ASTContext.cpp revision 0e7bf40027f75c0c62fb002af7eab0882de6d332
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExternalASTSource.h"
23#include "clang/AST/ASTMutationListener.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/Mangle.h"
26#include "clang/Basic/Builtins.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/TargetInfo.h"
29#include "llvm/ADT/SmallString.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/Support/MathExtras.h"
32#include "llvm/Support/raw_ostream.h"
33#include "llvm/Support/Capacity.h"
34#include "CXXABI.h"
35#include <map>
36
37using namespace clang;
38
39unsigned ASTContext::NumImplicitDefaultConstructors;
40unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
41unsigned ASTContext::NumImplicitCopyConstructors;
42unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
43unsigned ASTContext::NumImplicitMoveConstructors;
44unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
45unsigned ASTContext::NumImplicitCopyAssignmentOperators;
46unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
47unsigned ASTContext::NumImplicitMoveAssignmentOperators;
48unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
49unsigned ASTContext::NumImplicitDestructors;
50unsigned ASTContext::NumImplicitDestructorsDeclared;
51
52enum FloatingRank {
53  FloatRank, DoubleRank, LongDoubleRank
54};
55
56void
57ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
58                                               TemplateTemplateParmDecl *Parm) {
59  ID.AddInteger(Parm->getDepth());
60  ID.AddInteger(Parm->getPosition());
61  ID.AddBoolean(Parm->isParameterPack());
62
63  TemplateParameterList *Params = Parm->getTemplateParameters();
64  ID.AddInteger(Params->size());
65  for (TemplateParameterList::const_iterator P = Params->begin(),
66                                          PEnd = Params->end();
67       P != PEnd; ++P) {
68    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
69      ID.AddInteger(0);
70      ID.AddBoolean(TTP->isParameterPack());
71      continue;
72    }
73
74    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
75      ID.AddInteger(1);
76      ID.AddBoolean(NTTP->isParameterPack());
77      ID.AddPointer(NTTP->getType().getAsOpaquePtr());
78      if (NTTP->isExpandedParameterPack()) {
79        ID.AddBoolean(true);
80        ID.AddInteger(NTTP->getNumExpansionTypes());
81        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I)
82          ID.AddPointer(NTTP->getExpansionType(I).getAsOpaquePtr());
83      } else
84        ID.AddBoolean(false);
85      continue;
86    }
87
88    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
89    ID.AddInteger(2);
90    Profile(ID, TTP);
91  }
92}
93
94TemplateTemplateParmDecl *
95ASTContext::getCanonicalTemplateTemplateParmDecl(
96                                          TemplateTemplateParmDecl *TTP) const {
97  // Check if we already have a canonical template template parameter.
98  llvm::FoldingSetNodeID ID;
99  CanonicalTemplateTemplateParm::Profile(ID, TTP);
100  void *InsertPos = 0;
101  CanonicalTemplateTemplateParm *Canonical
102    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
103  if (Canonical)
104    return Canonical->getParam();
105
106  // Build a canonical template parameter list.
107  TemplateParameterList *Params = TTP->getTemplateParameters();
108  SmallVector<NamedDecl *, 4> CanonParams;
109  CanonParams.reserve(Params->size());
110  for (TemplateParameterList::const_iterator P = Params->begin(),
111                                          PEnd = Params->end();
112       P != PEnd; ++P) {
113    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
114      CanonParams.push_back(
115                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
116                                               SourceLocation(),
117                                               SourceLocation(),
118                                               TTP->getDepth(),
119                                               TTP->getIndex(), 0, false,
120                                               TTP->isParameterPack()));
121    else if (NonTypeTemplateParmDecl *NTTP
122             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
123      QualType T = getCanonicalType(NTTP->getType());
124      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
125      NonTypeTemplateParmDecl *Param;
126      if (NTTP->isExpandedParameterPack()) {
127        SmallVector<QualType, 2> ExpandedTypes;
128        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
129        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
130          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
131          ExpandedTInfos.push_back(
132                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
133        }
134
135        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
136                                                SourceLocation(),
137                                                SourceLocation(),
138                                                NTTP->getDepth(),
139                                                NTTP->getPosition(), 0,
140                                                T,
141                                                TInfo,
142                                                ExpandedTypes.data(),
143                                                ExpandedTypes.size(),
144                                                ExpandedTInfos.data());
145      } else {
146        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
147                                                SourceLocation(),
148                                                SourceLocation(),
149                                                NTTP->getDepth(),
150                                                NTTP->getPosition(), 0,
151                                                T,
152                                                NTTP->isParameterPack(),
153                                                TInfo);
154      }
155      CanonParams.push_back(Param);
156
157    } else
158      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
159                                           cast<TemplateTemplateParmDecl>(*P)));
160  }
161
162  TemplateTemplateParmDecl *CanonTTP
163    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
164                                       SourceLocation(), TTP->getDepth(),
165                                       TTP->getPosition(),
166                                       TTP->isParameterPack(),
167                                       0,
168                         TemplateParameterList::Create(*this, SourceLocation(),
169                                                       SourceLocation(),
170                                                       CanonParams.data(),
171                                                       CanonParams.size(),
172                                                       SourceLocation()));
173
174  // Get the new insert position for the node we care about.
175  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
176  assert(Canonical == 0 && "Shouldn't be in the map!");
177  (void)Canonical;
178
179  // Create the canonical template template parameter entry.
180  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
181  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
182  return CanonTTP;
183}
184
185CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
186  if (!LangOpts.CPlusPlus) return 0;
187
188  switch (T.getCXXABI()) {
189  case CXXABI_ARM:
190    return CreateARMCXXABI(*this);
191  case CXXABI_Itanium:
192    return CreateItaniumCXXABI(*this);
193  case CXXABI_Microsoft:
194    return CreateMicrosoftCXXABI(*this);
195  }
196  return 0;
197}
198
199static const LangAS::Map &getAddressSpaceMap(const TargetInfo &T,
200                                             const LangOptions &LOpts) {
201  if (LOpts.FakeAddressSpaceMap) {
202    // The fake address space map must have a distinct entry for each
203    // language-specific address space.
204    static const unsigned FakeAddrSpaceMap[] = {
205      1, // opencl_global
206      2, // opencl_local
207      3  // opencl_constant
208    };
209    return FakeAddrSpaceMap;
210  } else {
211    return T.getAddressSpaceMap();
212  }
213}
214
215ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
216                       const TargetInfo &t,
217                       IdentifierTable &idents, SelectorTable &sels,
218                       Builtin::Context &builtins,
219                       unsigned size_reserve) :
220  FunctionProtoTypes(this_()),
221  TemplateSpecializationTypes(this_()),
222  DependentTemplateSpecializationTypes(this_()),
223  SubstTemplateTemplateParmPacks(this_()),
224  GlobalNestedNameSpecifier(0), IsInt128Installed(false),
225  CFConstantStringTypeDecl(0), NSConstantStringTypeDecl(0),
226  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0),
227  jmp_bufDecl(0), sigjmp_bufDecl(0), BlockDescriptorType(0),
228  BlockDescriptorExtendedType(0), cudaConfigureCallDecl(0),
229  NullTypeSourceInfo(QualType()),
230  SourceMgr(SM), LangOpts(LOpts), ABI(createCXXABI(t)),
231  AddrSpaceMap(getAddressSpaceMap(t, LOpts)), Target(t),
232  Idents(idents), Selectors(sels),
233  BuiltinInfo(builtins),
234  DeclarationNames(*this),
235  ExternalSource(0), Listener(0), PrintingPolicy(LOpts),
236  LastSDM(0, 0),
237  UniqueBlockByRefTypeID(0) {
238  ObjCIdRedefinitionType = QualType();
239  ObjCClassRedefinitionType = QualType();
240  ObjCSelRedefinitionType = QualType();
241  if (size_reserve > 0) Types.reserve(size_reserve);
242  TUDecl = TranslationUnitDecl::Create(*this);
243  InitBuiltinTypes();
244}
245
246ASTContext::~ASTContext() {
247  // Release the DenseMaps associated with DeclContext objects.
248  // FIXME: Is this the ideal solution?
249  ReleaseDeclContextMaps();
250
251  // Call all of the deallocation functions.
252  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
253    Deallocations[I].first(Deallocations[I].second);
254
255  // Release all of the memory associated with overridden C++ methods.
256  for (llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::iterator
257         OM = OverriddenMethods.begin(), OMEnd = OverriddenMethods.end();
258       OM != OMEnd; ++OM)
259    OM->second.Destroy();
260
261  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
262  // because they can contain DenseMaps.
263  for (llvm::DenseMap<const ObjCContainerDecl*,
264       const ASTRecordLayout*>::iterator
265       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
266    // Increment in loop to prevent using deallocated memory.
267    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
268      R->Destroy(*this);
269
270  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
271       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
272    // Increment in loop to prevent using deallocated memory.
273    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
274      R->Destroy(*this);
275  }
276
277  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
278                                                    AEnd = DeclAttrs.end();
279       A != AEnd; ++A)
280    A->second->~AttrVec();
281}
282
283void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
284  Deallocations.push_back(std::make_pair(Callback, Data));
285}
286
287void
288ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
289  ExternalSource.reset(Source.take());
290}
291
292void ASTContext::PrintStats() const {
293  llvm::errs() << "\n*** AST Context Stats:\n";
294  llvm::errs() << "  " << Types.size() << " types total.\n";
295
296  unsigned counts[] = {
297#define TYPE(Name, Parent) 0,
298#define ABSTRACT_TYPE(Name, Parent)
299#include "clang/AST/TypeNodes.def"
300    0 // Extra
301  };
302
303  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
304    Type *T = Types[i];
305    counts[(unsigned)T->getTypeClass()]++;
306  }
307
308  unsigned Idx = 0;
309  unsigned TotalBytes = 0;
310#define TYPE(Name, Parent)                                              \
311  if (counts[Idx])                                                      \
312    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
313                 << " types\n";                                         \
314  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
315  ++Idx;
316#define ABSTRACT_TYPE(Name, Parent)
317#include "clang/AST/TypeNodes.def"
318
319  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
320
321  // Implicit special member functions.
322  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
323               << NumImplicitDefaultConstructors
324               << " implicit default constructors created\n";
325  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
326               << NumImplicitCopyConstructors
327               << " implicit copy constructors created\n";
328  if (getLangOptions().CPlusPlus)
329    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
330                 << NumImplicitMoveConstructors
331                 << " implicit move constructors created\n";
332  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
333               << NumImplicitCopyAssignmentOperators
334               << " implicit copy assignment operators created\n";
335  if (getLangOptions().CPlusPlus)
336    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
337                 << NumImplicitMoveAssignmentOperators
338                 << " implicit move assignment operators created\n";
339  llvm::errs() << NumImplicitDestructorsDeclared << "/"
340               << NumImplicitDestructors
341               << " implicit destructors created\n";
342
343  if (ExternalSource.get()) {
344    llvm::errs() << "\n";
345    ExternalSource->PrintStats();
346  }
347
348  BumpAlloc.PrintStats();
349}
350
351
352void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
353  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
354  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
355  Types.push_back(Ty);
356}
357
358void ASTContext::InitBuiltinTypes() {
359  assert(VoidTy.isNull() && "Context reinitialized?");
360
361  // C99 6.2.5p19.
362  InitBuiltinType(VoidTy,              BuiltinType::Void);
363
364  // C99 6.2.5p2.
365  InitBuiltinType(BoolTy,              BuiltinType::Bool);
366  // C99 6.2.5p3.
367  if (LangOpts.CharIsSigned)
368    InitBuiltinType(CharTy,            BuiltinType::Char_S);
369  else
370    InitBuiltinType(CharTy,            BuiltinType::Char_U);
371  // C99 6.2.5p4.
372  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
373  InitBuiltinType(ShortTy,             BuiltinType::Short);
374  InitBuiltinType(IntTy,               BuiltinType::Int);
375  InitBuiltinType(LongTy,              BuiltinType::Long);
376  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
377
378  // C99 6.2.5p6.
379  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
380  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
381  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
382  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
383  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
384
385  // C99 6.2.5p10.
386  InitBuiltinType(FloatTy,             BuiltinType::Float);
387  InitBuiltinType(DoubleTy,            BuiltinType::Double);
388  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
389
390  // GNU extension, 128-bit integers.
391  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
392  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
393
394  if (LangOpts.CPlusPlus) { // C++ 3.9.1p5
395    if (TargetInfo::isTypeSigned(Target.getWCharType()))
396      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
397    else  // -fshort-wchar makes wchar_t be unsigned.
398      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
399  } else // C99
400    WCharTy = getFromTargetType(Target.getWCharType());
401
402  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
403    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
404  else // C99
405    Char16Ty = getFromTargetType(Target.getChar16Type());
406
407  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
408    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
409  else // C99
410    Char32Ty = getFromTargetType(Target.getChar32Type());
411
412  // Placeholder type for type-dependent expressions whose type is
413  // completely unknown. No code should ever check a type against
414  // DependentTy and users should never see it; however, it is here to
415  // help diagnose failures to properly check for type-dependent
416  // expressions.
417  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
418
419  // Placeholder type for functions.
420  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
421
422  // Placeholder type for bound members.
423  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
424
425  // "any" type; useful for debugger-like clients.
426  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
427
428  // C99 6.2.5p11.
429  FloatComplexTy      = getComplexType(FloatTy);
430  DoubleComplexTy     = getComplexType(DoubleTy);
431  LongDoubleComplexTy = getComplexType(LongDoubleTy);
432
433  BuiltinVaListType = QualType();
434
435  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
436  ObjCIdTypedefType = QualType();
437  ObjCClassTypedefType = QualType();
438  ObjCSelTypedefType = QualType();
439
440  // Builtin types for 'id', 'Class', and 'SEL'.
441  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
442  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
443  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
444
445  ObjCConstantStringType = QualType();
446
447  // void * type
448  VoidPtrTy = getPointerType(VoidTy);
449
450  // nullptr type (C++0x 2.14.7)
451  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
452}
453
454Diagnostic &ASTContext::getDiagnostics() const {
455  return SourceMgr.getDiagnostics();
456}
457
458AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
459  AttrVec *&Result = DeclAttrs[D];
460  if (!Result) {
461    void *Mem = Allocate(sizeof(AttrVec));
462    Result = new (Mem) AttrVec;
463  }
464
465  return *Result;
466}
467
468/// \brief Erase the attributes corresponding to the given declaration.
469void ASTContext::eraseDeclAttrs(const Decl *D) {
470  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
471  if (Pos != DeclAttrs.end()) {
472    Pos->second->~AttrVec();
473    DeclAttrs.erase(Pos);
474  }
475}
476
477MemberSpecializationInfo *
478ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
479  assert(Var->isStaticDataMember() && "Not a static data member");
480  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
481    = InstantiatedFromStaticDataMember.find(Var);
482  if (Pos == InstantiatedFromStaticDataMember.end())
483    return 0;
484
485  return Pos->second;
486}
487
488void
489ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
490                                                TemplateSpecializationKind TSK,
491                                          SourceLocation PointOfInstantiation) {
492  assert(Inst->isStaticDataMember() && "Not a static data member");
493  assert(Tmpl->isStaticDataMember() && "Not a static data member");
494  assert(!InstantiatedFromStaticDataMember[Inst] &&
495         "Already noted what static data member was instantiated from");
496  InstantiatedFromStaticDataMember[Inst]
497    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
498}
499
500NamedDecl *
501ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
502  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
503    = InstantiatedFromUsingDecl.find(UUD);
504  if (Pos == InstantiatedFromUsingDecl.end())
505    return 0;
506
507  return Pos->second;
508}
509
510void
511ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
512  assert((isa<UsingDecl>(Pattern) ||
513          isa<UnresolvedUsingValueDecl>(Pattern) ||
514          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
515         "pattern decl is not a using decl");
516  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
517  InstantiatedFromUsingDecl[Inst] = Pattern;
518}
519
520UsingShadowDecl *
521ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
522  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
523    = InstantiatedFromUsingShadowDecl.find(Inst);
524  if (Pos == InstantiatedFromUsingShadowDecl.end())
525    return 0;
526
527  return Pos->second;
528}
529
530void
531ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
532                                               UsingShadowDecl *Pattern) {
533  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
534  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
535}
536
537FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
538  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
539    = InstantiatedFromUnnamedFieldDecl.find(Field);
540  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
541    return 0;
542
543  return Pos->second;
544}
545
546void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
547                                                     FieldDecl *Tmpl) {
548  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
549  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
550  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
551         "Already noted what unnamed field was instantiated from");
552
553  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
554}
555
556bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
557                                    const FieldDecl *LastFD) const {
558  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
559          FD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue() == 0);
560
561}
562
563bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
564                                             const FieldDecl *LastFD) const {
565  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
566          FD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue() == 0 &&
567          LastFD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue() != 0);
568
569}
570
571bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
572                                         const FieldDecl *LastFD) const {
573  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
574          FD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue() &&
575          LastFD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue());
576}
577
578bool ASTContext::NoneBitfieldFollowsBitfield(const FieldDecl *FD,
579                                         const FieldDecl *LastFD) const {
580  return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
581          LastFD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue());
582}
583
584bool ASTContext::BitfieldFollowsNoneBitfield(const FieldDecl *FD,
585                                             const FieldDecl *LastFD) const {
586  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
587          FD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue());
588}
589
590ASTContext::overridden_cxx_method_iterator
591ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
592  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
593    = OverriddenMethods.find(Method);
594  if (Pos == OverriddenMethods.end())
595    return 0;
596
597  return Pos->second.begin();
598}
599
600ASTContext::overridden_cxx_method_iterator
601ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
602  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
603    = OverriddenMethods.find(Method);
604  if (Pos == OverriddenMethods.end())
605    return 0;
606
607  return Pos->second.end();
608}
609
610unsigned
611ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
612  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
613    = OverriddenMethods.find(Method);
614  if (Pos == OverriddenMethods.end())
615    return 0;
616
617  return Pos->second.size();
618}
619
620void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
621                                     const CXXMethodDecl *Overridden) {
622  OverriddenMethods[Method].push_back(Overridden);
623}
624
625//===----------------------------------------------------------------------===//
626//                         Type Sizing and Analysis
627//===----------------------------------------------------------------------===//
628
629/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
630/// scalar floating point type.
631const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
632  const BuiltinType *BT = T->getAs<BuiltinType>();
633  assert(BT && "Not a floating point type!");
634  switch (BT->getKind()) {
635  default: assert(0 && "Not a floating point type!");
636  case BuiltinType::Float:      return Target.getFloatFormat();
637  case BuiltinType::Double:     return Target.getDoubleFormat();
638  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
639  }
640}
641
642/// getDeclAlign - Return a conservative estimate of the alignment of the
643/// specified decl.  Note that bitfields do not have a valid alignment, so
644/// this method will assert on them.
645/// If @p RefAsPointee, references are treated like their underlying type
646/// (for alignof), else they're treated like pointers (for CodeGen).
647CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
648  unsigned Align = Target.getCharWidth();
649
650  bool UseAlignAttrOnly = false;
651  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
652    Align = AlignFromAttr;
653
654    // __attribute__((aligned)) can increase or decrease alignment
655    // *except* on a struct or struct member, where it only increases
656    // alignment unless 'packed' is also specified.
657    //
658    // It is an error for [[align]] to decrease alignment, so we can
659    // ignore that possibility;  Sema should diagnose it.
660    if (isa<FieldDecl>(D)) {
661      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
662        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
663    } else {
664      UseAlignAttrOnly = true;
665    }
666  }
667  else if (isa<FieldDecl>(D))
668      UseAlignAttrOnly =
669        D->hasAttr<PackedAttr>() ||
670        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
671
672  // If we're using the align attribute only, just ignore everything
673  // else about the declaration and its type.
674  if (UseAlignAttrOnly) {
675    // do nothing
676
677  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
678    QualType T = VD->getType();
679    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
680      if (RefAsPointee)
681        T = RT->getPointeeType();
682      else
683        T = getPointerType(RT->getPointeeType());
684    }
685    if (!T->isIncompleteType() && !T->isFunctionType()) {
686      // Adjust alignments of declarations with array type by the
687      // large-array alignment on the target.
688      unsigned MinWidth = Target.getLargeArrayMinWidth();
689      const ArrayType *arrayType;
690      if (MinWidth && (arrayType = getAsArrayType(T))) {
691        if (isa<VariableArrayType>(arrayType))
692          Align = std::max(Align, Target.getLargeArrayAlign());
693        else if (isa<ConstantArrayType>(arrayType) &&
694                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
695          Align = std::max(Align, Target.getLargeArrayAlign());
696
697        // Walk through any array types while we're at it.
698        T = getBaseElementType(arrayType);
699      }
700      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
701    }
702
703    // Fields can be subject to extra alignment constraints, like if
704    // the field is packed, the struct is packed, or the struct has a
705    // a max-field-alignment constraint (#pragma pack).  So calculate
706    // the actual alignment of the field within the struct, and then
707    // (as we're expected to) constrain that by the alignment of the type.
708    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
709      // So calculate the alignment of the field.
710      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
711
712      // Start with the record's overall alignment.
713      unsigned fieldAlign = toBits(layout.getAlignment());
714
715      // Use the GCD of that and the offset within the record.
716      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
717      if (offset > 0) {
718        // Alignment is always a power of 2, so the GCD will be a power of 2,
719        // which means we get to do this crazy thing instead of Euclid's.
720        uint64_t lowBitOfOffset = offset & (~offset + 1);
721        if (lowBitOfOffset < fieldAlign)
722          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
723      }
724
725      Align = std::min(Align, fieldAlign);
726    }
727  }
728
729  return toCharUnitsFromBits(Align);
730}
731
732std::pair<CharUnits, CharUnits>
733ASTContext::getTypeInfoInChars(const Type *T) const {
734  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
735  return std::make_pair(toCharUnitsFromBits(Info.first),
736                        toCharUnitsFromBits(Info.second));
737}
738
739std::pair<CharUnits, CharUnits>
740ASTContext::getTypeInfoInChars(QualType T) const {
741  return getTypeInfoInChars(T.getTypePtr());
742}
743
744/// getTypeSize - Return the size of the specified type, in bits.  This method
745/// does not work on incomplete types.
746///
747/// FIXME: Pointers into different addr spaces could have different sizes and
748/// alignment requirements: getPointerInfo should take an AddrSpace, this
749/// should take a QualType, &c.
750std::pair<uint64_t, unsigned>
751ASTContext::getTypeInfo(const Type *T) const {
752  uint64_t Width=0;
753  unsigned Align=8;
754  switch (T->getTypeClass()) {
755#define TYPE(Class, Base)
756#define ABSTRACT_TYPE(Class, Base)
757#define NON_CANONICAL_TYPE(Class, Base)
758#define DEPENDENT_TYPE(Class, Base) case Type::Class:
759#include "clang/AST/TypeNodes.def"
760    llvm_unreachable("Should not see dependent types");
761    break;
762
763  case Type::FunctionNoProto:
764  case Type::FunctionProto:
765    // GCC extension: alignof(function) = 32 bits
766    Width = 0;
767    Align = 32;
768    break;
769
770  case Type::IncompleteArray:
771  case Type::VariableArray:
772    Width = 0;
773    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
774    break;
775
776  case Type::ConstantArray: {
777    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
778
779    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
780    Width = EltInfo.first*CAT->getSize().getZExtValue();
781    Align = EltInfo.second;
782    Width = llvm::RoundUpToAlignment(Width, Align);
783    break;
784  }
785  case Type::ExtVector:
786  case Type::Vector: {
787    const VectorType *VT = cast<VectorType>(T);
788    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
789    Width = EltInfo.first*VT->getNumElements();
790    Align = Width;
791    // If the alignment is not a power of 2, round up to the next power of 2.
792    // This happens for non-power-of-2 length vectors.
793    if (Align & (Align-1)) {
794      Align = llvm::NextPowerOf2(Align);
795      Width = llvm::RoundUpToAlignment(Width, Align);
796    }
797    break;
798  }
799
800  case Type::Builtin:
801    switch (cast<BuiltinType>(T)->getKind()) {
802    default: assert(0 && "Unknown builtin type!");
803    case BuiltinType::Void:
804      // GCC extension: alignof(void) = 8 bits.
805      Width = 0;
806      Align = 8;
807      break;
808
809    case BuiltinType::Bool:
810      Width = Target.getBoolWidth();
811      Align = Target.getBoolAlign();
812      break;
813    case BuiltinType::Char_S:
814    case BuiltinType::Char_U:
815    case BuiltinType::UChar:
816    case BuiltinType::SChar:
817      Width = Target.getCharWidth();
818      Align = Target.getCharAlign();
819      break;
820    case BuiltinType::WChar_S:
821    case BuiltinType::WChar_U:
822      Width = Target.getWCharWidth();
823      Align = Target.getWCharAlign();
824      break;
825    case BuiltinType::Char16:
826      Width = Target.getChar16Width();
827      Align = Target.getChar16Align();
828      break;
829    case BuiltinType::Char32:
830      Width = Target.getChar32Width();
831      Align = Target.getChar32Align();
832      break;
833    case BuiltinType::UShort:
834    case BuiltinType::Short:
835      Width = Target.getShortWidth();
836      Align = Target.getShortAlign();
837      break;
838    case BuiltinType::UInt:
839    case BuiltinType::Int:
840      Width = Target.getIntWidth();
841      Align = Target.getIntAlign();
842      break;
843    case BuiltinType::ULong:
844    case BuiltinType::Long:
845      Width = Target.getLongWidth();
846      Align = Target.getLongAlign();
847      break;
848    case BuiltinType::ULongLong:
849    case BuiltinType::LongLong:
850      Width = Target.getLongLongWidth();
851      Align = Target.getLongLongAlign();
852      break;
853    case BuiltinType::Int128:
854    case BuiltinType::UInt128:
855      Width = 128;
856      Align = 128; // int128_t is 128-bit aligned on all targets.
857      break;
858    case BuiltinType::Float:
859      Width = Target.getFloatWidth();
860      Align = Target.getFloatAlign();
861      break;
862    case BuiltinType::Double:
863      Width = Target.getDoubleWidth();
864      Align = Target.getDoubleAlign();
865      break;
866    case BuiltinType::LongDouble:
867      Width = Target.getLongDoubleWidth();
868      Align = Target.getLongDoubleAlign();
869      break;
870    case BuiltinType::NullPtr:
871      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
872      Align = Target.getPointerAlign(0); //   == sizeof(void*)
873      break;
874    case BuiltinType::ObjCId:
875    case BuiltinType::ObjCClass:
876    case BuiltinType::ObjCSel:
877      Width = Target.getPointerWidth(0);
878      Align = Target.getPointerAlign(0);
879      break;
880    }
881    break;
882  case Type::ObjCObjectPointer:
883    Width = Target.getPointerWidth(0);
884    Align = Target.getPointerAlign(0);
885    break;
886  case Type::BlockPointer: {
887    unsigned AS = getTargetAddressSpace(
888        cast<BlockPointerType>(T)->getPointeeType());
889    Width = Target.getPointerWidth(AS);
890    Align = Target.getPointerAlign(AS);
891    break;
892  }
893  case Type::LValueReference:
894  case Type::RValueReference: {
895    // alignof and sizeof should never enter this code path here, so we go
896    // the pointer route.
