ASTContext.cpp revision 0e5ad255729ee86b8ed57e659029008984517cde
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExternalASTSource.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/Basic/Builtins.h"
24#include "clang/Basic/SourceManager.h"
25#include "clang/Basic/TargetInfo.h"
26#include "llvm/ADT/SmallString.h"
27#include "llvm/ADT/StringExtras.h"
28#include "llvm/Support/MathExtras.h"
29#include "llvm/Support/raw_ostream.h"
30#include "RecordLayoutBuilder.h"
31
32using namespace clang;
33
34enum FloatingRank {
35  FloatRank, DoubleRank, LongDoubleRank
36};
37
38ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
39                       const TargetInfo &t,
40                       IdentifierTable &idents, SelectorTable &sels,
41                       Builtin::Context &builtins,
42                       bool FreeMem, unsigned size_reserve) :
43  GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
44  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0), jmp_bufDecl(0),
45  sigjmp_bufDecl(0), BlockDescriptorType(0), BlockDescriptorExtendedType(0),
46  SourceMgr(SM), LangOpts(LOpts),
47  LoadedExternalComments(false), FreeMemory(FreeMem), Target(t),
48  Idents(idents), Selectors(sels),
49  BuiltinInfo(builtins), ExternalSource(0), PrintingPolicy(LOpts) {
50  ObjCIdRedefinitionType = QualType();
51  ObjCClassRedefinitionType = QualType();
52  ObjCSelRedefinitionType = QualType();
53  if (size_reserve > 0) Types.reserve(size_reserve);
54  TUDecl = TranslationUnitDecl::Create(*this);
55  InitBuiltinTypes();
56}
57
58ASTContext::~ASTContext() {
59  // Release the DenseMaps associated with DeclContext objects.
60  // FIXME: Is this the ideal solution?
61  ReleaseDeclContextMaps();
62
63  if (FreeMemory) {
64    // Deallocate all the types.
65    while (!Types.empty()) {
66      Types.back()->Destroy(*this);
67      Types.pop_back();
68    }
69
70    for (llvm::FoldingSet<ExtQuals>::iterator
71         I = ExtQualNodes.begin(), E = ExtQualNodes.end(); I != E; ) {
72      // Increment in loop to prevent using deallocated memory.
73      Deallocate(&*I++);
74    }
75  }
76
77  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
78       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
79    // Increment in loop to prevent using deallocated memory.
80    ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
81    delete R;
82  }
83
84  for (llvm::DenseMap<const ObjCContainerDecl*,
85                      const ASTRecordLayout*>::iterator
86       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; ) {
87    // Increment in loop to prevent using deallocated memory.
88    ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
89    delete R;
90  }
91
92  // Destroy nested-name-specifiers.
93  for (llvm::FoldingSet<NestedNameSpecifier>::iterator
94         NNS = NestedNameSpecifiers.begin(),
95         NNSEnd = NestedNameSpecifiers.end();
96       NNS != NNSEnd; ) {
97    // Increment in loop to prevent using deallocated memory.
98    (*NNS++).Destroy(*this);
99  }
100
101  if (GlobalNestedNameSpecifier)
102    GlobalNestedNameSpecifier->Destroy(*this);
103
104  TUDecl->Destroy(*this);
105}
106
107void
108ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
109  ExternalSource.reset(Source.take());
110}
111
112void ASTContext::PrintStats() const {
113  fprintf(stderr, "*** AST Context Stats:\n");
114  fprintf(stderr, "  %d types total.\n", (int)Types.size());
115
116  unsigned counts[] = {
117#define TYPE(Name, Parent) 0,
118#define ABSTRACT_TYPE(Name, Parent)
119#include "clang/AST/TypeNodes.def"
120    0 // Extra
121  };
122
123  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
124    Type *T = Types[i];
125    counts[(unsigned)T->getTypeClass()]++;
126  }
127
128  unsigned Idx = 0;
129  unsigned TotalBytes = 0;
130#define TYPE(Name, Parent)                                              \
131  if (counts[Idx])                                                      \
132    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
133  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
134  ++Idx;
135#define ABSTRACT_TYPE(Name, Parent)
136#include "clang/AST/TypeNodes.def"
137
138  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
139
140  if (ExternalSource.get()) {
141    fprintf(stderr, "\n");
142    ExternalSource->PrintStats();
143  }
144}
145
146
147void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
148  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
149  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
150  Types.push_back(Ty);
151}
152
153void ASTContext::InitBuiltinTypes() {
154  assert(VoidTy.isNull() && "Context reinitialized?");
155
156  // C99 6.2.5p19.
157  InitBuiltinType(VoidTy,              BuiltinType::Void);
158
159  // C99 6.2.5p2.
160  InitBuiltinType(BoolTy,              BuiltinType::Bool);
161  // C99 6.2.5p3.
162  if (LangOpts.CharIsSigned)
163    InitBuiltinType(CharTy,            BuiltinType::Char_S);
164  else
165    InitBuiltinType(CharTy,            BuiltinType::Char_U);
166  // C99 6.2.5p4.
167  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
168  InitBuiltinType(ShortTy,             BuiltinType::Short);
169  InitBuiltinType(IntTy,               BuiltinType::Int);
170  InitBuiltinType(LongTy,              BuiltinType::Long);
171  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
172
173  // C99 6.2.5p6.
174  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
175  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
176  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
177  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
178  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
179
180  // C99 6.2.5p10.
181  InitBuiltinType(FloatTy,             BuiltinType::Float);
182  InitBuiltinType(DoubleTy,            BuiltinType::Double);
183  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
184
185  // GNU extension, 128-bit integers.
186  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
187  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
188
189  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
190    InitBuiltinType(WCharTy,           BuiltinType::WChar);
191  else // C99
192    WCharTy = getFromTargetType(Target.getWCharType());
193
194  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
195    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
196  else // C99
197    Char16Ty = getFromTargetType(Target.getChar16Type());
198
199  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
200    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
201  else // C99
202    Char32Ty = getFromTargetType(Target.getChar32Type());
203
204  // Placeholder type for functions.
205  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
206
207  // Placeholder type for type-dependent expressions whose type is
208  // completely unknown. No code should ever check a type against
209  // DependentTy and users should never see it; however, it is here to
210  // help diagnose failures to properly check for type-dependent
211  // expressions.
212  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
213
214  // Placeholder type for C++0x auto declarations whose real type has
215  // not yet been deduced.
216  InitBuiltinType(UndeducedAutoTy, BuiltinType::UndeducedAuto);
217
218  // C99 6.2.5p11.
219  FloatComplexTy      = getComplexType(FloatTy);
220  DoubleComplexTy     = getComplexType(DoubleTy);
221  LongDoubleComplexTy = getComplexType(LongDoubleTy);
222
223  BuiltinVaListType = QualType();
224
225  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
226  ObjCIdTypedefType = QualType();
227  ObjCClassTypedefType = QualType();
228  ObjCSelTypedefType = QualType();
229
230  // Builtin types for 'id', 'Class', and 'SEL'.
231  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
232  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
233  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
234
235  ObjCConstantStringType = QualType();
236
237  // void * type
238  VoidPtrTy = getPointerType(VoidTy);
239
240  // nullptr type (C++0x 2.14.7)
241  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
242}
243
244MemberSpecializationInfo *
245ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
246  assert(Var->isStaticDataMember() && "Not a static data member");
247  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
248    = InstantiatedFromStaticDataMember.find(Var);
249  if (Pos == InstantiatedFromStaticDataMember.end())
250    return 0;
251
252  return Pos->second;
253}
254
255void
256ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
257                                                TemplateSpecializationKind TSK) {
258  assert(Inst->isStaticDataMember() && "Not a static data member");
259  assert(Tmpl->isStaticDataMember() && "Not a static data member");
260  assert(!InstantiatedFromStaticDataMember[Inst] &&
261         "Already noted what static data member was instantiated from");
262  InstantiatedFromStaticDataMember[Inst]
263    = new (*this) MemberSpecializationInfo(Tmpl, TSK);
264}
265
266NamedDecl *
267ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
268  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
269    = InstantiatedFromUsingDecl.find(UUD);
270  if (Pos == InstantiatedFromUsingDecl.end())
271    return 0;
272
273  return Pos->second;
274}
275
276void
277ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
278  assert((isa<UsingDecl>(Pattern) ||
279          isa<UnresolvedUsingValueDecl>(Pattern) ||
280          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
281         "pattern decl is not a using decl");
282  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
283  InstantiatedFromUsingDecl[Inst] = Pattern;
284}
285
286UsingShadowDecl *
287ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
288  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
289    = InstantiatedFromUsingShadowDecl.find(Inst);
290  if (Pos == InstantiatedFromUsingShadowDecl.end())
291    return 0;
292
293  return Pos->second;
294}
295
296void
297ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
298                                               UsingShadowDecl *Pattern) {
299  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
300  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
301}
302
303FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
304  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
305    = InstantiatedFromUnnamedFieldDecl.find(Field);
306  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
307    return 0;
308
309  return Pos->second;
310}
311
312void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
313                                                     FieldDecl *Tmpl) {
314  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
315  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
316  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
317         "Already noted what unnamed field was instantiated from");
318
319  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
320}
321
322namespace {
323  class BeforeInTranslationUnit
324    : std::binary_function<SourceRange, SourceRange, bool> {
325    SourceManager *SourceMgr;
326
327  public:
328    explicit BeforeInTranslationUnit(SourceManager *SM) : SourceMgr(SM) { }
329
330    bool operator()(SourceRange X, SourceRange Y) {
331      return SourceMgr->isBeforeInTranslationUnit(X.getBegin(), Y.getBegin());
332    }
333  };
334}
335
336/// \brief Determine whether the given comment is a Doxygen-style comment.
337///
338/// \param Start the start of the comment text.
339///
340/// \param End the end of the comment text.
341///
342/// \param Member whether we want to check whether this is a member comment
343/// (which requires a < after the Doxygen-comment delimiter). Otherwise,
344/// we only return true when we find a non-member comment.
345static bool
346isDoxygenComment(SourceManager &SourceMgr, SourceRange Comment,
347                 bool Member = false) {
348  const char *BufferStart
349    = SourceMgr.getBufferData(SourceMgr.getFileID(Comment.getBegin())).first;
350  const char *Start = BufferStart + SourceMgr.getFileOffset(Comment.getBegin());
351  const char* End = BufferStart + SourceMgr.getFileOffset(Comment.getEnd());
352
353  if (End - Start < 4)
354    return false;
355
356  assert(Start[0] == '/' && "Not a comment?");
357  if (Start[1] == '*' && !(Start[2] == '!' || Start[2] == '*'))
358    return false;
359  if (Start[1] == '/' && !(Start[2] == '!' || Start[2] == '/'))
360    return false;
361
362  return (Start[3] == '<') == Member;
363}
364
365/// \brief Retrieve the comment associated with the given declaration, if
366/// it has one.
367const char *ASTContext::getCommentForDecl(const Decl *D) {
368  if (!D)
369    return 0;
370
371  // Check whether we have cached a comment string for this declaration
372  // already.
373  llvm::DenseMap<const Decl *, std::string>::iterator Pos
374    = DeclComments.find(D);
375  if (Pos != DeclComments.end())
376    return Pos->second.c_str();
377
378  // If we have an external AST source and have not yet loaded comments from
379  // that source, do so now.
380  if (ExternalSource && !LoadedExternalComments) {
381    std::vector<SourceRange> LoadedComments;
382    ExternalSource->ReadComments(LoadedComments);
383
384    if (!LoadedComments.empty())
385      Comments.insert(Comments.begin(), LoadedComments.begin(),
386                      LoadedComments.end());
387
388    LoadedExternalComments = true;
389  }
390
391  // If there are no comments anywhere, we won't find anything.
392  if (Comments.empty())
393    return 0;
394
395  // If the declaration doesn't map directly to a location in a file, we
396  // can't find the comment.
397  SourceLocation DeclStartLoc = D->getLocStart();
398  if (DeclStartLoc.isInvalid() || !DeclStartLoc.isFileID())
399    return 0;
400
401  // Find the comment that occurs just before this declaration.
402  std::vector<SourceRange>::iterator LastComment
403    = std::lower_bound(Comments.begin(), Comments.end(),
404                       SourceRange(DeclStartLoc),
405                       BeforeInTranslationUnit(&SourceMgr));
406
407  // Decompose the location for the start of the declaration and find the
408  // beginning of the file buffer.
409  std::pair<FileID, unsigned> DeclStartDecomp
410    = SourceMgr.getDecomposedLoc(DeclStartLoc);
411  const char *FileBufferStart
412    = SourceMgr.getBufferData(DeclStartDecomp.first).first;
413
414  // First check whether we have a comment for a member.
415  if (LastComment != Comments.end() &&
416      !isa<TagDecl>(D) && !isa<NamespaceDecl>(D) &&
417      isDoxygenComment(SourceMgr, *LastComment, true)) {
418    std::pair<FileID, unsigned> LastCommentEndDecomp
419      = SourceMgr.getDecomposedLoc(LastComment->getEnd());
420    if (DeclStartDecomp.first == LastCommentEndDecomp.first &&
421        SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second)
422          == SourceMgr.getLineNumber(LastCommentEndDecomp.first,
423                                     LastCommentEndDecomp.second)) {
424      // The Doxygen member comment comes after the declaration starts and
425      // is on the same line and in the same file as the declaration. This
426      // is the comment we want.
427      std::string &Result = DeclComments[D];
428      Result.append(FileBufferStart +
429                      SourceMgr.getFileOffset(LastComment->getBegin()),
430                    FileBufferStart + LastCommentEndDecomp.second + 1);
431      return Result.c_str();
432    }
433  }
434
435  if (LastComment == Comments.begin())
436    return 0;
437  --LastComment;
438
439  // Decompose the end of the comment.
440  std::pair<FileID, unsigned> LastCommentEndDecomp
441    = SourceMgr.getDecomposedLoc(LastComment->getEnd());
442
443  // If the comment and the declaration aren't in the same file, then they
444  // aren't related.
445  if (DeclStartDecomp.first != LastCommentEndDecomp.first)
446    return 0;
447
448  // Check that we actually have a Doxygen comment.
449  if (!isDoxygenComment(SourceMgr, *LastComment))
450    return 0;
451
452  // Compute the starting line for the declaration and for the end of the
453  // comment (this is expensive).
454  unsigned DeclStartLine
455    = SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second);
456  unsigned CommentEndLine
457    = SourceMgr.getLineNumber(LastCommentEndDecomp.first,
458                              LastCommentEndDecomp.second);
459
460  // If the comment does not end on the line prior to the declaration, then
461  // the comment is not associated with the declaration at all.
462  if (CommentEndLine + 1 != DeclStartLine)
463    return 0;
464
465  // We have a comment, but there may be more comments on the previous lines.
466  // Keep looking so long as the comments are still Doxygen comments and are
467  // still adjacent.
468  unsigned ExpectedLine
469    = SourceMgr.getSpellingLineNumber(LastComment->getBegin()) - 1;
470  std::vector<SourceRange>::iterator FirstComment = LastComment;
471  while (FirstComment != Comments.begin()) {
472    // Look at the previous comment
473    --FirstComment;
474    std::pair<FileID, unsigned> Decomp
475      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
476
477    // If this previous comment is in a different file, we're done.
478    if (Decomp.first != DeclStartDecomp.first) {
479      ++FirstComment;
480      break;
481    }
482
483    // If this comment is not a Doxygen comment, we're done.
484    if (!isDoxygenComment(SourceMgr, *FirstComment)) {
485      ++FirstComment;
486      break;
487    }
488
489    // If the line number is not what we expected, we're done.
490    unsigned Line = SourceMgr.getLineNumber(Decomp.first, Decomp.second);
491    if (Line != ExpectedLine) {
492      ++FirstComment;
493      break;
494    }
495
496    // Set the next expected line number.
497    ExpectedLine
498      = SourceMgr.getSpellingLineNumber(FirstComment->getBegin()) - 1;
499  }
500
501  // The iterator range [FirstComment, LastComment] contains all of the
502  // BCPL comments that, together, are associated with this declaration.
503  // Form a single comment block string for this declaration that concatenates
504  // all of these comments.
505  std::string &Result = DeclComments[D];
506  while (FirstComment != LastComment) {
507    std::pair<FileID, unsigned> DecompStart
508      = SourceMgr.getDecomposedLoc(FirstComment->getBegin());
509    std::pair<FileID, unsigned> DecompEnd
510      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
511    Result.append(FileBufferStart + DecompStart.second,
512                  FileBufferStart + DecompEnd.second + 1);
513    ++FirstComment;
514  }
515
516  // Append the last comment line.
517  Result.append(FileBufferStart +
518                  SourceMgr.getFileOffset(LastComment->getBegin()),
519                FileBufferStart + LastCommentEndDecomp.second + 1);
520  return Result.c_str();
521}
522
523//===----------------------------------------------------------------------===//
524//                         Type Sizing and Analysis
525//===----------------------------------------------------------------------===//
526
527/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
528/// scalar floating point type.
529const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
530  const BuiltinType *BT = T->getAs<BuiltinType>();
531  assert(BT && "Not a floating point type!");
532  switch (BT->getKind()) {
533  default: assert(0 && "Not a floating point type!");
534  case BuiltinType::Float:      return Target.getFloatFormat();
535  case BuiltinType::Double:     return Target.getDoubleFormat();
536  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
537  }
538}
539
540/// getDeclAlign - Return a conservative estimate of the alignment of the
541/// specified decl.  Note that bitfields do not have a valid alignment, so
542/// this method will assert on them.
543/// If @p RefAsPointee, references are treated like their underlying type
544/// (for alignof), else they're treated like pointers (for CodeGen).
545CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) {
546  unsigned Align = Target.getCharWidth();
547
548  if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
549    Align = std::max(Align, AA->getMaxAlignment());
550
551  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
552    QualType T = VD->getType();
553    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
554      if (RefAsPointee)
555        T = RT->getPointeeType();
556      else
557        T = getPointerType(RT->getPointeeType());
558    }
559    if (!T->isIncompleteType() && !T->isFunctionType()) {
560      // Incomplete or function types default to 1.
561      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
562        T = cast<ArrayType>(T)->getElementType();
563
564      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
565    }
566  }
567
568  return CharUnits::fromQuantity(Align / Target.getCharWidth());
569}
570
571/// getTypeSize - Return the size of the specified type, in bits.  This method
572/// does not work on incomplete types.
573///
574/// FIXME: Pointers into different addr spaces could have different sizes and
575/// alignment requirements: getPointerInfo should take an AddrSpace, this
576/// should take a QualType, &c.
577std::pair<uint64_t, unsigned>
578ASTContext::getTypeInfo(const Type *T) {
579  uint64_t Width=0;
580  unsigned Align=8;
581  switch (T->getTypeClass()) {
582#define TYPE(Class, Base)
583#define ABSTRACT_TYPE(Class, Base)
584#define NON_CANONICAL_TYPE(Class, Base)
585#define DEPENDENT_TYPE(Class, Base) case Type::Class:
586#include "clang/AST/TypeNodes.def"
587    assert(false && "Should not see dependent types");
588    break;
589
590  case Type::FunctionNoProto:
591  case Type::FunctionProto:
592    // GCC extension: alignof(function) = 32 bits
593    Width = 0;
594    Align = 32;
595    break;
596
597  case Type::IncompleteArray:
598  case Type::VariableArray:
599    Width = 0;
600    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
601    break;
602
603  case Type::ConstantArray: {
604    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
605
606    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
607    Width = EltInfo.first*CAT->getSize().getZExtValue();
608    Align = EltInfo.second;
609    break;
610  }
611  case Type::ExtVector:
612  case Type::Vector: {
613    const VectorType *VT = cast<VectorType>(T);
614    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
615    Width = EltInfo.first*VT->getNumElements();
616    Align = Width;
617    // If the alignment is not a power of 2, round up to the next power of 2.
618    // This happens for non-power-of-2 length vectors.
619    if (VT->getNumElements() & (VT->getNumElements()-1)) {
620      Align = llvm::NextPowerOf2(Align);
621      Width = llvm::RoundUpToAlignment(Width, Align);
622    }
623    break;
624  }
625
626  case Type::Builtin:
627    switch (cast<BuiltinType>(T)->getKind()) {
628    default: assert(0 && "Unknown builtin type!");
629    case BuiltinType::Void:
630      // GCC extension: alignof(void) = 8 bits.
631      Width = 0;
632      Align = 8;
633      break;
634
635    case BuiltinType::Bool:
636      Width = Target.getBoolWidth();
637      Align = Target.getBoolAlign();
638      break;
639    case BuiltinType::Char_S:
640    case BuiltinType::Char_U:
641    case BuiltinType::UChar:
642    case BuiltinType::SChar:
643      Width = Target.getCharWidth();
644      Align = Target.getCharAlign();
645      break;
646    case BuiltinType::WChar:
647      Width = Target.getWCharWidth();
648      Align = Target.getWCharAlign();
649      break;
650    case BuiltinType::Char16:
651      Width = Target.getChar16Width();
652      Align = Target.getChar16Align();
653      break;
654    case BuiltinType::Char32:
655      Width = Target.getChar32Width();
656      Align = Target.getChar32Align();
657      break;
658    case BuiltinType::UShort:
659    case BuiltinType::Short:
660      Width = Target.getShortWidth();
661      Align = Target.getShortAlign();
662      break;
663    case BuiltinType::UInt:
664    case BuiltinType::Int:
665      Width = Target.getIntWidth();
666      Align = Target.getIntAlign();
667      break;
668    case BuiltinType::ULong:
669    case BuiltinType::Long:
670      Width = Target.getLongWidth();
671      Align = Target.getLongAlign();
672      break;
673    case BuiltinType::ULongLong:
674    case BuiltinType::LongLong:
675      Width = Target.getLongLongWidth();
676      Align = Target.getLongLongAlign();
677      break;
678    case BuiltinType::Int128:
679    case BuiltinType::UInt128:
680      Width = 128;
681      Align = 128; // int128_t is 128-bit aligned on all targets.
682      break;
683    case BuiltinType::Float:
684      Width = Target.getFloatWidth();
685      Align = Target.getFloatAlign();
686      break;
687    case BuiltinType::Double:
688      Width = Target.getDoubleWidth();
689      Align = Target.getDoubleAlign();
690      break;
691    case BuiltinType::LongDouble:
692      Width = Target.getLongDoubleWidth();
693      Align = Target.getLongDoubleAlign();
694      break;
695    case BuiltinType::NullPtr:
696      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
697      Align = Target.getPointerAlign(0); //   == sizeof(void*)
698      break;
699    }
700    break;
701  case Type::ObjCObjectPointer:
702    Width = Target.getPointerWidth(0);
703    Align = Target.getPointerAlign(0);
704    break;
705  case Type::BlockPointer: {
706    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
707    Width = Target.getPointerWidth(AS);
708    Align = Target.getPointerAlign(AS);
709    break;
710  }
711  case Type::LValueReference:
712  case Type::RValueReference: {
713    // alignof and sizeof should never enter this code path here, so we go
714    // the pointer route.
