ASTContext.cpp revision 14aba76042e041b2c5e439bf4ae353a0a3c7fd73
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExternalASTSource.h"
23#include "clang/AST/ASTMutationListener.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/Mangle.h"
26#include "clang/Basic/Builtins.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/TargetInfo.h"
29#include "llvm/ADT/SmallString.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/Support/MathExtras.h"
32#include "llvm/Support/raw_ostream.h"
33#include "CXXABI.h"
34
35using namespace clang;
36
37unsigned ASTContext::NumImplicitDefaultConstructors;
38unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
39unsigned ASTContext::NumImplicitCopyConstructors;
40unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
41unsigned ASTContext::NumImplicitCopyAssignmentOperators;
42unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
43unsigned ASTContext::NumImplicitDestructors;
44unsigned ASTContext::NumImplicitDestructorsDeclared;
45
46enum FloatingRank {
47  FloatRank, DoubleRank, LongDoubleRank
48};
49
50void
51ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
52                                               TemplateTemplateParmDecl *Parm) {
53  ID.AddInteger(Parm->getDepth());
54  ID.AddInteger(Parm->getPosition());
55  ID.AddBoolean(Parm->isParameterPack());
56
57  TemplateParameterList *Params = Parm->getTemplateParameters();
58  ID.AddInteger(Params->size());
59  for (TemplateParameterList::const_iterator P = Params->begin(),
60                                          PEnd = Params->end();
61       P != PEnd; ++P) {
62    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
63      ID.AddInteger(0);
64      ID.AddBoolean(TTP->isParameterPack());
65      continue;
66    }
67
68    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
69      ID.AddInteger(1);
70      ID.AddBoolean(NTTP->isParameterPack());
71      ID.AddPointer(NTTP->getType().getAsOpaquePtr());
72      if (NTTP->isExpandedParameterPack()) {
73        ID.AddBoolean(true);
74        ID.AddInteger(NTTP->getNumExpansionTypes());
75        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I)
76          ID.AddPointer(NTTP->getExpansionType(I).getAsOpaquePtr());
77      } else
78        ID.AddBoolean(false);
79      continue;
80    }
81
82    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
83    ID.AddInteger(2);
84    Profile(ID, TTP);
85  }
86}
87
88TemplateTemplateParmDecl *
89ASTContext::getCanonicalTemplateTemplateParmDecl(
90                                          TemplateTemplateParmDecl *TTP) const {
91  // Check if we already have a canonical template template parameter.
92  llvm::FoldingSetNodeID ID;
93  CanonicalTemplateTemplateParm::Profile(ID, TTP);
94  void *InsertPos = 0;
95  CanonicalTemplateTemplateParm *Canonical
96    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
97  if (Canonical)
98    return Canonical->getParam();
99
100  // Build a canonical template parameter list.
101  TemplateParameterList *Params = TTP->getTemplateParameters();
102  llvm::SmallVector<NamedDecl *, 4> CanonParams;
103  CanonParams.reserve(Params->size());
104  for (TemplateParameterList::const_iterator P = Params->begin(),
105                                          PEnd = Params->end();
106       P != PEnd; ++P) {
107    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
108      CanonParams.push_back(
109                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
110                                               SourceLocation(), TTP->getDepth(),
111                                               TTP->getIndex(), 0, false,
112                                               TTP->isParameterPack()));
113    else if (NonTypeTemplateParmDecl *NTTP
114             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
115      QualType T = getCanonicalType(NTTP->getType());
116      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
117      NonTypeTemplateParmDecl *Param;
118      if (NTTP->isExpandedParameterPack()) {
119        llvm::SmallVector<QualType, 2> ExpandedTypes;
120        llvm::SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
121        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
122          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
123          ExpandedTInfos.push_back(
124                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
125        }
126
127        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
128                                                SourceLocation(),
129                                                NTTP->getDepth(),
130                                                NTTP->getPosition(), 0,
131                                                T,
132                                                TInfo,
133                                                ExpandedTypes.data(),
134                                                ExpandedTypes.size(),
135                                                ExpandedTInfos.data());
136      } else {
137        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
138                                                SourceLocation(),
139                                                NTTP->getDepth(),
140                                                NTTP->getPosition(), 0,
141                                                T,
142                                                NTTP->isParameterPack(),
143                                                TInfo);
144      }
145      CanonParams.push_back(Param);
146
147    } else
148      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
149                                           cast<TemplateTemplateParmDecl>(*P)));
150  }
151
152  TemplateTemplateParmDecl *CanonTTP
153    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
154                                       SourceLocation(), TTP->getDepth(),
155                                       TTP->getPosition(),
156                                       TTP->isParameterPack(),
157                                       0,
158                         TemplateParameterList::Create(*this, SourceLocation(),
159                                                       SourceLocation(),
160                                                       CanonParams.data(),
161                                                       CanonParams.size(),
162                                                       SourceLocation()));
163
164  // Get the new insert position for the node we care about.
165  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
166  assert(Canonical == 0 && "Shouldn't be in the map!");
167  (void)Canonical;
168
169  // Create the canonical template template parameter entry.
170  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
171  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
172  return CanonTTP;
173}
174
175CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
176  if (!LangOpts.CPlusPlus) return 0;
177
178  switch (T.getCXXABI()) {
179  case CXXABI_ARM:
180    return CreateARMCXXABI(*this);
181  case CXXABI_Itanium:
182    return CreateItaniumCXXABI(*this);
183  case CXXABI_Microsoft:
184    return CreateMicrosoftCXXABI(*this);
185  }
186  return 0;
187}
188
189ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
190                       const TargetInfo &t,
191                       IdentifierTable &idents, SelectorTable &sels,
192                       Builtin::Context &builtins,
193                       unsigned size_reserve) :
194  TemplateSpecializationTypes(this_()),
195  DependentTemplateSpecializationTypes(this_()),
196  GlobalNestedNameSpecifier(0), IsInt128Installed(false),
197  CFConstantStringTypeDecl(0), NSConstantStringTypeDecl(0),
198  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0), jmp_bufDecl(0),
199  sigjmp_bufDecl(0), BlockDescriptorType(0), BlockDescriptorExtendedType(0),
200  cudaConfigureCallDecl(0),
201  NullTypeSourceInfo(QualType()),
202  SourceMgr(SM), LangOpts(LOpts), ABI(createCXXABI(t)), Target(t),
203  Idents(idents), Selectors(sels),
204  BuiltinInfo(builtins),
205  DeclarationNames(*this),
206  ExternalSource(0), Listener(0), PrintingPolicy(LOpts),
207  LastSDM(0, 0),
208  UniqueBlockByRefTypeID(0) {
209  ObjCIdRedefinitionType = QualType();
210  ObjCClassRedefinitionType = QualType();
211  ObjCSelRedefinitionType = QualType();
212  if (size_reserve > 0) Types.reserve(size_reserve);
213  TUDecl = TranslationUnitDecl::Create(*this);
214  InitBuiltinTypes();
215}
216
217ASTContext::~ASTContext() {
218  // Release the DenseMaps associated with DeclContext objects.
219  // FIXME: Is this the ideal solution?
220  ReleaseDeclContextMaps();
221
222  // Call all of the deallocation functions.
223  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
224    Deallocations[I].first(Deallocations[I].second);
225
226  // Release all of the memory associated with overridden C++ methods.
227  for (llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::iterator
228         OM = OverriddenMethods.begin(), OMEnd = OverriddenMethods.end();
229       OM != OMEnd; ++OM)
230    OM->second.Destroy();
231
232  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
233  // because they can contain DenseMaps.
234  for (llvm::DenseMap<const ObjCContainerDecl*,
235       const ASTRecordLayout*>::iterator
236       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
237    // Increment in loop to prevent using deallocated memory.
238    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
239      R->Destroy(*this);
240
241  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
242       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
243    // Increment in loop to prevent using deallocated memory.
244    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
245      R->Destroy(*this);
246  }
247
248  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
249                                                    AEnd = DeclAttrs.end();
250       A != AEnd; ++A)
251    A->second->~AttrVec();
252}
253
254void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
255  Deallocations.push_back(std::make_pair(Callback, Data));
256}
257
258void
259ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
260  ExternalSource.reset(Source.take());
261}
262
263void ASTContext::PrintStats() const {
264  fprintf(stderr, "*** AST Context Stats:\n");
265  fprintf(stderr, "  %d types total.\n", (int)Types.size());
266
267  unsigned counts[] = {
268#define TYPE(Name, Parent) 0,
269#define ABSTRACT_TYPE(Name, Parent)
270#include "clang/AST/TypeNodes.def"
271    0 // Extra
272  };
273
274  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
275    Type *T = Types[i];
276    counts[(unsigned)T->getTypeClass()]++;
277  }
278
279  unsigned Idx = 0;
280  unsigned TotalBytes = 0;
281#define TYPE(Name, Parent)                                              \
282  if (counts[Idx])                                                      \
283    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
284  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
285  ++Idx;
286#define ABSTRACT_TYPE(Name, Parent)
287#include "clang/AST/TypeNodes.def"
288
289  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
290
291  // Implicit special member functions.
292  fprintf(stderr, "  %u/%u implicit default constructors created\n",
293          NumImplicitDefaultConstructorsDeclared,
294          NumImplicitDefaultConstructors);
295  fprintf(stderr, "  %u/%u implicit copy constructors created\n",
296          NumImplicitCopyConstructorsDeclared,
297          NumImplicitCopyConstructors);
298  fprintf(stderr, "  %u/%u implicit copy assignment operators created\n",
299          NumImplicitCopyAssignmentOperatorsDeclared,
300          NumImplicitCopyAssignmentOperators);
301  fprintf(stderr, "  %u/%u implicit destructors created\n",
302          NumImplicitDestructorsDeclared, NumImplicitDestructors);
303
304  if (ExternalSource.get()) {
305    fprintf(stderr, "\n");
306    ExternalSource->PrintStats();
307  }
308
309  BumpAlloc.PrintStats();
310}
311
312
313void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
314  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
315  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
316  Types.push_back(Ty);
317}
318
319void ASTContext::InitBuiltinTypes() {
320  assert(VoidTy.isNull() && "Context reinitialized?");
321
322  // C99 6.2.5p19.
323  InitBuiltinType(VoidTy,              BuiltinType::Void);
324
325  // C99 6.2.5p2.
326  InitBuiltinType(BoolTy,              BuiltinType::Bool);
327  // C99 6.2.5p3.
328  if (LangOpts.CharIsSigned)
329    InitBuiltinType(CharTy,            BuiltinType::Char_S);
330  else
331    InitBuiltinType(CharTy,            BuiltinType::Char_U);
332  // C99 6.2.5p4.
333  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
334  InitBuiltinType(ShortTy,             BuiltinType::Short);
335  InitBuiltinType(IntTy,               BuiltinType::Int);
336  InitBuiltinType(LongTy,              BuiltinType::Long);
337  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
338
339  // C99 6.2.5p6.
340  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
341  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
342  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
343  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
344  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
345
346  // C99 6.2.5p10.
347  InitBuiltinType(FloatTy,             BuiltinType::Float);
348  InitBuiltinType(DoubleTy,            BuiltinType::Double);
349  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
350
351  // GNU extension, 128-bit integers.
352  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
353  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
354
355  if (LangOpts.CPlusPlus) { // C++ 3.9.1p5
356    if (!LangOpts.ShortWChar)
357      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
358    else  // -fshort-wchar makes wchar_t be unsigned.
359      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
360  } else // C99
361    WCharTy = getFromTargetType(Target.getWCharType());
362
363  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
364    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
365  else // C99
366    Char16Ty = getFromTargetType(Target.getChar16Type());
367
368  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
369    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
370  else // C99
371    Char32Ty = getFromTargetType(Target.getChar32Type());
372
373  // Placeholder type for type-dependent expressions whose type is
374  // completely unknown. No code should ever check a type against
375  // DependentTy and users should never see it; however, it is here to
376  // help diagnose failures to properly check for type-dependent
377  // expressions.
378  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
379
380  // Placeholder type for functions.
381  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
382
383  // C99 6.2.5p11.
384  FloatComplexTy      = getComplexType(FloatTy);
385  DoubleComplexTy     = getComplexType(DoubleTy);
386  LongDoubleComplexTy = getComplexType(LongDoubleTy);
387
388  BuiltinVaListType = QualType();
389
390  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
391  ObjCIdTypedefType = QualType();
392  ObjCClassTypedefType = QualType();
393  ObjCSelTypedefType = QualType();
394
395  // Builtin types for 'id', 'Class', and 'SEL'.
396  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
397  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
398  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
399
400  ObjCConstantStringType = QualType();
401
402  // void * type
403  VoidPtrTy = getPointerType(VoidTy);
404
405  // nullptr type (C++0x 2.14.7)
406  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
407}
408
409Diagnostic &ASTContext::getDiagnostics() const {
410  return SourceMgr.getDiagnostics();
411}
412
413AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
414  AttrVec *&Result = DeclAttrs[D];
415  if (!Result) {
416    void *Mem = Allocate(sizeof(AttrVec));
417    Result = new (Mem) AttrVec;
418  }
419
420  return *Result;
421}
422
423/// \brief Erase the attributes corresponding to the given declaration.
424void ASTContext::eraseDeclAttrs(const Decl *D) {
425  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
426  if (Pos != DeclAttrs.end()) {
427    Pos->second->~AttrVec();
428    DeclAttrs.erase(Pos);
429  }
430}
431
432
433MemberSpecializationInfo *
434ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
435  assert(Var->isStaticDataMember() && "Not a static data member");
436  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
437    = InstantiatedFromStaticDataMember.find(Var);
438  if (Pos == InstantiatedFromStaticDataMember.end())
439    return 0;
440
441  return Pos->second;
442}
443
444void
445ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
446                                                TemplateSpecializationKind TSK,
447                                          SourceLocation PointOfInstantiation) {
448  assert(Inst->isStaticDataMember() && "Not a static data member");
449  assert(Tmpl->isStaticDataMember() && "Not a static data member");
450  assert(!InstantiatedFromStaticDataMember[Inst] &&
451         "Already noted what static data member was instantiated from");
452  InstantiatedFromStaticDataMember[Inst]
453    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
454}
455
456NamedDecl *
457ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
458  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
459    = InstantiatedFromUsingDecl.find(UUD);
460  if (Pos == InstantiatedFromUsingDecl.end())
461    return 0;
462
463  return Pos->second;
464}
465
466void
467ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
468  assert((isa<UsingDecl>(Pattern) ||
469          isa<UnresolvedUsingValueDecl>(Pattern) ||
470          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
471         "pattern decl is not a using decl");
472  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
473  InstantiatedFromUsingDecl[Inst] = Pattern;
474}
475
476UsingShadowDecl *
477ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
478  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
479    = InstantiatedFromUsingShadowDecl.find(Inst);
480  if (Pos == InstantiatedFromUsingShadowDecl.end())
481    return 0;
482
483  return Pos->second;
484}
485
486void
487ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
488                                               UsingShadowDecl *Pattern) {
489  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
490  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
491}
492
493FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
494  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
495    = InstantiatedFromUnnamedFieldDecl.find(Field);
496  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
497    return 0;
498
499  return Pos->second;
500}
501
502void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
503                                                     FieldDecl *Tmpl) {
504  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
505  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
506  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
507         "Already noted what unnamed field was instantiated from");
508
509  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
510}
511
512ASTContext::overridden_cxx_method_iterator
513ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
514  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
515    = OverriddenMethods.find(Method);
516  if (Pos == OverriddenMethods.end())
517    return 0;
518
519  return Pos->second.begin();
520}
521
522ASTContext::overridden_cxx_method_iterator
523ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
524  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
525    = OverriddenMethods.find(Method);
526  if (Pos == OverriddenMethods.end())
527    return 0;
528
529  return Pos->second.end();
530}
531
532unsigned
533ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
534  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
535    = OverriddenMethods.find(Method);
536  if (Pos == OverriddenMethods.end())
537    return 0;
538
539  return Pos->second.size();
540}
541
542void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
543                                     const CXXMethodDecl *Overridden) {
544  OverriddenMethods[Method].push_back(Overridden);
545}
546
547//===----------------------------------------------------------------------===//
548//                         Type Sizing and Analysis
549//===----------------------------------------------------------------------===//
550
551/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
552/// scalar floating point type.
553const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
554  const BuiltinType *BT = T->getAs<BuiltinType>();
555  assert(BT && "Not a floating point type!");
556  switch (BT->getKind()) {
557  default: assert(0 && "Not a floating point type!");
558  case BuiltinType::Float:      return Target.getFloatFormat();
559  case BuiltinType::Double:     return Target.getDoubleFormat();
560  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
561  }
562}
563
564/// getDeclAlign - Return a conservative estimate of the alignment of the
565/// specified decl.  Note that bitfields do not have a valid alignment, so
566/// this method will assert on them.
567/// If @p RefAsPointee, references are treated like their underlying type
568/// (for alignof), else they're treated like pointers (for CodeGen).
569CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
570  unsigned Align = Target.getCharWidth();
571
572  bool UseAlignAttrOnly = false;
573  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
574    Align = AlignFromAttr;
575
576    // __attribute__((aligned)) can increase or decrease alignment
577    // *except* on a struct or struct member, where it only increases
578    // alignment unless 'packed' is also specified.
579    //
580    // It is an error for [[align]] to decrease alignment, so we can
581    // ignore that possibility;  Sema should diagnose it.
582    if (isa<FieldDecl>(D)) {
583      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
584        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
585    } else {
586      UseAlignAttrOnly = true;
587    }
588  }
589
590  // If we're using the align attribute only, just ignore everything
591  // else about the declaration and its type.
592  if (UseAlignAttrOnly) {
593    // do nothing
594
595  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
596    QualType T = VD->getType();
597    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
598      if (RefAsPointee)
599        T = RT->getPointeeType();
600      else
601        T = getPointerType(RT->getPointeeType());
602    }
603    if (!T->isIncompleteType() && !T->isFunctionType()) {
604      // Adjust alignments of declarations with array type by the
605      // large-array alignment on the target.
606      unsigned MinWidth = Target.getLargeArrayMinWidth();
607      const ArrayType *arrayType;
608      if (MinWidth && (arrayType = getAsArrayType(T))) {
609        if (isa<VariableArrayType>(arrayType))
610          Align = std::max(Align, Target.getLargeArrayAlign());
611        else if (isa<ConstantArrayType>(arrayType) &&
612                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
613          Align = std::max(Align, Target.getLargeArrayAlign());
614
615        // Walk through any array types while we're at it.
616        T = getBaseElementType(arrayType);
617      }
618      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
619    }
620
621    // Fields can be subject to extra alignment constraints, like if
622    // the field is packed, the struct is packed, or the struct has a
623    // a max-field-alignment constraint (#pragma pack).  So calculate
624    // the actual alignment of the field within the struct, and then
625    // (as we're expected to) constrain that by the alignment of the type.
626    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
627      // So calculate the alignment of the field.
628      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
629
630      // Start with the record's overall alignment.
631      unsigned fieldAlign = toBits(layout.getAlignment());
632
633      // Use the GCD of that and the offset within the record.
634      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
635      if (offset > 0) {
636        // Alignment is always a power of 2, so the GCD will be a power of 2,
637        // which means we get to do this crazy thing instead of Euclid's.
638        uint64_t lowBitOfOffset = offset & (~offset + 1);
639        if (lowBitOfOffset < fieldAlign)
640          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
641      }
642
643      Align = std::min(Align, fieldAlign);
644    }
645  }
646
647  return toCharUnitsFromBits(Align);
648}
649
650std::pair<CharUnits, CharUnits>
651ASTContext::getTypeInfoInChars(const Type *T) const {
652  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
653  return std::make_pair(toCharUnitsFromBits(Info.first),
654                        toCharUnitsFromBits(Info.second));
655}
656
657std::pair<CharUnits, CharUnits>
658ASTContext::getTypeInfoInChars(QualType T) const {
659  return getTypeInfoInChars(T.getTypePtr());
660}
661
662/// getTypeSize - Return the size of the specified type, in bits.  This method
663/// does not work on incomplete types.
664///
665/// FIXME: Pointers into different addr spaces could have different sizes and
666/// alignment requirements: getPointerInfo should take an AddrSpace, this
667/// should take a QualType, &c.
668std::pair<uint64_t, unsigned>
669ASTContext::getTypeInfo(const Type *T) const {
670  uint64_t Width=0;
671  unsigned Align=8;
672  switch (T->getTypeClass()) {
673#define TYPE(Class, Base)
674#define ABSTRACT_TYPE(Class, Base)
675#define NON_CANONICAL_TYPE(Class, Base)
676#define DEPENDENT_TYPE(Class, Base) case Type::Class:
677#include "clang/AST/TypeNodes.def"
678    assert(false && "Should not see dependent types");
679    break;
680
681  case Type::FunctionNoProto:
682  case Type::FunctionProto:
683    // GCC extension: alignof(function) = 32 bits
684    Width = 0;
685    Align = 32;
686    break;
687
688  case Type::IncompleteArray:
689  case Type::VariableArray:
690    Width = 0;
691    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
692    break;
693
694  case Type::ConstantArray: {
695    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
696
697    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
698    Width = EltInfo.first*CAT->getSize().getZExtValue();
699    Align = EltInfo.second;
700    break;
701  }
702  case Type::ExtVector:
703  case Type::Vector: {
704    const VectorType *VT = cast<VectorType>(T);
705    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
706    Width = EltInfo.first*VT->getNumElements();
707    Align = Width;
708    // If the alignment is not a power of 2, round up to the next power of 2.
709    // This happens for non-power-of-2 length vectors.
710    if (Align & (Align-1)) {
711      Align = llvm::NextPowerOf2(Align);
712      Width = llvm::RoundUpToAlignment(Width, Align);
713    }
714    break;
715  }
716
717  case Type::Builtin:
718    switch (cast<BuiltinType>(T)->getKind()) {
719    default: assert(0 && "Unknown builtin type!");
720    case BuiltinType::Void:
721      // GCC extension: alignof(void) = 8 bits.