897    unsigned AS = getTargetAddressSpace(
898        cast<ReferenceType>(T)->getPointeeType());
899    Width = Target.getPointerWidth(AS);
900    Align = Target.getPointerAlign(AS);
901    break;
902  }
903  case Type::Pointer: {
904    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
905    Width = Target.getPointerWidth(AS);
906    Align = Target.getPointerAlign(AS);
907    break;
908  }
909  case Type::MemberPointer: {
910    const MemberPointerType *MPT = cast<MemberPointerType>(T);
911    std::pair<uint64_t, unsigned> PtrDiffInfo =
912      getTypeInfo(getPointerDiffType());
913    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
914    Align = PtrDiffInfo.second;
915    break;
916  }
917  case Type::Complex: {
918    // Complex types have the same alignment as their elements, but twice the
919    // size.
920    std::pair<uint64_t, unsigned> EltInfo =
921      getTypeInfo(cast<ComplexType>(T)->getElementType());
922    Width = EltInfo.first*2;
923    Align = EltInfo.second;
924    break;
925  }
926  case Type::ObjCObject:
927    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
928  case Type::ObjCInterface: {
929    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
930    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
931    Width = toBits(Layout.getSize());
932    Align = toBits(Layout.getAlignment());
933    break;
934  }
935  case Type::Record:
936  case Type::Enum: {
937    const TagType *TT = cast<TagType>(T);
938
939    if (TT->getDecl()->isInvalidDecl()) {
940      Width = 8;
941      Align = 8;
942      break;
943    }
944
945    if (const EnumType *ET = dyn_cast<EnumType>(TT))
946      return getTypeInfo(ET->getDecl()->getIntegerType());
947
948    const RecordType *RT = cast<RecordType>(TT);
949    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
950    Width = toBits(Layout.getSize());
951    Align = toBits(Layout.getAlignment());
952    break;
953  }
954
955  case Type::SubstTemplateTypeParm:
956    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
957                       getReplacementType().getTypePtr());
958
959  case Type::Auto: {
960    const AutoType *A = cast<AutoType>(T);
961    assert(A->isDeduced() && "Cannot request the size of a dependent type");
962    return getTypeInfo(A->getDeducedType().getTypePtr());
963  }
964
965  case Type::Paren:
966    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
967
968  case Type::Typedef: {
969    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
970    std::pair<uint64_t, unsigned> Info
971      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
972    // If the typedef has an aligned attribute on it, it overrides any computed
973    // alignment we have.  This violates the GCC documentation (which says that
974    // attribute(aligned) can only round up) but matches its implementation.
975    if (unsigned AttrAlign = Typedef->getMaxAlignment())
976      Align = AttrAlign;
977    else
978      Align = Info.second;
979    Width = Info.first;
980    break;
981  }
982
983  case Type::TypeOfExpr:
984    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
985                         .getTypePtr());
986
987  case Type::TypeOf:
988    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
989
990  case Type::Decltype:
991    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
992                        .getTypePtr());
993
994  case Type::UnaryTransform:
995    return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
996
997  case Type::Elaborated:
998    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
999
1000  case Type::Attributed:
1001    return getTypeInfo(
1002                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1003
1004  case Type::TemplateSpecialization: {
1005    assert(getCanonicalType(T) != T &&
1006           "Cannot request the size of a dependent type");
1007    const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1008    // A type alias template specialization may refer to a typedef with the
1009    // aligned attribute on it.
1010    if (TST->isTypeAlias())
1011      return getTypeInfo(TST->getAliasedType().getTypePtr());
1012    else
1013      return getTypeInfo(getCanonicalType(T));
1014  }
1015
1016  }
1017
1018  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
1019  return std::make_pair(Width, Align);
1020}
1021
1022/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1023CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1024  return CharUnits::fromQuantity(BitSize / getCharWidth());
1025}
1026
1027/// toBits - Convert a size in characters to a size in characters.
1028int64_t ASTContext::toBits(CharUnits CharSize) const {
1029  return CharSize.getQuantity() * getCharWidth();
1030}
1031
1032/// getTypeSizeInChars - Return the size of the specified type, in characters.
1033/// This method does not work on incomplete types.
1034CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1035  return toCharUnitsFromBits(getTypeSize(T));
1036}
1037CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1038  return toCharUnitsFromBits(getTypeSize(T));
1039}
1040
1041/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1042/// characters. This method does not work on incomplete types.
1043CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1044  return toCharUnitsFromBits(getTypeAlign(T));
1045}
1046CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1047  return toCharUnitsFromBits(getTypeAlign(T));
1048}
1049
1050/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1051/// type for the current target in bits.  This can be different than the ABI
1052/// alignment in cases where it is beneficial for performance to overalign
1053/// a data type.
1054unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1055  unsigned ABIAlign = getTypeAlign(T);
1056
1057  // Double and long long should be naturally aligned if possible.
1058  if (const ComplexType* CT = T->getAs<ComplexType>())
1059    T = CT->getElementType().getTypePtr();
1060  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1061      T->isSpecificBuiltinType(BuiltinType::LongLong))
1062    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1063
1064  return ABIAlign;
1065}
1066
1067/// DeepCollectObjCIvars -
1068/// This routine first collects all declared, but not synthesized, ivars in
1069/// super class and then collects all ivars, including those synthesized for
1070/// current class. This routine is used for implementation of current class
1071/// when all ivars, declared and synthesized are known.
1072///
1073void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1074                                      bool leafClass,
1075                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1076  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1077    DeepCollectObjCIvars(SuperClass, false, Ivars);
1078  if (!leafClass) {
1079    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1080         E = OI->ivar_end(); I != E; ++I)
1081      Ivars.push_back(*I);
1082  }
1083  else {
1084    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1085    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1086         Iv= Iv->getNextIvar())
1087      Ivars.push_back(Iv);
1088  }
1089}
1090
1091/// CollectInheritedProtocols - Collect all protocols in current class and
1092/// those inherited by it.
1093void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1094                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1095  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1096    // We can use protocol_iterator here instead of
1097    // all_referenced_protocol_iterator since we are walking all categories.
1098    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1099         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1100      ObjCProtocolDecl *Proto = (*P);
1101      Protocols.insert(Proto);
1102      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1103           PE = Proto->protocol_end(); P != PE; ++P) {
1104        Protocols.insert(*P);
1105        CollectInheritedProtocols(*P, Protocols);
1106      }
1107    }
1108
1109    // Categories of this Interface.
1110    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
1111         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
1112      CollectInheritedProtocols(CDeclChain, Protocols);
1113    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1114      while (SD) {
1115        CollectInheritedProtocols(SD, Protocols);
1116        SD = SD->getSuperClass();
1117      }
1118  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1119    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1120         PE = OC->protocol_end(); P != PE; ++P) {
1121      ObjCProtocolDecl *Proto = (*P);
1122      Protocols.insert(Proto);
1123      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1124           PE = Proto->protocol_end(); P != PE; ++P)
1125        CollectInheritedProtocols(*P, Protocols);
1126    }
1127  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1128    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1129         PE = OP->protocol_end(); P != PE; ++P) {
1130      ObjCProtocolDecl *Proto = (*P);
1131      Protocols.insert(Proto);
1132      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1133           PE = Proto->protocol_end(); P != PE; ++P)
1134        CollectInheritedProtocols(*P, Protocols);
1135    }
1136  }
1137}
1138
1139unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1140  unsigned count = 0;
1141  // Count ivars declared in class extension.
1142  for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
1143       CDecl = CDecl->getNextClassExtension())
1144    count += CDecl->ivar_size();
1145
1146  // Count ivar defined in this class's implementation.  This
1147  // includes synthesized ivars.
1148  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1149    count += ImplDecl->ivar_size();
1150
1151  return count;
1152}
1153
1154/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1155ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1156  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1157    I = ObjCImpls.find(D);
1158  if (I != ObjCImpls.end())
1159    return cast<ObjCImplementationDecl>(I->second);
1160  return 0;
1161}
1162/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1163ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1164  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1165    I = ObjCImpls.find(D);
1166  if (I != ObjCImpls.end())
1167    return cast<ObjCCategoryImplDecl>(I->second);
1168  return 0;
1169}
1170
1171/// \brief Set the implementation of ObjCInterfaceDecl.
1172void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1173                           ObjCImplementationDecl *ImplD) {
1174  assert(IFaceD && ImplD && "Passed null params");
1175  ObjCImpls[IFaceD] = ImplD;
1176}
1177/// \brief Set the implementation of ObjCCategoryDecl.
1178void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1179                           ObjCCategoryImplDecl *ImplD) {
1180  assert(CatD && ImplD && "Passed null params");
1181  ObjCImpls[CatD] = ImplD;
1182}
1183
1184/// \brief Get the copy initialization expression of VarDecl,or NULL if
1185/// none exists.
1186Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1187  assert(VD && "Passed null params");
1188  assert(VD->hasAttr<BlocksAttr>() &&
1189         "getBlockVarCopyInits - not __block var");
1190  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1191    I = BlockVarCopyInits.find(VD);
1192  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1193}
1194
1195/// \brief Set the copy inialization expression of a block var decl.
1196void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1197  assert(VD && Init && "Passed null params");
1198  assert(VD->hasAttr<BlocksAttr>() &&
1199         "setBlockVarCopyInits - not __block var");
1200  BlockVarCopyInits[VD] = Init;
1201}
1202
1203/// \brief Allocate an uninitialized TypeSourceInfo.
1204///
1205/// The caller should initialize the memory held by TypeSourceInfo using
1206/// the TypeLoc wrappers.
1207///
1208/// \param T the type that will be the basis for type source info. This type
1209/// should refer to how the declarator was written in source code, not to
1210/// what type semantic analysis resolved the declarator to.
1211TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1212                                                 unsigned DataSize) const {
1213  if (!DataSize)
1214    DataSize = TypeLoc::getFullDataSizeForType(T);
1215  else
1216    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1217           "incorrect data size provided to CreateTypeSourceInfo!");
1218
1219  TypeSourceInfo *TInfo =
1220    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1221  new (TInfo) TypeSourceInfo(T);
1222  return TInfo;
1223}
1224
1225TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1226                                                     SourceLocation L) const {
1227  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1228  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1229  return DI;
1230}
1231
1232const ASTRecordLayout &
1233ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1234  return getObjCLayout(D, 0);
1235}
1236
1237const ASTRecordLayout &
1238ASTContext::getASTObjCImplementationLayout(
1239                                        const ObjCImplementationDecl *D) const {
1240  return getObjCLayout(D->getClassInterface(), D);
1241}
1242
1243//===----------------------------------------------------------------------===//
1244//                   Type creation/memoization methods
1245//===----------------------------------------------------------------------===//
1246
1247QualType
1248ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1249  unsigned fastQuals = quals.getFastQualifiers();
1250  quals.removeFastQualifiers();
1251
1252  // Check if we've already instantiated this type.
1253  llvm::FoldingSetNodeID ID;
1254  ExtQuals::Profile(ID, baseType, quals);
1255  void *insertPos = 0;
1256  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1257    assert(eq->getQualifiers() == quals);
1258    return QualType(eq, fastQuals);
1259  }
1260
1261  // If the base type is not canonical, make the appropriate canonical type.
1262  QualType canon;
1263  if (!baseType->isCanonicalUnqualified()) {
1264    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1265    canonSplit.second.addConsistentQualifiers(quals);
1266    canon = getExtQualType(canonSplit.first, canonSplit.second);
1267
1268    // Re-find the insert position.
1269    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1270  }
1271
1272  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1273  ExtQualNodes.InsertNode(eq, insertPos);
1274  return QualType(eq, fastQuals);
1275}
1276
1277QualType
1278ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1279  QualType CanT = getCanonicalType(T);
1280  if (CanT.getAddressSpace() == AddressSpace)
1281    return T;
1282
1283  // If we are composing extended qualifiers together, merge together
1284  // into one ExtQuals node.
1285  QualifierCollector Quals;
1286  const Type *TypeNode = Quals.strip(T);
1287
1288  // If this type already has an address space specified, it cannot get
1289  // another one.
1290  assert(!Quals.hasAddressSpace() &&
1291         "Type cannot be in multiple addr spaces!");
1292  Quals.addAddressSpace(AddressSpace);
1293
1294  return getExtQualType(TypeNode, Quals);
1295}
1296
1297QualType ASTContext::getObjCGCQualType(QualType T,
1298                                       Qualifiers::GC GCAttr) const {
1299  QualType CanT = getCanonicalType(T);
1300  if (CanT.getObjCGCAttr() == GCAttr)
1301    return T;
1302
1303  if (const PointerType *ptr = T->getAs<PointerType>()) {
1304    QualType Pointee = ptr->getPointeeType();
1305    if (Pointee->isAnyPointerType()) {
1306      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1307      return getPointerType(ResultType);
1308    }
1309  }
1310
1311  // If we are composing extended qualifiers together, merge together
1312  // into one ExtQuals node.
1313  QualifierCollector Quals;
1314  const Type *TypeNode = Quals.strip(T);
1315
1316  // If this type already has an ObjCGC specified, it cannot get
1317  // another one.
1318  assert(!Quals.hasObjCGCAttr() &&
1319         "Type cannot have multiple ObjCGCs!");
1320  Quals.addObjCGCAttr(GCAttr);
1321
1322  return getExtQualType(TypeNode, Quals);
1323}
1324
1325const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1326                                                   FunctionType::ExtInfo Info) {
1327  if (T->getExtInfo() == Info)
1328    return T;
1329
1330  QualType Result;
1331  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1332    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1333  } else {
1334    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1335    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1336    EPI.ExtInfo = Info;
1337    Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1338                             FPT->getNumArgs(), EPI);
1339  }
1340
1341  return cast<FunctionType>(Result.getTypePtr());
1342}
1343
1344/// getComplexType - Return the uniqued reference to the type for a complex
1345/// number with the specified element type.
1346QualType ASTContext::getComplexType(QualType T) const {
1347  // Unique pointers, to guarantee there is only one pointer of a particular
1348  // structure.
1349  llvm::FoldingSetNodeID ID;
1350  ComplexType::Profile(ID, T);
1351
1352  void *InsertPos = 0;
1353  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1354    return QualType(CT, 0);
1355
1356  // If the pointee type isn't canonical, this won't be a canonical type either,
1357  // so fill in the canonical type field.
1358  QualType Canonical;
1359  if (!T.isCanonical()) {
1360    Canonical = getComplexType(getCanonicalType(T));
1361
1362    // Get the new insert position for the node we care about.
1363    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1364    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1365  }
1366  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1367  Types.push_back(New);
1368  ComplexTypes.InsertNode(New, InsertPos);
1369  return QualType(New, 0);
1370}
1371
1372/// getPointerType - Return the uniqued reference to the type for a pointer to
1373/// the specified type.
1374QualType ASTContext::getPointerType(QualType T) const {
1375  // Unique pointers, to guarantee there is only one pointer of a particular
1376  // structure.
1377  llvm::FoldingSetNodeID ID;
1378  PointerType::Profile(ID, T);
1379
1380  void *InsertPos = 0;
1381  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1382    return QualType(PT, 0);
1383
1384  // If the pointee type isn't canonical, this won't be a canonical type either,
1385  // so fill in the canonical type field.
1386  QualType Canonical;
1387  if (!T.isCanonical()) {
1388    Canonical = getPointerType(getCanonicalType(T));
1389
1390    // Get the new insert position for the node we care about.
1391    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1392    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1393  }
1394  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1395  Types.push_back(New);
1396  PointerTypes.InsertNode(New, InsertPos);
1397  return QualType(New, 0);
1398}
1399
1400/// getBlockPointerType - Return the uniqued reference to the type for
1401/// a pointer to the specified block.
1402QualType ASTContext::getBlockPointerType(QualType T) const {
1403  assert(T->isFunctionType() && "block of function types only");
1404  // Unique pointers, to guarantee there is only one block of a particular
1405  // structure.
1406  llvm::FoldingSetNodeID ID;
1407  BlockPointerType::Profile(ID, T);
1408
1409  void *InsertPos = 0;
1410  if (BlockPointerType *PT =
1411        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1412    return QualType(PT, 0);
1413
1414  // If the block pointee type isn't canonical, this won't be a canonical
1415  // type either so fill in the canonical type field.
1416  QualType Canonical;
1417  if (!T.isCanonical()) {
1418    Canonical = getBlockPointerType(getCanonicalType(T));
1419
1420    // Get the new insert position for the node we care about.
1421    BlockPointerType *NewIP =
1422      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1423    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1424  }
1425  BlockPointerType *New
1426    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1427  Types.push_back(New);
1428  BlockPointerTypes.InsertNode(New, InsertPos);
1429  return QualType(New, 0);
1430}
1431
1432/// getLValueReferenceType - Return the uniqued reference to the type for an
1433/// lvalue reference to the specified type.
1434QualType
1435ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
1436  assert(getCanonicalType(T) != OverloadTy &&
1437         "Unresolved overloaded function type");
1438
1439  // Unique pointers, to guarantee there is only one pointer of a particular
1440  // structure.
1441  llvm::FoldingSetNodeID ID;
1442  ReferenceType::Profile(ID, T, SpelledAsLValue);
1443
1444  void *InsertPos = 0;
1445  if (LValueReferenceType *RT =
1446        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1447    return QualType(RT, 0);
1448
1449  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1450
1451  // If the referencee type isn't canonical, this won't be a canonical type
1452  // either, so fill in the canonical type field.
1453  QualType Canonical;
1454  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1455    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1456    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1457
1458    // Get the new insert position for the node we care about.
1459    LValueReferenceType *NewIP =
1460      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1461    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1462  }
1463
1464  LValueReferenceType *New
1465    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1466                                                     SpelledAsLValue);
1467  Types.push_back(New);
1468  LValueReferenceTypes.InsertNode(New, InsertPos);
1469
1470  return QualType(New, 0);
1471}
1472
1473/// getRValueReferenceType - Return the uniqued reference to the type for an
1474/// rvalue reference to the specified type.
1475QualType ASTContext::getRValueReferenceType(QualType T) const {
1476  // Unique pointers, to guarantee there is only one pointer of a particular
1477  // structure.
1478  llvm::FoldingSetNodeID ID;
1479  ReferenceType::Profile(ID, T, false);
1480
1481  void *InsertPos = 0;
1482  if (RValueReferenceType *RT =
1483        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1484    return QualType(RT, 0);
1485
1486  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1487
1488  // If the referencee type isn't canonical, this won't be a canonical type
1489  // either, so fill in the canonical type field.
1490  QualType Canonical;
1491  if (InnerRef || !T.isCanonical()) {
1492    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1493    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1494
1495    // Get the new insert position for the node we care about.
1496    RValueReferenceType *NewIP =
1497      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1498    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1499  }
1500
1501  RValueReferenceType *New
1502    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1503  Types.push_back(New);
1504  RValueReferenceTypes.InsertNode(New, InsertPos);
1505  return QualType(New, 0);
1506}
1507
1508/// getMemberPointerType - Return the uniqued reference to the type for a
1509/// member pointer to the specified type, in the specified class.
1510QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
1511  // Unique pointers, to guarantee there is only one pointer of a particular
1512  // structure.
1513  llvm::FoldingSetNodeID ID;
1514  MemberPointerType::Profile(ID, T, Cls);
1515
1516  void *InsertPos = 0;
1517  if (MemberPointerType *PT =
1518      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1519    return QualType(PT, 0);
1520
1521  // If the pointee or class type isn't canonical, this won't be a canonical
1522  // type either, so fill in the canonical type field.
1523  QualType Canonical;
1524  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1525    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1526
1527    // Get the new insert position for the node we care about.
1528    MemberPointerType *NewIP =
1529      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1530    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1531  }
1532  MemberPointerType *New
1533    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1534  Types.push_back(New);
1535  MemberPointerTypes.InsertNode(New, InsertPos);
1536  return QualType(New, 0);
1537}
1538
1539/// getConstantArrayType - Return the unique reference to the type for an
1540/// array of the specified element type.
1541QualType ASTContext::getConstantArrayType(QualType EltTy,
1542                                          const llvm::APInt &ArySizeIn,
1543                                          ArrayType::ArraySizeModifier ASM,
1544                                          unsigned IndexTypeQuals) const {
1545  assert((EltTy->isDependentType() ||
1546          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1547         "Constant array of VLAs is illegal!");
1548
1549  // Convert the array size into a canonical width matching the pointer size for
1550  // the target.
1551  llvm::APInt ArySize(ArySizeIn);
1552  ArySize =
1553    ArySize.zextOrTrunc(Target.getPointerWidth(getTargetAddressSpace(EltTy)));
1554
1555  llvm::FoldingSetNodeID ID;
1556  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
1557
1558  void *InsertPos = 0;
1559  if (ConstantArrayType *ATP =
1560      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1561    return QualType(ATP, 0);
1562
1563  // If the element type isn't canonical or has qualifiers, this won't
1564  // be a canonical type either, so fill in the canonical type field.
1565  QualType Canon;
1566  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1567    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1568    Canon = getConstantArrayType(QualType(canonSplit.first, 0), ArySize,
1569                                 ASM, IndexTypeQuals);
1570    Canon = getQualifiedType(Canon, canonSplit.second);
1571
1572    // Get the new insert position for the node we care about.
1573    ConstantArrayType *NewIP =
1574      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1575    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1576  }
1577
1578  ConstantArrayType *New = new(*this,TypeAlignment)
1579    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
1580  ConstantArrayTypes.InsertNode(New, InsertPos);
1581  Types.push_back(New);
1582  return QualType(New, 0);
1583}
1584
1585/// getVariableArrayDecayedType - Turns the given type, which may be
1586/// variably-modified, into the corresponding type with all the known
1587/// sizes replaced with [*].
1588QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
1589  // Vastly most common case.
1590  if (!type->isVariablyModifiedType()) return type;
1591
1592  QualType result;
1593
1594  SplitQualType split = type.getSplitDesugaredType();
1595  const Type *ty = split.first;
1596  switch (ty->getTypeClass()) {
1597#define TYPE(Class, Base)
1598#define ABSTRACT_TYPE(Class, Base)
1599#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1600#include "clang/AST/TypeNodes.def"
1601    llvm_unreachable("didn't desugar past all non-canonical types?");
1602
1603  // These types should never be variably-modified.
1604  case Type::Builtin:
1605  case Type::Complex:
1606  case Type::Vector:
1607  case Type::ExtVector:
1608  case Type::DependentSizedExtVector:
1609  case Type::ObjCObject:
1610  case Type::ObjCInterface:
1611  case Type::ObjCObjectPointer:
1612  case Type::Record:
1613  case Type::Enum:
1614  case Type::UnresolvedUsing:
1615  case Type::TypeOfExpr:
1616  case Type::TypeOf:
1617  case Type::Decltype:
1618  case Type::UnaryTransform:
1619  case Type::DependentName:
1620  case Type::InjectedClassName:
1621  case Type::TemplateSpecialization:
1622  case Type::DependentTemplateSpecialization:
1623  case Type::TemplateTypeParm:
1624  case Type::SubstTemplateTypeParmPack:
1625  case Type::Auto:
1626  case Type::PackExpansion:
1627    llvm_unreachable("type should never be variably-modified");
1628
1629  // These types can be variably-modified but should never need to
1630  // further decay.
1631  case Type::FunctionNoProto:
1632  case Type::FunctionProto:
1633  case Type::BlockPointer:
1634  case Type::MemberPointer:
1635    return type;
1636
1637  // These types can be variably-modified.  All these modifications
1638  // preserve structure except as noted by comments.
1639  // TODO: if we ever care about optimizing VLAs, there are no-op
1640  // optimizations available here.
1641  case Type::Pointer:
1642    result = getPointerType(getVariableArrayDecayedType(
1643                              cast<PointerType>(ty)->getPointeeType()));
1644    break;
1645
1646  case Type::LValueReference: {
1647    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
1648    result = getLValueReferenceType(
1649                 getVariableArrayDecayedType(lv->getPointeeType()),
1650                                    lv->isSpelledAsLValue());
1651    break;
1652  }
1653
1654  case Type::RValueReference: {
1655    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
1656    result = getRValueReferenceType(
1657                 getVariableArrayDecayedType(lv->getPointeeType()));
1658    break;
1659  }
1660
1661  case Type::ConstantArray: {
1662    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
1663    result = getConstantArrayType(
1664                 getVariableArrayDecayedType(cat->getElementType()),
1665                                  cat->getSize(),
1666                                  cat->getSizeModifier(),
1667                                  cat->getIndexTypeCVRQualifiers());
1668    break;
1669  }
1670
1671  case Type::DependentSizedArray: {
1672    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
1673    result = getDependentSizedArrayType(
1674                 getVariableArrayDecayedType(dat->getElementType()),
1675                                        dat->getSizeExpr(),
1676                                        dat->getSizeModifier(),
1677                                        dat->getIndexTypeCVRQualifiers(),
1678                                        dat->getBracketsRange());
1679    break;
1680  }
1681
1682  // Turn incomplete types into [*] types.
1683  case Type::IncompleteArray: {
1684    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
1685    result = getVariableArrayType(
1686                 getVariableArrayDecayedType(iat->getElementType()),
1687                                  /*size*/ 0,
1688                                  ArrayType::Normal,
1689                                  iat->getIndexTypeCVRQualifiers(),
1690                                  SourceRange());
1691    break;
1692  }
1693
1694  // Turn VLA types into [*] types.