715    unsigned AS = cast<ReferenceType>(T)->getPointeeType().getAddressSpace();
716    Width = Target.getPointerWidth(AS);
717    Align = Target.getPointerAlign(AS);
718    break;
719  }
720  case Type::Pointer: {
721    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
722    Width = Target.getPointerWidth(AS);
723    Align = Target.getPointerAlign(AS);
724    break;
725  }
726  case Type::MemberPointer: {
727    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
728    std::pair<uint64_t, unsigned> PtrDiffInfo =
729      getTypeInfo(getPointerDiffType());
730    Width = PtrDiffInfo.first;
731    if (Pointee->isFunctionType())
732      Width *= 2;
733    Align = PtrDiffInfo.second;
734    break;
735  }
736  case Type::Complex: {
737    // Complex types have the same alignment as their elements, but twice the
738    // size.
739    std::pair<uint64_t, unsigned> EltInfo =
740      getTypeInfo(cast<ComplexType>(T)->getElementType());
741    Width = EltInfo.first*2;
742    Align = EltInfo.second;
743    break;
744  }
745  case Type::ObjCInterface: {
746    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
747    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
748    Width = Layout.getSize();
749    Align = Layout.getAlignment();
750    break;
751  }
752  case Type::Record:
753  case Type::Enum: {
754    const TagType *TT = cast<TagType>(T);
755
756    if (TT->getDecl()->isInvalidDecl()) {
757      Width = 1;
758      Align = 1;
759      break;
760    }
761
762    if (const EnumType *ET = dyn_cast<EnumType>(TT))
763      return getTypeInfo(ET->getDecl()->getIntegerType());
764
765    const RecordType *RT = cast<RecordType>(TT);
766    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
767    Width = Layout.getSize();
768    Align = Layout.getAlignment();
769    break;
770  }
771
772  case Type::SubstTemplateTypeParm:
773    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
774                       getReplacementType().getTypePtr());
775
776  case Type::Elaborated:
777    return getTypeInfo(cast<ElaboratedType>(T)->getUnderlyingType()
778                         .getTypePtr());
779
780  case Type::Typedef: {
781    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
782    if (const AlignedAttr *Aligned = Typedef->getAttr<AlignedAttr>()) {
783      Align = std::max(Aligned->getMaxAlignment(),
784                       getTypeAlign(Typedef->getUnderlyingType().getTypePtr()));
785      Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
786    } else
787      return getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
788    break;
789  }
790
791  case Type::TypeOfExpr:
792    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
793                         .getTypePtr());
794
795  case Type::TypeOf:
796    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
797
798  case Type::Decltype:
799    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
800                        .getTypePtr());
801
802  case Type::QualifiedName:
803    return getTypeInfo(cast<QualifiedNameType>(T)->getNamedType().getTypePtr());
804
805  case Type::TemplateSpecialization:
806    assert(getCanonicalType(T) != T &&
807           "Cannot request the size of a dependent type");
808    // FIXME: this is likely to be wrong once we support template
809    // aliases, since a template alias could refer to a typedef that
810    // has an __aligned__ attribute on it.
811    return getTypeInfo(getCanonicalType(T));
812  }
813
814  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
815  return std::make_pair(Width, Align);
816}
817
818/// getTypeSizeInChars - Return the size of the specified type, in characters.
819/// This method does not work on incomplete types.
820CharUnits ASTContext::getTypeSizeInChars(QualType T) {
821  return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
822}
823CharUnits ASTContext::getTypeSizeInChars(const Type *T) {
824  return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
825}
826
827/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
828/// characters. This method does not work on incomplete types.
829CharUnits ASTContext::getTypeAlignInChars(QualType T) {
830  return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
831}
832CharUnits ASTContext::getTypeAlignInChars(const Type *T) {
833  return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
834}
835
836/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
837/// type for the current target in bits.  This can be different than the ABI
838/// alignment in cases where it is beneficial for performance to overalign
839/// a data type.
840unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
841  unsigned ABIAlign = getTypeAlign(T);
842
843  // Double and long long should be naturally aligned if possible.
844  if (const ComplexType* CT = T->getAs<ComplexType>())
845    T = CT->getElementType().getTypePtr();
846  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
847      T->isSpecificBuiltinType(BuiltinType::LongLong))
848    return std::max(ABIAlign, (unsigned)getTypeSize(T));
849
850  return ABIAlign;
851}
852
853static void CollectLocalObjCIvars(ASTContext *Ctx,
854                                  const ObjCInterfaceDecl *OI,
855                                  llvm::SmallVectorImpl<FieldDecl*> &Fields) {
856  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
857       E = OI->ivar_end(); I != E; ++I) {
858    ObjCIvarDecl *IVDecl = *I;
859    if (!IVDecl->isInvalidDecl())
860      Fields.push_back(cast<FieldDecl>(IVDecl));
861  }
862}
863
864void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
865                             llvm::SmallVectorImpl<FieldDecl*> &Fields) {
866  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
867    CollectObjCIvars(SuperClass, Fields);
868  CollectLocalObjCIvars(this, OI, Fields);
869}
870
871/// ShallowCollectObjCIvars -
872/// Collect all ivars, including those synthesized, in the current class.
873///
874void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
875                                 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
876  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
877         E = OI->ivar_end(); I != E; ++I) {
878     Ivars.push_back(*I);
879  }
880
881  CollectNonClassIvars(OI, Ivars);
882}
883
884void ASTContext::CollectProtocolSynthesizedIvars(const ObjCProtocolDecl *PD,
885                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
886  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
887       E = PD->prop_end(); I != E; ++I)
888    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
889      Ivars.push_back(Ivar);
890
891  // Also look into nested protocols.
892  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
893       E = PD->protocol_end(); P != E; ++P)
894    CollectProtocolSynthesizedIvars(*P, Ivars);
895}
896
897/// CollectNonClassIvars -
898/// This routine collects all other ivars which are not declared in the class.
899/// This includes synthesized ivars and those in class's implementation.
900///
901void ASTContext::CollectNonClassIvars(const ObjCInterfaceDecl *OI,
902                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
903  // Find ivars declared in class extension.
904  if (const ObjCCategoryDecl *CDecl = OI->getClassExtension()) {
905    for (ObjCCategoryDecl::ivar_iterator I = CDecl->ivar_begin(),
906         E = CDecl->ivar_end(); I != E; ++I) {
907      Ivars.push_back(*I);
908    }
909  }
910
911  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
912       E = OI->prop_end(); I != E; ++I) {
913    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
914      Ivars.push_back(Ivar);
915  }
916  // Also look into interface's protocol list for properties declared
917  // in the protocol and whose ivars are synthesized.
918  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
919       PE = OI->protocol_end(); P != PE; ++P) {
920    ObjCProtocolDecl *PD = (*P);
921    CollectProtocolSynthesizedIvars(PD, Ivars);
922  }
923
924  // Also add any ivar defined in this class's implementation
925  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation()) {
926    for (ObjCImplementationDecl::ivar_iterator I = ImplDecl->ivar_begin(),
927         E = ImplDecl->ivar_end(); I != E; ++I)
928      Ivars.push_back(*I);
929  }
930}
931
932/// CollectInheritedProtocols - Collect all protocols in current class and
933/// those inherited by it.
934void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
935                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
936  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
937    for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
938         PE = OI->protocol_end(); P != PE; ++P) {
939      ObjCProtocolDecl *Proto = (*P);
940      Protocols.insert(Proto);
941      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
942           PE = Proto->protocol_end(); P != PE; ++P)
943        CollectInheritedProtocols(*P, Protocols);
944      }
945
946    // Categories of this Interface.
947    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
948         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
949      CollectInheritedProtocols(CDeclChain, Protocols);
950    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
951      while (SD) {
952        CollectInheritedProtocols(SD, Protocols);
953        SD = SD->getSuperClass();
954      }
955    return;
956  }
957  if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
958    for (ObjCInterfaceDecl::protocol_iterator P = OC->protocol_begin(),
959         PE = OC->protocol_end(); P != PE; ++P) {
960      ObjCProtocolDecl *Proto = (*P);
961      Protocols.insert(Proto);
962      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
963           PE = Proto->protocol_end(); P != PE; ++P)
964        CollectInheritedProtocols(*P, Protocols);
965    }
966    return;
967  }
968  if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
969    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
970         PE = OP->protocol_end(); P != PE; ++P) {
971      ObjCProtocolDecl *Proto = (*P);
972      Protocols.insert(Proto);
973      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
974           PE = Proto->protocol_end(); P != PE; ++P)
975        CollectInheritedProtocols(*P, Protocols);
976    }
977    return;
978  }
979}
980
981unsigned ASTContext::CountProtocolSynthesizedIvars(const ObjCProtocolDecl *PD) {
982  unsigned count = 0;
983  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
984       E = PD->prop_end(); I != E; ++I)
985    if ((*I)->getPropertyIvarDecl())
986      ++count;
987
988  // Also look into nested protocols.
989  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
990       E = PD->protocol_end(); P != E; ++P)
991    count += CountProtocolSynthesizedIvars(*P);
992  return count;
993}
994
995unsigned ASTContext::CountSynthesizedIvars(const ObjCInterfaceDecl *OI) {
996  unsigned count = 0;
997  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
998       E = OI->prop_end(); I != E; ++I) {
999    if ((*I)->getPropertyIvarDecl())
1000      ++count;
1001  }
1002  // Also look into interface's protocol list for properties declared
1003  // in the protocol and whose ivars are synthesized.
1004  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
1005       PE = OI->protocol_end(); P != PE; ++P) {
1006    ObjCProtocolDecl *PD = (*P);
1007    count += CountProtocolSynthesizedIvars(PD);
1008  }
1009  return count;
1010}
1011
1012/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1013ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1014  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1015    I = ObjCImpls.find(D);
1016  if (I != ObjCImpls.end())
1017    return cast<ObjCImplementationDecl>(I->second);
1018  return 0;
1019}
1020/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1021ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1022  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1023    I = ObjCImpls.find(D);
1024  if (I != ObjCImpls.end())
1025    return cast<ObjCCategoryImplDecl>(I->second);
1026  return 0;
1027}
1028
1029/// \brief Set the implementation of ObjCInterfaceDecl.
1030void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1031                           ObjCImplementationDecl *ImplD) {
1032  assert(IFaceD && ImplD && "Passed null params");
1033  ObjCImpls[IFaceD] = ImplD;
1034}
1035/// \brief Set the implementation of ObjCCategoryDecl.
1036void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1037                           ObjCCategoryImplDecl *ImplD) {
1038  assert(CatD && ImplD && "Passed null params");
1039  ObjCImpls[CatD] = ImplD;
1040}
1041
1042/// \brief Allocate an uninitialized TypeSourceInfo.
1043///
1044/// The caller should initialize the memory held by TypeSourceInfo using
1045/// the TypeLoc wrappers.
1046///
1047/// \param T the type that will be the basis for type source info. This type
1048/// should refer to how the declarator was written in source code, not to
1049/// what type semantic analysis resolved the declarator to.
1050TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1051                                                 unsigned DataSize) {
1052  if (!DataSize)
1053    DataSize = TypeLoc::getFullDataSizeForType(T);
1054  else
1055    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1056           "incorrect data size provided to CreateTypeSourceInfo!");
1057
1058  TypeSourceInfo *TInfo =
1059    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1060  new (TInfo) TypeSourceInfo(T);
1061  return TInfo;
1062}
1063
1064TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1065                                                     SourceLocation L) {
1066  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1067  DI->getTypeLoc().initialize(L);
1068  return DI;
1069}
1070
1071/// getInterfaceLayoutImpl - Get or compute information about the
1072/// layout of the given interface.
1073///
1074/// \param Impl - If given, also include the layout of the interface's
1075/// implementation. This may differ by including synthesized ivars.
1076const ASTRecordLayout &
1077ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
1078                          const ObjCImplementationDecl *Impl) {
1079  assert(!D->isForwardDecl() && "Invalid interface decl!");
1080
1081  // Look up this layout, if already laid out, return what we have.
1082  ObjCContainerDecl *Key =
1083    Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D;
1084  if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
1085    return *Entry;
1086
1087  // Add in synthesized ivar count if laying out an implementation.
1088  if (Impl) {
1089    unsigned SynthCount = CountSynthesizedIvars(D);
1090    // If there aren't any sythesized ivars then reuse the interface
1091    // entry. Note we can't cache this because we simply free all
1092    // entries later; however we shouldn't look up implementations
1093    // frequently.
1094    if (SynthCount == 0)
1095      return getObjCLayout(D, 0);
1096  }
1097
1098  const ASTRecordLayout *NewEntry =
1099    ASTRecordLayoutBuilder::ComputeLayout(*this, D, Impl);
1100  ObjCLayouts[Key] = NewEntry;
1101
1102  return *NewEntry;
1103}
1104
1105const ASTRecordLayout &
1106ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
1107  return getObjCLayout(D, 0);
1108}
1109
1110const ASTRecordLayout &
1111ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
1112  return getObjCLayout(D->getClassInterface(), D);
1113}
1114
1115/// getASTRecordLayout - Get or compute information about the layout of the
1116/// specified record (struct/union/class), which indicates its size and field
1117/// position information.
1118const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
1119  D = D->getDefinition();
1120  assert(D && "Cannot get layout of forward declarations!");
1121
1122  // Look up this layout, if already laid out, return what we have.
1123  // Note that we can't save a reference to the entry because this function
1124  // is recursive.
1125  const ASTRecordLayout *Entry = ASTRecordLayouts[D];
1126  if (Entry) return *Entry;
1127
1128  const ASTRecordLayout *NewEntry =
1129    ASTRecordLayoutBuilder::ComputeLayout(*this, D);
1130  ASTRecordLayouts[D] = NewEntry;
1131
1132  return *NewEntry;
1133}
1134
1135const CXXMethodDecl *ASTContext::getKeyFunction(const CXXRecordDecl *RD) {
1136  RD = cast<CXXRecordDecl>(RD->getDefinition());
1137  assert(RD && "Cannot get key function for forward declarations!");
1138
1139  const CXXMethodDecl *&Entry = KeyFunctions[RD];
1140  if (!Entry)
1141    Entry = ASTRecordLayoutBuilder::ComputeKeyFunction(RD);
1142  else
1143    assert(Entry == ASTRecordLayoutBuilder::ComputeKeyFunction(RD) &&
1144           "Key function changed!");
1145
1146  return Entry;
1147}
1148
1149//===----------------------------------------------------------------------===//
1150//                   Type creation/memoization methods
1151//===----------------------------------------------------------------------===//
1152
1153QualType ASTContext::getExtQualType(const Type *TypeNode, Qualifiers Quals) {
1154  unsigned Fast = Quals.getFastQualifiers();
1155  Quals.removeFastQualifiers();
1156
1157  // Check if we've already instantiated this type.
1158  llvm::FoldingSetNodeID ID;
1159  ExtQuals::Profile(ID, TypeNode, Quals);
1160  void *InsertPos = 0;
1161  if (ExtQuals *EQ = ExtQualNodes.FindNodeOrInsertPos(ID, InsertPos)) {
1162    assert(EQ->getQualifiers() == Quals);
1163    QualType T = QualType(EQ, Fast);
1164    return T;
1165  }
1166
1167  ExtQuals *New = new (*this, TypeAlignment) ExtQuals(*this, TypeNode, Quals);
1168  ExtQualNodes.InsertNode(New, InsertPos);
1169  QualType T = QualType(New, Fast);
1170  return T;
1171}
1172
1173QualType ASTContext::getVolatileType(QualType T) {
1174  QualType CanT = getCanonicalType(T);
1175  if (CanT.isVolatileQualified()) return T;
1176
1177  QualifierCollector Quals;
1178  const Type *TypeNode = Quals.strip(T);
1179  Quals.addVolatile();
1180
1181  return getExtQualType(TypeNode, Quals);
1182}
1183
1184QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
1185  QualType CanT = getCanonicalType(T);
1186  if (CanT.getAddressSpace() == AddressSpace)
1187    return T;
1188
1189  // If we are composing extended qualifiers together, merge together
1190  // into one ExtQuals node.
1191  QualifierCollector Quals;
1192  const Type *TypeNode = Quals.strip(T);
1193
1194  // If this type already has an address space specified, it cannot get
1195  // another one.
1196  assert(!Quals.hasAddressSpace() &&
1197         "Type cannot be in multiple addr spaces!");
1198  Quals.addAddressSpace(AddressSpace);
1199
1200  return getExtQualType(TypeNode, Quals);
1201}
1202
1203QualType ASTContext::getObjCGCQualType(QualType T,
1204                                       Qualifiers::GC GCAttr) {
1205  QualType CanT = getCanonicalType(T);
1206  if (CanT.getObjCGCAttr() == GCAttr)
1207    return T;
1208
1209  if (T->isPointerType()) {
1210    QualType Pointee = T->getAs<PointerType>()->getPointeeType();
1211    if (Pointee->isAnyPointerType()) {
1212      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1213      return getPointerType(ResultType);
1214    }
1215  }
1216
1217  // If we are composing extended qualifiers together, merge together
1218  // into one ExtQuals node.
1219  QualifierCollector Quals;
1220  const Type *TypeNode = Quals.strip(T);
1221
1222  // If this type already has an ObjCGC specified, it cannot get
1223  // another one.
1224  assert(!Quals.hasObjCGCAttr() &&
1225         "Type cannot have multiple ObjCGCs!");
1226  Quals.addObjCGCAttr(GCAttr);
1227
1228  return getExtQualType(TypeNode, Quals);
1229}
1230
1231static QualType getNoReturnCallConvType(ASTContext& Context, QualType T,
1232                                        bool AddNoReturn,
1233                                        CallingConv CallConv) {
1234  QualType ResultType;
1235  if (const PointerType *Pointer = T->getAs<PointerType>()) {
1236    QualType Pointee = Pointer->getPointeeType();
1237    ResultType = getNoReturnCallConvType(Context, Pointee, AddNoReturn,
1238                                         CallConv);
1239    if (ResultType == Pointee)
1240      return T;
1241
1242    ResultType = Context.getPointerType(ResultType);
1243  } else if (const BlockPointerType *BlockPointer
1244                                              = T->getAs<BlockPointerType>()) {
1245    QualType Pointee = BlockPointer->getPointeeType();
1246    ResultType = getNoReturnCallConvType(Context, Pointee, AddNoReturn,
1247                                         CallConv);
1248    if (ResultType == Pointee)
1249      return T;
1250
1251    ResultType = Context.getBlockPointerType(ResultType);
1252   } else if (const FunctionType *F = T->getAs<FunctionType>()) {
1253    if (F->getNoReturnAttr() == AddNoReturn && F->getCallConv() == CallConv)
1254      return T;
1255
1256    if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(F)) {
1257      ResultType = Context.getFunctionNoProtoType(FNPT->getResultType(),
1258                                                  AddNoReturn, CallConv);
1259    } else {
1260      const FunctionProtoType *FPT = cast<FunctionProtoType>(F);
1261      ResultType
1262        = Context.getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1263                                  FPT->getNumArgs(), FPT->isVariadic(),
1264                                  FPT->getTypeQuals(),
1265                                  FPT->hasExceptionSpec(),
1266                                  FPT->hasAnyExceptionSpec(),
1267                                  FPT->getNumExceptions(),
1268                                  FPT->exception_begin(),
1269                                  AddNoReturn, CallConv);
1270    }
1271  } else
1272    return T;
1273
1274  return Context.getQualifiedType(ResultType, T.getLocalQualifiers());
1275}
1276
1277QualType ASTContext::getNoReturnType(QualType T, bool AddNoReturn) {
1278  return getNoReturnCallConvType(*this, T, AddNoReturn, T.getCallConv());
1279}
1280
1281QualType ASTContext::getCallConvType(QualType T, CallingConv CallConv) {
1282  return getNoReturnCallConvType(*this, T, T.getNoReturnAttr(), CallConv);
1283}
1284
1285/// getComplexType - Return the uniqued reference to the type for a complex
1286/// number with the specified element type.
1287QualType ASTContext::getComplexType(QualType T) {
1288  // Unique pointers, to guarantee there is only one pointer of a particular
1289  // structure.
1290  llvm::FoldingSetNodeID ID;
1291  ComplexType::Profile(ID, T);
1292
1293  void *InsertPos = 0;
1294  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1295    return QualType(CT, 0);
1296
1297  // If the pointee type isn't canonical, this won't be a canonical type either,
1298  // so fill in the canonical type field.