722      Width = 0;
723      Align = 8;
724      break;
725
726    case BuiltinType::Bool:
727      Width = Target.getBoolWidth();
728      Align = Target.getBoolAlign();
729      break;
730    case BuiltinType::Char_S:
731    case BuiltinType::Char_U:
732    case BuiltinType::UChar:
733    case BuiltinType::SChar:
734      Width = Target.getCharWidth();
735      Align = Target.getCharAlign();
736      break;
737    case BuiltinType::WChar_S:
738    case BuiltinType::WChar_U:
739      Width = Target.getWCharWidth();
740      Align = Target.getWCharAlign();
741      break;
742    case BuiltinType::Char16:
743      Width = Target.getChar16Width();
744      Align = Target.getChar16Align();
745      break;
746    case BuiltinType::Char32:
747      Width = Target.getChar32Width();
748      Align = Target.getChar32Align();
749      break;
750    case BuiltinType::UShort:
751    case BuiltinType::Short:
752      Width = Target.getShortWidth();
753      Align = Target.getShortAlign();
754      break;
755    case BuiltinType::UInt:
756    case BuiltinType::Int:
757      Width = Target.getIntWidth();
758      Align = Target.getIntAlign();
759      break;
760    case BuiltinType::ULong:
761    case BuiltinType::Long:
762      Width = Target.getLongWidth();
763      Align = Target.getLongAlign();
764      break;
765    case BuiltinType::ULongLong:
766    case BuiltinType::LongLong:
767      Width = Target.getLongLongWidth();
768      Align = Target.getLongLongAlign();
769      break;
770    case BuiltinType::Int128:
771    case BuiltinType::UInt128:
772      Width = 128;
773      Align = 128; // int128_t is 128-bit aligned on all targets.
774      break;
775    case BuiltinType::Float:
776      Width = Target.getFloatWidth();
777      Align = Target.getFloatAlign();
778      break;
779    case BuiltinType::Double:
780      Width = Target.getDoubleWidth();
781      Align = Target.getDoubleAlign();
782      break;
783    case BuiltinType::LongDouble:
784      Width = Target.getLongDoubleWidth();
785      Align = Target.getLongDoubleAlign();
786      break;
787    case BuiltinType::NullPtr:
788      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
789      Align = Target.getPointerAlign(0); //   == sizeof(void*)
790      break;
791    case BuiltinType::ObjCId:
792    case BuiltinType::ObjCClass:
793    case BuiltinType::ObjCSel:
794      Width = Target.getPointerWidth(0);
795      Align = Target.getPointerAlign(0);
796      break;
797    }
798    break;
799  case Type::ObjCObjectPointer:
800    Width = Target.getPointerWidth(0);
801    Align = Target.getPointerAlign(0);
802    break;
803  case Type::BlockPointer: {
804    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
805    Width = Target.getPointerWidth(AS);
806    Align = Target.getPointerAlign(AS);
807    break;
808  }
809  case Type::LValueReference:
810  case Type::RValueReference: {
811    // alignof and sizeof should never enter this code path here, so we go
812    // the pointer route.
813    unsigned AS = cast<ReferenceType>(T)->getPointeeType().getAddressSpace();
814    Width = Target.getPointerWidth(AS);
815    Align = Target.getPointerAlign(AS);
816    break;
817  }
818  case Type::Pointer: {
819    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
820    Width = Target.getPointerWidth(AS);
821    Align = Target.getPointerAlign(AS);
822    break;
823  }
824  case Type::MemberPointer: {
825    const MemberPointerType *MPT = cast<MemberPointerType>(T);
826    std::pair<uint64_t, unsigned> PtrDiffInfo =
827      getTypeInfo(getPointerDiffType());
828    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
829    Align = PtrDiffInfo.second;
830    break;
831  }
832  case Type::Complex: {
833    // Complex types have the same alignment as their elements, but twice the
834    // size.
835    std::pair<uint64_t, unsigned> EltInfo =
836      getTypeInfo(cast<ComplexType>(T)->getElementType());
837    Width = EltInfo.first*2;
838    Align = EltInfo.second;
839    break;
840  }
841  case Type::ObjCObject:
842    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
843  case Type::ObjCInterface: {
844    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
845    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
846    Width = toBits(Layout.getSize());
847    Align = toBits(Layout.getAlignment());
848    break;
849  }
850  case Type::Record:
851  case Type::Enum: {
852    const TagType *TT = cast<TagType>(T);
853
854    if (TT->getDecl()->isInvalidDecl()) {
855      Width = 1;
856      Align = 1;
857      break;
858    }
859
860    if (const EnumType *ET = dyn_cast<EnumType>(TT))
861      return getTypeInfo(ET->getDecl()->getIntegerType());
862
863    const RecordType *RT = cast<RecordType>(TT);
864    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
865    Width = toBits(Layout.getSize());
866    Align = toBits(Layout.getAlignment());
867    break;
868  }
869
870  case Type::SubstTemplateTypeParm:
871    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
872                       getReplacementType().getTypePtr());
873
874  case Type::Auto: {
875    const AutoType *A = cast<AutoType>(T);
876    assert(A->isDeduced() && "Cannot request the size of a dependent type");
877    return getTypeInfo(A->getDeducedType().getTypePtr());
878  }
879
880  case Type::Paren:
881    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
882
883  case Type::Typedef: {
884    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
885    std::pair<uint64_t, unsigned> Info
886      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
887    // If the typedef has an aligned attribute on it, it overrides any computed
888    // alignment we have.  This violates the GCC documentation (which says that
889    // attribute(aligned) can only round up) but matches its implementation.
890    if (unsigned AttrAlign = Typedef->getMaxAlignment())
891      Align = AttrAlign;
892    else
893      Align = Info.second;
894    Width = Info.first;
895    break;
896  }
897
898  case Type::TypeOfExpr:
899    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
900                         .getTypePtr());
901
902  case Type::TypeOf:
903    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
904
905  case Type::Decltype:
906    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
907                        .getTypePtr());
908
909  case Type::Elaborated:
910    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
911
912  case Type::Attributed:
913    return getTypeInfo(
914                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
915
916  case Type::TemplateSpecialization:
917    assert(getCanonicalType(T) != T &&
918           "Cannot request the size of a dependent type");
919    // FIXME: this is likely to be wrong once we support template
920    // aliases, since a template alias could refer to a typedef that
921    // has an __aligned__ attribute on it.
922    return getTypeInfo(getCanonicalType(T));
923  }
924
925  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
926  return std::make_pair(Width, Align);
927}
928
929/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
930CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
931  return CharUnits::fromQuantity(BitSize / getCharWidth());
932}
933
934/// toBits - Convert a size in characters to a size in characters.
935int64_t ASTContext::toBits(CharUnits CharSize) const {
936  return CharSize.getQuantity() * getCharWidth();
937}
938
939/// getTypeSizeInChars - Return the size of the specified type, in characters.
940/// This method does not work on incomplete types.
941CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
942  return toCharUnitsFromBits(getTypeSize(T));
943}
944CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
945  return toCharUnitsFromBits(getTypeSize(T));
946}
947
948/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
949/// characters. This method does not work on incomplete types.
950CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
951  return toCharUnitsFromBits(getTypeAlign(T));
952}
953CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
954  return toCharUnitsFromBits(getTypeAlign(T));
955}
956
957/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
958/// type for the current target in bits.  This can be different than the ABI
959/// alignment in cases where it is beneficial for performance to overalign
960/// a data type.
961unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
962  unsigned ABIAlign = getTypeAlign(T);
963
964  // Double and long long should be naturally aligned if possible.
965  if (const ComplexType* CT = T->getAs<ComplexType>())
966    T = CT->getElementType().getTypePtr();
967  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
968      T->isSpecificBuiltinType(BuiltinType::LongLong))
969    return std::max(ABIAlign, (unsigned)getTypeSize(T));
970
971  return ABIAlign;
972}
973
974/// ShallowCollectObjCIvars -
975/// Collect all ivars, including those synthesized, in the current class.
976///
977void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
978                            llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) const {
979  // FIXME. This need be removed but there are two many places which
980  // assume const-ness of ObjCInterfaceDecl
981  ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
982  for (ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
983        Iv= Iv->getNextIvar())
984    Ivars.push_back(Iv);
985}
986
987/// DeepCollectObjCIvars -
988/// This routine first collects all declared, but not synthesized, ivars in
989/// super class and then collects all ivars, including those synthesized for
990/// current class. This routine is used for implementation of current class
991/// when all ivars, declared and synthesized are known.
992///
993void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
994                                      bool leafClass,
995                            llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) const {
996  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
997    DeepCollectObjCIvars(SuperClass, false, Ivars);
998  if (!leafClass) {
999    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1000         E = OI->ivar_end(); I != E; ++I)
1001      Ivars.push_back(*I);
1002  }
1003  else
1004    ShallowCollectObjCIvars(OI, Ivars);
1005}
1006
1007/// CollectInheritedProtocols - Collect all protocols in current class and
1008/// those inherited by it.
1009void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1010                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1011  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1012    // We can use protocol_iterator here instead of
1013    // all_referenced_protocol_iterator since we are walking all categories.
1014    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1015         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1016      ObjCProtocolDecl *Proto = (*P);
1017      Protocols.insert(Proto);
1018      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1019           PE = Proto->protocol_end(); P != PE; ++P) {
1020        Protocols.insert(*P);
1021        CollectInheritedProtocols(*P, Protocols);
1022      }
1023    }
1024
1025    // Categories of this Interface.
1026    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
1027         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
1028      CollectInheritedProtocols(CDeclChain, Protocols);
1029    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1030      while (SD) {
1031        CollectInheritedProtocols(SD, Protocols);
1032        SD = SD->getSuperClass();
1033      }
1034  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1035    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1036         PE = OC->protocol_end(); P != PE; ++P) {
1037      ObjCProtocolDecl *Proto = (*P);
1038      Protocols.insert(Proto);
1039      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1040           PE = Proto->protocol_end(); P != PE; ++P)
1041        CollectInheritedProtocols(*P, Protocols);
1042    }
1043  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1044    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1045         PE = OP->protocol_end(); P != PE; ++P) {
1046      ObjCProtocolDecl *Proto = (*P);
1047      Protocols.insert(Proto);
1048      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1049           PE = Proto->protocol_end(); P != PE; ++P)
1050        CollectInheritedProtocols(*P, Protocols);
1051    }
1052  }
1053}
1054
1055unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1056  unsigned count = 0;
1057  // Count ivars declared in class extension.
1058  for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
1059       CDecl = CDecl->getNextClassExtension())
1060    count += CDecl->ivar_size();
1061
1062  // Count ivar defined in this class's implementation.  This
1063  // includes synthesized ivars.
1064  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1065    count += ImplDecl->ivar_size();
1066
1067  return count;
1068}
1069
1070/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1071ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1072  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1073    I = ObjCImpls.find(D);
1074  if (I != ObjCImpls.end())
1075    return cast<ObjCImplementationDecl>(I->second);
1076  return 0;
1077}
1078/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1079ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1080  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1081    I = ObjCImpls.find(D);
1082  if (I != ObjCImpls.end())
1083    return cast<ObjCCategoryImplDecl>(I->second);
1084  return 0;
1085}
1086
1087/// \brief Set the implementation of ObjCInterfaceDecl.
1088void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1089                           ObjCImplementationDecl *ImplD) {
1090  assert(IFaceD && ImplD && "Passed null params");
1091  ObjCImpls[IFaceD] = ImplD;
1092}
1093/// \brief Set the implementation of ObjCCategoryDecl.
1094void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1095                           ObjCCategoryImplDecl *ImplD) {
1096  assert(CatD && ImplD && "Passed null params");
1097  ObjCImpls[CatD] = ImplD;
1098}
1099
1100/// \brief Get the copy initialization expression of VarDecl,or NULL if
1101/// none exists.
1102Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1103  assert(VD && "Passed null params");
1104  assert(VD->hasAttr<BlocksAttr>() &&
1105         "getBlockVarCopyInits - not __block var");
1106  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1107    I = BlockVarCopyInits.find(VD);
1108  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1109}
1110
1111/// \brief Set the copy inialization expression of a block var decl.
1112void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1113  assert(VD && Init && "Passed null params");
1114  assert(VD->hasAttr<BlocksAttr>() &&
1115         "setBlockVarCopyInits - not __block var");
1116  BlockVarCopyInits[VD] = Init;
1117}
1118
1119/// \brief Allocate an uninitialized TypeSourceInfo.
1120///
1121/// The caller should initialize the memory held by TypeSourceInfo using
1122/// the TypeLoc wrappers.
1123///
1124/// \param T the type that will be the basis for type source info. This type
1125/// should refer to how the declarator was written in source code, not to
1126/// what type semantic analysis resolved the declarator to.
1127TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1128                                                 unsigned DataSize) const {
1129  if (!DataSize)
1130    DataSize = TypeLoc::getFullDataSizeForType(T);
1131  else
1132    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1133           "incorrect data size provided to CreateTypeSourceInfo!");
1134
1135  TypeSourceInfo *TInfo =
1136    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1137  new (TInfo) TypeSourceInfo(T);
1138  return TInfo;
1139}
1140
1141TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1142                                                     SourceLocation L) const {
1143  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1144  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1145  return DI;
1146}
1147
1148const ASTRecordLayout &
1149ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1150  return getObjCLayout(D, 0);
1151}
1152
1153const ASTRecordLayout &
1154ASTContext::getASTObjCImplementationLayout(
1155                                        const ObjCImplementationDecl *D) const {
1156  return getObjCLayout(D->getClassInterface(), D);
1157}
1158
1159//===----------------------------------------------------------------------===//
1160//                   Type creation/memoization methods
1161//===----------------------------------------------------------------------===//
1162
1163QualType
1164ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1165  unsigned fastQuals = quals.getFastQualifiers();
1166  quals.removeFastQualifiers();
1167
1168  // Check if we've already instantiated this type.
1169  llvm::FoldingSetNodeID ID;
1170  ExtQuals::Profile(ID, baseType, quals);
1171  void *insertPos = 0;
1172  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1173    assert(eq->getQualifiers() == quals);
1174    return QualType(eq, fastQuals);
1175  }
1176
1177  // If the base type is not canonical, make the appropriate canonical type.
1178  QualType canon;
1179  if (!baseType->isCanonicalUnqualified()) {
1180    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1181    canonSplit.second.addConsistentQualifiers(quals);
1182    canon = getExtQualType(canonSplit.first, canonSplit.second);
1183
1184    // Re-find the insert position.
1185    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1186  }
1187
1188  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1189  ExtQualNodes.InsertNode(eq, insertPos);
1190  return QualType(eq, fastQuals);
1191}
1192
1193QualType
1194ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1195  QualType CanT = getCanonicalType(T);
1196  if (CanT.getAddressSpace() == AddressSpace)
1197    return T;
1198
1199  // If we are composing extended qualifiers together, merge together
1200  // into one ExtQuals node.
1201  QualifierCollector Quals;
1202  const Type *TypeNode = Quals.strip(T);
1203
1204  // If this type already has an address space specified, it cannot get
1205  // another one.
1206  assert(!Quals.hasAddressSpace() &&
1207         "Type cannot be in multiple addr spaces!");
1208  Quals.addAddressSpace(AddressSpace);
1209
1210  return getExtQualType(TypeNode, Quals);
1211}
1212
1213QualType ASTContext::getObjCGCQualType(QualType T,
1214                                       Qualifiers::GC GCAttr) const {
1215  QualType CanT = getCanonicalType(T);
1216  if (CanT.getObjCGCAttr() == GCAttr)
1217    return T;
1218
1219  if (const PointerType *ptr = T->getAs<PointerType>()) {
1220    QualType Pointee = ptr->getPointeeType();
1221    if (Pointee->isAnyPointerType()) {
1222      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1223      return getPointerType(ResultType);
1224    }
1225  }
1226
1227  // If we are composing extended qualifiers together, merge together
1228  // into one ExtQuals node.
1229  QualifierCollector Quals;
1230  const Type *TypeNode = Quals.strip(T);
1231
1232  // If this type already has an ObjCGC specified, it cannot get
1233  // another one.
1234  assert(!Quals.hasObjCGCAttr() &&
1235         "Type cannot have multiple ObjCGCs!");
1236  Quals.addObjCGCAttr(GCAttr);
1237
1238  return getExtQualType(TypeNode, Quals);
1239}
1240
1241const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1242                                                   FunctionType::ExtInfo Info) {
1243  if (T->getExtInfo() == Info)
1244    return T;
1245
1246  QualType Result;
1247  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1248    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1249  } else {
1250    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1251    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1252    EPI.ExtInfo = Info;
1253    Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1254                             FPT->getNumArgs(), EPI);
1255  }
1256
1257  return cast<FunctionType>(Result.getTypePtr());
1258}
1259
1260/// getComplexType - Return the uniqued reference to the type for a complex
1261/// number with the specified element type.
1262QualType ASTContext::getComplexType(QualType T) const {
1263  // Unique pointers, to guarantee there is only one pointer of a particular
1264  // structure.
1265  llvm::FoldingSetNodeID ID;
1266  ComplexType::Profile(ID, T);
1267
1268  void *InsertPos = 0;
1269  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1270    return QualType(CT, 0);
1271
1272  // If the pointee type isn't canonical, this won't be a canonical type either,
1273  // so fill in the canonical type field.
1274  QualType Canonical;
1275  if (!T.isCanonical()) {
1276    Canonical = getComplexType(getCanonicalType(T));
1277
1278    // Get the new insert position for the node we care about.
1279    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1280    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1281  }
1282  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1283  Types.push_back(New);
1284  ComplexTypes.InsertNode(New, InsertPos);
1285  return QualType(New, 0);
1286}
1287
1288/// getPointerType - Return the uniqued reference to the type for a pointer to
1289/// the specified type.
1290QualType ASTContext::getPointerType(QualType T) const {
1291  // Unique pointers, to guarantee there is only one pointer of a particular
1292  // structure.
1293  llvm::FoldingSetNodeID ID;
1294  PointerType::Profile(ID, T);
1295
1296  void *InsertPos = 0;
1297  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1298    return QualType(PT, 0);
1299
1300  // If the pointee type isn't canonical, this won't be a canonical type either,
1301  // so fill in the canonical type field.
1302  QualType Canonical;
1303  if (!T.isCanonical()) {
1304    Canonical = getPointerType(getCanonicalType(T));
1305
1306    // Get the new insert position for the node we care about.
1307    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1308    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1309  }
1310  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1311  Types.push_back(New);
1312  PointerTypes.InsertNode(New, InsertPos);
1313  return QualType(New, 0);
1314}
1315
1316/// getBlockPointerType - Return the uniqued reference to the type for
1317/// a pointer to the specified block.
1318QualType ASTContext::getBlockPointerType(QualType T) const {
1319  assert(T->isFunctionType() && "block of function types only");
1320  // Unique pointers, to guarantee there is only one block of a particular
1321  // structure.
1322  llvm::FoldingSetNodeID ID;
1323  BlockPointerType::Profile(ID, T);
1324
1325  void *InsertPos = 0;
1326  if (BlockPointerType *PT =
1327        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1328    return QualType(PT, 0);
1329
1330  // If the block pointee type isn't canonical, this won't be a canonical
1331  // type either so fill in the canonical type field.
1332  QualType Canonical;
1333  if (!T.isCanonical()) {
1334    Canonical = getBlockPointerType(getCanonicalType(T));
1335
1336    // Get the new insert position for the node we care about.
1337    BlockPointerType *NewIP =
1338      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1339    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1340  }
1341  BlockPointerType *New
1342    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1343  Types.push_back(New);
1344  BlockPointerTypes.InsertNode(New, InsertPos);
1345  return QualType(New, 0);
1346}
1347
1348/// getLValueReferenceType - Return the uniqued reference to the type for an
1349/// lvalue reference to the specified type.
1350QualType
1351ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
1352  // Unique pointers, to guarantee there is only one pointer of a particular
1353  // structure.
1354  llvm::FoldingSetNodeID ID;
1355  ReferenceType::Profile(ID, T, SpelledAsLValue);
1356
1357  void *InsertPos = 0;
1358  if (LValueReferenceType *RT =
1359        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1360    return QualType(RT, 0);
1361
1362  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1363
1364  // If the referencee type isn't canonical, this won't be a canonical type
1365  // either, so fill in the canonical type field.
1366  QualType Canonical;
1367  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1368    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1369    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1370
1371    // Get the new insert position for the node we care about.
1372    LValueReferenceType *NewIP =
1373      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1374    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1375  }
1376
1377  LValueReferenceType *New
1378    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1379                                                     SpelledAsLValue);
1380  Types.push_back(New);
1381  LValueReferenceTypes.InsertNode(New, InsertPos);
1382
1383  return QualType(New, 0);
1384}
1385
1386/// getRValueReferenceType - Return the uniqued reference to the type for an
1387/// rvalue reference to the specified type.
1388QualType ASTContext::getRValueReferenceType(QualType T) const {
1389  // Unique pointers, to guarantee there is only one pointer of a particular
1390  // structure.
1391  llvm::FoldingSetNodeID ID;
1392  ReferenceType::Profile(ID, T, false);
1393
1394  void *InsertPos = 0;
1395  if (RValueReferenceType *RT =
1396        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1397    return QualType(RT, 0);
1398
1399  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1400
1401  // If the referencee type isn't canonical, this won't be a canonical type
1402  // either, so fill in the canonical type field.
1403  QualType Canonical;
1404  if (InnerRef || !T.isCanonical()) {
1405    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1406    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1407
1408    // Get the new insert position for the node we care about.
1409    RValueReferenceType *NewIP =
1410      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1411    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1412  }
1413
1414  RValueReferenceType *New
1415    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1416  Types.push_back(New);
1417  RValueReferenceTypes.InsertNode(New, InsertPos);
1418  return QualType(New, 0);
1419}
1420
1421/// getMemberPointerType - Return the uniqued reference to the type for a
1422/// member pointer to the specified type, in the specified class.
1423QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
1424  // Unique pointers, to guarantee there is only one pointer of a particular
1425  // structure.
1426  llvm::FoldingSetNodeID ID;
1427  MemberPointerType::Profile(ID, T, Cls);
1428
1429  void *InsertPos = 0;
1430  if (MemberPointerType *PT =
1431      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1432    return QualType(PT, 0);
1433
1434  // If the pointee or class type isn't canonical, this won't be a canonical
1435  // type either, so fill in the canonical type field.
1436  QualType Canonical;
1437  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1438    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1439
1440    // Get the new insert position for the node we care about.
1441    MemberPointerType *NewIP =
1442      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1443    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1444  }
1445  MemberPointerType *New
1446    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1447  Types.push_back(New);
1448  MemberPointerTypes.InsertNode(New, InsertPos);
1449  return QualType(New, 0);
1450}
1451
1452/// getConstantArrayType - Return the unique reference to the type for an
1453/// array of the specified element type.
1454QualType ASTContext::getConstantArrayType(QualType EltTy,
1455                                          const llvm::APInt &ArySizeIn,
1456                                          ArrayType::ArraySizeModifier ASM,
1457                                          unsigned IndexTypeQuals) const {
1458  assert((EltTy->isDependentType() ||
1459          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1460         "Constant array of VLAs is illegal!");
1461
1462  // Convert the array size into a canonical width matching the pointer size for
1463  // the target.