1695  case Type::VariableArray: {
1696    const VariableArrayType *vat = cast<VariableArrayType>(ty);
1697    result = getVariableArrayType(
1698                 getVariableArrayDecayedType(vat->getElementType()),
1699                                  /*size*/ 0,
1700                                  ArrayType::Star,
1701                                  vat->getIndexTypeCVRQualifiers(),
1702                                  vat->getBracketsRange());
1703    break;
1704  }
1705  }
1706
1707  // Apply the top-level qualifiers from the original.
1708  return getQualifiedType(result, split.second);
1709}
1710
1711/// getVariableArrayType - Returns a non-unique reference to the type for a
1712/// variable array of the specified element type.
1713QualType ASTContext::getVariableArrayType(QualType EltTy,
1714                                          Expr *NumElts,
1715                                          ArrayType::ArraySizeModifier ASM,
1716                                          unsigned IndexTypeQuals,
1717                                          SourceRange Brackets) const {
1718  // Since we don't unique expressions, it isn't possible to unique VLA's
1719  // that have an expression provided for their size.
1720  QualType Canon;
1721
1722  // Be sure to pull qualifiers off the element type.
1723  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1724    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1725    Canon = getVariableArrayType(QualType(canonSplit.first, 0), NumElts, ASM,
1726                                 IndexTypeQuals, Brackets);
1727    Canon = getQualifiedType(Canon, canonSplit.second);
1728  }
1729
1730  VariableArrayType *New = new(*this, TypeAlignment)
1731    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
1732
1733  VariableArrayTypes.push_back(New);
1734  Types.push_back(New);
1735  return QualType(New, 0);
1736}
1737
1738/// getDependentSizedArrayType - Returns a non-unique reference to
1739/// the type for a dependently-sized array of the specified element
1740/// type.
1741QualType ASTContext::getDependentSizedArrayType(QualType elementType,
1742                                                Expr *numElements,
1743                                                ArrayType::ArraySizeModifier ASM,
1744                                                unsigned elementTypeQuals,
1745                                                SourceRange brackets) const {
1746  assert((!numElements || numElements->isTypeDependent() ||
1747          numElements->isValueDependent()) &&
1748         "Size must be type- or value-dependent!");
1749
1750  // Dependently-sized array types that do not have a specified number
1751  // of elements will have their sizes deduced from a dependent
1752  // initializer.  We do no canonicalization here at all, which is okay
1753  // because they can't be used in most locations.
1754  if (!numElements) {
1755    DependentSizedArrayType *newType
1756      = new (*this, TypeAlignment)
1757          DependentSizedArrayType(*this, elementType, QualType(),
1758                                  numElements, ASM, elementTypeQuals,
1759                                  brackets);
1760    Types.push_back(newType);
1761    return QualType(newType, 0);
1762  }
1763
1764  // Otherwise, we actually build a new type every time, but we
1765  // also build a canonical type.
1766
1767  SplitQualType canonElementType = getCanonicalType(elementType).split();
1768
1769  void *insertPos = 0;
1770  llvm::FoldingSetNodeID ID;
1771  DependentSizedArrayType::Profile(ID, *this,
1772                                   QualType(canonElementType.first, 0),
1773                                   ASM, elementTypeQuals, numElements);
1774
1775  // Look for an existing type with these properties.
1776  DependentSizedArrayType *canonTy =
1777    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1778
1779  // If we don't have one, build one.
1780  if (!canonTy) {
1781    canonTy = new (*this, TypeAlignment)
1782      DependentSizedArrayType(*this, QualType(canonElementType.first, 0),
1783                              QualType(), numElements, ASM, elementTypeQuals,
1784                              brackets);
1785    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
1786    Types.push_back(canonTy);
1787  }
1788
1789  // Apply qualifiers from the element type to the array.
1790  QualType canon = getQualifiedType(QualType(canonTy,0),
1791                                    canonElementType.second);
1792
1793  // If we didn't need extra canonicalization for the element type,
1794  // then just use that as our result.
1795  if (QualType(canonElementType.first, 0) == elementType)
1796    return canon;
1797
1798  // Otherwise, we need to build a type which follows the spelling
1799  // of the element type.
1800  DependentSizedArrayType *sugaredType
1801    = new (*this, TypeAlignment)
1802        DependentSizedArrayType(*this, elementType, canon, numElements,
1803                                ASM, elementTypeQuals, brackets);
1804  Types.push_back(sugaredType);
1805  return QualType(sugaredType, 0);
1806}
1807
1808QualType ASTContext::getIncompleteArrayType(QualType elementType,
1809                                            ArrayType::ArraySizeModifier ASM,
1810                                            unsigned elementTypeQuals) const {
1811  llvm::FoldingSetNodeID ID;
1812  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
1813
1814  void *insertPos = 0;
1815  if (IncompleteArrayType *iat =
1816       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
1817    return QualType(iat, 0);
1818
1819  // If the element type isn't canonical, this won't be a canonical type
1820  // either, so fill in the canonical type field.  We also have to pull
1821  // qualifiers off the element type.
1822  QualType canon;
1823
1824  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
1825    SplitQualType canonSplit = getCanonicalType(elementType).split();
1826    canon = getIncompleteArrayType(QualType(canonSplit.first, 0),
1827                                   ASM, elementTypeQuals);
1828    canon = getQualifiedType(canon, canonSplit.second);
1829
1830    // Get the new insert position for the node we care about.
1831    IncompleteArrayType *existing =
1832      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1833    assert(!existing && "Shouldn't be in the map!"); (void) existing;
1834  }
1835
1836  IncompleteArrayType *newType = new (*this, TypeAlignment)
1837    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
1838
1839  IncompleteArrayTypes.InsertNode(newType, insertPos);
1840  Types.push_back(newType);
1841  return QualType(newType, 0);
1842}
1843
1844/// getVectorType - Return the unique reference to a vector type of
1845/// the specified element type and size. VectorType must be a built-in type.
1846QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
1847                                   VectorType::VectorKind VecKind) const {
1848  assert(vecType->isBuiltinType());
1849
1850  // Check if we've already instantiated a vector of this type.
1851  llvm::FoldingSetNodeID ID;
1852  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
1853
1854  void *InsertPos = 0;
1855  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1856    return QualType(VTP, 0);
1857
1858  // If the element type isn't canonical, this won't be a canonical type either,
1859  // so fill in the canonical type field.
1860  QualType Canonical;
1861  if (!vecType.isCanonical()) {
1862    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
1863
1864    // Get the new insert position for the node we care about.
1865    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1866    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1867  }
1868  VectorType *New = new (*this, TypeAlignment)
1869    VectorType(vecType, NumElts, Canonical, VecKind);
1870  VectorTypes.InsertNode(New, InsertPos);
1871  Types.push_back(New);
1872  return QualType(New, 0);
1873}
1874
1875/// getExtVectorType - Return the unique reference to an extended vector type of
1876/// the specified element type and size. VectorType must be a built-in type.
1877QualType
1878ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
1879  assert(vecType->isBuiltinType() || vecType->isDependentType());
1880
1881  // Check if we've already instantiated a vector of this type.
1882  llvm::FoldingSetNodeID ID;
1883  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
1884                      VectorType::GenericVector);
1885  void *InsertPos = 0;
1886  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1887    return QualType(VTP, 0);
1888
1889  // If the element type isn't canonical, this won't be a canonical type either,
1890  // so fill in the canonical type field.
1891  QualType Canonical;
1892  if (!vecType.isCanonical()) {
1893    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1894
1895    // Get the new insert position for the node we care about.
1896    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1897    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1898  }
1899  ExtVectorType *New = new (*this, TypeAlignment)
1900    ExtVectorType(vecType, NumElts, Canonical);
1901  VectorTypes.InsertNode(New, InsertPos);
1902  Types.push_back(New);
1903  return QualType(New, 0);
1904}
1905
1906QualType
1907ASTContext::getDependentSizedExtVectorType(QualType vecType,
1908                                           Expr *SizeExpr,
1909                                           SourceLocation AttrLoc) const {
1910  llvm::FoldingSetNodeID ID;
1911  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1912                                       SizeExpr);
1913
1914  void *InsertPos = 0;
1915  DependentSizedExtVectorType *Canon
1916    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1917  DependentSizedExtVectorType *New;
1918  if (Canon) {
1919    // We already have a canonical version of this array type; use it as
1920    // the canonical type for a newly-built type.
1921    New = new (*this, TypeAlignment)
1922      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
1923                                  SizeExpr, AttrLoc);
1924  } else {
1925    QualType CanonVecTy = getCanonicalType(vecType);
1926    if (CanonVecTy == vecType) {
1927      New = new (*this, TypeAlignment)
1928        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
1929                                    AttrLoc);
1930
1931      DependentSizedExtVectorType *CanonCheck
1932        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1933      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
1934      (void)CanonCheck;
1935      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1936    } else {
1937      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1938                                                      SourceLocation());
1939      New = new (*this, TypeAlignment)
1940        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
1941    }
1942  }
1943
1944  Types.push_back(New);
1945  return QualType(New, 0);
1946}
1947
1948/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1949///
1950QualType
1951ASTContext::getFunctionNoProtoType(QualType ResultTy,
1952                                   const FunctionType::ExtInfo &Info) const {
1953  const CallingConv DefaultCC = Info.getCC();
1954  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
1955                               CC_X86StdCall : DefaultCC;
1956  // Unique functions, to guarantee there is only one function of a particular
1957  // structure.
1958  llvm::FoldingSetNodeID ID;
1959  FunctionNoProtoType::Profile(ID, ResultTy, Info);
1960
1961  void *InsertPos = 0;
1962  if (FunctionNoProtoType *FT =
1963        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1964    return QualType(FT, 0);
1965
1966  QualType Canonical;
1967  if (!ResultTy.isCanonical() ||
1968      getCanonicalCallConv(CallConv) != CallConv) {
1969    Canonical =
1970      getFunctionNoProtoType(getCanonicalType(ResultTy),
1971                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
1972
1973    // Get the new insert position for the node we care about.
1974    FunctionNoProtoType *NewIP =
1975      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1976    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1977  }
1978
1979  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
1980  FunctionNoProtoType *New = new (*this, TypeAlignment)
1981    FunctionNoProtoType(ResultTy, Canonical, newInfo);
1982  Types.push_back(New);
1983  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1984  return QualType(New, 0);
1985}
1986
1987/// getFunctionType - Return a normal function type with a typed argument
1988/// list.  isVariadic indicates whether the argument list includes '...'.
1989QualType
1990ASTContext::getFunctionType(QualType ResultTy,
1991                            const QualType *ArgArray, unsigned NumArgs,
1992                            const FunctionProtoType::ExtProtoInfo &EPI) const {
1993  // Unique functions, to guarantee there is only one function of a particular
1994  // structure.
1995  llvm::FoldingSetNodeID ID;
1996  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI, *this);
1997
1998  void *InsertPos = 0;
1999  if (FunctionProtoType *FTP =
2000        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2001    return QualType(FTP, 0);
2002
2003  // Determine whether the type being created is already canonical or not.
2004  bool isCanonical= EPI.ExceptionSpecType == EST_None && ResultTy.isCanonical();
2005  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2006    if (!ArgArray[i].isCanonicalAsParam())
2007      isCanonical = false;
2008
2009  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2010  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2011                               CC_X86StdCall : DefaultCC;
2012
2013  // If this type isn't canonical, get the canonical version of it.
2014  // The exception spec is not part of the canonical type.
2015  QualType Canonical;
2016  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2017    SmallVector<QualType, 16> CanonicalArgs;
2018    CanonicalArgs.reserve(NumArgs);
2019    for (unsigned i = 0; i != NumArgs; ++i)
2020      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2021
2022    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2023    CanonicalEPI.ExceptionSpecType = EST_None;
2024    CanonicalEPI.NumExceptions = 0;
2025    CanonicalEPI.ExtInfo
2026      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2027
2028    Canonical = getFunctionType(getCanonicalType(ResultTy),
2029                                CanonicalArgs.data(), NumArgs,
2030                                CanonicalEPI);
2031
2032    // Get the new insert position for the node we care about.
2033    FunctionProtoType *NewIP =
2034      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2035    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2036  }
2037
2038  // FunctionProtoType objects are allocated with extra bytes after
2039  // them for three variable size arrays at the end:
2040  //  - parameter types
2041  //  - exception types
2042  //  - consumed-arguments flags
2043  // Instead of the exception types, there could be a noexcept
2044  // expression.
2045  size_t Size = sizeof(FunctionProtoType) +
2046                NumArgs * sizeof(QualType);
2047  if (EPI.ExceptionSpecType == EST_Dynamic)
2048    Size += EPI.NumExceptions * sizeof(QualType);
2049  else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2050    Size += sizeof(Expr*);
2051  }
2052  if (EPI.ConsumedArguments)
2053    Size += NumArgs * sizeof(bool);
2054
2055  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2056  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2057  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2058  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, newEPI);
2059  Types.push_back(FTP);
2060  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2061  return QualType(FTP, 0);
2062}
2063
2064#ifndef NDEBUG
2065static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2066  if (!isa<CXXRecordDecl>(D)) return false;
2067  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2068  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2069    return true;
2070  if (RD->getDescribedClassTemplate() &&
2071      !isa<ClassTemplateSpecializationDecl>(RD))
2072    return true;
2073  return false;
2074}
2075#endif
2076
2077/// getInjectedClassNameType - Return the unique reference to the
2078/// injected class name type for the specified templated declaration.
2079QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2080                                              QualType TST) const {
2081  assert(NeedsInjectedClassNameType(Decl));
2082  if (Decl->TypeForDecl) {
2083    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2084  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDeclaration()) {
2085    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2086    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2087    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2088  } else {
2089    Type *newType =
2090      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2091    Decl->TypeForDecl = newType;
2092    Types.push_back(newType);
2093  }
2094  return QualType(Decl->TypeForDecl, 0);
2095}
2096
2097/// getTypeDeclType - Return the unique reference to the type for the
2098/// specified type declaration.
2099QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2100  assert(Decl && "Passed null for Decl param");
2101  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2102
2103  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2104    return getTypedefType(Typedef);
2105
2106  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2107         "Template type parameter types are always available.");
2108
2109  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2110    assert(!Record->getPreviousDeclaration() &&
2111           "struct/union has previous declaration");
2112    assert(!NeedsInjectedClassNameType(Record));
2113    return getRecordType(Record);
2114  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2115    assert(!Enum->getPreviousDeclaration() &&
2116           "enum has previous declaration");
2117    return getEnumType(Enum);
2118  } else if (const UnresolvedUsingTypenameDecl *Using =
2119               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2120    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2121    Decl->TypeForDecl = newType;
2122    Types.push_back(newType);
2123  } else
2124    llvm_unreachable("TypeDecl without a type?");
2125
2126  return QualType(Decl->TypeForDecl, 0);
2127}
2128
2129/// getTypedefType - Return the unique reference to the type for the
2130/// specified typedef name decl.
2131QualType
2132ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2133                           QualType Canonical) const {
2134  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2135
2136  if (Canonical.isNull())
2137    Canonical = getCanonicalType(Decl->getUnderlyingType());
2138  TypedefType *newType = new(*this, TypeAlignment)
2139    TypedefType(Type::Typedef, Decl, Canonical);
2140  Decl->TypeForDecl = newType;
2141  Types.push_back(newType);
2142  return QualType(newType, 0);
2143}
2144
2145QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2146  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2147
2148  if (const RecordDecl *PrevDecl = Decl->getPreviousDeclaration())
2149    if (PrevDecl->TypeForDecl)
2150      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2151
2152  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2153  Decl->TypeForDecl = newType;
2154  Types.push_back(newType);
2155  return QualType(newType, 0);
2156}
2157
2158QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2159  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2160
2161  if (const EnumDecl *PrevDecl = Decl->getPreviousDeclaration())
2162    if (PrevDecl->TypeForDecl)
2163      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2164
2165  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2166  Decl->TypeForDecl = newType;
2167  Types.push_back(newType);
2168  return QualType(newType, 0);
2169}
2170
2171QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2172                                       QualType modifiedType,
2173                                       QualType equivalentType) {
2174  llvm::FoldingSetNodeID id;
2175  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2176
2177  void *insertPos = 0;
2178  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2179  if (type) return QualType(type, 0);
2180
2181  QualType canon = getCanonicalType(equivalentType);
2182  type = new (*this, TypeAlignment)
2183           AttributedType(canon, attrKind, modifiedType, equivalentType);
2184
2185  Types.push_back(type);
2186  AttributedTypes.InsertNode(type, insertPos);
2187
2188  return QualType(type, 0);
2189}
2190
2191
2192/// \brief Retrieve a substitution-result type.
2193QualType
2194ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2195                                         QualType Replacement) const {
2196  assert(Replacement.isCanonical()
2197         && "replacement types must always be canonical");
2198
2199  llvm::FoldingSetNodeID ID;
2200  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2201  void *InsertPos = 0;
2202  SubstTemplateTypeParmType *SubstParm
2203    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2204
2205  if (!SubstParm) {
2206    SubstParm = new (*this, TypeAlignment)
2207      SubstTemplateTypeParmType(Parm, Replacement);
2208    Types.push_back(SubstParm);
2209    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2210  }
2211
2212  return QualType(SubstParm, 0);
2213}
2214
2215/// \brief Retrieve a
2216QualType ASTContext::getSubstTemplateTypeParmPackType(
2217                                          const TemplateTypeParmType *Parm,
2218                                              const TemplateArgument &ArgPack) {
2219#ifndef NDEBUG
2220  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2221                                    PEnd = ArgPack.pack_end();
2222       P != PEnd; ++P) {
2223    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2224    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2225  }
2226#endif
2227
2228  llvm::FoldingSetNodeID ID;
2229  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2230  void *InsertPos = 0;
2231  if (SubstTemplateTypeParmPackType *SubstParm
2232        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2233    return QualType(SubstParm, 0);
2234
2235  QualType Canon;
2236  if (!Parm->isCanonicalUnqualified()) {
2237    Canon = getCanonicalType(QualType(Parm, 0));
2238    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2239                                             ArgPack);
2240    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2241  }
2242
2243  SubstTemplateTypeParmPackType *SubstParm
2244    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2245                                                               ArgPack);
2246  Types.push_back(SubstParm);
2247  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2248  return QualType(SubstParm, 0);
2249}
2250
2251/// \brief Retrieve the template type parameter type for a template
2252/// parameter or parameter pack with the given depth, index, and (optionally)
2253/// name.
2254QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2255                                             bool ParameterPack,
2256                                             TemplateTypeParmDecl *TTPDecl) const {
2257  llvm::FoldingSetNodeID ID;
2258  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
2259  void *InsertPos = 0;
2260  TemplateTypeParmType *TypeParm
2261    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2262
2263  if (TypeParm)
2264    return QualType(TypeParm, 0);
2265
2266  if (TTPDecl) {
2267    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2268    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
2269
2270    TemplateTypeParmType *TypeCheck
2271      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2272    assert(!TypeCheck && "Template type parameter canonical type broken");
2273    (void)TypeCheck;
2274  } else
2275    TypeParm = new (*this, TypeAlignment)
2276      TemplateTypeParmType(Depth, Index, ParameterPack);
2277
2278  Types.push_back(TypeParm);
2279  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2280
2281  return QualType(TypeParm, 0);
2282}
2283
2284TypeSourceInfo *
2285ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2286                                              SourceLocation NameLoc,
2287                                        const TemplateArgumentListInfo &Args,
2288                                              QualType Underlying) const {
2289  assert(!Name.getAsDependentTemplateName() &&
2290         "No dependent template names here!");
2291  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
2292
2293  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2294  TemplateSpecializationTypeLoc TL
2295    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
2296  TL.setTemplateNameLoc(NameLoc);
2297  TL.setLAngleLoc(Args.getLAngleLoc());
2298  TL.setRAngleLoc(Args.getRAngleLoc());
2299  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2300    TL.setArgLocInfo(i, Args[i].getLocInfo());
2301  return DI;
2302}
2303
2304QualType
2305ASTContext::getTemplateSpecializationType(TemplateName Template,
2306                                          const TemplateArgumentListInfo &Args,
2307                                          QualType Underlying) const {
2308  assert(!Template.getAsDependentTemplateName() &&
2309         "No dependent template names here!");
2310
2311  unsigned NumArgs = Args.size();
2312
2313  SmallVector<TemplateArgument, 4> ArgVec;
2314  ArgVec.reserve(NumArgs);
2315  for (unsigned i = 0; i != NumArgs; ++i)
2316    ArgVec.push_back(Args[i].getArgument());
2317
2318  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2319                                       Underlying);
2320}
2321
2322QualType
2323ASTContext::getTemplateSpecializationType(TemplateName Template,
2324                                          const TemplateArgument *Args,
2325                                          unsigned NumArgs,
2326                                          QualType Underlying) const {
2327  assert(!Template.getAsDependentTemplateName() &&
2328         "No dependent template names here!");
2329  // Look through qualified template names.
2330  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2331    Template = TemplateName(QTN->getTemplateDecl());
2332
2333  bool isTypeAlias =
2334    Template.getAsTemplateDecl() &&
2335    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
2336
2337  QualType CanonType;
2338  if (!Underlying.isNull())
2339    CanonType = getCanonicalType(Underlying);
2340  else {
2341    assert(!isTypeAlias &&
2342           "Underlying type for template alias must be computed by caller");
2343    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
2344                                                       NumArgs);
2345  }
2346
2347  // Allocate the (non-canonical) template specialization type, but don't
2348  // try to unique it: these types typically have location information that
2349  // we don't unique and don't want to lose.
2350  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
2351                       sizeof(TemplateArgument) * NumArgs +
2352                       (isTypeAlias ? sizeof(QualType) : 0),
2353                       TypeAlignment);
2354  TemplateSpecializationType *Spec
2355    = new (Mem) TemplateSpecializationType(Template,
2356                                           Args, NumArgs,
2357                                           CanonType,
2358                                         isTypeAlias ? Underlying : QualType());
2359
2360  Types.push_back(Spec);
2361  return QualType(Spec, 0);
2362}
2363
2364QualType
2365ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
2366                                                   const TemplateArgument *Args,
2367                                                   unsigned NumArgs) const {
2368  assert(!Template.getAsDependentTemplateName() &&
2369         "No dependent template names here!");
2370  assert((!Template.getAsTemplateDecl() ||
2371          !isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) &&
2372         "Underlying type for template alias must be computed by caller");
2373
2374  // Look through qualified template names.
2375  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2376    Template = TemplateName(QTN->getTemplateDecl());
2377
2378  // Build the canonical template specialization type.
2379  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
2380  SmallVector<TemplateArgument, 4> CanonArgs;
2381  CanonArgs.reserve(NumArgs);
2382  for (unsigned I = 0; I != NumArgs; ++I)
2383    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
2384
2385  // Determine whether this canonical template specialization type already
2386  // exists.
2387  llvm::FoldingSetNodeID ID;
2388  TemplateSpecializationType::Profile(ID, CanonTemplate,
2389                                      CanonArgs.data(), NumArgs, *this);
2390
2391  void *InsertPos = 0;
2392  TemplateSpecializationType *Spec
2393    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2394
2395  if (!Spec) {
2396    // Allocate a new canonical template specialization type.
2397    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2398                          sizeof(TemplateArgument) * NumArgs),
2399                         TypeAlignment);
2400    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
2401                                                CanonArgs.data(), NumArgs,
2402                                                QualType(), QualType());
2403    Types.push_back(Spec);
2404    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
2405  }
2406
2407  assert(Spec->isDependentType() &&
2408         "Non-dependent template-id type must have a canonical type");
2409  return QualType(Spec, 0);
2410}
2411
2412QualType
2413ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
2414                              NestedNameSpecifier *NNS,
2415                              QualType NamedType) const {
2416  llvm::FoldingSetNodeID ID;
2417  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
2418
2419  void *InsertPos = 0;
2420  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2421  if (T)
2422    return QualType(T, 0);
2423
2424  QualType Canon = NamedType;
2425  if (!Canon.isCanonical()) {
2426    Canon = getCanonicalType(NamedType);
2427    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2428    assert(!CheckT && "Elaborated canonical type broken");
2429    (void)CheckT;
2430  }
2431
2432  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
2433  Types.push_back(T);
2434  ElaboratedTypes.InsertNode(T, InsertPos);
2435  return QualType(T, 0);
2436}
2437
2438QualType
2439ASTContext::getParenType(QualType InnerType) const {
2440  llvm::FoldingSetNodeID ID;
2441  ParenType::Profile(ID, InnerType);
2442
2443  void *InsertPos = 0;
2444  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2445  if (T)
2446    return QualType(T, 0);
2447
2448  QualType Canon = InnerType;
2449  if (!Canon.isCanonical()) {
2450    Canon = getCanonicalType(InnerType);
2451    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2452    assert(!CheckT && "Paren canonical type broken");
2453    (void)CheckT;
2454  }
2455
2456  T = new (*this) ParenType(InnerType, Canon);
2457  Types.push_back(T);
2458  ParenTypes.InsertNode(T, InsertPos);
2459  return QualType(T, 0);
2460}
2461
2462QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
2463                                          NestedNameSpecifier *NNS,
2464                                          const IdentifierInfo *Name,
2465                                          QualType Canon) const {
2466  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2467
2468  if (Canon.isNull()) {
2469    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2470    ElaboratedTypeKeyword CanonKeyword = Keyword;
2471    if (Keyword == ETK_None)
2472      CanonKeyword = ETK_Typename;
2473
2474    if (CanonNNS != NNS || CanonKeyword != Keyword)
2475      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
2476  }
2477
2478  llvm::FoldingSetNodeID ID;
2479  DependentNameType::Profile(ID, Keyword, NNS, Name);
2480
2481  void *InsertPos = 0;
2482  DependentNameType *T
2483    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2484  if (T)
2485    return QualType(T, 0);
2486
2487  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
2488  Types.push_back(T);
2489  DependentNameTypes.InsertNode(T, InsertPos);
2490  return QualType(T, 0);
2491}
2492
2493QualType
2494ASTContext::getDependentTemplateSpecializationType(
2495                                 ElaboratedTypeKeyword Keyword,
2496                                 NestedNameSpecifier *NNS,
2497                                 const IdentifierInfo *Name,
2498                                 const TemplateArgumentListInfo &Args) const {
2499  // TODO: avoid this copy
2500  SmallVector<TemplateArgument, 16> ArgCopy;
2501  for (unsigned I = 0, E = Args.size(); I != E; ++I)
2502    ArgCopy.push_back(Args[I].getArgument());
2503  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
2504                                                ArgCopy.size(),
2505                                                ArgCopy.data());
2506}
2507
2508QualType
2509ASTContext::getDependentTemplateSpecializationType(
2510                                 ElaboratedTypeKeyword Keyword,
2511                                 NestedNameSpecifier *NNS,
2512                                 const IdentifierInfo *Name,
2513                                 unsigned NumArgs,
2514                                 const TemplateArgument *Args) const {
2515  assert((!NNS || NNS->isDependent()) &&
2516         "nested-name-specifier must be dependent");
2517
2518  llvm::FoldingSetNodeID ID;
2519  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
2520                                               Name, NumArgs, Args);
2521
2522  void *InsertPos = 0;
2523  DependentTemplateSpecializationType *T
2524    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2525  if (T)
2526    return QualType(T, 0);
2527
2528  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2529
2530  ElaboratedTypeKeyword CanonKeyword = Keyword;
2531  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
2532
2533  bool AnyNonCanonArgs = false;
2534  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
2535  for (unsigned I = 0; I != NumArgs; ++I) {
2536    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
2537    if (!CanonArgs[I].structurallyEquals(Args[I]))
2538      AnyNonCanonArgs = true;
2539  }
2540
2541  QualType Canon;
2542  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
2543    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
2544                                                   Name, NumArgs,
2545                                                   CanonArgs.data());
2546
2547    // Find the insert position again.
