/// DeepCollectObjCIvars -
1176/// This routine first collects all declared, but not synthesized, ivars in
1177/// super class and then collects all ivars, including those synthesized for
1178/// current class. This routine is used for implementation of current class
1179/// when all ivars, declared and synthesized are known.
1180///
1181void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1182                                      bool leafClass,
1183                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1184  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1185    DeepCollectObjCIvars(SuperClass, false, Ivars);
1186  if (!leafClass) {
1187    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1188         E = OI->ivar_end(); I != E; ++I)
1189      Ivars.push_back(*I);
1190  } else {
1191    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1192    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1193         Iv= Iv->getNextIvar())
1194      Ivars.push_back(Iv);
1195  }
1196}
1197
1198/// CollectInheritedProtocols - Collect all protocols in current class and
1199/// those inherited by it.
1200void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1201                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1202  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1203    // We can use protocol_iterator here instead of
1204    // all_referenced_protocol_iterator since we are walking all categories.
1205    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1206         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1207      ObjCProtocolDecl *Proto = (*P);
1208      Protocols.insert(Proto->getCanonicalDecl());
1209      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1210           PE = Proto->protocol_end(); P != PE; ++P) {
1211        Protocols.insert((*P)->getCanonicalDecl());
1212        CollectInheritedProtocols(*P, Protocols);
1213      }
1214    }
1215
1216    // Categories of this Interface.
1217    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
1218         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
1219      CollectInheritedProtocols(CDeclChain, Protocols);
1220    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1221      while (SD) {
1222        CollectInheritedProtocols(SD, Protocols);
1223        SD = SD->getSuperClass();
1224      }
1225  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1226    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1227         PE = OC->protocol_end(); P != PE; ++P) {
1228      ObjCProtocolDecl *Proto = (*P);
1229      Protocols.insert(Proto->getCanonicalDecl());
1230      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1231           PE = Proto->protocol_end(); P != PE; ++P)
1232        CollectInheritedProtocols(*P, Protocols);
1233    }
1234  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1235    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1236         PE = OP->protocol_end(); P != PE; ++P) {
1237      ObjCProtocolDecl *Proto = (*P);
1238      Protocols.insert(Proto->getCanonicalDecl());
1239      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1240           PE = Proto->protocol_end(); P != PE; ++P)
1241        CollectInheritedProtocols(*P, Protocols);
1242    }
1243  }
1244}
1245
1246unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1247  unsigned count = 0;
1248  // Count ivars declared in class extension.
1249  for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
1250       CDecl = CDecl->getNextClassExtension())
1251    count += CDecl->ivar_size();
1252
1253  // Count ivar defined in this class's implementation.  This
1254  // includes synthesized ivars.
1255  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1256    count += ImplDecl->ivar_size();
1257
1258  return count;
1259}
1260
1261bool ASTContext::isSentinelNullExpr(const Expr *E) {
1262  if (!E)
1263    return false;
1264
1265  // nullptr_t is always treated as null.
1266  if (E->getType()->isNullPtrType()) return true;
1267
1268  if (E->getType()->isAnyPointerType() &&
1269      E->IgnoreParenCasts()->isNullPointerConstant(*this,
1270                                                Expr::NPC_ValueDependentIsNull))
1271    return true;
1272
1273  // Unfortunately, __null has type 'int'.
1274  if (isa<GNUNullExpr>(E)) return true;
1275
1276  return false;
1277}
1278
1279/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1280ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1281  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1282    I = ObjCImpls.find(D);
1283  if (I != ObjCImpls.end())
1284    return cast<ObjCImplementationDecl>(I->second);
1285  return 0;
1286}
1287/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1288ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1289  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1290    I = ObjCImpls.find(D);
1291  if (I != ObjCImpls.end())
1292    return cast<ObjCCategoryImplDecl>(I->second);
1293  return 0;
1294}
1295
1296/// \brief Set the implementation of ObjCInterfaceDecl.
1297void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1298                           ObjCImplementationDecl *ImplD) {
1299  assert(IFaceD && ImplD && "Passed null params");
1300  ObjCImpls[IFaceD] = ImplD;
1301}
1302/// \brief Set the implementation of ObjCCategoryDecl.
1303void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1304                           ObjCCategoryImplDecl *ImplD) {
1305  assert(CatD && ImplD && "Passed null params");
1306  ObjCImpls[CatD] = ImplD;
1307}
1308
1309ObjCInterfaceDecl *ASTContext::getObjContainingInterface(NamedDecl *ND) const {
1310  if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1311    return ID;
1312  if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1313    return CD->getClassInterface();
1314  if (ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1315    return IMD->getClassInterface();
1316
1317  return 0;
1318}
1319
1320/// \brief Get the copy initialization expression of VarDecl,or NULL if
1321/// none exists.
1322Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1323  assert(VD && "Passed null params");
1324  assert(VD->hasAttr<BlocksAttr>() &&
1325         "getBlockVarCopyInits - not __block var");
1326  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1327    I = BlockVarCopyInits.find(VD);
1328  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1329}
1330
1331/// \brief Set the copy inialization expression of a block var decl.
1332void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1333  assert(VD && Init && "Passed null params");
1334  assert(VD->hasAttr<BlocksAttr>() &&
1335         "setBlockVarCopyInits - not __block var");
1336  BlockVarCopyInits[VD] = Init;
1337}
1338
1339/// \brief Allocate an uninitialized TypeSourceInfo.
1340///
1341/// The caller should initialize the memory held by TypeSourceInfo using
1342/// the TypeLoc wrappers.
1343///
1344/// \param T the type that will be the basis for type source info. This type
1345/// should refer to how the declarator was written in source code, not to
1346/// what type semantic analysis resolved the declarator to.
1347TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1348                                                 unsigned DataSize) const {
1349  if (!DataSize)
1350    DataSize = TypeLoc::getFullDataSizeForType(T);
1351  else
1352    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1353           "incorrect data size provided to CreateTypeSourceInfo!");
1354
1355  TypeSourceInfo *TInfo =
1356    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1357  new (TInfo) TypeSourceInfo(T);
1358  return TInfo;
1359}
1360
1361TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1362                                                     SourceLocation L) const {
1363  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1364  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1365  return DI;
1366}
1367
1368const ASTRecordLayout &
1369ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1370  return getObjCLayout(D, 0);
1371}
1372
1373const ASTRecordLayout &
1374ASTContext::getASTObjCImplementationLayout(
1375                                        const ObjCImplementationDecl *D) const {
1376  return getObjCLayout(D->getClassInterface(), D);
1377}
1378
1379//===----------------------------------------------------------------------===//
1380//                   Type creation/memoization methods
1381//===----------------------------------------------------------------------===//
1382
1383QualType
1384ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1385  unsigned fastQuals = quals.getFastQualifiers();
1386  quals.removeFastQualifiers();
1387
1388  // Check if we've already instantiated this type.
1389  llvm::FoldingSetNodeID ID;
1390  ExtQuals::Profile(ID, baseType, quals);
1391  void *insertPos = 0;
1392  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1393    assert(eq->getQualifiers() == quals);
1394    return QualType(eq, fastQuals);
1395  }
1396
1397  // If the base type is not canonical, make the appropriate canonical type.
1398  QualType canon;
1399  if (!baseType->isCanonicalUnqualified()) {
1400    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1401    canonSplit.Quals.addConsistentQualifiers(quals);
1402    canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
1403
1404    // Re-find the insert position.
1405    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1406  }
1407
1408  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1409  ExtQualNodes.InsertNode(eq, insertPos);
1410  return QualType(eq, fastQuals);
1411}
1412
1413QualType
1414ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1415  QualType CanT = getCanonicalType(T);
1416  if (CanT.getAddressSpace() == AddressSpace)
1417    return T;
1418
1419  // If we are composing extended qualifiers together, merge together
1420  // into one ExtQuals node.
1421  QualifierCollector Quals;
1422  const Type *TypeNode = Quals.strip(T);
1423
1424  // If this type already has an address space specified, it cannot get
1425  // another one.
1426  assert(!Quals.hasAddressSpace() &&
1427         "Type cannot be in multiple addr spaces!");
1428  Quals.addAddressSpace(AddressSpace);
1429
1430  return getExtQualType(TypeNode, Quals);
1431}
1432
1433QualType ASTContext::getObjCGCQualType(QualType T,
1434                                       Qualifiers::GC GCAttr) const {
1435  QualType CanT = getCanonicalType(T);
1436  if (CanT.getObjCGCAttr() == GCAttr)
1437    return T;
1438
1439  if (const PointerType *ptr = T->getAs<PointerType>()) {
1440    QualType Pointee = ptr->getPointeeType();
1441    if (Pointee->isAnyPointerType()) {
1442      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1443      return getPointerType(ResultType);
1444    }
1445  }
1446
1447  // If we are composing extended qualifiers together, merge together
1448  // into one ExtQuals node.
1449  QualifierCollector Quals;
1450  const Type *TypeNode = Quals.strip(T);
1451
1452  // If this type already has an ObjCGC specified, it cannot get
1453  // another one.
1454  assert(!Quals.hasObjCGCAttr() &&
1455         "Type cannot have multiple ObjCGCs!");
1456  Quals.addObjCGCAttr(GCAttr);
1457
1458  return getExtQualType(TypeNode, Quals);
1459}
1460
1461const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1462                                                   FunctionType::ExtInfo Info) {
1463  if (T->getExtInfo() == Info)
1464    return T;
1465
1466  QualType Result;
1467  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1468    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1469  } else {
1470    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1471    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1472    EPI.ExtInfo = Info;
1473    Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1474                             FPT->getNumArgs(), EPI);
1475  }
1476
1477  return cast<FunctionType>(Result.getTypePtr());
1478}
1479
1480/// getComplexType - Return the uniqued reference to the type for a complex
1481/// number with the specified element type.
1482QualType ASTContext::getComplexType(QualType T) const {
1483  // Unique pointers, to guarantee there is only one pointer of a particular
1484  // structure.
1485  llvm::FoldingSetNodeID ID;
1486  ComplexType::Profile(ID, T);
1487
1488  void *InsertPos = 0;
1489  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1490    return QualType(CT, 0);
1491
1492  // If the pointee type isn't canonical, this won't be a canonical type either,
1493  // so fill in the canonical type field.
1494  QualType Canonical;
1495  if (!T.isCanonical()) {
1496    Canonical = getComplexType(getCanonicalType(T));
1497
1498    // Get the new insert position for the node we care about.
1499    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1500    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1501  }
1502  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1503  Types.push_back(New);
1504  ComplexTypes.InsertNode(New, InsertPos);
1505  return QualType(New, 0);
1506}
1507
1508/// getPointerType - Return the uniqued reference to the type for a pointer to
1509/// the specified type.
1510QualType ASTContext::getPointerType(QualType T) const {
1511  // Unique pointers, to guarantee there is only one pointer of a particular
1512  // structure.
1513  llvm::FoldingSetNodeID ID;
1514  PointerType::Profile(ID, T);
1515
1516  void *InsertPos = 0;
1517  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1518    return QualType(PT, 0);
1519
1520  // If the pointee type isn't canonical, this won't be a canonical type either,
1521  // so fill in the canonical type field.
1522  QualType Canonical;
1523  if (!T.isCanonical()) {
1524    Canonical = getPointerType(getCanonicalType(T));
1525
1526    // Get the new insert position for the node we care about.
1527    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1528    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1529  }
1530  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1531  Types.push_back(New);
1532  PointerTypes.InsertNode(New, InsertPos);
1533  return QualType(New, 0);
1534}
1535
1536/// getBlockPointerType - Return the uniqued reference to the type for
1537/// a pointer to the specified block.
1538QualType ASTContext::getBlockPointerType(QualType T) const {
1539  assert(T->isFunctionType() && "block of function types only");
1540  // Unique pointers, to guarantee there is only one block of a particular
1541  // structure.
1542  llvm::FoldingSetNodeID ID;
1543  BlockPointerType::Profile(ID, T);
1544
1545  void *InsertPos = 0;
1546  if (BlockPointerType *PT =
1547        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1548    return QualType(PT, 0);
1549
1550  // If the block pointee type isn't canonical, this won't be a canonical
1551  // type either so fill in the canonical type field.
1552  QualType Canonical;
1553  if (!T.isCanonical()) {
1554    Canonical = getBlockPointerType(getCanonicalType(T));
1555
1556    // Get the new insert position for the node we care about.
1557    BlockPointerType *NewIP =
1558      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1559    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1560  }
1561  BlockPointerType *New
1562    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1563  Types.push_back(New);
1564  BlockPointerTypes.InsertNode(New, InsertPos);
1565  return QualType(New, 0);
1566}
1567
1568/// getLValueReferenceType - Return the uniqued reference to the type for an
1569/// lvalue reference to the specified type.
1570QualType
1571ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
1572  assert(getCanonicalType(T) != OverloadTy &&
1573         "Unresolved overloaded function type");
1574
1575  // Unique pointers, to guarantee there is only one pointer of a particular
1576  // structure.
1577  llvm::FoldingSetNodeID ID;
1578  ReferenceType::Profile(ID, T, SpelledAsLValue);
1579
1580  void *InsertPos = 0;
1581  if (LValueReferenceType *RT =
1582        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1583    return QualType(RT, 0);
1584
1585  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1586
1587  // If the referencee type isn't canonical, this won't be a canonical type
1588  // either, so fill in the canonical type field.
1589  QualType Canonical;
1590  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1591    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1592    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1593
1594    // Get the new insert position for the node we care about.
1595    LValueReferenceType *NewIP =
1596      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1597    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1598  }
1599
1600  LValueReferenceType *New
1601    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1602                                                     SpelledAsLValue);
1603  Types.push_back(New);
1604  LValueReferenceTypes.InsertNode(New, InsertPos);
1605
1606  return QualType(New, 0);
1607}
1608
1609/// getRValueReferenceType - Return the uniqued reference to the type for an
1610/// rvalue reference to the specified type.
1611QualType ASTContext::getRValueReferenceType(QualType T) const {
1612  // Unique pointers, to guarantee there is only one pointer of a particular
1613  // structure.
1614  llvm::FoldingSetNodeID ID;
1615  ReferenceType::Profile(ID, T, false);
1616
1617  void *InsertPos = 0;
1618  if (RValueReferenceType *RT =
1619        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1620    return QualType(RT, 0);
1621
1622  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1623
1624  // If the referencee type isn't canonical, this won't be a canonical type
1625  // either, so fill in the canonical type field.
1626  QualType Canonical;
1627  if (InnerRef || !T.isCanonical()) {
1628    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1629    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1630
1631    // Get the new insert position for the node we care about.
1632    RValueReferenceType *NewIP =
1633      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1634    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1635  }
1636
1637  RValueReferenceType *New
1638    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1639  Types.push_back(New);
1640  RValueReferenceTypes.InsertNode(New, InsertPos);
1641  return QualType(New, 0);
1642}
1643
1644/// getMemberPointerType - Return the uniqued reference to the type for a
1645/// member pointer to the specified type, in the specified class.
1646QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
1647  // Unique pointers, to guarantee there is only one pointer of a particular
1648  // structure.
1649  llvm::FoldingSetNodeID ID;
1650  MemberPointerType::Profile(ID, T, Cls);
1651
1652  void *InsertPos = 0;
1653  if (MemberPointerType *PT =
1654      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1655    return QualType(PT, 0);
1656
1657  // If the pointee or class type isn't canonical, this won't be a canonical
1658  // type either, so fill in the canonical type field.
1659  QualType Canonical;
1660  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1661    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1662
1663    // Get the new insert position for the node we care about.
1664    MemberPointerType *NewIP =
1665      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1666    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1667  }
1668  MemberPointerType *New
1669    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1670  Types.push_back(New);
1671  MemberPointerTypes.InsertNode(New, InsertPos);
1672  return QualType(New, 0);
1673}
1674
1675/// getConstantArrayType - Return the unique reference to the type for an
1676/// array of the specified element type.
1677QualType ASTContext::getConstantArrayType(QualType EltTy,
1678                                          const llvm::APInt &ArySizeIn,
1679                                          ArrayType::ArraySizeModifier ASM,
1680                                          unsigned IndexTypeQuals) const {
1681  assert((EltTy->isDependentType() ||
1682          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1683         "Constant array of VLAs is illegal!");
1684
1685  // Convert the array size into a canonical width matching the pointer size for
1686  // the target.
1687  llvm::APInt ArySize(ArySizeIn);
1688  ArySize =
1689    ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
1690
1691  llvm::FoldingSetNodeID ID;
1692  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
1693
1694  void *InsertPos = 0;
1695  if (ConstantArrayType *ATP =
1696      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1697    return QualType(ATP, 0);
1698
1699  // If the element type isn't canonical or has qualifiers, this won't
1700  // be a canonical type either, so fill in the canonical type field.
1701  QualType Canon;
1702  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1703    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1704    Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
1705                                 ASM, IndexTypeQuals);
1706    Canon = getQualifiedType(Canon, canonSplit.Quals);
1707
1708    // Get the new insert position for the node we care about.
1709    ConstantArrayType *NewIP =
1710      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1711    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1712  }
1713
1714  ConstantArrayType *New = new(*this,TypeAlignment)
1715    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
1716  ConstantArrayTypes.InsertNode(New, InsertPos);
1717  Types.push_back(New);
1718  return QualType(New, 0);
1719}
1720
1721/// getVariableArrayDecayedType - Turns the given type, which may be
1722/// variably-modified, into the corresponding type with all the known
1723/// sizes replaced with [*].
1724QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
1725  // Vastly most common case.
1726  if (!type->isVariablyModifiedType()) return type;
1727
1728  QualType result;
1729
1730  SplitQualType split = type.getSplitDesugaredType();
1731  const Type *ty = split.Ty;
1732  switch (ty->getTypeClass()) {
1733#define TYPE(Class, Base)
1734#define ABSTRACT_TYPE(Class, Base)
1735#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1736#include "clang/AST/TypeNodes.def"
1737    llvm_unreachable("didn't desugar past all non-canonical types?");
1738
1739  // These types should never be variably-modified.
1740  case Type::Builtin:
1741  case Type::Complex:
1742  case Type::Vector:
1743  case Type::ExtVector:
1744  case Type::DependentSizedExtVector:
1745  case Type::ObjCObject:
1746  case Type::ObjCInterface:
1747  case Type::ObjCObjectPointer:
1748  case Type::Record:
1749  case Type::Enum:
1750  case Type::UnresolvedUsing:
1751  case Type::TypeOfExpr:
1752  case Type::TypeOf:
1753  case Type::Decltype:
1754  case Type::UnaryTransform:
1755  case Type::DependentName:
1756  case Type::InjectedClassName:
1757  case Type::TemplateSpecialization:
1758  case Type::DependentTemplateSpecialization:
1759  case Type::TemplateTypeParm:
1760  case Type::SubstTemplateTypeParmPack:
1761  case Type::Auto:
1762  case Type::PackExpansion:
1763    llvm_unreachable("type should never be variably-modified");
1764
1765  // These types can be variably-modified but should never need to
1766  // further decay.
1767  case Type::FunctionNoProto:
1768  case Type::FunctionProto:
1769  case Type::BlockPointer:
1770  case Type::MemberPointer:
1771    return type;
1772
1773  // These types can be variably-modified.  All these modifications
1774  // preserve structure except as noted by comments.
1775  // TODO: if we ever care about optimizing VLAs, there are no-op
1776  // optimizations available here.
1777  case Type::Pointer:
1778    result = getPointerType(getVariableArrayDecayedType(
1779                              cast<PointerType>(ty)->getPointeeType()));
1780    break;
1781
1782  case Type::LValueReference: {
1783    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
1784    result = getLValueReferenceType(
1785                 getVariableArrayDecayedType(lv->getPointeeType()),
1786                                    lv->isSpelledAsLValue());
1787    break;
1788  }
1789
1790  case Type::RValueReference: {
1791    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
1792    result = getRValueReferenceType(
1793                 getVariableArrayDecayedType(lv->getPointeeType()));
1794    break;
1795  }
1796
1797  case Type::Atomic: {
1798    const AtomicType *at = cast<AtomicType>(ty);
1799    result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
1800    break;
1801  }
1802
1803  case Type::ConstantArray: {
1804    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
1805    result = getConstantArrayType(
1806                 getVariableArrayDecayedType(cat->getElementType()),
1807                                  cat->getSize(),
1808                                  cat->getSizeModifier(),
1809                                  cat->getIndexTypeCVRQualifiers());
1810    break;
1811  }
1812
1813  case Type::DependentSizedArray: {
1814    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
1815    result = getDependentSizedArrayType(
1816                 getVariableArrayDecayedType(dat->getElementType()),
1817                                        dat->getSizeExpr(),
1818                                        dat->getSizeModifier(),
1819                                        dat->getIndexTypeCVRQualifiers(),
1820                                        dat->getBracketsRange());
1821    break;
1822  }
1823
1824  // Turn incomplete types into [*] types.
1825  case Type::IncompleteArray: {
1826    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
1827    result = getVariableArrayType(
1828                 getVariableArrayDecayedType(iat->getElementType()),
1829                                  /*size*/ 0,
1830                                  ArrayType::Normal,
1831                                  iat->getIndexTypeCVRQualifiers(),
1832                                  SourceRange());
1833    break;
1834  }
1835
1836  // Turn VLA types into [*] types.
1837  case Type::VariableArray: {
1838    const VariableArrayType *vat = cast<VariableArrayType>(ty);
1839    result = getVariableArrayType(
1840                 getVariableArrayDecayedType(vat->getElementType()),
1841                                  /*size*/ 0,
1842                                  ArrayType::Star,
1843                                  vat->getIndexTypeCVRQualifiers(),
1844                                  vat->getBracketsRange());
1845    break;
1846  }
1847  }
1848
1849  // Apply the top-level qualifiers from the original.
1850  return getQualifiedType(result, split.Quals);
1851}
1852
1853/// getVariableArrayType - Returns a non-unique reference to the type for a
1854/// variable array of the specified element type.
1855QualType ASTContext::getVariableArrayType(QualType EltTy,
1856                                          Expr *NumElts,
1857                                          ArrayType::ArraySizeModifier ASM,
1858                                          unsigned IndexTypeQuals,
1859                                          SourceRange Brackets) const {
1860  // Since we don't unique expressions, it isn't possible to unique VLA's
1861  // that have an expression provided for their size.
1862  QualType Canon;
1863
1864  // Be sure to pull qualifiers off the element type.
1865  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1866    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1867    Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
1868                                 IndexTypeQuals, Brackets);
1869    Canon = getQualifiedType(Canon, canonSplit.Quals);
1870  }
1871
1872  VariableArrayType *New = new(*this, TypeAlignment)
1873    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
1874
1875  VariableArrayTypes.push_back(New);
1876  Types.push_back(New);
1877  return QualType(New, 0);
1878}
1879
1880/// getDependentSizedArrayType - Returns a non-unique reference to
1881/// the type for a dependently-sized array of the specified element
1882/// type.