1464  llvm::APInt ArySize(ArySizeIn);
1465  ArySize =
1466    ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1467
1468  llvm::FoldingSetNodeID ID;
1469  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
1470
1471  void *InsertPos = 0;
1472  if (ConstantArrayType *ATP =
1473      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1474    return QualType(ATP, 0);
1475
1476  // If the element type isn't canonical or has qualifiers, this won't
1477  // be a canonical type either, so fill in the canonical type field.
1478  QualType Canon;
1479  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1480    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1481    Canon = getConstantArrayType(QualType(canonSplit.first, 0), ArySize,
1482                                 ASM, IndexTypeQuals);
1483    Canon = getQualifiedType(Canon, canonSplit.second);
1484
1485    // Get the new insert position for the node we care about.
1486    ConstantArrayType *NewIP =
1487      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1488    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1489  }
1490
1491  ConstantArrayType *New = new(*this,TypeAlignment)
1492    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
1493  ConstantArrayTypes.InsertNode(New, InsertPos);
1494  Types.push_back(New);
1495  return QualType(New, 0);
1496}
1497
1498/// getVariableArrayDecayedType - Turns the given type, which may be
1499/// variably-modified, into the corresponding type with all the known
1500/// sizes replaced with [*].
1501QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
1502  // Vastly most common case.
1503  if (!type->isVariablyModifiedType()) return type;
1504
1505  QualType result;
1506
1507  SplitQualType split = type.getSplitDesugaredType();
1508  const Type *ty = split.first;
1509  switch (ty->getTypeClass()) {
1510#define TYPE(Class, Base)
1511#define ABSTRACT_TYPE(Class, Base)
1512#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1513#include "clang/AST/TypeNodes.def"
1514    llvm_unreachable("didn't desugar past all non-canonical types?");
1515
1516  // These types should never be variably-modified.
1517  case Type::Builtin:
1518  case Type::Complex:
1519  case Type::Vector:
1520  case Type::ExtVector:
1521  case Type::DependentSizedExtVector:
1522  case Type::ObjCObject:
1523  case Type::ObjCInterface:
1524  case Type::ObjCObjectPointer:
1525  case Type::Record:
1526  case Type::Enum:
1527  case Type::UnresolvedUsing:
1528  case Type::TypeOfExpr:
1529  case Type::TypeOf:
1530  case Type::Decltype:
1531  case Type::DependentName:
1532  case Type::InjectedClassName:
1533  case Type::TemplateSpecialization:
1534  case Type::DependentTemplateSpecialization:
1535  case Type::TemplateTypeParm:
1536  case Type::SubstTemplateTypeParmPack:
1537  case Type::Auto:
1538  case Type::PackExpansion:
1539    llvm_unreachable("type should never be variably-modified");
1540
1541  // These types can be variably-modified but should never need to
1542  // further decay.
1543  case Type::FunctionNoProto:
1544  case Type::FunctionProto:
1545  case Type::BlockPointer:
1546  case Type::MemberPointer:
1547    return type;
1548
1549  // These types can be variably-modified.  All these modifications
1550  // preserve structure except as noted by comments.
1551  // TODO: if we ever care about optimizing VLAs, there are no-op
1552  // optimizations available here.
1553  case Type::Pointer:
1554    result = getPointerType(getVariableArrayDecayedType(
1555                              cast<PointerType>(ty)->getPointeeType()));
1556    break;
1557
1558  case Type::LValueReference: {
1559    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
1560    result = getLValueReferenceType(
1561                 getVariableArrayDecayedType(lv->getPointeeType()),
1562                                    lv->isSpelledAsLValue());
1563    break;
1564  }
1565
1566  case Type::RValueReference: {
1567    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
1568    result = getRValueReferenceType(
1569                 getVariableArrayDecayedType(lv->getPointeeType()));
1570    break;
1571  }
1572
1573  case Type::ConstantArray: {
1574    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
1575    result = getConstantArrayType(
1576                 getVariableArrayDecayedType(cat->getElementType()),
1577                                  cat->getSize(),
1578                                  cat->getSizeModifier(),
1579                                  cat->getIndexTypeCVRQualifiers());
1580    break;
1581  }
1582
1583  case Type::DependentSizedArray: {
1584    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
1585    result = getDependentSizedArrayType(
1586                 getVariableArrayDecayedType(dat->getElementType()),
1587                                        dat->getSizeExpr(),
1588                                        dat->getSizeModifier(),
1589                                        dat->getIndexTypeCVRQualifiers(),
1590                                        dat->getBracketsRange());
1591    break;
1592  }
1593
1594  // Turn incomplete types into [*] types.
1595  case Type::IncompleteArray: {
1596    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
1597    result = getVariableArrayType(
1598                 getVariableArrayDecayedType(iat->getElementType()),
1599                                  /*size*/ 0,
1600                                  ArrayType::Normal,
1601                                  iat->getIndexTypeCVRQualifiers(),
1602                                  SourceRange());
1603    break;
1604  }
1605
1606  // Turn VLA types into [*] types.
1607  case Type::VariableArray: {
1608    const VariableArrayType *vat = cast<VariableArrayType>(ty);
1609    result = getVariableArrayType(
1610                 getVariableArrayDecayedType(vat->getElementType()),
1611                                  /*size*/ 0,
1612                                  ArrayType::Star,
1613                                  vat->getIndexTypeCVRQualifiers(),
1614                                  vat->getBracketsRange());
1615    break;
1616  }
1617  }
1618
1619  // Apply the top-level qualifiers from the original.
1620  return getQualifiedType(result, split.second);
1621}
1622
1623/// getVariableArrayType - Returns a non-unique reference to the type for a
1624/// variable array of the specified element type.
1625QualType ASTContext::getVariableArrayType(QualType EltTy,
1626                                          Expr *NumElts,
1627                                          ArrayType::ArraySizeModifier ASM,
1628                                          unsigned IndexTypeQuals,
1629                                          SourceRange Brackets) const {
1630  // Since we don't unique expressions, it isn't possible to unique VLA's
1631  // that have an expression provided for their size.
1632  QualType Canon;
1633
1634  // Be sure to pull qualifiers off the element type.
1635  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1636    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1637    Canon = getVariableArrayType(QualType(canonSplit.first, 0), NumElts, ASM,
1638                                 IndexTypeQuals, Brackets);
1639    Canon = getQualifiedType(Canon, canonSplit.second);
1640  }
1641
1642  VariableArrayType *New = new(*this, TypeAlignment)
1643    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
1644
1645  VariableArrayTypes.push_back(New);
1646  Types.push_back(New);
1647  return QualType(New, 0);
1648}
1649
1650/// getDependentSizedArrayType - Returns a non-unique reference to
1651/// the type for a dependently-sized array of the specified element
1652/// type.
1653QualType ASTContext::getDependentSizedArrayType(QualType elementType,
1654                                                Expr *numElements,
1655                                                ArrayType::ArraySizeModifier ASM,
1656                                                unsigned elementTypeQuals,
1657                                                SourceRange brackets) const {
1658  assert((!numElements || numElements->isTypeDependent() ||
1659          numElements->isValueDependent()) &&
1660         "Size must be type- or value-dependent!");
1661
1662  // Dependently-sized array types that do not have a specified number
1663  // of elements will have their sizes deduced from a dependent
1664  // initializer.  We do no canonicalization here at all, which is okay
1665  // because they can't be used in most locations.
1666  if (!numElements) {
1667    DependentSizedArrayType *newType
1668      = new (*this, TypeAlignment)
1669          DependentSizedArrayType(*this, elementType, QualType(),
1670                                  numElements, ASM, elementTypeQuals,
1671                                  brackets);
1672    Types.push_back(newType);
1673    return QualType(newType, 0);
1674  }
1675
1676  // Otherwise, we actually build a new type every time, but we
1677  // also build a canonical type.
1678
1679  SplitQualType canonElementType = getCanonicalType(elementType).split();
1680
1681  void *insertPos = 0;
1682  llvm::FoldingSetNodeID ID;
1683  DependentSizedArrayType::Profile(ID, *this,
1684                                   QualType(canonElementType.first, 0),
1685                                   ASM, elementTypeQuals, numElements);
1686
1687  // Look for an existing type with these properties.
1688  DependentSizedArrayType *canonTy =
1689    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1690
1691  // If we don't have one, build one.
1692  if (!canonTy) {
1693    canonTy = new (*this, TypeAlignment)
1694      DependentSizedArrayType(*this, QualType(canonElementType.first, 0),
1695                              QualType(), numElements, ASM, elementTypeQuals,
1696                              brackets);
1697    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
1698    Types.push_back(canonTy);
1699  }
1700
1701  // Apply qualifiers from the element type to the array.
1702  QualType canon = getQualifiedType(QualType(canonTy,0),
1703                                    canonElementType.second);
1704
1705  // If we didn't need extra canonicalization for the element type,
1706  // then just use that as our result.
1707  if (QualType(canonElementType.first, 0) == elementType)
1708    return canon;
1709
1710  // Otherwise, we need to build a type which follows the spelling
1711  // of the element type.
1712  DependentSizedArrayType *sugaredType
1713    = new (*this, TypeAlignment)
1714        DependentSizedArrayType(*this, elementType, canon, numElements,
1715                                ASM, elementTypeQuals, brackets);
1716  Types.push_back(sugaredType);
1717  return QualType(sugaredType, 0);
1718}
1719
1720QualType ASTContext::getIncompleteArrayType(QualType elementType,
1721                                            ArrayType::ArraySizeModifier ASM,
1722                                            unsigned elementTypeQuals) const {
1723  llvm::FoldingSetNodeID ID;
1724  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
1725
1726  void *insertPos = 0;
1727  if (IncompleteArrayType *iat =
1728       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
1729    return QualType(iat, 0);
1730
1731  // If the element type isn't canonical, this won't be a canonical type
1732  // either, so fill in the canonical type field.  We also have to pull
1733  // qualifiers off the element type.
1734  QualType canon;
1735
1736  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
1737    SplitQualType canonSplit = getCanonicalType(elementType).split();
1738    canon = getIncompleteArrayType(QualType(canonSplit.first, 0),
1739                                   ASM, elementTypeQuals);
1740    canon = getQualifiedType(canon, canonSplit.second);
1741
1742    // Get the new insert position for the node we care about.
1743    IncompleteArrayType *existing =
1744      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1745    assert(!existing && "Shouldn't be in the map!"); (void) existing;
1746  }
1747
1748  IncompleteArrayType *newType = new (*this, TypeAlignment)
1749    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
1750
1751  IncompleteArrayTypes.InsertNode(newType, insertPos);
1752  Types.push_back(newType);
1753  return QualType(newType, 0);
1754}
1755
1756/// getVectorType - Return the unique reference to a vector type of
1757/// the specified element type and size. VectorType must be a built-in type.
1758QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
1759                                   VectorType::VectorKind VecKind) const {
1760  assert(vecType->isBuiltinType());
1761
1762  // Check if we've already instantiated a vector of this type.
1763  llvm::FoldingSetNodeID ID;
1764  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
1765
1766  void *InsertPos = 0;
1767  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1768    return QualType(VTP, 0);
1769
1770  // If the element type isn't canonical, this won't be a canonical type either,
1771  // so fill in the canonical type field.
1772  QualType Canonical;
1773  if (!vecType.isCanonical()) {
1774    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
1775
1776    // Get the new insert position for the node we care about.
1777    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1778    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1779  }
1780  VectorType *New = new (*this, TypeAlignment)
1781    VectorType(vecType, NumElts, Canonical, VecKind);
1782  VectorTypes.InsertNode(New, InsertPos);
1783  Types.push_back(New);
1784  return QualType(New, 0);
1785}
1786
1787/// getExtVectorType - Return the unique reference to an extended vector type of
1788/// the specified element type and size. VectorType must be a built-in type.
1789QualType
1790ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
1791  assert(vecType->isBuiltinType());
1792
1793  // Check if we've already instantiated a vector of this type.
1794  llvm::FoldingSetNodeID ID;
1795  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
1796                      VectorType::GenericVector);
1797  void *InsertPos = 0;
1798  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1799    return QualType(VTP, 0);
1800
1801  // If the element type isn't canonical, this won't be a canonical type either,
1802  // so fill in the canonical type field.
1803  QualType Canonical;
1804  if (!vecType.isCanonical()) {
1805    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1806
1807    // Get the new insert position for the node we care about.
1808    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1809    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1810  }
1811  ExtVectorType *New = new (*this, TypeAlignment)
1812    ExtVectorType(vecType, NumElts, Canonical);
1813  VectorTypes.InsertNode(New, InsertPos);
1814  Types.push_back(New);
1815  return QualType(New, 0);
1816}
1817
1818QualType
1819ASTContext::getDependentSizedExtVectorType(QualType vecType,
1820                                           Expr *SizeExpr,
1821                                           SourceLocation AttrLoc) const {
1822  llvm::FoldingSetNodeID ID;
1823  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1824                                       SizeExpr);
1825
1826  void *InsertPos = 0;
1827  DependentSizedExtVectorType *Canon
1828    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1829  DependentSizedExtVectorType *New;
1830  if (Canon) {
1831    // We already have a canonical version of this array type; use it as
1832    // the canonical type for a newly-built type.
1833    New = new (*this, TypeAlignment)
1834      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
1835                                  SizeExpr, AttrLoc);
1836  } else {
1837    QualType CanonVecTy = getCanonicalType(vecType);
1838    if (CanonVecTy == vecType) {
1839      New = new (*this, TypeAlignment)
1840        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
1841                                    AttrLoc);
1842
1843      DependentSizedExtVectorType *CanonCheck
1844        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1845      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
1846      (void)CanonCheck;
1847      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1848    } else {
1849      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1850                                                      SourceLocation());
1851      New = new (*this, TypeAlignment)
1852        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
1853    }
1854  }
1855
1856  Types.push_back(New);
1857  return QualType(New, 0);
1858}
1859
1860/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1861///
1862QualType
1863ASTContext::getFunctionNoProtoType(QualType ResultTy,
1864                                   const FunctionType::ExtInfo &Info) const {
1865  const CallingConv CallConv = Info.getCC();
1866  // Unique functions, to guarantee there is only one function of a particular
1867  // structure.
1868  llvm::FoldingSetNodeID ID;
1869  FunctionNoProtoType::Profile(ID, ResultTy, Info);
1870
1871  void *InsertPos = 0;
1872  if (FunctionNoProtoType *FT =
1873        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1874    return QualType(FT, 0);
1875
1876  QualType Canonical;
1877  if (!ResultTy.isCanonical() ||
1878      getCanonicalCallConv(CallConv) != CallConv) {
1879    Canonical =
1880      getFunctionNoProtoType(getCanonicalType(ResultTy),
1881                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
1882
1883    // Get the new insert position for the node we care about.
1884    FunctionNoProtoType *NewIP =
1885      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1886    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1887  }
1888
1889  FunctionNoProtoType *New = new (*this, TypeAlignment)
1890    FunctionNoProtoType(ResultTy, Canonical, Info);
1891  Types.push_back(New);
1892  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1893  return QualType(New, 0);
1894}
1895
1896/// getFunctionType - Return a normal function type with a typed argument
1897/// list.  isVariadic indicates whether the argument list includes '...'.
1898QualType
1899ASTContext::getFunctionType(QualType ResultTy,
1900                            const QualType *ArgArray, unsigned NumArgs,
1901                            const FunctionProtoType::ExtProtoInfo &EPI) const {
1902  // Unique functions, to guarantee there is only one function of a particular
1903  // structure.
1904  llvm::FoldingSetNodeID ID;
1905  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI);
1906
1907  void *InsertPos = 0;
1908  if (FunctionProtoType *FTP =
1909        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1910    return QualType(FTP, 0);
1911
1912  // Determine whether the type being created is already canonical or not.
1913  bool isCanonical = !EPI.HasExceptionSpec && ResultTy.isCanonical();
1914  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1915    if (!ArgArray[i].isCanonicalAsParam())
1916      isCanonical = false;
1917
1918  const CallingConv CallConv = EPI.ExtInfo.getCC();
1919
1920  // If this type isn't canonical, get the canonical version of it.
1921  // The exception spec is not part of the canonical type.
1922  QualType Canonical;
1923  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
1924    llvm::SmallVector<QualType, 16> CanonicalArgs;
1925    CanonicalArgs.reserve(NumArgs);
1926    for (unsigned i = 0; i != NumArgs; ++i)
1927      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
1928
1929    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
1930    if (CanonicalEPI.HasExceptionSpec) {
1931      CanonicalEPI.HasExceptionSpec = false;
1932      CanonicalEPI.HasAnyExceptionSpec = false;
1933      CanonicalEPI.NumExceptions = 0;
1934    }
1935    CanonicalEPI.ExtInfo
1936      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
1937
1938    Canonical = getFunctionType(getCanonicalType(ResultTy),
1939                                CanonicalArgs.data(), NumArgs,
1940                                CanonicalEPI);
1941
1942    // Get the new insert position for the node we care about.
1943    FunctionProtoType *NewIP =
1944      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1945    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1946  }
1947
1948  // FunctionProtoType objects are allocated with extra bytes after them
1949  // for two variable size arrays (for parameter and exception types) at the
1950  // end of them.
1951  size_t Size = sizeof(FunctionProtoType) +
1952                NumArgs * sizeof(QualType) +
1953                EPI.NumExceptions * sizeof(QualType);
1954  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
1955  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, EPI);
1956  Types.push_back(FTP);
1957  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1958  return QualType(FTP, 0);
1959}
1960
1961#ifndef NDEBUG
1962static bool NeedsInjectedClassNameType(const RecordDecl *D) {
1963  if (!isa<CXXRecordDecl>(D)) return false;
1964  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
1965  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
1966    return true;
1967  if (RD->getDescribedClassTemplate() &&
1968      !isa<ClassTemplateSpecializationDecl>(RD))
1969    return true;
1970  return false;
1971}
1972#endif
1973
1974/// getInjectedClassNameType - Return the unique reference to the
1975/// injected class name type for the specified templated declaration.
1976QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
1977                                              QualType TST) const {
1978  assert(NeedsInjectedClassNameType(Decl));
1979  if (Decl->TypeForDecl) {
1980    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
1981  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDeclaration()) {
1982    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
1983    Decl->TypeForDecl = PrevDecl->TypeForDecl;
1984    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
1985  } else {
1986    Type *newType =
1987      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
1988    Decl->TypeForDecl = newType;
1989    Types.push_back(newType);
1990  }
1991  return QualType(Decl->TypeForDecl, 0);
1992}
1993
1994/// getTypeDeclType - Return the unique reference to the type for the
1995/// specified type declaration.
1996QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
1997  assert(Decl && "Passed null for Decl param");
1998  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
1999
2000  if (const TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
2001    return getTypedefType(Typedef);
2002
2003  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2004         "Template type parameter types are always available.");
2005
2006  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2007    assert(!Record->getPreviousDeclaration() &&
2008           "struct/union has previous declaration");
2009    assert(!NeedsInjectedClassNameType(Record));
2010    return getRecordType(Record);
2011  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2012    assert(!Enum->getPreviousDeclaration() &&
2013           "enum has previous declaration");
2014    return getEnumType(Enum);
2015  } else if (const UnresolvedUsingTypenameDecl *Using =
2016               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2017    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2018    Decl->TypeForDecl = newType;
2019    Types.push_back(newType);
2020  } else
2021    llvm_unreachable("TypeDecl without a type?");
2022
2023  return QualType(Decl->TypeForDecl, 0);
2024}
2025
2026/// getTypedefType - Return the unique reference to the type for the
2027/// specified typename decl.
2028QualType
2029ASTContext::getTypedefType(const TypedefDecl *Decl, QualType Canonical) const {
2030  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2031
2032  if (Canonical.isNull())
2033    Canonical = getCanonicalType(Decl->getUnderlyingType());
2034  TypedefType *newType = new(*this, TypeAlignment)
2035    TypedefType(Type::Typedef, Decl, Canonical);
2036  Decl->TypeForDecl = newType;
2037  Types.push_back(newType);
2038  return QualType(newType, 0);
2039}
2040
2041QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2042  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2043
2044  if (const RecordDecl *PrevDecl = Decl->getPreviousDeclaration())
2045    if (PrevDecl->TypeForDecl)
2046      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2047
2048  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2049  Decl->TypeForDecl = newType;
2050  Types.push_back(newType);
2051  return QualType(newType, 0);
2052}
2053
2054QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2055  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2056
2057  if (const EnumDecl *PrevDecl = Decl->getPreviousDeclaration())
2058    if (PrevDecl->TypeForDecl)
2059      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2060
2061  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2062  Decl->TypeForDecl = newType;
2063  Types.push_back(newType);
2064  return QualType(newType, 0);
2065}
2066
2067QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2068                                       QualType modifiedType,
2069                                       QualType equivalentType) {
2070  llvm::FoldingSetNodeID id;
2071  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2072
2073  void *insertPos = 0;
2074  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2075  if (type) return QualType(type, 0);
2076
2077  QualType canon = getCanonicalType(equivalentType);
2078  type = new (*this, TypeAlignment)
2079           AttributedType(canon, attrKind, modifiedType, equivalentType);
2080
2081  Types.push_back(type);
2082  AttributedTypes.InsertNode(type, insertPos);
2083
2084  return QualType(type, 0);
2085}
2086
2087
2088/// \brief Retrieve a substitution-result type.
2089QualType
2090ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2091                                         QualType Replacement) const {
2092  assert(Replacement.isCanonical()
2093         && "replacement types must always be canonical");
2094
2095  llvm::FoldingSetNodeID ID;
2096  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2097  void *InsertPos = 0;
2098  SubstTemplateTypeParmType *SubstParm
2099    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2100
2101  if (!SubstParm) {
2102    SubstParm = new (*this, TypeAlignment)
2103      SubstTemplateTypeParmType(Parm, Replacement);
2104    Types.push_back(SubstParm);
2105    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2106  }
2107
2108  return QualType(SubstParm, 0);
2109}
2110
2111/// \brief Retrieve a
2112QualType ASTContext::getSubstTemplateTypeParmPackType(
2113                                          const TemplateTypeParmType *Parm,
2114                                              const TemplateArgument &ArgPack) {
2115#ifndef NDEBUG
2116  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2117                                    PEnd = ArgPack.pack_end();
2118       P != PEnd; ++P) {
2119    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2120    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2121  }
2122#endif
2123
2124  llvm::FoldingSetNodeID ID;
2125  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2126  void *InsertPos = 0;
2127  if (SubstTemplateTypeParmPackType *SubstParm
2128        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2129    return QualType(SubstParm, 0);
2130
2131  QualType Canon;
2132  if (!Parm->isCanonicalUnqualified()) {
2133    Canon = getCanonicalType(QualType(Parm, 0));
2134    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2135                                             ArgPack);
2136    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2137  }
2138
2139  SubstTemplateTypeParmPackType *SubstParm
2140    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2141                                                               ArgPack);
2142  Types.push_back(SubstParm);
2143  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2144  return QualType(SubstParm, 0);
2145}
2146
2147/// \brief Retrieve the template type parameter type for a template
2148/// parameter or parameter pack with the given depth, index, and (optionally)
2149/// name.