2548    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2549  }
2550
2551  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
2552                        sizeof(TemplateArgument) * NumArgs),
2553                       TypeAlignment);
2554  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
2555                                                    Name, NumArgs, Args, Canon);
2556  Types.push_back(T);
2557  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
2558  return QualType(T, 0);
2559}
2560
2561QualType ASTContext::getPackExpansionType(QualType Pattern,
2562                                      llvm::Optional<unsigned> NumExpansions) {
2563  llvm::FoldingSetNodeID ID;
2564  PackExpansionType::Profile(ID, Pattern, NumExpansions);
2565
2566  assert(Pattern->containsUnexpandedParameterPack() &&
2567         "Pack expansions must expand one or more parameter packs");
2568  void *InsertPos = 0;
2569  PackExpansionType *T
2570    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2571  if (T)
2572    return QualType(T, 0);
2573
2574  QualType Canon;
2575  if (!Pattern.isCanonical()) {
2576    Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
2577
2578    // Find the insert position again.
2579    PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2580  }
2581
2582  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
2583  Types.push_back(T);
2584  PackExpansionTypes.InsertNode(T, InsertPos);
2585  return QualType(T, 0);
2586}
2587
2588/// CmpProtocolNames - Comparison predicate for sorting protocols
2589/// alphabetically.
2590static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2591                            const ObjCProtocolDecl *RHS) {
2592  return LHS->getDeclName() < RHS->getDeclName();
2593}
2594
2595static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
2596                                unsigned NumProtocols) {
2597  if (NumProtocols == 0) return true;
2598
2599  for (unsigned i = 1; i != NumProtocols; ++i)
2600    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
2601      return false;
2602  return true;
2603}
2604
2605static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2606                                   unsigned &NumProtocols) {
2607  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2608
2609  // Sort protocols, keyed by name.
2610  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2611
2612  // Remove duplicates.
2613  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2614  NumProtocols = ProtocolsEnd-Protocols;
2615}
2616
2617QualType ASTContext::getObjCObjectType(QualType BaseType,
2618                                       ObjCProtocolDecl * const *Protocols,
2619                                       unsigned NumProtocols) const {
2620  // If the base type is an interface and there aren't any protocols
2621  // to add, then the interface type will do just fine.
2622  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
2623    return BaseType;
2624
2625  // Look in the folding set for an existing type.
2626  llvm::FoldingSetNodeID ID;
2627  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
2628  void *InsertPos = 0;
2629  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
2630    return QualType(QT, 0);
2631
2632  // Build the canonical type, which has the canonical base type and
2633  // a sorted-and-uniqued list of protocols.
2634  QualType Canonical;
2635  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
2636  if (!ProtocolsSorted || !BaseType.isCanonical()) {
2637    if (!ProtocolsSorted) {
2638      SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
2639                                                     Protocols + NumProtocols);
2640      unsigned UniqueCount = NumProtocols;
2641
2642      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2643      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2644                                    &Sorted[0], UniqueCount);
2645    } else {
2646      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2647                                    Protocols, NumProtocols);
2648    }
2649
2650    // Regenerate InsertPos.
2651    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
2652  }
2653
2654  unsigned Size = sizeof(ObjCObjectTypeImpl);
2655  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
2656  void *Mem = Allocate(Size, TypeAlignment);
2657  ObjCObjectTypeImpl *T =
2658    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
2659
2660  Types.push_back(T);
2661  ObjCObjectTypes.InsertNode(T, InsertPos);
2662  return QualType(T, 0);
2663}
2664
2665/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2666/// the given object type.
2667QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
2668  llvm::FoldingSetNodeID ID;
2669  ObjCObjectPointerType::Profile(ID, ObjectT);
2670
2671  void *InsertPos = 0;
2672  if (ObjCObjectPointerType *QT =
2673              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2674    return QualType(QT, 0);
2675
2676  // Find the canonical object type.
2677  QualType Canonical;
2678  if (!ObjectT.isCanonical()) {
2679    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
2680
2681    // Regenerate InsertPos.
2682    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2683  }
2684
2685  // No match.
2686  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
2687  ObjCObjectPointerType *QType =
2688    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
2689
2690  Types.push_back(QType);
2691  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2692  return QualType(QType, 0);
2693}
2694
2695/// getObjCInterfaceType - Return the unique reference to the type for the
2696/// specified ObjC interface decl. The list of protocols is optional.
2697QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl) const {
2698  if (Decl->TypeForDecl)
2699    return QualType(Decl->TypeForDecl, 0);
2700
2701  // FIXME: redeclarations?
2702  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
2703  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
2704  Decl->TypeForDecl = T;
2705  Types.push_back(T);
2706  return QualType(T, 0);
2707}
2708
2709/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2710/// TypeOfExprType AST's (since expression's are never shared). For example,
2711/// multiple declarations that refer to "typeof(x)" all contain different
2712/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2713/// on canonical type's (which are always unique).
2714QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
2715  TypeOfExprType *toe;
2716  if (tofExpr->isTypeDependent()) {
2717    llvm::FoldingSetNodeID ID;
2718    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2719
2720    void *InsertPos = 0;
2721    DependentTypeOfExprType *Canon
2722      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2723    if (Canon) {
2724      // We already have a "canonical" version of an identical, dependent
2725      // typeof(expr) type. Use that as our canonical type.
2726      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2727                                          QualType((TypeOfExprType*)Canon, 0));
2728    }
2729    else {
2730      // Build a new, canonical typeof(expr) type.
2731      Canon
2732        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2733      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2734      toe = Canon;
2735    }
2736  } else {
2737    QualType Canonical = getCanonicalType(tofExpr->getType());
2738    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2739  }
2740  Types.push_back(toe);
2741  return QualType(toe, 0);
2742}
2743
2744/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2745/// TypeOfType AST's. The only motivation to unique these nodes would be
2746/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2747/// an issue. This doesn't effect the type checker, since it operates
2748/// on canonical type's (which are always unique).
2749QualType ASTContext::getTypeOfType(QualType tofType) const {
2750  QualType Canonical = getCanonicalType(tofType);
2751  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2752  Types.push_back(tot);
2753  return QualType(tot, 0);
2754}
2755
2756/// getDecltypeForExpr - Given an expr, will return the decltype for that
2757/// expression, according to the rules in C++0x [dcl.type.simple]p4
2758static QualType getDecltypeForExpr(const Expr *e, const ASTContext &Context) {
2759  if (e->isTypeDependent())
2760    return Context.DependentTy;
2761
2762  // If e is an id expression or a class member access, decltype(e) is defined
2763  // as the type of the entity named by e.
2764  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2765    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2766      return VD->getType();
2767  }
2768  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2769    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2770      return FD->getType();
2771  }
2772  // If e is a function call or an invocation of an overloaded operator,
2773  // (parentheses around e are ignored), decltype(e) is defined as the
2774  // return type of that function.
2775  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2776    return CE->getCallReturnType();
2777
2778  QualType T = e->getType();
2779
2780  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2781  // defined as T&, otherwise decltype(e) is defined as T.
2782  if (e->isLValue())
2783    T = Context.getLValueReferenceType(T);
2784
2785  return T;
2786}
2787
2788/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2789/// DecltypeType AST's. The only motivation to unique these nodes would be
2790/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2791/// an issue. This doesn't effect the type checker, since it operates
2792/// on canonical type's (which are always unique).
2793QualType ASTContext::getDecltypeType(Expr *e) const {
2794  DecltypeType *dt;
2795
2796  // C++0x [temp.type]p2:
2797  //   If an expression e involves a template parameter, decltype(e) denotes a
2798  //   unique dependent type. Two such decltype-specifiers refer to the same
2799  //   type only if their expressions are equivalent (14.5.6.1).
2800  if (e->isInstantiationDependent()) {
2801    llvm::FoldingSetNodeID ID;
2802    DependentDecltypeType::Profile(ID, *this, e);
2803
2804    void *InsertPos = 0;
2805    DependentDecltypeType *Canon
2806      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2807    if (Canon) {
2808      // We already have a "canonical" version of an equivalent, dependent
2809      // decltype type. Use that as our canonical type.
2810      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2811                                       QualType((DecltypeType*)Canon, 0));
2812    }
2813    else {
2814      // Build a new, canonical typeof(expr) type.
2815      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2816      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2817      dt = Canon;
2818    }
2819  } else {
2820    QualType T = getDecltypeForExpr(e, *this);
2821    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2822  }
2823  Types.push_back(dt);
2824  return QualType(dt, 0);
2825}
2826
2827/// getUnaryTransformationType - We don't unique these, since the memory
2828/// savings are minimal and these are rare.
2829QualType ASTContext::getUnaryTransformType(QualType BaseType,
2830                                           QualType UnderlyingType,
2831                                           UnaryTransformType::UTTKind Kind)
2832    const {
2833  UnaryTransformType *Ty =
2834    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
2835                                                   Kind,
2836                                 UnderlyingType->isDependentType() ?
2837                                    QualType() : UnderlyingType);
2838  Types.push_back(Ty);
2839  return QualType(Ty, 0);
2840}
2841
2842/// getAutoType - We only unique auto types after they've been deduced.
2843QualType ASTContext::getAutoType(QualType DeducedType) const {
2844  void *InsertPos = 0;
2845  if (!DeducedType.isNull()) {
2846    // Look in the folding set for an existing type.
2847    llvm::FoldingSetNodeID ID;
2848    AutoType::Profile(ID, DeducedType);
2849    if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
2850      return QualType(AT, 0);
2851  }
2852
2853  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
2854  Types.push_back(AT);
2855  if (InsertPos)
2856    AutoTypes.InsertNode(AT, InsertPos);
2857  return QualType(AT, 0);
2858}
2859
2860/// getAutoDeductType - Get type pattern for deducing against 'auto'.
2861QualType ASTContext::getAutoDeductType() const {
2862  if (AutoDeductTy.isNull())
2863    AutoDeductTy = getAutoType(QualType());
2864  assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern");
2865  return AutoDeductTy;
2866}
2867
2868/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
2869QualType ASTContext::getAutoRRefDeductType() const {
2870  if (AutoRRefDeductTy.isNull())
2871    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
2872  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
2873  return AutoRRefDeductTy;
2874}
2875
2876/// getTagDeclType - Return the unique reference to the type for the
2877/// specified TagDecl (struct/union/class/enum) decl.
2878QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
2879  assert (Decl);
2880  // FIXME: What is the design on getTagDeclType when it requires casting
2881  // away const?  mutable?
2882  return getTypeDeclType(const_cast<TagDecl*>(Decl));
2883}
2884
2885/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2886/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2887/// needs to agree with the definition in <stddef.h>.
2888CanQualType ASTContext::getSizeType() const {
2889  return getFromTargetType(Target.getSizeType());
2890}
2891
2892/// getSignedWCharType - Return the type of "signed wchar_t".
2893/// Used when in C++, as a GCC extension.
2894QualType ASTContext::getSignedWCharType() const {
2895  // FIXME: derive from "Target" ?
2896  return WCharTy;
2897}
2898
2899/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2900/// Used when in C++, as a GCC extension.
2901QualType ASTContext::getUnsignedWCharType() const {
2902  // FIXME: derive from "Target" ?
2903  return UnsignedIntTy;
2904}
2905
2906/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2907/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2908QualType ASTContext::getPointerDiffType() const {
2909  return getFromTargetType(Target.getPtrDiffType(0));
2910}
2911
2912//===----------------------------------------------------------------------===//
2913//                              Type Operators
2914//===----------------------------------------------------------------------===//
2915
2916CanQualType ASTContext::getCanonicalParamType(QualType T) const {
2917  // Push qualifiers into arrays, and then discard any remaining
2918  // qualifiers.
2919  T = getCanonicalType(T);
2920  T = getVariableArrayDecayedType(T);
2921  const Type *Ty = T.getTypePtr();
2922  QualType Result;
2923  if (isa<ArrayType>(Ty)) {
2924    Result = getArrayDecayedType(QualType(Ty,0));
2925  } else if (isa<FunctionType>(Ty)) {
2926    Result = getPointerType(QualType(Ty, 0));
2927  } else {
2928    Result = QualType(Ty, 0);
2929  }
2930
2931  return CanQualType::CreateUnsafe(Result);
2932}
2933
2934QualType ASTContext::getUnqualifiedArrayType(QualType type,
2935                                             Qualifiers &quals) {
2936  SplitQualType splitType = type.getSplitUnqualifiedType();
2937
2938  // FIXME: getSplitUnqualifiedType() actually walks all the way to
2939  // the unqualified desugared type and then drops it on the floor.
2940  // We then have to strip that sugar back off with
2941  // getUnqualifiedDesugaredType(), which is silly.
2942  const ArrayType *AT =
2943    dyn_cast<ArrayType>(splitType.first->getUnqualifiedDesugaredType());
2944
2945  // If we don't have an array, just use the results in splitType.
2946  if (!AT) {
2947    quals = splitType.second;
2948    return QualType(splitType.first, 0);
2949  }
2950
2951  // Otherwise, recurse on the array's element type.
2952  QualType elementType = AT->getElementType();
2953  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
2954
2955  // If that didn't change the element type, AT has no qualifiers, so we
2956  // can just use the results in splitType.
2957  if (elementType == unqualElementType) {
2958    assert(quals.empty()); // from the recursive call
2959    quals = splitType.second;
2960    return QualType(splitType.first, 0);
2961  }
2962
2963  // Otherwise, add in the qualifiers from the outermost type, then
2964  // build the type back up.
2965  quals.addConsistentQualifiers(splitType.second);
2966
2967  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
2968    return getConstantArrayType(unqualElementType, CAT->getSize(),
2969                                CAT->getSizeModifier(), 0);
2970  }
2971
2972  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
2973    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
2974  }
2975
2976  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
2977    return getVariableArrayType(unqualElementType,
2978                                VAT->getSizeExpr(),
2979                                VAT->getSizeModifier(),
2980                                VAT->getIndexTypeCVRQualifiers(),
2981                                VAT->getBracketsRange());
2982  }
2983
2984  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
2985  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
2986                                    DSAT->getSizeModifier(), 0,
2987                                    SourceRange());
2988}
2989
2990/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
2991/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
2992/// they point to and return true. If T1 and T2 aren't pointer types
2993/// or pointer-to-member types, or if they are not similar at this
2994/// level, returns false and leaves T1 and T2 unchanged. Top-level
2995/// qualifiers on T1 and T2 are ignored. This function will typically
2996/// be called in a loop that successively "unwraps" pointer and
2997/// pointer-to-member types to compare them at each level.
2998bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
2999  const PointerType *T1PtrType = T1->getAs<PointerType>(),
3000                    *T2PtrType = T2->getAs<PointerType>();
3001  if (T1PtrType && T2PtrType) {
3002    T1 = T1PtrType->getPointeeType();
3003    T2 = T2PtrType->getPointeeType();
3004    return true;
3005  }
3006
3007  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3008                          *T2MPType = T2->getAs<MemberPointerType>();
3009  if (T1MPType && T2MPType &&
3010      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3011                             QualType(T2MPType->getClass(), 0))) {
3012    T1 = T1MPType->getPointeeType();
3013    T2 = T2MPType->getPointeeType();
3014    return true;
3015  }
3016
3017  if (getLangOptions().ObjC1) {
3018    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3019                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
3020    if (T1OPType && T2OPType) {
3021      T1 = T1OPType->getPointeeType();
3022      T2 = T2OPType->getPointeeType();
3023      return true;
3024    }
3025  }
3026
3027  // FIXME: Block pointers, too?
3028
3029  return false;
3030}
3031
3032DeclarationNameInfo
3033ASTContext::getNameForTemplate(TemplateName Name,
3034                               SourceLocation NameLoc) const {
3035  switch (Name.getKind()) {
3036  case TemplateName::QualifiedTemplate:
3037  case TemplateName::Template:
3038    // DNInfo work in progress: CHECKME: what about DNLoc?
3039    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3040                               NameLoc);
3041
3042  case TemplateName::OverloadedTemplate: {
3043    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3044    // DNInfo work in progress: CHECKME: what about DNLoc?
3045    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3046  }
3047
3048  case TemplateName::DependentTemplate: {
3049    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3050    DeclarationName DName;
3051    if (DTN->isIdentifier()) {
3052      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3053      return DeclarationNameInfo(DName, NameLoc);
3054    } else {
3055      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3056      // DNInfo work in progress: FIXME: source locations?
3057      DeclarationNameLoc DNLoc;
3058      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3059      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3060      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3061    }
3062  }
3063
3064  case TemplateName::SubstTemplateTemplateParm: {
3065    SubstTemplateTemplateParmStorage *subst
3066      = Name.getAsSubstTemplateTemplateParm();
3067    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3068                               NameLoc);
3069  }
3070
3071  case TemplateName::SubstTemplateTemplateParmPack: {
3072    SubstTemplateTemplateParmPackStorage *subst
3073      = Name.getAsSubstTemplateTemplateParmPack();
3074    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3075                               NameLoc);
3076  }
3077  }
3078
3079  llvm_unreachable("bad template name kind!");
3080}
3081
3082TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3083  switch (Name.getKind()) {
3084  case TemplateName::QualifiedTemplate:
3085  case TemplateName::Template: {
3086    TemplateDecl *Template = Name.getAsTemplateDecl();
3087    if (TemplateTemplateParmDecl *TTP
3088          = dyn_cast<TemplateTemplateParmDecl>(Template))
3089      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3090
3091    // The canonical template name is the canonical template declaration.
3092    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3093  }
3094
3095  case TemplateName::OverloadedTemplate:
3096    llvm_unreachable("cannot canonicalize overloaded template");
3097
3098  case TemplateName::DependentTemplate: {
3099    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3100    assert(DTN && "Non-dependent template names must refer to template decls.");
3101    return DTN->CanonicalTemplateName;
3102  }
3103
3104  case TemplateName::SubstTemplateTemplateParm: {
3105    SubstTemplateTemplateParmStorage *subst
3106      = Name.getAsSubstTemplateTemplateParm();
3107    return getCanonicalTemplateName(subst->getReplacement());
3108  }
3109
3110  case TemplateName::SubstTemplateTemplateParmPack: {
3111    SubstTemplateTemplateParmPackStorage *subst
3112                                  = Name.getAsSubstTemplateTemplateParmPack();
3113    TemplateTemplateParmDecl *canonParameter
3114      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3115    TemplateArgument canonArgPack
3116      = getCanonicalTemplateArgument(subst->getArgumentPack());
3117    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3118  }
3119  }
3120
3121  llvm_unreachable("bad template name!");
3122}
3123
3124bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3125  X = getCanonicalTemplateName(X);
3126  Y = getCanonicalTemplateName(Y);
3127  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3128}
3129
3130TemplateArgument
3131ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3132  switch (Arg.getKind()) {
3133    case TemplateArgument::Null:
3134      return Arg;
3135
3136    case TemplateArgument::Expression:
3137      return Arg;
3138
3139    case TemplateArgument::Declaration:
3140      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
3141
3142    case TemplateArgument::Template:
3143      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3144
3145    case TemplateArgument::TemplateExpansion:
3146      return TemplateArgument(getCanonicalTemplateName(
3147                                         Arg.getAsTemplateOrTemplatePattern()),
3148                              Arg.getNumTemplateExpansions());
3149
3150    case TemplateArgument::Integral:
3151      return TemplateArgument(*Arg.getAsIntegral(),
3152                              getCanonicalType(Arg.getIntegralType()));
3153
3154    case TemplateArgument::Type:
3155      return TemplateArgument(getCanonicalType(Arg.getAsType()));
3156
3157    case TemplateArgument::Pack: {
3158      if (Arg.pack_size() == 0)
3159        return Arg;
3160
3161      TemplateArgument *CanonArgs
3162        = new (*this) TemplateArgument[Arg.pack_size()];
3163      unsigned Idx = 0;
3164      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
3165                                        AEnd = Arg.pack_end();
3166           A != AEnd; (void)++A, ++Idx)
3167        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
3168
3169      return TemplateArgument(CanonArgs, Arg.pack_size());
3170    }
3171  }
3172
3173  // Silence GCC warning
3174  assert(false && "Unhandled template argument kind");
3175  return TemplateArgument();
3176}
3177
3178NestedNameSpecifier *
3179ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
3180  if (!NNS)
3181    return 0;
3182
3183  switch (NNS->getKind()) {
3184  case NestedNameSpecifier::Identifier:
3185    // Canonicalize the prefix but keep the identifier the same.
3186    return NestedNameSpecifier::Create(*this,
3187                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
3188                                       NNS->getAsIdentifier());
3189
3190  case NestedNameSpecifier::Namespace:
3191    // A namespace is canonical; build a nested-name-specifier with
3192    // this namespace and no prefix.
3193    return NestedNameSpecifier::Create(*this, 0,
3194                                 NNS->getAsNamespace()->getOriginalNamespace());
3195
3196  case NestedNameSpecifier::NamespaceAlias:
3197    // A namespace is canonical; build a nested-name-specifier with
3198    // this namespace and no prefix.
3199    return NestedNameSpecifier::Create(*this, 0,
3200                                    NNS->getAsNamespaceAlias()->getNamespace()
3201                                                      ->getOriginalNamespace());
3202
3203  case NestedNameSpecifier::TypeSpec:
3204  case NestedNameSpecifier::TypeSpecWithTemplate: {
3205    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
3206
3207    // If we have some kind of dependent-named type (e.g., "typename T::type"),
3208    // break it apart into its prefix and identifier, then reconsititute those
3209    // as the canonical nested-name-specifier. This is required to canonicalize
3210    // a dependent nested-name-specifier involving typedefs of dependent-name
3211    // types, e.g.,
3212    //   typedef typename T::type T1;
3213    //   typedef typename T1::type T2;
3214    if (const DependentNameType *DNT = T->getAs<DependentNameType>()) {
3215      NestedNameSpecifier *Prefix
3216        = getCanonicalNestedNameSpecifier(DNT->getQualifier());
3217      return NestedNameSpecifier::Create(*this, Prefix,
3218                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
3219    }
3220
3221    // Do the same thing as above, but with dependent-named specializations.
3222    if (const DependentTemplateSpecializationType *DTST
3223          = T->getAs<DependentTemplateSpecializationType>()) {
3224      NestedNameSpecifier *Prefix
3225        = getCanonicalNestedNameSpecifier(DTST->getQualifier());
3226
3227      T = getDependentTemplateSpecializationType(DTST->getKeyword(),
3228                                                 Prefix, DTST->getIdentifier(),
3229                                                 DTST->getNumArgs(),
3230                                                 DTST->getArgs());
3231      T = getCanonicalType(T);
3232    }
3233
3234    return NestedNameSpecifier::Create(*this, 0, false,
3235                                       const_cast<Type*>(T.getTypePtr()));
3236  }
3237
3238  case NestedNameSpecifier::Global:
3239    // The global specifier is canonical and unique.
3240    return NNS;
3241  }
3242
3243  // Required to silence a GCC warning
3244  return 0;
3245}
3246
3247
3248const ArrayType *ASTContext::getAsArrayType(QualType T) const {
3249  // Handle the non-qualified case efficiently.
3250  if (!T.hasLocalQualifiers()) {
3251    // Handle the common positive case fast.
3252    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
3253      return AT;
3254  }
3255
3256  // Handle the common negative case fast.
3257  if (!isa<ArrayType>(T.getCanonicalType()))
3258    return 0;
3259
3260  // Apply any qualifiers from the array type to the element type.  This
3261  // implements C99 6.7.3p8: "If the specification of an array type includes
3262  // any type qualifiers, the element type is so qualified, not the array type."
3263
3264  // If we get here, we either have type qualifiers on the type, or we have
3265  // sugar such as a typedef in the way.  If we have type qualifiers on the type
3266  // we must propagate them down into the element type.
3267
3268  SplitQualType split = T.getSplitDesugaredType();
3269  Qualifiers qs = split.second;
3270
3271  // If we have a simple case, just return now.
3272  const ArrayType *ATy = dyn_cast<ArrayType>(split.first);
3273  if (ATy == 0 || qs.empty())
3274    return ATy;
3275
3276  // Otherwise, we have an array and we have qualifiers on it.  Push the
3277  // qualifiers into the array element type and return a new array type.