1883QualType ASTContext::getDependentSizedArrayType(QualType elementType,
1884                                                Expr *numElements,
1885                                                ArrayType::ArraySizeModifier ASM,
1886                                                unsigned elementTypeQuals,
1887                                                SourceRange brackets) const {
1888  assert((!numElements || numElements->isTypeDependent() ||
1889          numElements->isValueDependent()) &&
1890         "Size must be type- or value-dependent!");
1891
1892  // Dependently-sized array types that do not have a specified number
1893  // of elements will have their sizes deduced from a dependent
1894  // initializer.  We do no canonicalization here at all, which is okay
1895  // because they can't be used in most locations.
1896  if (!numElements) {
1897    DependentSizedArrayType *newType
1898      = new (*this, TypeAlignment)
1899          DependentSizedArrayType(*this, elementType, QualType(),
1900                                  numElements, ASM, elementTypeQuals,
1901                                  brackets);
1902    Types.push_back(newType);
1903    return QualType(newType, 0);
1904  }
1905
1906  // Otherwise, we actually build a new type every time, but we
1907  // also build a canonical type.
1908
1909  SplitQualType canonElementType = getCanonicalType(elementType).split();
1910
1911  void *insertPos = 0;
1912  llvm::FoldingSetNodeID ID;
1913  DependentSizedArrayType::Profile(ID, *this,
1914                                   QualType(canonElementType.Ty, 0),
1915                                   ASM, elementTypeQuals, numElements);
1916
1917  // Look for an existing type with these properties.
1918  DependentSizedArrayType *canonTy =
1919    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1920
1921  // If we don't have one, build one.
1922  if (!canonTy) {
1923    canonTy = new (*this, TypeAlignment)
1924      DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
1925                              QualType(), numElements, ASM, elementTypeQuals,
1926                              brackets);
1927    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
1928    Types.push_back(canonTy);
1929  }
1930
1931  // Apply qualifiers from the element type to the array.
1932  QualType canon = getQualifiedType(QualType(canonTy,0),
1933                                    canonElementType.Quals);
1934
1935  // If we didn't need extra canonicalization for the element type,
1936  // then just use that as our result.
1937  if (QualType(canonElementType.Ty, 0) == elementType)
1938    return canon;
1939
1940  // Otherwise, we need to build a type which follows the spelling
1941  // of the element type.
1942  DependentSizedArrayType *sugaredType
1943    = new (*this, TypeAlignment)
1944        DependentSizedArrayType(*this, elementType, canon, numElements,
1945                                ASM, elementTypeQuals, brackets);
1946  Types.push_back(sugaredType);
1947  return QualType(sugaredType, 0);
1948}
1949
1950QualType ASTContext::getIncompleteArrayType(QualType elementType,
1951                                            ArrayType::ArraySizeModifier ASM,
1952                                            unsigned elementTypeQuals) const {
1953  llvm::FoldingSetNodeID ID;
1954  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
1955
1956  void *insertPos = 0;
1957  if (IncompleteArrayType *iat =
1958       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
1959    return QualType(iat, 0);
1960
1961  // If the element type isn't canonical, this won't be a canonical type
1962  // either, so fill in the canonical type field.  We also have to pull
1963  // qualifiers off the element type.
1964  QualType canon;
1965
1966  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
1967    SplitQualType canonSplit = getCanonicalType(elementType).split();
1968    canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
1969                                   ASM, elementTypeQuals);
1970    canon = getQualifiedType(canon, canonSplit.Quals);
1971
1972    // Get the new insert position for the node we care about.
1973    IncompleteArrayType *existing =
1974      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1975    assert(!existing && "Shouldn't be in the map!"); (void) existing;
1976  }
1977
1978  IncompleteArrayType *newType = new (*this, TypeAlignment)
1979    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
1980
1981  IncompleteArrayTypes.InsertNode(newType, insertPos);
1982  Types.push_back(newType);
1983  return QualType(newType, 0);
1984}
1985
1986/// getVectorType - Return the unique reference to a vector type of
1987/// the specified element type and size. VectorType must be a built-in type.
1988QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
1989                                   VectorType::VectorKind VecKind) const {
1990  assert(vecType->isBuiltinType());
1991
1992  // Check if we've already instantiated a vector of this type.
1993  llvm::FoldingSetNodeID ID;
1994  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
1995
1996  void *InsertPos = 0;
1997  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1998    return QualType(VTP, 0);
1999
2000  // If the element type isn't canonical, this won't be a canonical type either,
2001  // so fill in the canonical type field.
2002  QualType Canonical;
2003  if (!vecType.isCanonical()) {
2004    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
2005
2006    // Get the new insert position for the node we care about.
2007    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2008    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2009  }
2010  VectorType *New = new (*this, TypeAlignment)
2011    VectorType(vecType, NumElts, Canonical, VecKind);
2012  VectorTypes.InsertNode(New, InsertPos);
2013  Types.push_back(New);
2014  return QualType(New, 0);
2015}
2016
2017/// getExtVectorType - Return the unique reference to an extended vector type of
2018/// the specified element type and size. VectorType must be a built-in type.
2019QualType
2020ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2021  assert(vecType->isBuiltinType() || vecType->isDependentType());
2022
2023  // Check if we've already instantiated a vector of this type.
2024  llvm::FoldingSetNodeID ID;
2025  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2026                      VectorType::GenericVector);
2027  void *InsertPos = 0;
2028  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2029    return QualType(VTP, 0);
2030
2031  // If the element type isn't canonical, this won't be a canonical type either,
2032  // so fill in the canonical type field.
2033  QualType Canonical;
2034  if (!vecType.isCanonical()) {
2035    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2036
2037    // Get the new insert position for the node we care about.
2038    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2039    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2040  }
2041  ExtVectorType *New = new (*this, TypeAlignment)
2042    ExtVectorType(vecType, NumElts, Canonical);
2043  VectorTypes.InsertNode(New, InsertPos);
2044  Types.push_back(New);
2045  return QualType(New, 0);
2046}
2047
2048QualType
2049ASTContext::getDependentSizedExtVectorType(QualType vecType,
2050                                           Expr *SizeExpr,
2051                                           SourceLocation AttrLoc) const {
2052  llvm::FoldingSetNodeID ID;
2053  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2054                                       SizeExpr);
2055
2056  void *InsertPos = 0;
2057  DependentSizedExtVectorType *Canon
2058    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2059  DependentSizedExtVectorType *New;
2060  if (Canon) {
2061    // We already have a canonical version of this array type; use it as
2062    // the canonical type for a newly-built type.
2063    New = new (*this, TypeAlignment)
2064      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2065                                  SizeExpr, AttrLoc);
2066  } else {
2067    QualType CanonVecTy = getCanonicalType(vecType);
2068    if (CanonVecTy == vecType) {
2069      New = new (*this, TypeAlignment)
2070        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2071                                    AttrLoc);
2072
2073      DependentSizedExtVectorType *CanonCheck
2074        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2075      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2076      (void)CanonCheck;
2077      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2078    } else {
2079      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2080                                                      SourceLocation());
2081      New = new (*this, TypeAlignment)
2082        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2083    }
2084  }
2085
2086  Types.push_back(New);
2087  return QualType(New, 0);
2088}
2089
2090/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2091///
2092QualType
2093ASTContext::getFunctionNoProtoType(QualType ResultTy,
2094                                   const FunctionType::ExtInfo &Info) const {
2095  const CallingConv DefaultCC = Info.getCC();
2096  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2097                               CC_X86StdCall : DefaultCC;
2098  // Unique functions, to guarantee there is only one function of a particular
2099  // structure.
2100  llvm::FoldingSetNodeID ID;
2101  FunctionNoProtoType::Profile(ID, ResultTy, Info);
2102
2103  void *InsertPos = 0;
2104  if (FunctionNoProtoType *FT =
2105        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2106    return QualType(FT, 0);
2107
2108  QualType Canonical;
2109  if (!ResultTy.isCanonical() ||
2110      getCanonicalCallConv(CallConv) != CallConv) {
2111    Canonical =
2112      getFunctionNoProtoType(getCanonicalType(ResultTy),
2113                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
2114
2115    // Get the new insert position for the node we care about.
2116    FunctionNoProtoType *NewIP =
2117      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2118    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2119  }
2120
2121  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2122  FunctionNoProtoType *New = new (*this, TypeAlignment)
2123    FunctionNoProtoType(ResultTy, Canonical, newInfo);
2124  Types.push_back(New);
2125  FunctionNoProtoTypes.InsertNode(New, InsertPos);
2126  return QualType(New, 0);
2127}
2128
2129/// getFunctionType - Return a normal function type with a typed argument
2130/// list.  isVariadic indicates whether the argument list includes '...'.
2131QualType
2132ASTContext::getFunctionType(QualType ResultTy,
2133                            const QualType *ArgArray, unsigned NumArgs,
2134                            const FunctionProtoType::ExtProtoInfo &EPI) const {
2135  // Unique functions, to guarantee there is only one function of a particular
2136  // structure.
2137  llvm::FoldingSetNodeID ID;
2138  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI, *this);
2139
2140  void *InsertPos = 0;
2141  if (FunctionProtoType *FTP =
2142        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2143    return QualType(FTP, 0);
2144
2145  // Determine whether the type being created is already canonical or not.
2146  bool isCanonical =
2147    EPI.ExceptionSpecType == EST_None && ResultTy.isCanonical() &&
2148    !EPI.HasTrailingReturn;
2149  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2150    if (!ArgArray[i].isCanonicalAsParam())
2151      isCanonical = false;
2152
2153  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2154  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2155                               CC_X86StdCall : DefaultCC;
2156
2157  // If this type isn't canonical, get the canonical version of it.
2158  // The exception spec is not part of the canonical type.
2159  QualType Canonical;
2160  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2161    SmallVector<QualType, 16> CanonicalArgs;
2162    CanonicalArgs.reserve(NumArgs);
2163    for (unsigned i = 0; i != NumArgs; ++i)
2164      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2165
2166    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2167    CanonicalEPI.HasTrailingReturn = false;
2168    CanonicalEPI.ExceptionSpecType = EST_None;
2169    CanonicalEPI.NumExceptions = 0;
2170    CanonicalEPI.ExtInfo
2171      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2172
2173    Canonical = getFunctionType(getCanonicalType(ResultTy),
2174                                CanonicalArgs.data(), NumArgs,
2175                                CanonicalEPI);
2176
2177    // Get the new insert position for the node we care about.
2178    FunctionProtoType *NewIP =
2179      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2180    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2181  }
2182
2183  // FunctionProtoType objects are allocated with extra bytes after
2184  // them for three variable size arrays at the end:
2185  //  - parameter types
2186  //  - exception types
2187  //  - consumed-arguments flags
2188  // Instead of the exception types, there could be a noexcept
2189  // expression.
2190  size_t Size = sizeof(FunctionProtoType) +
2191                NumArgs * sizeof(QualType);
2192  if (EPI.ExceptionSpecType == EST_Dynamic)
2193    Size += EPI.NumExceptions * sizeof(QualType);
2194  else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2195    Size += sizeof(Expr*);
2196  }
2197  if (EPI.ConsumedArguments)
2198    Size += NumArgs * sizeof(bool);
2199
2200  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2201  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2202  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2203  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, newEPI);
2204  Types.push_back(FTP);
2205  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2206  return QualType(FTP, 0);
2207}
2208
2209#ifndef NDEBUG
2210static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2211  if (!isa<CXXRecordDecl>(D)) return false;
2212  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2213  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2214    return true;
2215  if (RD->getDescribedClassTemplate() &&
2216      !isa<ClassTemplateSpecializationDecl>(RD))
2217    return true;
2218  return false;
2219}
2220#endif
2221
2222/// getInjectedClassNameType - Return the unique reference to the
2223/// injected class name type for the specified templated declaration.
2224QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2225                                              QualType TST) const {
2226  assert(NeedsInjectedClassNameType(Decl));
2227  if (Decl->TypeForDecl) {
2228    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2229  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
2230    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2231    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2232    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2233  } else {
2234    Type *newType =
2235      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2236    Decl->TypeForDecl = newType;
2237    Types.push_back(newType);
2238  }
2239  return QualType(Decl->TypeForDecl, 0);
2240}
2241
2242/// getTypeDeclType - Return the unique reference to the type for the
2243/// specified type declaration.
2244QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2245  assert(Decl && "Passed null for Decl param");
2246  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2247
2248  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2249    return getTypedefType(Typedef);
2250
2251  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2252         "Template type parameter types are always available.");
2253
2254  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2255    assert(!Record->getPreviousDecl() &&
2256           "struct/union has previous declaration");
2257    assert(!NeedsInjectedClassNameType(Record));
2258    return getRecordType(Record);
2259  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2260    assert(!Enum->getPreviousDecl() &&
2261           "enum has previous declaration");
2262    return getEnumType(Enum);
2263  } else if (const UnresolvedUsingTypenameDecl *Using =
2264               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2265    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2266    Decl->TypeForDecl = newType;
2267    Types.push_back(newType);
2268  } else
2269    llvm_unreachable("TypeDecl without a type?");
2270
2271  return QualType(Decl->TypeForDecl, 0);
2272}
2273
2274/// getTypedefType - Return the unique reference to the type for the
2275/// specified typedef name decl.
2276QualType
2277ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2278                           QualType Canonical) const {
2279  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2280
2281  if (Canonical.isNull())
2282    Canonical = getCanonicalType(Decl->getUnderlyingType());
2283  TypedefType *newType = new(*this, TypeAlignment)
2284    TypedefType(Type::Typedef, Decl, Canonical);
2285  Decl->TypeForDecl = newType;
2286  Types.push_back(newType);
2287  return QualType(newType, 0);
2288}
2289
2290QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2291  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2292
2293  if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
2294    if (PrevDecl->TypeForDecl)
2295      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2296
2297  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2298  Decl->TypeForDecl = newType;
2299  Types.push_back(newType);
2300  return QualType(newType, 0);
2301}
2302
2303QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2304  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2305
2306  if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
2307    if (PrevDecl->TypeForDecl)
2308      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2309
2310  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2311  Decl->TypeForDecl = newType;
2312  Types.push_back(newType);
2313  return QualType(newType, 0);
2314}
2315
2316QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2317                                       QualType modifiedType,
2318                                       QualType equivalentType) {
2319  llvm::FoldingSetNodeID id;
2320  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2321
2322  void *insertPos = 0;
2323  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2324  if (type) return QualType(type, 0);
2325
2326  QualType canon = getCanonicalType(equivalentType);
2327  type = new (*this, TypeAlignment)
2328           AttributedType(canon, attrKind, modifiedType, equivalentType);
2329
2330  Types.push_back(type);
2331  AttributedTypes.InsertNode(type, insertPos);
2332
2333  return QualType(type, 0);
2334}
2335
2336
2337/// \brief Retrieve a substitution-result type.
2338QualType
2339ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2340                                         QualType Replacement) const {
2341  assert(Replacement.isCanonical()
2342         && "replacement types must always be canonical");
2343
2344  llvm::FoldingSetNodeID ID;
2345  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2346  void *InsertPos = 0;
2347  SubstTemplateTypeParmType *SubstParm
2348    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2349
2350  if (!SubstParm) {
2351    SubstParm = new (*this, TypeAlignment)
2352      SubstTemplateTypeParmType(Parm, Replacement);
2353    Types.push_back(SubstParm);
2354    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2355  }
2356
2357  return QualType(SubstParm, 0);
2358}
2359
2360/// \brief Retrieve a
2361QualType ASTContext::getSubstTemplateTypeParmPackType(
2362                                          const TemplateTypeParmType *Parm,
2363                                              const TemplateArgument &ArgPack) {
2364#ifndef NDEBUG
2365  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2366                                    PEnd = ArgPack.pack_end();
2367       P != PEnd; ++P) {
2368    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2369    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2370  }
2371#endif
2372
2373  llvm::FoldingSetNodeID ID;
2374  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2375  void *InsertPos = 0;
2376  if (SubstTemplateTypeParmPackType *SubstParm
2377        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2378    return QualType(SubstParm, 0);
2379
2380  QualType Canon;
2381  if (!Parm->isCanonicalUnqualified()) {
2382    Canon = getCanonicalType(QualType(Parm, 0));
2383    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2384                                             ArgPack);
2385    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2386  }
2387
2388  SubstTemplateTypeParmPackType *SubstParm
2389    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2390                                                               ArgPack);
2391  Types.push_back(SubstParm);
2392  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2393  return QualType(SubstParm, 0);
2394}
2395
2396/// \brief Retrieve the template type parameter type for a template
2397/// parameter or parameter pack with the given depth, index, and (optionally)
2398/// name.
2399QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2400                                             bool ParameterPack,
2401                                             TemplateTypeParmDecl *TTPDecl) const {
2402  llvm::FoldingSetNodeID ID;
2403  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
2404  void *InsertPos = 0;
2405  TemplateTypeParmType *TypeParm
2406    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2407
2408  if (TypeParm)
2409    return QualType(TypeParm, 0);
2410
2411  if (TTPDecl) {
2412    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2413    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
2414
2415    TemplateTypeParmType *TypeCheck
2416      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2417    assert(!TypeCheck && "Template type parameter canonical type broken");
2418    (void)TypeCheck;
2419  } else
2420    TypeParm = new (*this, TypeAlignment)
2421      TemplateTypeParmType(Depth, Index, ParameterPack);
2422
2423  Types.push_back(TypeParm);
2424  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2425
2426  return QualType(TypeParm, 0);
2427}
2428
2429TypeSourceInfo *
2430ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2431                                              SourceLocation NameLoc,
2432                                        const TemplateArgumentListInfo &Args,
2433                                              QualType Underlying) const {
2434  assert(!Name.getAsDependentTemplateName() &&
2435         "No dependent template names here!");
2436  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
2437
2438  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2439  TemplateSpecializationTypeLoc TL
2440    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
2441  TL.setTemplateKeywordLoc(SourceLocation());
2442  TL.setTemplateNameLoc(NameLoc);
2443  TL.setLAngleLoc(Args.getLAngleLoc());
2444  TL.setRAngleLoc(Args.getRAngleLoc());
2445  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2446    TL.setArgLocInfo(i, Args[i].getLocInfo());
2447  return DI;
2448}
2449
2450QualType
2451ASTContext::getTemplateSpecializationType(TemplateName Template,
2452                                          const TemplateArgumentListInfo &Args,
2453                                          QualType Underlying) const {
2454  assert(!Template.getAsDependentTemplateName() &&
2455         "No dependent template names here!");
2456
2457  unsigned NumArgs = Args.size();
2458
2459  SmallVector<TemplateArgument, 4> ArgVec;
2460  ArgVec.reserve(NumArgs);
2461  for (unsigned i = 0; i != NumArgs; ++i)
2462    ArgVec.push_back(Args[i].getArgument());
2463
2464  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2465                                       Underlying);
2466}
2467
2468#ifndef NDEBUG
2469static bool hasAnyPackExpansions(const TemplateArgument *Args,
2470                                 unsigned NumArgs) {
2471  for (unsigned I = 0; I != NumArgs; ++I)
2472    if (Args[I].isPackExpansion())
2473      return true;
2474
2475  return true;
2476}
2477#endif
2478
2479QualType
2480ASTContext::getTemplateSpecializationType(TemplateName Template,
2481                                          const TemplateArgument *Args,
2482                                          unsigned NumArgs,
2483                                          QualType Underlying) const {
2484  assert(!Template.getAsDependentTemplateName() &&
2485         "No dependent template names here!");
2486  // Look through qualified template names.
2487  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2488    Template = TemplateName(QTN->getTemplateDecl());
2489
2490  bool IsTypeAlias =
2491    Template.getAsTemplateDecl() &&
2492    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
2493  QualType CanonType;
2494  if (!Underlying.isNull())
2495    CanonType = getCanonicalType(Underlying);
2496  else {
2497    // We can get here with an alias template when the specialization contains
2498    // a pack expansion that does not match up with a parameter pack.
2499    assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
2500           "Caller must compute aliased type");
2501    IsTypeAlias = false;
2502    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
2503                                                       NumArgs);
2504  }
2505
2506  // Allocate the (non-canonical) template specialization type, but don't
2507  // try to unique it: these types typically have location information that
2508  // we don't unique and don't want to lose.
2509  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
2510                       sizeof(TemplateArgument) * NumArgs +
2511                       (IsTypeAlias? sizeof(QualType) : 0),
2512                       TypeAlignment);
2513  TemplateSpecializationType *Spec
2514    = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
2515                                         IsTypeAlias ? Underlying : QualType());
2516
2517  Types.push_back(Spec);
2518  return QualType(Spec, 0);
2519}
2520
2521QualType
2522ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
2523                                                   const TemplateArgument *Args,
2524                                                   unsigned NumArgs) const {
2525  assert(!Template.getAsDependentTemplateName() &&
2526         "No dependent template names here!");
2527
2528  // Look through qualified template names.
2529  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2530    Template = TemplateName(QTN->getTemplateDecl());
2531
2532  // Build the canonical template specialization type.
2533  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
2534  SmallVector<TemplateArgument, 4> CanonArgs;
2535  CanonArgs.reserve(NumArgs);
2536  for (unsigned I = 0; I != NumArgs; ++I)
2537    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
2538
2539  // Determine whether this canonical template specialization type already
2540  // exists.
2541  llvm::FoldingSetNodeID ID;
2542  TemplateSpecializationType::Profile(ID, CanonTemplate,
2543                                      CanonArgs.data(), NumArgs, *this);
2544
2545  void *InsertPos = 0;
2546  TemplateSpecializationType *Spec
2547    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2548
2549  if (!Spec) {
2550    // Allocate a new canonical template specialization type.