2150QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2151                                             bool ParameterPack,
2152                                             IdentifierInfo *Name) const {
2153  llvm::FoldingSetNodeID ID;
2154  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
2155  void *InsertPos = 0;
2156  TemplateTypeParmType *TypeParm
2157    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2158
2159  if (TypeParm)
2160    return QualType(TypeParm, 0);
2161
2162  if (Name) {
2163    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2164    TypeParm = new (*this, TypeAlignment)
2165      TemplateTypeParmType(Depth, Index, ParameterPack, Name, Canon);
2166
2167    TemplateTypeParmType *TypeCheck
2168      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2169    assert(!TypeCheck && "Template type parameter canonical type broken");
2170    (void)TypeCheck;
2171  } else
2172    TypeParm = new (*this, TypeAlignment)
2173      TemplateTypeParmType(Depth, Index, ParameterPack);
2174
2175  Types.push_back(TypeParm);
2176  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2177
2178  return QualType(TypeParm, 0);
2179}
2180
2181TypeSourceInfo *
2182ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2183                                              SourceLocation NameLoc,
2184                                        const TemplateArgumentListInfo &Args,
2185                                              QualType CanonType) const {
2186  QualType TST = getTemplateSpecializationType(Name, Args, CanonType);
2187
2188  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2189  TemplateSpecializationTypeLoc TL
2190    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
2191  TL.setTemplateNameLoc(NameLoc);
2192  TL.setLAngleLoc(Args.getLAngleLoc());
2193  TL.setRAngleLoc(Args.getRAngleLoc());
2194  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2195    TL.setArgLocInfo(i, Args[i].getLocInfo());
2196  return DI;
2197}
2198
2199QualType
2200ASTContext::getTemplateSpecializationType(TemplateName Template,
2201                                          const TemplateArgumentListInfo &Args,
2202                                          QualType Canon) const {
2203  unsigned NumArgs = Args.size();
2204
2205  llvm::SmallVector<TemplateArgument, 4> ArgVec;
2206  ArgVec.reserve(NumArgs);
2207  for (unsigned i = 0; i != NumArgs; ++i)
2208    ArgVec.push_back(Args[i].getArgument());
2209
2210  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2211                                       Canon);
2212}
2213
2214QualType
2215ASTContext::getTemplateSpecializationType(TemplateName Template,
2216                                          const TemplateArgument *Args,
2217                                          unsigned NumArgs,
2218                                          QualType Canon) const {
2219  if (!Canon.isNull())
2220    Canon = getCanonicalType(Canon);
2221  else
2222    Canon = getCanonicalTemplateSpecializationType(Template, Args, NumArgs);
2223
2224  // Allocate the (non-canonical) template specialization type, but don't
2225  // try to unique it: these types typically have location information that
2226  // we don't unique and don't want to lose.
2227  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2228                        sizeof(TemplateArgument) * NumArgs),
2229                       TypeAlignment);
2230  TemplateSpecializationType *Spec
2231    = new (Mem) TemplateSpecializationType(Template,
2232                                           Args, NumArgs,
2233                                           Canon);
2234
2235  Types.push_back(Spec);
2236  return QualType(Spec, 0);
2237}
2238
2239QualType
2240ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
2241                                                   const TemplateArgument *Args,
2242                                                   unsigned NumArgs) const {
2243  // Build the canonical template specialization type.
2244  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
2245  llvm::SmallVector<TemplateArgument, 4> CanonArgs;
2246  CanonArgs.reserve(NumArgs);
2247  for (unsigned I = 0; I != NumArgs; ++I)
2248    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
2249
2250  // Determine whether this canonical template specialization type already
2251  // exists.
2252  llvm::FoldingSetNodeID ID;
2253  TemplateSpecializationType::Profile(ID, CanonTemplate,
2254                                      CanonArgs.data(), NumArgs, *this);
2255
2256  void *InsertPos = 0;
2257  TemplateSpecializationType *Spec
2258    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2259
2260  if (!Spec) {
2261    // Allocate a new canonical template specialization type.
2262    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2263                          sizeof(TemplateArgument) * NumArgs),
2264                         TypeAlignment);
2265    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
2266                                                CanonArgs.data(), NumArgs,
2267                                                QualType());
2268    Types.push_back(Spec);
2269    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
2270  }
2271
2272  assert(Spec->isDependentType() &&
2273         "Non-dependent template-id type must have a canonical type");
2274  return QualType(Spec, 0);
2275}
2276
2277QualType
2278ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
2279                              NestedNameSpecifier *NNS,
2280                              QualType NamedType) const {
2281  llvm::FoldingSetNodeID ID;
2282  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
2283
2284  void *InsertPos = 0;
2285  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2286  if (T)
2287    return QualType(T, 0);
2288
2289  QualType Canon = NamedType;
2290  if (!Canon.isCanonical()) {
2291    Canon = getCanonicalType(NamedType);
2292    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2293    assert(!CheckT && "Elaborated canonical type broken");
2294    (void)CheckT;
2295  }
2296
2297  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
2298  Types.push_back(T);
2299  ElaboratedTypes.InsertNode(T, InsertPos);
2300  return QualType(T, 0);
2301}
2302
2303QualType
2304ASTContext::getParenType(QualType InnerType) const {
2305  llvm::FoldingSetNodeID ID;
2306  ParenType::Profile(ID, InnerType);
2307
2308  void *InsertPos = 0;
2309  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2310  if (T)
2311    return QualType(T, 0);
2312
2313  QualType Canon = InnerType;
2314  if (!Canon.isCanonical()) {
2315    Canon = getCanonicalType(InnerType);
2316    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2317    assert(!CheckT && "Paren canonical type broken");
2318    (void)CheckT;
2319  }
2320
2321  T = new (*this) ParenType(InnerType, Canon);
2322  Types.push_back(T);
2323  ParenTypes.InsertNode(T, InsertPos);
2324  return QualType(T, 0);
2325}
2326
2327QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
2328                                          NestedNameSpecifier *NNS,
2329                                          const IdentifierInfo *Name,
2330                                          QualType Canon) const {
2331  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2332
2333  if (Canon.isNull()) {
2334    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2335    ElaboratedTypeKeyword CanonKeyword = Keyword;
2336    if (Keyword == ETK_None)
2337      CanonKeyword = ETK_Typename;
2338
2339    if (CanonNNS != NNS || CanonKeyword != Keyword)
2340      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
2341  }
2342
2343  llvm::FoldingSetNodeID ID;
2344  DependentNameType::Profile(ID, Keyword, NNS, Name);
2345
2346  void *InsertPos = 0;
2347  DependentNameType *T
2348    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2349  if (T)
2350    return QualType(T, 0);
2351
2352  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
2353  Types.push_back(T);
2354  DependentNameTypes.InsertNode(T, InsertPos);
2355  return QualType(T, 0);
2356}
2357
2358QualType
2359ASTContext::getDependentTemplateSpecializationType(
2360                                 ElaboratedTypeKeyword Keyword,
2361                                 NestedNameSpecifier *NNS,
2362                                 const IdentifierInfo *Name,
2363                                 const TemplateArgumentListInfo &Args) const {
2364  // TODO: avoid this copy
2365  llvm::SmallVector<TemplateArgument, 16> ArgCopy;
2366  for (unsigned I = 0, E = Args.size(); I != E; ++I)
2367    ArgCopy.push_back(Args[I].getArgument());
2368  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
2369                                                ArgCopy.size(),
2370                                                ArgCopy.data());
2371}
2372
2373QualType
2374ASTContext::getDependentTemplateSpecializationType(
2375                                 ElaboratedTypeKeyword Keyword,
2376                                 NestedNameSpecifier *NNS,
2377                                 const IdentifierInfo *Name,
2378                                 unsigned NumArgs,
2379                                 const TemplateArgument *Args) const {
2380  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2381
2382  llvm::FoldingSetNodeID ID;
2383  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
2384                                               Name, NumArgs, Args);
2385
2386  void *InsertPos = 0;
2387  DependentTemplateSpecializationType *T
2388    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2389  if (T)
2390    return QualType(T, 0);
2391
2392  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2393
2394  ElaboratedTypeKeyword CanonKeyword = Keyword;
2395  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
2396
2397  bool AnyNonCanonArgs = false;
2398  llvm::SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
2399  for (unsigned I = 0; I != NumArgs; ++I) {
2400    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
2401    if (!CanonArgs[I].structurallyEquals(Args[I]))
2402      AnyNonCanonArgs = true;
2403  }
2404
2405  QualType Canon;
2406  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
2407    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
2408                                                   Name, NumArgs,
2409                                                   CanonArgs.data());
2410
2411    // Find the insert position again.
2412    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2413  }
2414
2415  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
2416                        sizeof(TemplateArgument) * NumArgs),
2417                       TypeAlignment);
2418  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
2419                                                    Name, NumArgs, Args, Canon);
2420  Types.push_back(T);
2421  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
2422  return QualType(T, 0);
2423}
2424
2425QualType ASTContext::getPackExpansionType(QualType Pattern,
2426                                      llvm::Optional<unsigned> NumExpansions) {
2427  llvm::FoldingSetNodeID ID;
2428  PackExpansionType::Profile(ID, Pattern, NumExpansions);
2429
2430  assert(Pattern->containsUnexpandedParameterPack() &&
2431         "Pack expansions must expand one or more parameter packs");
2432  void *InsertPos = 0;
2433  PackExpansionType *T
2434    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2435  if (T)
2436    return QualType(T, 0);
2437
2438  QualType Canon;
2439  if (!Pattern.isCanonical()) {
2440    Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
2441
2442    // Find the insert position again.
2443    PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2444  }
2445
2446  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
2447  Types.push_back(T);
2448  PackExpansionTypes.InsertNode(T, InsertPos);
2449  return QualType(T, 0);
2450}
2451
2452/// CmpProtocolNames - Comparison predicate for sorting protocols
2453/// alphabetically.
2454static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2455                            const ObjCProtocolDecl *RHS) {
2456  return LHS->getDeclName() < RHS->getDeclName();
2457}
2458
2459static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
2460                                unsigned NumProtocols) {
2461  if (NumProtocols == 0) return true;
2462
2463  for (unsigned i = 1; i != NumProtocols; ++i)
2464    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
2465      return false;
2466  return true;
2467}
2468
2469static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2470                                   unsigned &NumProtocols) {
2471  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2472
2473  // Sort protocols, keyed by name.
2474  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2475
2476  // Remove duplicates.
2477  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2478  NumProtocols = ProtocolsEnd-Protocols;
2479}
2480
2481QualType ASTContext::getObjCObjectType(QualType BaseType,
2482                                       ObjCProtocolDecl * const *Protocols,
2483                                       unsigned NumProtocols) const {
2484  // If the base type is an interface and there aren't any protocols
2485  // to add, then the interface type will do just fine.
2486  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
2487    return BaseType;
2488
2489  // Look in the folding set for an existing type.
2490  llvm::FoldingSetNodeID ID;
2491  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
2492  void *InsertPos = 0;
2493  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
2494    return QualType(QT, 0);
2495
2496  // Build the canonical type, which has the canonical base type and
2497  // a sorted-and-uniqued list of protocols.
2498  QualType Canonical;
2499  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
2500  if (!ProtocolsSorted || !BaseType.isCanonical()) {
2501    if (!ProtocolsSorted) {
2502      llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
2503                                                     Protocols + NumProtocols);
2504      unsigned UniqueCount = NumProtocols;
2505
2506      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2507      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2508                                    &Sorted[0], UniqueCount);
2509    } else {
2510      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2511                                    Protocols, NumProtocols);
2512    }
2513
2514    // Regenerate InsertPos.
2515    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
2516  }
2517
2518  unsigned Size = sizeof(ObjCObjectTypeImpl);
2519  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
2520  void *Mem = Allocate(Size, TypeAlignment);
2521  ObjCObjectTypeImpl *T =
2522    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
2523
2524  Types.push_back(T);
2525  ObjCObjectTypes.InsertNode(T, InsertPos);
2526  return QualType(T, 0);
2527}
2528
2529/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2530/// the given object type.
2531QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
2532  llvm::FoldingSetNodeID ID;
2533  ObjCObjectPointerType::Profile(ID, ObjectT);
2534
2535  void *InsertPos = 0;
2536  if (ObjCObjectPointerType *QT =
2537              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2538    return QualType(QT, 0);
2539
2540  // Find the canonical object type.
2541  QualType Canonical;
2542  if (!ObjectT.isCanonical()) {
2543    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
2544
2545    // Regenerate InsertPos.
2546    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2547  }
2548
2549  // No match.
2550  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
2551  ObjCObjectPointerType *QType =
2552    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
2553
2554  Types.push_back(QType);
2555  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2556  return QualType(QType, 0);
2557}
2558
2559/// getObjCInterfaceType - Return the unique reference to the type for the
2560/// specified ObjC interface decl. The list of protocols is optional.
2561QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl) const {
2562  if (Decl->TypeForDecl)
2563    return QualType(Decl->TypeForDecl, 0);
2564
2565  // FIXME: redeclarations?
2566  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
2567  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
2568  Decl->TypeForDecl = T;
2569  Types.push_back(T);
2570  return QualType(T, 0);
2571}
2572
2573/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2574/// TypeOfExprType AST's (since expression's are never shared). For example,
2575/// multiple declarations that refer to "typeof(x)" all contain different
2576/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2577/// on canonical type's (which are always unique).
2578QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
2579  TypeOfExprType *toe;
2580  if (tofExpr->isTypeDependent()) {
2581    llvm::FoldingSetNodeID ID;
2582    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2583
2584    void *InsertPos = 0;
2585    DependentTypeOfExprType *Canon
2586      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2587    if (Canon) {
2588      // We already have a "canonical" version of an identical, dependent
2589      // typeof(expr) type. Use that as our canonical type.
2590      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2591                                          QualType((TypeOfExprType*)Canon, 0));
2592    }
2593    else {
2594      // Build a new, canonical typeof(expr) type.
2595      Canon
2596        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2597      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2598      toe = Canon;
2599    }
2600  } else {
2601    QualType Canonical = getCanonicalType(tofExpr->getType());
2602    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2603  }
2604  Types.push_back(toe);
2605  return QualType(toe, 0);
2606}
2607
2608/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2609/// TypeOfType AST's. The only motivation to unique these nodes would be
2610/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2611/// an issue. This doesn't effect the type checker, since it operates
2612/// on canonical type's (which are always unique).
2613QualType ASTContext::getTypeOfType(QualType tofType) const {
2614  QualType Canonical = getCanonicalType(tofType);
2615  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2616  Types.push_back(tot);
2617  return QualType(tot, 0);
2618}
2619
2620/// getDecltypeForExpr - Given an expr, will return the decltype for that
2621/// expression, according to the rules in C++0x [dcl.type.simple]p4
2622static QualType getDecltypeForExpr(const Expr *e, const ASTContext &Context) {
2623  if (e->isTypeDependent())
2624    return Context.DependentTy;
2625
2626  // If e is an id expression or a class member access, decltype(e) is defined
2627  // as the type of the entity named by e.
2628  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2629    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2630      return VD->getType();
2631  }
2632  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2633    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2634      return FD->getType();
2635  }
2636  // If e is a function call or an invocation of an overloaded operator,
2637  // (parentheses around e are ignored), decltype(e) is defined as the
2638  // return type of that function.
2639  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2640    return CE->getCallReturnType();
2641
2642  QualType T = e->getType();
2643
2644  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2645  // defined as T&, otherwise decltype(e) is defined as T.
2646  if (e->isLValue())
2647    T = Context.getLValueReferenceType(T);
2648
2649  return T;
2650}
2651
2652/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2653/// DecltypeType AST's. The only motivation to unique these nodes would be
2654/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2655/// an issue. This doesn't effect the type checker, since it operates
2656/// on canonical type's (which are always unique).
2657QualType ASTContext::getDecltypeType(Expr *e) const {
2658  DecltypeType *dt;
2659  if (e->isTypeDependent()) {
2660    llvm::FoldingSetNodeID ID;
2661    DependentDecltypeType::Profile(ID, *this, e);
2662
2663    void *InsertPos = 0;
2664    DependentDecltypeType *Canon
2665      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2666    if (Canon) {
2667      // We already have a "canonical" version of an equivalent, dependent
2668      // decltype type. Use that as our canonical type.
2669      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2670                                       QualType((DecltypeType*)Canon, 0));
2671    }
2672    else {
2673      // Build a new, canonical typeof(expr) type.
2674      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2675      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2676      dt = Canon;
2677    }
2678  } else {
2679    QualType T = getDecltypeForExpr(e, *this);
2680    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2681  }
2682  Types.push_back(dt);
2683  return QualType(dt, 0);
2684}
2685
2686/// getAutoType - We only unique auto types after they've been deduced.
2687QualType ASTContext::getAutoType(QualType DeducedType) const {
2688  void *InsertPos = 0;
2689  if (!DeducedType.isNull()) {
2690    // Look in the folding set for an existing type.
2691    llvm::FoldingSetNodeID ID;
2692    AutoType::Profile(ID, DeducedType);
2693    if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
2694      return QualType(AT, 0);
2695  }
2696
2697  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
2698  Types.push_back(AT);
2699  if (InsertPos)
2700    AutoTypes.InsertNode(AT, InsertPos);
2701  return QualType(AT, 0);
2702}
2703
2704/// getTagDeclType - Return the unique reference to the type for the
2705/// specified TagDecl (struct/union/class/enum) decl.
2706QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
2707  assert (Decl);
2708  // FIXME: What is the design on getTagDeclType when it requires casting
2709  // away const?  mutable?
2710  return getTypeDeclType(const_cast<TagDecl*>(Decl));
2711}
2712
2713/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2714/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2715/// needs to agree with the definition in <stddef.h>.
2716CanQualType ASTContext::getSizeType() const {
2717  return getFromTargetType(Target.getSizeType());
2718}
2719
2720/// getSignedWCharType - Return the type of "signed wchar_t".
2721/// Used when in C++, as a GCC extension.
2722QualType ASTContext::getSignedWCharType() const {
2723  // FIXME: derive from "Target" ?
2724  return WCharTy;
2725}
2726
2727/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2728/// Used when in C++, as a GCC extension.
2729QualType ASTContext::getUnsignedWCharType() const {
2730  // FIXME: derive from "Target" ?
2731  return UnsignedIntTy;
2732}
2733
2734/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2735/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2736QualType ASTContext::getPointerDiffType() const {
2737  return getFromTargetType(Target.getPtrDiffType(0));
2738}
2739
2740//===----------------------------------------------------------------------===//
2741//                              Type Operators
2742//===----------------------------------------------------------------------===//
2743
2744CanQualType ASTContext::getCanonicalParamType(QualType T) const {
2745  // Push qualifiers into arrays, and then discard any remaining
2746  // qualifiers.
2747  T = getCanonicalType(T);
2748  T = getVariableArrayDecayedType(T);
2749  const Type *Ty = T.getTypePtr();
2750  QualType Result;
2751  if (isa<ArrayType>(Ty)) {
2752    Result = getArrayDecayedType(QualType(Ty,0));
2753  } else if (isa<FunctionType>(Ty)) {
2754    Result = getPointerType(QualType(Ty, 0));
2755  } else {
2756    Result = QualType(Ty, 0);
2757  }
2758
2759  return CanQualType::CreateUnsafe(Result);
2760}
2761
2762
2763QualType ASTContext::getUnqualifiedArrayType(QualType type,
2764                                             Qualifiers &quals) {
2765  SplitQualType splitType = type.getSplitUnqualifiedType();
2766
2767  // FIXME: getSplitUnqualifiedType() actually walks all the way to
2768  // the unqualified desugared type and then drops it on the floor.
2769  // We then have to strip that sugar back off with
2770  // getUnqualifiedDesugaredType(), which is silly.
2771  const ArrayType *AT =
2772    dyn_cast<ArrayType>(splitType.first->getUnqualifiedDesugaredType());
2773
2774  // If we don't have an array, just use the results in splitType.
2775  if (!AT) {
2776    quals = splitType.second;
2777    return QualType(splitType.first, 0);
2778  }
2779
2780  // Otherwise, recurse on the array's element type.
2781  QualType elementType = AT->getElementType();
2782  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
2783
2784  // If that didn't change the element type, AT has no qualifiers, so we
2785  // can just use the results in splitType.
2786  if (elementType == unqualElementType) {
2787    assert(quals.empty()); // from the recursive call
2788    quals = splitType.second;
2789    return QualType(splitType.first, 0);
2790  }
2791
2792  // Otherwise, add in the qualifiers from the outermost type, then
2793  // build the type back up.
2794  quals.addConsistentQualifiers(splitType.second);
2795
2796  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
2797    return getConstantArrayType(unqualElementType, CAT->getSize(),
2798                                CAT->getSizeModifier(), 0);
2799  }
2800
2801  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
2802    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
2803  }
2804
2805  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
2806    return getVariableArrayType(unqualElementType,
2807                                VAT->getSizeExpr(),
2808                                VAT->getSizeModifier(),
2809                                VAT->getIndexTypeCVRQualifiers(),
2810                                VAT->getBracketsRange());
2811  }
2812
2813  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
2814  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
2815                                    DSAT->getSizeModifier(), 0,
2816                                    SourceRange());
2817}
2818
2819/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
2820/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
2821/// they point to and return true. If T1 and T2 aren't pointer types
2822/// or pointer-to-member types, or if they are not similar at this
2823/// level, returns false and leaves T1 and T2 unchanged. Top-level
2824/// qualifiers on T1 and T2 are ignored. This function will typically
2825/// be called in a loop that successively "unwraps" pointer and
2826/// pointer-to-member types to compare them at each level.
2827bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
2828  const PointerType *T1PtrType = T1->getAs<PointerType>(),
2829                    *T2PtrType = T2->getAs<PointerType>();
2830  if (T1PtrType && T2PtrType) {
2831    T1 = T1PtrType->getPointeeType();
2832    T2 = T2PtrType->getPointeeType();
2833    return true;
2834  }
2835
2836  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
2837                          *T2MPType = T2->getAs<MemberPointerType>();
2838  if (T1MPType && T2MPType &&
2839      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
2840                             QualType(T2MPType->getClass(), 0))) {
2841    T1 = T1MPType->getPointeeType();
2842    T2 = T2MPType->getPointeeType();
2843    return true;
2844  }
2845
2846  if (getLangOptions().ObjC1) {
2847    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
2848                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
2849    if (T1OPType && T2OPType) {
2850      T1 = T1OPType->getPointeeType();
2851      T2 = T2OPType->getPointeeType();
2852      return true;
2853    }
2854  }
2855
2856  // FIXME: Block pointers, too?