3278  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
3279
3280  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
3281    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
3282                                                CAT->getSizeModifier(),
3283                                           CAT->getIndexTypeCVRQualifiers()));
3284  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
3285    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
3286                                                  IAT->getSizeModifier(),
3287                                           IAT->getIndexTypeCVRQualifiers()));
3288
3289  if (const DependentSizedArrayType *DSAT
3290        = dyn_cast<DependentSizedArrayType>(ATy))
3291    return cast<ArrayType>(
3292                     getDependentSizedArrayType(NewEltTy,
3293                                                DSAT->getSizeExpr(),
3294                                                DSAT->getSizeModifier(),
3295                                              DSAT->getIndexTypeCVRQualifiers(),
3296                                                DSAT->getBracketsRange()));
3297
3298  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
3299  return cast<ArrayType>(getVariableArrayType(NewEltTy,
3300                                              VAT->getSizeExpr(),
3301                                              VAT->getSizeModifier(),
3302                                              VAT->getIndexTypeCVRQualifiers(),
3303                                              VAT->getBracketsRange()));
3304}
3305
3306QualType ASTContext::getAdjustedParameterType(QualType T) {
3307  // C99 6.7.5.3p7:
3308  //   A declaration of a parameter as "array of type" shall be
3309  //   adjusted to "qualified pointer to type", where the type
3310  //   qualifiers (if any) are those specified within the [ and ] of
3311  //   the array type derivation.
3312  if (T->isArrayType())
3313    return getArrayDecayedType(T);
3314
3315  // C99 6.7.5.3p8:
3316  //   A declaration of a parameter as "function returning type"
3317  //   shall be adjusted to "pointer to function returning type", as
3318  //   in 6.3.2.1.
3319  if (T->isFunctionType())
3320    return getPointerType(T);
3321
3322  return T;
3323}
3324
3325QualType ASTContext::getSignatureParameterType(QualType T) {
3326  T = getVariableArrayDecayedType(T);
3327  T = getAdjustedParameterType(T);
3328  return T.getUnqualifiedType();
3329}
3330
3331/// getArrayDecayedType - Return the properly qualified result of decaying the
3332/// specified array type to a pointer.  This operation is non-trivial when
3333/// handling typedefs etc.  The canonical type of "T" must be an array type,
3334/// this returns a pointer to a properly qualified element of the array.
3335///
3336/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
3337QualType ASTContext::getArrayDecayedType(QualType Ty) const {
3338  // Get the element type with 'getAsArrayType' so that we don't lose any
3339  // typedefs in the element type of the array.  This also handles propagation
3340  // of type qualifiers from the array type into the element type if present
3341  // (C99 6.7.3p8).
3342  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
3343  assert(PrettyArrayType && "Not an array type!");
3344
3345  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
3346
3347  // int x[restrict 4] ->  int *restrict
3348  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
3349}
3350
3351QualType ASTContext::getBaseElementType(const ArrayType *array) const {
3352  return getBaseElementType(array->getElementType());
3353}
3354
3355QualType ASTContext::getBaseElementType(QualType type) const {
3356  Qualifiers qs;
3357  while (true) {
3358    SplitQualType split = type.getSplitDesugaredType();
3359    const ArrayType *array = split.first->getAsArrayTypeUnsafe();
3360    if (!array) break;
3361
3362    type = array->getElementType();
3363    qs.addConsistentQualifiers(split.second);
3364  }
3365
3366  return getQualifiedType(type, qs);
3367}
3368
3369/// getConstantArrayElementCount - Returns number of constant array elements.
3370uint64_t
3371ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
3372  uint64_t ElementCount = 1;
3373  do {
3374    ElementCount *= CA->getSize().getZExtValue();
3375    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
3376  } while (CA);
3377  return ElementCount;
3378}
3379
3380/// getFloatingRank - Return a relative rank for floating point types.
3381/// This routine will assert if passed a built-in type that isn't a float.
3382static FloatingRank getFloatingRank(QualType T) {
3383  if (const ComplexType *CT = T->getAs<ComplexType>())
3384    return getFloatingRank(CT->getElementType());
3385
3386  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
3387  switch (T->getAs<BuiltinType>()->getKind()) {
3388  default: assert(0 && "getFloatingRank(): not a floating type");
3389  case BuiltinType::Float:      return FloatRank;
3390  case BuiltinType::Double:     return DoubleRank;
3391  case BuiltinType::LongDouble: return LongDoubleRank;
3392  }
3393}
3394
3395/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
3396/// point or a complex type (based on typeDomain/typeSize).
3397/// 'typeDomain' is a real floating point or complex type.
3398/// 'typeSize' is a real floating point or complex type.
3399QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
3400                                                       QualType Domain) const {
3401  FloatingRank EltRank = getFloatingRank(Size);
3402  if (Domain->isComplexType()) {
3403    switch (EltRank) {
3404    default: assert(0 && "getFloatingRank(): illegal value for rank");
3405    case FloatRank:      return FloatComplexTy;
3406    case DoubleRank:     return DoubleComplexTy;
3407    case LongDoubleRank: return LongDoubleComplexTy;
3408    }
3409  }
3410
3411  assert(Domain->isRealFloatingType() && "Unknown domain!");
3412  switch (EltRank) {
3413  default: assert(0 && "getFloatingRank(): illegal value for rank");
3414  case FloatRank:      return FloatTy;
3415  case DoubleRank:     return DoubleTy;
3416  case LongDoubleRank: return LongDoubleTy;
3417  }
3418}
3419
3420/// getFloatingTypeOrder - Compare the rank of the two specified floating
3421/// point types, ignoring the domain of the type (i.e. 'double' ==
3422/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3423/// LHS < RHS, return -1.
3424int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
3425  FloatingRank LHSR = getFloatingRank(LHS);
3426  FloatingRank RHSR = getFloatingRank(RHS);
3427
3428  if (LHSR == RHSR)
3429    return 0;
3430  if (LHSR > RHSR)
3431    return 1;
3432  return -1;
3433}
3434
3435/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
3436/// routine will assert if passed a built-in type that isn't an integer or enum,
3437/// or if it is not canonicalized.
3438unsigned ASTContext::getIntegerRank(const Type *T) const {
3439  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
3440  if (const EnumType* ET = dyn_cast<EnumType>(T))
3441    T = ET->getDecl()->getPromotionType().getTypePtr();
3442
3443  if (T->isSpecificBuiltinType(BuiltinType::WChar_S) ||
3444      T->isSpecificBuiltinType(BuiltinType::WChar_U))
3445    T = getFromTargetType(Target.getWCharType()).getTypePtr();
3446
3447  if (T->isSpecificBuiltinType(BuiltinType::Char16))
3448    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
3449
3450  if (T->isSpecificBuiltinType(BuiltinType::Char32))
3451    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
3452
3453  switch (cast<BuiltinType>(T)->getKind()) {
3454  default: assert(0 && "getIntegerRank(): not a built-in integer");
3455  case BuiltinType::Bool:
3456    return 1 + (getIntWidth(BoolTy) << 3);
3457  case BuiltinType::Char_S:
3458  case BuiltinType::Char_U:
3459  case BuiltinType::SChar:
3460  case BuiltinType::UChar:
3461    return 2 + (getIntWidth(CharTy) << 3);
3462  case BuiltinType::Short:
3463  case BuiltinType::UShort:
3464    return 3 + (getIntWidth(ShortTy) << 3);
3465  case BuiltinType::Int:
3466  case BuiltinType::UInt:
3467    return 4 + (getIntWidth(IntTy) << 3);
3468  case BuiltinType::Long:
3469  case BuiltinType::ULong:
3470    return 5 + (getIntWidth(LongTy) << 3);
3471  case BuiltinType::LongLong:
3472  case BuiltinType::ULongLong:
3473    return 6 + (getIntWidth(LongLongTy) << 3);
3474  case BuiltinType::Int128:
3475  case BuiltinType::UInt128:
3476    return 7 + (getIntWidth(Int128Ty) << 3);
3477  }
3478}
3479
3480/// \brief Whether this is a promotable bitfield reference according
3481/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
3482///
3483/// \returns the type this bit-field will promote to, or NULL if no
3484/// promotion occurs.
3485QualType ASTContext::isPromotableBitField(Expr *E) const {
3486  if (E->isTypeDependent() || E->isValueDependent())
3487    return QualType();
3488
3489  FieldDecl *Field = E->getBitField();
3490  if (!Field)
3491    return QualType();
3492
3493  QualType FT = Field->getType();
3494
3495  llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
3496  uint64_t BitWidth = BitWidthAP.getZExtValue();
3497  uint64_t IntSize = getTypeSize(IntTy);
3498  // GCC extension compatibility: if the bit-field size is less than or equal
3499  // to the size of int, it gets promoted no matter what its type is.
3500  // For instance, unsigned long bf : 4 gets promoted to signed int.
3501  if (BitWidth < IntSize)
3502    return IntTy;
3503
3504  if (BitWidth == IntSize)
3505    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
3506
3507  // Types bigger than int are not subject to promotions, and therefore act
3508  // like the base type.
3509  // FIXME: This doesn't quite match what gcc does, but what gcc does here
3510  // is ridiculous.
3511  return QualType();
3512}
3513
3514/// getPromotedIntegerType - Returns the type that Promotable will
3515/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
3516/// integer type.
3517QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
3518  assert(!Promotable.isNull());
3519  assert(Promotable->isPromotableIntegerType());
3520  if (const EnumType *ET = Promotable->getAs<EnumType>())
3521    return ET->getDecl()->getPromotionType();
3522  if (Promotable->isSignedIntegerType())
3523    return IntTy;
3524  uint64_t PromotableSize = getTypeSize(Promotable);
3525  uint64_t IntSize = getTypeSize(IntTy);
3526  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
3527  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
3528}
3529
3530/// \brief Recurses in pointer/array types until it finds an objc retainable
3531/// type and returns its ownership.
3532Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
3533  while (!T.isNull()) {
3534    if (T.getObjCLifetime() != Qualifiers::OCL_None)
3535      return T.getObjCLifetime();
3536    if (T->isArrayType())
3537      T = getBaseElementType(T);
3538    else if (const PointerType *PT = T->getAs<PointerType>())
3539      T = PT->getPointeeType();
3540    else if (const ReferenceType *RT = T->getAs<ReferenceType>())
3541      T = RT->getPointeeType();
3542    else
3543      break;
3544  }
3545
3546  return Qualifiers::OCL_None;
3547}
3548
3549/// getIntegerTypeOrder - Returns the highest ranked integer type:
3550/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3551/// LHS < RHS, return -1.
3552int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
3553  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
3554  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
3555  if (LHSC == RHSC) return 0;
3556
3557  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
3558  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
3559
3560  unsigned LHSRank = getIntegerRank(LHSC);
3561  unsigned RHSRank = getIntegerRank(RHSC);
3562
3563  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
3564    if (LHSRank == RHSRank) return 0;
3565    return LHSRank > RHSRank ? 1 : -1;
3566  }
3567
3568  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
3569  if (LHSUnsigned) {
3570    // If the unsigned [LHS] type is larger, return it.
3571    if (LHSRank >= RHSRank)
3572      return 1;
3573
3574    // If the signed type can represent all values of the unsigned type, it
3575    // wins.  Because we are dealing with 2's complement and types that are
3576    // powers of two larger than each other, this is always safe.
3577    return -1;
3578  }
3579
3580  // If the unsigned [RHS] type is larger, return it.
3581  if (RHSRank >= LHSRank)
3582    return -1;
3583
3584  // If the signed type can represent all values of the unsigned type, it
3585  // wins.  Because we are dealing with 2's complement and types that are
3586  // powers of two larger than each other, this is always safe.
3587  return 1;
3588}
3589
3590static RecordDecl *
3591CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
3592                 DeclContext *DC, IdentifierInfo *Id) {
3593  SourceLocation Loc;
3594  if (Ctx.getLangOptions().CPlusPlus)
3595    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3596  else
3597    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3598}
3599
3600// getCFConstantStringType - Return the type used for constant CFStrings.
3601QualType ASTContext::getCFConstantStringType() const {
3602  if (!CFConstantStringTypeDecl) {
3603    CFConstantStringTypeDecl =
3604      CreateRecordDecl(*this, TTK_Struct, TUDecl,
3605                       &Idents.get("NSConstantString"));
3606    CFConstantStringTypeDecl->startDefinition();
3607
3608    QualType FieldTypes[4];
3609
3610    // const int *isa;
3611    FieldTypes[0] = getPointerType(IntTy.withConst());
3612    // int flags;
3613    FieldTypes[1] = IntTy;
3614    // const char *str;
3615    FieldTypes[2] = getPointerType(CharTy.withConst());
3616    // long length;
3617    FieldTypes[3] = LongTy;
3618
3619    // Create fields
3620    for (unsigned i = 0; i < 4; ++i) {
3621      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
3622                                           SourceLocation(),
3623                                           SourceLocation(), 0,
3624                                           FieldTypes[i], /*TInfo=*/0,
3625                                           /*BitWidth=*/0,
3626                                           /*Mutable=*/false,
3627                                           /*HasInit=*/false);
3628      Field->setAccess(AS_public);
3629      CFConstantStringTypeDecl->addDecl(Field);
3630    }
3631
3632    CFConstantStringTypeDecl->completeDefinition();
3633  }
3634
3635  return getTagDeclType(CFConstantStringTypeDecl);
3636}
3637
3638void ASTContext::setCFConstantStringType(QualType T) {
3639  const RecordType *Rec = T->getAs<RecordType>();
3640  assert(Rec && "Invalid CFConstantStringType");
3641  CFConstantStringTypeDecl = Rec->getDecl();
3642}
3643
3644// getNSConstantStringType - Return the type used for constant NSStrings.
3645QualType ASTContext::getNSConstantStringType() const {
3646  if (!NSConstantStringTypeDecl) {
3647    NSConstantStringTypeDecl =
3648    CreateRecordDecl(*this, TTK_Struct, TUDecl,
3649                     &Idents.get("__builtin_NSString"));
3650    NSConstantStringTypeDecl->startDefinition();
3651
3652    QualType FieldTypes[3];
3653
3654    // const int *isa;
3655    FieldTypes[0] = getPointerType(IntTy.withConst());
3656    // const char *str;
3657    FieldTypes[1] = getPointerType(CharTy.withConst());
3658    // unsigned int length;
3659    FieldTypes[2] = UnsignedIntTy;
3660
3661    // Create fields
3662    for (unsigned i = 0; i < 3; ++i) {
3663      FieldDecl *Field = FieldDecl::Create(*this, NSConstantStringTypeDecl,
3664                                           SourceLocation(),
3665                                           SourceLocation(), 0,
3666                                           FieldTypes[i], /*TInfo=*/0,
3667                                           /*BitWidth=*/0,
3668                                           /*Mutable=*/false,
3669                                           /*HasInit=*/false);
3670      Field->setAccess(AS_public);
3671      NSConstantStringTypeDecl->addDecl(Field);
3672    }
3673
3674    NSConstantStringTypeDecl->completeDefinition();
3675  }
3676
3677  return getTagDeclType(NSConstantStringTypeDecl);
3678}
3679
3680void ASTContext::setNSConstantStringType(QualType T) {
3681  const RecordType *Rec = T->getAs<RecordType>();
3682  assert(Rec && "Invalid NSConstantStringType");
3683  NSConstantStringTypeDecl = Rec->getDecl();
3684}
3685
3686QualType ASTContext::getObjCFastEnumerationStateType() const {
3687  if (!ObjCFastEnumerationStateTypeDecl) {
3688    ObjCFastEnumerationStateTypeDecl =
3689      CreateRecordDecl(*this, TTK_Struct, TUDecl,
3690                       &Idents.get("__objcFastEnumerationState"));
3691    ObjCFastEnumerationStateTypeDecl->startDefinition();
3692
3693    QualType FieldTypes[] = {
3694      UnsignedLongTy,
3695      getPointerType(ObjCIdTypedefType),
3696      getPointerType(UnsignedLongTy),
3697      getConstantArrayType(UnsignedLongTy,
3698                           llvm::APInt(32, 5), ArrayType::Normal, 0)
3699    };
3700
3701    for (size_t i = 0; i < 4; ++i) {
3702      FieldDecl *Field = FieldDecl::Create(*this,
3703                                           ObjCFastEnumerationStateTypeDecl,
3704                                           SourceLocation(),
3705                                           SourceLocation(), 0,
3706                                           FieldTypes[i], /*TInfo=*/0,
3707                                           /*BitWidth=*/0,
3708                                           /*Mutable=*/false,
3709                                           /*HasInit=*/false);
3710      Field->setAccess(AS_public);
3711      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
3712    }
3713
3714    ObjCFastEnumerationStateTypeDecl->completeDefinition();
3715  }
3716
3717  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
3718}
3719
3720QualType ASTContext::getBlockDescriptorType() const {
3721  if (BlockDescriptorType)
3722    return getTagDeclType(BlockDescriptorType);
3723
3724  RecordDecl *T;
3725  // FIXME: Needs the FlagAppleBlock bit.
3726  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
3727                       &Idents.get("__block_descriptor"));
3728  T->startDefinition();
3729
3730  QualType FieldTypes[] = {
3731    UnsignedLongTy,
3732    UnsignedLongTy,
3733  };
3734
3735  const char *FieldNames[] = {
3736    "reserved",
3737    "Size"
3738  };
3739
3740  for (size_t i = 0; i < 2; ++i) {
3741    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3742                                         SourceLocation(),
3743                                         &Idents.get(FieldNames[i]),
3744                                         FieldTypes[i], /*TInfo=*/0,
3745                                         /*BitWidth=*/0,
3746                                         /*Mutable=*/false,
3747                                         /*HasInit=*/false);
3748    Field->setAccess(AS_public);
3749    T->addDecl(Field);
3750  }
3751
3752  T->completeDefinition();
3753
3754  BlockDescriptorType = T;
3755
3756  return getTagDeclType(BlockDescriptorType);
3757}
3758
3759void ASTContext::setBlockDescriptorType(QualType T) {
3760  const RecordType *Rec = T->getAs<RecordType>();
3761  assert(Rec && "Invalid BlockDescriptorType");
3762  BlockDescriptorType = Rec->getDecl();
3763}
3764
3765QualType ASTContext::getBlockDescriptorExtendedType() const {
3766  if (BlockDescriptorExtendedType)
3767    return getTagDeclType(BlockDescriptorExtendedType);
3768
3769  RecordDecl *T;
3770  // FIXME: Needs the FlagAppleBlock bit.
3771  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
3772                       &Idents.get("__block_descriptor_withcopydispose"));
3773  T->startDefinition();
3774
3775  QualType FieldTypes[] = {
3776    UnsignedLongTy,
3777    UnsignedLongTy,
3778    getPointerType(VoidPtrTy),
3779    getPointerType(VoidPtrTy)
3780  };
3781
3782  const char *FieldNames[] = {
3783    "reserved",
3784    "Size",
3785    "CopyFuncPtr",
3786    "DestroyFuncPtr"
3787  };
3788
3789  for (size_t i = 0; i < 4; ++i) {
3790    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3791                                         SourceLocation(),
3792                                         &Idents.get(FieldNames[i]),
3793                                         FieldTypes[i], /*TInfo=*/0,
3794                                         /*BitWidth=*/0,
3795                                         /*Mutable=*/false,
3796                                         /*HasInit=*/false);
3797    Field->setAccess(AS_public);
3798    T->addDecl(Field);
3799  }
3800
3801  T->completeDefinition();
3802
3803  BlockDescriptorExtendedType = T;
3804
3805  return getTagDeclType(BlockDescriptorExtendedType);
3806}
3807
3808void ASTContext::setBlockDescriptorExtendedType(QualType T) {
3809  const RecordType *Rec = T->getAs<RecordType>();
3810  assert(Rec && "Invalid BlockDescriptorType");
3811  BlockDescriptorExtendedType = Rec->getDecl();
3812}
3813
3814bool ASTContext::BlockRequiresCopying(QualType Ty) const {
3815  if (Ty->isObjCRetainableType())
3816    return true;
3817  if (getLangOptions().CPlusPlus) {
3818    if (const RecordType *RT = Ty->getAs<RecordType>()) {
3819      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3820      return RD->hasConstCopyConstructor();
3821
3822    }
3823  }
3824  return false;
3825}
3826
3827QualType
3828ASTContext::BuildByRefType(StringRef DeclName, QualType Ty) const {
3829  //  type = struct __Block_byref_1_X {
3830  //    void *__isa;
3831  //    struct __Block_byref_1_X *__forwarding;
3832  //    unsigned int __flags;
3833  //    unsigned int __size;
3834  //    void *__copy_helper;            // as needed
3835  //    void *__destroy_help            // as needed
3836  //    int X;
3837  //  } *
3838
3839  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
3840
3841  // FIXME: Move up
3842  llvm::SmallString<36> Name;
3843  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
3844                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
3845  RecordDecl *T;
3846  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get(Name.str()));
3847  T->startDefinition();
3848  QualType Int32Ty = IntTy;
3849  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
3850  QualType FieldTypes[] = {
3851    getPointerType(VoidPtrTy),
3852    getPointerType(getTagDeclType(T)),
3853    Int32Ty,
3854    Int32Ty,
3855    getPointerType(VoidPtrTy),
3856    getPointerType(VoidPtrTy),
3857    Ty
3858  };
3859
3860  StringRef FieldNames[] = {
3861    "__isa",
3862    "__forwarding",
3863    "__flags",
3864    "__size",
3865    "__copy_helper",
3866    "__destroy_helper",
3867    DeclName,
3868  };
3869
3870  for (size_t i = 0; i < 7; ++i) {
3871    if (!HasCopyAndDispose && i >=4 && i <= 5)
3872      continue;
3873    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3874                                         SourceLocation(),
3875                                         &Idents.get(FieldNames[i]),
3876                                         FieldTypes[i], /*TInfo=*/0,
3877                                         /*BitWidth=*/0, /*Mutable=*/false,
3878                                         /*HasInit=*/false);
3879    Field->setAccess(AS_public);
3880    T->addDecl(Field);
3881  }
3882
3883  T->completeDefinition();
3884
3885  return getPointerType(getTagDeclType(T));
3886}
3887
3888void ASTContext::setObjCFastEnumerationStateType(QualType T) {
3889  const RecordType *Rec = T->getAs<RecordType>();
3890  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
3891  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
3892}
3893
3894// This returns true if a type has been typedefed to BOOL:
3895// typedef <type> BOOL;
3896static bool isTypeTypedefedAsBOOL(QualType T) {
3897  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3898    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3899      return II->isStr("BOOL");
3900
3901  return false;
3902}
3903
3904/// getObjCEncodingTypeSize returns size of type for objective-c encoding
3905/// purpose.
3906CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
3907  if (!type->isIncompleteArrayType() && type->isIncompleteType())
3908    return CharUnits::Zero();
3909
3910  CharUnits sz = getTypeSizeInChars(type);
3911
3912  // Make all integer and enum types at least as large as an int
3913  if (sz.isPositive() && type->isIntegralOrEnumerationType())
3914    sz = std::max(sz, getTypeSizeInChars(IntTy));
3915  // Treat arrays as pointers, since that's how they're passed in.
3916  else if (type->isArrayType())
3917    sz = getTypeSizeInChars(VoidPtrTy);
3918  return sz;
3919}
3920
3921static inline
3922std::string charUnitsToString(const CharUnits &CU) {
3923  return llvm::itostr(CU.getQuantity());
3924}
3925
3926/// getObjCEncodingForBlock - Return the encoded type for this block
3927/// declaration.
3928std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
3929  std::string S;
3930
3931  const BlockDecl *Decl = Expr->getBlockDecl();
3932  QualType BlockTy =
3933      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
3934  // Encode result type.
3935  getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
3936  // Compute size of all parameters.
3937  // Start with computing size of a pointer in number of bytes.
3938  // FIXME: There might(should) be a better way of doing this computation!
3939  SourceLocation Loc;
3940  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3941  CharUnits ParmOffset = PtrSize;
3942  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
3943       E = Decl->param_end(); PI != E; ++PI) {
3944    QualType PType = (*PI)->getType();
3945    CharUnits sz = getObjCEncodingTypeSize(PType);
3946    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
3947    ParmOffset += sz;
3948  }
3949  // Size of the argument frame
3950  S += charUnitsToString(ParmOffset);
3951  // Block pointer and offset.
3952  S += "@?0";
3953
3954  // Argument types.
3955  ParmOffset = PtrSize;
3956  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
3957       Decl->param_end(); PI != E; ++PI) {
3958    ParmVarDecl *PVDecl = *PI;
3959    QualType PType = PVDecl->getOriginalType();
3960    if (const ArrayType *AT =
3961          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3962      // Use array's original type only if it has known number of
3963      // elements.
3964      if (!isa<ConstantArrayType>(AT))
3965        PType = PVDecl->getType();
3966    } else if (PType->isFunctionType())
3967      PType = PVDecl->getType();
3968    getObjCEncodingForType(PType, S);
3969    S += charUnitsToString(ParmOffset);
3970    ParmOffset += getObjCEncodingTypeSize(PType);
3971  }
3972
3973  return S;
3974}
3975
3976bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
3977                                                std::string& S) {
3978  // Encode result type.
3979  getObjCEncodingForType(Decl->getResultType(), S);
3980  CharUnits ParmOffset;
3981  // Compute size of all parameters.
3982  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
3983       E = Decl->param_end(); PI != E; ++PI) {
3984    QualType PType = (*PI)->getType();
3985    CharUnits sz = getObjCEncodingTypeSize(PType);
3986    if (sz.isZero())
3987      return true;
3988
3989    assert (sz.isPositive() &&
3990        "getObjCEncodingForFunctionDecl - Incomplete param type");
3991    ParmOffset += sz;
3992  }
3993  S += charUnitsToString(ParmOffset);
3994  ParmOffset = CharUnits::Zero();
3995
3996  // Argument types.
3997  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
3998       E = Decl->param_end(); PI != E; ++PI) {
3999    ParmVarDecl *PVDecl = *PI;
4000    QualType PType = PVDecl->getOriginalType();
4001    if (const ArrayType *AT =
4002          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4003      // Use array's original type only if it has known number of
4004      // elements.
4005      if (!isa<ConstantArrayType>(AT))
4006        PType = PVDecl->getType();
4007    } else if (PType->isFunctionType())
4008      PType = PVDecl->getType();
4009    getObjCEncodingForType(PType, S);
4010    S += charUnitsToString(ParmOffset);
4011    ParmOffset += getObjCEncodingTypeSize(PType);
4012  }
4013
4014  return false;
4015}
4016
4017/// getObjCEncodingForMethodDecl - Return the encoded type for this method
4018/// declaration.
4019bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4020                                              std::string& S) const {
4021  // FIXME: This is not very efficient.
4022  // Encode type qualifer, 'in', 'inout', etc. for the return type.