2551    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2552                          sizeof(TemplateArgument) * NumArgs),
2553                         TypeAlignment);
2554    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
2555                                                CanonArgs.data(), NumArgs,
2556                                                QualType(), QualType());
2557    Types.push_back(Spec);
2558    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
2559  }
2560
2561  assert(Spec->isDependentType() &&
2562         "Non-dependent template-id type must have a canonical type");
2563  return QualType(Spec, 0);
2564}
2565
2566QualType
2567ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
2568                              NestedNameSpecifier *NNS,
2569                              QualType NamedType) const {
2570  llvm::FoldingSetNodeID ID;
2571  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
2572
2573  void *InsertPos = 0;
2574  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2575  if (T)
2576    return QualType(T, 0);
2577
2578  QualType Canon = NamedType;
2579  if (!Canon.isCanonical()) {
2580    Canon = getCanonicalType(NamedType);
2581    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2582    assert(!CheckT && "Elaborated canonical type broken");
2583    (void)CheckT;
2584  }
2585
2586  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
2587  Types.push_back(T);
2588  ElaboratedTypes.InsertNode(T, InsertPos);
2589  return QualType(T, 0);
2590}
2591
2592QualType
2593ASTContext::getParenType(QualType InnerType) const {
2594  llvm::FoldingSetNodeID ID;
2595  ParenType::Profile(ID, InnerType);
2596
2597  void *InsertPos = 0;
2598  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2599  if (T)
2600    return QualType(T, 0);
2601
2602  QualType Canon = InnerType;
2603  if (!Canon.isCanonical()) {
2604    Canon = getCanonicalType(InnerType);
2605    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2606    assert(!CheckT && "Paren canonical type broken");
2607    (void)CheckT;
2608  }
2609
2610  T = new (*this) ParenType(InnerType, Canon);
2611  Types.push_back(T);
2612  ParenTypes.InsertNode(T, InsertPos);
2613  return QualType(T, 0);
2614}
2615
2616QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
2617                                          NestedNameSpecifier *NNS,
2618                                          const IdentifierInfo *Name,
2619                                          QualType Canon) const {
2620  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2621
2622  if (Canon.isNull()) {
2623    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2624    ElaboratedTypeKeyword CanonKeyword = Keyword;
2625    if (Keyword == ETK_None)
2626      CanonKeyword = ETK_Typename;
2627
2628    if (CanonNNS != NNS || CanonKeyword != Keyword)
2629      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
2630  }
2631
2632  llvm::FoldingSetNodeID ID;
2633  DependentNameType::Profile(ID, Keyword, NNS, Name);
2634
2635  void *InsertPos = 0;
2636  DependentNameType *T
2637    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2638  if (T)
2639    return QualType(T, 0);
2640
2641  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
2642  Types.push_back(T);
2643  DependentNameTypes.InsertNode(T, InsertPos);
2644  return QualType(T, 0);
2645}
2646
2647QualType
2648ASTContext::getDependentTemplateSpecializationType(
2649                                 ElaboratedTypeKeyword Keyword,
2650                                 NestedNameSpecifier *NNS,
2651                                 const IdentifierInfo *Name,
2652                                 const TemplateArgumentListInfo &Args) const {
2653  // TODO: avoid this copy
2654  SmallVector<TemplateArgument, 16> ArgCopy;
2655  for (unsigned I = 0, E = Args.size(); I != E; ++I)
2656    ArgCopy.push_back(Args[I].getArgument());
2657  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
2658                                                ArgCopy.size(),
2659                                                ArgCopy.data());
2660}
2661
2662QualType
2663ASTContext::getDependentTemplateSpecializationType(
2664                                 ElaboratedTypeKeyword Keyword,
2665                                 NestedNameSpecifier *NNS,
2666                                 const IdentifierInfo *Name,
2667                                 unsigned NumArgs,
2668                                 const TemplateArgument *Args) const {
2669  assert((!NNS || NNS->isDependent()) &&
2670         "nested-name-specifier must be dependent");
2671
2672  llvm::FoldingSetNodeID ID;
2673  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
2674                                               Name, NumArgs, Args);
2675
2676  void *InsertPos = 0;
2677  DependentTemplateSpecializationType *T
2678    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2679  if (T)
2680    return QualType(T, 0);
2681
2682  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2683
2684  ElaboratedTypeKeyword CanonKeyword = Keyword;
2685  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
2686
2687  bool AnyNonCanonArgs = false;
2688  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
2689  for (unsigned I = 0; I != NumArgs; ++I) {
2690    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
2691    if (!CanonArgs[I].structurallyEquals(Args[I]))
2692      AnyNonCanonArgs = true;
2693  }
2694
2695  QualType Canon;
2696  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
2697    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
2698                                                   Name, NumArgs,
2699                                                   CanonArgs.data());
2700
2701    // Find the insert position again.
2702    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2703  }
2704
2705  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
2706                        sizeof(TemplateArgument) * NumArgs),
2707                       TypeAlignment);
2708  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
2709                                                    Name, NumArgs, Args, Canon);
2710  Types.push_back(T);
2711  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
2712  return QualType(T, 0);
2713}
2714
2715QualType ASTContext::getPackExpansionType(QualType Pattern,
2716                                      llvm::Optional<unsigned> NumExpansions) {
2717  llvm::FoldingSetNodeID ID;
2718  PackExpansionType::Profile(ID, Pattern, NumExpansions);
2719
2720  assert(Pattern->containsUnexpandedParameterPack() &&
2721         "Pack expansions must expand one or more parameter packs");
2722  void *InsertPos = 0;
2723  PackExpansionType *T
2724    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2725  if (T)
2726    return QualType(T, 0);
2727
2728  QualType Canon;
2729  if (!Pattern.isCanonical()) {
2730    Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
2731
2732    // Find the insert position again.
2733    PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2734  }
2735
2736  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
2737  Types.push_back(T);
2738  PackExpansionTypes.InsertNode(T, InsertPos);
2739  return QualType(T, 0);
2740}
2741
2742/// CmpProtocolNames - Comparison predicate for sorting protocols
2743/// alphabetically.
2744static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2745                            const ObjCProtocolDecl *RHS) {
2746  return LHS->getDeclName() < RHS->getDeclName();
2747}
2748
2749static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
2750                                unsigned NumProtocols) {
2751  if (NumProtocols == 0) return true;
2752
2753  if (Protocols[0]->getCanonicalDecl() != Protocols[0])
2754    return false;
2755
2756  for (unsigned i = 1; i != NumProtocols; ++i)
2757    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
2758        Protocols[i]->getCanonicalDecl() != Protocols[i])
2759      return false;
2760  return true;
2761}
2762
2763static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2764                                   unsigned &NumProtocols) {
2765  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2766
2767  // Sort protocols, keyed by name.
2768  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2769
2770  // Canonicalize.
2771  for (unsigned I = 0, N = NumProtocols; I != N; ++I)
2772    Protocols[I] = Protocols[I]->getCanonicalDecl();
2773
2774  // Remove duplicates.
2775  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2776  NumProtocols = ProtocolsEnd-Protocols;
2777}
2778
2779QualType ASTContext::getObjCObjectType(QualType BaseType,
2780                                       ObjCProtocolDecl * const *Protocols,
2781                                       unsigned NumProtocols) const {
2782  // If the base type is an interface and there aren't any protocols
2783  // to add, then the interface type will do just fine.
2784  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
2785    return BaseType;
2786
2787  // Look in the folding set for an existing type.
2788  llvm::FoldingSetNodeID ID;
2789  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
2790  void *InsertPos = 0;
2791  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
2792    return QualType(QT, 0);
2793
2794  // Build the canonical type, which has the canonical base type and
2795  // a sorted-and-uniqued list of protocols.
2796  QualType Canonical;
2797  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
2798  if (!ProtocolsSorted || !BaseType.isCanonical()) {
2799    if (!ProtocolsSorted) {
2800      SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
2801                                                     Protocols + NumProtocols);
2802      unsigned UniqueCount = NumProtocols;
2803
2804      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2805      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2806                                    &Sorted[0], UniqueCount);
2807    } else {
2808      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2809                                    Protocols, NumProtocols);
2810    }
2811
2812    // Regenerate InsertPos.
2813    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
2814  }
2815
2816  unsigned Size = sizeof(ObjCObjectTypeImpl);
2817  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
2818  void *Mem = Allocate(Size, TypeAlignment);
2819  ObjCObjectTypeImpl *T =
2820    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
2821
2822  Types.push_back(T);
2823  ObjCObjectTypes.InsertNode(T, InsertPos);
2824  return QualType(T, 0);
2825}
2826
2827/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2828/// the given object type.
2829QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
2830  llvm::FoldingSetNodeID ID;
2831  ObjCObjectPointerType::Profile(ID, ObjectT);
2832
2833  void *InsertPos = 0;
2834  if (ObjCObjectPointerType *QT =
2835              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2836    return QualType(QT, 0);
2837
2838  // Find the canonical object type.
2839  QualType Canonical;
2840  if (!ObjectT.isCanonical()) {
2841    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
2842
2843    // Regenerate InsertPos.
2844    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2845  }
2846
2847  // No match.
2848  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
2849  ObjCObjectPointerType *QType =
2850    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
2851
2852  Types.push_back(QType);
2853  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2854  return QualType(QType, 0);
2855}
2856
2857/// getObjCInterfaceType - Return the unique reference to the type for the
2858/// specified ObjC interface decl. The list of protocols is optional.
2859QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
2860                                          ObjCInterfaceDecl *PrevDecl) const {
2861  if (Decl->TypeForDecl)
2862    return QualType(Decl->TypeForDecl, 0);
2863
2864  if (PrevDecl) {
2865    assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
2866    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2867    return QualType(PrevDecl->TypeForDecl, 0);
2868  }
2869
2870  // Prefer the definition, if there is one.
2871  if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
2872    Decl = Def;
2873
2874  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
2875  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
2876  Decl->TypeForDecl = T;
2877  Types.push_back(T);
2878  return QualType(T, 0);
2879}
2880
2881/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2882/// TypeOfExprType AST's (since expression's are never shared). For example,
2883/// multiple declarations that refer to "typeof(x)" all contain different
2884/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2885/// on canonical type's (which are always unique).
2886QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
2887  TypeOfExprType *toe;
2888  if (tofExpr->isTypeDependent()) {
2889    llvm::FoldingSetNodeID ID;
2890    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2891
2892    void *InsertPos = 0;
2893    DependentTypeOfExprType *Canon
2894      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2895    if (Canon) {
2896      // We already have a "canonical" version of an identical, dependent
2897      // typeof(expr) type. Use that as our canonical type.
2898      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2899                                          QualType((TypeOfExprType*)Canon, 0));
2900    } else {
2901      // Build a new, canonical typeof(expr) type.
2902      Canon
2903        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2904      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2905      toe = Canon;
2906    }
2907  } else {
2908    QualType Canonical = getCanonicalType(tofExpr->getType());
2909    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2910  }
2911  Types.push_back(toe);
2912  return QualType(toe, 0);
2913}
2914
2915/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2916/// TypeOfType AST's. The only motivation to unique these nodes would be
2917/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2918/// an issue. This doesn't effect the type checker, since it operates
2919/// on canonical type's (which are always unique).
2920QualType ASTContext::getTypeOfType(QualType tofType) const {
2921  QualType Canonical = getCanonicalType(tofType);
2922  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2923  Types.push_back(tot);
2924  return QualType(tot, 0);
2925}
2926
2927
2928/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2929/// DecltypeType AST's. The only motivation to unique these nodes would be
2930/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2931/// an issue. This doesn't effect the type checker, since it operates
2932/// on canonical types (which are always unique).
2933QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
2934  DecltypeType *dt;
2935
2936  // C++0x [temp.type]p2:
2937  //   If an expression e involves a template parameter, decltype(e) denotes a
2938  //   unique dependent type. Two such decltype-specifiers refer to the same
2939  //   type only if their expressions are equivalent (14.5.6.1).
2940  if (e->isInstantiationDependent()) {
2941    llvm::FoldingSetNodeID ID;
2942    DependentDecltypeType::Profile(ID, *this, e);
2943
2944    void *InsertPos = 0;
2945    DependentDecltypeType *Canon
2946      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2947    if (Canon) {
2948      // We already have a "canonical" version of an equivalent, dependent
2949      // decltype type. Use that as our canonical type.
2950      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2951                                       QualType((DecltypeType*)Canon, 0));
2952    } else {
2953      // Build a new, canonical typeof(expr) type.
2954      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2955      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2956      dt = Canon;
2957    }
2958  } else {
2959    dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
2960                                      getCanonicalType(UnderlyingType));
2961  }
2962  Types.push_back(dt);
2963  return QualType(dt, 0);
2964}
2965
2966/// getUnaryTransformationType - We don't unique these, since the memory
2967/// savings are minimal and these are rare.
2968QualType ASTContext::getUnaryTransformType(QualType BaseType,
2969                                           QualType UnderlyingType,
2970                                           UnaryTransformType::UTTKind Kind)
2971    const {
2972  UnaryTransformType *Ty =
2973    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
2974                                                   Kind,
2975                                 UnderlyingType->isDependentType() ?
2976                                 QualType() : getCanonicalType(UnderlyingType));
2977  Types.push_back(Ty);
2978  return QualType(Ty, 0);
2979}
2980
2981/// getAutoType - We only unique auto types after they've been deduced.
2982QualType ASTContext::getAutoType(QualType DeducedType) const {
2983  void *InsertPos = 0;
2984  if (!DeducedType.isNull()) {
2985    // Look in the folding set for an existing type.
2986    llvm::FoldingSetNodeID ID;
2987    AutoType::Profile(ID, DeducedType);
2988    if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
2989      return QualType(AT, 0);
2990  }
2991
2992  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
2993  Types.push_back(AT);
2994  if (InsertPos)
2995    AutoTypes.InsertNode(AT, InsertPos);
2996  return QualType(AT, 0);
2997}
2998
2999/// getAtomicType - Return the uniqued reference to the atomic type for
3000/// the given value type.
3001QualType ASTContext::getAtomicType(QualType T) const {
3002  // Unique pointers, to guarantee there is only one pointer of a particular
3003  // structure.
3004  llvm::FoldingSetNodeID ID;
3005  AtomicType::Profile(ID, T);
3006
3007  void *InsertPos = 0;
3008  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
3009    return QualType(AT, 0);
3010
3011  // If the atomic value type isn't canonical, this won't be a canonical type
3012  // either, so fill in the canonical type field.
3013  QualType Canonical;
3014  if (!T.isCanonical()) {
3015    Canonical = getAtomicType(getCanonicalType(T));
3016
3017    // Get the new insert position for the node we care about.
3018    AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
3019    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
3020  }
3021  AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
3022  Types.push_back(New);
3023  AtomicTypes.InsertNode(New, InsertPos);
3024  return QualType(New, 0);
3025}
3026
3027/// getAutoDeductType - Get type pattern for deducing against 'auto'.
3028QualType ASTContext::getAutoDeductType() const {
3029  if (AutoDeductTy.isNull())
3030    AutoDeductTy = getAutoType(QualType());
3031  assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern");
3032  return AutoDeductTy;
3033}
3034
3035/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
3036QualType ASTContext::getAutoRRefDeductType() const {
3037  if (AutoRRefDeductTy.isNull())
3038    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3039  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3040  return AutoRRefDeductTy;
3041}
3042
3043/// getTagDeclType - Return the unique reference to the type for the
3044/// specified TagDecl (struct/union/class/enum) decl.
3045QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3046  assert (Decl);
3047  // FIXME: What is the design on getTagDeclType when it requires casting
3048  // away const?  mutable?
3049  return getTypeDeclType(const_cast<TagDecl*>(Decl));
3050}
3051
3052/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3053/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3054/// needs to agree with the definition in <stddef.h>.
3055CanQualType ASTContext::getSizeType() const {
3056  return getFromTargetType(Target->getSizeType());
3057}
3058
3059/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
3060CanQualType ASTContext::getIntMaxType() const {
3061  return getFromTargetType(Target->getIntMaxType());
3062}
3063
3064/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
3065CanQualType ASTContext::getUIntMaxType() const {
3066  return getFromTargetType(Target->getUIntMaxType());
3067}
3068
3069/// getSignedWCharType - Return the type of "signed wchar_t".
3070/// Used when in C++, as a GCC extension.
3071QualType ASTContext::getSignedWCharType() const {
3072  // FIXME: derive from "Target" ?
3073  return WCharTy;
3074}
3075
3076/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3077/// Used when in C++, as a GCC extension.
3078QualType ASTContext::getUnsignedWCharType() const {
3079  // FIXME: derive from "Target" ?
3080  return UnsignedIntTy;
3081}
3082
3083/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3084/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
3085QualType ASTContext::getPointerDiffType() const {
3086  return getFromTargetType(Target->getPtrDiffType(0));
3087}
3088
3089//===----------------------------------------------------------------------===//
3090//                              Type Operators
3091//===----------------------------------------------------------------------===//
3092
3093CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3094  // Push qualifiers into arrays, and then discard any remaining
3095  // qualifiers.
3096  T = getCanonicalType(T);
3097  T = getVariableArrayDecayedType(T);
3098  const Type *Ty = T.getTypePtr();
3099  QualType Result;
3100  if (isa<ArrayType>(Ty)) {
3101    Result = getArrayDecayedType(QualType(Ty,0));
3102  } else if (isa<FunctionType>(Ty)) {
3103    Result = getPointerType(QualType(Ty, 0));
3104  } else {
3105    Result = QualType(Ty, 0);
3106  }
3107
3108  return CanQualType::CreateUnsafe(Result);
3109}
3110
3111QualType ASTContext::getUnqualifiedArrayType(QualType type,
3112                                             Qualifiers &quals) {
3113  SplitQualType splitType = type.getSplitUnqualifiedType();
3114
3115  // FIXME: getSplitUnqualifiedType() actually walks all the way to
3116  // the unqualified desugared type and then drops it on the floor.
3117  // We then have to strip that sugar back off with
3118  // getUnqualifiedDesugaredType(), which is silly.
3119  const ArrayType *AT =
3120    dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
3121
3122  // If we don't have an array, just use the results in splitType.
3123  if (!AT) {
3124    quals = splitType.Quals;
3125    return QualType(splitType.Ty, 0);
3126  }
3127
3128  // Otherwise, recurse on the array's element type.
3129  QualType elementType = AT->getElementType();
3130  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3131
3132  // If that didn't change the element type, AT has no qualifiers, so we
3133  // can just use the results in splitType.
3134  if (elementType == unqualElementType) {
3135    assert(quals.empty()); // from the recursive call
3136    quals = splitType.Quals;
3137    return QualType(splitType.Ty, 0);
3138  }
3139
3140  // Otherwise, add in the qualifiers from the outermost type, then
3141  // build the type back up.
3142  quals.addConsistentQualifiers(splitType.Quals);
3143
3144  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3145    return getConstantArrayType(unqualElementType, CAT->getSize(),
3146                                CAT->getSizeModifier(), 0);
3147  }
3148
3149  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3150    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3151  }
3152
3153  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3154    return getVariableArrayType(unqualElementType,
3155                                VAT->getSizeExpr(),
3156                                VAT->getSizeModifier(),
3157                                VAT->getIndexTypeCVRQualifiers(),
3158                                VAT->getBracketsRange());
3159  }
3160
3161  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
3162  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
3163                                    DSAT->getSizeModifier(), 0,
3164                                    SourceRange());
3165}
3166
3167/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
3168/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
3169/// they point to and return true. If T1 and T2 aren't pointer types
3170/// or pointer-to-member types, or if they are not similar at this
3171/// level, returns false and leaves T1 and T2 unchanged. Top-level
3172/// qualifiers on T1 and T2 are ignored. This function will typically
3173/// be called in a loop that successively "unwraps" pointer and
3174/// pointer-to-member types to compare them at each level.
3175bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3176  const PointerType *T1PtrType = T1->getAs<PointerType>(),
3177                    *T2PtrType = T2->getAs<PointerType>();
3178  if (T1PtrType && T2PtrType) {
3179    T1 = T1PtrType->getPointeeType();
3180    T2 = T2PtrType->getPointeeType();
3181    return true;
3182  }
3183
3184  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3185                          *T2MPType = T2->getAs<MemberPointerType>();
3186  if (T1MPType && T2MPType &&
3187      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3188                             QualType(T2MPType->getClass(), 0))) {
3189    T1 = T1MPType->getPointeeType();
3190    T2 = T2MPType->getPointeeType();
3191    return true;
3192  }
3193
3194  if (getLangOpts().ObjC1) {
3195    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3196                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
3197    if (T1OPType && T2OPType) {
3198      T1 = T1OPType->getPointeeType();
3199      T2 = T2OPType->getPointeeType();
3200      return true;
3201    }
3202  }
3203
3204  // FIXME: Block pointers, too?
3205
3206  return false;
3207}
3208
3209DeclarationNameInfo
3210ASTContext::getNameForTemplate(TemplateName Name,
3211                               SourceLocation NameLoc) const {
3212  switch (Name.getKind()) {
3213  case TemplateName::QualifiedTemplate:
3214  case TemplateName::Template:
3215    // DNInfo work in progress: CHECKME: what about DNLoc?
3216    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3217                               NameLoc);
3218
3219  case TemplateName::OverloadedTemplate: {
3220    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3221    // DNInfo work in progress: CHECKME: what about DNLoc?
3222    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3223  }
3224
3225  case TemplateName::DependentTemplate: {
3226    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3227    DeclarationName DName;
3228    if (DTN->isIdentifier()) {
3229      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3230      return DeclarationNameInfo(DName, NameLoc);
3231    } else {
3232      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3233      // DNInfo work in progress: FIXME: source locations?
3234      DeclarationNameLoc DNLoc;
3235      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3236      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3237      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3238    }
3239  }
3240
3241  case TemplateName::SubstTemplateTemplateParm: {
3242    SubstTemplateTemplateParmStorage *subst
3243      = Name.getAsSubstTemplateTemplateParm();
3244    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3245                               NameLoc);
3246  }
3247
3248  case TemplateName::SubstTemplateTemplateParmPack: {
3249    SubstTemplateTemplateParmPackStorage *subst
3250      = Name.getAsSubstTemplateTemplateParmPack();
3251    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3252                               NameLoc);
3253  }
3254  }
3255
3256  llvm_unreachable("bad template name kind!");
3257}
3258
3259TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3260  switch (Name.getKind()) {
3261  case TemplateName::QualifiedTemplate:
3262  case TemplateName::Template: {
3263    TemplateDecl *Template = Name.getAsTemplateDecl();
3264    if (TemplateTemplateParmDecl *TTP
3265          = dyn_cast<TemplateTemplateParmDecl>(Template))
3266      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3267
3268    // The canonical template name is the canonical template declaration.
3269    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3270  }
3271
3272  case TemplateName::OverloadedTemplate:
3273    llvm_unreachable("cannot canonicalize overloaded template");
3274
3275  case TemplateName::DependentTemplate: {
3276    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3277    assert(DTN && "Non-dependent template names must refer to template decls.");
3278    return DTN->CanonicalTemplateName;
3279  }
3280
3281  case TemplateName::SubstTemplateTemplateParm: {
3282    SubstTemplateTemplateParmStorage *subst
3283      = Name.getAsSubstTemplateTemplateParm();
3284    return getCanonicalTemplateName(subst->getReplacement());
3285  }
3286
3287  case TemplateName::SubstTemplateTemplateParmPack: {
3288    SubstTemplateTemplateParmPackStorage *subst
3289                                  = Name.getAsSubstTemplateTemplateParmPack();
3290    TemplateTemplateParmDecl *canonParameter
3291      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3292    TemplateArgument canonArgPack
3293      = getCanonicalTemplateArgument(subst->getArgumentPack());
3294    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3295  }
3296  }
3297
3298  llvm_unreachable("bad template name!");
3299}
3300
3301bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3302  X = getCanonicalTemplateName(X);
3303  Y = getCanonicalTemplateName(Y);
3304  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3305}
3306
3307TemplateArgument
3308ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3309  switch (Arg.getKind()) {
3310    case TemplateArgument::Null:
3311      return Arg;
3312
3313    case TemplateArgument::Expression:
3314      return Arg;
3315
3316    case TemplateArgument::Declaration:
3317      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
3318
3319    case TemplateArgument::Template:
3320      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3321
3322    case TemplateArgument::TemplateExpansion:
3323      return TemplateArgument(getCanonicalTemplateName(
3324                                         Arg.getAsTemplateOrTemplatePattern()),
3325                              Arg.getNumTemplateExpansions());
3326
3327    case TemplateArgument::Integral:
3328      return TemplateArgument(*Arg.getAsIntegral(),
3329                              getCanonicalType(Arg.getIntegralType()));
3330
3331    case TemplateArgument::Type:
3332      return TemplateArgument(getCanonicalType(Arg.getAsType()));
3333
3334    case TemplateArgument::Pack: {
3335      if (Arg.pack_size() == 0)
3336        return Arg;
3337
3338      TemplateArgument *CanonArgs
3339        = new (*this) TemplateArgument[Arg.pack_size()];
3340      unsigned Idx = 0;
3341      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
3342                                        AEnd = Arg.pack_end();
3343           A != AEnd; (void)++A, ++Idx)
3344        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
3345
3346      return TemplateArgument(CanonArgs, Arg.pack_size());
3347    }
3348  }
3349
3350  // Silence GCC warning
3351  llvm_unreachable("Unhandled template argument kind");
3352}
3353
3354NestedNameSpecifier *
3355ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
3356  if (!NNS)
3357    return 0;
3358
3359  switch (NNS->getKind()) {
3360  case NestedNameSpecifier::Identifier:
3361    // Canonicalize the prefix but keep the identifier the same.