2857
2858  return false;
2859}
2860
2861DeclarationNameInfo
2862ASTContext::getNameForTemplate(TemplateName Name,
2863                               SourceLocation NameLoc) const {
2864  if (TemplateDecl *TD = Name.getAsTemplateDecl())
2865    // DNInfo work in progress: CHECKME: what about DNLoc?
2866    return DeclarationNameInfo(TD->getDeclName(), NameLoc);
2867
2868  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
2869    DeclarationName DName;
2870    if (DTN->isIdentifier()) {
2871      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
2872      return DeclarationNameInfo(DName, NameLoc);
2873    } else {
2874      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
2875      // DNInfo work in progress: FIXME: source locations?
2876      DeclarationNameLoc DNLoc;
2877      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
2878      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
2879      return DeclarationNameInfo(DName, NameLoc, DNLoc);
2880    }
2881  }
2882
2883  OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
2884  assert(Storage);
2885  // DNInfo work in progress: CHECKME: what about DNLoc?
2886  return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
2887}
2888
2889TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
2890  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
2891    if (TemplateTemplateParmDecl *TTP
2892                              = dyn_cast<TemplateTemplateParmDecl>(Template))
2893      Template = getCanonicalTemplateTemplateParmDecl(TTP);
2894
2895    // The canonical template name is the canonical template declaration.
2896    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
2897  }
2898
2899  if (SubstTemplateTemplateParmPackStorage *SubstPack
2900                                  = Name.getAsSubstTemplateTemplateParmPack()) {
2901    TemplateTemplateParmDecl *CanonParam
2902      = getCanonicalTemplateTemplateParmDecl(SubstPack->getParameterPack());
2903    TemplateArgument CanonArgPack
2904      = getCanonicalTemplateArgument(SubstPack->getArgumentPack());
2905    return getSubstTemplateTemplateParmPack(CanonParam, CanonArgPack);
2906  }
2907
2908  assert(!Name.getAsOverloadedTemplate());
2909
2910  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
2911  assert(DTN && "Non-dependent template names must refer to template decls.");
2912  return DTN->CanonicalTemplateName;
2913}
2914
2915bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
2916  X = getCanonicalTemplateName(X);
2917  Y = getCanonicalTemplateName(Y);
2918  return X.getAsVoidPointer() == Y.getAsVoidPointer();
2919}
2920
2921TemplateArgument
2922ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
2923  switch (Arg.getKind()) {
2924    case TemplateArgument::Null:
2925      return Arg;
2926
2927    case TemplateArgument::Expression:
2928      return Arg;
2929
2930    case TemplateArgument::Declaration:
2931      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
2932
2933    case TemplateArgument::Template:
2934      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
2935
2936    case TemplateArgument::TemplateExpansion:
2937      return TemplateArgument(getCanonicalTemplateName(
2938                                         Arg.getAsTemplateOrTemplatePattern()),
2939                              Arg.getNumTemplateExpansions());
2940
2941    case TemplateArgument::Integral:
2942      return TemplateArgument(*Arg.getAsIntegral(),
2943                              getCanonicalType(Arg.getIntegralType()));
2944
2945    case TemplateArgument::Type:
2946      return TemplateArgument(getCanonicalType(Arg.getAsType()));
2947
2948    case TemplateArgument::Pack: {
2949      if (Arg.pack_size() == 0)
2950        return Arg;
2951
2952      TemplateArgument *CanonArgs
2953        = new (*this) TemplateArgument[Arg.pack_size()];
2954      unsigned Idx = 0;
2955      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
2956                                        AEnd = Arg.pack_end();
2957           A != AEnd; (void)++A, ++Idx)
2958        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
2959
2960      return TemplateArgument(CanonArgs, Arg.pack_size());
2961    }
2962  }
2963
2964  // Silence GCC warning
2965  assert(false && "Unhandled template argument kind");
2966  return TemplateArgument();
2967}
2968
2969NestedNameSpecifier *
2970ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
2971  if (!NNS)
2972    return 0;
2973
2974  switch (NNS->getKind()) {
2975  case NestedNameSpecifier::Identifier:
2976    // Canonicalize the prefix but keep the identifier the same.
2977    return NestedNameSpecifier::Create(*this,
2978                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
2979                                       NNS->getAsIdentifier());
2980
2981  case NestedNameSpecifier::Namespace:
2982    // A namespace is canonical; build a nested-name-specifier with
2983    // this namespace and no prefix.
2984    return NestedNameSpecifier::Create(*this, 0,
2985                                 NNS->getAsNamespace()->getOriginalNamespace());
2986
2987  case NestedNameSpecifier::NamespaceAlias:
2988    // A namespace is canonical; build a nested-name-specifier with
2989    // this namespace and no prefix.
2990    return NestedNameSpecifier::Create(*this, 0,
2991                                    NNS->getAsNamespaceAlias()->getNamespace()
2992                                                      ->getOriginalNamespace());
2993
2994  case NestedNameSpecifier::TypeSpec:
2995  case NestedNameSpecifier::TypeSpecWithTemplate: {
2996    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
2997
2998    // If we have some kind of dependent-named type (e.g., "typename T::type"),
2999    // break it apart into its prefix and identifier, then reconsititute those
3000    // as the canonical nested-name-specifier. This is required to canonicalize
3001    // a dependent nested-name-specifier involving typedefs of dependent-name
3002    // types, e.g.,
3003    //   typedef typename T::type T1;
3004    //   typedef typename T1::type T2;
3005    if (const DependentNameType *DNT = T->getAs<DependentNameType>()) {
3006      NestedNameSpecifier *Prefix
3007        = getCanonicalNestedNameSpecifier(DNT->getQualifier());
3008      return NestedNameSpecifier::Create(*this, Prefix,
3009                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
3010    }
3011
3012    // Do the same thing as above, but with dependent-named specializations.
3013    if (const DependentTemplateSpecializationType *DTST
3014          = T->getAs<DependentTemplateSpecializationType>()) {
3015      NestedNameSpecifier *Prefix
3016        = getCanonicalNestedNameSpecifier(DTST->getQualifier());
3017      TemplateName Name
3018        = getDependentTemplateName(Prefix, DTST->getIdentifier());
3019      T = getTemplateSpecializationType(Name,
3020                                        DTST->getArgs(), DTST->getNumArgs());
3021      T = getCanonicalType(T);
3022    }
3023
3024    return NestedNameSpecifier::Create(*this, 0, false,
3025                                       const_cast<Type*>(T.getTypePtr()));
3026  }
3027
3028  case NestedNameSpecifier::Global:
3029    // The global specifier is canonical and unique.
3030    return NNS;
3031  }
3032
3033  // Required to silence a GCC warning
3034  return 0;
3035}
3036
3037
3038const ArrayType *ASTContext::getAsArrayType(QualType T) const {
3039  // Handle the non-qualified case efficiently.
3040  if (!T.hasLocalQualifiers()) {
3041    // Handle the common positive case fast.
3042    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
3043      return AT;
3044  }
3045
3046  // Handle the common negative case fast.
3047  if (!isa<ArrayType>(T.getCanonicalType()))
3048    return 0;
3049
3050  // Apply any qualifiers from the array type to the element type.  This
3051  // implements C99 6.7.3p8: "If the specification of an array type includes
3052  // any type qualifiers, the element type is so qualified, not the array type."
3053
3054  // If we get here, we either have type qualifiers on the type, or we have
3055  // sugar such as a typedef in the way.  If we have type qualifiers on the type
3056  // we must propagate them down into the element type.
3057
3058  SplitQualType split = T.getSplitDesugaredType();
3059  Qualifiers qs = split.second;
3060
3061  // If we have a simple case, just return now.
3062  const ArrayType *ATy = dyn_cast<ArrayType>(split.first);
3063  if (ATy == 0 || qs.empty())
3064    return ATy;
3065
3066  // Otherwise, we have an array and we have qualifiers on it.  Push the
3067  // qualifiers into the array element type and return a new array type.
3068  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
3069
3070  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
3071    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
3072                                                CAT->getSizeModifier(),
3073                                           CAT->getIndexTypeCVRQualifiers()));
3074  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
3075    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
3076                                                  IAT->getSizeModifier(),
3077                                           IAT->getIndexTypeCVRQualifiers()));
3078
3079  if (const DependentSizedArrayType *DSAT
3080        = dyn_cast<DependentSizedArrayType>(ATy))
3081    return cast<ArrayType>(
3082                     getDependentSizedArrayType(NewEltTy,
3083                                                DSAT->getSizeExpr(),
3084                                                DSAT->getSizeModifier(),
3085                                              DSAT->getIndexTypeCVRQualifiers(),
3086                                                DSAT->getBracketsRange()));
3087
3088  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
3089  return cast<ArrayType>(getVariableArrayType(NewEltTy,
3090                                              VAT->getSizeExpr(),
3091                                              VAT->getSizeModifier(),
3092                                              VAT->getIndexTypeCVRQualifiers(),
3093                                              VAT->getBracketsRange()));
3094}
3095
3096/// getArrayDecayedType - Return the properly qualified result of decaying the
3097/// specified array type to a pointer.  This operation is non-trivial when
3098/// handling typedefs etc.  The canonical type of "T" must be an array type,
3099/// this returns a pointer to a properly qualified element of the array.
3100///
3101/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
3102QualType ASTContext::getArrayDecayedType(QualType Ty) const {
3103  // Get the element type with 'getAsArrayType' so that we don't lose any
3104  // typedefs in the element type of the array.  This also handles propagation
3105  // of type qualifiers from the array type into the element type if present
3106  // (C99 6.7.3p8).
3107  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
3108  assert(PrettyArrayType && "Not an array type!");
3109
3110  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
3111
3112  // int x[restrict 4] ->  int *restrict
3113  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
3114}
3115
3116QualType ASTContext::getBaseElementType(const ArrayType *array) const {
3117  return getBaseElementType(array->getElementType());
3118}
3119
3120QualType ASTContext::getBaseElementType(QualType type) const {
3121  Qualifiers qs;
3122  while (true) {
3123    SplitQualType split = type.getSplitDesugaredType();
3124    const ArrayType *array = split.first->getAsArrayTypeUnsafe();
3125    if (!array) break;
3126
3127    type = array->getElementType();
3128    qs.addConsistentQualifiers(split.second);
3129  }
3130
3131  return getQualifiedType(type, qs);
3132}
3133
3134/// getConstantArrayElementCount - Returns number of constant array elements.
3135uint64_t
3136ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
3137  uint64_t ElementCount = 1;
3138  do {
3139    ElementCount *= CA->getSize().getZExtValue();
3140    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
3141  } while (CA);
3142  return ElementCount;
3143}
3144
3145/// getFloatingRank - Return a relative rank for floating point types.
3146/// This routine will assert if passed a built-in type that isn't a float.
3147static FloatingRank getFloatingRank(QualType T) {
3148  if (const ComplexType *CT = T->getAs<ComplexType>())
3149    return getFloatingRank(CT->getElementType());
3150
3151  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
3152  switch (T->getAs<BuiltinType>()->getKind()) {
3153  default: assert(0 && "getFloatingRank(): not a floating type");
3154  case BuiltinType::Float:      return FloatRank;
3155  case BuiltinType::Double:     return DoubleRank;
3156  case BuiltinType::LongDouble: return LongDoubleRank;
3157  }
3158}
3159
3160/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
3161/// point or a complex type (based on typeDomain/typeSize).
3162/// 'typeDomain' is a real floating point or complex type.
3163/// 'typeSize' is a real floating point or complex type.
3164QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
3165                                                       QualType Domain) const {
3166  FloatingRank EltRank = getFloatingRank(Size);
3167  if (Domain->isComplexType()) {
3168    switch (EltRank) {
3169    default: assert(0 && "getFloatingRank(): illegal value for rank");
3170    case FloatRank:      return FloatComplexTy;
3171    case DoubleRank:     return DoubleComplexTy;
3172    case LongDoubleRank: return LongDoubleComplexTy;
3173    }
3174  }
3175
3176  assert(Domain->isRealFloatingType() && "Unknown domain!");
3177  switch (EltRank) {
3178  default: assert(0 && "getFloatingRank(): illegal value for rank");
3179  case FloatRank:      return FloatTy;
3180  case DoubleRank:     return DoubleTy;
3181  case LongDoubleRank: return LongDoubleTy;
3182  }
3183}
3184
3185/// getFloatingTypeOrder - Compare the rank of the two specified floating
3186/// point types, ignoring the domain of the type (i.e. 'double' ==
3187/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3188/// LHS < RHS, return -1.
3189int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
3190  FloatingRank LHSR = getFloatingRank(LHS);
3191  FloatingRank RHSR = getFloatingRank(RHS);
3192
3193  if (LHSR == RHSR)
3194    return 0;
3195  if (LHSR > RHSR)
3196    return 1;
3197  return -1;
3198}
3199
3200/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
3201/// routine will assert if passed a built-in type that isn't an integer or enum,
3202/// or if it is not canonicalized.
3203unsigned ASTContext::getIntegerRank(const Type *T) const {
3204  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
3205  if (const EnumType* ET = dyn_cast<EnumType>(T))
3206    T = ET->getDecl()->getPromotionType().getTypePtr();
3207
3208  if (T->isSpecificBuiltinType(BuiltinType::WChar_S) ||
3209      T->isSpecificBuiltinType(BuiltinType::WChar_U))
3210    T = getFromTargetType(Target.getWCharType()).getTypePtr();
3211
3212  if (T->isSpecificBuiltinType(BuiltinType::Char16))
3213    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
3214
3215  if (T->isSpecificBuiltinType(BuiltinType::Char32))
3216    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
3217
3218  switch (cast<BuiltinType>(T)->getKind()) {
3219  default: assert(0 && "getIntegerRank(): not a built-in integer");
3220  case BuiltinType::Bool:
3221    return 1 + (getIntWidth(BoolTy) << 3);
3222  case BuiltinType::Char_S:
3223  case BuiltinType::Char_U:
3224  case BuiltinType::SChar:
3225  case BuiltinType::UChar:
3226    return 2 + (getIntWidth(CharTy) << 3);
3227  case BuiltinType::Short:
3228  case BuiltinType::UShort:
3229    return 3 + (getIntWidth(ShortTy) << 3);
3230  case BuiltinType::Int:
3231  case BuiltinType::UInt:
3232    return 4 + (getIntWidth(IntTy) << 3);
3233  case BuiltinType::Long:
3234  case BuiltinType::ULong:
3235    return 5 + (getIntWidth(LongTy) << 3);
3236  case BuiltinType::LongLong:
3237  case BuiltinType::ULongLong:
3238    return 6 + (getIntWidth(LongLongTy) << 3);
3239  case BuiltinType::Int128:
3240  case BuiltinType::UInt128:
3241    return 7 + (getIntWidth(Int128Ty) << 3);
3242  }
3243}
3244
3245/// \brief Whether this is a promotable bitfield reference according
3246/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
3247///
3248/// \returns the type this bit-field will promote to, or NULL if no
3249/// promotion occurs.
3250QualType ASTContext::isPromotableBitField(Expr *E) const {
3251  if (E->isTypeDependent() || E->isValueDependent())
3252    return QualType();
3253
3254  FieldDecl *Field = E->getBitField();
3255  if (!Field)
3256    return QualType();
3257
3258  QualType FT = Field->getType();
3259
3260  llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
3261  uint64_t BitWidth = BitWidthAP.getZExtValue();
3262  uint64_t IntSize = getTypeSize(IntTy);
3263  // GCC extension compatibility: if the bit-field size is less than or equal
3264  // to the size of int, it gets promoted no matter what its type is.
3265  // For instance, unsigned long bf : 4 gets promoted to signed int.
3266  if (BitWidth < IntSize)
3267    return IntTy;
3268
3269  if (BitWidth == IntSize)
3270    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
3271
3272  // Types bigger than int are not subject to promotions, and therefore act
3273  // like the base type.
3274  // FIXME: This doesn't quite match what gcc does, but what gcc does here
3275  // is ridiculous.
3276  return QualType();
3277}
3278
3279/// getPromotedIntegerType - Returns the type that Promotable will
3280/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
3281/// integer type.
3282QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
3283  assert(!Promotable.isNull());
3284  assert(Promotable->isPromotableIntegerType());
3285  if (const EnumType *ET = Promotable->getAs<EnumType>())
3286    return ET->getDecl()->getPromotionType();
3287  if (Promotable->isSignedIntegerType())
3288    return IntTy;
3289  uint64_t PromotableSize = getTypeSize(Promotable);
3290  uint64_t IntSize = getTypeSize(IntTy);
3291  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
3292  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
3293}
3294
3295/// getIntegerTypeOrder - Returns the highest ranked integer type:
3296/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3297/// LHS < RHS, return -1.
3298int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
3299  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
3300  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
3301  if (LHSC == RHSC) return 0;
3302
3303  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
3304  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
3305
3306  unsigned LHSRank = getIntegerRank(LHSC);
3307  unsigned RHSRank = getIntegerRank(RHSC);
3308
3309  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
3310    if (LHSRank == RHSRank) return 0;
3311    return LHSRank > RHSRank ? 1 : -1;
3312  }
3313
3314  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
3315  if (LHSUnsigned) {
3316    // If the unsigned [LHS] type is larger, return it.
3317    if (LHSRank >= RHSRank)
3318      return 1;
3319
3320    // If the signed type can represent all values of the unsigned type, it
3321    // wins.  Because we are dealing with 2's complement and types that are
3322    // powers of two larger than each other, this is always safe.
3323    return -1;
3324  }
3325
3326  // If the unsigned [RHS] type is larger, return it.
3327  if (RHSRank >= LHSRank)
3328    return -1;
3329
3330  // If the signed type can represent all values of the unsigned type, it
3331  // wins.  Because we are dealing with 2's complement and types that are
3332  // powers of two larger than each other, this is always safe.
3333  return 1;
3334}
3335
3336static RecordDecl *
3337CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK, DeclContext *DC,
3338                 SourceLocation L, IdentifierInfo *Id) {
3339  if (Ctx.getLangOptions().CPlusPlus)
3340    return CXXRecordDecl::Create(Ctx, TK, DC, L, Id);
3341  else
3342    return RecordDecl::Create(Ctx, TK, DC, L, Id);
3343}
3344
3345// getCFConstantStringType - Return the type used for constant CFStrings.
3346QualType ASTContext::getCFConstantStringType() const {
3347  if (!CFConstantStringTypeDecl) {
3348    CFConstantStringTypeDecl =
3349      CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3350                       &Idents.get("NSConstantString"));
3351    CFConstantStringTypeDecl->startDefinition();
3352
3353    QualType FieldTypes[4];
3354
3355    // const int *isa;
3356    FieldTypes[0] = getPointerType(IntTy.withConst());
3357    // int flags;
3358    FieldTypes[1] = IntTy;
3359    // const char *str;
3360    FieldTypes[2] = getPointerType(CharTy.withConst());
3361    // long length;
3362    FieldTypes[3] = LongTy;
3363
3364    // Create fields
3365    for (unsigned i = 0; i < 4; ++i) {
3366      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
3367                                           SourceLocation(), 0,
3368                                           FieldTypes[i], /*TInfo=*/0,
3369                                           /*BitWidth=*/0,
3370                                           /*Mutable=*/false);
3371      Field->setAccess(AS_public);
3372      CFConstantStringTypeDecl->addDecl(Field);
3373    }
3374
3375    CFConstantStringTypeDecl->completeDefinition();
3376  }
3377
3378  return getTagDeclType(CFConstantStringTypeDecl);
3379}
3380
3381void ASTContext::setCFConstantStringType(QualType T) {
3382  const RecordType *Rec = T->getAs<RecordType>();
3383  assert(Rec && "Invalid CFConstantStringType");
3384  CFConstantStringTypeDecl = Rec->getDecl();
3385}
3386
3387// getNSConstantStringType - Return the type used for constant NSStrings.
3388QualType ASTContext::getNSConstantStringType() const {
3389  if (!NSConstantStringTypeDecl) {
3390    NSConstantStringTypeDecl =
3391    CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3392                     &Idents.get("__builtin_NSString"));
3393    NSConstantStringTypeDecl->startDefinition();
3394
3395    QualType FieldTypes[3];
3396
3397    // const int *isa;
3398    FieldTypes[0] = getPointerType(IntTy.withConst());
3399    // const char *str;
3400    FieldTypes[1] = getPointerType(CharTy.withConst());
3401    // unsigned int length;
3402    FieldTypes[2] = UnsignedIntTy;
3403
3404    // Create fields
3405    for (unsigned i = 0; i < 3; ++i) {
3406      FieldDecl *Field = FieldDecl::Create(*this, NSConstantStringTypeDecl,
3407                                           SourceLocation(), 0,
3408                                           FieldTypes[i], /*TInfo=*/0,
3409                                           /*BitWidth=*/0,
3410                                           /*Mutable=*/false);
3411      Field->setAccess(AS_public);
3412      NSConstantStringTypeDecl->addDecl(Field);
3413    }
3414
3415    NSConstantStringTypeDecl->completeDefinition();
3416  }
3417
3418  return getTagDeclType(NSConstantStringTypeDecl);
3419}
3420
3421void ASTContext::setNSConstantStringType(QualType T) {
3422  const RecordType *Rec = T->getAs<RecordType>();
3423  assert(Rec && "Invalid NSConstantStringType");
3424  NSConstantStringTypeDecl = Rec->getDecl();
3425}
3426
3427QualType ASTContext::getObjCFastEnumerationStateType() const {
3428  if (!ObjCFastEnumerationStateTypeDecl) {
3429    ObjCFastEnumerationStateTypeDecl =
3430      CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3431                       &Idents.get("__objcFastEnumerationState"));
3432    ObjCFastEnumerationStateTypeDecl->startDefinition();
3433
3434    QualType FieldTypes[] = {
3435      UnsignedLongTy,
3436      getPointerType(ObjCIdTypedefType),
3437      getPointerType(UnsignedLongTy),
3438      getConstantArrayType(UnsignedLongTy,
3439                           llvm::APInt(32, 5), ArrayType::Normal, 0)
3440    };
3441
3442    for (size_t i = 0; i < 4; ++i) {
3443      FieldDecl *Field = FieldDecl::Create(*this,
3444                                           ObjCFastEnumerationStateTypeDecl,
3445                                           SourceLocation(), 0,
3446                                           FieldTypes[i], /*TInfo=*/0,
3447                                           /*BitWidth=*/0,
3448                                           /*Mutable=*/false);
3449      Field->setAccess(AS_public);
3450      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
3451    }
3452
3453    ObjCFastEnumerationStateTypeDecl->completeDefinition();
3454  }
3455
3456  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
3457}
3458
3459QualType ASTContext::getBlockDescriptorType() const {
3460  if (BlockDescriptorType)
3461    return getTagDeclType(BlockDescriptorType);
3462
3463  RecordDecl *T;
3464  // FIXME: Needs the FlagAppleBlock bit.