1299  QualType Canonical;
1300  if (!T.isCanonical()) {
1301    Canonical = getComplexType(getCanonicalType(T));
1302
1303    // Get the new insert position for the node we care about.
1304    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1305    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1306  }
1307  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1308  Types.push_back(New);
1309  ComplexTypes.InsertNode(New, InsertPos);
1310  return QualType(New, 0);
1311}
1312
1313/// getPointerType - Return the uniqued reference to the type for a pointer to
1314/// the specified type.
1315QualType ASTContext::getPointerType(QualType T) {
1316  // Unique pointers, to guarantee there is only one pointer of a particular
1317  // structure.
1318  llvm::FoldingSetNodeID ID;
1319  PointerType::Profile(ID, T);
1320
1321  void *InsertPos = 0;
1322  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1323    return QualType(PT, 0);
1324
1325  // If the pointee type isn't canonical, this won't be a canonical type either,
1326  // so fill in the canonical type field.
1327  QualType Canonical;
1328  if (!T.isCanonical()) {
1329    Canonical = getPointerType(getCanonicalType(T));
1330
1331    // Get the new insert position for the node we care about.
1332    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1333    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1334  }
1335  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1336  Types.push_back(New);
1337  PointerTypes.InsertNode(New, InsertPos);
1338  return QualType(New, 0);
1339}
1340
1341/// getBlockPointerType - Return the uniqued reference to the type for
1342/// a pointer to the specified block.
1343QualType ASTContext::getBlockPointerType(QualType T) {
1344  assert(T->isFunctionType() && "block of function types only");
1345  // Unique pointers, to guarantee there is only one block of a particular
1346  // structure.
1347  llvm::FoldingSetNodeID ID;
1348  BlockPointerType::Profile(ID, T);
1349
1350  void *InsertPos = 0;
1351  if (BlockPointerType *PT =
1352        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1353    return QualType(PT, 0);
1354
1355  // If the block pointee type isn't canonical, this won't be a canonical
1356  // type either so fill in the canonical type field.
1357  QualType Canonical;
1358  if (!T.isCanonical()) {
1359    Canonical = getBlockPointerType(getCanonicalType(T));
1360
1361    // Get the new insert position for the node we care about.
1362    BlockPointerType *NewIP =
1363      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1364    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1365  }
1366  BlockPointerType *New
1367    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1368  Types.push_back(New);
1369  BlockPointerTypes.InsertNode(New, InsertPos);
1370  return QualType(New, 0);
1371}
1372
1373/// getLValueReferenceType - Return the uniqued reference to the type for an
1374/// lvalue reference to the specified type.
1375QualType ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) {
1376  // Unique pointers, to guarantee there is only one pointer of a particular
1377  // structure.
1378  llvm::FoldingSetNodeID ID;
1379  ReferenceType::Profile(ID, T, SpelledAsLValue);
1380
1381  void *InsertPos = 0;
1382  if (LValueReferenceType *RT =
1383        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1384    return QualType(RT, 0);
1385
1386  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1387
1388  // If the referencee type isn't canonical, this won't be a canonical type
1389  // either, so fill in the canonical type field.
1390  QualType Canonical;
1391  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1392    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1393    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1394
1395    // Get the new insert position for the node we care about.
1396    LValueReferenceType *NewIP =
1397      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1398    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1399  }
1400
1401  LValueReferenceType *New
1402    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1403                                                     SpelledAsLValue);
1404  Types.push_back(New);
1405  LValueReferenceTypes.InsertNode(New, InsertPos);
1406
1407  return QualType(New, 0);
1408}
1409
1410/// getRValueReferenceType - Return the uniqued reference to the type for an
1411/// rvalue reference to the specified type.
1412QualType ASTContext::getRValueReferenceType(QualType T) {
1413  // Unique pointers, to guarantee there is only one pointer of a particular
1414  // structure.
1415  llvm::FoldingSetNodeID ID;
1416  ReferenceType::Profile(ID, T, false);
1417
1418  void *InsertPos = 0;
1419  if (RValueReferenceType *RT =
1420        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1421    return QualType(RT, 0);
1422
1423  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1424
1425  // If the referencee type isn't canonical, this won't be a canonical type
1426  // either, so fill in the canonical type field.
1427  QualType Canonical;
1428  if (InnerRef || !T.isCanonical()) {
1429    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1430    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1431
1432    // Get the new insert position for the node we care about.
1433    RValueReferenceType *NewIP =
1434      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1435    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1436  }
1437
1438  RValueReferenceType *New
1439    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1440  Types.push_back(New);
1441  RValueReferenceTypes.InsertNode(New, InsertPos);
1442  return QualType(New, 0);
1443}
1444
1445/// getMemberPointerType - Return the uniqued reference to the type for a
1446/// member pointer to the specified type, in the specified class.
1447QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) {
1448  // Unique pointers, to guarantee there is only one pointer of a particular
1449  // structure.
1450  llvm::FoldingSetNodeID ID;
1451  MemberPointerType::Profile(ID, T, Cls);
1452
1453  void *InsertPos = 0;
1454  if (MemberPointerType *PT =
1455      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1456    return QualType(PT, 0);
1457
1458  // If the pointee or class type isn't canonical, this won't be a canonical
1459  // type either, so fill in the canonical type field.
1460  QualType Canonical;
1461  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1462    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1463
1464    // Get the new insert position for the node we care about.
1465    MemberPointerType *NewIP =
1466      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1467    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1468  }
1469  MemberPointerType *New
1470    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1471  Types.push_back(New);
1472  MemberPointerTypes.InsertNode(New, InsertPos);
1473  return QualType(New, 0);
1474}
1475
1476/// getConstantArrayType - Return the unique reference to the type for an
1477/// array of the specified element type.
1478QualType ASTContext::getConstantArrayType(QualType EltTy,
1479                                          const llvm::APInt &ArySizeIn,
1480                                          ArrayType::ArraySizeModifier ASM,
1481                                          unsigned EltTypeQuals) {
1482  assert((EltTy->isDependentType() ||
1483          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1484         "Constant array of VLAs is illegal!");
1485
1486  // Convert the array size into a canonical width matching the pointer size for
1487  // the target.
1488  llvm::APInt ArySize(ArySizeIn);
1489  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1490
1491  llvm::FoldingSetNodeID ID;
1492  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1493
1494  void *InsertPos = 0;
1495  if (ConstantArrayType *ATP =
1496      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1497    return QualType(ATP, 0);
1498
1499  // If the element type isn't canonical, this won't be a canonical type either,
1500  // so fill in the canonical type field.
1501  QualType Canonical;
1502  if (!EltTy.isCanonical()) {
1503    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1504                                     ASM, EltTypeQuals);
1505    // Get the new insert position for the node we care about.
1506    ConstantArrayType *NewIP =
1507      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1508    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1509  }
1510
1511  ConstantArrayType *New = new(*this,TypeAlignment)
1512    ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1513  ConstantArrayTypes.InsertNode(New, InsertPos);
1514  Types.push_back(New);
1515  return QualType(New, 0);
1516}
1517
1518/// getVariableArrayType - Returns a non-unique reference to the type for a
1519/// variable array of the specified element type.
1520QualType ASTContext::getVariableArrayType(QualType EltTy,
1521                                          Expr *NumElts,
1522                                          ArrayType::ArraySizeModifier ASM,
1523                                          unsigned EltTypeQuals,
1524                                          SourceRange Brackets) {
1525  // Since we don't unique expressions, it isn't possible to unique VLA's
1526  // that have an expression provided for their size.
1527
1528  VariableArrayType *New = new(*this, TypeAlignment)
1529    VariableArrayType(EltTy, QualType(), NumElts, ASM, EltTypeQuals, Brackets);
1530
1531  VariableArrayTypes.push_back(New);
1532  Types.push_back(New);
1533  return QualType(New, 0);
1534}
1535
1536/// getDependentSizedArrayType - Returns a non-unique reference to
1537/// the type for a dependently-sized array of the specified element
1538/// type.
1539QualType ASTContext::getDependentSizedArrayType(QualType EltTy,
1540                                                Expr *NumElts,
1541                                                ArrayType::ArraySizeModifier ASM,
1542                                                unsigned EltTypeQuals,
1543                                                SourceRange Brackets) {
1544  assert((!NumElts || NumElts->isTypeDependent() ||
1545          NumElts->isValueDependent()) &&
1546         "Size must be type- or value-dependent!");
1547
1548  void *InsertPos = 0;
1549  DependentSizedArrayType *Canon = 0;
1550  llvm::FoldingSetNodeID ID;
1551
1552  if (NumElts) {
1553    // Dependently-sized array types that do not have a specified
1554    // number of elements will have their sizes deduced from an
1555    // initializer.
1556    DependentSizedArrayType::Profile(ID, *this, getCanonicalType(EltTy), ASM,
1557                                     EltTypeQuals, NumElts);
1558
1559    Canon = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1560  }
1561
1562  DependentSizedArrayType *New;
1563  if (Canon) {
1564    // We already have a canonical version of this array type; use it as
1565    // the canonical type for a newly-built type.
1566    New = new (*this, TypeAlignment)
1567      DependentSizedArrayType(*this, EltTy, QualType(Canon, 0),
1568                              NumElts, ASM, EltTypeQuals, Brackets);
1569  } else {
1570    QualType CanonEltTy = getCanonicalType(EltTy);
1571    if (CanonEltTy == EltTy) {
1572      New = new (*this, TypeAlignment)
1573        DependentSizedArrayType(*this, EltTy, QualType(),
1574                                NumElts, ASM, EltTypeQuals, Brackets);
1575
1576      if (NumElts) {
1577        DependentSizedArrayType *CanonCheck
1578          = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1579        assert(!CanonCheck && "Dependent-sized canonical array type broken");
1580        (void)CanonCheck;
1581        DependentSizedArrayTypes.InsertNode(New, InsertPos);
1582      }
1583    } else {
1584      QualType Canon = getDependentSizedArrayType(CanonEltTy, NumElts,
1585                                                  ASM, EltTypeQuals,
1586                                                  SourceRange());
1587      New = new (*this, TypeAlignment)
1588        DependentSizedArrayType(*this, EltTy, Canon,
1589                                NumElts, ASM, EltTypeQuals, Brackets);
1590    }
1591  }
1592
1593  Types.push_back(New);
1594  return QualType(New, 0);
1595}
1596
1597QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1598                                            ArrayType::ArraySizeModifier ASM,
1599                                            unsigned EltTypeQuals) {
1600  llvm::FoldingSetNodeID ID;
1601  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1602
1603  void *InsertPos = 0;
1604  if (IncompleteArrayType *ATP =
1605       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1606    return QualType(ATP, 0);
1607
1608  // If the element type isn't canonical, this won't be a canonical type
1609  // either, so fill in the canonical type field.
1610  QualType Canonical;
1611
1612  if (!EltTy.isCanonical()) {
1613    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1614                                       ASM, EltTypeQuals);
1615
1616    // Get the new insert position for the node we care about.
1617    IncompleteArrayType *NewIP =
1618      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1619    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1620  }
1621
1622  IncompleteArrayType *New = new (*this, TypeAlignment)
1623    IncompleteArrayType(EltTy, Canonical, ASM, EltTypeQuals);
1624
1625  IncompleteArrayTypes.InsertNode(New, InsertPos);
1626  Types.push_back(New);
1627  return QualType(New, 0);
1628}
1629
1630/// getVectorType - Return the unique reference to a vector type of
1631/// the specified element type and size. VectorType must be a built-in type.
1632QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
1633                                   bool IsAltiVec, bool IsPixel) {
1634  BuiltinType *baseType;
1635
1636  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1637  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1638
1639  // Check if we've already instantiated a vector of this type.
1640  llvm::FoldingSetNodeID ID;
1641  VectorType::Profile(ID, vecType, NumElts, Type::Vector,
1642    IsAltiVec, IsPixel);
1643  void *InsertPos = 0;
1644  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1645    return QualType(VTP, 0);
1646
1647  // If the element type isn't canonical, this won't be a canonical type either,
1648  // so fill in the canonical type field.
1649  QualType Canonical;
1650  if (!vecType.isCanonical() || IsAltiVec || IsPixel) {
1651    Canonical = getVectorType(getCanonicalType(vecType),
1652      NumElts, false, false);
1653
1654    // Get the new insert position for the node we care about.
1655    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1656    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1657  }
1658  VectorType *New = new (*this, TypeAlignment)
1659    VectorType(vecType, NumElts, Canonical, IsAltiVec, IsPixel);
1660  VectorTypes.InsertNode(New, InsertPos);
1661  Types.push_back(New);
1662  return QualType(New, 0);
1663}
1664
1665/// getExtVectorType - Return the unique reference to an extended vector type of
1666/// the specified element type and size. VectorType must be a built-in type.
1667QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1668  BuiltinType *baseType;
1669
1670  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1671  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1672
1673  // Check if we've already instantiated a vector of this type.
1674  llvm::FoldingSetNodeID ID;
1675  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector, false, false);
1676  void *InsertPos = 0;
1677  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1678    return QualType(VTP, 0);
1679
1680  // If the element type isn't canonical, this won't be a canonical type either,
1681  // so fill in the canonical type field.
1682  QualType Canonical;
1683  if (!vecType.isCanonical()) {
1684    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1685
1686    // Get the new insert position for the node we care about.
1687    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1688    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1689  }
1690  ExtVectorType *New = new (*this, TypeAlignment)
1691    ExtVectorType(vecType, NumElts, Canonical);
1692  VectorTypes.InsertNode(New, InsertPos);
1693  Types.push_back(New);
1694  return QualType(New, 0);
1695}
1696
1697QualType ASTContext::getDependentSizedExtVectorType(QualType vecType,
1698                                                    Expr *SizeExpr,
1699                                                    SourceLocation AttrLoc) {
1700  llvm::FoldingSetNodeID ID;
1701  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1702                                       SizeExpr);
1703
1704  void *InsertPos = 0;
1705  DependentSizedExtVectorType *Canon
1706    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1707  DependentSizedExtVectorType *New;
1708  if (Canon) {
1709    // We already have a canonical version of this array type; use it as
1710    // the canonical type for a newly-built type.
1711    New = new (*this, TypeAlignment)
1712      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
1713                                  SizeExpr, AttrLoc);
1714  } else {
1715    QualType CanonVecTy = getCanonicalType(vecType);
1716    if (CanonVecTy == vecType) {
1717      New = new (*this, TypeAlignment)
1718        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
1719                                    AttrLoc);
1720
1721      DependentSizedExtVectorType *CanonCheck
1722        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1723      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
1724      (void)CanonCheck;
1725      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1726    } else {
1727      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1728                                                      SourceLocation());
1729      New = new (*this, TypeAlignment)
1730        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
1731    }
1732  }
1733
1734  Types.push_back(New);
1735  return QualType(New, 0);
1736}
1737
1738/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1739///
1740QualType ASTContext::getFunctionNoProtoType(QualType ResultTy, bool NoReturn,
1741                                            CallingConv CallConv) {
1742  // Unique functions, to guarantee there is only one function of a particular
1743  // structure.
1744  llvm::FoldingSetNodeID ID;
1745  FunctionNoProtoType::Profile(ID, ResultTy, NoReturn, CallConv);
1746
1747  void *InsertPos = 0;
1748  if (FunctionNoProtoType *FT =
1749        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1750    return QualType(FT, 0);
1751
1752  QualType Canonical;
1753  if (!ResultTy.isCanonical() ||
1754      getCanonicalCallConv(CallConv) != CallConv) {
1755    Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy), NoReturn,
1756                                       getCanonicalCallConv(CallConv));
1757
1758    // Get the new insert position for the node we care about.
1759    FunctionNoProtoType *NewIP =
1760      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1761    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1762  }
1763
1764  FunctionNoProtoType *New = new (*this, TypeAlignment)
1765    FunctionNoProtoType(ResultTy, Canonical, NoReturn, CallConv);
1766  Types.push_back(New);
1767  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1768  return QualType(New, 0);
1769}
1770
1771/// getFunctionType - Return a normal function type with a typed argument
1772/// list.  isVariadic indicates whether the argument list includes '...'.
1773QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1774                                     unsigned NumArgs, bool isVariadic,
1775                                     unsigned TypeQuals, bool hasExceptionSpec,
1776                                     bool hasAnyExceptionSpec, unsigned NumExs,
1777                                     const QualType *ExArray, bool NoReturn,
1778                                     CallingConv CallConv) {
1779  // Unique functions, to guarantee there is only one function of a particular
1780  // structure.
1781  llvm::FoldingSetNodeID ID;
1782  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1783                             TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1784                             NumExs, ExArray, NoReturn, CallConv);
1785
1786  void *InsertPos = 0;
1787  if (FunctionProtoType *FTP =
1788        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1789    return QualType(FTP, 0);
1790
1791  // Determine whether the type being created is already canonical or not.
1792  bool isCanonical = !hasExceptionSpec && ResultTy.isCanonical();
1793  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1794    if (!ArgArray[i].isCanonicalAsParam())
1795      isCanonical = false;
1796
1797  // If this type isn't canonical, get the canonical version of it.
1798  // The exception spec is not part of the canonical type.
1799  QualType Canonical;
1800  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
1801    llvm::SmallVector<QualType, 16> CanonicalArgs;
1802    CanonicalArgs.reserve(NumArgs);
1803    for (unsigned i = 0; i != NumArgs; ++i)
1804      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
1805
1806    Canonical = getFunctionType(getCanonicalType(ResultTy),
1807                                CanonicalArgs.data(), NumArgs,
1808                                isVariadic, TypeQuals, false,
1809                                false, 0, 0, NoReturn,
1810                                getCanonicalCallConv(CallConv));
1811
1812    // Get the new insert position for the node we care about.
1813    FunctionProtoType *NewIP =
1814      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1815    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1816  }
1817
1818  // FunctionProtoType objects are allocated with extra bytes after them
1819  // for two variable size arrays (for parameter and exception types) at the
1820  // end of them.
1821  FunctionProtoType *FTP =
1822    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1823                                 NumArgs*sizeof(QualType) +
1824                                 NumExs*sizeof(QualType), TypeAlignment);
1825  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1826                              TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1827                              ExArray, NumExs, Canonical, NoReturn, CallConv);
1828  Types.push_back(FTP);
1829  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1830  return QualType(FTP, 0);
1831}
1832
1833/// getTypeDeclType - Return the unique reference to the type for the
1834/// specified type declaration.
1835QualType ASTContext::getTypeDeclType(const TypeDecl *Decl,
1836                                     const TypeDecl* PrevDecl) {
1837  assert(Decl && "Passed null for Decl param");
1838  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1839
1840  if (const TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1841    return getTypedefType(Typedef);
1842  else if (isa<TemplateTypeParmDecl>(Decl)) {
1843    assert(false && "Template type parameter types are always available.");
1844  } else if (const ObjCInterfaceDecl *ObjCInterface
1845               = dyn_cast<ObjCInterfaceDecl>(Decl))
1846    return getObjCInterfaceType(ObjCInterface);
1847
1848  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1849    if (PrevDecl)
1850      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1851    else
1852      Decl->TypeForDecl = new (*this, TypeAlignment) RecordType(Record);
1853  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1854    if (PrevDecl)
1855      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1856    else
1857      Decl->TypeForDecl = new (*this, TypeAlignment) EnumType(Enum);
1858  } else if (const UnresolvedUsingTypenameDecl *Using =
1859               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
1860    Decl->TypeForDecl = new (*this, TypeAlignment) UnresolvedUsingType(Using);
1861  } else
1862    assert(false && "TypeDecl without a type?");
1863
1864  if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
1865  return QualType(Decl->TypeForDecl, 0);
1866}
1867
1868/// getTypedefType - Return the unique reference to the type for the
1869/// specified typename decl.
1870QualType ASTContext::getTypedefType(const TypedefDecl *Decl) {
1871  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1872
1873  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1874  Decl->TypeForDecl = new(*this, TypeAlignment)
1875    TypedefType(Type::Typedef, Decl, Canonical);
1876  Types.push_back(Decl->TypeForDecl);
1877  return QualType(Decl->TypeForDecl, 0);
1878}
1879
1880/// \brief Retrieve a substitution-result type.
1881QualType
1882ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
1883                                         QualType Replacement) {
1884  assert(Replacement.isCanonical()
1885         && "replacement types must always be canonical");
1886
1887  llvm::FoldingSetNodeID ID;
1888  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
1889  void *InsertPos = 0;
1890  SubstTemplateTypeParmType *SubstParm
1891    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1892
1893  if (!SubstParm) {
1894    SubstParm = new (*this, TypeAlignment)
1895      SubstTemplateTypeParmType(Parm, Replacement);
1896    Types.push_back(SubstParm);
1897    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
1898  }
1899
1900  return QualType(SubstParm, 0);
1901}
1902
1903/// \brief Retrieve the template type parameter type for a template
1904/// parameter or parameter pack with the given depth, index, and (optionally)
1905/// name.