4023  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
4024  // Encode result type.
4025  getObjCEncodingForType(Decl->getResultType(), S);
4026  // Compute size of all parameters.
4027  // Start with computing size of a pointer in number of bytes.
4028  // FIXME: There might(should) be a better way of doing this computation!
4029  SourceLocation Loc;
4030  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4031  // The first two arguments (self and _cmd) are pointers; account for
4032  // their size.
4033  CharUnits ParmOffset = 2 * PtrSize;
4034  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
4035       E = Decl->sel_param_end(); PI != E; ++PI) {
4036    QualType PType = (*PI)->getType();
4037    CharUnits sz = getObjCEncodingTypeSize(PType);
4038    if (sz.isZero())
4039      return true;
4040
4041    assert (sz.isPositive() &&
4042        "getObjCEncodingForMethodDecl - Incomplete param type");
4043    ParmOffset += sz;
4044  }
4045  S += charUnitsToString(ParmOffset);
4046  S += "@0:";
4047  S += charUnitsToString(PtrSize);
4048
4049  // Argument types.
4050  ParmOffset = 2 * PtrSize;
4051  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
4052       E = Decl->sel_param_end(); PI != E; ++PI) {
4053    ParmVarDecl *PVDecl = *PI;
4054    QualType PType = PVDecl->getOriginalType();
4055    if (const ArrayType *AT =
4056          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4057      // Use array's original type only if it has known number of
4058      // elements.
4059      if (!isa<ConstantArrayType>(AT))
4060        PType = PVDecl->getType();
4061    } else if (PType->isFunctionType())
4062      PType = PVDecl->getType();
4063    // Process argument qualifiers for user supplied arguments; such as,
4064    // 'in', 'inout', etc.
4065    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
4066    getObjCEncodingForType(PType, S);
4067    S += charUnitsToString(ParmOffset);
4068    ParmOffset += getObjCEncodingTypeSize(PType);
4069  }
4070
4071  return false;
4072}
4073
4074/// getObjCEncodingForPropertyDecl - Return the encoded type for this
4075/// property declaration. If non-NULL, Container must be either an
4076/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4077/// NULL when getting encodings for protocol properties.
4078/// Property attributes are stored as a comma-delimited C string. The simple
4079/// attributes readonly and bycopy are encoded as single characters. The
4080/// parametrized attributes, getter=name, setter=name, and ivar=name, are
4081/// encoded as single characters, followed by an identifier. Property types
4082/// are also encoded as a parametrized attribute. The characters used to encode
4083/// these attributes are defined by the following enumeration:
4084/// @code
4085/// enum PropertyAttributes {
4086/// kPropertyReadOnly = 'R',   // property is read-only.
4087/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4088/// kPropertyByref = '&',  // property is a reference to the value last assigned
4089/// kPropertyDynamic = 'D',    // property is dynamic
4090/// kPropertyGetter = 'G',     // followed by getter selector name
4091/// kPropertySetter = 'S',     // followed by setter selector name
4092/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4093/// kPropertyType = 't'              // followed by old-style type encoding.
4094/// kPropertyWeak = 'W'              // 'weak' property
4095/// kPropertyStrong = 'P'            // property GC'able
4096/// kPropertyNonAtomic = 'N'         // property non-atomic
4097/// };
4098/// @endcode
4099void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4100                                                const Decl *Container,
4101                                                std::string& S) const {
4102  // Collect information from the property implementation decl(s).
4103  bool Dynamic = false;
4104  ObjCPropertyImplDecl *SynthesizePID = 0;
4105
4106  // FIXME: Duplicated code due to poor abstraction.
4107  if (Container) {
4108    if (const ObjCCategoryImplDecl *CID =
4109        dyn_cast<ObjCCategoryImplDecl>(Container)) {
4110      for (ObjCCategoryImplDecl::propimpl_iterator
4111             i = CID->propimpl_begin(), e = CID->propimpl_end();
4112           i != e; ++i) {
4113        ObjCPropertyImplDecl *PID = *i;
4114        if (PID->getPropertyDecl() == PD) {
4115          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4116            Dynamic = true;
4117          } else {
4118            SynthesizePID = PID;
4119          }
4120        }
4121      }
4122    } else {
4123      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4124      for (ObjCCategoryImplDecl::propimpl_iterator
4125             i = OID->propimpl_begin(), e = OID->propimpl_end();
4126           i != e; ++i) {
4127        ObjCPropertyImplDecl *PID = *i;
4128        if (PID->getPropertyDecl() == PD) {
4129          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4130            Dynamic = true;
4131          } else {
4132            SynthesizePID = PID;
4133          }
4134        }
4135      }
4136    }
4137  }
4138
4139  // FIXME: This is not very efficient.
4140  S = "T";
4141
4142  // Encode result type.
4143  // GCC has some special rules regarding encoding of properties which
4144  // closely resembles encoding of ivars.
4145  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4146                             true /* outermost type */,
4147                             true /* encoding for property */);
4148
4149  if (PD->isReadOnly()) {
4150    S += ",R";
4151  } else {
4152    switch (PD->getSetterKind()) {
4153    case ObjCPropertyDecl::Assign: break;
4154    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4155    case ObjCPropertyDecl::Retain: S += ",&"; break;
4156    }
4157  }
4158
4159  // It really isn't clear at all what this means, since properties
4160  // are "dynamic by default".
4161  if (Dynamic)
4162    S += ",D";
4163
4164  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4165    S += ",N";
4166
4167  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4168    S += ",G";
4169    S += PD->getGetterName().getAsString();
4170  }
4171
4172  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4173    S += ",S";
4174    S += PD->getSetterName().getAsString();
4175  }
4176
4177  if (SynthesizePID) {
4178    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4179    S += ",V";
4180    S += OID->getNameAsString();
4181  }
4182
4183  // FIXME: OBJCGC: weak & strong
4184}
4185
4186/// getLegacyIntegralTypeEncoding -
4187/// Another legacy compatibility encoding: 32-bit longs are encoded as
4188/// 'l' or 'L' , but not always.  For typedefs, we need to use
4189/// 'i' or 'I' instead if encoding a struct field, or a pointer!
4190///
4191void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4192  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4193    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4194      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4195        PointeeTy = UnsignedIntTy;
4196      else
4197        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4198          PointeeTy = IntTy;
4199    }
4200  }
4201}
4202
4203void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
4204                                        const FieldDecl *Field) const {
4205  // We follow the behavior of gcc, expanding structures which are
4206  // directly pointed to, and expanding embedded structures. Note that
4207  // these rules are sufficient to prevent recursive encoding of the
4208  // same type.
4209  getObjCEncodingForTypeImpl(T, S, true, true, Field,
4210                             true /* outermost type */);
4211}
4212
4213static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
4214    switch (T->getAs<BuiltinType>()->getKind()) {
4215    default: assert(0 && "Unhandled builtin type kind");
4216    case BuiltinType::Void:       return 'v';
4217    case BuiltinType::Bool:       return 'B';
4218    case BuiltinType::Char_U:
4219    case BuiltinType::UChar:      return 'C';
4220    case BuiltinType::UShort:     return 'S';
4221    case BuiltinType::UInt:       return 'I';
4222    case BuiltinType::ULong:
4223        return C->getIntWidth(T) == 32 ? 'L' : 'Q';
4224    case BuiltinType::UInt128:    return 'T';
4225    case BuiltinType::ULongLong:  return 'Q';
4226    case BuiltinType::Char_S:
4227    case BuiltinType::SChar:      return 'c';
4228    case BuiltinType::Short:      return 's';
4229    case BuiltinType::WChar_S:
4230    case BuiltinType::WChar_U:
4231    case BuiltinType::Int:        return 'i';
4232    case BuiltinType::Long:
4233      return C->getIntWidth(T) == 32 ? 'l' : 'q';
4234    case BuiltinType::LongLong:   return 'q';
4235    case BuiltinType::Int128:     return 't';
4236    case BuiltinType::Float:      return 'f';
4237    case BuiltinType::Double:     return 'd';
4238    case BuiltinType::LongDouble: return 'D';
4239    }
4240}
4241
4242static void EncodeBitField(const ASTContext *Ctx, std::string& S,
4243                           QualType T, const FieldDecl *FD) {
4244  const Expr *E = FD->getBitWidth();
4245  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
4246  S += 'b';
4247  // The NeXT runtime encodes bit fields as b followed by the number of bits.
4248  // The GNU runtime requires more information; bitfields are encoded as b,
4249  // then the offset (in bits) of the first element, then the type of the
4250  // bitfield, then the size in bits.  For example, in this structure:
4251  //
4252  // struct
4253  // {
4254  //    int integer;
4255  //    int flags:2;
4256  // };
4257  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
4258  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
4259  // information is not especially sensible, but we're stuck with it for
4260  // compatibility with GCC, although providing it breaks anything that
4261  // actually uses runtime introspection and wants to work on both runtimes...
4262  if (!Ctx->getLangOptions().NeXTRuntime) {
4263    const RecordDecl *RD = FD->getParent();
4264    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
4265    S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
4266    if (T->isEnumeralType())
4267      S += 'i';
4268    else
4269      S += ObjCEncodingForPrimitiveKind(Ctx, T);
4270  }
4271  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
4272  S += llvm::utostr(N);
4273}
4274
4275// FIXME: Use SmallString for accumulating string.
4276void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
4277                                            bool ExpandPointedToStructures,
4278                                            bool ExpandStructures,
4279                                            const FieldDecl *FD,
4280                                            bool OutermostType,
4281                                            bool EncodingProperty,
4282                                            bool StructField) const {
4283  if (T->getAs<BuiltinType>()) {
4284    if (FD && FD->isBitField())
4285      return EncodeBitField(this, S, T, FD);
4286    S += ObjCEncodingForPrimitiveKind(this, T);
4287    return;
4288  }
4289
4290  if (const ComplexType *CT = T->getAs<ComplexType>()) {
4291    S += 'j';
4292    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
4293                               false);
4294    return;
4295  }
4296
4297  // encoding for pointer or r3eference types.
4298  QualType PointeeTy;
4299  if (const PointerType *PT = T->getAs<PointerType>()) {
4300    if (PT->isObjCSelType()) {
4301      S += ':';
4302      return;
4303    }
4304    PointeeTy = PT->getPointeeType();
4305  }
4306  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4307    PointeeTy = RT->getPointeeType();
4308  if (!PointeeTy.isNull()) {
4309    bool isReadOnly = false;
4310    // For historical/compatibility reasons, the read-only qualifier of the
4311    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
4312    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
4313    // Also, do not emit the 'r' for anything but the outermost type!
4314    if (isa<TypedefType>(T.getTypePtr())) {
4315      if (OutermostType && T.isConstQualified()) {
4316        isReadOnly = true;
4317        S += 'r';
4318      }
4319    } else if (OutermostType) {
4320      QualType P = PointeeTy;
4321      while (P->getAs<PointerType>())
4322        P = P->getAs<PointerType>()->getPointeeType();
4323      if (P.isConstQualified()) {
4324        isReadOnly = true;
4325        S += 'r';
4326      }
4327    }
4328    if (isReadOnly) {
4329      // Another legacy compatibility encoding. Some ObjC qualifier and type
4330      // combinations need to be rearranged.
4331      // Rewrite "in const" from "nr" to "rn"
4332      if (StringRef(S).endswith("nr"))
4333        S.replace(S.end()-2, S.end(), "rn");
4334    }
4335
4336    if (PointeeTy->isCharType()) {
4337      // char pointer types should be encoded as '*' unless it is a
4338      // type that has been typedef'd to 'BOOL'.
4339      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
4340        S += '*';
4341        return;
4342      }
4343    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
4344      // GCC binary compat: Need to convert "struct objc_class *" to "#".
4345      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
4346        S += '#';
4347        return;
4348      }
4349      // GCC binary compat: Need to convert "struct objc_object *" to "@".
4350      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
4351        S += '@';
4352        return;
4353      }
4354      // fall through...
4355    }
4356    S += '^';
4357    getLegacyIntegralTypeEncoding(PointeeTy);
4358
4359    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
4360                               NULL);
4361    return;
4362  }
4363
4364  if (const ArrayType *AT =
4365      // Ignore type qualifiers etc.
4366        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
4367    if (isa<IncompleteArrayType>(AT) && !StructField) {
4368      // Incomplete arrays are encoded as a pointer to the array element.
4369      S += '^';
4370
4371      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4372                                 false, ExpandStructures, FD);
4373    } else {
4374      S += '[';
4375
4376      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
4377        if (getTypeSize(CAT->getElementType()) == 0)
4378          S += '0';
4379        else
4380          S += llvm::utostr(CAT->getSize().getZExtValue());
4381      } else {
4382        //Variable length arrays are encoded as a regular array with 0 elements.
4383        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
4384               "Unknown array type!");
4385        S += '0';
4386      }
4387
4388      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4389                                 false, ExpandStructures, FD);
4390      S += ']';
4391    }
4392    return;
4393  }
4394
4395  if (T->getAs<FunctionType>()) {
4396    S += '?';
4397    return;
4398  }
4399
4400  if (const RecordType *RTy = T->getAs<RecordType>()) {
4401    RecordDecl *RDecl = RTy->getDecl();
4402    S += RDecl->isUnion() ? '(' : '{';
4403    // Anonymous structures print as '?'
4404    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
4405      S += II->getName();
4406      if (ClassTemplateSpecializationDecl *Spec
4407          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
4408        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
4409        std::string TemplateArgsStr
4410          = TemplateSpecializationType::PrintTemplateArgumentList(
4411                                            TemplateArgs.data(),
4412                                            TemplateArgs.size(),
4413                                            (*this).PrintingPolicy);
4414
4415        S += TemplateArgsStr;
4416      }
4417    } else {
4418      S += '?';
4419    }
4420    if (ExpandStructures) {
4421      S += '=';
4422      if (!RDecl->isUnion()) {
4423        getObjCEncodingForStructureImpl(RDecl, S, FD);
4424      } else {
4425        for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4426                                     FieldEnd = RDecl->field_end();
4427             Field != FieldEnd; ++Field) {
4428          if (FD) {
4429            S += '"';
4430            S += Field->getNameAsString();
4431            S += '"';
4432          }
4433
4434          // Special case bit-fields.
4435          if (Field->isBitField()) {
4436            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
4437                                       (*Field));
4438          } else {
4439            QualType qt = Field->getType();
4440            getLegacyIntegralTypeEncoding(qt);
4441            getObjCEncodingForTypeImpl(qt, S, false, true,
4442                                       FD, /*OutermostType*/false,
4443                                       /*EncodingProperty*/false,
4444                                       /*StructField*/true);
4445          }
4446        }
4447      }
4448    }
4449    S += RDecl->isUnion() ? ')' : '}';
4450    return;
4451  }
4452
4453  if (T->isEnumeralType()) {
4454    if (FD && FD->isBitField())
4455      EncodeBitField(this, S, T, FD);
4456    else
4457      S += 'i';
4458    return;
4459  }
4460
4461  if (T->isBlockPointerType()) {
4462    S += "@?"; // Unlike a pointer-to-function, which is "^?".
4463    return;
4464  }
4465
4466  // Ignore protocol qualifiers when mangling at this level.
4467  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
4468    T = OT->getBaseType();
4469
4470  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
4471    // @encode(class_name)
4472    ObjCInterfaceDecl *OI = OIT->getDecl();
4473    S += '{';
4474    const IdentifierInfo *II = OI->getIdentifier();
4475    S += II->getName();
4476    S += '=';
4477    SmallVector<const ObjCIvarDecl*, 32> Ivars;
4478    DeepCollectObjCIvars(OI, true, Ivars);
4479    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
4480      const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
4481      if (Field->isBitField())
4482        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
4483      else
4484        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
4485    }
4486    S += '}';
4487    return;
4488  }
4489
4490  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
4491    if (OPT->isObjCIdType()) {
4492      S += '@';
4493      return;
4494    }
4495
4496    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
4497      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
4498      // Since this is a binary compatibility issue, need to consult with runtime
4499      // folks. Fortunately, this is a *very* obsure construct.
4500      S += '#';
4501      return;
4502    }
4503
4504    if (OPT->isObjCQualifiedIdType()) {
4505      getObjCEncodingForTypeImpl(getObjCIdType(), S,
4506                                 ExpandPointedToStructures,
4507                                 ExpandStructures, FD);
4508      if (FD || EncodingProperty) {
4509        // Note that we do extended encoding of protocol qualifer list
4510        // Only when doing ivar or property encoding.
4511        S += '"';
4512        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4513             E = OPT->qual_end(); I != E; ++I) {
4514          S += '<';
4515          S += (*I)->getNameAsString();
4516          S += '>';
4517        }
4518        S += '"';
4519      }
4520      return;
4521    }
4522
4523    QualType PointeeTy = OPT->getPointeeType();
4524    if (!EncodingProperty &&
4525        isa<TypedefType>(PointeeTy.getTypePtr())) {
4526      // Another historical/compatibility reason.
4527      // We encode the underlying type which comes out as
4528      // {...};
4529      S += '^';
4530      getObjCEncodingForTypeImpl(PointeeTy, S,
4531                                 false, ExpandPointedToStructures,
4532                                 NULL);
4533      return;
4534    }
4535
4536    S += '@';
4537    if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
4538      S += '"';
4539      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
4540      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4541           E = OPT->qual_end(); I != E; ++I) {
4542        S += '<';
4543        S += (*I)->getNameAsString();
4544        S += '>';
4545      }
4546      S += '"';
4547    }
4548    return;
4549  }
4550
4551  // gcc just blithely ignores member pointers.
4552  // TODO: maybe there should be a mangling for these
4553  if (T->getAs<MemberPointerType>())
4554    return;
4555
4556  if (T->isVectorType()) {
4557    // This matches gcc's encoding, even though technically it is
4558    // insufficient.
4559    // FIXME. We should do a better job than gcc.
4560    return;
4561  }
4562
4563  assert(0 && "@encode for type not implemented!");
4564}
4565
4566void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
4567                                                 std::string &S,
4568                                                 const FieldDecl *FD,
4569                                                 bool includeVBases) const {
4570  assert(RDecl && "Expected non-null RecordDecl");
4571  assert(!RDecl->isUnion() && "Should not be called for unions");
4572  if (!RDecl->getDefinition())
4573    return;
4574
4575  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
4576  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
4577  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
4578
4579  if (CXXRec) {
4580    for (CXXRecordDecl::base_class_iterator
4581           BI = CXXRec->bases_begin(),
4582           BE = CXXRec->bases_end(); BI != BE; ++BI) {
4583      if (!BI->isVirtual()) {
4584        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4585        if (base->isEmpty())
4586          continue;
4587        uint64_t offs = layout.getBaseClassOffsetInBits(base);
4588        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4589                                  std::make_pair(offs, base));
4590      }
4591    }
4592  }
4593
4594  unsigned i = 0;
4595  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4596                               FieldEnd = RDecl->field_end();
4597       Field != FieldEnd; ++Field, ++i) {
4598    uint64_t offs = layout.getFieldOffset(i);
4599    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4600                              std::make_pair(offs, *Field));
4601  }
4602
4603  if (CXXRec && includeVBases) {
4604    for (CXXRecordDecl::base_class_iterator
4605           BI = CXXRec->vbases_begin(),
4606           BE = CXXRec->vbases_end(); BI != BE; ++BI) {
4607      CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4608      if (base->isEmpty())
4609        continue;
4610      uint64_t offs = layout.getVBaseClassOffsetInBits(base);
4611      FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4612                                std::make_pair(offs, base));
4613    }
4614  }
4615
4616  CharUnits size;
4617  if (CXXRec) {
4618    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
4619  } else {
4620    size = layout.getSize();
4621  }
4622
4623  uint64_t CurOffs = 0;
4624  std::multimap<uint64_t, NamedDecl *>::iterator
4625    CurLayObj = FieldOrBaseOffsets.begin();
4626
4627  if (CurLayObj != FieldOrBaseOffsets.end() && CurLayObj->first != 0) {
4628    assert(CXXRec && CXXRec->isDynamicClass() &&
4629           "Offset 0 was empty but no VTable ?");
4630    if (FD) {
4631      S += "\"_vptr$";
4632      std::string recname = CXXRec->getNameAsString();
4633      if (recname.empty()) recname = "?";
4634      S += recname;
4635      S += '"';
4636    }
4637    S += "^^?";
4638    CurOffs += getTypeSize(VoidPtrTy);
4639  }
4640
4641  if (!RDecl->hasFlexibleArrayMember()) {
4642    // Mark the end of the structure.
4643    uint64_t offs = toBits(size);
4644    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4645                              std::make_pair(offs, (NamedDecl*)0));
4646  }
4647
4648  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
4649    assert(CurOffs <= CurLayObj->first);
4650
4651    if (CurOffs < CurLayObj->first) {
4652      uint64_t padding = CurLayObj->first - CurOffs;
4653      // FIXME: There doesn't seem to be a way to indicate in the encoding that
4654      // packing/alignment of members is different that normal, in which case
4655      // the encoding will be out-of-sync with the real layout.
4656      // If the runtime switches to just consider the size of types without
4657      // taking into account alignment, we could make padding explicit in the
4658      // encoding (e.g. using arrays of chars). The encoding strings would be
4659      // longer then though.
4660      CurOffs += padding;
4661    }
4662
4663    NamedDecl *dcl = CurLayObj->second;
4664    if (dcl == 0)
4665      break; // reached end of structure.
4666
4667    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
4668      // We expand the bases without their virtual bases since those are going
4669      // in the initial structure. Note that this differs from gcc which
4670      // expands virtual bases each time one is encountered in the hierarchy,
4671      // making the encoding type bigger than it really is.
4672      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
4673      assert(!base->isEmpty());
4674      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
4675    } else {
4676      FieldDecl *field = cast<FieldDecl>(dcl);
4677      if (FD) {
4678        S += '"';
4679        S += field->getNameAsString();
4680        S += '"';
4681      }
4682
4683      if (field->isBitField()) {
4684        EncodeBitField(this, S, field->getType(), field);
4685        CurOffs += field->getBitWidth()->EvaluateAsInt(*this).getZExtValue();
4686      } else {
4687        QualType qt = field->getType();
4688        getLegacyIntegralTypeEncoding(qt);
4689        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
4690                                   /*OutermostType*/false,
4691                                   /*EncodingProperty*/false,
4692                                   /*StructField*/true);
4693        CurOffs += getTypeSize(field->getType());
4694      }
4695    }
4696  }
4697}
4698
4699void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
4700                                                 std::string& S) const {
4701  if (QT & Decl::OBJC_TQ_In)
4702    S += 'n';
4703  if (QT & Decl::OBJC_TQ_Inout)
4704    S += 'N';
4705  if (QT & Decl::OBJC_TQ_Out)
4706    S += 'o';
4707  if (QT & Decl::OBJC_TQ_Bycopy)
4708    S += 'O';
4709  if (QT & Decl::OBJC_TQ_Byref)
4710    S += 'R';
4711  if (QT & Decl::OBJC_TQ_Oneway)
4712    S += 'V';
4713}
4714
4715void ASTContext::setBuiltinVaListType(QualType T) {
4716  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
4717
4718  BuiltinVaListType = T;
4719}
4720
4721void ASTContext::setObjCIdType(QualType T) {
4722  ObjCIdTypedefType = T;
4723}
4724
4725void ASTContext::setObjCSelType(QualType T) {
4726  ObjCSelTypedefType = T;
4727}
4728
4729void ASTContext::setObjCProtoType(QualType QT) {
4730  ObjCProtoType = QT;
4731}
4732
4733void ASTContext::setObjCClassType(QualType T) {
4734  ObjCClassTypedefType = T;
4735}
4736
4737void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
4738  assert(ObjCConstantStringType.isNull() &&
4739         "'NSConstantString' type already set!");
4740
4741  ObjCConstantStringType = getObjCInterfaceType(Decl);
4742}
4743
4744/// \brief Retrieve the template name that corresponds to a non-empty
4745/// lookup.
4746TemplateName
4747ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
4748                                      UnresolvedSetIterator End) const {
4749  unsigned size = End - Begin;
4750  assert(size > 1 && "set is not overloaded!");
4751
4752  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
4753                          size * sizeof(FunctionTemplateDecl*));
4754  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
4755
4756  NamedDecl **Storage = OT->getStorage();
4757  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
4758    NamedDecl *D = *I;
4759    assert(isa<FunctionTemplateDecl>(D) ||
4760           (isa<UsingShadowDecl>(D) &&
4761            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
4762    *Storage++ = D;
4763  }
4764
4765  return TemplateName(OT);
4766}
4767
4768/// \brief Retrieve the template name that represents a qualified
4769/// template name such as \c std::vector.
4770TemplateName
4771ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
4772                                     bool TemplateKeyword,
4773                                     TemplateDecl *Template) const {
4774  assert(NNS && "Missing nested-name-specifier in qualified template name");
4775
4776  // FIXME: Canonicalization?
4777  llvm::FoldingSetNodeID ID;
4778  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
4779
4780  void *InsertPos = 0;
4781  QualifiedTemplateName *QTN =
4782    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4783  if (!QTN) {
4784    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
4785    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
4786  }
4787
4788  return TemplateName(QTN);
4789}
4790
4791/// \brief Retrieve the template name that represents a dependent
4792/// template name such as \c MetaFun::template apply.
4793TemplateName
4794ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4795                                     const IdentifierInfo *Name) const {
4796  assert((!NNS || NNS->isDependent()) &&
4797         "Nested name specifier must be dependent");
4798
4799  llvm::FoldingSetNodeID ID;
4800  DependentTemplateName::Profile(ID, NNS, Name);
4801
4802  void *InsertPos = 0;
4803  DependentTemplateName *QTN =
4804    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4805
4806  if (QTN)
4807    return TemplateName(QTN);
4808
4809  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4810  if (CanonNNS == NNS) {
4811    QTN = new (*this,4) DependentTemplateName(NNS, Name);
4812  } else {
4813    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
4814    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
4815    DependentTemplateName *CheckQTN =
4816      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4817    assert(!CheckQTN && "Dependent type name canonicalization broken");
4818    (void)CheckQTN;
4819  }
4820
4821  DependentTemplateNames.InsertNode(QTN, InsertPos);
4822  return TemplateName(QTN);
4823}
4824
4825/// \brief Retrieve the template name that represents a dependent
4826/// template name such as \c MetaFun::template operator+.