3465  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3466                       &Idents.get("__block_descriptor"));
3467  T->startDefinition();
3468
3469  QualType FieldTypes[] = {
3470    UnsignedLongTy,
3471    UnsignedLongTy,
3472  };
3473
3474  const char *FieldNames[] = {
3475    "reserved",
3476    "Size"
3477  };
3478
3479  for (size_t i = 0; i < 2; ++i) {
3480    FieldDecl *Field = FieldDecl::Create(*this,
3481                                         T,
3482                                         SourceLocation(),
3483                                         &Idents.get(FieldNames[i]),
3484                                         FieldTypes[i], /*TInfo=*/0,
3485                                         /*BitWidth=*/0,
3486                                         /*Mutable=*/false);
3487    Field->setAccess(AS_public);
3488    T->addDecl(Field);
3489  }
3490
3491  T->completeDefinition();
3492
3493  BlockDescriptorType = T;
3494
3495  return getTagDeclType(BlockDescriptorType);
3496}
3497
3498void ASTContext::setBlockDescriptorType(QualType T) {
3499  const RecordType *Rec = T->getAs<RecordType>();
3500  assert(Rec && "Invalid BlockDescriptorType");
3501  BlockDescriptorType = Rec->getDecl();
3502}
3503
3504QualType ASTContext::getBlockDescriptorExtendedType() const {
3505  if (BlockDescriptorExtendedType)
3506    return getTagDeclType(BlockDescriptorExtendedType);
3507
3508  RecordDecl *T;
3509  // FIXME: Needs the FlagAppleBlock bit.
3510  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3511                       &Idents.get("__block_descriptor_withcopydispose"));
3512  T->startDefinition();
3513
3514  QualType FieldTypes[] = {
3515    UnsignedLongTy,
3516    UnsignedLongTy,
3517    getPointerType(VoidPtrTy),
3518    getPointerType(VoidPtrTy)
3519  };
3520
3521  const char *FieldNames[] = {
3522    "reserved",
3523    "Size",
3524    "CopyFuncPtr",
3525    "DestroyFuncPtr"
3526  };
3527
3528  for (size_t i = 0; i < 4; ++i) {
3529    FieldDecl *Field = FieldDecl::Create(*this,
3530                                         T,
3531                                         SourceLocation(),
3532                                         &Idents.get(FieldNames[i]),
3533                                         FieldTypes[i], /*TInfo=*/0,
3534                                         /*BitWidth=*/0,
3535                                         /*Mutable=*/false);
3536    Field->setAccess(AS_public);
3537    T->addDecl(Field);
3538  }
3539
3540  T->completeDefinition();
3541
3542  BlockDescriptorExtendedType = T;
3543
3544  return getTagDeclType(BlockDescriptorExtendedType);
3545}
3546
3547void ASTContext::setBlockDescriptorExtendedType(QualType T) {
3548  const RecordType *Rec = T->getAs<RecordType>();
3549  assert(Rec && "Invalid BlockDescriptorType");
3550  BlockDescriptorExtendedType = Rec->getDecl();
3551}
3552
3553bool ASTContext::BlockRequiresCopying(QualType Ty) const {
3554  if (Ty->isBlockPointerType())
3555    return true;
3556  if (isObjCNSObjectType(Ty))
3557    return true;
3558  if (Ty->isObjCObjectPointerType())
3559    return true;
3560  if (getLangOptions().CPlusPlus) {
3561    if (const RecordType *RT = Ty->getAs<RecordType>()) {
3562      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3563      return RD->hasConstCopyConstructor(*this);
3564
3565    }
3566  }
3567  return false;
3568}
3569
3570QualType
3571ASTContext::BuildByRefType(llvm::StringRef DeclName, QualType Ty) const {
3572  //  type = struct __Block_byref_1_X {
3573  //    void *__isa;
3574  //    struct __Block_byref_1_X *__forwarding;
3575  //    unsigned int __flags;
3576  //    unsigned int __size;
3577  //    void *__copy_helper;            // as needed
3578  //    void *__destroy_help            // as needed
3579  //    int X;
3580  //  } *
3581
3582  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
3583
3584  // FIXME: Move up
3585  llvm::SmallString<36> Name;
3586  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
3587                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
3588  RecordDecl *T;
3589  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3590                       &Idents.get(Name.str()));
3591  T->startDefinition();
3592  QualType Int32Ty = IntTy;
3593  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
3594  QualType FieldTypes[] = {
3595    getPointerType(VoidPtrTy),
3596    getPointerType(getTagDeclType(T)),
3597    Int32Ty,
3598    Int32Ty,
3599    getPointerType(VoidPtrTy),
3600    getPointerType(VoidPtrTy),
3601    Ty
3602  };
3603
3604  llvm::StringRef FieldNames[] = {
3605    "__isa",
3606    "__forwarding",
3607    "__flags",
3608    "__size",
3609    "__copy_helper",
3610    "__destroy_helper",
3611    DeclName,
3612  };
3613
3614  for (size_t i = 0; i < 7; ++i) {
3615    if (!HasCopyAndDispose && i >=4 && i <= 5)
3616      continue;
3617    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3618                                         &Idents.get(FieldNames[i]),
3619                                         FieldTypes[i], /*TInfo=*/0,
3620                                         /*BitWidth=*/0, /*Mutable=*/false);
3621    Field->setAccess(AS_public);
3622    T->addDecl(Field);
3623  }
3624
3625  T->completeDefinition();
3626
3627  return getPointerType(getTagDeclType(T));
3628}
3629
3630void ASTContext::setObjCFastEnumerationStateType(QualType T) {
3631  const RecordType *Rec = T->getAs<RecordType>();
3632  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
3633  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
3634}
3635
3636// This returns true if a type has been typedefed to BOOL:
3637// typedef <type> BOOL;
3638static bool isTypeTypedefedAsBOOL(QualType T) {
3639  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3640    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3641      return II->isStr("BOOL");
3642
3643  return false;
3644}
3645
3646/// getObjCEncodingTypeSize returns size of type for objective-c encoding
3647/// purpose.
3648CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
3649  CharUnits sz = getTypeSizeInChars(type);
3650
3651  // Make all integer and enum types at least as large as an int
3652  if (sz.isPositive() && type->isIntegralOrEnumerationType())
3653    sz = std::max(sz, getTypeSizeInChars(IntTy));
3654  // Treat arrays as pointers, since that's how they're passed in.
3655  else if (type->isArrayType())
3656    sz = getTypeSizeInChars(VoidPtrTy);
3657  return sz;
3658}
3659
3660static inline
3661std::string charUnitsToString(const CharUnits &CU) {
3662  return llvm::itostr(CU.getQuantity());
3663}
3664
3665/// getObjCEncodingForBlock - Return the encoded type for this block
3666/// declaration.
3667std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
3668  std::string S;
3669
3670  const BlockDecl *Decl = Expr->getBlockDecl();
3671  QualType BlockTy =
3672      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
3673  // Encode result type.
3674  getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
3675  // Compute size of all parameters.
3676  // Start with computing size of a pointer in number of bytes.
3677  // FIXME: There might(should) be a better way of doing this computation!
3678  SourceLocation Loc;
3679  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3680  CharUnits ParmOffset = PtrSize;
3681  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
3682       E = Decl->param_end(); PI != E; ++PI) {
3683    QualType PType = (*PI)->getType();
3684    CharUnits sz = getObjCEncodingTypeSize(PType);
3685    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
3686    ParmOffset += sz;
3687  }
3688  // Size of the argument frame
3689  S += charUnitsToString(ParmOffset);
3690  // Block pointer and offset.
3691  S += "@?0";
3692  ParmOffset = PtrSize;
3693
3694  // Argument types.
3695  ParmOffset = PtrSize;
3696  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
3697       Decl->param_end(); PI != E; ++PI) {
3698    ParmVarDecl *PVDecl = *PI;
3699    QualType PType = PVDecl->getOriginalType();
3700    if (const ArrayType *AT =
3701          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3702      // Use array's original type only if it has known number of
3703      // elements.
3704      if (!isa<ConstantArrayType>(AT))
3705        PType = PVDecl->getType();
3706    } else if (PType->isFunctionType())
3707      PType = PVDecl->getType();
3708    getObjCEncodingForType(PType, S);
3709    S += charUnitsToString(ParmOffset);
3710    ParmOffset += getObjCEncodingTypeSize(PType);
3711  }
3712
3713  return S;
3714}
3715
3716void ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
3717                                                std::string& S) {
3718  // Encode result type.
3719  getObjCEncodingForType(Decl->getResultType(), S);
3720  CharUnits ParmOffset;
3721  // Compute size of all parameters.
3722  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
3723       E = Decl->param_end(); PI != E; ++PI) {
3724    QualType PType = (*PI)->getType();
3725    CharUnits sz = getObjCEncodingTypeSize(PType);
3726    assert (sz.isPositive() &&
3727        "getObjCEncodingForMethodDecl - Incomplete param type");
3728    ParmOffset += sz;
3729  }
3730  S += charUnitsToString(ParmOffset);
3731  ParmOffset = CharUnits::Zero();
3732
3733  // Argument types.
3734  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
3735       E = Decl->param_end(); PI != E; ++PI) {
3736    ParmVarDecl *PVDecl = *PI;
3737    QualType PType = PVDecl->getOriginalType();
3738    if (const ArrayType *AT =
3739          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3740      // Use array's original type only if it has known number of
3741      // elements.
3742      if (!isa<ConstantArrayType>(AT))
3743        PType = PVDecl->getType();
3744    } else if (PType->isFunctionType())
3745      PType = PVDecl->getType();
3746    getObjCEncodingForType(PType, S);
3747    S += charUnitsToString(ParmOffset);
3748    ParmOffset += getObjCEncodingTypeSize(PType);
3749  }
3750}
3751
3752/// getObjCEncodingForMethodDecl - Return the encoded type for this method
3753/// declaration.
3754void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
3755                                              std::string& S) const {
3756  // FIXME: This is not very efficient.
3757  // Encode type qualifer, 'in', 'inout', etc. for the return type.
3758  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
3759  // Encode result type.
3760  getObjCEncodingForType(Decl->getResultType(), S);
3761  // Compute size of all parameters.
3762  // Start with computing size of a pointer in number of bytes.
3763  // FIXME: There might(should) be a better way of doing this computation!
3764  SourceLocation Loc;
3765  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3766  // The first two arguments (self and _cmd) are pointers; account for
3767  // their size.
3768  CharUnits ParmOffset = 2 * PtrSize;
3769  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3770       E = Decl->sel_param_end(); PI != E; ++PI) {
3771    QualType PType = (*PI)->getType();
3772    CharUnits sz = getObjCEncodingTypeSize(PType);
3773    assert (sz.isPositive() &&
3774        "getObjCEncodingForMethodDecl - Incomplete param type");
3775    ParmOffset += sz;
3776  }
3777  S += charUnitsToString(ParmOffset);
3778  S += "@0:";
3779  S += charUnitsToString(PtrSize);
3780
3781  // Argument types.
3782  ParmOffset = 2 * PtrSize;
3783  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3784       E = Decl->sel_param_end(); PI != E; ++PI) {
3785    ParmVarDecl *PVDecl = *PI;
3786    QualType PType = PVDecl->getOriginalType();
3787    if (const ArrayType *AT =
3788          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3789      // Use array's original type only if it has known number of
3790      // elements.
3791      if (!isa<ConstantArrayType>(AT))
3792        PType = PVDecl->getType();
3793    } else if (PType->isFunctionType())
3794      PType = PVDecl->getType();
3795    // Process argument qualifiers for user supplied arguments; such as,
3796    // 'in', 'inout', etc.
3797    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
3798    getObjCEncodingForType(PType, S);
3799    S += charUnitsToString(ParmOffset);
3800    ParmOffset += getObjCEncodingTypeSize(PType);
3801  }
3802}
3803
3804/// getObjCEncodingForPropertyDecl - Return the encoded type for this
3805/// property declaration. If non-NULL, Container must be either an
3806/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
3807/// NULL when getting encodings for protocol properties.
3808/// Property attributes are stored as a comma-delimited C string. The simple
3809/// attributes readonly and bycopy are encoded as single characters. The
3810/// parametrized attributes, getter=name, setter=name, and ivar=name, are
3811/// encoded as single characters, followed by an identifier. Property types
3812/// are also encoded as a parametrized attribute. The characters used to encode
3813/// these attributes are defined by the following enumeration:
3814/// @code
3815/// enum PropertyAttributes {
3816/// kPropertyReadOnly = 'R',   // property is read-only.
3817/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
3818/// kPropertyByref = '&',  // property is a reference to the value last assigned
3819/// kPropertyDynamic = 'D',    // property is dynamic
3820/// kPropertyGetter = 'G',     // followed by getter selector name
3821/// kPropertySetter = 'S',     // followed by setter selector name
3822/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
3823/// kPropertyType = 't'              // followed by old-style type encoding.
3824/// kPropertyWeak = 'W'              // 'weak' property
3825/// kPropertyStrong = 'P'            // property GC'able
3826/// kPropertyNonAtomic = 'N'         // property non-atomic
3827/// };
3828/// @endcode
3829void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
3830                                                const Decl *Container,
3831                                                std::string& S) const {
3832  // Collect information from the property implementation decl(s).
3833  bool Dynamic = false;
3834  ObjCPropertyImplDecl *SynthesizePID = 0;
3835
3836  // FIXME: Duplicated code due to poor abstraction.
3837  if (Container) {
3838    if (const ObjCCategoryImplDecl *CID =
3839        dyn_cast<ObjCCategoryImplDecl>(Container)) {
3840      for (ObjCCategoryImplDecl::propimpl_iterator
3841             i = CID->propimpl_begin(), e = CID->propimpl_end();
3842           i != e; ++i) {
3843        ObjCPropertyImplDecl *PID = *i;
3844        if (PID->getPropertyDecl() == PD) {
3845          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3846            Dynamic = true;
3847          } else {
3848            SynthesizePID = PID;
3849          }
3850        }
3851      }
3852    } else {
3853      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
3854      for (ObjCCategoryImplDecl::propimpl_iterator
3855             i = OID->propimpl_begin(), e = OID->propimpl_end();
3856           i != e; ++i) {
3857        ObjCPropertyImplDecl *PID = *i;
3858        if (PID->getPropertyDecl() == PD) {
3859          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3860            Dynamic = true;
3861          } else {
3862            SynthesizePID = PID;
3863          }
3864        }
3865      }
3866    }
3867  }
3868
3869  // FIXME: This is not very efficient.
3870  S = "T";
3871
3872  // Encode result type.
3873  // GCC has some special rules regarding encoding of properties which
3874  // closely resembles encoding of ivars.
3875  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
3876                             true /* outermost type */,
3877                             true /* encoding for property */);
3878
3879  if (PD->isReadOnly()) {
3880    S += ",R";
3881  } else {
3882    switch (PD->getSetterKind()) {
3883    case ObjCPropertyDecl::Assign: break;
3884    case ObjCPropertyDecl::Copy:   S += ",C"; break;
3885    case ObjCPropertyDecl::Retain: S += ",&"; break;
3886    }
3887  }
3888
3889  // It really isn't clear at all what this means, since properties
3890  // are "dynamic by default".
3891  if (Dynamic)
3892    S += ",D";
3893
3894  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
3895    S += ",N";
3896
3897  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
3898    S += ",G";
3899    S += PD->getGetterName().getAsString();
3900  }
3901
3902  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
3903    S += ",S";
3904    S += PD->getSetterName().getAsString();
3905  }
3906
3907  if (SynthesizePID) {
3908    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
3909    S += ",V";
3910    S += OID->getNameAsString();
3911  }
3912
3913  // FIXME: OBJCGC: weak & strong
3914}
3915
3916/// getLegacyIntegralTypeEncoding -
3917/// Another legacy compatibility encoding: 32-bit longs are encoded as
3918/// 'l' or 'L' , but not always.  For typedefs, we need to use
3919/// 'i' or 'I' instead if encoding a struct field, or a pointer!
3920///
3921void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
3922  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
3923    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
3924      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
3925        PointeeTy = UnsignedIntTy;
3926      else
3927        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
3928          PointeeTy = IntTy;
3929    }
3930  }
3931}
3932
3933void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
3934                                        const FieldDecl *Field) const {
3935  // We follow the behavior of gcc, expanding structures which are
3936  // directly pointed to, and expanding embedded structures. Note that
3937  // these rules are sufficient to prevent recursive encoding of the
3938  // same type.
3939  getObjCEncodingForTypeImpl(T, S, true, true, Field,
3940                             true /* outermost type */);
3941}
3942
3943static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
3944    switch (T->getAs<BuiltinType>()->getKind()) {
3945    default: assert(0 && "Unhandled builtin type kind");
3946    case BuiltinType::Void:       return 'v';
3947    case BuiltinType::Bool:       return 'B';
3948    case BuiltinType::Char_U:
3949    case BuiltinType::UChar:      return 'C';
3950    case BuiltinType::UShort:     return 'S';
3951    case BuiltinType::UInt:       return 'I';
3952    case BuiltinType::ULong:
3953        return C->getIntWidth(T) == 32 ? 'L' : 'Q';
3954    case BuiltinType::UInt128:    return 'T';
3955    case BuiltinType::ULongLong:  return 'Q';
3956    case BuiltinType::Char_S:
3957    case BuiltinType::SChar:      return 'c';
3958    case BuiltinType::Short:      return 's';
3959    case BuiltinType::WChar_S:
3960    case BuiltinType::WChar_U:
3961    case BuiltinType::Int:        return 'i';
3962    case BuiltinType::Long:
3963      return C->getIntWidth(T) == 32 ? 'l' : 'q';
3964    case BuiltinType::LongLong:   return 'q';
3965    case BuiltinType::Int128:     return 't';
3966    case BuiltinType::Float:      return 'f';
3967    case BuiltinType::Double:     return 'd';
3968    case BuiltinType::LongDouble: return 'D';
3969    }
3970}
3971
3972static void EncodeBitField(const ASTContext *Ctx, std::string& S,
3973                           QualType T, const FieldDecl *FD) {
3974  const Expr *E = FD->getBitWidth();
3975  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
3976  S += 'b';
3977  // The NeXT runtime encodes bit fields as b followed by the number of bits.
3978  // The GNU runtime requires more information; bitfields are encoded as b,
3979  // then the offset (in bits) of the first element, then the type of the
3980  // bitfield, then the size in bits.  For example, in this structure:
3981  //
3982  // struct
3983  // {
3984  //    int integer;
3985  //    int flags:2;
3986  // };
3987  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
3988  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
3989  // information is not especially sensible, but we're stuck with it for
3990  // compatibility with GCC, although providing it breaks anything that
3991  // actually uses runtime introspection and wants to work on both runtimes...
3992  if (!Ctx->getLangOptions().NeXTRuntime) {
3993    const RecordDecl *RD = FD->getParent();
3994    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
3995    // FIXME: This same linear search is also used in ExprConstant - it might
3996    // be better if the FieldDecl stored its offset.  We'd be increasing the
3997    // size of the object slightly, but saving some time every time it is used.
3998    unsigned i = 0;
3999    for (RecordDecl::field_iterator Field = RD->field_begin(),
4000                                 FieldEnd = RD->field_end();
4001         Field != FieldEnd; (void)++Field, ++i) {
4002      if (*Field == FD)
4003        break;
4004    }
4005    S += llvm::utostr(RL.getFieldOffset(i));
4006    if (T->isEnumeralType())
4007      S += 'i';
4008    else
4009      S += ObjCEncodingForPrimitiveKind(Ctx, T);
4010  }
4011  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
4012  S += llvm::utostr(N);
4013}
4014
4015// FIXME: Use SmallString for accumulating string.
4016void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
4017                                            bool ExpandPointedToStructures,
4018                                            bool ExpandStructures,
4019                                            const FieldDecl *FD,
4020                                            bool OutermostType,
4021                                            bool EncodingProperty) const {
4022  if (T->getAs<BuiltinType>()) {
4023    if (FD && FD->isBitField())
4024      return EncodeBitField(this, S, T, FD);
4025    S += ObjCEncodingForPrimitiveKind(this, T);
4026    return;
4027  }
4028
4029  if (const ComplexType *CT = T->getAs<ComplexType>()) {
4030    S += 'j';
4031    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
4032                               false);
4033    return;
4034  }
4035
4036  // encoding for pointer or r3eference types.
4037  QualType PointeeTy;
4038  if (const PointerType *PT = T->getAs<PointerType>()) {
4039    if (PT->isObjCSelType()) {
4040      S += ':';
4041      return;
4042    }
4043    PointeeTy = PT->getPointeeType();
4044  }
4045  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4046    PointeeTy = RT->getPointeeType();
4047  if (!PointeeTy.isNull()) {
4048    bool isReadOnly = false;
4049    // For historical/compatibility reasons, the read-only qualifier of the
4050    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
4051    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
4052    // Also, do not emit the 'r' for anything but the outermost type!
4053    if (isa<TypedefType>(T.getTypePtr())) {
4054      if (OutermostType && T.isConstQualified()) {
4055        isReadOnly = true;
4056        S += 'r';
4057      }
4058    } else if (OutermostType) {
4059      QualType P = PointeeTy;
4060      while (P->getAs<PointerType>())
4061        P = P->getAs<PointerType>()->getPointeeType();
4062      if (P.isConstQualified()) {
4063        isReadOnly = true;
4064        S += 'r';
4065      }
4066    }
4067    if (isReadOnly) {
4068      // Another legacy compatibility encoding. Some ObjC qualifier and type
4069      // combinations need to be rearranged.
4070      // Rewrite "in const" from "nr" to "rn"
4071      if (llvm::StringRef(S).endswith("nr"))
4072        S.replace(S.end()-2, S.end(), "rn");
4073    }
4074
4075    if (PointeeTy->isCharType()) {
4076      // char pointer types should be encoded as '*' unless it is a
4077      // type that has been typedef'd to 'BOOL'.
4078      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
4079        S += '*';
4080        return;
4081      }
4082    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
4083      // GCC binary compat: Need to convert "struct objc_class *" to "#".
4084      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
4085        S += '#';
4086        return;
4087      }
4088      // GCC binary compat: Need to convert "struct objc_object *" to "@".
4089      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
4090        S += '@';
4091        return;
4092      }
4093      // fall through...