1906QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1907                                             bool ParameterPack,
1908                                             IdentifierInfo *Name) {
1909  llvm::FoldingSetNodeID ID;
1910  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
1911  void *InsertPos = 0;
1912  TemplateTypeParmType *TypeParm
1913    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1914
1915  if (TypeParm)
1916    return QualType(TypeParm, 0);
1917
1918  if (Name) {
1919    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
1920    TypeParm = new (*this, TypeAlignment)
1921      TemplateTypeParmType(Depth, Index, ParameterPack, Name, Canon);
1922
1923    TemplateTypeParmType *TypeCheck
1924      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1925    assert(!TypeCheck && "Template type parameter canonical type broken");
1926    (void)TypeCheck;
1927  } else
1928    TypeParm = new (*this, TypeAlignment)
1929      TemplateTypeParmType(Depth, Index, ParameterPack);
1930
1931  Types.push_back(TypeParm);
1932  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1933
1934  return QualType(TypeParm, 0);
1935}
1936
1937QualType
1938ASTContext::getTemplateSpecializationType(TemplateName Template,
1939                                          const TemplateArgumentListInfo &Args,
1940                                          QualType Canon) {
1941  unsigned NumArgs = Args.size();
1942
1943  llvm::SmallVector<TemplateArgument, 4> ArgVec;
1944  ArgVec.reserve(NumArgs);
1945  for (unsigned i = 0; i != NumArgs; ++i)
1946    ArgVec.push_back(Args[i].getArgument());
1947
1948  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs, Canon);
1949}
1950
1951QualType
1952ASTContext::getTemplateSpecializationType(TemplateName Template,
1953                                          const TemplateArgument *Args,
1954                                          unsigned NumArgs,
1955                                          QualType Canon) {
1956  if (!Canon.isNull())
1957    Canon = getCanonicalType(Canon);
1958  else {
1959    // Build the canonical template specialization type.
1960    TemplateName CanonTemplate = getCanonicalTemplateName(Template);
1961    llvm::SmallVector<TemplateArgument, 4> CanonArgs;
1962    CanonArgs.reserve(NumArgs);
1963    for (unsigned I = 0; I != NumArgs; ++I)
1964      CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
1965
1966    // Determine whether this canonical template specialization type already
1967    // exists.
1968    llvm::FoldingSetNodeID ID;
1969    TemplateSpecializationType::Profile(ID, CanonTemplate,
1970                                        CanonArgs.data(), NumArgs, *this);
1971
1972    void *InsertPos = 0;
1973    TemplateSpecializationType *Spec
1974      = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1975
1976    if (!Spec) {
1977      // Allocate a new canonical template specialization type.
1978      void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1979                            sizeof(TemplateArgument) * NumArgs),
1980                           TypeAlignment);
1981      Spec = new (Mem) TemplateSpecializationType(*this, CanonTemplate,
1982                                                  CanonArgs.data(), NumArgs,
1983                                                  Canon);
1984      Types.push_back(Spec);
1985      TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1986    }
1987
1988    if (Canon.isNull())
1989      Canon = QualType(Spec, 0);
1990    assert(Canon->isDependentType() &&
1991           "Non-dependent template-id type must have a canonical type");
1992  }
1993
1994  // Allocate the (non-canonical) template specialization type, but don't
1995  // try to unique it: these types typically have location information that
1996  // we don't unique and don't want to lose.
1997  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1998                        sizeof(TemplateArgument) * NumArgs),
1999                       TypeAlignment);
2000  TemplateSpecializationType *Spec
2001    = new (Mem) TemplateSpecializationType(*this, Template, Args, NumArgs,
2002                                           Canon);
2003
2004  Types.push_back(Spec);
2005  return QualType(Spec, 0);
2006}
2007
2008QualType
2009ASTContext::getQualifiedNameType(NestedNameSpecifier *NNS,
2010                                 QualType NamedType) {
2011  llvm::FoldingSetNodeID ID;
2012  QualifiedNameType::Profile(ID, NNS, NamedType);
2013
2014  void *InsertPos = 0;
2015  QualifiedNameType *T
2016    = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2017  if (T)
2018    return QualType(T, 0);
2019
2020  QualType Canon = NamedType;
2021  if (!Canon.isCanonical()) {
2022    Canon = getCanonicalType(NamedType);
2023    QualifiedNameType *CheckT
2024      = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2025    assert(!CheckT && "Qualified name canonical type broken");
2026    (void)CheckT;
2027  }
2028
2029  T = new (*this) QualifiedNameType(NNS, NamedType, Canon);
2030  Types.push_back(T);
2031  QualifiedNameTypes.InsertNode(T, InsertPos);
2032  return QualType(T, 0);
2033}
2034
2035QualType ASTContext::getTypenameType(NestedNameSpecifier *NNS,
2036                                     const IdentifierInfo *Name,
2037                                     QualType Canon) {
2038  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2039
2040  if (Canon.isNull()) {
2041    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2042    if (CanonNNS != NNS)
2043      Canon = getTypenameType(CanonNNS, Name);
2044  }
2045
2046  llvm::FoldingSetNodeID ID;
2047  TypenameType::Profile(ID, NNS, Name);
2048
2049  void *InsertPos = 0;
2050  TypenameType *T
2051    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
2052  if (T)
2053    return QualType(T, 0);
2054
2055  T = new (*this) TypenameType(NNS, Name, Canon);
2056  Types.push_back(T);
2057  TypenameTypes.InsertNode(T, InsertPos);
2058  return QualType(T, 0);
2059}
2060
2061QualType
2062ASTContext::getTypenameType(NestedNameSpecifier *NNS,
2063                            const TemplateSpecializationType *TemplateId,
2064                            QualType Canon) {
2065  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2066
2067  llvm::FoldingSetNodeID ID;
2068  TypenameType::Profile(ID, NNS, TemplateId);
2069
2070  void *InsertPos = 0;
2071  TypenameType *T
2072    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
2073  if (T)
2074    return QualType(T, 0);
2075
2076  if (Canon.isNull()) {
2077    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2078    QualType CanonType = getCanonicalType(QualType(TemplateId, 0));
2079    if (CanonNNS != NNS || CanonType != QualType(TemplateId, 0)) {
2080      const TemplateSpecializationType *CanonTemplateId
2081        = CanonType->getAs<TemplateSpecializationType>();
2082      assert(CanonTemplateId &&
2083             "Canonical type must also be a template specialization type");
2084      Canon = getTypenameType(CanonNNS, CanonTemplateId);
2085    }
2086
2087    TypenameType *CheckT
2088      = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
2089    assert(!CheckT && "Typename canonical type is broken"); (void)CheckT;
2090  }
2091
2092  T = new (*this) TypenameType(NNS, TemplateId, Canon);
2093  Types.push_back(T);
2094  TypenameTypes.InsertNode(T, InsertPos);
2095  return QualType(T, 0);
2096}
2097
2098QualType
2099ASTContext::getElaboratedType(QualType UnderlyingType,
2100                              ElaboratedType::TagKind Tag) {
2101  llvm::FoldingSetNodeID ID;
2102  ElaboratedType::Profile(ID, UnderlyingType, Tag);
2103
2104  void *InsertPos = 0;
2105  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2106  if (T)
2107    return QualType(T, 0);
2108
2109  QualType Canon = UnderlyingType;
2110  if (!Canon.isCanonical()) {
2111    Canon = getCanonicalType(Canon);
2112    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2113    assert(!CheckT && "Elaborated canonical type is broken"); (void)CheckT;
2114  }
2115
2116  T = new (*this) ElaboratedType(UnderlyingType, Tag, Canon);
2117  Types.push_back(T);
2118  ElaboratedTypes.InsertNode(T, InsertPos);
2119  return QualType(T, 0);
2120}
2121
2122/// CmpProtocolNames - Comparison predicate for sorting protocols
2123/// alphabetically.
2124static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2125                            const ObjCProtocolDecl *RHS) {
2126  return LHS->getDeclName() < RHS->getDeclName();
2127}
2128
2129static bool areSortedAndUniqued(ObjCProtocolDecl **Protocols,
2130                                unsigned NumProtocols) {
2131  if (NumProtocols == 0) return true;
2132
2133  for (unsigned i = 1; i != NumProtocols; ++i)
2134    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
2135      return false;
2136  return true;
2137}
2138
2139static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2140                                   unsigned &NumProtocols) {
2141  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2142
2143  // Sort protocols, keyed by name.
2144  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2145
2146  // Remove duplicates.
2147  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2148  NumProtocols = ProtocolsEnd-Protocols;
2149}
2150
2151/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2152/// the given interface decl and the conforming protocol list.
2153QualType ASTContext::getObjCObjectPointerType(QualType InterfaceT,
2154                                              ObjCProtocolDecl **Protocols,
2155                                              unsigned NumProtocols) {
2156  llvm::FoldingSetNodeID ID;
2157  ObjCObjectPointerType::Profile(ID, InterfaceT, Protocols, NumProtocols);
2158
2159  void *InsertPos = 0;
2160  if (ObjCObjectPointerType *QT =
2161              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2162    return QualType(QT, 0);
2163
2164  // Sort the protocol list alphabetically to canonicalize it.
2165  QualType Canonical;
2166  if (!InterfaceT.isCanonical() ||
2167      !areSortedAndUniqued(Protocols, NumProtocols)) {
2168    if (!areSortedAndUniqued(Protocols, NumProtocols)) {
2169      llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(NumProtocols);
2170      unsigned UniqueCount = NumProtocols;
2171
2172      std::copy(Protocols, Protocols + NumProtocols, Sorted.begin());
2173      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2174
2175      Canonical = getObjCObjectPointerType(getCanonicalType(InterfaceT),
2176                                           &Sorted[0], UniqueCount);
2177    } else {
2178      Canonical = getObjCObjectPointerType(getCanonicalType(InterfaceT),
2179                                           Protocols, NumProtocols);
2180    }
2181
2182    // Regenerate InsertPos.
2183    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2184  }
2185
2186  // No match.
2187  unsigned Size = sizeof(ObjCObjectPointerType)
2188                + NumProtocols * sizeof(ObjCProtocolDecl *);
2189  void *Mem = Allocate(Size, TypeAlignment);
2190  ObjCObjectPointerType *QType = new (Mem) ObjCObjectPointerType(Canonical,
2191                                                                 InterfaceT,
2192                                                                 Protocols,
2193                                                                 NumProtocols);
2194
2195  Types.push_back(QType);
2196  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2197  return QualType(QType, 0);
2198}
2199
2200/// getObjCInterfaceType - Return the unique reference to the type for the
2201/// specified ObjC interface decl. The list of protocols is optional.
2202QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
2203                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
2204  llvm::FoldingSetNodeID ID;
2205  ObjCInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
2206
2207  void *InsertPos = 0;
2208  if (ObjCInterfaceType *QT =
2209      ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
2210    return QualType(QT, 0);
2211
2212  // Sort the protocol list alphabetically to canonicalize it.
2213  QualType Canonical;
2214  if (NumProtocols && !areSortedAndUniqued(Protocols, NumProtocols)) {
2215    llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(NumProtocols);
2216    std::copy(Protocols, Protocols + NumProtocols, Sorted.begin());
2217
2218    unsigned UniqueCount = NumProtocols;
2219    SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2220
2221    Canonical = getObjCInterfaceType(Decl, &Sorted[0], UniqueCount);
2222
2223    ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos);
2224  }
2225
2226  unsigned Size = sizeof(ObjCInterfaceType)
2227    + NumProtocols * sizeof(ObjCProtocolDecl *);
2228  void *Mem = Allocate(Size, TypeAlignment);
2229  ObjCInterfaceType *QType = new (Mem) ObjCInterfaceType(Canonical,
2230                                        const_cast<ObjCInterfaceDecl*>(Decl),
2231                                                         Protocols,
2232                                                         NumProtocols);
2233
2234  Types.push_back(QType);
2235  ObjCInterfaceTypes.InsertNode(QType, InsertPos);
2236  return QualType(QType, 0);
2237}
2238
2239/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2240/// TypeOfExprType AST's (since expression's are never shared). For example,
2241/// multiple declarations that refer to "typeof(x)" all contain different
2242/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2243/// on canonical type's (which are always unique).
2244QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
2245  TypeOfExprType *toe;
2246  if (tofExpr->isTypeDependent()) {
2247    llvm::FoldingSetNodeID ID;
2248    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2249
2250    void *InsertPos = 0;
2251    DependentTypeOfExprType *Canon
2252      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2253    if (Canon) {
2254      // We already have a "canonical" version of an identical, dependent
2255      // typeof(expr) type. Use that as our canonical type.
2256      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2257                                          QualType((TypeOfExprType*)Canon, 0));
2258    }
2259    else {
2260      // Build a new, canonical typeof(expr) type.
2261      Canon
2262        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2263      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2264      toe = Canon;
2265    }
2266  } else {
2267    QualType Canonical = getCanonicalType(tofExpr->getType());
2268    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2269  }
2270  Types.push_back(toe);
2271  return QualType(toe, 0);
2272}
2273
2274/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2275/// TypeOfType AST's. The only motivation to unique these nodes would be
2276/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2277/// an issue. This doesn't effect the type checker, since it operates
2278/// on canonical type's (which are always unique).
2279QualType ASTContext::getTypeOfType(QualType tofType) {
2280  QualType Canonical = getCanonicalType(tofType);
2281  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2282  Types.push_back(tot);
2283  return QualType(tot, 0);
2284}
2285
2286/// getDecltypeForExpr - Given an expr, will return the decltype for that
2287/// expression, according to the rules in C++0x [dcl.type.simple]p4
2288static QualType getDecltypeForExpr(const Expr *e, ASTContext &Context) {
2289  if (e->isTypeDependent())
2290    return Context.DependentTy;
2291
2292  // If e is an id expression or a class member access, decltype(e) is defined
2293  // as the type of the entity named by e.
2294  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2295    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2296      return VD->getType();
2297  }
2298  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2299    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2300      return FD->getType();
2301  }
2302  // If e is a function call or an invocation of an overloaded operator,
2303  // (parentheses around e are ignored), decltype(e) is defined as the
2304  // return type of that function.
2305  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2306    return CE->getCallReturnType();
2307
2308  QualType T = e->getType();
2309
2310  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2311  // defined as T&, otherwise decltype(e) is defined as T.
2312  if (e->isLvalue(Context) == Expr::LV_Valid)
2313    T = Context.getLValueReferenceType(T);
2314
2315  return T;
2316}
2317
2318/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2319/// DecltypeType AST's. The only motivation to unique these nodes would be
2320/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2321/// an issue. This doesn't effect the type checker, since it operates
2322/// on canonical type's (which are always unique).
2323QualType ASTContext::getDecltypeType(Expr *e) {
2324  DecltypeType *dt;
2325  if (e->isTypeDependent()) {
2326    llvm::FoldingSetNodeID ID;
2327    DependentDecltypeType::Profile(ID, *this, e);
2328
2329    void *InsertPos = 0;
2330    DependentDecltypeType *Canon
2331      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2332    if (Canon) {
2333      // We already have a "canonical" version of an equivalent, dependent
2334      // decltype type. Use that as our canonical type.
2335      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2336                                       QualType((DecltypeType*)Canon, 0));
2337    }
2338    else {
2339      // Build a new, canonical typeof(expr) type.
2340      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2341      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2342      dt = Canon;
2343    }
2344  } else {
2345    QualType T = getDecltypeForExpr(e, *this);
2346    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2347  }
2348  Types.push_back(dt);
2349  return QualType(dt, 0);
2350}
2351
2352/// getTagDeclType - Return the unique reference to the type for the
2353/// specified TagDecl (struct/union/class/enum) decl.
2354QualType ASTContext::getTagDeclType(const TagDecl *Decl) {
2355  assert (Decl);
2356  // FIXME: What is the design on getTagDeclType when it requires casting
2357  // away const?  mutable?
2358  return getTypeDeclType(const_cast<TagDecl*>(Decl));
2359}
2360
2361/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2362/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2363/// needs to agree with the definition in <stddef.h>.
2364CanQualType ASTContext::getSizeType() const {
2365  return getFromTargetType(Target.getSizeType());
2366}
2367
2368/// getSignedWCharType - Return the type of "signed wchar_t".
2369/// Used when in C++, as a GCC extension.
2370QualType ASTContext::getSignedWCharType() const {
2371  // FIXME: derive from "Target" ?
2372  return WCharTy;
2373}
2374
2375/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2376/// Used when in C++, as a GCC extension.
2377QualType ASTContext::getUnsignedWCharType() const {
2378  // FIXME: derive from "Target" ?
2379  return UnsignedIntTy;
2380}
2381
2382/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2383/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2384QualType ASTContext::getPointerDiffType() const {
2385  return getFromTargetType(Target.getPtrDiffType(0));
2386}
2387
2388//===----------------------------------------------------------------------===//
2389//                              Type Operators
2390//===----------------------------------------------------------------------===//
2391
2392CanQualType ASTContext::getCanonicalParamType(QualType T) {
2393  // Push qualifiers into arrays, and then discard any remaining
2394  // qualifiers.
2395  T = getCanonicalType(T);
2396  const Type *Ty = T.getTypePtr();
2397
2398  QualType Result;
2399  if (isa<ArrayType>(Ty)) {
2400    Result = getArrayDecayedType(QualType(Ty,0));
2401  } else if (isa<FunctionType>(Ty)) {
2402    Result = getPointerType(QualType(Ty, 0));
2403  } else {
2404    Result = QualType(Ty, 0);
2405  }
2406
2407  return CanQualType::CreateUnsafe(Result);
2408}
2409
2410/// getCanonicalType - Return the canonical (structural) type corresponding to
2411/// the specified potentially non-canonical type.  The non-canonical version
2412/// of a type may have many "decorated" versions of types.  Decorators can
2413/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
2414/// to be free of any of these, allowing two canonical types to be compared
2415/// for exact equality with a simple pointer comparison.
2416CanQualType ASTContext::getCanonicalType(QualType T) {
2417  QualifierCollector Quals;
2418  const Type *Ptr = Quals.strip(T);
2419  QualType CanType = Ptr->getCanonicalTypeInternal();
2420
2421  // The canonical internal type will be the canonical type *except*
2422  // that we push type qualifiers down through array types.
2423
2424  // If there are no new qualifiers to push down, stop here.
2425  if (!Quals.hasQualifiers())
2426    return CanQualType::CreateUnsafe(CanType);
2427
2428  // If the type qualifiers are on an array type, get the canonical
2429  // type of the array with the qualifiers applied to the element
2430  // type.
2431  ArrayType *AT = dyn_cast<ArrayType>(CanType);
2432  if (!AT)
2433    return CanQualType::CreateUnsafe(getQualifiedType(CanType, Quals));
2434
2435  // Get the canonical version of the element with the extra qualifiers on it.
2436  // This can recursively sink qualifiers through multiple levels of arrays.
2437  QualType NewEltTy = getQualifiedType(AT->getElementType(), Quals);
2438  NewEltTy = getCanonicalType(NewEltTy);
2439
2440  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2441    return CanQualType::CreateUnsafe(
2442             getConstantArrayType(NewEltTy, CAT->getSize(),
2443                                  CAT->getSizeModifier(),
2444                                  CAT->getIndexTypeCVRQualifiers()));
2445  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
2446    return CanQualType::CreateUnsafe(
2447             getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
2448                                    IAT->getIndexTypeCVRQualifiers()));
2449
2450  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
2451    return CanQualType::CreateUnsafe(
2452             getDependentSizedArrayType(NewEltTy,
2453                                        DSAT->getSizeExpr() ?
2454                                          DSAT->getSizeExpr()->Retain() : 0,
2455                                        DSAT->getSizeModifier(),
2456                                        DSAT->getIndexTypeCVRQualifiers(),
2457                        DSAT->getBracketsRange())->getCanonicalTypeInternal());
2458
2459  VariableArrayType *VAT = cast<VariableArrayType>(AT);
2460  return CanQualType::CreateUnsafe(getVariableArrayType(NewEltTy,
2461                                                        VAT->getSizeExpr() ?
2462                                              VAT->getSizeExpr()->Retain() : 0,
2463                                                        VAT->getSizeModifier(),
2464                                              VAT->getIndexTypeCVRQualifiers(),
2465                                                     VAT->getBracketsRange()));
2466}
2467
2468QualType ASTContext::getUnqualifiedArrayType(QualType T,
2469                                             Qualifiers &Quals) {
2470  Quals = T.getQualifiers();
2471  if (!isa<ArrayType>(T)) {
2472    return T.getUnqualifiedType();
2473  }
2474
2475  const ArrayType *AT = cast<ArrayType>(T);
2476  QualType Elt = AT->getElementType();
2477  QualType UnqualElt = getUnqualifiedArrayType(Elt, Quals);
2478  if (Elt == UnqualElt)
2479    return T;
2480
2481  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(T)) {
2482    return getConstantArrayType(UnqualElt, CAT->getSize(),
2483                                CAT->getSizeModifier(), 0);
2484  }
2485
2486  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(T)) {
2487    return getIncompleteArrayType(UnqualElt, IAT->getSizeModifier(), 0);
2488  }
2489
2490  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(T);
2491  return getDependentSizedArrayType(UnqualElt, DSAT->getSizeExpr()->Retain(),
2492                                    DSAT->getSizeModifier(), 0,
2493                                    SourceRange());
2494}
2495
2496DeclarationName ASTContext::getNameForTemplate(TemplateName Name) {
2497  if (TemplateDecl *TD = Name.getAsTemplateDecl())
2498    return TD->getDeclName();
2499
2500  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
2501    if (DTN->isIdentifier()) {
2502      return DeclarationNames.getIdentifier(DTN->getIdentifier());
2503    } else {
2504      return DeclarationNames.getCXXOperatorName(DTN->getOperator());
2505    }
2506  }
2507
2508  OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
2509  assert(Storage);
2510  return (*Storage->begin())->getDeclName();
2511}
2512
2513TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
2514  // If this template name refers to a template, the canonical
2515  // template name merely stores the template itself.