3362    return NestedNameSpecifier::Create(*this,
3363                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
3364                                       NNS->getAsIdentifier());
3365
3366  case NestedNameSpecifier::Namespace:
3367    // A namespace is canonical; build a nested-name-specifier with
3368    // this namespace and no prefix.
3369    return NestedNameSpecifier::Create(*this, 0,
3370                                 NNS->getAsNamespace()->getOriginalNamespace());
3371
3372  case NestedNameSpecifier::NamespaceAlias:
3373    // A namespace is canonical; build a nested-name-specifier with
3374    // this namespace and no prefix.
3375    return NestedNameSpecifier::Create(*this, 0,
3376                                    NNS->getAsNamespaceAlias()->getNamespace()
3377                                                      ->getOriginalNamespace());
3378
3379  case NestedNameSpecifier::TypeSpec:
3380  case NestedNameSpecifier::TypeSpecWithTemplate: {
3381    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
3382
3383    // If we have some kind of dependent-named type (e.g., "typename T::type"),
3384    // break it apart into its prefix and identifier, then reconsititute those
3385    // as the canonical nested-name-specifier. This is required to canonicalize
3386    // a dependent nested-name-specifier involving typedefs of dependent-name
3387    // types, e.g.,
3388    //   typedef typename T::type T1;
3389    //   typedef typename T1::type T2;
3390    if (const DependentNameType *DNT = T->getAs<DependentNameType>())
3391      return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
3392                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
3393
3394    // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
3395    // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
3396    // first place?
3397    return NestedNameSpecifier::Create(*this, 0, false,
3398                                       const_cast<Type*>(T.getTypePtr()));
3399  }
3400
3401  case NestedNameSpecifier::Global:
3402    // The global specifier is canonical and unique.
3403    return NNS;
3404  }
3405
3406  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
3407}
3408
3409
3410const ArrayType *ASTContext::getAsArrayType(QualType T) const {
3411  // Handle the non-qualified case efficiently.
3412  if (!T.hasLocalQualifiers()) {
3413    // Handle the common positive case fast.
3414    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
3415      return AT;
3416  }
3417
3418  // Handle the common negative case fast.
3419  if (!isa<ArrayType>(T.getCanonicalType()))
3420    return 0;
3421
3422  // Apply any qualifiers from the array type to the element type.  This
3423  // implements C99 6.7.3p8: "If the specification of an array type includes
3424  // any type qualifiers, the element type is so qualified, not the array type."
3425
3426  // If we get here, we either have type qualifiers on the type, or we have
3427  // sugar such as a typedef in the way.  If we have type qualifiers on the type
3428  // we must propagate them down into the element type.
3429
3430  SplitQualType split = T.getSplitDesugaredType();
3431  Qualifiers qs = split.Quals;
3432
3433  // If we have a simple case, just return now.
3434  const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
3435  if (ATy == 0 || qs.empty())
3436    return ATy;
3437
3438  // Otherwise, we have an array and we have qualifiers on it.  Push the
3439  // qualifiers into the array element type and return a new array type.
3440  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
3441
3442  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
3443    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
3444                                                CAT->getSizeModifier(),
3445                                           CAT->getIndexTypeCVRQualifiers()));
3446  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
3447    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
3448                                                  IAT->getSizeModifier(),
3449                                           IAT->getIndexTypeCVRQualifiers()));
3450
3451  if (const DependentSizedArrayType *DSAT
3452        = dyn_cast<DependentSizedArrayType>(ATy))
3453    return cast<ArrayType>(
3454                     getDependentSizedArrayType(NewEltTy,
3455                                                DSAT->getSizeExpr(),
3456                                                DSAT->getSizeModifier(),
3457                                              DSAT->getIndexTypeCVRQualifiers(),
3458                                                DSAT->getBracketsRange()));
3459
3460  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
3461  return cast<ArrayType>(getVariableArrayType(NewEltTy,
3462                                              VAT->getSizeExpr(),
3463                                              VAT->getSizeModifier(),
3464                                              VAT->getIndexTypeCVRQualifiers(),
3465                                              VAT->getBracketsRange()));
3466}
3467
3468QualType ASTContext::getAdjustedParameterType(QualType T) {
3469  // C99 6.7.5.3p7:
3470  //   A declaration of a parameter as "array of type" shall be
3471  //   adjusted to "qualified pointer to type", where the type
3472  //   qualifiers (if any) are those specified within the [ and ] of
3473  //   the array type derivation.
3474  if (T->isArrayType())
3475    return getArrayDecayedType(T);
3476
3477  // C99 6.7.5.3p8:
3478  //   A declaration of a parameter as "function returning type"
3479  //   shall be adjusted to "pointer to function returning type", as
3480  //   in 6.3.2.1.
3481  if (T->isFunctionType())
3482    return getPointerType(T);
3483
3484  return T;
3485}
3486
3487QualType ASTContext::getSignatureParameterType(QualType T) {
3488  T = getVariableArrayDecayedType(T);
3489  T = getAdjustedParameterType(T);
3490  return T.getUnqualifiedType();
3491}
3492
3493/// getArrayDecayedType - Return the properly qualified result of decaying the
3494/// specified array type to a pointer.  This operation is non-trivial when
3495/// handling typedefs etc.  The canonical type of "T" must be an array type,
3496/// this returns a pointer to a properly qualified element of the array.
3497///
3498/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
3499QualType ASTContext::getArrayDecayedType(QualType Ty) const {
3500  // Get the element type with 'getAsArrayType' so that we don't lose any
3501  // typedefs in the element type of the array.  This also handles propagation
3502  // of type qualifiers from the array type into the element type if present
3503  // (C99 6.7.3p8).
3504  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
3505  assert(PrettyArrayType && "Not an array type!");
3506
3507  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
3508
3509  // int x[restrict 4] ->  int *restrict
3510  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
3511}
3512
3513QualType ASTContext::getBaseElementType(const ArrayType *array) const {
3514  return getBaseElementType(array->getElementType());
3515}
3516
3517QualType ASTContext::getBaseElementType(QualType type) const {
3518  Qualifiers qs;
3519  while (true) {
3520    SplitQualType split = type.getSplitDesugaredType();
3521    const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
3522    if (!array) break;
3523
3524    type = array->getElementType();
3525    qs.addConsistentQualifiers(split.Quals);
3526  }
3527
3528  return getQualifiedType(type, qs);
3529}
3530
3531/// getConstantArrayElementCount - Returns number of constant array elements.
3532uint64_t
3533ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
3534  uint64_t ElementCount = 1;
3535  do {
3536    ElementCount *= CA->getSize().getZExtValue();
3537    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
3538  } while (CA);
3539  return ElementCount;
3540}
3541
3542/// getFloatingRank - Return a relative rank for floating point types.
3543/// This routine will assert if passed a built-in type that isn't a float.
3544static FloatingRank getFloatingRank(QualType T) {
3545  if (const ComplexType *CT = T->getAs<ComplexType>())
3546    return getFloatingRank(CT->getElementType());
3547
3548  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
3549  switch (T->getAs<BuiltinType>()->getKind()) {
3550  default: llvm_unreachable("getFloatingRank(): not a floating type");
3551  case BuiltinType::Half:       return HalfRank;
3552  case BuiltinType::Float:      return FloatRank;
3553  case BuiltinType::Double:     return DoubleRank;
3554  case BuiltinType::LongDouble: return LongDoubleRank;
3555  }
3556}
3557
3558/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
3559/// point or a complex type (based on typeDomain/typeSize).
3560/// 'typeDomain' is a real floating point or complex type.
3561/// 'typeSize' is a real floating point or complex type.
3562QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
3563                                                       QualType Domain) const {
3564  FloatingRank EltRank = getFloatingRank(Size);
3565  if (Domain->isComplexType()) {
3566    switch (EltRank) {
3567    case HalfRank: llvm_unreachable("Complex half is not supported");
3568    case FloatRank:      return FloatComplexTy;
3569    case DoubleRank:     return DoubleComplexTy;
3570    case LongDoubleRank: return LongDoubleComplexTy;
3571    }
3572  }
3573
3574  assert(Domain->isRealFloatingType() && "Unknown domain!");
3575  switch (EltRank) {
3576  case HalfRank: llvm_unreachable("Half ranks are not valid here");
3577  case FloatRank:      return FloatTy;
3578  case DoubleRank:     return DoubleTy;
3579  case LongDoubleRank: return LongDoubleTy;
3580  }
3581  llvm_unreachable("getFloatingRank(): illegal value for rank");
3582}
3583
3584/// getFloatingTypeOrder - Compare the rank of the two specified floating
3585/// point types, ignoring the domain of the type (i.e. 'double' ==
3586/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3587/// LHS < RHS, return -1.
3588int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
3589  FloatingRank LHSR = getFloatingRank(LHS);
3590  FloatingRank RHSR = getFloatingRank(RHS);
3591
3592  if (LHSR == RHSR)
3593    return 0;
3594  if (LHSR > RHSR)
3595    return 1;
3596  return -1;
3597}
3598
3599/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
3600/// routine will assert if passed a built-in type that isn't an integer or enum,
3601/// or if it is not canonicalized.
3602unsigned ASTContext::getIntegerRank(const Type *T) const {
3603  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
3604
3605  switch (cast<BuiltinType>(T)->getKind()) {
3606  default: llvm_unreachable("getIntegerRank(): not a built-in integer");
3607  case BuiltinType::Bool:
3608    return 1 + (getIntWidth(BoolTy) << 3);
3609  case BuiltinType::Char_S:
3610  case BuiltinType::Char_U:
3611  case BuiltinType::SChar:
3612  case BuiltinType::UChar:
3613    return 2 + (getIntWidth(CharTy) << 3);
3614  case BuiltinType::Short:
3615  case BuiltinType::UShort:
3616    return 3 + (getIntWidth(ShortTy) << 3);
3617  case BuiltinType::Int:
3618  case BuiltinType::UInt:
3619    return 4 + (getIntWidth(IntTy) << 3);
3620  case BuiltinType::Long:
3621  case BuiltinType::ULong:
3622    return 5 + (getIntWidth(LongTy) << 3);
3623  case BuiltinType::LongLong:
3624  case BuiltinType::ULongLong:
3625    return 6 + (getIntWidth(LongLongTy) << 3);
3626  case BuiltinType::Int128:
3627  case BuiltinType::UInt128:
3628    return 7 + (getIntWidth(Int128Ty) << 3);
3629  }
3630}
3631
3632/// \brief Whether this is a promotable bitfield reference according
3633/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
3634///
3635/// \returns the type this bit-field will promote to, or NULL if no
3636/// promotion occurs.
3637QualType ASTContext::isPromotableBitField(Expr *E) const {
3638  if (E->isTypeDependent() || E->isValueDependent())
3639    return QualType();
3640
3641  FieldDecl *Field = E->getBitField();
3642  if (!Field)
3643    return QualType();
3644
3645  QualType FT = Field->getType();
3646
3647  uint64_t BitWidth = Field->getBitWidthValue(*this);
3648  uint64_t IntSize = getTypeSize(IntTy);
3649  // GCC extension compatibility: if the bit-field size is less than or equal
3650  // to the size of int, it gets promoted no matter what its type is.
3651  // For instance, unsigned long bf : 4 gets promoted to signed int.
3652  if (BitWidth < IntSize)
3653    return IntTy;
3654
3655  if (BitWidth == IntSize)
3656    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
3657
3658  // Types bigger than int are not subject to promotions, and therefore act
3659  // like the base type.
3660  // FIXME: This doesn't quite match what gcc does, but what gcc does here
3661  // is ridiculous.
3662  return QualType();
3663}
3664
3665/// getPromotedIntegerType - Returns the type that Promotable will
3666/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
3667/// integer type.
3668QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
3669  assert(!Promotable.isNull());
3670  assert(Promotable->isPromotableIntegerType());
3671  if (const EnumType *ET = Promotable->getAs<EnumType>())
3672    return ET->getDecl()->getPromotionType();
3673
3674  if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
3675    // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
3676    // (3.9.1) can be converted to a prvalue of the first of the following
3677    // types that can represent all the values of its underlying type:
3678    // int, unsigned int, long int, unsigned long int, long long int, or
3679    // unsigned long long int [...]
3680    // FIXME: Is there some better way to compute this?
3681    if (BT->getKind() == BuiltinType::WChar_S ||
3682        BT->getKind() == BuiltinType::WChar_U ||
3683        BT->getKind() == BuiltinType::Char16 ||
3684        BT->getKind() == BuiltinType::Char32) {
3685      bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
3686      uint64_t FromSize = getTypeSize(BT);
3687      QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
3688                                  LongLongTy, UnsignedLongLongTy };
3689      for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
3690        uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
3691        if (FromSize < ToSize ||
3692            (FromSize == ToSize &&
3693             FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
3694          return PromoteTypes[Idx];
3695      }
3696      llvm_unreachable("char type should fit into long long");
3697    }
3698  }
3699
3700  // At this point, we should have a signed or unsigned integer type.
3701  if (Promotable->isSignedIntegerType())
3702    return IntTy;
3703  uint64_t PromotableSize = getTypeSize(Promotable);
3704  uint64_t IntSize = getTypeSize(IntTy);
3705  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
3706  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
3707}
3708
3709/// \brief Recurses in pointer/array types until it finds an objc retainable
3710/// type and returns its ownership.
3711Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
3712  while (!T.isNull()) {
3713    if (T.getObjCLifetime() != Qualifiers::OCL_None)
3714      return T.getObjCLifetime();
3715    if (T->isArrayType())
3716      T = getBaseElementType(T);
3717    else if (const PointerType *PT = T->getAs<PointerType>())
3718      T = PT->getPointeeType();
3719    else if (const ReferenceType *RT = T->getAs<ReferenceType>())
3720      T = RT->getPointeeType();
3721    else
3722      break;
3723  }
3724
3725  return Qualifiers::OCL_None;
3726}
3727
3728/// getIntegerTypeOrder - Returns the highest ranked integer type:
3729/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3730/// LHS < RHS, return -1.
3731int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
3732  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
3733  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
3734  if (LHSC == RHSC) return 0;
3735
3736  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
3737  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
3738
3739  unsigned LHSRank = getIntegerRank(LHSC);
3740  unsigned RHSRank = getIntegerRank(RHSC);
3741
3742  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
3743    if (LHSRank == RHSRank) return 0;
3744    return LHSRank > RHSRank ? 1 : -1;
3745  }
3746
3747  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
3748  if (LHSUnsigned) {
3749    // If the unsigned [LHS] type is larger, return it.
3750    if (LHSRank >= RHSRank)
3751      return 1;
3752
3753    // If the signed type can represent all values of the unsigned type, it
3754    // wins.  Because we are dealing with 2's complement and types that are
3755    // powers of two larger than each other, this is always safe.
3756    return -1;
3757  }
3758
3759  // If the unsigned [RHS] type is larger, return it.
3760  if (RHSRank >= LHSRank)
3761    return -1;
3762
3763  // If the signed type can represent all values of the unsigned type, it
3764  // wins.  Because we are dealing with 2's complement and types that are
3765  // powers of two larger than each other, this is always safe.
3766  return 1;
3767}
3768
3769static RecordDecl *
3770CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
3771                 DeclContext *DC, IdentifierInfo *Id) {
3772  SourceLocation Loc;
3773  if (Ctx.getLangOpts().CPlusPlus)
3774    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3775  else
3776    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3777}
3778
3779// getCFConstantStringType - Return the type used for constant CFStrings.
3780QualType ASTContext::getCFConstantStringType() const {
3781  if (!CFConstantStringTypeDecl) {
3782    CFConstantStringTypeDecl =
3783      CreateRecordDecl(*this, TTK_Struct, TUDecl,
3784                       &Idents.get("NSConstantString"));
3785    CFConstantStringTypeDecl->startDefinition();
3786
3787    QualType FieldTypes[4];
3788
3789    // const int *isa;
3790    FieldTypes[0] = getPointerType(IntTy.withConst());
3791    // int flags;
3792    FieldTypes[1] = IntTy;
3793    // const char *str;
3794    FieldTypes[2] = getPointerType(CharTy.withConst());
3795    // long length;
3796    FieldTypes[3] = LongTy;
3797
3798    // Create fields
3799    for (unsigned i = 0; i < 4; ++i) {
3800      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
3801                                           SourceLocation(),
3802                                           SourceLocation(), 0,
3803                                           FieldTypes[i], /*TInfo=*/0,
3804                                           /*BitWidth=*/0,
3805                                           /*Mutable=*/false,
3806                                           /*HasInit=*/false);
3807      Field->setAccess(AS_public);
3808      CFConstantStringTypeDecl->addDecl(Field);
3809    }
3810
3811    CFConstantStringTypeDecl->completeDefinition();
3812  }
3813
3814  return getTagDeclType(CFConstantStringTypeDecl);
3815}
3816
3817void ASTContext::setCFConstantStringType(QualType T) {
3818  const RecordType *Rec = T->getAs<RecordType>();
3819  assert(Rec && "Invalid CFConstantStringType");
3820  CFConstantStringTypeDecl = Rec->getDecl();
3821}
3822
3823QualType ASTContext::getBlockDescriptorType() const {
3824  if (BlockDescriptorType)
3825    return getTagDeclType(BlockDescriptorType);
3826
3827  RecordDecl *T;
3828  // FIXME: Needs the FlagAppleBlock bit.
3829  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
3830                       &Idents.get("__block_descriptor"));
3831  T->startDefinition();
3832
3833  QualType FieldTypes[] = {
3834    UnsignedLongTy,
3835    UnsignedLongTy,
3836  };
3837
3838  const char *FieldNames[] = {
3839    "reserved",
3840    "Size"
3841  };
3842
3843  for (size_t i = 0; i < 2; ++i) {
3844    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3845                                         SourceLocation(),
3846                                         &Idents.get(FieldNames[i]),
3847                                         FieldTypes[i], /*TInfo=*/0,
3848                                         /*BitWidth=*/0,
3849                                         /*Mutable=*/false,
3850                                         /*HasInit=*/false);
3851    Field->setAccess(AS_public);
3852    T->addDecl(Field);
3853  }
3854
3855  T->completeDefinition();
3856
3857  BlockDescriptorType = T;
3858
3859  return getTagDeclType(BlockDescriptorType);
3860}
3861
3862QualType ASTContext::getBlockDescriptorExtendedType() const {
3863  if (BlockDescriptorExtendedType)
3864    return getTagDeclType(BlockDescriptorExtendedType);
3865
3866  RecordDecl *T;
3867  // FIXME: Needs the FlagAppleBlock bit.
3868  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
3869                       &Idents.get("__block_descriptor_withcopydispose"));
3870  T->startDefinition();
3871
3872  QualType FieldTypes[] = {
3873    UnsignedLongTy,
3874    UnsignedLongTy,
3875    getPointerType(VoidPtrTy),
3876    getPointerType(VoidPtrTy)
3877  };
3878
3879  const char *FieldNames[] = {
3880    "reserved",
3881    "Size",
3882    "CopyFuncPtr",
3883    "DestroyFuncPtr"
3884  };
3885
3886  for (size_t i = 0; i < 4; ++i) {
3887    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3888                                         SourceLocation(),
3889                                         &Idents.get(FieldNames[i]),
3890                                         FieldTypes[i], /*TInfo=*/0,
3891                                         /*BitWidth=*/0,
3892                                         /*Mutable=*/false,
3893                                         /*HasInit=*/false);
3894    Field->setAccess(AS_public);
3895    T->addDecl(Field);
3896  }
3897
3898  T->completeDefinition();
3899
3900  BlockDescriptorExtendedType = T;
3901
3902  return getTagDeclType(BlockDescriptorExtendedType);
3903}
3904
3905bool ASTContext::BlockRequiresCopying(QualType Ty) const {
3906  if (Ty->isObjCRetainableType())
3907    return true;
3908  if (getLangOpts().CPlusPlus) {
3909    if (const RecordType *RT = Ty->getAs<RecordType>()) {
3910      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3911      return RD->hasConstCopyConstructor();
3912
3913    }
3914  }
3915  return false;
3916}
3917
3918QualType
3919ASTContext::BuildByRefType(StringRef DeclName, QualType Ty) const {
3920  //  type = struct __Block_byref_1_X {
3921  //    void *__isa;
3922  //    struct __Block_byref_1_X *__forwarding;
3923  //    unsigned int __flags;
3924  //    unsigned int __size;
3925  //    void *__copy_helper;            // as needed
3926  //    void *__destroy_help            // as needed
3927  //    int X;
3928  //  } *
3929
3930  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
3931
3932  // FIXME: Move up
3933  SmallString<36> Name;
3934  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
3935                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
3936  RecordDecl *T;
3937  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get(Name.str()));
3938  T->startDefinition();
3939  QualType Int32Ty = IntTy;
3940  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
3941  QualType FieldTypes[] = {
3942    getPointerType(VoidPtrTy),
3943    getPointerType(getTagDeclType(T)),
3944    Int32Ty,
3945    Int32Ty,
3946    getPointerType(VoidPtrTy),
3947    getPointerType(VoidPtrTy),
3948    Ty
3949  };
3950
3951  StringRef FieldNames[] = {
3952    "__isa",
3953    "__forwarding",
3954    "__flags",
3955    "__size",
3956    "__copy_helper",
3957    "__destroy_helper",
3958    DeclName,
3959  };
3960
3961  for (size_t i = 0; i < 7; ++i) {
3962    if (!HasCopyAndDispose && i >=4 && i <= 5)
3963      continue;
3964    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3965                                         SourceLocation(),
3966                                         &Idents.get(FieldNames[i]),
3967                                         FieldTypes[i], /*TInfo=*/0,
3968                                         /*BitWidth=*/0, /*Mutable=*/false,
3969                                         /*HasInit=*/false);
3970    Field->setAccess(AS_public);
3971    T->addDecl(Field);
3972  }
3973
3974  T->completeDefinition();
3975
3976  return getPointerType(getTagDeclType(T));
3977}
3978
3979TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
3980  if (!ObjCInstanceTypeDecl)
3981    ObjCInstanceTypeDecl = TypedefDecl::Create(*this,
3982                                               getTranslationUnitDecl(),
3983                                               SourceLocation(),
3984                                               SourceLocation(),
3985                                               &Idents.get("instancetype"),
3986                                     getTrivialTypeSourceInfo(getObjCIdType()));
3987  return ObjCInstanceTypeDecl;
3988}
3989
3990// This returns true if a type has been typedefed to BOOL:
3991// typedef <type> BOOL;
3992static bool isTypeTypedefedAsBOOL(QualType T) {
3993  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3994    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3995      return II->isStr("BOOL");
3996
3997  return false;
3998}
3999
4000/// getObjCEncodingTypeSize returns size of type for objective-c encoding
4001/// purpose.