4094    }
4095    S += '^';
4096    getLegacyIntegralTypeEncoding(PointeeTy);
4097
4098    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
4099                               NULL);
4100    return;
4101  }
4102
4103  if (const ArrayType *AT =
4104      // Ignore type qualifiers etc.
4105        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
4106    if (isa<IncompleteArrayType>(AT)) {
4107      // Incomplete arrays are encoded as a pointer to the array element.
4108      S += '^';
4109
4110      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4111                                 false, ExpandStructures, FD);
4112    } else {
4113      S += '[';
4114
4115      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
4116        S += llvm::utostr(CAT->getSize().getZExtValue());
4117      else {
4118        //Variable length arrays are encoded as a regular array with 0 elements.
4119        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
4120        S += '0';
4121      }
4122
4123      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4124                                 false, ExpandStructures, FD);
4125      S += ']';
4126    }
4127    return;
4128  }
4129
4130  if (T->getAs<FunctionType>()) {
4131    S += '?';
4132    return;
4133  }
4134
4135  if (const RecordType *RTy = T->getAs<RecordType>()) {
4136    RecordDecl *RDecl = RTy->getDecl();
4137    S += RDecl->isUnion() ? '(' : '{';
4138    // Anonymous structures print as '?'
4139    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
4140      S += II->getName();
4141      if (ClassTemplateSpecializationDecl *Spec
4142          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
4143        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
4144        std::string TemplateArgsStr
4145          = TemplateSpecializationType::PrintTemplateArgumentList(
4146                                            TemplateArgs.data(),
4147                                            TemplateArgs.size(),
4148                                            (*this).PrintingPolicy);
4149
4150        S += TemplateArgsStr;
4151      }
4152    } else {
4153      S += '?';
4154    }
4155    if (ExpandStructures) {
4156      S += '=';
4157      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4158                                   FieldEnd = RDecl->field_end();
4159           Field != FieldEnd; ++Field) {
4160        if (FD) {
4161          S += '"';
4162          S += Field->getNameAsString();
4163          S += '"';
4164        }
4165
4166        // Special case bit-fields.
4167        if (Field->isBitField()) {
4168          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
4169                                     (*Field));
4170        } else {
4171          QualType qt = Field->getType();
4172          getLegacyIntegralTypeEncoding(qt);
4173          getObjCEncodingForTypeImpl(qt, S, false, true,
4174                                     FD);
4175        }
4176      }
4177    }
4178    S += RDecl->isUnion() ? ')' : '}';
4179    return;
4180  }
4181
4182  if (T->isEnumeralType()) {
4183    if (FD && FD->isBitField())
4184      EncodeBitField(this, S, T, FD);
4185    else
4186      S += 'i';
4187    return;
4188  }
4189
4190  if (T->isBlockPointerType()) {
4191    S += "@?"; // Unlike a pointer-to-function, which is "^?".
4192    return;
4193  }
4194
4195  // Ignore protocol qualifiers when mangling at this level.
4196  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
4197    T = OT->getBaseType();
4198
4199  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
4200    // @encode(class_name)
4201    ObjCInterfaceDecl *OI = OIT->getDecl();
4202    S += '{';
4203    const IdentifierInfo *II = OI->getIdentifier();
4204    S += II->getName();
4205    S += '=';
4206    llvm::SmallVector<ObjCIvarDecl*, 32> Ivars;
4207    DeepCollectObjCIvars(OI, true, Ivars);
4208    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
4209      FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
4210      if (Field->isBitField())
4211        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
4212      else
4213        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
4214    }
4215    S += '}';
4216    return;
4217  }
4218
4219  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
4220    if (OPT->isObjCIdType()) {
4221      S += '@';
4222      return;
4223    }
4224
4225    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
4226      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
4227      // Since this is a binary compatibility issue, need to consult with runtime
4228      // folks. Fortunately, this is a *very* obsure construct.
4229      S += '#';
4230      return;
4231    }
4232
4233    if (OPT->isObjCQualifiedIdType()) {
4234      getObjCEncodingForTypeImpl(getObjCIdType(), S,
4235                                 ExpandPointedToStructures,
4236                                 ExpandStructures, FD);
4237      if (FD || EncodingProperty) {
4238        // Note that we do extended encoding of protocol qualifer list
4239        // Only when doing ivar or property encoding.
4240        S += '"';
4241        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4242             E = OPT->qual_end(); I != E; ++I) {
4243          S += '<';
4244          S += (*I)->getNameAsString();
4245          S += '>';
4246        }
4247        S += '"';
4248      }
4249      return;
4250    }
4251
4252    QualType PointeeTy = OPT->getPointeeType();
4253    if (!EncodingProperty &&
4254        isa<TypedefType>(PointeeTy.getTypePtr())) {
4255      // Another historical/compatibility reason.
4256      // We encode the underlying type which comes out as
4257      // {...};
4258      S += '^';
4259      getObjCEncodingForTypeImpl(PointeeTy, S,
4260                                 false, ExpandPointedToStructures,
4261                                 NULL);
4262      return;
4263    }
4264
4265    S += '@';
4266    if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
4267      S += '"';
4268      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
4269      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4270           E = OPT->qual_end(); I != E; ++I) {
4271        S += '<';
4272        S += (*I)->getNameAsString();
4273        S += '>';
4274      }
4275      S += '"';
4276    }
4277    return;
4278  }
4279
4280  // gcc just blithely ignores member pointers.
4281  // TODO: maybe there should be a mangling for these
4282  if (T->getAs<MemberPointerType>())
4283    return;
4284
4285  if (T->isVectorType()) {
4286    // This matches gcc's encoding, even though technically it is
4287    // insufficient.
4288    // FIXME. We should do a better job than gcc.
4289    return;
4290  }
4291
4292  assert(0 && "@encode for type not implemented!");
4293}
4294
4295void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
4296                                                 std::string& S) const {
4297  if (QT & Decl::OBJC_TQ_In)
4298    S += 'n';
4299  if (QT & Decl::OBJC_TQ_Inout)
4300    S += 'N';
4301  if (QT & Decl::OBJC_TQ_Out)
4302    S += 'o';
4303  if (QT & Decl::OBJC_TQ_Bycopy)
4304    S += 'O';
4305  if (QT & Decl::OBJC_TQ_Byref)
4306    S += 'R';
4307  if (QT & Decl::OBJC_TQ_Oneway)
4308    S += 'V';
4309}
4310
4311void ASTContext::setBuiltinVaListType(QualType T) {
4312  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
4313
4314  BuiltinVaListType = T;
4315}
4316
4317void ASTContext::setObjCIdType(QualType T) {
4318  ObjCIdTypedefType = T;
4319}
4320
4321void ASTContext::setObjCSelType(QualType T) {
4322  ObjCSelTypedefType = T;
4323}
4324
4325void ASTContext::setObjCProtoType(QualType QT) {
4326  ObjCProtoType = QT;
4327}
4328
4329void ASTContext::setObjCClassType(QualType T) {
4330  ObjCClassTypedefType = T;
4331}
4332
4333void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
4334  assert(ObjCConstantStringType.isNull() &&
4335         "'NSConstantString' type already set!");
4336
4337  ObjCConstantStringType = getObjCInterfaceType(Decl);
4338}
4339
4340/// \brief Retrieve the template name that corresponds to a non-empty
4341/// lookup.
4342TemplateName
4343ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
4344                                      UnresolvedSetIterator End) const {
4345  unsigned size = End - Begin;
4346  assert(size > 1 && "set is not overloaded!");
4347
4348  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
4349                          size * sizeof(FunctionTemplateDecl*));
4350  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
4351
4352  NamedDecl **Storage = OT->getStorage();
4353  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
4354    NamedDecl *D = *I;
4355    assert(isa<FunctionTemplateDecl>(D) ||
4356           (isa<UsingShadowDecl>(D) &&
4357            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
4358    *Storage++ = D;
4359  }
4360
4361  return TemplateName(OT);
4362}
4363
4364/// \brief Retrieve the template name that represents a qualified
4365/// template name such as \c std::vector.
4366TemplateName
4367ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
4368                                     bool TemplateKeyword,
4369                                     TemplateDecl *Template) const {
4370  // FIXME: Canonicalization?
4371  llvm::FoldingSetNodeID ID;
4372  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
4373
4374  void *InsertPos = 0;
4375  QualifiedTemplateName *QTN =
4376    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4377  if (!QTN) {
4378    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
4379    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
4380  }
4381
4382  return TemplateName(QTN);
4383}
4384
4385/// \brief Retrieve the template name that represents a dependent
4386/// template name such as \c MetaFun::template apply.
4387TemplateName
4388ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4389                                     const IdentifierInfo *Name) const {
4390  assert((!NNS || NNS->isDependent()) &&
4391         "Nested name specifier must be dependent");
4392
4393  llvm::FoldingSetNodeID ID;
4394  DependentTemplateName::Profile(ID, NNS, Name);
4395
4396  void *InsertPos = 0;
4397  DependentTemplateName *QTN =
4398    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4399
4400  if (QTN)
4401    return TemplateName(QTN);
4402
4403  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4404  if (CanonNNS == NNS) {
4405    QTN = new (*this,4) DependentTemplateName(NNS, Name);
4406  } else {
4407    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
4408    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
4409    DependentTemplateName *CheckQTN =
4410      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4411    assert(!CheckQTN && "Dependent type name canonicalization broken");
4412    (void)CheckQTN;
4413  }
4414
4415  DependentTemplateNames.InsertNode(QTN, InsertPos);
4416  return TemplateName(QTN);
4417}
4418
4419/// \brief Retrieve the template name that represents a dependent
4420/// template name such as \c MetaFun::template operator+.
4421TemplateName
4422ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4423                                     OverloadedOperatorKind Operator) const {
4424  assert((!NNS || NNS->isDependent()) &&
4425         "Nested name specifier must be dependent");
4426
4427  llvm::FoldingSetNodeID ID;
4428  DependentTemplateName::Profile(ID, NNS, Operator);
4429
4430  void *InsertPos = 0;
4431  DependentTemplateName *QTN
4432    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4433
4434  if (QTN)
4435    return TemplateName(QTN);
4436
4437  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4438  if (CanonNNS == NNS) {
4439    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
4440  } else {
4441    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
4442    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
4443
4444    DependentTemplateName *CheckQTN
4445      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4446    assert(!CheckQTN && "Dependent template name canonicalization broken");
4447    (void)CheckQTN;
4448  }
4449
4450  DependentTemplateNames.InsertNode(QTN, InsertPos);
4451  return TemplateName(QTN);
4452}
4453
4454TemplateName
4455ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
4456                                       const TemplateArgument &ArgPack) const {
4457  ASTContext &Self = const_cast<ASTContext &>(*this);
4458  llvm::FoldingSetNodeID ID;
4459  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
4460
4461  void *InsertPos = 0;
4462  SubstTemplateTemplateParmPackStorage *Subst
4463    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
4464
4465  if (!Subst) {
4466    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Self, Param,
4467                                                           ArgPack.pack_size(),
4468                                                         ArgPack.pack_begin());
4469    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
4470  }
4471
4472  return TemplateName(Subst);
4473}
4474
4475/// getFromTargetType - Given one of the integer types provided by
4476/// TargetInfo, produce the corresponding type. The unsigned @p Type
4477/// is actually a value of type @c TargetInfo::IntType.
4478CanQualType ASTContext::getFromTargetType(unsigned Type) const {
4479  switch (Type) {
4480  case TargetInfo::NoInt: return CanQualType();
4481  case TargetInfo::SignedShort: return ShortTy;
4482  case TargetInfo::UnsignedShort: return UnsignedShortTy;
4483  case TargetInfo::SignedInt: return IntTy;
4484  case TargetInfo::UnsignedInt: return UnsignedIntTy;
4485  case TargetInfo::SignedLong: return LongTy;
4486  case TargetInfo::UnsignedLong: return UnsignedLongTy;
4487  case TargetInfo::SignedLongLong: return LongLongTy;
4488  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
4489  }
4490
4491  assert(false && "Unhandled TargetInfo::IntType value");
4492  return CanQualType();
4493}
4494
4495//===----------------------------------------------------------------------===//
4496//                        Type Predicates.
4497//===----------------------------------------------------------------------===//
4498
4499/// isObjCNSObjectType - Return true if this is an NSObject object using
4500/// NSObject attribute on a c-style pointer type.
4501/// FIXME - Make it work directly on types.
4502/// FIXME: Move to Type.
4503///
4504bool ASTContext::isObjCNSObjectType(QualType Ty) const {
4505  if (const TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
4506    if (TypedefDecl *TD = TDT->getDecl())
4507      if (TD->getAttr<ObjCNSObjectAttr>())
4508        return true;
4509  }
4510  return false;
4511}
4512
4513/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
4514/// garbage collection attribute.
4515///
4516Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
4517  if (getLangOptions().getGCMode() == LangOptions::NonGC)
4518    return Qualifiers::GCNone;
4519
4520  assert(getLangOptions().ObjC1);
4521  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
4522
4523  // Default behaviour under objective-C's gc is for ObjC pointers
4524  // (or pointers to them) be treated as though they were declared
4525  // as __strong.
4526  if (GCAttrs == Qualifiers::GCNone) {
4527    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4528      return Qualifiers::Strong;
4529    else if (Ty->isPointerType())
4530      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
4531  } else {
4532    // It's not valid to set GC attributes on anything that isn't a
4533    // pointer.
4534#ifndef NDEBUG
4535    QualType CT = Ty->getCanonicalTypeInternal();
4536    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
4537      CT = AT->getElementType();
4538    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
4539#endif
4540  }
4541  return GCAttrs;
4542}
4543
4544//===----------------------------------------------------------------------===//
4545//                        Type Compatibility Testing
4546//===----------------------------------------------------------------------===//
4547
4548/// areCompatVectorTypes - Return true if the two specified vector types are
4549/// compatible.
4550static bool areCompatVectorTypes(const VectorType *LHS,
4551                                 const VectorType *RHS) {
4552  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
4553  return LHS->getElementType() == RHS->getElementType() &&
4554         LHS->getNumElements() == RHS->getNumElements();
4555}
4556
4557bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
4558                                          QualType SecondVec) {
4559  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
4560  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
4561
4562  if (hasSameUnqualifiedType(FirstVec, SecondVec))
4563    return true;
4564
4565  // Treat Neon vector types and most AltiVec vector types as if they are the
4566  // equivalent GCC vector types.
4567  const VectorType *First = FirstVec->getAs<VectorType>();
4568  const VectorType *Second = SecondVec->getAs<VectorType>();
4569  if (First->getNumElements() == Second->getNumElements() &&
4570      hasSameType(First->getElementType(), Second->getElementType()) &&
4571      First->getVectorKind() != VectorType::AltiVecPixel &&
4572      First->getVectorKind() != VectorType::AltiVecBool &&
4573      Second->getVectorKind() != VectorType::AltiVecPixel &&
4574      Second->getVectorKind() != VectorType::AltiVecBool)
4575    return true;
4576
4577  return false;
4578}
4579
4580//===----------------------------------------------------------------------===//
4581// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
4582//===----------------------------------------------------------------------===//
4583
4584/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
4585/// inheritance hierarchy of 'rProto'.
4586bool
4587ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
4588                                           ObjCProtocolDecl *rProto) const {
4589  if (lProto == rProto)
4590    return true;
4591  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
4592       E = rProto->protocol_end(); PI != E; ++PI)
4593    if (ProtocolCompatibleWithProtocol(lProto, *PI))
4594      return true;
4595  return false;
4596}
4597
4598/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
4599/// return true if lhs's protocols conform to rhs's protocol; false
4600/// otherwise.
4601bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
4602  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
4603    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
4604  return false;
4605}
4606
4607/// ObjCQualifiedClassTypesAreCompatible - compare  Class<p,...> and
4608/// Class<p1, ...>.
4609bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
4610                                                      QualType rhs) {
4611  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
4612  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
4613  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
4614
4615  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4616       E = lhsQID->qual_end(); I != E; ++I) {
4617    bool match = false;
4618    ObjCProtocolDecl *lhsProto = *I;
4619    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
4620         E = rhsOPT->qual_end(); J != E; ++J) {
4621      ObjCProtocolDecl *rhsProto = *J;
4622      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
4623        match = true;
4624        break;
4625      }
4626    }
4627    if (!match)
4628      return false;
4629  }
4630  return true;
4631}
4632
4633/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
4634/// ObjCQualifiedIDType.
4635bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
4636                                                   bool compare) {
4637  // Allow id<P..> and an 'id' or void* type in all cases.
4638  if (lhs->isVoidPointerType() ||
4639      lhs->isObjCIdType() || lhs->isObjCClassType())
4640    return true;
4641  else if (rhs->isVoidPointerType() ||
4642           rhs->isObjCIdType() || rhs->isObjCClassType())
4643    return true;
4644
4645  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
4646    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
4647
4648    if (!rhsOPT) return false;
4649
4650    if (rhsOPT->qual_empty()) {
4651      // If the RHS is a unqualified interface pointer "NSString*",
4652      // make sure we check the class hierarchy.
4653      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4654        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4655             E = lhsQID->qual_end(); I != E; ++I) {
4656          // when comparing an id<P> on lhs with a static type on rhs,
4657          // see if static class implements all of id's protocols, directly or
4658          // through its super class and categories.
4659          if (!rhsID->ClassImplementsProtocol(*I, true))
4660            return false;
4661        }
4662      }
4663      // If there are no qualifiers and no interface, we have an 'id'.
4664      return true;
4665    }
4666    // Both the right and left sides have qualifiers.
4667    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4668         E = lhsQID->qual_end(); I != E; ++I) {
4669      ObjCProtocolDecl *lhsProto = *I;
4670      bool match = false;
4671
4672      // when comparing an id<P> on lhs with a static type on rhs,
4673      // see if static class implements all of id's protocols, directly or
4674      // through its super class and categories.
4675      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
4676           E = rhsOPT->qual_end(); J != E; ++J) {
4677        ObjCProtocolDecl *rhsProto = *J;
4678        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4679            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4680          match = true;
4681          break;
4682        }
4683      }
4684      // If the RHS is a qualified interface pointer "NSString<P>*",
4685      // make sure we check the class hierarchy.
4686      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4687        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4688             E = lhsQID->qual_end(); I != E; ++I) {
4689          // when comparing an id<P> on lhs with a static type on rhs,
4690          // see if static class implements all of id's protocols, directly or
4691          // through its super class and categories.
4692          if (rhsID->ClassImplementsProtocol(*I, true)) {
4693            match = true;
4694            break;
4695          }
4696        }
4697      }
4698      if (!match)
4699        return false;
4700    }
4701
4702    return true;
4703  }
4704
4705  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
4706  assert(rhsQID && "One of the LHS/RHS should be id<x>");
4707
4708  if (const ObjCObjectPointerType *lhsOPT =
4709        lhs->getAsObjCInterfacePointerType()) {
4710    // If both the right and left sides have qualifiers.
4711    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
4712         E = lhsOPT->qual_end(); I != E; ++I) {
4713      ObjCProtocolDecl *lhsProto = *I;
4714      bool match = false;
4715
4716      // when comparing an id<P> on rhs with a static type on lhs,
4717      // see if static class implements all of id's protocols, directly or
4718      // through its super class and categories.
4719      // First, lhs protocols in the qualifier list must be found, direct
4720      // or indirect in rhs's qualifier list or it is a mismatch.
4721      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
4722           E = rhsQID->qual_end(); J != E; ++J) {
4723        ObjCProtocolDecl *rhsProto = *J;
4724        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4725            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4726          match = true;
4727          break;
4728        }
4729      }
4730      if (!match)
4731        return false;
4732    }
4733
4734    // Static class's protocols, or its super class or category protocols
4735    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
4736    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
4737      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
4738      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
4739      // This is rather dubious but matches gcc's behavior. If lhs has
4740      // no type qualifier and its class has no static protocol(s)
4741      // assume that it is mismatch.
4742      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
4743        return false;
4744      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
4745           LHSInheritedProtocols.begin(),
4746           E = LHSInheritedProtocols.end(); I != E; ++I) {
4747        bool match = false;
4748        ObjCProtocolDecl *lhsProto = (*I);
4749        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
4750             E = rhsQID->qual_end(); J != E; ++J) {
4751          ObjCProtocolDecl *rhsProto = *J;
4752          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4753              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4754            match = true;
4755            break;
4756          }
4757        }
4758        if (!match)
4759          return false;
4760      }
4761    }
4762    return true;
4763  }
4764  return false;
4765}
4766
4767/// canAssignObjCInterfaces - Return true if the two interface types are
4768/// compatible for assignment from RHS to LHS.  This handles validation of any
4769/// protocol qualifiers on the LHS or RHS.
4770///
4771bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
4772                                         const ObjCObjectPointerType *RHSOPT) {
4773  const ObjCObjectType* LHS = LHSOPT->getObjectType();
4774  const ObjCObjectType* RHS = RHSOPT->getObjectType();
4775
4776  // If either type represents the built-in 'id' or 'Class' types, return true.
4777  if (LHS->isObjCUnqualifiedIdOrClass() ||
4778      RHS->isObjCUnqualifiedIdOrClass())
4779    return true;
4780
4781  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
4782    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4783                                             QualType(RHSOPT,0),
4784                                             false);
4785
4786  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
4787    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
4788                                                QualType(RHSOPT,0));
4789
4790  // If we have 2 user-defined types, fall into that path.
4791  if (LHS->getInterface() && RHS->getInterface())
4792    return canAssignObjCInterfaces(LHS, RHS);
4793
4794  return false;
4795}
4796
4797/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
4798/// for providing type-safty for objective-c pointers used to pass/return
4799/// arguments in block literals. When passed as arguments, passing 'A*' where
4800/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
4801/// not OK. For the return type, the opposite is not OK.
4802bool ASTContext::canAssignObjCInterfacesInBlockPointer(
4803                                         const ObjCObjectPointerType *LHSOPT,
4804                                         const ObjCObjectPointerType *RHSOPT) {
4805  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
4806    return true;
4807
4808  if (LHSOPT->isObjCBuiltinType()) {
4809    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
4810  }
4811
4812  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
4813    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4814                                             QualType(RHSOPT,0),
4815                                             false);
4816
4817  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4818  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4819  if (LHS && RHS)  { // We have 2 user-defined types.
4820    if (LHS != RHS) {
4821      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
4822        return false;
4823      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
4824        return true;
4825    }
4826    else
4827      return true;
4828  }
4829  return false;
4830}
4831
4832/// getIntersectionOfProtocols - This routine finds the intersection of set
4833/// of protocols inherited from two distinct objective-c pointer objects.
4834/// It is used to build composite qualifier list of the composite type of
4835/// the conditional expression involving two objective-c pointer objects.