2516  if (TemplateDecl *Template = Name.getAsTemplateDecl())
2517    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
2518
2519  assert(!Name.getAsOverloadedTemplate());
2520
2521  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
2522  assert(DTN && "Non-dependent template names must refer to template decls.");
2523  return DTN->CanonicalTemplateName;
2524}
2525
2526bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
2527  X = getCanonicalTemplateName(X);
2528  Y = getCanonicalTemplateName(Y);
2529  return X.getAsVoidPointer() == Y.getAsVoidPointer();
2530}
2531
2532TemplateArgument
2533ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) {
2534  switch (Arg.getKind()) {
2535    case TemplateArgument::Null:
2536      return Arg;
2537
2538    case TemplateArgument::Expression:
2539      return Arg;
2540
2541    case TemplateArgument::Declaration:
2542      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
2543
2544    case TemplateArgument::Template:
2545      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
2546
2547    case TemplateArgument::Integral:
2548      return TemplateArgument(*Arg.getAsIntegral(),
2549                              getCanonicalType(Arg.getIntegralType()));
2550
2551    case TemplateArgument::Type:
2552      return TemplateArgument(getCanonicalType(Arg.getAsType()));
2553
2554    case TemplateArgument::Pack: {
2555      // FIXME: Allocate in ASTContext
2556      TemplateArgument *CanonArgs = new TemplateArgument[Arg.pack_size()];
2557      unsigned Idx = 0;
2558      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
2559                                        AEnd = Arg.pack_end();
2560           A != AEnd; (void)++A, ++Idx)
2561        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
2562
2563      TemplateArgument Result;
2564      Result.setArgumentPack(CanonArgs, Arg.pack_size(), false);
2565      return Result;
2566    }
2567  }
2568
2569  // Silence GCC warning
2570  assert(false && "Unhandled template argument kind");
2571  return TemplateArgument();
2572}
2573
2574NestedNameSpecifier *
2575ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
2576  if (!NNS)
2577    return 0;
2578
2579  switch (NNS->getKind()) {
2580  case NestedNameSpecifier::Identifier:
2581    // Canonicalize the prefix but keep the identifier the same.
2582    return NestedNameSpecifier::Create(*this,
2583                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
2584                                       NNS->getAsIdentifier());
2585
2586  case NestedNameSpecifier::Namespace:
2587    // A namespace is canonical; build a nested-name-specifier with
2588    // this namespace and no prefix.
2589    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
2590
2591  case NestedNameSpecifier::TypeSpec:
2592  case NestedNameSpecifier::TypeSpecWithTemplate: {
2593    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
2594    return NestedNameSpecifier::Create(*this, 0,
2595                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
2596                                       T.getTypePtr());
2597  }
2598
2599  case NestedNameSpecifier::Global:
2600    // The global specifier is canonical and unique.
2601    return NNS;
2602  }
2603
2604  // Required to silence a GCC warning
2605  return 0;
2606}
2607
2608
2609const ArrayType *ASTContext::getAsArrayType(QualType T) {
2610  // Handle the non-qualified case efficiently.
2611  if (!T.hasLocalQualifiers()) {
2612    // Handle the common positive case fast.
2613    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
2614      return AT;
2615  }
2616
2617  // Handle the common negative case fast.
2618  QualType CType = T->getCanonicalTypeInternal();
2619  if (!isa<ArrayType>(CType))
2620    return 0;
2621
2622  // Apply any qualifiers from the array type to the element type.  This
2623  // implements C99 6.7.3p8: "If the specification of an array type includes
2624  // any type qualifiers, the element type is so qualified, not the array type."
2625
2626  // If we get here, we either have type qualifiers on the type, or we have
2627  // sugar such as a typedef in the way.  If we have type qualifiers on the type
2628  // we must propagate them down into the element type.
2629
2630  QualifierCollector Qs;
2631  const Type *Ty = Qs.strip(T.getDesugaredType());
2632
2633  // If we have a simple case, just return now.
2634  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
2635  if (ATy == 0 || Qs.empty())
2636    return ATy;
2637
2638  // Otherwise, we have an array and we have qualifiers on it.  Push the
2639  // qualifiers into the array element type and return a new array type.
2640  // Get the canonical version of the element with the extra qualifiers on it.
2641  // This can recursively sink qualifiers through multiple levels of arrays.
2642  QualType NewEltTy = getQualifiedType(ATy->getElementType(), Qs);
2643
2644  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
2645    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
2646                                                CAT->getSizeModifier(),
2647                                           CAT->getIndexTypeCVRQualifiers()));
2648  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
2649    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
2650                                                  IAT->getSizeModifier(),
2651                                           IAT->getIndexTypeCVRQualifiers()));
2652
2653  if (const DependentSizedArrayType *DSAT
2654        = dyn_cast<DependentSizedArrayType>(ATy))
2655    return cast<ArrayType>(
2656                     getDependentSizedArrayType(NewEltTy,
2657                                                DSAT->getSizeExpr() ?
2658                                              DSAT->getSizeExpr()->Retain() : 0,
2659                                                DSAT->getSizeModifier(),
2660                                              DSAT->getIndexTypeCVRQualifiers(),
2661                                                DSAT->getBracketsRange()));
2662
2663  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
2664  return cast<ArrayType>(getVariableArrayType(NewEltTy,
2665                                              VAT->getSizeExpr() ?
2666                                              VAT->getSizeExpr()->Retain() : 0,
2667                                              VAT->getSizeModifier(),
2668                                              VAT->getIndexTypeCVRQualifiers(),
2669                                              VAT->getBracketsRange()));
2670}
2671
2672
2673/// getArrayDecayedType - Return the properly qualified result of decaying the
2674/// specified array type to a pointer.  This operation is non-trivial when
2675/// handling typedefs etc.  The canonical type of "T" must be an array type,
2676/// this returns a pointer to a properly qualified element of the array.
2677///
2678/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2679QualType ASTContext::getArrayDecayedType(QualType Ty) {
2680  // Get the element type with 'getAsArrayType' so that we don't lose any
2681  // typedefs in the element type of the array.  This also handles propagation
2682  // of type qualifiers from the array type into the element type if present
2683  // (C99 6.7.3p8).
2684  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
2685  assert(PrettyArrayType && "Not an array type!");
2686
2687  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
2688
2689  // int x[restrict 4] ->  int *restrict
2690  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
2691}
2692
2693QualType ASTContext::getBaseElementType(QualType QT) {
2694  QualifierCollector Qs;
2695  while (true) {
2696    const Type *UT = Qs.strip(QT);
2697    if (const ArrayType *AT = getAsArrayType(QualType(UT,0))) {
2698      QT = AT->getElementType();
2699    } else {
2700      return Qs.apply(QT);
2701    }
2702  }
2703}
2704
2705QualType ASTContext::getBaseElementType(const ArrayType *AT) {
2706  QualType ElemTy = AT->getElementType();
2707
2708  if (const ArrayType *AT = getAsArrayType(ElemTy))
2709    return getBaseElementType(AT);
2710
2711  return ElemTy;
2712}
2713
2714/// getConstantArrayElementCount - Returns number of constant array elements.
2715uint64_t
2716ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
2717  uint64_t ElementCount = 1;
2718  do {
2719    ElementCount *= CA->getSize().getZExtValue();
2720    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
2721  } while (CA);
2722  return ElementCount;
2723}
2724
2725/// getFloatingRank - Return a relative rank for floating point types.
2726/// This routine will assert if passed a built-in type that isn't a float.
2727static FloatingRank getFloatingRank(QualType T) {
2728  if (const ComplexType *CT = T->getAs<ComplexType>())
2729    return getFloatingRank(CT->getElementType());
2730
2731  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
2732  switch (T->getAs<BuiltinType>()->getKind()) {
2733  default: assert(0 && "getFloatingRank(): not a floating type");
2734  case BuiltinType::Float:      return FloatRank;
2735  case BuiltinType::Double:     return DoubleRank;
2736  case BuiltinType::LongDouble: return LongDoubleRank;
2737  }
2738}
2739
2740/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
2741/// point or a complex type (based on typeDomain/typeSize).
2742/// 'typeDomain' is a real floating point or complex type.
2743/// 'typeSize' is a real floating point or complex type.
2744QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
2745                                                       QualType Domain) const {
2746  FloatingRank EltRank = getFloatingRank(Size);
2747  if (Domain->isComplexType()) {
2748    switch (EltRank) {
2749    default: assert(0 && "getFloatingRank(): illegal value for rank");
2750    case FloatRank:      return FloatComplexTy;
2751    case DoubleRank:     return DoubleComplexTy;
2752    case LongDoubleRank: return LongDoubleComplexTy;
2753    }
2754  }
2755
2756  assert(Domain->isRealFloatingType() && "Unknown domain!");
2757  switch (EltRank) {
2758  default: assert(0 && "getFloatingRank(): illegal value for rank");
2759  case FloatRank:      return FloatTy;
2760  case DoubleRank:     return DoubleTy;
2761  case LongDoubleRank: return LongDoubleTy;
2762  }
2763}
2764
2765/// getFloatingTypeOrder - Compare the rank of the two specified floating
2766/// point types, ignoring the domain of the type (i.e. 'double' ==
2767/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2768/// LHS < RHS, return -1.
2769int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
2770  FloatingRank LHSR = getFloatingRank(LHS);
2771  FloatingRank RHSR = getFloatingRank(RHS);
2772
2773  if (LHSR == RHSR)
2774    return 0;
2775  if (LHSR > RHSR)
2776    return 1;
2777  return -1;
2778}
2779
2780/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
2781/// routine will assert if passed a built-in type that isn't an integer or enum,
2782/// or if it is not canonicalized.
2783unsigned ASTContext::getIntegerRank(Type *T) {
2784  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
2785  if (EnumType* ET = dyn_cast<EnumType>(T))
2786    T = ET->getDecl()->getPromotionType().getTypePtr();
2787
2788  if (T->isSpecificBuiltinType(BuiltinType::WChar))
2789    T = getFromTargetType(Target.getWCharType()).getTypePtr();
2790
2791  if (T->isSpecificBuiltinType(BuiltinType::Char16))
2792    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
2793
2794  if (T->isSpecificBuiltinType(BuiltinType::Char32))
2795    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
2796
2797  switch (cast<BuiltinType>(T)->getKind()) {
2798  default: assert(0 && "getIntegerRank(): not a built-in integer");
2799  case BuiltinType::Bool:
2800    return 1 + (getIntWidth(BoolTy) << 3);
2801  case BuiltinType::Char_S:
2802  case BuiltinType::Char_U:
2803  case BuiltinType::SChar:
2804  case BuiltinType::UChar:
2805    return 2 + (getIntWidth(CharTy) << 3);
2806  case BuiltinType::Short:
2807  case BuiltinType::UShort:
2808    return 3 + (getIntWidth(ShortTy) << 3);
2809  case BuiltinType::Int:
2810  case BuiltinType::UInt:
2811    return 4 + (getIntWidth(IntTy) << 3);
2812  case BuiltinType::Long:
2813  case BuiltinType::ULong:
2814    return 5 + (getIntWidth(LongTy) << 3);
2815  case BuiltinType::LongLong:
2816  case BuiltinType::ULongLong:
2817    return 6 + (getIntWidth(LongLongTy) << 3);
2818  case BuiltinType::Int128:
2819  case BuiltinType::UInt128:
2820    return 7 + (getIntWidth(Int128Ty) << 3);
2821  }
2822}
2823
2824/// \brief Whether this is a promotable bitfield reference according
2825/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
2826///
2827/// \returns the type this bit-field will promote to, or NULL if no
2828/// promotion occurs.
2829QualType ASTContext::isPromotableBitField(Expr *E) {
2830  FieldDecl *Field = E->getBitField();
2831  if (!Field)
2832    return QualType();
2833
2834  QualType FT = Field->getType();
2835
2836  llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
2837  uint64_t BitWidth = BitWidthAP.getZExtValue();
2838  uint64_t IntSize = getTypeSize(IntTy);
2839  // GCC extension compatibility: if the bit-field size is less than or equal
2840  // to the size of int, it gets promoted no matter what its type is.
2841  // For instance, unsigned long bf : 4 gets promoted to signed int.
2842  if (BitWidth < IntSize)
2843    return IntTy;
2844
2845  if (BitWidth == IntSize)
2846    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
2847
2848  // Types bigger than int are not subject to promotions, and therefore act
2849  // like the base type.
2850  // FIXME: This doesn't quite match what gcc does, but what gcc does here
2851  // is ridiculous.
2852  return QualType();
2853}
2854
2855/// getPromotedIntegerType - Returns the type that Promotable will
2856/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
2857/// integer type.
2858QualType ASTContext::getPromotedIntegerType(QualType Promotable) {
2859  assert(!Promotable.isNull());
2860  assert(Promotable->isPromotableIntegerType());
2861  if (const EnumType *ET = Promotable->getAs<EnumType>())
2862    return ET->getDecl()->getPromotionType();
2863  if (Promotable->isSignedIntegerType())
2864    return IntTy;
2865  uint64_t PromotableSize = getTypeSize(Promotable);
2866  uint64_t IntSize = getTypeSize(IntTy);
2867  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
2868  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
2869}
2870
2871/// getIntegerTypeOrder - Returns the highest ranked integer type:
2872/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2873/// LHS < RHS, return -1.
2874int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
2875  Type *LHSC = getCanonicalType(LHS).getTypePtr();
2876  Type *RHSC = getCanonicalType(RHS).getTypePtr();
2877  if (LHSC == RHSC) return 0;
2878
2879  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
2880  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
2881
2882  unsigned LHSRank = getIntegerRank(LHSC);
2883  unsigned RHSRank = getIntegerRank(RHSC);
2884
2885  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
2886    if (LHSRank == RHSRank) return 0;
2887    return LHSRank > RHSRank ? 1 : -1;
2888  }
2889
2890  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
2891  if (LHSUnsigned) {
2892    // If the unsigned [LHS] type is larger, return it.
2893    if (LHSRank >= RHSRank)
2894      return 1;
2895
2896    // If the signed type can represent all values of the unsigned type, it
2897    // wins.  Because we are dealing with 2's complement and types that are
2898    // powers of two larger than each other, this is always safe.
2899    return -1;
2900  }
2901
2902  // If the unsigned [RHS] type is larger, return it.
2903  if (RHSRank >= LHSRank)
2904    return -1;
2905
2906  // If the signed type can represent all values of the unsigned type, it
2907  // wins.  Because we are dealing with 2's complement and types that are
2908  // powers of two larger than each other, this is always safe.
2909  return 1;
2910}
2911
2912static RecordDecl *
2913CreateRecordDecl(ASTContext &Ctx, RecordDecl::TagKind TK, DeclContext *DC,
2914                 SourceLocation L, IdentifierInfo *Id) {
2915  if (Ctx.getLangOptions().CPlusPlus)
2916    return CXXRecordDecl::Create(Ctx, TK, DC, L, Id);
2917  else
2918    return RecordDecl::Create(Ctx, TK, DC, L, Id);
2919}
2920
2921// getCFConstantStringType - Return the type used for constant CFStrings.
2922QualType ASTContext::getCFConstantStringType() {
2923  if (!CFConstantStringTypeDecl) {
2924    CFConstantStringTypeDecl =
2925      CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2926                       &Idents.get("NSConstantString"));
2927    CFConstantStringTypeDecl->startDefinition();
2928
2929    QualType FieldTypes[4];
2930
2931    // const int *isa;
2932    FieldTypes[0] = getPointerType(IntTy.withConst());
2933    // int flags;
2934    FieldTypes[1] = IntTy;
2935    // const char *str;
2936    FieldTypes[2] = getPointerType(CharTy.withConst());
2937    // long length;
2938    FieldTypes[3] = LongTy;
2939
2940    // Create fields
2941    for (unsigned i = 0; i < 4; ++i) {
2942      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
2943                                           SourceLocation(), 0,
2944                                           FieldTypes[i], /*TInfo=*/0,
2945                                           /*BitWidth=*/0,
2946                                           /*Mutable=*/false);
2947      CFConstantStringTypeDecl->addDecl(Field);
2948    }
2949
2950    CFConstantStringTypeDecl->completeDefinition();
2951  }
2952
2953  return getTagDeclType(CFConstantStringTypeDecl);
2954}
2955
2956void ASTContext::setCFConstantStringType(QualType T) {
2957  const RecordType *Rec = T->getAs<RecordType>();
2958  assert(Rec && "Invalid CFConstantStringType");
2959  CFConstantStringTypeDecl = Rec->getDecl();
2960}
2961
2962QualType ASTContext::getObjCFastEnumerationStateType() {
2963  if (!ObjCFastEnumerationStateTypeDecl) {
2964    ObjCFastEnumerationStateTypeDecl =
2965      CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2966                       &Idents.get("__objcFastEnumerationState"));
2967    ObjCFastEnumerationStateTypeDecl->startDefinition();
2968
2969    QualType FieldTypes[] = {
2970      UnsignedLongTy,
2971      getPointerType(ObjCIdTypedefType),
2972      getPointerType(UnsignedLongTy),
2973      getConstantArrayType(UnsignedLongTy,
2974                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2975    };
2976
2977    for (size_t i = 0; i < 4; ++i) {
2978      FieldDecl *Field = FieldDecl::Create(*this,
2979                                           ObjCFastEnumerationStateTypeDecl,
2980                                           SourceLocation(), 0,
2981                                           FieldTypes[i], /*TInfo=*/0,
2982                                           /*BitWidth=*/0,
2983                                           /*Mutable=*/false);
2984      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
2985    }
2986
2987    ObjCFastEnumerationStateTypeDecl->completeDefinition();
2988  }
2989
2990  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
2991}
2992
2993QualType ASTContext::getBlockDescriptorType() {
2994  if (BlockDescriptorType)
2995    return getTagDeclType(BlockDescriptorType);
2996
2997  RecordDecl *T;
2998  // FIXME: Needs the FlagAppleBlock bit.
2999  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
3000                       &Idents.get("__block_descriptor"));
3001  T->startDefinition();
3002
3003  QualType FieldTypes[] = {
3004    UnsignedLongTy,
3005    UnsignedLongTy,
3006  };
3007
3008  const char *FieldNames[] = {
3009    "reserved",
3010    "Size"
3011  };
3012
3013  for (size_t i = 0; i < 2; ++i) {
3014    FieldDecl *Field = FieldDecl::Create(*this,
3015                                         T,
3016                                         SourceLocation(),
3017                                         &Idents.get(FieldNames[i]),
3018                                         FieldTypes[i], /*TInfo=*/0,
3019                                         /*BitWidth=*/0,
3020                                         /*Mutable=*/false);
3021    T->addDecl(Field);
3022  }
3023
3024  T->completeDefinition();
3025
3026  BlockDescriptorType = T;
3027
3028  return getTagDeclType(BlockDescriptorType);
3029}
3030
3031void ASTContext::setBlockDescriptorType(QualType T) {
3032  const RecordType *Rec = T->getAs<RecordType>();
3033  assert(Rec && "Invalid BlockDescriptorType");
3034  BlockDescriptorType = Rec->getDecl();
3035}
3036
3037QualType ASTContext::getBlockDescriptorExtendedType() {
3038  if (BlockDescriptorExtendedType)
3039    return getTagDeclType(BlockDescriptorExtendedType);
3040
3041  RecordDecl *T;
3042  // FIXME: Needs the FlagAppleBlock bit.
3043  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
3044                       &Idents.get("__block_descriptor_withcopydispose"));
3045  T->startDefinition();
3046
3047  QualType FieldTypes[] = {
3048    UnsignedLongTy,
3049    UnsignedLongTy,
3050    getPointerType(VoidPtrTy),
3051    getPointerType(VoidPtrTy)
3052  };
3053
3054  const char *FieldNames[] = {
3055    "reserved",
3056    "Size",
3057    "CopyFuncPtr",
3058    "DestroyFuncPtr"
3059  };
3060
3061  for (size_t i = 0; i < 4; ++i) {
3062    FieldDecl *Field = FieldDecl::Create(*this,
3063                                         T,
3064                                         SourceLocation(),
3065                                         &Idents.get(FieldNames[i]),
3066                                         FieldTypes[i], /*TInfo=*/0,
3067                                         /*BitWidth=*/0,
3068                                         /*Mutable=*/false);
3069    T->addDecl(Field);
3070  }
3071
3072  T->completeDefinition();
3073
3074  BlockDescriptorExtendedType = T;
3075
3076  return getTagDeclType(BlockDescriptorExtendedType);
3077}
3078
3079void ASTContext::setBlockDescriptorExtendedType(QualType T) {
3080  const RecordType *Rec = T->getAs<RecordType>();
3081  assert(Rec && "Invalid BlockDescriptorType");
3082  BlockDescriptorExtendedType = Rec->getDecl();
3083}
3084
3085bool ASTContext::BlockRequiresCopying(QualType Ty) {
3086  if (Ty->isBlockPointerType())
3087    return true;
3088  if (isObjCNSObjectType(Ty))
3089    return true;
3090  if (Ty->isObjCObjectPointerType())
3091    return true;
3092  return false;
3093}
3094
3095QualType ASTContext::BuildByRefType(const char *DeclName, QualType Ty) {
3096  //  type = struct __Block_byref_1_X {
3097  //    void *__isa;
3098  //    struct __Block_byref_1_X *__forwarding;
3099  //    unsigned int __flags;
3100  //    unsigned int __size;
3101  //    void *__copy_helper;		// as needed
3102  //    void *__destroy_help		// as needed
3103  //    int X;
3104  //  } *
3105
3106  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
3107
3108  // FIXME: Move up
3109  static unsigned int UniqueBlockByRefTypeID = 0;
3110  llvm::SmallString<36> Name;
3111  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
3112                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
3113  RecordDecl *T;
3114  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
3115                       &Idents.get(Name.str()));
3116  T->startDefinition();
3117  QualType Int32Ty = IntTy;
3118  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
3119  QualType FieldTypes[] = {
3120    getPointerType(VoidPtrTy),
3121    getPointerType(getTagDeclType(T)),
3122    Int32Ty,
3123    Int32Ty,
3124    getPointerType(VoidPtrTy),
3125    getPointerType(VoidPtrTy),
3126    Ty
3127  };
3128
3129  const char *FieldNames[] = {
3130    "__isa",
3131    "__forwarding",
3132    "__flags",
3133    "__size",
3134    "__copy_helper",
3135    "__destroy_helper",
3136    DeclName,
3137  };
3138
3139  for (size_t i = 0; i < 7; ++i) {
3140    if (!HasCopyAndDispose && i >=4 && i <= 5)
3141      continue;
3142    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3143                                         &Idents.get(FieldNames[i]),
3144                                         FieldTypes[i], /*TInfo=*/0,
3145                                         /*BitWidth=*/0, /*Mutable=*/false);
3146    T->addDecl(Field);
3147  }
3148
3149  T->completeDefinition();
3150
3151  return getPointerType(getTagDeclType(T));
3152}
3153
3154
3155QualType ASTContext::getBlockParmType(
3156  bool BlockHasCopyDispose,
3157  llvm::SmallVector<const Expr *, 8> &BlockDeclRefDecls) {
3158  // FIXME: Move up
3159  static unsigned int UniqueBlockParmTypeID = 0;
3160  llvm::SmallString<36> Name;
3161  llvm::raw_svector_ostream(Name) << "__block_literal_"
3162                                  << ++UniqueBlockParmTypeID;
3163  RecordDecl *T;
3164  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
3165                       &Idents.get(Name.str()));
3166  T->startDefinition();
3167  QualType FieldTypes[] = {
3168    getPointerType(VoidPtrTy),
3169    IntTy,
3170    IntTy,
3171    getPointerType(VoidPtrTy),
3172    (BlockHasCopyDispose ?