4002CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
4003  if (!type->isIncompleteArrayType() && type->isIncompleteType())
4004    return CharUnits::Zero();
4005
4006  CharUnits sz = getTypeSizeInChars(type);
4007
4008  // Make all integer and enum types at least as large as an int
4009  if (sz.isPositive() && type->isIntegralOrEnumerationType())
4010    sz = std::max(sz, getTypeSizeInChars(IntTy));
4011  // Treat arrays as pointers, since that's how they're passed in.
4012  else if (type->isArrayType())
4013    sz = getTypeSizeInChars(VoidPtrTy);
4014  return sz;
4015}
4016
4017static inline
4018std::string charUnitsToString(const CharUnits &CU) {
4019  return llvm::itostr(CU.getQuantity());
4020}
4021
4022/// getObjCEncodingForBlock - Return the encoded type for this block
4023/// declaration.
4024std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4025  std::string S;
4026
4027  const BlockDecl *Decl = Expr->getBlockDecl();
4028  QualType BlockTy =
4029      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4030  // Encode result type.
4031  getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
4032  // Compute size of all parameters.
4033  // Start with computing size of a pointer in number of bytes.
4034  // FIXME: There might(should) be a better way of doing this computation!
4035  SourceLocation Loc;
4036  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4037  CharUnits ParmOffset = PtrSize;
4038  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
4039       E = Decl->param_end(); PI != E; ++PI) {
4040    QualType PType = (*PI)->getType();
4041    CharUnits sz = getObjCEncodingTypeSize(PType);
4042    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4043    ParmOffset += sz;
4044  }
4045  // Size of the argument frame
4046  S += charUnitsToString(ParmOffset);
4047  // Block pointer and offset.
4048  S += "@?0";
4049
4050  // Argument types.
4051  ParmOffset = PtrSize;
4052  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
4053       Decl->param_end(); PI != E; ++PI) {
4054    ParmVarDecl *PVDecl = *PI;
4055    QualType PType = PVDecl->getOriginalType();
4056    if (const ArrayType *AT =
4057          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4058      // Use array's original type only if it has known number of
4059      // elements.
4060      if (!isa<ConstantArrayType>(AT))
4061        PType = PVDecl->getType();
4062    } else if (PType->isFunctionType())
4063      PType = PVDecl->getType();
4064    getObjCEncodingForType(PType, S);
4065    S += charUnitsToString(ParmOffset);
4066    ParmOffset += getObjCEncodingTypeSize(PType);
4067  }
4068
4069  return S;
4070}
4071
4072bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4073                                                std::string& S) {
4074  // Encode result type.
4075  getObjCEncodingForType(Decl->getResultType(), S);
4076  CharUnits ParmOffset;
4077  // Compute size of all parameters.
4078  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4079       E = Decl->param_end(); PI != E; ++PI) {
4080    QualType PType = (*PI)->getType();
4081    CharUnits sz = getObjCEncodingTypeSize(PType);
4082    if (sz.isZero())
4083      return true;
4084
4085    assert (sz.isPositive() &&
4086        "getObjCEncodingForFunctionDecl - Incomplete param type");
4087    ParmOffset += sz;
4088  }
4089  S += charUnitsToString(ParmOffset);
4090  ParmOffset = CharUnits::Zero();
4091
4092  // Argument types.
4093  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4094       E = Decl->param_end(); PI != E; ++PI) {
4095    ParmVarDecl *PVDecl = *PI;
4096    QualType PType = PVDecl->getOriginalType();
4097    if (const ArrayType *AT =
4098          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4099      // Use array's original type only if it has known number of
4100      // elements.
4101      if (!isa<ConstantArrayType>(AT))
4102        PType = PVDecl->getType();
4103    } else if (PType->isFunctionType())
4104      PType = PVDecl->getType();
4105    getObjCEncodingForType(PType, S);
4106    S += charUnitsToString(ParmOffset);
4107    ParmOffset += getObjCEncodingTypeSize(PType);
4108  }
4109
4110  return false;
4111}
4112
4113/// getObjCEncodingForMethodParameter - Return the encoded type for a single
4114/// method parameter or return type. If Extended, include class names and
4115/// block object types.
4116void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
4117                                                   QualType T, std::string& S,
4118                                                   bool Extended) const {
4119  // Encode type qualifer, 'in', 'inout', etc. for the parameter.
4120  getObjCEncodingForTypeQualifier(QT, S);
4121  // Encode parameter type.
4122  getObjCEncodingForTypeImpl(T, S, true, true, 0,
4123                             true     /*OutermostType*/,
4124                             false    /*EncodingProperty*/,
4125                             false    /*StructField*/,
4126                             Extended /*EncodeBlockParameters*/,
4127                             Extended /*EncodeClassNames*/);
4128}
4129
4130/// getObjCEncodingForMethodDecl - Return the encoded type for this method
4131/// declaration.
4132bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4133                                              std::string& S,
4134                                              bool Extended) const {
4135  // FIXME: This is not very efficient.
4136  // Encode return type.
4137  getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
4138                                    Decl->getResultType(), S, Extended);
4139  // Compute size of all parameters.
4140  // Start with computing size of a pointer in number of bytes.
4141  // FIXME: There might(should) be a better way of doing this computation!
4142  SourceLocation Loc;
4143  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4144  // The first two arguments (self and _cmd) are pointers; account for
4145  // their size.
4146  CharUnits ParmOffset = 2 * PtrSize;
4147  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4148       E = Decl->sel_param_end(); PI != E; ++PI) {
4149    QualType PType = (*PI)->getType();
4150    CharUnits sz = getObjCEncodingTypeSize(PType);
4151    if (sz.isZero())
4152      return true;
4153
4154    assert (sz.isPositive() &&
4155        "getObjCEncodingForMethodDecl - Incomplete param type");
4156    ParmOffset += sz;
4157  }
4158  S += charUnitsToString(ParmOffset);
4159  S += "@0:";
4160  S += charUnitsToString(PtrSize);
4161
4162  // Argument types.
4163  ParmOffset = 2 * PtrSize;
4164  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4165       E = Decl->sel_param_end(); PI != E; ++PI) {
4166    const ParmVarDecl *PVDecl = *PI;
4167    QualType PType = PVDecl->getOriginalType();
4168    if (const ArrayType *AT =
4169          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4170      // Use array's original type only if it has known number of
4171      // elements.
4172      if (!isa<ConstantArrayType>(AT))
4173        PType = PVDecl->getType();
4174    } else if (PType->isFunctionType())
4175      PType = PVDecl->getType();
4176    getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
4177                                      PType, S, Extended);
4178    S += charUnitsToString(ParmOffset);
4179    ParmOffset += getObjCEncodingTypeSize(PType);
4180  }
4181
4182  return false;
4183}
4184
4185/// getObjCEncodingForPropertyDecl - Return the encoded type for this
4186/// property declaration. If non-NULL, Container must be either an
4187/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4188/// NULL when getting encodings for protocol properties.
4189/// Property attributes are stored as a comma-delimited C string. The simple
4190/// attributes readonly and bycopy are encoded as single characters. The
4191/// parametrized attributes, getter=name, setter=name, and ivar=name, are
4192/// encoded as single characters, followed by an identifier. Property types
4193/// are also encoded as a parametrized attribute. The characters used to encode
4194/// these attributes are defined by the following enumeration:
4195/// @code
4196/// enum PropertyAttributes {
4197/// kPropertyReadOnly = 'R',   // property is read-only.
4198/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4199/// kPropertyByref = '&',  // property is a reference to the value last assigned
4200/// kPropertyDynamic = 'D',    // property is dynamic
4201/// kPropertyGetter = 'G',     // followed by getter selector name
4202/// kPropertySetter = 'S',     // followed by setter selector name
4203/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4204/// kPropertyType = 'T'              // followed by old-style type encoding.
4205/// kPropertyWeak = 'W'              // 'weak' property
4206/// kPropertyStrong = 'P'            // property GC'able
4207/// kPropertyNonAtomic = 'N'         // property non-atomic
4208/// };
4209/// @endcode
4210void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4211                                                const Decl *Container,
4212                                                std::string& S) const {
4213  // Collect information from the property implementation decl(s).
4214  bool Dynamic = false;
4215  ObjCPropertyImplDecl *SynthesizePID = 0;
4216
4217  // FIXME: Duplicated code due to poor abstraction.
4218  if (Container) {
4219    if (const ObjCCategoryImplDecl *CID =
4220        dyn_cast<ObjCCategoryImplDecl>(Container)) {
4221      for (ObjCCategoryImplDecl::propimpl_iterator
4222             i = CID->propimpl_begin(), e = CID->propimpl_end();
4223           i != e; ++i) {
4224        ObjCPropertyImplDecl *PID = *i;
4225        if (PID->getPropertyDecl() == PD) {
4226          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4227            Dynamic = true;
4228          } else {
4229            SynthesizePID = PID;
4230          }
4231        }
4232      }
4233    } else {
4234      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4235      for (ObjCCategoryImplDecl::propimpl_iterator
4236             i = OID->propimpl_begin(), e = OID->propimpl_end();
4237           i != e; ++i) {
4238        ObjCPropertyImplDecl *PID = *i;
4239        if (PID->getPropertyDecl() == PD) {
4240          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4241            Dynamic = true;
4242          } else {
4243            SynthesizePID = PID;
4244          }
4245        }
4246      }
4247    }
4248  }
4249
4250  // FIXME: This is not very efficient.
4251  S = "T";
4252
4253  // Encode result type.
4254  // GCC has some special rules regarding encoding of properties which
4255  // closely resembles encoding of ivars.
4256  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4257                             true /* outermost type */,
4258                             true /* encoding for property */);
4259
4260  if (PD->isReadOnly()) {
4261    S += ",R";
4262  } else {
4263    switch (PD->getSetterKind()) {
4264    case ObjCPropertyDecl::Assign: break;
4265    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4266    case ObjCPropertyDecl::Retain: S += ",&"; break;
4267    case ObjCPropertyDecl::Weak:   S += ",W"; break;
4268    }
4269  }
4270
4271  // It really isn't clear at all what this means, since properties
4272  // are "dynamic by default".
4273  if (Dynamic)
4274    S += ",D";
4275
4276  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4277    S += ",N";
4278
4279  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4280    S += ",G";
4281    S += PD->getGetterName().getAsString();
4282  }
4283
4284  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4285    S += ",S";
4286    S += PD->getSetterName().getAsString();
4287  }
4288
4289  if (SynthesizePID) {
4290    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4291    S += ",V";
4292    S += OID->getNameAsString();
4293  }
4294
4295  // FIXME: OBJCGC: weak & strong
4296}
4297
4298/// getLegacyIntegralTypeEncoding -
4299/// Another legacy compatibility encoding: 32-bit longs are encoded as
4300/// 'l' or 'L' , but not always.  For typedefs, we need to use
4301/// 'i' or 'I' instead if encoding a struct field, or a pointer!
4302///
4303void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4304  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4305    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4306      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4307        PointeeTy = UnsignedIntTy;
4308      else
4309        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4310          PointeeTy = IntTy;
4311    }
4312  }
4313}
4314
4315void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
4316                                        const FieldDecl *Field) const {
4317  // We follow the behavior of gcc, expanding structures which are
4318  // directly pointed to, and expanding embedded structures. Note that
4319  // these rules are sufficient to prevent recursive encoding of the
4320  // same type.
4321  getObjCEncodingForTypeImpl(T, S, true, true, Field,
4322                             true /* outermost type */);
4323}
4324
4325static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
4326    switch (T->getAs<BuiltinType>()->getKind()) {
4327    default: llvm_unreachable("Unhandled builtin type kind");
4328    case BuiltinType::Void:       return 'v';
4329    case BuiltinType::Bool:       return 'B';
4330    case BuiltinType::Char_U:
4331    case BuiltinType::UChar:      return 'C';
4332    case BuiltinType::UShort:     return 'S';
4333    case BuiltinType::UInt:       return 'I';
4334    case BuiltinType::ULong:
4335        return C->getIntWidth(T) == 32 ? 'L' : 'Q';
4336    case BuiltinType::UInt128:    return 'T';
4337    case BuiltinType::ULongLong:  return 'Q';
4338    case BuiltinType::Char_S:
4339    case BuiltinType::SChar:      return 'c';
4340    case BuiltinType::Short:      return 's';
4341    case BuiltinType::WChar_S:
4342    case BuiltinType::WChar_U:
4343    case BuiltinType::Int:        return 'i';
4344    case BuiltinType::Long:
4345      return C->getIntWidth(T) == 32 ? 'l' : 'q';
4346    case BuiltinType::LongLong:   return 'q';
4347    case BuiltinType::Int128:     return 't';
4348    case BuiltinType::Float:      return 'f';
4349    case BuiltinType::Double:     return 'd';
4350    case BuiltinType::LongDouble: return 'D';
4351    }
4352}
4353
4354static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
4355  EnumDecl *Enum = ET->getDecl();
4356
4357  // The encoding of an non-fixed enum type is always 'i', regardless of size.
4358  if (!Enum->isFixed())
4359    return 'i';
4360
4361  // The encoding of a fixed enum type matches its fixed underlying type.
4362  return ObjCEncodingForPrimitiveKind(C, Enum->getIntegerType());
4363}
4364
4365static void EncodeBitField(const ASTContext *Ctx, std::string& S,
4366                           QualType T, const FieldDecl *FD) {
4367  assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
4368  S += 'b';
4369  // The NeXT runtime encodes bit fields as b followed by the number of bits.
4370  // The GNU runtime requires more information; bitfields are encoded as b,
4371  // then the offset (in bits) of the first element, then the type of the
4372  // bitfield, then the size in bits.  For example, in this structure:
4373  //
4374  // struct
4375  // {
4376  //    int integer;
4377  //    int flags:2;
4378  // };
4379  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
4380  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
4381  // information is not especially sensible, but we're stuck with it for
4382  // compatibility with GCC, although providing it breaks anything that
4383  // actually uses runtime introspection and wants to work on both runtimes...
4384  if (!Ctx->getLangOpts().NeXTRuntime) {
4385    const RecordDecl *RD = FD->getParent();
4386    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
4387    S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
4388    if (const EnumType *ET = T->getAs<EnumType>())
4389      S += ObjCEncodingForEnumType(Ctx, ET);
4390    else
4391      S += ObjCEncodingForPrimitiveKind(Ctx, T);
4392  }
4393  S += llvm::utostr(FD->getBitWidthValue(*Ctx));
4394}
4395
4396// FIXME: Use SmallString for accumulating string.
4397void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
4398                                            bool ExpandPointedToStructures,
4399                                            bool ExpandStructures,
4400                                            const FieldDecl *FD,
4401                                            bool OutermostType,
4402                                            bool EncodingProperty,
4403                                            bool StructField,
4404                                            bool EncodeBlockParameters,
4405                                            bool EncodeClassNames) const {
4406  if (T->getAs<BuiltinType>()) {
4407    if (FD && FD->isBitField())
4408      return EncodeBitField(this, S, T, FD);
4409    S += ObjCEncodingForPrimitiveKind(this, T);
4410    return;
4411  }
4412
4413  if (const ComplexType *CT = T->getAs<ComplexType>()) {
4414    S += 'j';
4415    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
4416                               false);
4417    return;
4418  }
4419
4420  // encoding for pointer or r3eference types.
4421  QualType PointeeTy;
4422  if (const PointerType *PT = T->getAs<PointerType>()) {
4423    if (PT->isObjCSelType()) {
4424      S += ':';
4425      return;
4426    }
4427    PointeeTy = PT->getPointeeType();
4428  }
4429  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4430    PointeeTy = RT->getPointeeType();
4431  if (!PointeeTy.isNull()) {
4432    bool isReadOnly = false;
4433    // For historical/compatibility reasons, the read-only qualifier of the
4434    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
4435    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
4436    // Also, do not emit the 'r' for anything but the outermost type!
4437    if (isa<TypedefType>(T.getTypePtr())) {
4438      if (OutermostType && T.isConstQualified()) {
4439        isReadOnly = true;
4440        S += 'r';
4441      }
4442    } else if (OutermostType) {
4443      QualType P = PointeeTy;
4444      while (P->getAs<PointerType>())
4445        P = P->getAs<PointerType>()->getPointeeType();
4446      if (P.isConstQualified()) {
4447        isReadOnly = true;
4448        S += 'r';
4449      }
4450    }
4451    if (isReadOnly) {
4452      // Another legacy compatibility encoding. Some ObjC qualifier and type
4453      // combinations need to be rearranged.
4454      // Rewrite "in const" from "nr" to "rn"
4455      if (StringRef(S).endswith("nr"))
4456        S.replace(S.end()-2, S.end(), "rn");
4457    }
4458
4459    if (PointeeTy->isCharType()) {
4460      // char pointer types should be encoded as '*' unless it is a
4461      // type that has been typedef'd to 'BOOL'.
4462      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
4463        S += '*';
4464        return;
4465      }
4466    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
4467      // GCC binary compat: Need to convert "struct objc_class *" to "#".
4468      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
4469        S += '#';
4470        return;
4471      }
4472      // GCC binary compat: Need to convert "struct objc_object *" to "@".
4473      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
4474        S += '@';
4475        return;
4476      }
4477      // fall through...
4478    }
4479    S += '^';
4480    getLegacyIntegralTypeEncoding(PointeeTy);
4481
4482    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
4483                               NULL);
4484    return;
4485  }
4486
4487  if (const ArrayType *AT =
4488      // Ignore type qualifiers etc.
4489        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
4490    if (isa<IncompleteArrayType>(AT) && !StructField) {
4491      // Incomplete arrays are encoded as a pointer to the array element.
4492      S += '^';
4493
4494      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4495                                 false, ExpandStructures, FD);
4496    } else {
4497      S += '[';
4498
4499      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
4500        if (getTypeSize(CAT->getElementType()) == 0)
4501          S += '0';
4502        else
4503          S += llvm::utostr(CAT->getSize().getZExtValue());
4504      } else {
4505        //Variable length arrays are encoded as a regular array with 0 elements.
4506        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
4507               "Unknown array type!");
4508        S += '0';
4509      }
4510
4511      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4512                                 false, ExpandStructures, FD);
4513      S += ']';
4514    }
4515    return;
4516  }
4517
4518  if (T->getAs<FunctionType>()) {
4519    S += '?';
4520    return;
4521  }
4522
4523  if (const RecordType *RTy = T->getAs<RecordType>()) {
4524    RecordDecl *RDecl = RTy->getDecl();
4525    S += RDecl->isUnion() ? '(' : '{';
4526    // Anonymous structures print as '?'
4527    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
4528      S += II->getName();
4529      if (ClassTemplateSpecializationDecl *Spec
4530          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
4531        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
4532        std::string TemplateArgsStr
4533          = TemplateSpecializationType::PrintTemplateArgumentList(
4534                                            TemplateArgs.data(),
4535                                            TemplateArgs.size(),
4536                                            (*this).getPrintingPolicy());
4537
4538        S += TemplateArgsStr;
4539      }
4540    } else {
4541      S += '?';
4542    }
4543    if (ExpandStructures) {
4544      S += '=';
4545      if (!RDecl->isUnion()) {
4546        getObjCEncodingForStructureImpl(RDecl, S, FD);
4547      } else {
4548        for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4549                                     FieldEnd = RDecl->field_end();
4550             Field != FieldEnd; ++Field) {
4551          if (FD) {
4552            S += '"';
4553            S += Field->getNameAsString();
4554            S += '"';
4555          }
4556
4557          // Special case bit-fields.
4558          if (Field->isBitField()) {
4559            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
4560                                       (*Field));
4561          } else {
4562            QualType qt = Field->getType();
4563            getLegacyIntegralTypeEncoding(qt);
4564            getObjCEncodingForTypeImpl(qt, S, false, true,
4565                                       FD, /*OutermostType*/false,
4566                                       /*EncodingProperty*/false,
4567                                       /*StructField*/true);
4568          }
4569        }
4570      }
4571    }
4572    S += RDecl->isUnion() ? ')' : '}';
4573    return;
4574  }
4575
4576  if (const EnumType *ET = T->getAs<EnumType>()) {
4577    if (FD && FD->isBitField())
4578      EncodeBitField(this, S, T, FD);
4579    else
4580      S += ObjCEncodingForEnumType(this, ET);
4581    return;
4582  }
4583
4584  if (const BlockPointerType *BT = T->getAs<BlockPointerType>()) {
4585    S += "@?"; // Unlike a pointer-to-function, which is "^?".
4586    if (EncodeBlockParameters) {
4587      const FunctionType *FT = BT->getPointeeType()->getAs<FunctionType>();
4588
4589      S += '<';
4590      // Block return type
4591      getObjCEncodingForTypeImpl(FT->getResultType(), S,
4592                                 ExpandPointedToStructures, ExpandStructures,
4593                                 FD,
4594                                 false /* OutermostType */,
4595                                 EncodingProperty,
4596                                 false /* StructField */,
4597                                 EncodeBlockParameters,
4598                                 EncodeClassNames);
4599      // Block self
4600      S += "@?";
4601      // Block parameters
4602      if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
4603        for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
4604               E = FPT->arg_type_end(); I && (I != E); ++I) {
4605          getObjCEncodingForTypeImpl(*I, S,
4606                                     ExpandPointedToStructures,
4607                                     ExpandStructures,
4608                                     FD,
4609                                     false /* OutermostType */,
4610                                     EncodingProperty,
4611                                     false /* StructField */,
4612                                     EncodeBlockParameters,
4613                                     EncodeClassNames);
4614        }
4615      }
4616      S += '>';
4617    }
4618    return;
4619  }
4620
4621  // Ignore protocol qualifiers when mangling at this level.