4827TemplateName
4828ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4829                                     OverloadedOperatorKind Operator) const {
4830  assert((!NNS || NNS->isDependent()) &&
4831         "Nested name specifier must be dependent");
4832
4833  llvm::FoldingSetNodeID ID;
4834  DependentTemplateName::Profile(ID, NNS, Operator);
4835
4836  void *InsertPos = 0;
4837  DependentTemplateName *QTN
4838    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4839
4840  if (QTN)
4841    return TemplateName(QTN);
4842
4843  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4844  if (CanonNNS == NNS) {
4845    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
4846  } else {
4847    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
4848    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
4849
4850    DependentTemplateName *CheckQTN
4851      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4852    assert(!CheckQTN && "Dependent template name canonicalization broken");
4853    (void)CheckQTN;
4854  }
4855
4856  DependentTemplateNames.InsertNode(QTN, InsertPos);
4857  return TemplateName(QTN);
4858}
4859
4860TemplateName
4861ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
4862                                         TemplateName replacement) const {
4863  llvm::FoldingSetNodeID ID;
4864  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
4865
4866  void *insertPos = 0;
4867  SubstTemplateTemplateParmStorage *subst
4868    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
4869
4870  if (!subst) {
4871    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
4872    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
4873  }
4874
4875  return TemplateName(subst);
4876}
4877
4878TemplateName
4879ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
4880                                       const TemplateArgument &ArgPack) const {
4881  ASTContext &Self = const_cast<ASTContext &>(*this);
4882  llvm::FoldingSetNodeID ID;
4883  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
4884
4885  void *InsertPos = 0;
4886  SubstTemplateTemplateParmPackStorage *Subst
4887    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
4888
4889  if (!Subst) {
4890    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
4891                                                           ArgPack.pack_size(),
4892                                                         ArgPack.pack_begin());
4893    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
4894  }
4895
4896  return TemplateName(Subst);
4897}
4898
4899/// getFromTargetType - Given one of the integer types provided by
4900/// TargetInfo, produce the corresponding type. The unsigned @p Type
4901/// is actually a value of type @c TargetInfo::IntType.
4902CanQualType ASTContext::getFromTargetType(unsigned Type) const {
4903  switch (Type) {
4904  case TargetInfo::NoInt: return CanQualType();
4905  case TargetInfo::SignedShort: return ShortTy;
4906  case TargetInfo::UnsignedShort: return UnsignedShortTy;
4907  case TargetInfo::SignedInt: return IntTy;
4908  case TargetInfo::UnsignedInt: return UnsignedIntTy;
4909  case TargetInfo::SignedLong: return LongTy;
4910  case TargetInfo::UnsignedLong: return UnsignedLongTy;
4911  case TargetInfo::SignedLongLong: return LongLongTy;
4912  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
4913  }
4914
4915  assert(false && "Unhandled TargetInfo::IntType value");
4916  return CanQualType();
4917}
4918
4919//===----------------------------------------------------------------------===//
4920//                        Type Predicates.
4921//===----------------------------------------------------------------------===//
4922
4923/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
4924/// garbage collection attribute.
4925///
4926Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
4927  if (getLangOptions().getGCMode() == LangOptions::NonGC)
4928    return Qualifiers::GCNone;
4929
4930  assert(getLangOptions().ObjC1);
4931  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
4932
4933  // Default behaviour under objective-C's gc is for ObjC pointers
4934  // (or pointers to them) be treated as though they were declared
4935  // as __strong.
4936  if (GCAttrs == Qualifiers::GCNone) {
4937    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4938      return Qualifiers::Strong;
4939    else if (Ty->isPointerType())
4940      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
4941  } else {
4942    // It's not valid to set GC attributes on anything that isn't a
4943    // pointer.
4944#ifndef NDEBUG
4945    QualType CT = Ty->getCanonicalTypeInternal();
4946    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
4947      CT = AT->getElementType();
4948    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
4949#endif
4950  }
4951  return GCAttrs;
4952}
4953
4954//===----------------------------------------------------------------------===//
4955//                        Type Compatibility Testing
4956//===----------------------------------------------------------------------===//
4957
4958/// areCompatVectorTypes - Return true if the two specified vector types are
4959/// compatible.
4960static bool areCompatVectorTypes(const VectorType *LHS,
4961                                 const VectorType *RHS) {
4962  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
4963  return LHS->getElementType() == RHS->getElementType() &&
4964         LHS->getNumElements() == RHS->getNumElements();
4965}
4966
4967bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
4968                                          QualType SecondVec) {
4969  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
4970  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
4971
4972  if (hasSameUnqualifiedType(FirstVec, SecondVec))
4973    return true;
4974
4975  // Treat Neon vector types and most AltiVec vector types as if they are the
4976  // equivalent GCC vector types.
4977  const VectorType *First = FirstVec->getAs<VectorType>();
4978  const VectorType *Second = SecondVec->getAs<VectorType>();
4979  if (First->getNumElements() == Second->getNumElements() &&
4980      hasSameType(First->getElementType(), Second->getElementType()) &&
4981      First->getVectorKind() != VectorType::AltiVecPixel &&
4982      First->getVectorKind() != VectorType::AltiVecBool &&
4983      Second->getVectorKind() != VectorType::AltiVecPixel &&
4984      Second->getVectorKind() != VectorType::AltiVecBool)
4985    return true;
4986
4987  return false;
4988}
4989
4990//===----------------------------------------------------------------------===//
4991// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
4992//===----------------------------------------------------------------------===//
4993
4994/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
4995/// inheritance hierarchy of 'rProto'.
4996bool
4997ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
4998                                           ObjCProtocolDecl *rProto) const {
4999  if (lProto == rProto)
5000    return true;
5001  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
5002       E = rProto->protocol_end(); PI != E; ++PI)
5003    if (ProtocolCompatibleWithProtocol(lProto, *PI))
5004      return true;
5005  return false;
5006}
5007
5008/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
5009/// return true if lhs's protocols conform to rhs's protocol; false
5010/// otherwise.
5011bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
5012  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
5013    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
5014  return false;
5015}
5016
5017/// ObjCQualifiedClassTypesAreCompatible - compare  Class<p,...> and
5018/// Class<p1, ...>.
5019bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
5020                                                      QualType rhs) {
5021  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
5022  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5023  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
5024
5025  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5026       E = lhsQID->qual_end(); I != E; ++I) {
5027    bool match = false;
5028    ObjCProtocolDecl *lhsProto = *I;
5029    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5030         E = rhsOPT->qual_end(); J != E; ++J) {
5031      ObjCProtocolDecl *rhsProto = *J;
5032      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
5033        match = true;
5034        break;
5035      }
5036    }
5037    if (!match)
5038      return false;
5039  }
5040  return true;
5041}
5042
5043/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
5044/// ObjCQualifiedIDType.
5045bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
5046                                                   bool compare) {
5047  // Allow id<P..> and an 'id' or void* type in all cases.
5048  if (lhs->isVoidPointerType() ||
5049      lhs->isObjCIdType() || lhs->isObjCClassType())
5050    return true;
5051  else if (rhs->isVoidPointerType() ||
5052           rhs->isObjCIdType() || rhs->isObjCClassType())
5053    return true;
5054
5055  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
5056    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5057
5058    if (!rhsOPT) return false;
5059
5060    if (rhsOPT->qual_empty()) {
5061      // If the RHS is a unqualified interface pointer "NSString*",
5062      // make sure we check the class hierarchy.
5063      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5064        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5065             E = lhsQID->qual_end(); I != E; ++I) {
5066          // when comparing an id<P> on lhs with a static type on rhs,
5067          // see if static class implements all of id's protocols, directly or
5068          // through its super class and categories.
5069          if (!rhsID->ClassImplementsProtocol(*I, true))
5070            return false;
5071        }
5072      }
5073      // If there are no qualifiers and no interface, we have an 'id'.
5074      return true;
5075    }
5076    // Both the right and left sides have qualifiers.
5077    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5078         E = lhsQID->qual_end(); I != E; ++I) {
5079      ObjCProtocolDecl *lhsProto = *I;
5080      bool match = false;
5081
5082      // when comparing an id<P> on lhs with a static type on rhs,
5083      // see if static class implements all of id's protocols, directly or
5084      // through its super class and categories.
5085      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5086           E = rhsOPT->qual_end(); J != E; ++J) {
5087        ObjCProtocolDecl *rhsProto = *J;
5088        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5089            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5090          match = true;
5091          break;
5092        }
5093      }
5094      // If the RHS is a qualified interface pointer "NSString<P>*",
5095      // make sure we check the class hierarchy.
5096      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5097        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5098             E = lhsQID->qual_end(); I != E; ++I) {
5099          // when comparing an id<P> on lhs with a static type on rhs,
5100          // see if static class implements all of id's protocols, directly or
5101          // through its super class and categories.
5102          if (rhsID->ClassImplementsProtocol(*I, true)) {
5103            match = true;
5104            break;
5105          }
5106        }
5107      }
5108      if (!match)
5109        return false;
5110    }
5111
5112    return true;
5113  }
5114
5115  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
5116  assert(rhsQID && "One of the LHS/RHS should be id<x>");
5117
5118  if (const ObjCObjectPointerType *lhsOPT =
5119        lhs->getAsObjCInterfacePointerType()) {
5120    // If both the right and left sides have qualifiers.
5121    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
5122         E = lhsOPT->qual_end(); I != E; ++I) {
5123      ObjCProtocolDecl *lhsProto = *I;
5124      bool match = false;
5125
5126      // when comparing an id<P> on rhs with a static type on lhs,
5127      // see if static class implements all of id's protocols, directly or
5128      // through its super class and categories.
5129      // First, lhs protocols in the qualifier list must be found, direct
5130      // or indirect in rhs's qualifier list or it is a mismatch.
5131      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5132           E = rhsQID->qual_end(); J != E; ++J) {
5133        ObjCProtocolDecl *rhsProto = *J;
5134        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5135            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5136          match = true;
5137          break;
5138        }
5139      }
5140      if (!match)
5141        return false;
5142    }
5143
5144    // Static class's protocols, or its super class or category protocols
5145    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
5146    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
5147      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5148      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
5149      // This is rather dubious but matches gcc's behavior. If lhs has
5150      // no type qualifier and its class has no static protocol(s)
5151      // assume that it is mismatch.
5152      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
5153        return false;
5154      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5155           LHSInheritedProtocols.begin(),
5156           E = LHSInheritedProtocols.end(); I != E; ++I) {
5157        bool match = false;
5158        ObjCProtocolDecl *lhsProto = (*I);
5159        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5160             E = rhsQID->qual_end(); J != E; ++J) {
5161          ObjCProtocolDecl *rhsProto = *J;
5162          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5163              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5164            match = true;
5165            break;
5166          }
5167        }
5168        if (!match)
5169          return false;
5170      }
5171    }
5172    return true;
5173  }
5174  return false;
5175}
5176
5177/// canAssignObjCInterfaces - Return true if the two interface types are
5178/// compatible for assignment from RHS to LHS.  This handles validation of any
5179/// protocol qualifiers on the LHS or RHS.
5180///
5181bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
5182                                         const ObjCObjectPointerType *RHSOPT) {
5183  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5184  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5185
5186  // If either type represents the built-in 'id' or 'Class' types, return true.
5187  if (LHS->isObjCUnqualifiedIdOrClass() ||
5188      RHS->isObjCUnqualifiedIdOrClass())
5189    return true;
5190
5191  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
5192    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5193                                             QualType(RHSOPT,0),
5194                                             false);
5195
5196  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
5197    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
5198                                                QualType(RHSOPT,0));
5199
5200  // If we have 2 user-defined types, fall into that path.
5201  if (LHS->getInterface() && RHS->getInterface())
5202    return canAssignObjCInterfaces(LHS, RHS);
5203
5204  return false;
5205}
5206
5207/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
5208/// for providing type-safety for objective-c pointers used to pass/return
5209/// arguments in block literals. When passed as arguments, passing 'A*' where
5210/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
5211/// not OK. For the return type, the opposite is not OK.
5212bool ASTContext::canAssignObjCInterfacesInBlockPointer(
5213                                         const ObjCObjectPointerType *LHSOPT,
5214                                         const ObjCObjectPointerType *RHSOPT,
5215                                         bool BlockReturnType) {
5216  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
5217    return true;
5218
5219  if (LHSOPT->isObjCBuiltinType()) {
5220    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
5221  }
5222
5223  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
5224    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5225                                             QualType(RHSOPT,0),
5226                                             false);
5227
5228  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
5229  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
5230  if (LHS && RHS)  { // We have 2 user-defined types.
5231    if (LHS != RHS) {
5232      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
5233        return BlockReturnType;
5234      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
5235        return !BlockReturnType;
5236    }
5237    else
5238      return true;
5239  }
5240  return false;
5241}
5242
5243/// getIntersectionOfProtocols - This routine finds the intersection of set
5244/// of protocols inherited from two distinct objective-c pointer objects.
5245/// It is used to build composite qualifier list of the composite type of
5246/// the conditional expression involving two objective-c pointer objects.
5247static
5248void getIntersectionOfProtocols(ASTContext &Context,
5249                                const ObjCObjectPointerType *LHSOPT,
5250                                const ObjCObjectPointerType *RHSOPT,
5251      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
5252
5253  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5254  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5255  assert(LHS->getInterface() && "LHS must have an interface base");
5256  assert(RHS->getInterface() && "RHS must have an interface base");
5257
5258  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
5259  unsigned LHSNumProtocols = LHS->getNumProtocols();
5260  if (LHSNumProtocols > 0)
5261    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
5262  else {
5263    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5264    Context.CollectInheritedProtocols(LHS->getInterface(),
5265                                      LHSInheritedProtocols);
5266    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
5267                                LHSInheritedProtocols.end());
5268  }
5269
5270  unsigned RHSNumProtocols = RHS->getNumProtocols();
5271  if (RHSNumProtocols > 0) {
5272    ObjCProtocolDecl **RHSProtocols =
5273      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
5274    for (unsigned i = 0; i < RHSNumProtocols; ++i)
5275      if (InheritedProtocolSet.count(RHSProtocols[i]))
5276        IntersectionOfProtocols.push_back(RHSProtocols[i]);
5277  }
5278  else {
5279    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
5280    Context.CollectInheritedProtocols(RHS->getInterface(),
5281                                      RHSInheritedProtocols);
5282    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5283         RHSInheritedProtocols.begin(),
5284         E = RHSInheritedProtocols.end(); I != E; ++I)
5285      if (InheritedProtocolSet.count((*I)))
5286        IntersectionOfProtocols.push_back((*I));
5287  }
5288}
5289
5290/// areCommonBaseCompatible - Returns common base class of the two classes if
5291/// one found. Note that this is O'2 algorithm. But it will be called as the
5292/// last type comparison in a ?-exp of ObjC pointer types before a
5293/// warning is issued. So, its invokation is extremely rare.
5294QualType ASTContext::areCommonBaseCompatible(
5295                                          const ObjCObjectPointerType *Lptr,
5296                                          const ObjCObjectPointerType *Rptr) {
5297  const ObjCObjectType *LHS = Lptr->getObjectType();
5298  const ObjCObjectType *RHS = Rptr->getObjectType();
5299  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
5300  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
5301  if (!LDecl || !RDecl || (LDecl == RDecl))
5302    return QualType();
5303
5304  do {
5305    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
5306    if (canAssignObjCInterfaces(LHS, RHS)) {
5307      SmallVector<ObjCProtocolDecl *, 8> Protocols;
5308      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
5309
5310      QualType Result = QualType(LHS, 0);
5311      if (!Protocols.empty())
5312        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
5313      Result = getObjCObjectPointerType(Result);
5314      return Result;
5315    }
5316  } while ((LDecl = LDecl->getSuperClass()));
5317
5318  return QualType();
5319}
5320
5321bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
5322                                         const ObjCObjectType *RHS) {
5323  assert(LHS->getInterface() && "LHS is not an interface type");
5324  assert(RHS->getInterface() && "RHS is not an interface type");
5325
5326  // Verify that the base decls are compatible: the RHS must be a subclass of
5327  // the LHS.
5328  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
5329    return false;
5330
5331  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
5332  // protocol qualified at all, then we are good.
5333  if (LHS->getNumProtocols() == 0)
5334    return true;
5335
5336  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
5337  // more detailed analysis is required.
5338  if (RHS->getNumProtocols() == 0) {
5339    // OK, if LHS is a superclass of RHS *and*
5340    // this superclass is assignment compatible with LHS.
5341    // false otherwise.
5342    bool IsSuperClass =
5343      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
5344    if (IsSuperClass) {
5345      // OK if conversion of LHS to SuperClass results in narrowing of types
5346      // ; i.e., SuperClass may implement at least one of the protocols
5347      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
5348      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
5349      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
5350      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
5351      // If super class has no protocols, it is not a match.
5352      if (SuperClassInheritedProtocols.empty())
5353        return false;
5354
5355      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5356           LHSPE = LHS->qual_end();
5357           LHSPI != LHSPE; LHSPI++) {
5358        bool SuperImplementsProtocol = false;
5359        ObjCProtocolDecl *LHSProto = (*LHSPI);
5360
5361        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5362             SuperClassInheritedProtocols.begin(),
5363             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
5364          ObjCProtocolDecl *SuperClassProto = (*I);
5365          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
5366            SuperImplementsProtocol = true;
5367            break;
5368          }
5369        }
5370        if (!SuperImplementsProtocol)
5371          return false;
5372      }
5373      return true;
5374    }
5375    return false;
5376  }
5377
5378  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5379                                     LHSPE = LHS->qual_end();
5380       LHSPI != LHSPE; LHSPI++) {
5381    bool RHSImplementsProtocol = false;
5382
5383    // If the RHS doesn't implement the protocol on the left, the types
5384    // are incompatible.
5385    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
5386                                       RHSPE = RHS->qual_end();
5387         RHSPI != RHSPE; RHSPI++) {
5388      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
5389        RHSImplementsProtocol = true;
5390        break;
5391      }
5392    }
5393    // FIXME: For better diagnostics, consider passing back the protocol name.
5394    if (!RHSImplementsProtocol)
5395      return false;
5396  }
5397  // The RHS implements all protocols listed on the LHS.
5398  return true;
5399}
5400
5401bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
5402  // get the "pointed to" types
5403  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
5404  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
5405
5406  if (!LHSOPT || !RHSOPT)
5407    return false;
5408
5409  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
5410         canAssignObjCInterfaces(RHSOPT, LHSOPT);
5411}
5412
5413bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
5414  return canAssignObjCInterfaces(
5415                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
5416                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
5417}
5418
5419/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
5420/// both shall have the identically qualified version of a compatible type.
5421/// C99 6.2.7p1: Two types have compatible types if their types are the
5422/// same. See 6.7.[2,3,5] for additional rules.
5423bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
5424                                    bool CompareUnqualified) {
5425  if (getLangOptions().CPlusPlus)
5426    return hasSameType(LHS, RHS);
5427
5428  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
5429}
5430
5431bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
5432  return typesAreCompatible(LHS, RHS);
5433}
5434
5435bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
5436  return !mergeTypes(LHS, RHS, true).isNull();
5437}
5438
5439/// mergeTransparentUnionType - if T is a transparent union type and a member
5440/// of T is compatible with SubType, return the merged type, else return
5441/// QualType()
5442QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
5443                                               bool OfBlockPointer,
5444                                               bool Unqualified) {
5445  if (const RecordType *UT = T->getAsUnionType()) {
5446    RecordDecl *UD = UT->getDecl();
5447    if (UD->hasAttr<TransparentUnionAttr>()) {
5448      for (RecordDecl::field_iterator it = UD->field_begin(),
5449           itend = UD->field_end(); it != itend; ++it) {
5450        QualType ET = it->getType().getUnqualifiedType();
5451        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
5452        if (!MT.isNull())
5453          return MT;
5454      }
5455    }
5456  }
5457
5458  return QualType();
5459}
5460
5461/// mergeFunctionArgumentTypes - merge two types which appear as function
5462/// argument types
5463QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
5464                                                bool OfBlockPointer,
5465                                                bool Unqualified) {
5466  // GNU extension: two types are compatible if they appear as a function
5467  // argument, one of the types is a transparent union type and the other
5468  // type is compatible with a union member
5469  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
5470                                              Unqualified);
5471  if (!lmerge.isNull())
5472    return lmerge;
5473
5474  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
5475                                              Unqualified);
5476  if (!rmerge.isNull())
5477    return rmerge;
5478
5479  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
5480}
5481
5482QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
5483                                        bool OfBlockPointer,
5484                                        bool Unqualified) {
5485  const FunctionType *lbase = lhs->getAs<FunctionType>();
5486  const FunctionType *rbase = rhs->getAs<FunctionType>();
5487  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
5488  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
5489  bool allLTypes = true;
5490  bool allRTypes = true;
5491
5492  // Check return type
5493  QualType retType;
5494  if (OfBlockPointer) {
5495    QualType RHS = rbase->getResultType();
5496    QualType LHS = lbase->getResultType();
5497    bool UnqualifiedResult = Unqualified;
5498    if (!UnqualifiedResult)
5499      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
5500    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
5501  }
5502  else
5503    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
5504                         Unqualified);
5505  if (retType.isNull()) return QualType();
5506
5507  if (Unqualified)
5508    retType = retType.getUnqualifiedType();
5509
5510  CanQualType LRetType = getCanonicalType(lbase->getResultType());
5511  CanQualType RRetType = getCanonicalType(rbase->getResultType());
5512  if (Unqualified) {
5513    LRetType = LRetType.getUnqualifiedType();
5514    RRetType = RRetType.getUnqualifiedType();
5515  }
5516
5517  if (getCanonicalType(retType) != LRetType)
5518    allLTypes = false;
5519  if (getCanonicalType(retType) != RRetType)
5520    allRTypes = false;
5521
5522  // FIXME: double check this
5523  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
5524  //                           rbase->getRegParmAttr() != 0 &&
5525  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
5526  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
5527  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
5528
5529  // Compatible functions must have compatible calling conventions
5530  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
5531    return QualType();
5532
5533  // Regparm is part of the calling convention.
5534  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
5535    return QualType();
5536  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
5537    return QualType();
5538
5539  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
5540    return QualType();
5541
5542  // It's noreturn if either type is.
5543  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
5544  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
5545  if (NoReturn != lbaseInfo.getNoReturn())
5546    allLTypes = false;
5547  if (NoReturn != rbaseInfo.getNoReturn())
5548    allRTypes = false;
5549
5550  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
5551
5552  if (lproto && rproto) { // two C99 style function prototypes
5553    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
5554           "C++ shouldn't be here");
5555    unsigned lproto_nargs = lproto->getNumArgs();
5556    unsigned rproto_nargs = rproto->getNumArgs();
5557
5558    // Compatible functions must have the same number of arguments
5559    if (lproto_nargs != rproto_nargs)
5560      return QualType();
5561
5562    // Variadic and non-variadic functions aren't compatible
5563    if (lproto->isVariadic() != rproto->isVariadic())
5564      return QualType();
5565
5566    if (lproto->getTypeQuals() != rproto->getTypeQuals())
5567      return QualType();
5568
5569    // Check argument compatibility
5570    SmallVector<QualType, 10> types;
5571    for (unsigned i = 0; i < lproto_nargs; i++) {
5572      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
5573      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
5574      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
5575                                                    OfBlockPointer,
5576                                                    Unqualified);
5577      if (argtype.isNull()) return QualType();
5578
5579      if (Unqualified)
5580        argtype = argtype.getUnqualifiedType();
5581
5582      types.push_back(argtype);
5583      if (Unqualified) {
5584        largtype = largtype.getUnqualifiedType();
5585        rargtype = rargtype.getUnqualifiedType();
5586      }
5587
5588      if (getCanonicalType(argtype) != getCanonicalType(largtype))
5589        allLTypes = false;
5590      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
5591        allRTypes = false;
5592    }
5593    if (allLTypes) return lhs;
5594    if (allRTypes) return rhs;
5595
5596    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
5597    EPI.ExtInfo = einfo;
5598    return getFunctionType(retType, types.begin(), types.size(), EPI);
5599  }
5600
5601  if (lproto) allRTypes = false;
5602  if (rproto) allLTypes = false;
5603
5604  const FunctionProtoType *proto = lproto ? lproto : rproto;
5605  if (proto) {
5606    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
5607    if (proto->isVariadic()) return QualType();
5608    // Check that the types are compatible with the types that
5609    // would result from default argument promotions (C99 6.7.5.3p15).
5610    // The only types actually affected are promotable integer
5611    // types and floats, which would be passed as a different
5612    // type depending on whether the prototype is visible.
5613    unsigned proto_nargs = proto->getNumArgs();
5614    for (unsigned i = 0; i < proto_nargs; ++i) {
5615      QualType argTy = proto->getArgType(i);
5616
5617      // Look at the promotion type of enum types, since that is the type used
5618      // to pass enum values.
5619      if (const EnumType *Enum = argTy->getAs<EnumType>())
5620        argTy = Enum->getDecl()->getPromotionType();
5621
5622      if (argTy->isPromotableIntegerType() ||
5623          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
5624        return QualType();
5625    }
5626
5627    if (allLTypes) return lhs;
5628    if (allRTypes) return rhs;
5629
5630    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
5631    EPI.ExtInfo = einfo;
5632    return getFunctionType(retType, proto->arg_type_begin(),
5633                           proto->getNumArgs(), EPI);
5634  }
5635
5636  if (allLTypes) return lhs;
5637  if (allRTypes) return rhs;
5638  return getFunctionNoProtoType(retType, einfo);
5639}
5640
5641QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
5642                                bool OfBlockPointer,
5643                                bool Unqualified, bool BlockReturnType) {
5644  // C++ [expr]: If an expression initially has the type "reference to T", the
5645  // type is adjusted to "T" prior to any further analysis, the expression
5646  // designates the object or function denoted by the reference, and the
5647  // expression is an lvalue unless the reference is an rvalue reference and
5648  // the expression is a function call (possibly inside parentheses).
5649  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
5650  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
5651
5652  if (Unqualified) {
5653    LHS = LHS.getUnqualifiedType();
5654    RHS = RHS.getUnqualifiedType();
5655  }
5656
5657  QualType LHSCan = getCanonicalType(LHS),
5658           RHSCan = getCanonicalType(RHS);
5659
5660  // If two types are identical, they are compatible.