3173     getPointerType(getBlockDescriptorExtendedType()) :
3174     getPointerType(getBlockDescriptorType()))
3175  };
3176
3177  const char *FieldNames[] = {
3178    "__isa",
3179    "__flags",
3180    "__reserved",
3181    "__FuncPtr",
3182    "__descriptor"
3183  };
3184
3185  for (size_t i = 0; i < 5; ++i) {
3186    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3187                                         &Idents.get(FieldNames[i]),
3188                                         FieldTypes[i], /*TInfo=*/0,
3189                                         /*BitWidth=*/0, /*Mutable=*/false);
3190    T->addDecl(Field);
3191  }
3192
3193  for (size_t i = 0; i < BlockDeclRefDecls.size(); ++i) {
3194    const Expr *E = BlockDeclRefDecls[i];
3195    const BlockDeclRefExpr *BDRE = dyn_cast<BlockDeclRefExpr>(E);
3196    clang::IdentifierInfo *Name = 0;
3197    if (BDRE) {
3198      const ValueDecl *D = BDRE->getDecl();
3199      Name = &Idents.get(D->getName());
3200    }
3201    QualType FieldType = E->getType();
3202
3203    if (BDRE && BDRE->isByRef())
3204      FieldType = BuildByRefType(BDRE->getDecl()->getNameAsCString(),
3205                                 FieldType);
3206
3207    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3208                                         Name, FieldType, /*TInfo=*/0,
3209                                         /*BitWidth=*/0, /*Mutable=*/false);
3210    T->addDecl(Field);
3211  }
3212
3213  T->completeDefinition();
3214
3215  return getPointerType(getTagDeclType(T));
3216}
3217
3218void ASTContext::setObjCFastEnumerationStateType(QualType T) {
3219  const RecordType *Rec = T->getAs<RecordType>();
3220  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
3221  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
3222}
3223
3224// This returns true if a type has been typedefed to BOOL:
3225// typedef <type> BOOL;
3226static bool isTypeTypedefedAsBOOL(QualType T) {
3227  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3228    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3229      return II->isStr("BOOL");
3230
3231  return false;
3232}
3233
3234/// getObjCEncodingTypeSize returns size of type for objective-c encoding
3235/// purpose.
3236CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) {
3237  CharUnits sz = getTypeSizeInChars(type);
3238
3239  // Make all integer and enum types at least as large as an int
3240  if (sz.isPositive() && type->isIntegralType())
3241    sz = std::max(sz, getTypeSizeInChars(IntTy));
3242  // Treat arrays as pointers, since that's how they're passed in.
3243  else if (type->isArrayType())
3244    sz = getTypeSizeInChars(VoidPtrTy);
3245  return sz;
3246}
3247
3248static inline
3249std::string charUnitsToString(const CharUnits &CU) {
3250  return llvm::itostr(CU.getQuantity());
3251}
3252
3253/// getObjCEncodingForBlockDecl - Return the encoded type for this method
3254/// declaration.
3255void ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr,
3256                                             std::string& S) {
3257  const BlockDecl *Decl = Expr->getBlockDecl();
3258  QualType BlockTy =
3259      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
3260  // Encode result type.
3261  getObjCEncodingForType(cast<FunctionType>(BlockTy)->getResultType(), S);
3262  // Compute size of all parameters.
3263  // Start with computing size of a pointer in number of bytes.
3264  // FIXME: There might(should) be a better way of doing this computation!
3265  SourceLocation Loc;
3266  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3267  CharUnits ParmOffset = PtrSize;
3268  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3269       E = Decl->param_end(); PI != E; ++PI) {
3270    QualType PType = (*PI)->getType();
3271    CharUnits sz = getObjCEncodingTypeSize(PType);
3272    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
3273    ParmOffset += sz;
3274  }
3275  // Size of the argument frame
3276  S += charUnitsToString(ParmOffset);
3277  // Block pointer and offset.
3278  S += "@?0";
3279  ParmOffset = PtrSize;
3280
3281  // Argument types.
3282  ParmOffset = PtrSize;
3283  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
3284       Decl->param_end(); PI != E; ++PI) {
3285    ParmVarDecl *PVDecl = *PI;
3286    QualType PType = PVDecl->getOriginalType();
3287    if (const ArrayType *AT =
3288          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3289      // Use array's original type only if it has known number of
3290      // elements.
3291      if (!isa<ConstantArrayType>(AT))
3292        PType = PVDecl->getType();
3293    } else if (PType->isFunctionType())
3294      PType = PVDecl->getType();
3295    getObjCEncodingForType(PType, S);
3296    S += charUnitsToString(ParmOffset);
3297    ParmOffset += getObjCEncodingTypeSize(PType);
3298  }
3299}
3300
3301/// getObjCEncodingForMethodDecl - Return the encoded type for this method
3302/// declaration.
3303void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
3304                                              std::string& S) {
3305  // FIXME: This is not very efficient.
3306  // Encode type qualifer, 'in', 'inout', etc. for the return type.
3307  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
3308  // Encode result type.
3309  getObjCEncodingForType(Decl->getResultType(), S);
3310  // Compute size of all parameters.
3311  // Start with computing size of a pointer in number of bytes.
3312  // FIXME: There might(should) be a better way of doing this computation!
3313  SourceLocation Loc;
3314  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3315  // The first two arguments (self and _cmd) are pointers; account for
3316  // their size.
3317  CharUnits ParmOffset = 2 * PtrSize;
3318  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3319       E = Decl->param_end(); PI != E; ++PI) {
3320    QualType PType = (*PI)->getType();
3321    CharUnits sz = getObjCEncodingTypeSize(PType);
3322    assert (sz.isPositive() &&
3323        "getObjCEncodingForMethodDecl - Incomplete param type");
3324    ParmOffset += sz;
3325  }
3326  S += charUnitsToString(ParmOffset);
3327  S += "@0:";
3328  S += charUnitsToString(PtrSize);
3329
3330  // Argument types.
3331  ParmOffset = 2 * PtrSize;
3332  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3333       E = Decl->param_end(); PI != E; ++PI) {
3334    ParmVarDecl *PVDecl = *PI;
3335    QualType PType = PVDecl->getOriginalType();
3336    if (const ArrayType *AT =
3337          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3338      // Use array's original type only if it has known number of
3339      // elements.
3340      if (!isa<ConstantArrayType>(AT))
3341        PType = PVDecl->getType();
3342    } else if (PType->isFunctionType())
3343      PType = PVDecl->getType();
3344    // Process argument qualifiers for user supplied arguments; such as,
3345    // 'in', 'inout', etc.
3346    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
3347    getObjCEncodingForType(PType, S);
3348    S += charUnitsToString(ParmOffset);
3349    ParmOffset += getObjCEncodingTypeSize(PType);
3350  }
3351}
3352
3353/// getObjCEncodingForPropertyDecl - Return the encoded type for this
3354/// property declaration. If non-NULL, Container must be either an
3355/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
3356/// NULL when getting encodings for protocol properties.
3357/// Property attributes are stored as a comma-delimited C string. The simple
3358/// attributes readonly and bycopy are encoded as single characters. The
3359/// parametrized attributes, getter=name, setter=name, and ivar=name, are
3360/// encoded as single characters, followed by an identifier. Property types
3361/// are also encoded as a parametrized attribute. The characters used to encode
3362/// these attributes are defined by the following enumeration:
3363/// @code
3364/// enum PropertyAttributes {
3365/// kPropertyReadOnly = 'R',   // property is read-only.
3366/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
3367/// kPropertyByref = '&',  // property is a reference to the value last assigned
3368/// kPropertyDynamic = 'D',    // property is dynamic
3369/// kPropertyGetter = 'G',     // followed by getter selector name
3370/// kPropertySetter = 'S',     // followed by setter selector name
3371/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
3372/// kPropertyType = 't'              // followed by old-style type encoding.
3373/// kPropertyWeak = 'W'              // 'weak' property
3374/// kPropertyStrong = 'P'            // property GC'able
3375/// kPropertyNonAtomic = 'N'         // property non-atomic
3376/// };
3377/// @endcode
3378void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
3379                                                const Decl *Container,
3380                                                std::string& S) {
3381  // Collect information from the property implementation decl(s).
3382  bool Dynamic = false;
3383  ObjCPropertyImplDecl *SynthesizePID = 0;
3384
3385  // FIXME: Duplicated code due to poor abstraction.
3386  if (Container) {
3387    if (const ObjCCategoryImplDecl *CID =
3388        dyn_cast<ObjCCategoryImplDecl>(Container)) {
3389      for (ObjCCategoryImplDecl::propimpl_iterator
3390             i = CID->propimpl_begin(), e = CID->propimpl_end();
3391           i != e; ++i) {
3392        ObjCPropertyImplDecl *PID = *i;
3393        if (PID->getPropertyDecl() == PD) {
3394          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3395            Dynamic = true;
3396          } else {
3397            SynthesizePID = PID;
3398          }
3399        }
3400      }
3401    } else {
3402      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
3403      for (ObjCCategoryImplDecl::propimpl_iterator
3404             i = OID->propimpl_begin(), e = OID->propimpl_end();
3405           i != e; ++i) {
3406        ObjCPropertyImplDecl *PID = *i;
3407        if (PID->getPropertyDecl() == PD) {
3408          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3409            Dynamic = true;
3410          } else {
3411            SynthesizePID = PID;
3412          }
3413        }
3414      }
3415    }
3416  }
3417
3418  // FIXME: This is not very efficient.
3419  S = "T";
3420
3421  // Encode result type.
3422  // GCC has some special rules regarding encoding of properties which
3423  // closely resembles encoding of ivars.
3424  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
3425                             true /* outermost type */,
3426                             true /* encoding for property */);
3427
3428  if (PD->isReadOnly()) {
3429    S += ",R";
3430  } else {
3431    switch (PD->getSetterKind()) {
3432    case ObjCPropertyDecl::Assign: break;
3433    case ObjCPropertyDecl::Copy:   S += ",C"; break;
3434    case ObjCPropertyDecl::Retain: S += ",&"; break;
3435    }
3436  }
3437
3438  // It really isn't clear at all what this means, since properties
3439  // are "dynamic by default".
3440  if (Dynamic)
3441    S += ",D";
3442
3443  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
3444    S += ",N";
3445
3446  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
3447    S += ",G";
3448    S += PD->getGetterName().getAsString();
3449  }
3450
3451  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
3452    S += ",S";
3453    S += PD->getSetterName().getAsString();
3454  }
3455
3456  if (SynthesizePID) {
3457    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
3458    S += ",V";
3459    S += OID->getNameAsString();
3460  }
3461
3462  // FIXME: OBJCGC: weak & strong
3463}
3464
3465/// getLegacyIntegralTypeEncoding -
3466/// Another legacy compatibility encoding: 32-bit longs are encoded as
3467/// 'l' or 'L' , but not always.  For typedefs, we need to use
3468/// 'i' or 'I' instead if encoding a struct field, or a pointer!
3469///
3470void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
3471  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
3472    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
3473      if (BT->getKind() == BuiltinType::ULong &&
3474          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3475        PointeeTy = UnsignedIntTy;
3476      else
3477        if (BT->getKind() == BuiltinType::Long &&
3478            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3479          PointeeTy = IntTy;
3480    }
3481  }
3482}
3483
3484void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
3485                                        const FieldDecl *Field) {
3486  // We follow the behavior of gcc, expanding structures which are
3487  // directly pointed to, and expanding embedded structures. Note that
3488  // these rules are sufficient to prevent recursive encoding of the
3489  // same type.
3490  getObjCEncodingForTypeImpl(T, S, true, true, Field,
3491                             true /* outermost type */);
3492}
3493
3494static void EncodeBitField(const ASTContext *Context, std::string& S,
3495                           const FieldDecl *FD) {
3496  const Expr *E = FD->getBitWidth();
3497  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
3498  ASTContext *Ctx = const_cast<ASTContext*>(Context);
3499  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
3500  S += 'b';
3501  S += llvm::utostr(N);
3502}
3503
3504// FIXME: Use SmallString for accumulating string.
3505void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
3506                                            bool ExpandPointedToStructures,
3507                                            bool ExpandStructures,
3508                                            const FieldDecl *FD,
3509                                            bool OutermostType,
3510                                            bool EncodingProperty) {
3511  if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
3512    if (FD && FD->isBitField())
3513      return EncodeBitField(this, S, FD);
3514    char encoding;
3515    switch (BT->getKind()) {
3516    default: assert(0 && "Unhandled builtin type kind");
3517    case BuiltinType::Void:       encoding = 'v'; break;
3518    case BuiltinType::Bool:       encoding = 'B'; break;
3519    case BuiltinType::Char_U:
3520    case BuiltinType::UChar:      encoding = 'C'; break;
3521    case BuiltinType::UShort:     encoding = 'S'; break;
3522    case BuiltinType::UInt:       encoding = 'I'; break;
3523    case BuiltinType::ULong:
3524        encoding =
3525          (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q';
3526        break;
3527    case BuiltinType::UInt128:    encoding = 'T'; break;
3528    case BuiltinType::ULongLong:  encoding = 'Q'; break;
3529    case BuiltinType::Char_S:
3530    case BuiltinType::SChar:      encoding = 'c'; break;
3531    case BuiltinType::Short:      encoding = 's'; break;
3532    case BuiltinType::Int:        encoding = 'i'; break;
3533    case BuiltinType::Long:
3534      encoding =
3535        (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q';
3536      break;
3537    case BuiltinType::LongLong:   encoding = 'q'; break;
3538    case BuiltinType::Int128:     encoding = 't'; break;
3539    case BuiltinType::Float:      encoding = 'f'; break;
3540    case BuiltinType::Double:     encoding = 'd'; break;
3541    case BuiltinType::LongDouble: encoding = 'd'; break;
3542    }
3543
3544    S += encoding;
3545    return;
3546  }
3547
3548  if (const ComplexType *CT = T->getAs<ComplexType>()) {
3549    S += 'j';
3550    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
3551                               false);
3552    return;
3553  }
3554
3555  if (const PointerType *PT = T->getAs<PointerType>()) {
3556    if (PT->isObjCSelType()) {
3557      S += ':';
3558      return;
3559    }
3560    QualType PointeeTy = PT->getPointeeType();
3561
3562    bool isReadOnly = false;
3563    // For historical/compatibility reasons, the read-only qualifier of the
3564    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
3565    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
3566    // Also, do not emit the 'r' for anything but the outermost type!
3567    if (isa<TypedefType>(T.getTypePtr())) {
3568      if (OutermostType && T.isConstQualified()) {
3569        isReadOnly = true;
3570        S += 'r';
3571      }
3572    } else if (OutermostType) {
3573      QualType P = PointeeTy;
3574      while (P->getAs<PointerType>())
3575        P = P->getAs<PointerType>()->getPointeeType();
3576      if (P.isConstQualified()) {
3577        isReadOnly = true;
3578        S += 'r';
3579      }
3580    }
3581    if (isReadOnly) {
3582      // Another legacy compatibility encoding. Some ObjC qualifier and type
3583      // combinations need to be rearranged.
3584      // Rewrite "in const" from "nr" to "rn"
3585      const char * s = S.c_str();
3586      int len = S.length();
3587      if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
3588        std::string replace = "rn";
3589        S.replace(S.end()-2, S.end(), replace);
3590      }
3591    }
3592
3593    if (PointeeTy->isCharType()) {
3594      // char pointer types should be encoded as '*' unless it is a
3595      // type that has been typedef'd to 'BOOL'.
3596      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
3597        S += '*';
3598        return;
3599      }
3600    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
3601      // GCC binary compat: Need to convert "struct objc_class *" to "#".
3602      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
3603        S += '#';
3604        return;
3605      }
3606      // GCC binary compat: Need to convert "struct objc_object *" to "@".
3607      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
3608        S += '@';
3609        return;
3610      }
3611      // fall through...
3612    }
3613    S += '^';
3614    getLegacyIntegralTypeEncoding(PointeeTy);
3615
3616    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
3617                               NULL);
3618    return;
3619  }
3620
3621  if (const ArrayType *AT =
3622      // Ignore type qualifiers etc.
3623        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
3624    if (isa<IncompleteArrayType>(AT)) {
3625      // Incomplete arrays are encoded as a pointer to the array element.
3626      S += '^';
3627
3628      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3629                                 false, ExpandStructures, FD);
3630    } else {
3631      S += '[';
3632
3633      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
3634        S += llvm::utostr(CAT->getSize().getZExtValue());
3635      else {
3636        //Variable length arrays are encoded as a regular array with 0 elements.
3637        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
3638        S += '0';
3639      }
3640
3641      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3642                                 false, ExpandStructures, FD);
3643      S += ']';
3644    }
3645    return;
3646  }
3647
3648  if (T->getAs<FunctionType>()) {
3649    S += '?';
3650    return;
3651  }
3652
3653  if (const RecordType *RTy = T->getAs<RecordType>()) {
3654    RecordDecl *RDecl = RTy->getDecl();
3655    S += RDecl->isUnion() ? '(' : '{';
3656    // Anonymous structures print as '?'
3657    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
3658      S += II->getName();
3659    } else {
3660      S += '?';
3661    }
3662    if (ExpandStructures) {
3663      S += '=';
3664      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
3665                                   FieldEnd = RDecl->field_end();
3666           Field != FieldEnd; ++Field) {
3667        if (FD) {
3668          S += '"';
3669          S += Field->getNameAsString();
3670          S += '"';
3671        }
3672
3673        // Special case bit-fields.
3674        if (Field->isBitField()) {
3675          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
3676                                     (*Field));
3677        } else {
3678          QualType qt = Field->getType();
3679          getLegacyIntegralTypeEncoding(qt);
3680          getObjCEncodingForTypeImpl(qt, S, false, true,
3681                                     FD);
3682        }
3683      }
3684    }
3685    S += RDecl->isUnion() ? ')' : '}';
3686    return;
3687  }
3688
3689  if (T->isEnumeralType()) {
3690    if (FD && FD->isBitField())
3691      EncodeBitField(this, S, FD);
3692    else
3693      S += 'i';
3694    return;
3695  }
3696
3697  if (T->isBlockPointerType()) {
3698    S += "@?"; // Unlike a pointer-to-function, which is "^?".
3699    return;
3700  }
3701
3702  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
3703    // @encode(class_name)
3704    ObjCInterfaceDecl *OI = OIT->getDecl();
3705    S += '{';
3706    const IdentifierInfo *II = OI->getIdentifier();
3707    S += II->getName();
3708    S += '=';
3709    llvm::SmallVector<FieldDecl*, 32> RecFields;
3710    CollectObjCIvars(OI, RecFields);
3711    for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
3712      if (RecFields[i]->isBitField())
3713        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3714                                   RecFields[i]);
3715      else
3716        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3717                                   FD);
3718    }
3719    S += '}';
3720    return;
3721  }
3722
3723  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
3724    if (OPT->isObjCIdType()) {
3725      S += '@';
3726      return;
3727    }
3728
3729    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
3730      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
3731      // Since this is a binary compatibility issue, need to consult with runtime
3732      // folks. Fortunately, this is a *very* obsure construct.
3733      S += '#';
3734      return;
3735    }
3736
3737    if (OPT->isObjCQualifiedIdType()) {
3738      getObjCEncodingForTypeImpl(getObjCIdType(), S,
3739                                 ExpandPointedToStructures,
3740                                 ExpandStructures, FD);
3741      if (FD || EncodingProperty) {
3742        // Note that we do extended encoding of protocol qualifer list
3743        // Only when doing ivar or property encoding.
3744        S += '"';
3745        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3746             E = OPT->qual_end(); I != E; ++I) {
3747          S += '<';
3748          S += (*I)->getNameAsString();
3749          S += '>';
3750        }
3751        S += '"';
3752      }
3753      return;
3754    }
3755
3756    QualType PointeeTy = OPT->getPointeeType();
3757    if (!EncodingProperty &&
3758        isa<TypedefType>(PointeeTy.getTypePtr())) {
3759      // Another historical/compatibility reason.