4622  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
4623    T = OT->getBaseType();
4624
4625  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
4626    // @encode(class_name)
4627    ObjCInterfaceDecl *OI = OIT->getDecl();
4628    S += '{';
4629    const IdentifierInfo *II = OI->getIdentifier();
4630    S += II->getName();
4631    S += '=';
4632    SmallVector<const ObjCIvarDecl*, 32> Ivars;
4633    DeepCollectObjCIvars(OI, true, Ivars);
4634    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
4635      const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
4636      if (Field->isBitField())
4637        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
4638      else
4639        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
4640    }
4641    S += '}';
4642    return;
4643  }
4644
4645  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
4646    if (OPT->isObjCIdType()) {
4647      S += '@';
4648      return;
4649    }
4650
4651    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
4652      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
4653      // Since this is a binary compatibility issue, need to consult with runtime
4654      // folks. Fortunately, this is a *very* obsure construct.
4655      S += '#';
4656      return;
4657    }
4658
4659    if (OPT->isObjCQualifiedIdType()) {
4660      getObjCEncodingForTypeImpl(getObjCIdType(), S,
4661                                 ExpandPointedToStructures,
4662                                 ExpandStructures, FD);
4663      if (FD || EncodingProperty || EncodeClassNames) {
4664        // Note that we do extended encoding of protocol qualifer list
4665        // Only when doing ivar or property encoding.
4666        S += '"';
4667        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4668             E = OPT->qual_end(); I != E; ++I) {
4669          S += '<';
4670          S += (*I)->getNameAsString();
4671          S += '>';
4672        }
4673        S += '"';
4674      }
4675      return;
4676    }
4677
4678    QualType PointeeTy = OPT->getPointeeType();
4679    if (!EncodingProperty &&
4680        isa<TypedefType>(PointeeTy.getTypePtr())) {
4681      // Another historical/compatibility reason.
4682      // We encode the underlying type which comes out as
4683      // {...};
4684      S += '^';
4685      getObjCEncodingForTypeImpl(PointeeTy, S,
4686                                 false, ExpandPointedToStructures,
4687                                 NULL);
4688      return;
4689    }
4690
4691    S += '@';
4692    if (OPT->getInterfaceDecl() &&
4693        (FD || EncodingProperty || EncodeClassNames)) {
4694      S += '"';
4695      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
4696      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4697           E = OPT->qual_end(); I != E; ++I) {
4698        S += '<';
4699        S += (*I)->getNameAsString();
4700        S += '>';
4701      }
4702      S += '"';
4703    }
4704    return;
4705  }
4706
4707  // gcc just blithely ignores member pointers.
4708  // TODO: maybe there should be a mangling for these
4709  if (T->getAs<MemberPointerType>())
4710    return;
4711
4712  if (T->isVectorType()) {
4713    // This matches gcc's encoding, even though technically it is
4714    // insufficient.
4715    // FIXME. We should do a better job than gcc.
4716    return;
4717  }
4718
4719  llvm_unreachable("@encode for type not implemented!");
4720}
4721
4722void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
4723                                                 std::string &S,
4724                                                 const FieldDecl *FD,
4725                                                 bool includeVBases) const {
4726  assert(RDecl && "Expected non-null RecordDecl");
4727  assert(!RDecl->isUnion() && "Should not be called for unions");
4728  if (!RDecl->getDefinition())
4729    return;
4730
4731  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
4732  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
4733  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
4734
4735  if (CXXRec) {
4736    for (CXXRecordDecl::base_class_iterator
4737           BI = CXXRec->bases_begin(),
4738           BE = CXXRec->bases_end(); BI != BE; ++BI) {
4739      if (!BI->isVirtual()) {
4740        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4741        if (base->isEmpty())
4742          continue;
4743        uint64_t offs = layout.getBaseClassOffsetInBits(base);
4744        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4745                                  std::make_pair(offs, base));
4746      }
4747    }
4748  }
4749
4750  unsigned i = 0;
4751  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4752                               FieldEnd = RDecl->field_end();
4753       Field != FieldEnd; ++Field, ++i) {
4754    uint64_t offs = layout.getFieldOffset(i);
4755    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4756                              std::make_pair(offs, *Field));
4757  }
4758
4759  if (CXXRec && includeVBases) {
4760    for (CXXRecordDecl::base_class_iterator
4761           BI = CXXRec->vbases_begin(),
4762           BE = CXXRec->vbases_end(); BI != BE; ++BI) {
4763      CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4764      if (base->isEmpty())
4765        continue;
4766      uint64_t offs = layout.getVBaseClassOffsetInBits(base);
4767      if (FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
4768        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
4769                                  std::make_pair(offs, base));
4770    }
4771  }
4772
4773  CharUnits size;
4774  if (CXXRec) {
4775    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
4776  } else {
4777    size = layout.getSize();
4778  }
4779
4780  uint64_t CurOffs = 0;
4781  std::multimap<uint64_t, NamedDecl *>::iterator
4782    CurLayObj = FieldOrBaseOffsets.begin();
4783
4784  if ((CurLayObj != FieldOrBaseOffsets.end() && CurLayObj->first != 0) ||
4785      (CurLayObj == FieldOrBaseOffsets.end() &&
4786         CXXRec && CXXRec->isDynamicClass())) {
4787    assert(CXXRec && CXXRec->isDynamicClass() &&
4788           "Offset 0 was empty but no VTable ?");
4789    if (FD) {
4790      S += "\"_vptr$";
4791      std::string recname = CXXRec->getNameAsString();
4792      if (recname.empty()) recname = "?";
4793      S += recname;
4794      S += '"';
4795    }
4796    S += "^^?";
4797    CurOffs += getTypeSize(VoidPtrTy);
4798  }
4799
4800  if (!RDecl->hasFlexibleArrayMember()) {
4801    // Mark the end of the structure.
4802    uint64_t offs = toBits(size);
4803    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4804                              std::make_pair(offs, (NamedDecl*)0));
4805  }
4806
4807  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
4808    assert(CurOffs <= CurLayObj->first);
4809
4810    if (CurOffs < CurLayObj->first) {
4811      uint64_t padding = CurLayObj->first - CurOffs;
4812      // FIXME: There doesn't seem to be a way to indicate in the encoding that
4813      // packing/alignment of members is different that normal, in which case
4814      // the encoding will be out-of-sync with the real layout.
4815      // If the runtime switches to just consider the size of types without
4816      // taking into account alignment, we could make padding explicit in the
4817      // encoding (e.g. using arrays of chars). The encoding strings would be
4818      // longer then though.
4819      CurOffs += padding;
4820    }
4821
4822    NamedDecl *dcl = CurLayObj->second;
4823    if (dcl == 0)
4824      break; // reached end of structure.
4825
4826    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
4827      // We expand the bases without their virtual bases since those are going
4828      // in the initial structure. Note that this differs from gcc which
4829      // expands virtual bases each time one is encountered in the hierarchy,
4830      // making the encoding type bigger than it really is.
4831      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
4832      assert(!base->isEmpty());
4833      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
4834    } else {
4835      FieldDecl *field = cast<FieldDecl>(dcl);
4836      if (FD) {
4837        S += '"';
4838        S += field->getNameAsString();
4839        S += '"';
4840      }
4841
4842      if (field->isBitField()) {
4843        EncodeBitField(this, S, field->getType(), field);
4844        CurOffs += field->getBitWidthValue(*this);
4845      } else {
4846        QualType qt = field->getType();
4847        getLegacyIntegralTypeEncoding(qt);
4848        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
4849                                   /*OutermostType*/false,
4850                                   /*EncodingProperty*/false,
4851                                   /*StructField*/true);
4852        CurOffs += getTypeSize(field->getType());
4853      }
4854    }
4855  }
4856}
4857
4858void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
4859                                                 std::string& S) const {
4860  if (QT & Decl::OBJC_TQ_In)
4861    S += 'n';
4862  if (QT & Decl::OBJC_TQ_Inout)
4863    S += 'N';
4864  if (QT & Decl::OBJC_TQ_Out)
4865    S += 'o';
4866  if (QT & Decl::OBJC_TQ_Bycopy)
4867    S += 'O';
4868  if (QT & Decl::OBJC_TQ_Byref)
4869    S += 'R';
4870  if (QT & Decl::OBJC_TQ_Oneway)
4871    S += 'V';
4872}
4873
4874void ASTContext::setBuiltinVaListType(QualType T) {
4875  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
4876
4877  BuiltinVaListType = T;
4878}
4879
4880TypedefDecl *ASTContext::getObjCIdDecl() const {
4881  if (!ObjCIdDecl) {
4882    QualType T = getObjCObjectType(ObjCBuiltinIdTy, 0, 0);
4883    T = getObjCObjectPointerType(T);
4884    TypeSourceInfo *IdInfo = getTrivialTypeSourceInfo(T);
4885    ObjCIdDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
4886                                     getTranslationUnitDecl(),
4887                                     SourceLocation(), SourceLocation(),
4888                                     &Idents.get("id"), IdInfo);
4889  }
4890
4891  return ObjCIdDecl;
4892}
4893
4894TypedefDecl *ASTContext::getObjCSelDecl() const {
4895  if (!ObjCSelDecl) {
4896    QualType SelT = getPointerType(ObjCBuiltinSelTy);
4897    TypeSourceInfo *SelInfo = getTrivialTypeSourceInfo(SelT);
4898    ObjCSelDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
4899                                      getTranslationUnitDecl(),
4900                                      SourceLocation(), SourceLocation(),
4901                                      &Idents.get("SEL"), SelInfo);
4902  }
4903  return ObjCSelDecl;
4904}
4905
4906TypedefDecl *ASTContext::getObjCClassDecl() const {
4907  if (!ObjCClassDecl) {
4908    QualType T = getObjCObjectType(ObjCBuiltinClassTy, 0, 0);
4909    T = getObjCObjectPointerType(T);
4910    TypeSourceInfo *ClassInfo = getTrivialTypeSourceInfo(T);
4911    ObjCClassDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
4912                                        getTranslationUnitDecl(),
4913                                        SourceLocation(), SourceLocation(),
4914                                        &Idents.get("Class"), ClassInfo);
4915  }
4916
4917  return ObjCClassDecl;
4918}
4919
4920ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
4921  if (!ObjCProtocolClassDecl) {
4922    ObjCProtocolClassDecl
4923      = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
4924                                  SourceLocation(),
4925                                  &Idents.get("Protocol"),
4926                                  /*PrevDecl=*/0,
4927                                  SourceLocation(), true);
4928  }
4929
4930  return ObjCProtocolClassDecl;
4931}
4932
4933void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
4934  assert(ObjCConstantStringType.isNull() &&
4935         "'NSConstantString' type already set!");
4936
4937  ObjCConstantStringType = getObjCInterfaceType(Decl);
4938}
4939
4940/// \brief Retrieve the template name that corresponds to a non-empty
4941/// lookup.
4942TemplateName
4943ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
4944                                      UnresolvedSetIterator End) const {
4945  unsigned size = End - Begin;
4946  assert(size > 1 && "set is not overloaded!");
4947
4948  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
4949                          size * sizeof(FunctionTemplateDecl*));
4950  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
4951
4952  NamedDecl **Storage = OT->getStorage();
4953  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
4954    NamedDecl *D = *I;
4955    assert(isa<FunctionTemplateDecl>(D) ||
4956           (isa<UsingShadowDecl>(D) &&
4957            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
4958    *Storage++ = D;
4959  }
4960
4961  return TemplateName(OT);
4962}
4963
4964/// \brief Retrieve the template name that represents a qualified
4965/// template name such as \c std::vector.
4966TemplateName
4967ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
4968                                     bool TemplateKeyword,
4969                                     TemplateDecl *Template) const {
4970  assert(NNS && "Missing nested-name-specifier in qualified template name");
4971
4972  // FIXME: Canonicalization?
4973  llvm::FoldingSetNodeID ID;
4974  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
4975
4976  void *InsertPos = 0;
4977  QualifiedTemplateName *QTN =
4978    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4979  if (!QTN) {
4980    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
4981    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
4982  }
4983
4984  return TemplateName(QTN);
4985}
4986
4987/// \brief Retrieve the template name that represents a dependent
4988/// template name such as \c MetaFun::template apply.
4989TemplateName
4990ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4991                                     const IdentifierInfo *Name) const {
4992  assert((!NNS || NNS->isDependent()) &&
4993         "Nested name specifier must be dependent");
4994
4995  llvm::FoldingSetNodeID ID;
4996  DependentTemplateName::Profile(ID, NNS, Name);
4997
4998  void *InsertPos = 0;
4999  DependentTemplateName *QTN =
5000    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5001
5002  if (QTN)
5003    return TemplateName(QTN);
5004
5005  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5006  if (CanonNNS == NNS) {
5007    QTN = new (*this,4) DependentTemplateName(NNS, Name);
5008  } else {
5009    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
5010    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
5011    DependentTemplateName *CheckQTN =
5012      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5013    assert(!CheckQTN && "Dependent type name canonicalization broken");
5014    (void)CheckQTN;
5015  }
5016
5017  DependentTemplateNames.InsertNode(QTN, InsertPos);
5018  return TemplateName(QTN);
5019}
5020
5021/// \brief Retrieve the template name that represents a dependent
5022/// template name such as \c MetaFun::template operator+.
5023TemplateName
5024ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5025                                     OverloadedOperatorKind Operator) const {
5026  assert((!NNS || NNS->isDependent()) &&
5027         "Nested name specifier must be dependent");
5028
5029  llvm::FoldingSetNodeID ID;
5030  DependentTemplateName::Profile(ID, NNS, Operator);
5031
5032  void *InsertPos = 0;
5033  DependentTemplateName *QTN
5034    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5035
5036  if (QTN)
5037    return TemplateName(QTN);
5038
5039  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5040  if (CanonNNS == NNS) {
5041    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
5042  } else {
5043    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
5044    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
5045
5046    DependentTemplateName *CheckQTN
5047      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5048    assert(!CheckQTN && "Dependent template name canonicalization broken");
5049    (void)CheckQTN;
5050  }
5051
5052  DependentTemplateNames.InsertNode(QTN, InsertPos);
5053  return TemplateName(QTN);
5054}
5055
5056TemplateName
5057ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
5058                                         TemplateName replacement) const {
5059  llvm::FoldingSetNodeID ID;
5060  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
5061
5062  void *insertPos = 0;
5063  SubstTemplateTemplateParmStorage *subst
5064    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
5065
5066  if (!subst) {
5067    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
5068    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
5069  }
5070
5071  return TemplateName(subst);
5072}
5073
5074TemplateName
5075ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
5076                                       const TemplateArgument &ArgPack) const {
5077  ASTContext &Self = const_cast<ASTContext &>(*this);
5078  llvm::FoldingSetNodeID ID;
5079  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
5080
5081  void *InsertPos = 0;
5082  SubstTemplateTemplateParmPackStorage *Subst
5083    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
5084
5085  if (!Subst) {
5086    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
5087                                                           ArgPack.pack_size(),
5088                                                         ArgPack.pack_begin());
5089    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
5090  }
5091
5092  return TemplateName(Subst);
5093}
5094
5095/// getFromTargetType - Given one of the integer types provided by
5096/// TargetInfo, produce the corresponding type. The unsigned @p Type
5097/// is actually a value of type @c TargetInfo::IntType.
5098CanQualType ASTContext::getFromTargetType(unsigned Type) const {
5099  switch (Type) {
5100  case TargetInfo::NoInt: return CanQualType();
5101  case TargetInfo::SignedShort: return ShortTy;
5102  case TargetInfo::UnsignedShort: return UnsignedShortTy;
5103  case TargetInfo::SignedInt: return IntTy;
5104  case TargetInfo::UnsignedInt: return UnsignedIntTy;
5105  case TargetInfo::SignedLong: return LongTy;
5106  case TargetInfo::UnsignedLong: return UnsignedLongTy;
5107  case TargetInfo::SignedLongLong: return LongLongTy;
5108  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
5109  }
5110
5111  llvm_unreachable("Unhandled TargetInfo::IntType value");
5112}
5113
5114//===----------------------------------------------------------------------===//
5115//                        Type Predicates.
5116//===----------------------------------------------------------------------===//
5117
5118/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
5119/// garbage collection attribute.
5120///
5121Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
5122  if (getLangOpts().getGC() == LangOptions::NonGC)
5123    return Qualifiers::GCNone;
5124
5125  assert(getLangOpts().ObjC1);
5126  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
5127
5128  // Default behaviour under objective-C's gc is for ObjC pointers
5129  // (or pointers to them) be treated as though they were declared
5130  // as __strong.
5131  if (GCAttrs == Qualifiers::GCNone) {
5132    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
5133      return Qualifiers::Strong;
5134    else if (Ty->isPointerType())
5135      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
5136  } else {
5137    // It's not valid to set GC attributes on anything that isn't a
5138    // pointer.
5139#ifndef NDEBUG
5140    QualType CT = Ty->getCanonicalTypeInternal();
5141    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
5142      CT = AT->getElementType();
5143    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
5144#endif
5145  }
5146  return GCAttrs;
5147}
5148
5149//===----------------------------------------------------------------------===//
5150//                        Type Compatibility Testing
5151//===----------------------------------------------------------------------===//
5152
5153/// areCompatVectorTypes - Return true if the two specified vector types are
5154/// compatible.
5155static bool areCompatVectorTypes(const VectorType *LHS,
5156                                 const VectorType *RHS) {
5157  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
5158  return LHS->getElementType() == RHS->getElementType() &&
5159         LHS->getNumElements() == RHS->getNumElements();
5160}
5161
5162bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
5163                                          QualType SecondVec) {
5164  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
5165  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
5166
5167  if (hasSameUnqualifiedType(FirstVec, SecondVec))
5168    return true;
5169
5170  // Treat Neon vector types and most AltiVec vector types as if they are the
5171  // equivalent GCC vector types.
5172  const VectorType *First = FirstVec->getAs<VectorType>();
5173  const VectorType *Second = SecondVec->getAs<VectorType>();
5174  if (First->getNumElements() == Second->getNumElements() &&
5175      hasSameType(First->getElementType(), Second->getElementType()) &&
5176      First->getVectorKind() != VectorType::AltiVecPixel &&
5177      First->getVectorKind() != VectorType::AltiVecBool &&
5178      Second->getVectorKind() != VectorType::AltiVecPixel &&
5179      Second->getVectorKind() != VectorType::AltiVecBool)
5180    return true;
5181
5182  return false;
5183}
5184
5185//===----------------------------------------------------------------------===//
5186// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
5187//===----------------------------------------------------------------------===//
5188
5189/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
5190/// inheritance hierarchy of 'rProto'.
5191bool
5192ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
5193                                           ObjCProtocolDecl *rProto) const {
5194  if (declaresSameEntity(lProto, rProto))
5195    return true;
5196  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
5197       E = rProto->protocol_end(); PI != E; ++PI)
5198    if (ProtocolCompatibleWithProtocol(lProto, *PI))
5199      return true;
5200  return false;
5201}
5202
5203/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
5204/// return true if lhs's protocols conform to rhs's protocol; false
5205/// otherwise.
5206bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
5207  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
5208    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
5209  return false;
5210}
5211
5212/// ObjCQualifiedClassTypesAreCompatible - compare  Class<p,...> and
5213/// Class<p1, ...>.
5214bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
5215                                                      QualType rhs) {
5216  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
5217  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5218  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
5219
5220  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5221       E = lhsQID->qual_end(); I != E; ++I) {
5222    bool match = false;
5223    ObjCProtocolDecl *lhsProto = *I;
5224    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5225         E = rhsOPT->qual_end(); J != E; ++J) {
5226      ObjCProtocolDecl *rhsProto = *J;
5227      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
5228        match = true;
5229        break;
5230      }
5231    }
5232    if (!match)
5233      return false;
5234  }
5235  return true;
5236}
5237
5238/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
5239/// ObjCQualifiedIDType.
5240bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
5241                                                   bool compare) {
5242  // Allow id<P..> and an 'id' or void* type in all cases.
5243  if (lhs->isVoidPointerType() ||
5244      lhs->isObjCIdType() || lhs->isObjCClassType())
5245    return true;
5246  else if (rhs->isVoidPointerType() ||
5247           rhs->isObjCIdType() || rhs->isObjCClassType())
5248    return true;
5249
5250  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
5251    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5252
5253    if (!rhsOPT) return false;
5254
5255    if (rhsOPT->qual_empty()) {
5256      // If the RHS is a unqualified interface pointer "NSString*",
5257      // make sure we check the class hierarchy.
5258      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5259        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5260             E = lhsQID->qual_end(); I != E; ++I) {
5261          // when comparing an id<P> on lhs with a static type on rhs,
5262          // see if static class implements all of id's protocols, directly or
5263          // through its super class and categories.
5264          if (!rhsID->ClassImplementsProtocol(*I, true))
5265            return false;
5266        }
5267      }
5268      // If there are no qualifiers and no interface, we have an 'id'.
5269      return true;
5270    }
5271    // Both the right and left sides have qualifiers.
5272    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5273         E = lhsQID->qual_end(); I != E; ++I) {
5274      ObjCProtocolDecl *lhsProto = *I;
5275      bool match = false;
5276
5277      // when comparing an id<P> on lhs with a static type on rhs,
5278      // see if static class implements all of id's protocols, directly or
5279      // through its super class and categories.
5280      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5281           E = rhsOPT->qual_end(); J != E; ++J) {
5282        ObjCProtocolDecl *rhsProto = *J;
5283        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5284            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5285          match = true;
5286          break;
5287        }
5288      }
5289      // If the RHS is a qualified interface pointer "NSString<P>*",
5290      // make sure we check the class hierarchy.
5291      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5292        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5293             E = lhsQID->qual_end(); I != E; ++I) {
5294          // when comparing an id<P> on lhs with a static type on rhs,
5295          // see if static class implements all of id's protocols, directly or
5296          // through its super class and categories.
5297          if (rhsID->ClassImplementsProtocol(*I, true)) {
5298            match = true;
5299            break;
5300          }
5301        }
5302      }
5303      if (!match)
5304        return false;
5305    }
5306
5307    return true;
5308  }
5309
5310  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
5311  assert(rhsQID && "One of the LHS/RHS should be id<x>");
5312
5313  if (const ObjCObjectPointerType *lhsOPT =
5314        lhs->getAsObjCInterfacePointerType()) {
5315    // If both the right and left sides have qualifiers.
5316    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
5317         E = lhsOPT->qual_end(); I != E; ++I) {
5318      ObjCProtocolDecl *lhsProto = *I;
5319      bool match = false;
5320
5321      // when comparing an id<P> on rhs with a static type on lhs,
5322      // see if static class implements all of id's protocols, directly or
5323      // through its super class and categories.
5324      // First, lhs protocols in the qualifier list must be found, direct
5325      // or indirect in rhs's qualifier list or it is a mismatch.