5661  if (LHSCan == RHSCan)
5662    return LHS;
5663
5664  // If the qualifiers are different, the types aren't compatible... mostly.
5665  Qualifiers LQuals = LHSCan.getLocalQualifiers();
5666  Qualifiers RQuals = RHSCan.getLocalQualifiers();
5667  if (LQuals != RQuals) {
5668    // If any of these qualifiers are different, we have a type
5669    // mismatch.
5670    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
5671        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
5672        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
5673      return QualType();
5674
5675    // Exactly one GC qualifier difference is allowed: __strong is
5676    // okay if the other type has no GC qualifier but is an Objective
5677    // C object pointer (i.e. implicitly strong by default).  We fix
5678    // this by pretending that the unqualified type was actually
5679    // qualified __strong.
5680    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
5681    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
5682    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
5683
5684    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
5685      return QualType();
5686
5687    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
5688      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
5689    }
5690    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
5691      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
5692    }
5693    return QualType();
5694  }
5695
5696  // Okay, qualifiers are equal.
5697
5698  Type::TypeClass LHSClass = LHSCan->getTypeClass();
5699  Type::TypeClass RHSClass = RHSCan->getTypeClass();
5700
5701  // We want to consider the two function types to be the same for these
5702  // comparisons, just force one to the other.
5703  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
5704  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
5705
5706  // Same as above for arrays
5707  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
5708    LHSClass = Type::ConstantArray;
5709  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
5710    RHSClass = Type::ConstantArray;
5711
5712  // ObjCInterfaces are just specialized ObjCObjects.
5713  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
5714  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
5715
5716  // Canonicalize ExtVector -> Vector.
5717  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
5718  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
5719
5720  // If the canonical type classes don't match.
5721  if (LHSClass != RHSClass) {
5722    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
5723    // a signed integer type, or an unsigned integer type.
5724    // Compatibility is based on the underlying type, not the promotion
5725    // type.
5726    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
5727      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
5728        return RHS;
5729    }
5730    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
5731      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
5732        return LHS;
5733    }
5734
5735    return QualType();
5736  }
5737
5738  // The canonical type classes match.
5739  switch (LHSClass) {
5740#define TYPE(Class, Base)
5741#define ABSTRACT_TYPE(Class, Base)
5742#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
5743#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
5744#define DEPENDENT_TYPE(Class, Base) case Type::Class:
5745#include "clang/AST/TypeNodes.def"
5746    assert(false && "Non-canonical and dependent types shouldn't get here");
5747    return QualType();
5748
5749  case Type::LValueReference:
5750  case Type::RValueReference:
5751  case Type::MemberPointer:
5752    assert(false && "C++ should never be in mergeTypes");
5753    return QualType();
5754
5755  case Type::ObjCInterface:
5756  case Type::IncompleteArray:
5757  case Type::VariableArray:
5758  case Type::FunctionProto:
5759  case Type::ExtVector:
5760    assert(false && "Types are eliminated above");
5761    return QualType();
5762
5763  case Type::Pointer:
5764  {
5765    // Merge two pointer types, while trying to preserve typedef info
5766    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
5767    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
5768    if (Unqualified) {
5769      LHSPointee = LHSPointee.getUnqualifiedType();
5770      RHSPointee = RHSPointee.getUnqualifiedType();
5771    }
5772    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
5773                                     Unqualified);
5774    if (ResultType.isNull()) return QualType();
5775    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5776      return LHS;
5777    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5778      return RHS;
5779    return getPointerType(ResultType);
5780  }
5781  case Type::BlockPointer:
5782  {
5783    // Merge two block pointer types, while trying to preserve typedef info
5784    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
5785    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
5786    if (Unqualified) {
5787      LHSPointee = LHSPointee.getUnqualifiedType();
5788      RHSPointee = RHSPointee.getUnqualifiedType();
5789    }
5790    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
5791                                     Unqualified);
5792    if (ResultType.isNull()) return QualType();
5793    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5794      return LHS;
5795    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5796      return RHS;
5797    return getBlockPointerType(ResultType);
5798  }
5799  case Type::ConstantArray:
5800  {
5801    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
5802    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
5803    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
5804      return QualType();
5805
5806    QualType LHSElem = getAsArrayType(LHS)->getElementType();
5807    QualType RHSElem = getAsArrayType(RHS)->getElementType();
5808    if (Unqualified) {
5809      LHSElem = LHSElem.getUnqualifiedType();
5810      RHSElem = RHSElem.getUnqualifiedType();
5811    }
5812
5813    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
5814    if (ResultType.isNull()) return QualType();
5815    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
5816      return LHS;
5817    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
5818      return RHS;
5819    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
5820                                          ArrayType::ArraySizeModifier(), 0);
5821    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
5822                                          ArrayType::ArraySizeModifier(), 0);
5823    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
5824    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
5825    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
5826      return LHS;
5827    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
5828      return RHS;
5829    if (LVAT) {
5830      // FIXME: This isn't correct! But tricky to implement because
5831      // the array's size has to be the size of LHS, but the type
5832      // has to be different.
5833      return LHS;
5834    }
5835    if (RVAT) {
5836      // FIXME: This isn't correct! But tricky to implement because
5837      // the array's size has to be the size of RHS, but the type
5838      // has to be different.
5839      return RHS;
5840    }
5841    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
5842    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
5843    return getIncompleteArrayType(ResultType,
5844                                  ArrayType::ArraySizeModifier(), 0);
5845  }
5846  case Type::FunctionNoProto:
5847    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
5848  case Type::Record:
5849  case Type::Enum:
5850    return QualType();
5851  case Type::Builtin:
5852    // Only exactly equal builtin types are compatible, which is tested above.
5853    return QualType();
5854  case Type::Complex:
5855    // Distinct complex types are incompatible.
5856    return QualType();
5857  case Type::Vector:
5858    // FIXME: The merged type should be an ExtVector!
5859    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
5860                             RHSCan->getAs<VectorType>()))
5861      return LHS;
5862    return QualType();
5863  case Type::ObjCObject: {
5864    // Check if the types are assignment compatible.
5865    // FIXME: This should be type compatibility, e.g. whether
5866    // "LHS x; RHS x;" at global scope is legal.
5867    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
5868    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
5869    if (canAssignObjCInterfaces(LHSIface, RHSIface))
5870      return LHS;
5871
5872    return QualType();
5873  }
5874  case Type::ObjCObjectPointer: {
5875    if (OfBlockPointer) {
5876      if (canAssignObjCInterfacesInBlockPointer(
5877                                          LHS->getAs<ObjCObjectPointerType>(),
5878                                          RHS->getAs<ObjCObjectPointerType>(),
5879                                          BlockReturnType))
5880      return LHS;
5881      return QualType();
5882    }
5883    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
5884                                RHS->getAs<ObjCObjectPointerType>()))
5885      return LHS;
5886
5887    return QualType();
5888    }
5889  }
5890
5891  return QualType();
5892}
5893
5894/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
5895/// 'RHS' attributes and returns the merged version; including for function
5896/// return types.
5897QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
5898  QualType LHSCan = getCanonicalType(LHS),
5899  RHSCan = getCanonicalType(RHS);
5900  // If two types are identical, they are compatible.
5901  if (LHSCan == RHSCan)
5902    return LHS;
5903  if (RHSCan->isFunctionType()) {
5904    if (!LHSCan->isFunctionType())
5905      return QualType();
5906    QualType OldReturnType =
5907      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
5908    QualType NewReturnType =
5909      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
5910    QualType ResReturnType =
5911      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
5912    if (ResReturnType.isNull())
5913      return QualType();
5914    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
5915      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
5916      // In either case, use OldReturnType to build the new function type.
5917      const FunctionType *F = LHS->getAs<FunctionType>();
5918      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
5919        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5920        EPI.ExtInfo = getFunctionExtInfo(LHS);
5921        QualType ResultType
5922          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
5923                            FPT->getNumArgs(), EPI);
5924        return ResultType;
5925      }
5926    }
5927    return QualType();
5928  }
5929
5930  // If the qualifiers are different, the types can still be merged.
5931  Qualifiers LQuals = LHSCan.getLocalQualifiers();
5932  Qualifiers RQuals = RHSCan.getLocalQualifiers();
5933  if (LQuals != RQuals) {
5934    // If any of these qualifiers are different, we have a type mismatch.
5935    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
5936        LQuals.getAddressSpace() != RQuals.getAddressSpace())
5937      return QualType();
5938
5939    // Exactly one GC qualifier difference is allowed: __strong is
5940    // okay if the other type has no GC qualifier but is an Objective
5941    // C object pointer (i.e. implicitly strong by default).  We fix
5942    // this by pretending that the unqualified type was actually
5943    // qualified __strong.
5944    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
5945    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
5946    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
5947
5948    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
5949      return QualType();
5950
5951    if (GC_L == Qualifiers::Strong)
5952      return LHS;
5953    if (GC_R == Qualifiers::Strong)
5954      return RHS;
5955    return QualType();
5956  }
5957
5958  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
5959    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
5960    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
5961    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
5962    if (ResQT == LHSBaseQT)
5963      return LHS;
5964    if (ResQT == RHSBaseQT)
5965      return RHS;
5966  }
5967  return QualType();
5968}
5969
5970//===----------------------------------------------------------------------===//
5971//                         Integer Predicates
5972//===----------------------------------------------------------------------===//
5973
5974unsigned ASTContext::getIntWidth(QualType T) const {
5975  if (const EnumType *ET = dyn_cast<EnumType>(T))
5976    T = ET->getDecl()->getIntegerType();
5977  if (T->isBooleanType())
5978    return 1;
5979  // For builtin types, just use the standard type sizing method
5980  return (unsigned)getTypeSize(T);
5981}
5982
5983QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
5984  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
5985
5986  // Turn <4 x signed int> -> <4 x unsigned int>
5987  if (const VectorType *VTy = T->getAs<VectorType>())
5988    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
5989                         VTy->getNumElements(), VTy->getVectorKind());
5990
5991  // For enums, we return the unsigned version of the base type.
5992  if (const EnumType *ETy = T->getAs<EnumType>())
5993    T = ETy->getDecl()->getIntegerType();
5994
5995  const BuiltinType *BTy = T->getAs<BuiltinType>();
5996  assert(BTy && "Unexpected signed integer type");
5997  switch (BTy->getKind()) {
5998  case BuiltinType::Char_S:
5999  case BuiltinType::SChar:
6000    return UnsignedCharTy;
6001  case BuiltinType::Short:
6002    return UnsignedShortTy;
6003  case BuiltinType::Int:
6004    return UnsignedIntTy;
6005  case BuiltinType::Long:
6006    return UnsignedLongTy;
6007  case BuiltinType::LongLong:
6008    return UnsignedLongLongTy;
6009  case BuiltinType::Int128:
6010    return UnsignedInt128Ty;
6011  default:
6012    assert(0 && "Unexpected signed integer type");
6013    return QualType();
6014  }
6015}
6016
6017ASTMutationListener::~ASTMutationListener() { }
6018
6019
6020//===----------------------------------------------------------------------===//
6021//                          Builtin Type Computation
6022//===----------------------------------------------------------------------===//
6023
6024/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
6025/// pointer over the consumed characters.  This returns the resultant type.  If
6026/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
6027/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
6028/// a vector of "i*".
6029///
6030/// RequiresICE is filled in on return to indicate whether the value is required
6031/// to be an Integer Constant Expression.
6032static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
6033                                  ASTContext::GetBuiltinTypeError &Error,
6034                                  bool &RequiresICE,
6035                                  bool AllowTypeModifiers) {
6036  // Modifiers.
6037  int HowLong = 0;
6038  bool Signed = false, Unsigned = false;
6039  RequiresICE = false;
6040
6041  // Read the prefixed modifiers first.
6042  bool Done = false;
6043  while (!Done) {
6044    switch (*Str++) {
6045    default: Done = true; --Str; break;
6046    case 'I':
6047      RequiresICE = true;
6048      break;
6049    case 'S':
6050      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
6051      assert(!Signed && "Can't use 'S' modifier multiple times!");
6052      Signed = true;
6053      break;
6054    case 'U':
6055      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
6056      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
6057      Unsigned = true;
6058      break;
6059    case 'L':
6060      assert(HowLong <= 2 && "Can't have LLLL modifier");
6061      ++HowLong;
6062      break;
6063    }
6064  }
6065
6066  QualType Type;
6067
6068  // Read the base type.
6069  switch (*Str++) {
6070  default: assert(0 && "Unknown builtin type letter!");
6071  case 'v':
6072    assert(HowLong == 0 && !Signed && !Unsigned &&
6073           "Bad modifiers used with 'v'!");
6074    Type = Context.VoidTy;
6075    break;
6076  case 'f':
6077    assert(HowLong == 0 && !Signed && !Unsigned &&
6078           "Bad modifiers used with 'f'!");
6079    Type = Context.FloatTy;
6080    break;
6081  case 'd':
6082    assert(HowLong < 2 && !Signed && !Unsigned &&
6083           "Bad modifiers used with 'd'!");
6084    if (HowLong)
6085      Type = Context.LongDoubleTy;
6086    else
6087      Type = Context.DoubleTy;
6088    break;
6089  case 's':
6090    assert(HowLong == 0 && "Bad modifiers used with 's'!");
6091    if (Unsigned)
6092      Type = Context.UnsignedShortTy;
6093    else
6094      Type = Context.ShortTy;
6095    break;
6096  case 'i':
6097    if (HowLong == 3)
6098      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
6099    else if (HowLong == 2)
6100      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
6101    else if (HowLong == 1)
6102      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
6103    else
6104      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
6105    break;
6106  case 'c':
6107    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
6108    if (Signed)
6109      Type = Context.SignedCharTy;
6110    else if (Unsigned)
6111      Type = Context.UnsignedCharTy;
6112    else
6113      Type = Context.CharTy;
6114    break;
6115  case 'b': // boolean
6116    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
6117    Type = Context.BoolTy;
6118    break;
6119  case 'z':  // size_t.
6120    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
6121    Type = Context.getSizeType();
6122    break;
6123  case 'F':
6124    Type = Context.getCFConstantStringType();
6125    break;
6126  case 'G':
6127    Type = Context.getObjCIdType();
6128    break;
6129  case 'H':
6130    Type = Context.getObjCSelType();
6131    break;
6132  case 'a':
6133    Type = Context.getBuiltinVaListType();
6134    assert(!Type.isNull() && "builtin va list type not initialized!");
6135    break;
6136  case 'A':
6137    // This is a "reference" to a va_list; however, what exactly
6138    // this means depends on how va_list is defined. There are two
6139    // different kinds of va_list: ones passed by value, and ones
6140    // passed by reference.  An example of a by-value va_list is
6141    // x86, where va_list is a char*. An example of by-ref va_list
6142    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
6143    // we want this argument to be a char*&; for x86-64, we want
6144    // it to be a __va_list_tag*.
6145    Type = Context.getBuiltinVaListType();
6146    assert(!Type.isNull() && "builtin va list type not initialized!");
6147    if (Type->isArrayType())
6148      Type = Context.getArrayDecayedType(Type);
6149    else
6150      Type = Context.getLValueReferenceType(Type);
6151    break;
6152  case 'V': {
6153    char *End;
6154    unsigned NumElements = strtoul(Str, &End, 10);
6155    assert(End != Str && "Missing vector size");
6156    Str = End;
6157
6158    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
6159                                             RequiresICE, false);
6160    assert(!RequiresICE && "Can't require vector ICE");
6161
6162    // TODO: No way to make AltiVec vectors in builtins yet.
6163    Type = Context.getVectorType(ElementType, NumElements,
6164                                 VectorType::GenericVector);
6165    break;
6166  }
6167  case 'X': {
6168    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
6169                                             false);
6170    assert(!RequiresICE && "Can't require complex ICE");
6171    Type = Context.getComplexType(ElementType);
6172    break;
6173  }
6174  case 'P':
6175    Type = Context.getFILEType();
6176    if (Type.isNull()) {
6177      Error = ASTContext::GE_Missing_stdio;
6178      return QualType();
6179    }
6180    break;
6181  case 'J':
6182    if (Signed)
6183      Type = Context.getsigjmp_bufType();
6184    else
6185      Type = Context.getjmp_bufType();
6186
6187    if (Type.isNull()) {
6188      Error = ASTContext::GE_Missing_setjmp;
6189      return QualType();
6190    }
6191    break;
6192  }
6193
6194  // If there are modifiers and if we're allowed to parse them, go for it.
6195  Done = !AllowTypeModifiers;
6196  while (!Done) {
6197    switch (char c = *Str++) {
6198    default: Done = true; --Str; break;
6199    case '*':
6200    case '&': {
6201      // Both pointers and references can have their pointee types
6202      // qualified with an address space.
6203      char *End;
6204      unsigned AddrSpace = strtoul(Str, &End, 10);
6205      if (End != Str && AddrSpace != 0) {
6206        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
6207        Str = End;
6208      }
6209      if (c == '*')
6210        Type = Context.getPointerType(Type);
6211      else
6212        Type = Context.getLValueReferenceType(Type);
6213      break;
6214    }
6215    // FIXME: There's no way to have a built-in with an rvalue ref arg.
6216    case 'C':
6217      Type = Type.withConst();
6218      break;
6219    case 'D':
6220      Type = Context.getVolatileType(Type);
6221      break;
6222    }
6223  }
6224
6225  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
6226         "Integer constant 'I' type must be an integer");
6227
6228  return Type;
6229}
6230
6231/// GetBuiltinType - Return the type for the specified builtin.
6232QualType ASTContext::GetBuiltinType(unsigned Id,
6233                                    GetBuiltinTypeError &Error,
6234                                    unsigned *IntegerConstantArgs) const {
6235  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
6236
6237  SmallVector<QualType, 8> ArgTypes;
6238
6239  bool RequiresICE = false;
6240  Error = GE_None;
6241  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
6242                                       RequiresICE, true);
6243  if (Error != GE_None)
6244    return QualType();
6245
6246  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
6247
6248  while (TypeStr[0] && TypeStr[0] != '.') {
6249    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
6250    if (Error != GE_None)
6251      return QualType();
6252
6253    // If this argument is required to be an IntegerConstantExpression and the
6254    // caller cares, fill in the bitmask we return.
6255    if (RequiresICE && IntegerConstantArgs)
6256      *IntegerConstantArgs |= 1 << ArgTypes.size();
6257
6258    // Do array -> pointer decay.  The builtin should use the decayed type.
6259    if (Ty->isArrayType())
6260      Ty = getArrayDecayedType(Ty);
6261
6262    ArgTypes.push_back(Ty);
6263  }
6264
6265  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
6266         "'.' should only occur at end of builtin type list!");
6267
6268  FunctionType::ExtInfo EI;
6269  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
6270
6271  bool Variadic = (TypeStr[0] == '.');
6272
6273  // We really shouldn't be making a no-proto type here, especially in C++.
6274  if (ArgTypes.empty() && Variadic)
6275    return getFunctionNoProtoType(ResType, EI);
6276
6277  FunctionProtoType::ExtProtoInfo EPI;
6278  EPI.ExtInfo = EI;
6279  EPI.Variadic = Variadic;
6280
6281  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
6282}
6283
6284GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
6285  GVALinkage External = GVA_StrongExternal;
6286
6287  Linkage L = FD->getLinkage();
6288  switch (L) {
6289  case NoLinkage:
6290  case InternalLinkage:
6291  case UniqueExternalLinkage:
6292    return GVA_Internal;
6293
6294  case ExternalLinkage:
6295    switch (FD->getTemplateSpecializationKind()) {
6296    case TSK_Undeclared:
6297    case TSK_ExplicitSpecialization:
6298      External = GVA_StrongExternal;
6299      break;
6300
6301    case TSK_ExplicitInstantiationDefinition:
6302      return GVA_ExplicitTemplateInstantiation;
6303
6304    case TSK_ExplicitInstantiationDeclaration:
6305    case TSK_ImplicitInstantiation:
6306      External = GVA_TemplateInstantiation;
6307      break;
6308    }
6309  }
6310
6311  if (!FD->isInlined())
6312    return External;
6313
6314  if (!getLangOptions().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
6315    // GNU or C99 inline semantics. Determine whether this symbol should be
6316    // externally visible.
6317    if (FD->isInlineDefinitionExternallyVisible())
6318      return External;
6319
6320    // C99 inline semantics, where the symbol is not externally visible.
6321    return GVA_C99Inline;
6322  }
6323
6324  // C++0x [temp.explicit]p9:
6325  //   [ Note: The intent is that an inline function that is the subject of
6326  //   an explicit instantiation declaration will still be implicitly
6327  //   instantiated when used so that the body can be considered for
6328  //   inlining, but that no out-of-line copy of the inline function would be
6329  //   generated in the translation unit. -- end note ]
6330  if (FD->getTemplateSpecializationKind()
6331                                       == TSK_ExplicitInstantiationDeclaration)
6332    return GVA_C99Inline;
6333
6334  return GVA_CXXInline;
6335}
6336
6337GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
6338  // If this is a static data member, compute the kind of template
6339  // specialization. Otherwise, this variable is not part of a
6340  // template.
6341  TemplateSpecializationKind TSK = TSK_Undeclared;
6342  if (VD->isStaticDataMember())
6343    TSK = VD->getTemplateSpecializationKind();
6344
6345  Linkage L = VD->getLinkage();
6346  if (L == ExternalLinkage && getLangOptions().CPlusPlus &&
6347      VD->getType()->getLinkage() == UniqueExternalLinkage)
6348    L = UniqueExternalLinkage;
6349
6350  switch (L) {
6351  case NoLinkage:
6352  case InternalLinkage:
6353  case UniqueExternalLinkage:
6354    return GVA_Internal;
6355
6356  case ExternalLinkage:
6357    switch (TSK) {
6358    case TSK_Undeclared:
6359    case TSK_ExplicitSpecialization:
6360      return GVA_StrongExternal;
6361
6362    case TSK_ExplicitInstantiationDeclaration:
6363      llvm_unreachable("Variable should not be instantiated");
6364      // Fall through to treat this like any other instantiation.
6365
6366    case TSK_ExplicitInstantiationDefinition:
6367      return GVA_ExplicitTemplateInstantiation;
6368
6369    case TSK_ImplicitInstantiation:
6370      return GVA_TemplateInstantiation;
6371    }
6372  }
6373
6374  return GVA_StrongExternal;
6375}
6376
6377bool ASTContext::DeclMustBeEmitted(const Decl *D) {
6378  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
6379    if (!VD->isFileVarDecl())
6380      return false;
6381  } else if (!isa<FunctionDecl>(D))
6382    return false;
6383
6384  // Weak references don't produce any output by themselves.
6385  if (D->hasAttr<WeakRefAttr>())
6386    return false;
6387
6388  // Aliases and used decls are required.
6389  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
6390    return true;
6391
6392  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6393    // Forward declarations aren't required.
6394    if (!FD->doesThisDeclarationHaveABody())
6395      return FD->doesDeclarationForceExternallyVisibleDefinition();
6396
6397    // Constructors and destructors are required.
6398    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
6399      return true;
6400
6401    // The key function for a class is required.
6402    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
6403      const CXXRecordDecl *RD = MD->getParent();
6404      if (MD->isOutOfLine() && RD->isDynamicClass()) {
6405        const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
6406        if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
6407          return true;
6408      }
6409    }
6410
6411    GVALinkage Linkage = GetGVALinkageForFunction(FD);
6412
6413    // static, static inline, always_inline, and extern inline functions can
6414    // always be deferred.  Normal inline functions can be deferred in C99/C++.
6415    // Implicit template instantiations can also be deferred in C++.
6416    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
6417        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
6418      return false;
6419    return true;
6420  }
6421
6422  const VarDecl *VD = cast<VarDecl>(D);
6423  assert(VD->isFileVarDecl() && "Expected file scoped var");
6424
6425  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
6426    return false;
6427
6428  // Structs that have non-trivial constructors or destructors are required.
6429
6430  // FIXME: Handle references.
6431  // FIXME: Be more selective about which constructors we care about.
6432  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
6433    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
6434      if (RD->hasDefinition() && !(RD->hasTrivialDefaultConstructor() &&
6435                                   RD->hasTrivialCopyConstructor() &&
6436                                   RD->hasTrivialMoveConstructor() &&
6437                                   RD->hasTrivialDestructor()))
6438        return true;
6439    }
6440  }
6441
6442  GVALinkage L = GetGVALinkageForVariable(VD);
6443  if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
6444    if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
6445      return false;
6446  }
6447
6448  return true;
6449}
6450
6451CallingConv ASTContext::getDefaultMethodCallConv() {
6452  // Pass through to the C++ ABI object
6453  return ABI->getDefaultMethodCallConv();
6454}
6455
6456bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
6457  // Pass through to the C++ ABI object
6458  return ABI->isNearlyEmpty(RD);
6459}
6460
6461MangleContext *ASTContext::createMangleContext() {
6462  switch (Target.getCXXABI()) {
6463  case CXXABI_ARM:
6464  case CXXABI_Itanium:
6465    return createItaniumMangleContext(*this, getDiagnostics());
6466  case CXXABI_Microsoft:
6467    return createMicrosoftMangleContext(*this, getDiagnostics());
6468  }
6469  assert(0 && "Unsupported ABI");
6470  return 0;
6471}
6472
6473CXXABI::~CXXABI() {}
6474
6475size_t ASTContext::getSideTableAllocatedMemory() const {
6476  return ASTRecordLayouts.getMemorySize()
6477    + llvm::capacity_in_bytes(ObjCLayouts)
6478    + llvm::capacity_in_bytes(KeyFunctions)
6479    + llvm::capacity_in_bytes(ObjCImpls)
6480    + llvm::capacity_in_bytes(BlockVarCopyInits)
6481    + llvm::capacity_in_bytes(DeclAttrs)
6482    + llvm::capacity_in_bytes(InstantiatedFromStaticDataMember)
6483    + llvm::capacity_in_bytes(InstantiatedFromUsingDecl)
6484    + llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl)
6485    + llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl)
6486    + llvm::capacity_in_bytes(OverriddenMethods)
6487    + llvm::capacity_in_bytes(Types)
6488    + llvm::capacity_in_bytes(VariableArrayTypes);
6489}
6490