3760      // We encode the underlying type which comes out as
3761      // {...};
3762      S += '^';
3763      getObjCEncodingForTypeImpl(PointeeTy, S,
3764                                 false, ExpandPointedToStructures,
3765                                 NULL);
3766      return;
3767    }
3768
3769    S += '@';
3770    if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
3771      S += '"';
3772      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
3773      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3774           E = OPT->qual_end(); I != E; ++I) {
3775        S += '<';
3776        S += (*I)->getNameAsString();
3777        S += '>';
3778      }
3779      S += '"';
3780    }
3781    return;
3782  }
3783
3784  assert(0 && "@encode for type not implemented!");
3785}
3786
3787void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
3788                                                 std::string& S) const {
3789  if (QT & Decl::OBJC_TQ_In)
3790    S += 'n';
3791  if (QT & Decl::OBJC_TQ_Inout)
3792    S += 'N';
3793  if (QT & Decl::OBJC_TQ_Out)
3794    S += 'o';
3795  if (QT & Decl::OBJC_TQ_Bycopy)
3796    S += 'O';
3797  if (QT & Decl::OBJC_TQ_Byref)
3798    S += 'R';
3799  if (QT & Decl::OBJC_TQ_Oneway)
3800    S += 'V';
3801}
3802
3803void ASTContext::setBuiltinVaListType(QualType T) {
3804  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
3805
3806  BuiltinVaListType = T;
3807}
3808
3809void ASTContext::setObjCIdType(QualType T) {
3810  ObjCIdTypedefType = T;
3811}
3812
3813void ASTContext::setObjCSelType(QualType T) {
3814  ObjCSelTypedefType = T;
3815}
3816
3817void ASTContext::setObjCProtoType(QualType QT) {
3818  ObjCProtoType = QT;
3819}
3820
3821void ASTContext::setObjCClassType(QualType T) {
3822  ObjCClassTypedefType = T;
3823}
3824
3825void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
3826  assert(ObjCConstantStringType.isNull() &&
3827         "'NSConstantString' type already set!");
3828
3829  ObjCConstantStringType = getObjCInterfaceType(Decl);
3830}
3831
3832/// \brief Retrieve the template name that corresponds to a non-empty
3833/// lookup.
3834TemplateName ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
3835                                                   UnresolvedSetIterator End) {
3836  unsigned size = End - Begin;
3837  assert(size > 1 && "set is not overloaded!");
3838
3839  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
3840                          size * sizeof(FunctionTemplateDecl*));
3841  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
3842
3843  NamedDecl **Storage = OT->getStorage();
3844  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
3845    NamedDecl *D = *I;
3846    assert(isa<FunctionTemplateDecl>(D) ||
3847           (isa<UsingShadowDecl>(D) &&
3848            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
3849    *Storage++ = D;
3850  }
3851
3852  return TemplateName(OT);
3853}
3854
3855/// \brief Retrieve the template name that represents a qualified
3856/// template name such as \c std::vector.
3857TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
3858                                                  bool TemplateKeyword,
3859                                                  TemplateDecl *Template) {
3860  // FIXME: Canonicalization?
3861  llvm::FoldingSetNodeID ID;
3862  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
3863
3864  void *InsertPos = 0;
3865  QualifiedTemplateName *QTN =
3866    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3867  if (!QTN) {
3868    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
3869    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
3870  }
3871
3872  return TemplateName(QTN);
3873}
3874
3875/// \brief Retrieve the template name that represents a dependent
3876/// template name such as \c MetaFun::template apply.
3877TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3878                                                  const IdentifierInfo *Name) {
3879  assert((!NNS || NNS->isDependent()) &&
3880         "Nested name specifier must be dependent");
3881
3882  llvm::FoldingSetNodeID ID;
3883  DependentTemplateName::Profile(ID, NNS, Name);
3884
3885  void *InsertPos = 0;
3886  DependentTemplateName *QTN =
3887    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3888
3889  if (QTN)
3890    return TemplateName(QTN);
3891
3892  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3893  if (CanonNNS == NNS) {
3894    QTN = new (*this,4) DependentTemplateName(NNS, Name);
3895  } else {
3896    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
3897    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
3898    DependentTemplateName *CheckQTN =
3899      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3900    assert(!CheckQTN && "Dependent type name canonicalization broken");
3901    (void)CheckQTN;
3902  }
3903
3904  DependentTemplateNames.InsertNode(QTN, InsertPos);
3905  return TemplateName(QTN);
3906}
3907
3908/// \brief Retrieve the template name that represents a dependent
3909/// template name such as \c MetaFun::template operator+.
3910TemplateName
3911ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3912                                     OverloadedOperatorKind Operator) {
3913  assert((!NNS || NNS->isDependent()) &&
3914         "Nested name specifier must be dependent");
3915
3916  llvm::FoldingSetNodeID ID;
3917  DependentTemplateName::Profile(ID, NNS, Operator);
3918
3919  void *InsertPos = 0;
3920  DependentTemplateName *QTN
3921    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3922
3923  if (QTN)
3924    return TemplateName(QTN);
3925
3926  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3927  if (CanonNNS == NNS) {
3928    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
3929  } else {
3930    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
3931    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
3932
3933    DependentTemplateName *CheckQTN
3934      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3935    assert(!CheckQTN && "Dependent template name canonicalization broken");
3936    (void)CheckQTN;
3937  }
3938
3939  DependentTemplateNames.InsertNode(QTN, InsertPos);
3940  return TemplateName(QTN);
3941}
3942
3943/// getFromTargetType - Given one of the integer types provided by
3944/// TargetInfo, produce the corresponding type. The unsigned @p Type
3945/// is actually a value of type @c TargetInfo::IntType.
3946CanQualType ASTContext::getFromTargetType(unsigned Type) const {
3947  switch (Type) {
3948  case TargetInfo::NoInt: return CanQualType();
3949  case TargetInfo::SignedShort: return ShortTy;
3950  case TargetInfo::UnsignedShort: return UnsignedShortTy;
3951  case TargetInfo::SignedInt: return IntTy;
3952  case TargetInfo::UnsignedInt: return UnsignedIntTy;
3953  case TargetInfo::SignedLong: return LongTy;
3954  case TargetInfo::UnsignedLong: return UnsignedLongTy;
3955  case TargetInfo::SignedLongLong: return LongLongTy;
3956  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
3957  }
3958
3959  assert(false && "Unhandled TargetInfo::IntType value");
3960  return CanQualType();
3961}
3962
3963//===----------------------------------------------------------------------===//
3964//                        Type Predicates.
3965//===----------------------------------------------------------------------===//
3966
3967/// isObjCNSObjectType - Return true if this is an NSObject object using
3968/// NSObject attribute on a c-style pointer type.
3969/// FIXME - Make it work directly on types.
3970/// FIXME: Move to Type.
3971///
3972bool ASTContext::isObjCNSObjectType(QualType Ty) const {
3973  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
3974    if (TypedefDecl *TD = TDT->getDecl())
3975      if (TD->getAttr<ObjCNSObjectAttr>())
3976        return true;
3977  }
3978  return false;
3979}
3980
3981/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
3982/// garbage collection attribute.
3983///
3984Qualifiers::GC ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
3985  Qualifiers::GC GCAttrs = Qualifiers::GCNone;
3986  if (getLangOptions().ObjC1 &&
3987      getLangOptions().getGCMode() != LangOptions::NonGC) {
3988    GCAttrs = Ty.getObjCGCAttr();
3989    // Default behavious under objective-c's gc is for objective-c pointers
3990    // (or pointers to them) be treated as though they were declared
3991    // as __strong.
3992    if (GCAttrs == Qualifiers::GCNone) {
3993      if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
3994        GCAttrs = Qualifiers::Strong;
3995      else if (Ty->isPointerType())
3996        return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
3997    }
3998    // Non-pointers have none gc'able attribute regardless of the attribute
3999    // set on them.
4000    else if (!Ty->isAnyPointerType() && !Ty->isBlockPointerType())
4001      return Qualifiers::GCNone;
4002  }
4003  return GCAttrs;
4004}
4005
4006//===----------------------------------------------------------------------===//
4007//                        Type Compatibility Testing
4008//===----------------------------------------------------------------------===//
4009
4010/// areCompatVectorTypes - Return true if the two specified vector types are
4011/// compatible.
4012static bool areCompatVectorTypes(const VectorType *LHS,
4013                                 const VectorType *RHS) {
4014  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
4015  return LHS->getElementType() == RHS->getElementType() &&
4016         LHS->getNumElements() == RHS->getNumElements();
4017}
4018
4019//===----------------------------------------------------------------------===//
4020// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
4021//===----------------------------------------------------------------------===//
4022
4023/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
4024/// inheritance hierarchy of 'rProto'.
4025bool ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
4026                                                ObjCProtocolDecl *rProto) {
4027  if (lProto == rProto)
4028    return true;
4029  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
4030       E = rProto->protocol_end(); PI != E; ++PI)
4031    if (ProtocolCompatibleWithProtocol(lProto, *PI))
4032      return true;
4033  return false;
4034}
4035
4036/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
4037/// return true if lhs's protocols conform to rhs's protocol; false
4038/// otherwise.
4039bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
4040  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
4041    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
4042  return false;
4043}
4044
4045/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
4046/// ObjCQualifiedIDType.
4047bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
4048                                                   bool compare) {
4049  // Allow id<P..> and an 'id' or void* type in all cases.
4050  if (lhs->isVoidPointerType() ||
4051      lhs->isObjCIdType() || lhs->isObjCClassType())
4052    return true;
4053  else if (rhs->isVoidPointerType() ||
4054           rhs->isObjCIdType() || rhs->isObjCClassType())
4055    return true;
4056
4057  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
4058    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
4059
4060    if (!rhsOPT) return false;
4061
4062    if (rhsOPT->qual_empty()) {
4063      // If the RHS is a unqualified interface pointer "NSString*",
4064      // make sure we check the class hierarchy.
4065      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4066        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4067             E = lhsQID->qual_end(); I != E; ++I) {
4068          // when comparing an id<P> on lhs with a static type on rhs,
4069          // see if static class implements all of id's protocols, directly or
4070          // through its super class and categories.
4071          if (!rhsID->ClassImplementsProtocol(*I, true))
4072            return false;
4073        }
4074      }
4075      // If there are no qualifiers and no interface, we have an 'id'.
4076      return true;
4077    }
4078    // Both the right and left sides have qualifiers.
4079    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4080         E = lhsQID->qual_end(); I != E; ++I) {
4081      ObjCProtocolDecl *lhsProto = *I;
4082      bool match = false;
4083
4084      // when comparing an id<P> on lhs with a static type on rhs,
4085      // see if static class implements all of id's protocols, directly or
4086      // through its super class and categories.
4087      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
4088           E = rhsOPT->qual_end(); J != E; ++J) {
4089        ObjCProtocolDecl *rhsProto = *J;
4090        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4091            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4092          match = true;
4093          break;
4094        }
4095      }
4096      // If the RHS is a qualified interface pointer "NSString<P>*",
4097      // make sure we check the class hierarchy.
4098      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4099        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4100             E = lhsQID->qual_end(); I != E; ++I) {
4101          // when comparing an id<P> on lhs with a static type on rhs,
4102          // see if static class implements all of id's protocols, directly or
4103          // through its super class and categories.
4104          if (rhsID->ClassImplementsProtocol(*I, true)) {
4105            match = true;
4106            break;
4107          }
4108        }
4109      }
4110      if (!match)
4111        return false;
4112    }
4113
4114    return true;
4115  }
4116
4117  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
4118  assert(rhsQID && "One of the LHS/RHS should be id<x>");
4119
4120  if (const ObjCObjectPointerType *lhsOPT =
4121        lhs->getAsObjCInterfacePointerType()) {
4122    if (lhsOPT->qual_empty()) {
4123      bool match = false;
4124      if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
4125        for (ObjCObjectPointerType::qual_iterator I = rhsQID->qual_begin(),
4126             E = rhsQID->qual_end(); I != E; ++I) {
4127          // when comparing an id<P> on lhs with a static type on rhs,
4128          // see if static class implements all of id's protocols, directly or
4129          // through its super class and categories.
4130          if (lhsID->ClassImplementsProtocol(*I, true)) {
4131            match = true;
4132            break;
4133          }
4134        }
4135        if (!match)
4136          return false;
4137      }
4138      return true;
4139    }
4140    // Both the right and left sides have qualifiers.
4141    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
4142         E = lhsOPT->qual_end(); I != E; ++I) {
4143      ObjCProtocolDecl *lhsProto = *I;
4144      bool match = false;
4145
4146      // when comparing an id<P> on lhs with a static type on rhs,
4147      // see if static class implements all of id's protocols, directly or
4148      // through its super class and categories.
4149      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
4150           E = rhsQID->qual_end(); J != E; ++J) {
4151        ObjCProtocolDecl *rhsProto = *J;
4152        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4153            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4154          match = true;
4155          break;
4156        }
4157      }
4158      if (!match)
4159        return false;
4160    }
4161    return true;
4162  }
4163  return false;
4164}
4165
4166/// canAssignObjCInterfaces - Return true if the two interface types are
4167/// compatible for assignment from RHS to LHS.  This handles validation of any
4168/// protocol qualifiers on the LHS or RHS.
4169///
4170bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
4171                                         const ObjCObjectPointerType *RHSOPT) {
4172  // If either type represents the built-in 'id' or 'Class' types, return true.
4173  if (LHSOPT->isObjCBuiltinType() || RHSOPT->isObjCBuiltinType())
4174    return true;
4175
4176  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
4177    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4178                                             QualType(RHSOPT,0),
4179                                             false);
4180
4181  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4182  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4183  if (LHS && RHS) // We have 2 user-defined types.
4184    return canAssignObjCInterfaces(LHS, RHS);
4185
4186  return false;
4187}
4188
4189/// getIntersectionOfProtocols - This routine finds the intersection of set
4190/// of protocols inherited from two distinct objective-c pointer objects.
4191/// It is used to build composite qualifier list of the composite type of
4192/// the conditional expression involving two objective-c pointer objects.
4193static
4194void getIntersectionOfProtocols(ASTContext &Context,
4195                                const ObjCObjectPointerType *LHSOPT,
4196                                const ObjCObjectPointerType *RHSOPT,
4197      llvm::SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
4198
4199  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4200  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4201
4202  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
4203  unsigned LHSNumProtocols = LHS->getNumProtocols();
4204  if (LHSNumProtocols > 0)
4205    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
4206  else {
4207    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
4208    Context.CollectInheritedProtocols(LHS->getDecl(), LHSInheritedProtocols);
4209    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
4210                                LHSInheritedProtocols.end());
4211  }
4212
4213  unsigned RHSNumProtocols = RHS->getNumProtocols();
4214  if (RHSNumProtocols > 0) {
4215    ObjCProtocolDecl **RHSProtocols = (ObjCProtocolDecl **)RHS->qual_begin();
4216    for (unsigned i = 0; i < RHSNumProtocols; ++i)
4217      if (InheritedProtocolSet.count(RHSProtocols[i]))
4218        IntersectionOfProtocols.push_back(RHSProtocols[i]);
4219  }
4220  else {
4221    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
4222    Context.CollectInheritedProtocols(RHS->getDecl(), RHSInheritedProtocols);
4223    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
4224         RHSInheritedProtocols.begin(),
4225         E = RHSInheritedProtocols.end(); I != E; ++I)
4226      if (InheritedProtocolSet.count((*I)))
4227        IntersectionOfProtocols.push_back((*I));
4228  }
4229}
4230
4231/// areCommonBaseCompatible - Returns common base class of the two classes if
4232/// one found. Note that this is O'2 algorithm. But it will be called as the
4233/// last type comparison in a ?-exp of ObjC pointer types before a
4234/// warning is issued. So, its invokation is extremely rare.
4235QualType ASTContext::areCommonBaseCompatible(
4236                                          const ObjCObjectPointerType *LHSOPT,
4237                                          const ObjCObjectPointerType *RHSOPT) {
4238  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4239  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4240  if (!LHS || !RHS)
4241    return QualType();
4242
4243  while (const ObjCInterfaceDecl *LHSIDecl = LHS->getDecl()->getSuperClass()) {
4244    QualType LHSTy = getObjCInterfaceType(LHSIDecl);
4245    LHS = LHSTy->getAs<ObjCInterfaceType>();
4246    if (canAssignObjCInterfaces(LHS, RHS)) {
4247      llvm::SmallVector<ObjCProtocolDecl *, 8> IntersectionOfProtocols;
4248      getIntersectionOfProtocols(*this,
4249                                 LHSOPT, RHSOPT, IntersectionOfProtocols);
4250      if (IntersectionOfProtocols.empty())
4251        LHSTy = getObjCObjectPointerType(LHSTy);
4252      else
4253        LHSTy = getObjCObjectPointerType(LHSTy, &IntersectionOfProtocols[0],
4254                                                IntersectionOfProtocols.size());
4255      return LHSTy;
4256    }
4257  }
4258
4259  return QualType();
4260}
4261
4262bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
4263                                         const ObjCInterfaceType *RHS) {
4264  // Verify that the base decls are compatible: the RHS must be a subclass of
4265  // the LHS.
4266  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
4267    return false;
4268
4269  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
4270  // protocol qualified at all, then we are good.
4271  if (LHS->getNumProtocols() == 0)
4272    return true;
4273
4274  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
4275  // isn't a superset.
4276  if (RHS->getNumProtocols() == 0)
4277    return true;  // FIXME: should return false!
4278
4279  for (ObjCInterfaceType::qual_iterator LHSPI = LHS->qual_begin(),
4280                                        LHSPE = LHS->qual_end();
4281       LHSPI != LHSPE; LHSPI++) {
4282    bool RHSImplementsProtocol = false;
4283
4284    // If the RHS doesn't implement the protocol on the left, the types
4285    // are incompatible.
4286    for (ObjCInterfaceType::qual_iterator RHSPI = RHS->qual_begin(),
4287                                          RHSPE = RHS->qual_end();
4288         RHSPI != RHSPE; RHSPI++) {
4289      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
4290        RHSImplementsProtocol = true;
4291        break;
4292      }
4293    }
4294    // FIXME: For better diagnostics, consider passing back the protocol name.
4295    if (!RHSImplementsProtocol)
4296      return false;
4297  }
4298  // The RHS implements all protocols listed on the LHS.
4299  return true;
4300}
4301
4302bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
4303  // get the "pointed to" types
4304  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
4305  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
4306
4307  if (!LHSOPT || !RHSOPT)
4308    return false;
4309
4310  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
4311         canAssignObjCInterfaces(RHSOPT, LHSOPT);
4312}
4313
4314/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
4315/// both shall have the identically qualified version of a compatible type.
4316/// C99 6.2.7p1: Two types have compatible types if their types are the
4317/// same. See 6.7.[2,3,5] for additional rules.
4318bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
4319  if (getLangOptions().CPlusPlus)
4320    return hasSameType(LHS, RHS);
4321
4322  return !mergeTypes(LHS, RHS).isNull();
4323}
4324
4325QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
4326  const FunctionType *lbase = lhs->getAs<FunctionType>();
4327  const FunctionType *rbase = rhs->getAs<FunctionType>();
4328  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
4329  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
4330  bool allLTypes = true;
4331  bool allRTypes = true;
4332
4333  // Check return type
4334  QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
4335  if (retType.isNull()) return QualType();
4336  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
4337    allLTypes = false;
4338  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
4339    allRTypes = false;
4340  // FIXME: double check this
4341  bool NoReturn = lbase->getNoReturnAttr() || rbase->getNoReturnAttr();
4342  if (NoReturn != lbase->getNoReturnAttr())
4343    allLTypes = false;
4344  if (NoReturn != rbase->getNoReturnAttr())
4345    allRTypes = false;
4346  CallingConv lcc = lbase->getCallConv();
4347  CallingConv rcc = rbase->getCallConv();
4348  // Compatible functions must have compatible calling conventions
4349  if (!isSameCallConv(lcc, rcc))
4350    return QualType();
4351
4352  if (lproto && rproto) { // two C99 style function prototypes
4353    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
4354           "C++ shouldn't be here");
4355    unsigned lproto_nargs = lproto->getNumArgs();
4356    unsigned rproto_nargs = rproto->getNumArgs();
4357
4358    // Compatible functions must have the same number of arguments
4359    if (lproto_nargs != rproto_nargs)
4360      return QualType();
4361
4362    // Variadic and non-variadic functions aren't compatible
4363    if (lproto->isVariadic() != rproto->isVariadic())
4364      return QualType();
4365
4366    if (lproto->getTypeQuals() != rproto->getTypeQuals())
4367      return QualType();
4368
4369    // Check argument compatibility
4370    llvm::SmallVector<QualType, 10> types;
4371    for (unsigned i = 0; i < lproto_nargs; i++) {
4372      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
4373      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
4374      QualType argtype = mergeTypes(largtype, rargtype);
4375      if (argtype.isNull()) return QualType();
4376      types.push_back(argtype);
4377      if (getCanonicalType(argtype) != getCanonicalType(largtype))
4378        allLTypes = false;
4379      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
4380        allRTypes = false;
4381    }
4382    if (allLTypes) return lhs;
4383    if (allRTypes) return rhs;
4384    return getFunctionType(retType, types.begin(), types.size(),
4385                           lproto->isVariadic(), lproto->getTypeQuals(),
4386                           false, false, 0, 0, NoReturn, lcc);
4387  }
4388
4389  if (lproto) allRTypes = false;
4390  if (rproto) allLTypes = false;
4391
4392  const FunctionProtoType *proto = lproto ? lproto : rproto;
4393  if (proto) {
4394    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
4395    if (proto->isVariadic()) return QualType();
4396    // Check that the types are compatible with the types that
4397    // would result from default argument promotions (C99 6.7.5.3p15).
4398    // The only types actually affected are promotable integer
4399    // types and floats, which would be passed as a different
4400    // type depending on whether the prototype is visible.
4401    unsigned proto_nargs = proto->getNumArgs();
4402    for (unsigned i = 0; i < proto_nargs; ++i) {
4403      QualType argTy = proto->getArgType(i);
4404
4405      // Look at the promotion type of enum types, since that is the type used
4406      // to pass enum values.