5326      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5327           E = rhsQID->qual_end(); J != E; ++J) {
5328        ObjCProtocolDecl *rhsProto = *J;
5329        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5330            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5331          match = true;
5332          break;
5333        }
5334      }
5335      if (!match)
5336        return false;
5337    }
5338
5339    // Static class's protocols, or its super class or category protocols
5340    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
5341    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
5342      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5343      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
5344      // This is rather dubious but matches gcc's behavior. If lhs has
5345      // no type qualifier and its class has no static protocol(s)
5346      // assume that it is mismatch.
5347      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
5348        return false;
5349      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5350           LHSInheritedProtocols.begin(),
5351           E = LHSInheritedProtocols.end(); I != E; ++I) {
5352        bool match = false;
5353        ObjCProtocolDecl *lhsProto = (*I);
5354        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5355             E = rhsQID->qual_end(); J != E; ++J) {
5356          ObjCProtocolDecl *rhsProto = *J;
5357          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5358              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5359            match = true;
5360            break;
5361          }
5362        }
5363        if (!match)
5364          return false;
5365      }
5366    }
5367    return true;
5368  }
5369  return false;
5370}
5371
5372/// canAssignObjCInterfaces - Return true if the two interface types are
5373/// compatible for assignment from RHS to LHS.  This handles validation of any
5374/// protocol qualifiers on the LHS or RHS.
5375///
5376bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
5377                                         const ObjCObjectPointerType *RHSOPT) {
5378  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5379  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5380
5381  // If either type represents the built-in 'id' or 'Class' types, return true.
5382  if (LHS->isObjCUnqualifiedIdOrClass() ||
5383      RHS->isObjCUnqualifiedIdOrClass())
5384    return true;
5385
5386  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
5387    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5388                                             QualType(RHSOPT,0),
5389                                             false);
5390
5391  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
5392    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
5393                                                QualType(RHSOPT,0));
5394
5395  // If we have 2 user-defined types, fall into that path.
5396  if (LHS->getInterface() && RHS->getInterface())
5397    return canAssignObjCInterfaces(LHS, RHS);
5398
5399  return false;
5400}
5401
5402/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
5403/// for providing type-safety for objective-c pointers used to pass/return
5404/// arguments in block literals. When passed as arguments, passing 'A*' where
5405/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
5406/// not OK. For the return type, the opposite is not OK.
5407bool ASTContext::canAssignObjCInterfacesInBlockPointer(
5408                                         const ObjCObjectPointerType *LHSOPT,
5409                                         const ObjCObjectPointerType *RHSOPT,
5410                                         bool BlockReturnType) {
5411  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
5412    return true;
5413
5414  if (LHSOPT->isObjCBuiltinType()) {
5415    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
5416  }
5417
5418  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
5419    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5420                                             QualType(RHSOPT,0),
5421                                             false);
5422
5423  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
5424  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
5425  if (LHS && RHS)  { // We have 2 user-defined types.
5426    if (LHS != RHS) {
5427      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
5428        return BlockReturnType;
5429      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
5430        return !BlockReturnType;
5431    }
5432    else
5433      return true;
5434  }
5435  return false;
5436}
5437
5438/// getIntersectionOfProtocols - This routine finds the intersection of set
5439/// of protocols inherited from two distinct objective-c pointer objects.
5440/// It is used to build composite qualifier list of the composite type of
5441/// the conditional expression involving two objective-c pointer objects.
5442static
5443void getIntersectionOfProtocols(ASTContext &Context,
5444                                const ObjCObjectPointerType *LHSOPT,
5445                                const ObjCObjectPointerType *RHSOPT,
5446      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
5447
5448  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5449  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5450  assert(LHS->getInterface() && "LHS must have an interface base");
5451  assert(RHS->getInterface() && "RHS must have an interface base");
5452
5453  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
5454  unsigned LHSNumProtocols = LHS->getNumProtocols();
5455  if (LHSNumProtocols > 0)
5456    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
5457  else {
5458    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5459    Context.CollectInheritedProtocols(LHS->getInterface(),
5460                                      LHSInheritedProtocols);
5461    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
5462                                LHSInheritedProtocols.end());
5463  }
5464
5465  unsigned RHSNumProtocols = RHS->getNumProtocols();
5466  if (RHSNumProtocols > 0) {
5467    ObjCProtocolDecl **RHSProtocols =
5468      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
5469    for (unsigned i = 0; i < RHSNumProtocols; ++i)
5470      if (InheritedProtocolSet.count(RHSProtocols[i]))
5471        IntersectionOfProtocols.push_back(RHSProtocols[i]);
5472  } else {
5473    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
5474    Context.CollectInheritedProtocols(RHS->getInterface(),
5475                                      RHSInheritedProtocols);
5476    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5477         RHSInheritedProtocols.begin(),
5478         E = RHSInheritedProtocols.end(); I != E; ++I)
5479      if (InheritedProtocolSet.count((*I)))
5480        IntersectionOfProtocols.push_back((*I));
5481  }
5482}
5483
5484/// areCommonBaseCompatible - Returns common base class of the two classes if
5485/// one found. Note that this is O'2 algorithm. But it will be called as the
5486/// last type comparison in a ?-exp of ObjC pointer types before a
5487/// warning is issued. So, its invokation is extremely rare.
5488QualType ASTContext::areCommonBaseCompatible(
5489                                          const ObjCObjectPointerType *Lptr,
5490                                          const ObjCObjectPointerType *Rptr) {
5491  const ObjCObjectType *LHS = Lptr->getObjectType();
5492  const ObjCObjectType *RHS = Rptr->getObjectType();
5493  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
5494  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
5495  if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
5496    return QualType();
5497
5498  do {
5499    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
5500    if (canAssignObjCInterfaces(LHS, RHS)) {
5501      SmallVector<ObjCProtocolDecl *, 8> Protocols;
5502      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
5503
5504      QualType Result = QualType(LHS, 0);
5505      if (!Protocols.empty())
5506        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
5507      Result = getObjCObjectPointerType(Result);
5508      return Result;
5509    }
5510  } while ((LDecl = LDecl->getSuperClass()));
5511
5512  return QualType();
5513}
5514
5515bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
5516                                         const ObjCObjectType *RHS) {
5517  assert(LHS->getInterface() && "LHS is not an interface type");
5518  assert(RHS->getInterface() && "RHS is not an interface type");
5519
5520  // Verify that the base decls are compatible: the RHS must be a subclass of
5521  // the LHS.
5522  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
5523    return false;
5524
5525  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
5526  // protocol qualified at all, then we are good.
5527  if (LHS->getNumProtocols() == 0)
5528    return true;
5529
5530  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
5531  // more detailed analysis is required.
5532  if (RHS->getNumProtocols() == 0) {
5533    // OK, if LHS is a superclass of RHS *and*
5534    // this superclass is assignment compatible with LHS.
5535    // false otherwise.
5536    bool IsSuperClass =
5537      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
5538    if (IsSuperClass) {
5539      // OK if conversion of LHS to SuperClass results in narrowing of types
5540      // ; i.e., SuperClass may implement at least one of the protocols
5541      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
5542      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
5543      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
5544      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
5545      // If super class has no protocols, it is not a match.
5546      if (SuperClassInheritedProtocols.empty())
5547        return false;
5548
5549      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5550           LHSPE = LHS->qual_end();
5551           LHSPI != LHSPE; LHSPI++) {
5552        bool SuperImplementsProtocol = false;
5553        ObjCProtocolDecl *LHSProto = (*LHSPI);
5554
5555        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5556             SuperClassInheritedProtocols.begin(),
5557             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
5558          ObjCProtocolDecl *SuperClassProto = (*I);
5559          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
5560            SuperImplementsProtocol = true;
5561            break;
5562          }
5563        }
5564        if (!SuperImplementsProtocol)
5565          return false;
5566      }
5567      return true;
5568    }
5569    return false;
5570  }
5571
5572  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5573                                     LHSPE = LHS->qual_end();
5574       LHSPI != LHSPE; LHSPI++) {
5575    bool RHSImplementsProtocol = false;
5576
5577    // If the RHS doesn't implement the protocol on the left, the types
5578    // are incompatible.
5579    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
5580                                       RHSPE = RHS->qual_end();
5581         RHSPI != RHSPE; RHSPI++) {
5582      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
5583        RHSImplementsProtocol = true;
5584        break;
5585      }
5586    }
5587    // FIXME: For better diagnostics, consider passing back the protocol name.
5588    if (!RHSImplementsProtocol)
5589      return false;
5590  }
5591  // The RHS implements all protocols listed on the LHS.
5592  return true;
5593}
5594
5595bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
5596  // get the "pointed to" types
5597  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
5598  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
5599
5600  if (!LHSOPT || !RHSOPT)
5601    return false;
5602
5603  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
5604         canAssignObjCInterfaces(RHSOPT, LHSOPT);
5605}
5606
5607bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
5608  return canAssignObjCInterfaces(
5609                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
5610                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
5611}
5612
5613/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
5614/// both shall have the identically qualified version of a compatible type.
5615/// C99 6.2.7p1: Two types have compatible types if their types are the
5616/// same. See 6.7.[2,3,5] for additional rules.
5617bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
5618                                    bool CompareUnqualified) {
5619  if (getLangOpts().CPlusPlus)
5620    return hasSameType(LHS, RHS);
5621
5622  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
5623}
5624
5625bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
5626  return typesAreCompatible(LHS, RHS);
5627}
5628
5629bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
5630  return !mergeTypes(LHS, RHS, true).isNull();
5631}
5632
5633/// mergeTransparentUnionType - if T is a transparent union type and a member
5634/// of T is compatible with SubType, return the merged type, else return
5635/// QualType()
5636QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
5637                                               bool OfBlockPointer,
5638                                               bool Unqualified) {
5639  if (const RecordType *UT = T->getAsUnionType()) {
5640    RecordDecl *UD = UT->getDecl();
5641    if (UD->hasAttr<TransparentUnionAttr>()) {
5642      for (RecordDecl::field_iterator it = UD->field_begin(),
5643           itend = UD->field_end(); it != itend; ++it) {
5644        QualType ET = it->getType().getUnqualifiedType();
5645        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
5646        if (!MT.isNull())
5647          return MT;
5648      }
5649    }
5650  }
5651
5652  return QualType();
5653}
5654
5655/// mergeFunctionArgumentTypes - merge two types which appear as function
5656/// argument types
5657QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
5658                                                bool OfBlockPointer,
5659                                                bool Unqualified) {
5660  // GNU extension: two types are compatible if they appear as a function
5661  // argument, one of the types is a transparent union type and the other
5662  // type is compatible with a union member
5663  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
5664                                              Unqualified);
5665  if (!lmerge.isNull())
5666    return lmerge;
5667
5668  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
5669                                              Unqualified);
5670  if (!rmerge.isNull())
5671    return rmerge;
5672
5673  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
5674}
5675
5676QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
5677                                        bool OfBlockPointer,
5678                                        bool Unqualified) {
5679  const FunctionType *lbase = lhs->getAs<FunctionType>();
5680  const FunctionType *rbase = rhs->getAs<FunctionType>();
5681  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
5682  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
5683  bool allLTypes = true;
5684  bool allRTypes = true;
5685
5686  // Check return type
5687  QualType retType;
5688  if (OfBlockPointer) {
5689    QualType RHS = rbase->getResultType();
5690    QualType LHS = lbase->getResultType();
5691    bool UnqualifiedResult = Unqualified;
5692    if (!UnqualifiedResult)
5693      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
5694    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
5695  }
5696  else
5697    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
5698                         Unqualified);
5699  if (retType.isNull()) return QualType();
5700
5701  if (Unqualified)
5702    retType = retType.getUnqualifiedType();
5703
5704  CanQualType LRetType = getCanonicalType(lbase->getResultType());
5705  CanQualType RRetType = getCanonicalType(rbase->getResultType());
5706  if (Unqualified) {
5707    LRetType = LRetType.getUnqualifiedType();
5708    RRetType = RRetType.getUnqualifiedType();
5709  }
5710
5711  if (getCanonicalType(retType) != LRetType)
5712    allLTypes = false;
5713  if (getCanonicalType(retType) != RRetType)
5714    allRTypes = false;
5715
5716  // FIXME: double check this
5717  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
5718  //                           rbase->getRegParmAttr() != 0 &&
5719  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
5720  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
5721  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
5722
5723  // Compatible functions must have compatible calling conventions
5724  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
5725    return QualType();
5726
5727  // Regparm is part of the calling convention.
5728  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
5729    return QualType();
5730  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
5731    return QualType();
5732
5733  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
5734    return QualType();
5735
5736  // functypes which return are preferred over those that do not.
5737  if (lbaseInfo.getNoReturn() && !rbaseInfo.getNoReturn())
5738    allLTypes = false;
5739  else if (!lbaseInfo.getNoReturn() && rbaseInfo.getNoReturn())
5740    allRTypes = false;
5741  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
5742  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
5743
5744  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
5745
5746  if (lproto && rproto) { // two C99 style function prototypes
5747    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
5748           "C++ shouldn't be here");
5749    unsigned lproto_nargs = lproto->getNumArgs();
5750    unsigned rproto_nargs = rproto->getNumArgs();
5751
5752    // Compatible functions must have the same number of arguments
5753    if (lproto_nargs != rproto_nargs)
5754      return QualType();
5755
5756    // Variadic and non-variadic functions aren't compatible
5757    if (lproto->isVariadic() != rproto->isVariadic())
5758      return QualType();
5759
5760    if (lproto->getTypeQuals() != rproto->getTypeQuals())
5761      return QualType();
5762
5763    if (LangOpts.ObjCAutoRefCount &&
5764        !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
5765      return QualType();
5766
5767    // Check argument compatibility
5768    SmallVector<QualType, 10> types;
5769    for (unsigned i = 0; i < lproto_nargs; i++) {
5770      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
5771      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
5772      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
5773                                                    OfBlockPointer,
5774                                                    Unqualified);
5775      if (argtype.isNull()) return QualType();
5776
5777      if (Unqualified)
5778        argtype = argtype.getUnqualifiedType();
5779
5780      types.push_back(argtype);
5781      if (Unqualified) {
5782        largtype = largtype.getUnqualifiedType();
5783        rargtype = rargtype.getUnqualifiedType();
5784      }
5785
5786      if (getCanonicalType(argtype) != getCanonicalType(largtype))
5787        allLTypes = false;
5788      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
5789        allRTypes = false;
5790    }
5791
5792    if (allLTypes) return lhs;
5793    if (allRTypes) return rhs;
5794
5795    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
5796    EPI.ExtInfo = einfo;
5797    return getFunctionType(retType, types.begin(), types.size(), EPI);
5798  }
5799
5800  if (lproto) allRTypes = false;
5801  if (rproto) allLTypes = false;
5802
5803  const FunctionProtoType *proto = lproto ? lproto : rproto;
5804  if (proto) {
5805    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
5806    if (proto->isVariadic()) return QualType();
5807    // Check that the types are compatible with the types that
5808    // would result from default argument promotions (C99 6.7.5.3p15).
5809    // The only types actually affected are promotable integer
5810    // types and floats, which would be passed as a different
5811    // type depending on whether the prototype is visible.
5812    unsigned proto_nargs = proto->getNumArgs();
5813    for (unsigned i = 0; i < proto_nargs; ++i) {
5814      QualType argTy = proto->getArgType(i);
5815
5816      // Look at the promotion type of enum types, since that is the type used
5817      // to pass enum values.
5818      if (const EnumType *Enum = argTy->getAs<EnumType>())
5819        argTy = Enum->getDecl()->getPromotionType();
5820
5821      if (argTy->isPromotableIntegerType() ||
5822          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
5823        return QualType();
5824    }
5825
5826    if (allLTypes) return lhs;
5827    if (allRTypes) return rhs;
5828
5829    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
5830    EPI.ExtInfo = einfo;
5831    return getFunctionType(retType, proto->arg_type_begin(),
5832                           proto->getNumArgs(), EPI);
5833  }
5834
5835  if (allLTypes) return lhs;
5836  if (allRTypes) return rhs;
5837  return getFunctionNoProtoType(retType, einfo);
5838}
5839
5840QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
5841                                bool OfBlockPointer,
5842                                bool Unqualified, bool BlockReturnType) {
5843  // C++ [expr]: If an expression initially has the type "reference to T", the
5844  // type is adjusted to "T" prior to any further analysis, the expression
5845  // designates the object or function denoted by the reference, and the
5846  // expression is an lvalue unless the reference is an rvalue reference and
5847  // the expression is a function call (possibly inside parentheses).
5848  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
5849  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
5850
5851  if (Unqualified) {
5852    LHS = LHS.getUnqualifiedType();
5853    RHS = RHS.getUnqualifiedType();
5854  }
5855
5856  QualType LHSCan = getCanonicalType(LHS),
5857           RHSCan = getCanonicalType(RHS);
5858
5859  // If two types are identical, they are compatible.
5860  if (LHSCan == RHSCan)
5861    return LHS;
5862
5863  // If the qualifiers are different, the types aren't compatible... mostly.
5864  Qualifiers LQuals = LHSCan.getLocalQualifiers();
5865  Qualifiers RQuals = RHSCan.getLocalQualifiers();
5866  if (LQuals != RQuals) {
5867    // If any of these qualifiers are different, we have a type
5868    // mismatch.
5869    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
5870        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
5871        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
5872      return QualType();
5873
5874    // Exactly one GC qualifier difference is allowed: __strong is
5875    // okay if the other type has no GC qualifier but is an Objective
5876    // C object pointer (i.e. implicitly strong by default).  We fix
5877    // this by pretending that the unqualified type was actually
5878    // qualified __strong.
5879    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
5880    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
5881    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
5882
5883    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
5884      return QualType();
5885
5886    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
5887      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
5888    }
5889    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
5890      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
5891    }
5892    return QualType();
5893  }
5894
5895  // Okay, qualifiers are equal.
5896
5897  Type::TypeClass LHSClass = LHSCan->getTypeClass();
5898  Type::TypeClass RHSClass = RHSCan->getTypeClass();
5899
5900  // We want to consider the two function types to be the same for these
5901  // comparisons, just force one to the other.
5902  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
5903  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
5904
5905  // Same as above for arrays
5906  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
5907    LHSClass = Type::ConstantArray;
5908  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
5909    RHSClass = Type::ConstantArray;
5910
5911  // ObjCInterfaces are just specialized ObjCObjects.
5912  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
5913  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
5914
5915  // Canonicalize ExtVector -> Vector.
5916  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
5917  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
5918
5919  // If the canonical type classes don't match.
5920  if (LHSClass != RHSClass) {
5921    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
5922    // a signed integer type, or an unsigned integer type.
5923    // Compatibility is based on the underlying type, not the promotion
5924    // type.
5925    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
5926      QualType TINT = ETy->getDecl()->getIntegerType();
5927      if (!TINT.isNull() && hasSameType(TINT, RHSCan.getUnqualifiedType()))
5928        return RHS;
5929    }
5930    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
5931      QualType TINT = ETy->getDecl()->getIntegerType();
5932      if (!TINT.isNull() && hasSameType(TINT, LHSCan.getUnqualifiedType()))
5933        return LHS;
5934    }
5935    // allow block pointer type to match an 'id' type.
5936    if (OfBlockPointer && !BlockReturnType) {
5937       if (LHS->isObjCIdType() && RHS->isBlockPointerType())
5938         return LHS;
5939      if (RHS->isObjCIdType() && LHS->isBlockPointerType())
5940        return RHS;
5941    }
5942
5943    return QualType();
5944  }
5945
5946  // The canonical type classes match.
5947  switch (LHSClass) {
5948#define TYPE(Class, Base)
5949#define ABSTRACT_TYPE(Class, Base)
5950#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
5951#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
5952#define DEPENDENT_TYPE(Class, Base) case Type::Class:
5953#include "clang/AST/TypeNodes.def"
5954    llvm_unreachable("Non-canonical and dependent types shouldn't get here");
5955
5956  case Type::LValueReference:
5957  case Type::RValueReference:
5958  case Type::MemberPointer:
5959    llvm_unreachable("C++ should never be in mergeTypes");
5960
5961  case Type::ObjCInterface:
5962  case Type::IncompleteArray:
5963  case Type::VariableArray:
5964  case Type::FunctionProto:
5965  case Type::ExtVector:
5966    llvm_unreachable("Types are eliminated above");
5967
5968  case Type::Pointer:
5969  {
5970    // Merge two pointer types, while trying to preserve typedef info
5971    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
5972    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
5973    if (Unqualified) {
5974      LHSPointee = LHSPointee.getUnqualifiedType();
5975      RHSPointee = RHSPointee.getUnqualifiedType();
5976    }
5977    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
5978                                     Unqualified);
5979    if (ResultType.isNull()) return QualType();
5980    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5981      return LHS;
5982    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5983      return RHS;
5984    return getPointerType(ResultType);
5985  }
5986  case Type::BlockPointer:
5987  {
5988    // Merge two block pointer types, while trying to preserve typedef info
5989    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
5990    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
5991    if (Unqualified) {
5992      LHSPointee = LHSPointee.getUnqualifiedType();
5993      RHSPointee = RHSPointee.getUnqualifiedType();
5994    }
5995    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
5996                                     Unqualified);
5997    if (ResultType.isNull()) return QualType();
5998    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5999      return LHS;
6000    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
6001      return RHS;
6002    return getBlockPointerType(ResultType);
6003  }
6004  case Type::Atomic:
6005  {
6006    // Merge two pointer types, while trying to preserve typedef info
6007    QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
6008    QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
6009    if (Unqualified) {
6010      LHSValue = LHSValue.getUnqualifiedType();
6011      RHSValue = RHSValue.getUnqualifiedType();
6012    }
6013    QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
6014                                     Unqualified);
6015    if (ResultType.isNull()) return QualType();
6016    if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
6017      return LHS;
6018    if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
6019      return RHS;
6020    return getAtomicType(ResultType);
6021  }
6022  case Type::ConstantArray:
6023  {
6024    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
6025    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
6026    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
6027      return QualType();
6028
6029    QualType LHSElem = getAsArrayType(LHS)->getElementType();
6030    QualType RHSElem = getAsArrayType(RHS)->getElementType();
6031    if (Unqualified) {
6032      LHSElem = LHSElem.getUnqualifiedType();
6033      RHSElem = RHSElem.getUnqualifiedType();
6034    }
6035
6036    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
6037    if (ResultType.isNull()) return QualType();
6038    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6039      return LHS;
6040    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6041      return RHS;
6042    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
6043                                          ArrayType::ArraySizeModifier(), 0);
6044    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
6045                                          ArrayType::ArraySizeModifier(), 0);
6046    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
6047    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
6048    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6049      return LHS;
6050    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6051      return RHS;
6052    if (LVAT) {
6053      // FIXME: This isn't correct! But tricky to implement because
6054      // the array's size has to be the size of LHS, but the type
6055      // has to be different.
6056      return LHS;
6057    }
6058    if (RVAT) {
6059      // FIXME: This isn't correct! But tricky to implement because
6060      // the array's size has to be the size of RHS, but the type
6061      // has to be different.