4407      if (const EnumType *Enum = argTy->getAs<EnumType>())
4408        argTy = Enum->getDecl()->getPromotionType();
4409
4410      if (argTy->isPromotableIntegerType() ||
4411          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
4412        return QualType();
4413    }
4414
4415    if (allLTypes) return lhs;
4416    if (allRTypes) return rhs;
4417    return getFunctionType(retType, proto->arg_type_begin(),
4418                           proto->getNumArgs(), proto->isVariadic(),
4419                           proto->getTypeQuals(),
4420                           false, false, 0, 0, NoReturn, lcc);
4421  }
4422
4423  if (allLTypes) return lhs;
4424  if (allRTypes) return rhs;
4425  return getFunctionNoProtoType(retType, NoReturn, lcc);
4426}
4427
4428QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
4429  // C++ [expr]: If an expression initially has the type "reference to T", the
4430  // type is adjusted to "T" prior to any further analysis, the expression
4431  // designates the object or function denoted by the reference, and the
4432  // expression is an lvalue unless the reference is an rvalue reference and
4433  // the expression is a function call (possibly inside parentheses).
4434  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
4435  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
4436
4437  QualType LHSCan = getCanonicalType(LHS),
4438           RHSCan = getCanonicalType(RHS);
4439
4440  // If two types are identical, they are compatible.
4441  if (LHSCan == RHSCan)
4442    return LHS;
4443
4444  // If the qualifiers are different, the types aren't compatible... mostly.
4445  Qualifiers LQuals = LHSCan.getLocalQualifiers();
4446  Qualifiers RQuals = RHSCan.getLocalQualifiers();
4447  if (LQuals != RQuals) {
4448    // If any of these qualifiers are different, we have a type
4449    // mismatch.
4450    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
4451        LQuals.getAddressSpace() != RQuals.getAddressSpace())
4452      return QualType();
4453
4454    // Exactly one GC qualifier difference is allowed: __strong is
4455    // okay if the other type has no GC qualifier but is an Objective
4456    // C object pointer (i.e. implicitly strong by default).  We fix
4457    // this by pretending that the unqualified type was actually
4458    // qualified __strong.
4459    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
4460    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
4461    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
4462
4463    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
4464      return QualType();
4465
4466    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
4467      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
4468    }
4469    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
4470      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
4471    }
4472    return QualType();
4473  }
4474
4475  // Okay, qualifiers are equal.
4476
4477  Type::TypeClass LHSClass = LHSCan->getTypeClass();
4478  Type::TypeClass RHSClass = RHSCan->getTypeClass();
4479
4480  // We want to consider the two function types to be the same for these
4481  // comparisons, just force one to the other.
4482  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
4483  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
4484
4485  // Same as above for arrays
4486  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
4487    LHSClass = Type::ConstantArray;
4488  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
4489    RHSClass = Type::ConstantArray;
4490
4491  // Canonicalize ExtVector -> Vector.
4492  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
4493  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
4494
4495  // If the canonical type classes don't match.
4496  if (LHSClass != RHSClass) {
4497    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
4498    // a signed integer type, or an unsigned integer type.
4499    // Compatibility is based on the underlying type, not the promotion
4500    // type.
4501    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
4502      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
4503        return RHS;
4504    }
4505    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
4506      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
4507        return LHS;
4508    }
4509
4510    return QualType();
4511  }
4512
4513  // The canonical type classes match.
4514  switch (LHSClass) {
4515#define TYPE(Class, Base)
4516#define ABSTRACT_TYPE(Class, Base)
4517#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
4518#define DEPENDENT_TYPE(Class, Base) case Type::Class:
4519#include "clang/AST/TypeNodes.def"
4520    assert(false && "Non-canonical and dependent types shouldn't get here");
4521    return QualType();
4522
4523  case Type::LValueReference:
4524  case Type::RValueReference:
4525  case Type::MemberPointer:
4526    assert(false && "C++ should never be in mergeTypes");
4527    return QualType();
4528
4529  case Type::IncompleteArray:
4530  case Type::VariableArray:
4531  case Type::FunctionProto:
4532  case Type::ExtVector:
4533    assert(false && "Types are eliminated above");
4534    return QualType();
4535
4536  case Type::Pointer:
4537  {
4538    // Merge two pointer types, while trying to preserve typedef info
4539    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
4540    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
4541    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
4542    if (ResultType.isNull()) return QualType();
4543    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4544      return LHS;
4545    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4546      return RHS;
4547    return getPointerType(ResultType);
4548  }
4549  case Type::BlockPointer:
4550  {
4551    // Merge two block pointer types, while trying to preserve typedef info
4552    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
4553    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
4554    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
4555    if (ResultType.isNull()) return QualType();
4556    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4557      return LHS;
4558    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4559      return RHS;
4560    return getBlockPointerType(ResultType);
4561  }
4562  case Type::ConstantArray:
4563  {
4564    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
4565    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
4566    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
4567      return QualType();
4568
4569    QualType LHSElem = getAsArrayType(LHS)->getElementType();
4570    QualType RHSElem = getAsArrayType(RHS)->getElementType();
4571    QualType ResultType = mergeTypes(LHSElem, RHSElem);
4572    if (ResultType.isNull()) return QualType();
4573    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4574      return LHS;
4575    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4576      return RHS;
4577    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
4578                                          ArrayType::ArraySizeModifier(), 0);
4579    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
4580                                          ArrayType::ArraySizeModifier(), 0);
4581    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
4582    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
4583    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4584      return LHS;
4585    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4586      return RHS;
4587    if (LVAT) {
4588      // FIXME: This isn't correct! But tricky to implement because
4589      // the array's size has to be the size of LHS, but the type
4590      // has to be different.
4591      return LHS;
4592    }
4593    if (RVAT) {
4594      // FIXME: This isn't correct! But tricky to implement because
4595      // the array's size has to be the size of RHS, but the type
4596      // has to be different.
4597      return RHS;
4598    }
4599    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
4600    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
4601    return getIncompleteArrayType(ResultType,
4602                                  ArrayType::ArraySizeModifier(), 0);
4603  }
4604  case Type::FunctionNoProto:
4605    return mergeFunctionTypes(LHS, RHS);
4606  case Type::Record:
4607  case Type::Enum:
4608    return QualType();
4609  case Type::Builtin:
4610    // Only exactly equal builtin types are compatible, which is tested above.
4611    return QualType();
4612  case Type::Complex:
4613    // Distinct complex types are incompatible.
4614    return QualType();
4615  case Type::Vector:
4616    // FIXME: The merged type should be an ExtVector!
4617    if (areCompatVectorTypes(LHS->getAs<VectorType>(), RHS->getAs<VectorType>()))
4618      return LHS;
4619    return QualType();
4620  case Type::ObjCInterface: {
4621    // Check if the interfaces are assignment compatible.
4622    // FIXME: This should be type compatibility, e.g. whether
4623    // "LHS x; RHS x;" at global scope is legal.
4624    const ObjCInterfaceType* LHSIface = LHS->getAs<ObjCInterfaceType>();
4625    const ObjCInterfaceType* RHSIface = RHS->getAs<ObjCInterfaceType>();
4626    if (LHSIface && RHSIface &&
4627        canAssignObjCInterfaces(LHSIface, RHSIface))
4628      return LHS;
4629
4630    return QualType();
4631  }
4632  case Type::ObjCObjectPointer: {
4633    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
4634                                RHS->getAs<ObjCObjectPointerType>()))
4635      return LHS;
4636
4637    return QualType();
4638  }
4639  case Type::TemplateSpecialization:
4640    assert(false && "Dependent types have no size");
4641    break;
4642  }
4643
4644  return QualType();
4645}
4646
4647//===----------------------------------------------------------------------===//
4648//                         Integer Predicates
4649//===----------------------------------------------------------------------===//
4650
4651unsigned ASTContext::getIntWidth(QualType T) {
4652  if (T->isBooleanType())
4653    return 1;
4654  if (EnumType *ET = dyn_cast<EnumType>(T))
4655    T = ET->getDecl()->getIntegerType();
4656  // For builtin types, just use the standard type sizing method
4657  return (unsigned)getTypeSize(T);
4658}
4659
4660QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
4661  assert(T->isSignedIntegerType() && "Unexpected type");
4662
4663  // Turn <4 x signed int> -> <4 x unsigned int>
4664  if (const VectorType *VTy = T->getAs<VectorType>())
4665    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
4666             VTy->getNumElements(), VTy->isAltiVec(), VTy->isPixel());
4667
4668  // For enums, we return the unsigned version of the base type.
4669  if (const EnumType *ETy = T->getAs<EnumType>())
4670    T = ETy->getDecl()->getIntegerType();
4671
4672  const BuiltinType *BTy = T->getAs<BuiltinType>();
4673  assert(BTy && "Unexpected signed integer type");
4674  switch (BTy->getKind()) {
4675  case BuiltinType::Char_S:
4676  case BuiltinType::SChar:
4677    return UnsignedCharTy;
4678  case BuiltinType::Short:
4679    return UnsignedShortTy;
4680  case BuiltinType::Int:
4681    return UnsignedIntTy;
4682  case BuiltinType::Long:
4683    return UnsignedLongTy;
4684  case BuiltinType::LongLong:
4685    return UnsignedLongLongTy;
4686  case BuiltinType::Int128:
4687    return UnsignedInt128Ty;
4688  default:
4689    assert(0 && "Unexpected signed integer type");
4690    return QualType();
4691  }
4692}
4693
4694ExternalASTSource::~ExternalASTSource() { }
4695
4696void ExternalASTSource::PrintStats() { }
4697
4698
4699//===----------------------------------------------------------------------===//
4700//                          Builtin Type Computation
4701//===----------------------------------------------------------------------===//
4702
4703/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
4704/// pointer over the consumed characters.  This returns the resultant type.
4705static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context,
4706                                  ASTContext::GetBuiltinTypeError &Error,
4707                                  bool AllowTypeModifiers = true) {
4708  // Modifiers.
4709  int HowLong = 0;
4710  bool Signed = false, Unsigned = false;
4711
4712  // Read the modifiers first.
4713  bool Done = false;
4714  while (!Done) {
4715    switch (*Str++) {
4716    default: Done = true; --Str; break;
4717    case 'S':
4718      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
4719      assert(!Signed && "Can't use 'S' modifier multiple times!");
4720      Signed = true;
4721      break;
4722    case 'U':
4723      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
4724      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
4725      Unsigned = true;
4726      break;
4727    case 'L':
4728      assert(HowLong <= 2 && "Can't have LLLL modifier");
4729      ++HowLong;
4730      break;
4731    }
4732  }
4733
4734  QualType Type;
4735
4736  // Read the base type.
4737  switch (*Str++) {
4738  default: assert(0 && "Unknown builtin type letter!");
4739  case 'v':
4740    assert(HowLong == 0 && !Signed && !Unsigned &&
4741           "Bad modifiers used with 'v'!");
4742    Type = Context.VoidTy;
4743    break;
4744  case 'f':
4745    assert(HowLong == 0 && !Signed && !Unsigned &&
4746           "Bad modifiers used with 'f'!");
4747    Type = Context.FloatTy;
4748    break;
4749  case 'd':
4750    assert(HowLong < 2 && !Signed && !Unsigned &&
4751           "Bad modifiers used with 'd'!");
4752    if (HowLong)
4753      Type = Context.LongDoubleTy;
4754    else
4755      Type = Context.DoubleTy;
4756    break;
4757  case 's':
4758    assert(HowLong == 0 && "Bad modifiers used with 's'!");
4759    if (Unsigned)
4760      Type = Context.UnsignedShortTy;
4761    else
4762      Type = Context.ShortTy;
4763    break;
4764  case 'i':
4765    if (HowLong == 3)
4766      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
4767    else if (HowLong == 2)
4768      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
4769    else if (HowLong == 1)
4770      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
4771    else
4772      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
4773    break;
4774  case 'c':
4775    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
4776    if (Signed)
4777      Type = Context.SignedCharTy;
4778    else if (Unsigned)
4779      Type = Context.UnsignedCharTy;
4780    else
4781      Type = Context.CharTy;
4782    break;
4783  case 'b': // boolean
4784    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
4785    Type = Context.BoolTy;
4786    break;
4787  case 'z':  // size_t.
4788    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
4789    Type = Context.getSizeType();
4790    break;
4791  case 'F':
4792    Type = Context.getCFConstantStringType();
4793    break;
4794  case 'a':
4795    Type = Context.getBuiltinVaListType();
4796    assert(!Type.isNull() && "builtin va list type not initialized!");
4797    break;
4798  case 'A':
4799    // This is a "reference" to a va_list; however, what exactly
4800    // this means depends on how va_list is defined. There are two
4801    // different kinds of va_list: ones passed by value, and ones
4802    // passed by reference.  An example of a by-value va_list is
4803    // x86, where va_list is a char*. An example of by-ref va_list
4804    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
4805    // we want this argument to be a char*&; for x86-64, we want
4806    // it to be a __va_list_tag*.
4807    Type = Context.getBuiltinVaListType();
4808    assert(!Type.isNull() && "builtin va list type not initialized!");
4809    if (Type->isArrayType()) {
4810      Type = Context.getArrayDecayedType(Type);
4811    } else {
4812      Type = Context.getLValueReferenceType(Type);
4813    }
4814    break;
4815  case 'V': {
4816    char *End;
4817    unsigned NumElements = strtoul(Str, &End, 10);
4818    assert(End != Str && "Missing vector size");
4819
4820    Str = End;
4821
4822    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4823    // FIXME: Don't know what to do about AltiVec.
4824    Type = Context.getVectorType(ElementType, NumElements, false, false);
4825    break;
4826  }
4827  case 'X': {
4828    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4829    Type = Context.getComplexType(ElementType);
4830    break;
4831  }
4832  case 'P':
4833    Type = Context.getFILEType();
4834    if (Type.isNull()) {
4835      Error = ASTContext::GE_Missing_stdio;
4836      return QualType();
4837    }
4838    break;
4839  case 'J':
4840    if (Signed)
4841      Type = Context.getsigjmp_bufType();
4842    else
4843      Type = Context.getjmp_bufType();
4844
4845    if (Type.isNull()) {
4846      Error = ASTContext::GE_Missing_setjmp;
4847      return QualType();
4848    }
4849    break;
4850  }
4851
4852  if (!AllowTypeModifiers)
4853    return Type;
4854
4855  Done = false;
4856  while (!Done) {
4857    switch (*Str++) {
4858      default: Done = true; --Str; break;
4859      case '*':
4860        Type = Context.getPointerType(Type);
4861        break;
4862      case '&':
4863        Type = Context.getLValueReferenceType(Type);
4864        break;
4865      // FIXME: There's no way to have a built-in with an rvalue ref arg.
4866      case 'C':
4867        Type = Type.withConst();
4868        break;
4869      case 'D':
4870        Type = Context.getVolatileType(Type);
4871        break;
4872    }
4873  }
4874
4875  return Type;
4876}
4877
4878/// GetBuiltinType - Return the type for the specified builtin.
4879QualType ASTContext::GetBuiltinType(unsigned id,
4880                                    GetBuiltinTypeError &Error) {
4881  const char *TypeStr = BuiltinInfo.GetTypeString(id);
4882
4883  llvm::SmallVector<QualType, 8> ArgTypes;
4884
4885  Error = GE_None;
4886  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error);
4887  if (Error != GE_None)
4888    return QualType();
4889  while (TypeStr[0] && TypeStr[0] != '.') {
4890    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error);
4891    if (Error != GE_None)
4892      return QualType();
4893
4894    // Do array -> pointer decay.  The builtin should use the decayed type.
4895    if (Ty->isArrayType())
4896      Ty = getArrayDecayedType(Ty);
4897
4898    ArgTypes.push_back(Ty);
4899  }
4900
4901  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
4902         "'.' should only occur at end of builtin type list!");
4903
4904  // handle untyped/variadic arguments "T c99Style();" or "T cppStyle(...);".
4905  if (ArgTypes.size() == 0 && TypeStr[0] == '.')
4906    return getFunctionNoProtoType(ResType);
4907
4908  // FIXME: Should we create noreturn types?
4909  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(),
4910                         TypeStr[0] == '.', 0, false, false, 0, 0,
4911                         false, CC_Default);
4912}
4913
4914QualType
4915ASTContext::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
4916  // Perform the usual unary conversions. We do this early so that
4917  // integral promotions to "int" can allow us to exit early, in the
4918  // lhs == rhs check. Also, for conversion purposes, we ignore any
4919  // qualifiers.  For example, "const float" and "float" are
4920  // equivalent.
4921  if (lhs->isPromotableIntegerType())
4922    lhs = getPromotedIntegerType(lhs);
4923  else
4924    lhs = lhs.getUnqualifiedType();
4925  if (rhs->isPromotableIntegerType())
4926    rhs = getPromotedIntegerType(rhs);
4927  else
4928    rhs = rhs.getUnqualifiedType();
4929
4930  // If both types are identical, no conversion is needed.
4931  if (lhs == rhs)
4932    return lhs;
4933
4934  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
4935  // The caller can deal with this (e.g. pointer + int).
4936  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
4937    return lhs;
4938
4939  // At this point, we have two different arithmetic types.
4940
4941  // Handle complex types first (C99 6.3.1.8p1).
4942  if (lhs->isComplexType() || rhs->isComplexType()) {
4943    // if we have an integer operand, the result is the complex type.
4944    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
4945      // convert the rhs to the lhs complex type.
4946      return lhs;
4947    }
4948    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
4949      // convert the lhs to the rhs complex type.
4950      return rhs;
4951    }
4952    // This handles complex/complex, complex/float, or float/complex.
4953    // When both operands are complex, the shorter operand is converted to the
4954    // type of the longer, and that is the type of the result. This corresponds
4955    // to what is done when combining two real floating-point operands.
4956    // The fun begins when size promotion occur across type domains.
4957    // From H&S 6.3.4: When one operand is complex and the other is a real
4958    // floating-point type, the less precise type is converted, within it's
4959    // real or complex domain, to the precision of the other type. For example,
4960    // when combining a "long double" with a "double _Complex", the
4961    // "double _Complex" is promoted to "long double _Complex".
4962    int result = getFloatingTypeOrder(lhs, rhs);
4963
4964    if (result > 0) { // The left side is bigger, convert rhs.
4965      rhs = getFloatingTypeOfSizeWithinDomain(lhs, rhs);
4966    } else if (result < 0) { // The right side is bigger, convert lhs.
4967      lhs = getFloatingTypeOfSizeWithinDomain(rhs, lhs);
4968    }
4969    // At this point, lhs and rhs have the same rank/size. Now, make sure the
4970    // domains match. This is a requirement for our implementation, C99
4971    // does not require this promotion.
4972    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
4973      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
4974        return rhs;
4975      } else { // handle "_Complex double, double".
4976        return lhs;
4977      }
4978    }
4979    return lhs; // The domain/size match exactly.
4980  }
4981  // Now handle "real" floating types (i.e. float, double, long double).
4982  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
4983    // if we have an integer operand, the result is the real floating type.
4984    if (rhs->isIntegerType()) {
4985      // convert rhs to the lhs floating point type.
4986      return lhs;
4987    }
4988    if (rhs->isComplexIntegerType()) {
4989      // convert rhs to the complex floating point type.
4990      return getComplexType(lhs);
4991    }
4992    if (lhs->isIntegerType()) {
4993      // convert lhs to the rhs floating point type.
4994      return rhs;
4995    }
4996    if (lhs->isComplexIntegerType()) {
4997      // convert lhs to the complex floating point type.
4998      return getComplexType(rhs);
4999    }
5000    // We have two real floating types, float/complex combos were handled above.
5001    // Convert the smaller operand to the bigger result.
5002    int result = getFloatingTypeOrder(lhs, rhs);
5003    if (result > 0) // convert the rhs
5004      return lhs;
5005    assert(result < 0 && "illegal float comparison");
5006    return rhs;   // convert the lhs
5007  }
5008  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
5009    // Handle GCC complex int extension.
5010    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
5011    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
5012
5013    if (lhsComplexInt && rhsComplexInt) {
5014      if (getIntegerTypeOrder(lhsComplexInt->getElementType(),
5015                              rhsComplexInt->getElementType()) >= 0)
5016        return lhs; // convert the rhs
5017      return rhs;
5018    } else if (lhsComplexInt && rhs->isIntegerType()) {
5019      // convert the rhs to the lhs complex type.
5020      return lhs;
5021    } else if (rhsComplexInt && lhs->isIntegerType()) {
5022      // convert the lhs to the rhs complex type.
5023      return rhs;
5024    }
5025  }
5026  // Finally, we have two differing integer types.
5027  // The rules for this case are in C99 6.3.1.8
5028  int compare = getIntegerTypeOrder(lhs, rhs);
5029  bool lhsSigned = lhs->isSignedIntegerType(),
5030       rhsSigned = rhs->isSignedIntegerType();
5031  QualType destType;
5032  if (lhsSigned == rhsSigned) {
5033    // Same signedness; use the higher-ranked type
5034    destType = compare >= 0 ? lhs : rhs;
5035  } else if (compare != (lhsSigned ? 1 : -1)) {
5036    // The unsigned type has greater than or equal rank to the
5037    // signed type, so use the unsigned type
5038    destType = lhsSigned ? rhs : lhs;
5039  } else if (getIntWidth(lhs) != getIntWidth(rhs)) {
5040    // The two types are different widths; if we are here, that
5041    // means the signed type is larger than the unsigned type, so
5042    // use the signed type.
5043    destType = lhsSigned ? lhs : rhs;
5044  } else {
5045    // The signed type is higher-ranked than the unsigned type,
5046    // but isn't actually any bigger (like unsigned int and long
5047    // on most 32-bit systems).  Use the unsigned type corresponding
5048    // to the signed type.
5049    destType = getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
5050  }
5051  return destType;
5052}
5053