6062      return RHS;
6063    }
6064    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
6065    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
6066    return getIncompleteArrayType(ResultType,
6067                                  ArrayType::ArraySizeModifier(), 0);
6068  }
6069  case Type::FunctionNoProto:
6070    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
6071  case Type::Record:
6072  case Type::Enum:
6073    return QualType();
6074  case Type::Builtin:
6075    // Only exactly equal builtin types are compatible, which is tested above.
6076    return QualType();
6077  case Type::Complex:
6078    // Distinct complex types are incompatible.
6079    return QualType();
6080  case Type::Vector:
6081    // FIXME: The merged type should be an ExtVector!
6082    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
6083                             RHSCan->getAs<VectorType>()))
6084      return LHS;
6085    return QualType();
6086  case Type::ObjCObject: {
6087    // Check if the types are assignment compatible.
6088    // FIXME: This should be type compatibility, e.g. whether
6089    // "LHS x; RHS x;" at global scope is legal.
6090    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
6091    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
6092    if (canAssignObjCInterfaces(LHSIface, RHSIface))
6093      return LHS;
6094
6095    return QualType();
6096  }
6097  case Type::ObjCObjectPointer: {
6098    if (OfBlockPointer) {
6099      if (canAssignObjCInterfacesInBlockPointer(
6100                                          LHS->getAs<ObjCObjectPointerType>(),
6101                                          RHS->getAs<ObjCObjectPointerType>(),
6102                                          BlockReturnType))
6103        return LHS;
6104      return QualType();
6105    }
6106    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
6107                                RHS->getAs<ObjCObjectPointerType>()))
6108      return LHS;
6109
6110    return QualType();
6111  }
6112  }
6113
6114  llvm_unreachable("Invalid Type::Class!");
6115}
6116
6117bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
6118                   const FunctionProtoType *FromFunctionType,
6119                   const FunctionProtoType *ToFunctionType) {
6120  if (FromFunctionType->hasAnyConsumedArgs() !=
6121      ToFunctionType->hasAnyConsumedArgs())
6122    return false;
6123  FunctionProtoType::ExtProtoInfo FromEPI =
6124    FromFunctionType->getExtProtoInfo();
6125  FunctionProtoType::ExtProtoInfo ToEPI =
6126    ToFunctionType->getExtProtoInfo();
6127  if (FromEPI.ConsumedArguments && ToEPI.ConsumedArguments)
6128    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
6129         ArgIdx != NumArgs; ++ArgIdx)  {
6130      if (FromEPI.ConsumedArguments[ArgIdx] !=
6131          ToEPI.ConsumedArguments[ArgIdx])
6132        return false;
6133    }
6134  return true;
6135}
6136
6137/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
6138/// 'RHS' attributes and returns the merged version; including for function
6139/// return types.
6140QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
6141  QualType LHSCan = getCanonicalType(LHS),
6142  RHSCan = getCanonicalType(RHS);
6143  // If two types are identical, they are compatible.
6144  if (LHSCan == RHSCan)
6145    return LHS;
6146  if (RHSCan->isFunctionType()) {
6147    if (!LHSCan->isFunctionType())
6148      return QualType();
6149    QualType OldReturnType =
6150      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
6151    QualType NewReturnType =
6152      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
6153    QualType ResReturnType =
6154      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
6155    if (ResReturnType.isNull())
6156      return QualType();
6157    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
6158      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
6159      // In either case, use OldReturnType to build the new function type.
6160      const FunctionType *F = LHS->getAs<FunctionType>();
6161      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
6162        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6163        EPI.ExtInfo = getFunctionExtInfo(LHS);
6164        QualType ResultType
6165          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
6166                            FPT->getNumArgs(), EPI);
6167        return ResultType;
6168      }
6169    }
6170    return QualType();
6171  }
6172
6173  // If the qualifiers are different, the types can still be merged.
6174  Qualifiers LQuals = LHSCan.getLocalQualifiers();
6175  Qualifiers RQuals = RHSCan.getLocalQualifiers();
6176  if (LQuals != RQuals) {
6177    // If any of these qualifiers are different, we have a type mismatch.
6178    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
6179        LQuals.getAddressSpace() != RQuals.getAddressSpace())
6180      return QualType();
6181
6182    // Exactly one GC qualifier difference is allowed: __strong is
6183    // okay if the other type has no GC qualifier but is an Objective
6184    // C object pointer (i.e. implicitly strong by default).  We fix
6185    // this by pretending that the unqualified type was actually
6186    // qualified __strong.
6187    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
6188    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
6189    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
6190
6191    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
6192      return QualType();
6193
6194    if (GC_L == Qualifiers::Strong)
6195      return LHS;
6196    if (GC_R == Qualifiers::Strong)
6197      return RHS;
6198    return QualType();
6199  }
6200
6201  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
6202    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6203    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6204    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
6205    if (ResQT == LHSBaseQT)
6206      return LHS;
6207    if (ResQT == RHSBaseQT)
6208      return RHS;
6209  }
6210  return QualType();
6211}
6212
6213//===----------------------------------------------------------------------===//
6214//                         Integer Predicates
6215//===----------------------------------------------------------------------===//
6216
6217unsigned ASTContext::getIntWidth(QualType T) const {
6218  if (const EnumType *ET = dyn_cast<EnumType>(T))
6219    T = ET->getDecl()->getIntegerType();
6220  if (T->isBooleanType())
6221    return 1;
6222  // For builtin types, just use the standard type sizing method
6223  return (unsigned)getTypeSize(T);
6224}
6225
6226QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
6227  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
6228
6229  // Turn <4 x signed int> -> <4 x unsigned int>
6230  if (const VectorType *VTy = T->getAs<VectorType>())
6231    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
6232                         VTy->getNumElements(), VTy->getVectorKind());
6233
6234  // For enums, we return the unsigned version of the base type.
6235  if (const EnumType *ETy = T->getAs<EnumType>())
6236    T = ETy->getDecl()->getIntegerType();
6237
6238  const BuiltinType *BTy = T->getAs<BuiltinType>();
6239  assert(BTy && "Unexpected signed integer type");
6240  switch (BTy->getKind()) {
6241  case BuiltinType::Char_S:
6242  case BuiltinType::SChar:
6243    return UnsignedCharTy;
6244  case BuiltinType::Short:
6245    return UnsignedShortTy;
6246  case BuiltinType::Int:
6247    return UnsignedIntTy;
6248  case BuiltinType::Long:
6249    return UnsignedLongTy;
6250  case BuiltinType::LongLong:
6251    return UnsignedLongLongTy;
6252  case BuiltinType::Int128:
6253    return UnsignedInt128Ty;
6254  default:
6255    llvm_unreachable("Unexpected signed integer type");
6256  }
6257}
6258
6259ASTMutationListener::~ASTMutationListener() { }
6260
6261
6262//===----------------------------------------------------------------------===//
6263//                          Builtin Type Computation
6264//===----------------------------------------------------------------------===//
6265
6266/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
6267/// pointer over the consumed characters.  This returns the resultant type.  If
6268/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
6269/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
6270/// a vector of "i*".
6271///
6272/// RequiresICE is filled in on return to indicate whether the value is required
6273/// to be an Integer Constant Expression.
6274static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
6275                                  ASTContext::GetBuiltinTypeError &Error,
6276                                  bool &RequiresICE,
6277                                  bool AllowTypeModifiers) {
6278  // Modifiers.
6279  int HowLong = 0;
6280  bool Signed = false, Unsigned = false;
6281  RequiresICE = false;
6282
6283  // Read the prefixed modifiers first.
6284  bool Done = false;
6285  while (!Done) {
6286    switch (*Str++) {
6287    default: Done = true; --Str; break;
6288    case 'I':
6289      RequiresICE = true;
6290      break;
6291    case 'S':
6292      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
6293      assert(!Signed && "Can't use 'S' modifier multiple times!");
6294      Signed = true;
6295      break;
6296    case 'U':
6297      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
6298      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
6299      Unsigned = true;
6300      break;
6301    case 'L':
6302      assert(HowLong <= 2 && "Can't have LLLL modifier");
6303      ++HowLong;
6304      break;
6305    }
6306  }
6307
6308  QualType Type;
6309
6310  // Read the base type.
6311  switch (*Str++) {
6312  default: llvm_unreachable("Unknown builtin type letter!");
6313  case 'v':
6314    assert(HowLong == 0 && !Signed && !Unsigned &&
6315           "Bad modifiers used with 'v'!");
6316    Type = Context.VoidTy;
6317    break;
6318  case 'f':
6319    assert(HowLong == 0 && !Signed && !Unsigned &&
6320           "Bad modifiers used with 'f'!");
6321    Type = Context.FloatTy;
6322    break;
6323  case 'd':
6324    assert(HowLong < 2 && !Signed && !Unsigned &&
6325           "Bad modifiers used with 'd'!");
6326    if (HowLong)
6327      Type = Context.LongDoubleTy;
6328    else
6329      Type = Context.DoubleTy;
6330    break;
6331  case 's':
6332    assert(HowLong == 0 && "Bad modifiers used with 's'!");
6333    if (Unsigned)
6334      Type = Context.UnsignedShortTy;
6335    else
6336      Type = Context.ShortTy;
6337    break;
6338  case 'i':
6339    if (HowLong == 3)
6340      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
6341    else if (HowLong == 2)
6342      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
6343    else if (HowLong == 1)
6344      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
6345    else
6346      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
6347    break;
6348  case 'c':
6349    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
6350    if (Signed)
6351      Type = Context.SignedCharTy;
6352    else if (Unsigned)
6353      Type = Context.UnsignedCharTy;
6354    else
6355      Type = Context.CharTy;
6356    break;
6357  case 'b': // boolean
6358    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
6359    Type = Context.BoolTy;
6360    break;
6361  case 'z':  // size_t.
6362    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
6363    Type = Context.getSizeType();
6364    break;
6365  case 'F':
6366    Type = Context.getCFConstantStringType();
6367    break;
6368  case 'G':
6369    Type = Context.getObjCIdType();
6370    break;
6371  case 'H':
6372    Type = Context.getObjCSelType();
6373    break;
6374  case 'a':
6375    Type = Context.getBuiltinVaListType();
6376    assert(!Type.isNull() && "builtin va list type not initialized!");
6377    break;
6378  case 'A':
6379    // This is a "reference" to a va_list; however, what exactly
6380    // this means depends on how va_list is defined. There are two
6381    // different kinds of va_list: ones passed by value, and ones
6382    // passed by reference.  An example of a by-value va_list is
6383    // x86, where va_list is a char*. An example of by-ref va_list
6384    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
6385    // we want this argument to be a char*&; for x86-64, we want
6386    // it to be a __va_list_tag*.
6387    Type = Context.getBuiltinVaListType();
6388    assert(!Type.isNull() && "builtin va list type not initialized!");
6389    if (Type->isArrayType())
6390      Type = Context.getArrayDecayedType(Type);
6391    else
6392      Type = Context.getLValueReferenceType(Type);
6393    break;
6394  case 'V': {
6395    char *End;
6396    unsigned NumElements = strtoul(Str, &End, 10);
6397    assert(End != Str && "Missing vector size");
6398    Str = End;
6399
6400    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
6401                                             RequiresICE, false);
6402    assert(!RequiresICE && "Can't require vector ICE");
6403
6404    // TODO: No way to make AltiVec vectors in builtins yet.
6405    Type = Context.getVectorType(ElementType, NumElements,
6406                                 VectorType::GenericVector);
6407    break;
6408  }
6409  case 'X': {
6410    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
6411                                             false);
6412    assert(!RequiresICE && "Can't require complex ICE");
6413    Type = Context.getComplexType(ElementType);
6414    break;
6415  }
6416  case 'Y' : {
6417    Type = Context.getPointerDiffType();
6418    break;
6419  }
6420  case 'P':
6421    Type = Context.getFILEType();
6422    if (Type.isNull()) {
6423      Error = ASTContext::GE_Missing_stdio;
6424      return QualType();
6425    }
6426    break;
6427  case 'J':
6428    if (Signed)
6429      Type = Context.getsigjmp_bufType();
6430    else
6431      Type = Context.getjmp_bufType();
6432
6433    if (Type.isNull()) {
6434      Error = ASTContext::GE_Missing_setjmp;
6435      return QualType();
6436    }
6437    break;
6438  case 'K':
6439    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
6440    Type = Context.getucontext_tType();
6441
6442    if (Type.isNull()) {
6443      Error = ASTContext::GE_Missing_ucontext;
6444      return QualType();
6445    }
6446    break;
6447  }
6448
6449  // If there are modifiers and if we're allowed to parse them, go for it.
6450  Done = !AllowTypeModifiers;
6451  while (!Done) {
6452    switch (char c = *Str++) {
6453    default: Done = true; --Str; break;
6454    case '*':
6455    case '&': {
6456      // Both pointers and references can have their pointee types
6457      // qualified with an address space.
6458      char *End;
6459      unsigned AddrSpace = strtoul(Str, &End, 10);
6460      if (End != Str && AddrSpace != 0) {
6461        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
6462        Str = End;
6463      }
6464      if (c == '*')
6465        Type = Context.getPointerType(Type);
6466      else
6467        Type = Context.getLValueReferenceType(Type);
6468      break;
6469    }
6470    // FIXME: There's no way to have a built-in with an rvalue ref arg.
6471    case 'C':
6472      Type = Type.withConst();
6473      break;
6474    case 'D':
6475      Type = Context.getVolatileType(Type);
6476      break;
6477    case 'R':
6478      Type = Type.withRestrict();
6479      break;
6480    }
6481  }
6482
6483  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
6484         "Integer constant 'I' type must be an integer");
6485
6486  return Type;
6487}
6488
6489/// GetBuiltinType - Return the type for the specified builtin.
6490QualType ASTContext::GetBuiltinType(unsigned Id,
6491                                    GetBuiltinTypeError &Error,
6492                                    unsigned *IntegerConstantArgs) const {
6493  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
6494
6495  SmallVector<QualType, 8> ArgTypes;
6496
6497  bool RequiresICE = false;
6498  Error = GE_None;
6499  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
6500                                       RequiresICE, true);
6501  if (Error != GE_None)
6502    return QualType();
6503
6504  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
6505
6506  while (TypeStr[0] && TypeStr[0] != '.') {
6507    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
6508    if (Error != GE_None)
6509      return QualType();
6510
6511    // If this argument is required to be an IntegerConstantExpression and the
6512    // caller cares, fill in the bitmask we return.
6513    if (RequiresICE && IntegerConstantArgs)
6514      *IntegerConstantArgs |= 1 << ArgTypes.size();
6515
6516    // Do array -> pointer decay.  The builtin should use the decayed type.
6517    if (Ty->isArrayType())
6518      Ty = getArrayDecayedType(Ty);
6519
6520    ArgTypes.push_back(Ty);
6521  }
6522
6523  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
6524         "'.' should only occur at end of builtin type list!");
6525
6526  FunctionType::ExtInfo EI;
6527  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
6528
6529  bool Variadic = (TypeStr[0] == '.');
6530
6531  // We really shouldn't be making a no-proto type here, especially in C++.
6532  if (ArgTypes.empty() && Variadic)
6533    return getFunctionNoProtoType(ResType, EI);
6534
6535  FunctionProtoType::ExtProtoInfo EPI;
6536  EPI.ExtInfo = EI;
6537  EPI.Variadic = Variadic;
6538
6539  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
6540}
6541
6542GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
6543  GVALinkage External = GVA_StrongExternal;
6544
6545  Linkage L = FD->getLinkage();
6546  switch (L) {
6547  case NoLinkage:
6548  case InternalLinkage:
6549  case UniqueExternalLinkage:
6550    return GVA_Internal;
6551
6552  case ExternalLinkage:
6553    switch (FD->getTemplateSpecializationKind()) {
6554    case TSK_Undeclared:
6555    case TSK_ExplicitSpecialization:
6556      External = GVA_StrongExternal;
6557      break;
6558
6559    case TSK_ExplicitInstantiationDefinition:
6560      return GVA_ExplicitTemplateInstantiation;
6561
6562    case TSK_ExplicitInstantiationDeclaration:
6563    case TSK_ImplicitInstantiation:
6564      External = GVA_TemplateInstantiation;
6565      break;
6566    }
6567  }
6568
6569  if (!FD->isInlined())
6570    return External;
6571
6572  if (!getLangOpts().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
6573    // GNU or C99 inline semantics. Determine whether this symbol should be
6574    // externally visible.
6575    if (FD->isInlineDefinitionExternallyVisible())
6576      return External;
6577
6578    // C99 inline semantics, where the symbol is not externally visible.
6579    return GVA_C99Inline;
6580  }
6581
6582  // C++0x [temp.explicit]p9:
6583  //   [ Note: The intent is that an inline function that is the subject of
6584  //   an explicit instantiation declaration will still be implicitly
6585  //   instantiated when used so that the body can be considered for
6586  //   inlining, but that no out-of-line copy of the inline function would be
6587  //   generated in the translation unit. -- end note ]
6588  if (FD->getTemplateSpecializationKind()
6589                                       == TSK_ExplicitInstantiationDeclaration)
6590    return GVA_C99Inline;
6591
6592  return GVA_CXXInline;
6593}
6594
6595GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
6596  // If this is a static data member, compute the kind of template
6597  // specialization. Otherwise, this variable is not part of a
6598  // template.
6599  TemplateSpecializationKind TSK = TSK_Undeclared;
6600  if (VD->isStaticDataMember())
6601    TSK = VD->getTemplateSpecializationKind();
6602
6603  Linkage L = VD->getLinkage();
6604  if (L == ExternalLinkage && getLangOpts().CPlusPlus &&
6605      VD->getType()->getLinkage() == UniqueExternalLinkage)
6606    L = UniqueExternalLinkage;
6607
6608  switch (L) {
6609  case NoLinkage:
6610  case InternalLinkage:
6611  case UniqueExternalLinkage:
6612    return GVA_Internal;
6613
6614  case ExternalLinkage:
6615    switch (TSK) {
6616    case TSK_Undeclared:
6617    case TSK_ExplicitSpecialization:
6618      return GVA_StrongExternal;
6619
6620    case TSK_ExplicitInstantiationDeclaration:
6621      llvm_unreachable("Variable should not be instantiated");
6622      // Fall through to treat this like any other instantiation.
6623
6624    case TSK_ExplicitInstantiationDefinition:
6625      return GVA_ExplicitTemplateInstantiation;
6626
6627    case TSK_ImplicitInstantiation:
6628      return GVA_TemplateInstantiation;
6629    }
6630  }
6631
6632  llvm_unreachable("Invalid Linkage!");
6633}
6634
6635bool ASTContext::DeclMustBeEmitted(const Decl *D) {
6636  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
6637    if (!VD->isFileVarDecl())
6638      return false;
6639  } else if (!isa<FunctionDecl>(D))
6640    return false;
6641
6642  // Weak references don't produce any output by themselves.
6643  if (D->hasAttr<WeakRefAttr>())
6644    return false;
6645
6646  // Aliases and used decls are required.
6647  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
6648    return true;
6649
6650  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6651    // Forward declarations aren't required.
6652    if (!FD->doesThisDeclarationHaveABody())
6653      return FD->doesDeclarationForceExternallyVisibleDefinition();
6654
6655    // Constructors and destructors are required.
6656    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
6657      return true;
6658
6659    // The key function for a class is required.
6660    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
6661      const CXXRecordDecl *RD = MD->getParent();
6662      if (MD->isOutOfLine() && RD->isDynamicClass()) {
6663        const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
6664        if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
6665          return true;
6666      }
6667    }
6668
6669    GVALinkage Linkage = GetGVALinkageForFunction(FD);
6670
6671    // static, static inline, always_inline, and extern inline functions can
6672    // always be deferred.  Normal inline functions can be deferred in C99/C++.
6673    // Implicit template instantiations can also be deferred in C++.
6674    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
6675        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
6676      return false;
6677    return true;
6678  }
6679
6680  const VarDecl *VD = cast<VarDecl>(D);
6681  assert(VD->isFileVarDecl() && "Expected file scoped var");
6682
6683  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
6684    return false;
6685
6686  // Structs that have non-trivial constructors or destructors are required.
6687
6688  // FIXME: Handle references.
6689  // FIXME: Be more selective about which constructors we care about.
6690  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
6691    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
6692      if (RD->hasDefinition() && !(RD->hasTrivialDefaultConstructor() &&
6693                                   RD->hasTrivialCopyConstructor() &&
6694                                   RD->hasTrivialMoveConstructor() &&
6695                                   RD->hasTrivialDestructor()))
6696        return true;
6697    }
6698  }
6699
6700  GVALinkage L = GetGVALinkageForVariable(VD);
6701  if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
6702    if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
6703      return false;
6704  }
6705
6706  return true;
6707}
6708
6709CallingConv ASTContext::getDefaultMethodCallConv() {
6710  // Pass through to the C++ ABI object
6711  return ABI->getDefaultMethodCallConv();
6712}
6713
6714bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
6715  // Pass through to the C++ ABI object
6716  return ABI->isNearlyEmpty(RD);
6717}
6718
6719MangleContext *ASTContext::createMangleContext() {
6720  switch (Target->getCXXABI()) {
6721  case CXXABI_ARM:
6722  case CXXABI_Itanium:
6723    return createItaniumMangleContext(*this, getDiagnostics());
6724  case CXXABI_Microsoft:
6725    return createMicrosoftMangleContext(*this, getDiagnostics());
6726  }
6727  llvm_unreachable("Unsupported ABI");
6728}
6729
6730CXXABI::~CXXABI() {}
6731
6732size_t ASTContext::getSideTableAllocatedMemory() const {
6733  return ASTRecordLayouts.getMemorySize()
6734    + llvm::capacity_in_bytes(ObjCLayouts)
6735    + llvm::capacity_in_bytes(KeyFunctions)
6736    + llvm::capacity_in_bytes(ObjCImpls)
6737    + llvm::capacity_in_bytes(BlockVarCopyInits)
6738    + llvm::capacity_in_bytes(DeclAttrs)
6739    + llvm::capacity_in_bytes(InstantiatedFromStaticDataMember)
6740    + llvm::capacity_in_bytes(InstantiatedFromUsingDecl)
6741    + llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl)
6742    + llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl)
6743    + llvm::capacity_in_bytes(OverriddenMethods)
6744    + llvm::capacity_in_bytes(Types)
6745    + llvm::capacity_in_bytes(VariableArrayTypes)
6746    + llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
6747}
6748
6749unsigned ASTContext::getLambdaManglingNumber(CXXMethodDecl *CallOperator) {
6750  CXXRecordDecl *Lambda = CallOperator->getParent();
6751  return LambdaMangleContexts[Lambda->getDeclContext()]
6752           .getManglingNumber(CallOperator);
6753}
6754
6755
6756void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
6757  ParamIndices[D] = index;
6758}
6759
6760unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
6761  ParameterIndexTable::const_iterator I = ParamIndices.find(D);
6762  assert(I != ParamIndices.end() &&
6763         "ParmIndices lacks entry set by ParmVarDecl");
6764  return I->second;
6765}
6766