4836static
4837void getIntersectionOfProtocols(ASTContext &Context,
4838                                const ObjCObjectPointerType *LHSOPT,
4839                                const ObjCObjectPointerType *RHSOPT,
4840      llvm::SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
4841
4842  const ObjCObjectType* LHS = LHSOPT->getObjectType();
4843  const ObjCObjectType* RHS = RHSOPT->getObjectType();
4844  assert(LHS->getInterface() && "LHS must have an interface base");
4845  assert(RHS->getInterface() && "RHS must have an interface base");
4846
4847  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
4848  unsigned LHSNumProtocols = LHS->getNumProtocols();
4849  if (LHSNumProtocols > 0)
4850    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
4851  else {
4852    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
4853    Context.CollectInheritedProtocols(LHS->getInterface(),
4854                                      LHSInheritedProtocols);
4855    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
4856                                LHSInheritedProtocols.end());
4857  }
4858
4859  unsigned RHSNumProtocols = RHS->getNumProtocols();
4860  if (RHSNumProtocols > 0) {
4861    ObjCProtocolDecl **RHSProtocols =
4862      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
4863    for (unsigned i = 0; i < RHSNumProtocols; ++i)
4864      if (InheritedProtocolSet.count(RHSProtocols[i]))
4865        IntersectionOfProtocols.push_back(RHSProtocols[i]);
4866  }
4867  else {
4868    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
4869    Context.CollectInheritedProtocols(RHS->getInterface(),
4870                                      RHSInheritedProtocols);
4871    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
4872         RHSInheritedProtocols.begin(),
4873         E = RHSInheritedProtocols.end(); I != E; ++I)
4874      if (InheritedProtocolSet.count((*I)))
4875        IntersectionOfProtocols.push_back((*I));
4876  }
4877}
4878
4879/// areCommonBaseCompatible - Returns common base class of the two classes if
4880/// one found. Note that this is O'2 algorithm. But it will be called as the
4881/// last type comparison in a ?-exp of ObjC pointer types before a
4882/// warning is issued. So, its invokation is extremely rare.
4883QualType ASTContext::areCommonBaseCompatible(
4884                                          const ObjCObjectPointerType *Lptr,
4885                                          const ObjCObjectPointerType *Rptr) {
4886  const ObjCObjectType *LHS = Lptr->getObjectType();
4887  const ObjCObjectType *RHS = Rptr->getObjectType();
4888  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
4889  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
4890  if (!LDecl || !RDecl)
4891    return QualType();
4892
4893  while ((LDecl = LDecl->getSuperClass())) {
4894    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
4895    if (canAssignObjCInterfaces(LHS, RHS)) {
4896      llvm::SmallVector<ObjCProtocolDecl *, 8> Protocols;
4897      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
4898
4899      QualType Result = QualType(LHS, 0);
4900      if (!Protocols.empty())
4901        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
4902      Result = getObjCObjectPointerType(Result);
4903      return Result;
4904    }
4905  }
4906
4907  return QualType();
4908}
4909
4910bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
4911                                         const ObjCObjectType *RHS) {
4912  assert(LHS->getInterface() && "LHS is not an interface type");
4913  assert(RHS->getInterface() && "RHS is not an interface type");
4914
4915  // Verify that the base decls are compatible: the RHS must be a subclass of
4916  // the LHS.
4917  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
4918    return false;
4919
4920  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
4921  // protocol qualified at all, then we are good.
4922  if (LHS->getNumProtocols() == 0)
4923    return true;
4924
4925  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
4926  // isn't a superset.
4927  if (RHS->getNumProtocols() == 0)
4928    return true;  // FIXME: should return false!
4929
4930  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
4931                                     LHSPE = LHS->qual_end();
4932       LHSPI != LHSPE; LHSPI++) {
4933    bool RHSImplementsProtocol = false;
4934
4935    // If the RHS doesn't implement the protocol on the left, the types
4936    // are incompatible.
4937    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
4938                                       RHSPE = RHS->qual_end();
4939         RHSPI != RHSPE; RHSPI++) {
4940      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
4941        RHSImplementsProtocol = true;
4942        break;
4943      }
4944    }
4945    // FIXME: For better diagnostics, consider passing back the protocol name.
4946    if (!RHSImplementsProtocol)
4947      return false;
4948  }
4949  // The RHS implements all protocols listed on the LHS.
4950  return true;
4951}
4952
4953bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
4954  // get the "pointed to" types
4955  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
4956  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
4957
4958  if (!LHSOPT || !RHSOPT)
4959    return false;
4960
4961  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
4962         canAssignObjCInterfaces(RHSOPT, LHSOPT);
4963}
4964
4965bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
4966  return canAssignObjCInterfaces(
4967                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
4968                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
4969}
4970
4971/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
4972/// both shall have the identically qualified version of a compatible type.
4973/// C99 6.2.7p1: Two types have compatible types if their types are the
4974/// same. See 6.7.[2,3,5] for additional rules.
4975bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
4976                                    bool CompareUnqualified) {
4977  if (getLangOptions().CPlusPlus)
4978    return hasSameType(LHS, RHS);
4979
4980  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
4981}
4982
4983bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
4984  return !mergeTypes(LHS, RHS, true).isNull();
4985}
4986
4987/// mergeTransparentUnionType - if T is a transparent union type and a member
4988/// of T is compatible with SubType, return the merged type, else return
4989/// QualType()
4990QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
4991                                               bool OfBlockPointer,
4992                                               bool Unqualified) {
4993  if (const RecordType *UT = T->getAsUnionType()) {
4994    RecordDecl *UD = UT->getDecl();
4995    if (UD->hasAttr<TransparentUnionAttr>()) {
4996      for (RecordDecl::field_iterator it = UD->field_begin(),
4997           itend = UD->field_end(); it != itend; ++it) {
4998        QualType ET = it->getType().getUnqualifiedType();
4999        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
5000        if (!MT.isNull())
5001          return MT;
5002      }
5003    }
5004  }
5005
5006  return QualType();
5007}
5008
5009/// mergeFunctionArgumentTypes - merge two types which appear as function
5010/// argument types
5011QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
5012                                                bool OfBlockPointer,
5013                                                bool Unqualified) {
5014  // GNU extension: two types are compatible if they appear as a function
5015  // argument, one of the types is a transparent union type and the other
5016  // type is compatible with a union member
5017  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
5018                                              Unqualified);
5019  if (!lmerge.isNull())
5020    return lmerge;
5021
5022  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
5023                                              Unqualified);
5024  if (!rmerge.isNull())
5025    return rmerge;
5026
5027  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
5028}
5029
5030QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
5031                                        bool OfBlockPointer,
5032                                        bool Unqualified) {
5033  const FunctionType *lbase = lhs->getAs<FunctionType>();
5034  const FunctionType *rbase = rhs->getAs<FunctionType>();
5035  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
5036  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
5037  bool allLTypes = true;
5038  bool allRTypes = true;
5039
5040  // Check return type
5041  QualType retType;
5042  if (OfBlockPointer) {
5043    QualType RHS = rbase->getResultType();
5044    QualType LHS = lbase->getResultType();
5045    bool UnqualifiedResult = Unqualified;
5046    if (!UnqualifiedResult)
5047      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
5048    retType = mergeTypes(RHS, LHS, true, UnqualifiedResult);
5049  }
5050  else
5051    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
5052                         Unqualified);
5053  if (retType.isNull()) return QualType();
5054
5055  if (Unqualified)
5056    retType = retType.getUnqualifiedType();
5057
5058  CanQualType LRetType = getCanonicalType(lbase->getResultType());
5059  CanQualType RRetType = getCanonicalType(rbase->getResultType());
5060  if (Unqualified) {
5061    LRetType = LRetType.getUnqualifiedType();
5062    RRetType = RRetType.getUnqualifiedType();
5063  }
5064
5065  if (getCanonicalType(retType) != LRetType)
5066    allLTypes = false;
5067  if (getCanonicalType(retType) != RRetType)
5068    allRTypes = false;
5069
5070  // FIXME: double check this
5071  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
5072  //                           rbase->getRegParmAttr() != 0 &&
5073  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
5074  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
5075  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
5076
5077  // Compatible functions must have compatible calling conventions
5078  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
5079    return QualType();
5080
5081  // Regparm is part of the calling convention.
5082  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
5083    return QualType();
5084
5085  // It's noreturn if either type is.
5086  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
5087  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
5088  if (NoReturn != lbaseInfo.getNoReturn())
5089    allLTypes = false;
5090  if (NoReturn != rbaseInfo.getNoReturn())
5091    allRTypes = false;
5092
5093  FunctionType::ExtInfo einfo(NoReturn,
5094                              lbaseInfo.getRegParm(),
5095                              lbaseInfo.getCC());
5096
5097  if (lproto && rproto) { // two C99 style function prototypes
5098    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
5099           "C++ shouldn't be here");
5100    unsigned lproto_nargs = lproto->getNumArgs();
5101    unsigned rproto_nargs = rproto->getNumArgs();
5102
5103    // Compatible functions must have the same number of arguments
5104    if (lproto_nargs != rproto_nargs)
5105      return QualType();
5106
5107    // Variadic and non-variadic functions aren't compatible
5108    if (lproto->isVariadic() != rproto->isVariadic())
5109      return QualType();
5110
5111    if (lproto->getTypeQuals() != rproto->getTypeQuals())
5112      return QualType();
5113
5114    // Check argument compatibility
5115    llvm::SmallVector<QualType, 10> types;
5116    for (unsigned i = 0; i < lproto_nargs; i++) {
5117      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
5118      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
5119      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
5120                                                    OfBlockPointer,
5121                                                    Unqualified);
5122      if (argtype.isNull()) return QualType();
5123
5124      if (Unqualified)
5125        argtype = argtype.getUnqualifiedType();
5126
5127      types.push_back(argtype);
5128      if (Unqualified) {
5129        largtype = largtype.getUnqualifiedType();
5130        rargtype = rargtype.getUnqualifiedType();
5131      }
5132
5133      if (getCanonicalType(argtype) != getCanonicalType(largtype))
5134        allLTypes = false;
5135      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
5136        allRTypes = false;
5137    }
5138    if (allLTypes) return lhs;
5139    if (allRTypes) return rhs;
5140
5141    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
5142    EPI.ExtInfo = einfo;
5143    return getFunctionType(retType, types.begin(), types.size(), EPI);
5144  }
5145
5146  if (lproto) allRTypes = false;
5147  if (rproto) allLTypes = false;
5148
5149  const FunctionProtoType *proto = lproto ? lproto : rproto;
5150  if (proto) {
5151    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
5152    if (proto->isVariadic()) return QualType();
5153    // Check that the types are compatible with the types that
5154    // would result from default argument promotions (C99 6.7.5.3p15).
5155    // The only types actually affected are promotable integer
5156    // types and floats, which would be passed as a different
5157    // type depending on whether the prototype is visible.
5158    unsigned proto_nargs = proto->getNumArgs();
5159    for (unsigned i = 0; i < proto_nargs; ++i) {
5160      QualType argTy = proto->getArgType(i);
5161
5162      // Look at the promotion type of enum types, since that is the type used
5163      // to pass enum values.
5164      if (const EnumType *Enum = argTy->getAs<EnumType>())
5165        argTy = Enum->getDecl()->getPromotionType();
5166
5167      if (argTy->isPromotableIntegerType() ||
5168          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
5169        return QualType();
5170    }
5171
5172    if (allLTypes) return lhs;
5173    if (allRTypes) return rhs;
5174
5175    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
5176    EPI.ExtInfo = einfo;
5177    return getFunctionType(retType, proto->arg_type_begin(),
5178                           proto->getNumArgs(), EPI);
5179  }
5180
5181  if (allLTypes) return lhs;
5182  if (allRTypes) return rhs;
5183  return getFunctionNoProtoType(retType, einfo);
5184}
5185
5186QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
5187                                bool OfBlockPointer,
5188                                bool Unqualified) {
5189  // C++ [expr]: If an expression initially has the type "reference to T", the
5190  // type is adjusted to "T" prior to any further analysis, the expression
5191  // designates the object or function denoted by the reference, and the
5192  // expression is an lvalue unless the reference is an rvalue reference and
5193  // the expression is a function call (possibly inside parentheses).
5194  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
5195  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
5196
5197  if (Unqualified) {
5198    LHS = LHS.getUnqualifiedType();
5199    RHS = RHS.getUnqualifiedType();
5200  }
5201
5202  QualType LHSCan = getCanonicalType(LHS),
5203           RHSCan = getCanonicalType(RHS);
5204
5205  // If two types are identical, they are compatible.
5206  if (LHSCan == RHSCan)
5207    return LHS;
5208
5209  // If the qualifiers are different, the types aren't compatible... mostly.
5210  Qualifiers LQuals = LHSCan.getLocalQualifiers();
5211  Qualifiers RQuals = RHSCan.getLocalQualifiers();
5212  if (LQuals != RQuals) {
5213    // If any of these qualifiers are different, we have a type
5214    // mismatch.
5215    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
5216        LQuals.getAddressSpace() != RQuals.getAddressSpace())
5217      return QualType();
5218
5219    // Exactly one GC qualifier difference is allowed: __strong is
5220    // okay if the other type has no GC qualifier but is an Objective
5221    // C object pointer (i.e. implicitly strong by default).  We fix
5222    // this by pretending that the unqualified type was actually
5223    // qualified __strong.
5224    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
5225    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
5226    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
5227
5228    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
5229      return QualType();
5230
5231    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
5232      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
5233    }
5234    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
5235      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
5236    }
5237    return QualType();
5238  }
5239
5240  // Okay, qualifiers are equal.
5241
5242  Type::TypeClass LHSClass = LHSCan->getTypeClass();
5243  Type::TypeClass RHSClass = RHSCan->getTypeClass();
5244
5245  // We want to consider the two function types to be the same for these
5246  // comparisons, just force one to the other.
5247  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
5248  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
5249
5250  // Same as above for arrays
5251  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
5252    LHSClass = Type::ConstantArray;
5253  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
5254    RHSClass = Type::ConstantArray;
5255
5256  // ObjCInterfaces are just specialized ObjCObjects.
5257  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
5258  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
5259
5260  // Canonicalize ExtVector -> Vector.
5261  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
5262  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
5263
5264  // If the canonical type classes don't match.
5265  if (LHSClass != RHSClass) {
5266    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
5267    // a signed integer type, or an unsigned integer type.
5268    // Compatibility is based on the underlying type, not the promotion
5269    // type.
5270    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
5271      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
5272        return RHS;
5273    }
5274    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
5275      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
5276        return LHS;
5277    }
5278
5279    return QualType();
5280  }
5281
5282  // The canonical type classes match.
5283  switch (LHSClass) {
5284#define TYPE(Class, Base)
5285#define ABSTRACT_TYPE(Class, Base)
5286#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
5287#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
5288#define DEPENDENT_TYPE(Class, Base) case Type::Class:
5289#include "clang/AST/TypeNodes.def"
5290    assert(false && "Non-canonical and dependent types shouldn't get here");
5291    return QualType();
5292
5293  case Type::LValueReference:
5294  case Type::RValueReference:
5295  case Type::MemberPointer:
5296    assert(false && "C++ should never be in mergeTypes");
5297    return QualType();
5298
5299  case Type::ObjCInterface:
5300  case Type::IncompleteArray:
5301  case Type::VariableArray:
5302  case Type::FunctionProto:
5303  case Type::ExtVector:
5304    assert(false && "Types are eliminated above");
5305    return QualType();
5306
5307  case Type::Pointer:
5308  {
5309    // Merge two pointer types, while trying to preserve typedef info
5310    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
5311    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
5312    if (Unqualified) {
5313      LHSPointee = LHSPointee.getUnqualifiedType();
5314      RHSPointee = RHSPointee.getUnqualifiedType();
5315    }
5316    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
5317                                     Unqualified);
5318    if (ResultType.isNull()) return QualType();
5319    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5320      return LHS;
5321    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5322      return RHS;
5323    return getPointerType(ResultType);
5324  }
5325  case Type::BlockPointer:
5326  {
5327    // Merge two block pointer types, while trying to preserve typedef info
5328    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
5329    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
5330    if (Unqualified) {
5331      LHSPointee = LHSPointee.getUnqualifiedType();
5332      RHSPointee = RHSPointee.getUnqualifiedType();
5333    }
5334    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
5335                                     Unqualified);
5336    if (ResultType.isNull()) return QualType();
5337    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5338      return LHS;
5339    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5340      return RHS;
5341    return getBlockPointerType(ResultType);
5342  }
5343  case Type::ConstantArray:
5344  {
5345    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
5346    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
5347    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
5348      return QualType();
5349
5350    QualType LHSElem = getAsArrayType(LHS)->getElementType();
5351    QualType RHSElem = getAsArrayType(RHS)->getElementType();
5352    if (Unqualified) {
5353      LHSElem = LHSElem.getUnqualifiedType();
5354      RHSElem = RHSElem.getUnqualifiedType();
5355    }
5356
5357    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
5358    if (ResultType.isNull()) return QualType();
5359    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
5360      return LHS;
5361    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
5362      return RHS;
5363    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
5364                                          ArrayType::ArraySizeModifier(), 0);
5365    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
5366                                          ArrayType::ArraySizeModifier(), 0);
5367    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
5368    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
5369    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
5370      return LHS;
5371    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
5372      return RHS;
5373    if (LVAT) {
5374      // FIXME: This isn't correct! But tricky to implement because
5375      // the array's size has to be the size of LHS, but the type
5376      // has to be different.
5377      return LHS;
5378    }
5379    if (RVAT) {
5380      // FIXME: This isn't correct! But tricky to implement because
5381      // the array's size has to be the size of RHS, but the type
5382      // has to be different.
5383      return RHS;
5384    }
5385    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
5386    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
5387    return getIncompleteArrayType(ResultType,
5388                                  ArrayType::ArraySizeModifier(), 0);
5389  }
5390  case Type::FunctionNoProto:
5391    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
5392  case Type::Record:
5393  case Type::Enum:
5394    return QualType();
5395  case Type::Builtin:
5396    // Only exactly equal builtin types are compatible, which is tested above.
5397    return QualType();
5398  case Type::Complex:
5399    // Distinct complex types are incompatible.
5400    return QualType();
5401  case Type::Vector:
5402    // FIXME: The merged type should be an ExtVector!
5403    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
5404                             RHSCan->getAs<VectorType>()))
5405      return LHS;
5406    return QualType();
5407  case Type::ObjCObject: {
5408    // Check if the types are assignment compatible.
5409    // FIXME: This should be type compatibility, e.g. whether
5410    // "LHS x; RHS x;" at global scope is legal.
5411    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
5412    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
5413    if (canAssignObjCInterfaces(LHSIface, RHSIface))
5414      return LHS;
5415
5416    return QualType();
5417  }
5418  case Type::ObjCObjectPointer: {
5419    if (OfBlockPointer) {
5420      if (canAssignObjCInterfacesInBlockPointer(
5421                                          LHS->getAs<ObjCObjectPointerType>(),
5422                                          RHS->getAs<ObjCObjectPointerType>()))
5423      return LHS;
5424      return QualType();
5425    }
5426    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
5427                                RHS->getAs<ObjCObjectPointerType>()))
5428      return LHS;
5429
5430    return QualType();
5431    }
5432  }
5433
5434  return QualType();
5435}
5436
5437/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
5438/// 'RHS' attributes and returns the merged version; including for function
5439/// return types.
5440QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
5441  QualType LHSCan = getCanonicalType(LHS),
5442  RHSCan = getCanonicalType(RHS);
5443  // If two types are identical, they are compatible.
5444  if (LHSCan == RHSCan)
5445    return LHS;
5446  if (RHSCan->isFunctionType()) {
5447    if (!LHSCan->isFunctionType())
5448      return QualType();
5449    QualType OldReturnType =
5450      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
5451    QualType NewReturnType =
5452      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
5453    QualType ResReturnType =
5454      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
5455    if (ResReturnType.isNull())
5456      return QualType();
5457    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
5458      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
5459      // In either case, use OldReturnType to build the new function type.
5460      const FunctionType *F = LHS->getAs<FunctionType>();
5461      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
5462        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5463        EPI.ExtInfo = getFunctionExtInfo(LHS);
5464        QualType ResultType
5465          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
5466                            FPT->getNumArgs(), EPI);
5467        return ResultType;
5468      }
5469    }
5470    return QualType();
5471  }
5472
5473  // If the qualifiers are different, the types can still be merged.
5474  Qualifiers LQuals = LHSCan.getLocalQualifiers();
5475  Qualifiers RQuals = RHSCan.getLocalQualifiers();
5476  if (LQuals != RQuals) {
5477    // If any of these qualifiers are different, we have a type mismatch.
5478    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
5479        LQuals.getAddressSpace() != RQuals.getAddressSpace())
5480      return QualType();
5481
5482    // Exactly one GC qualifier difference is allowed: __strong is
5483    // okay if the other type has no GC qualifier but is an Objective
5484    // C object pointer (i.e. implicitly strong by default).  We fix
5485    // this by pretending that the unqualified type was actually
5486    // qualified __strong.
5487    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
5488    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
5489    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
5490
5491    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
5492      return QualType();
5493
5494    if (GC_L == Qualifiers::Strong)
5495      return LHS;
5496    if (GC_R == Qualifiers::Strong)
5497      return RHS;
5498    return QualType();
5499  }
5500
5501  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
5502    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
5503    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
5504    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
5505    if (ResQT == LHSBaseQT)
5506      return LHS;
5507    if (ResQT == RHSBaseQT)
5508      return RHS;
5509  }
5510  return QualType();
5511}
5512
5513//===----------------------------------------------------------------------===//
5514//                         Integer Predicates
5515//===----------------------------------------------------------------------===//
5516
5517unsigned ASTContext::getIntWidth(QualType T) const {
5518  if (const EnumType *ET = dyn_cast<EnumType>(T))
5519    T = ET->getDecl()->getIntegerType();
5520  if (T->isBooleanType())
5521    return 1;
5522  // For builtin types, just use the standard type sizing method
5523  return (unsigned)getTypeSize(T);
5524}
5525
5526QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
5527  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
5528
5529  // Turn <4 x signed int> -> <4 x unsigned int>
5530  if (const VectorType *VTy = T->getAs<VectorType>())
5531    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
5532                         VTy->getNumElements(), VTy->getVectorKind());
5533
5534  // For enums, we return the unsigned version of the base type.
5535  if (const EnumType *ETy = T->getAs<EnumType>())
5536    T = ETy->getDecl()->getIntegerType();
5537
5538  const BuiltinType *BTy = T->getAs<BuiltinType>();
5539  assert(BTy && "Unexpected signed integer type");
5540  switch (BTy->getKind()) {
5541  case BuiltinType::Char_S:
5542  case BuiltinType::SChar:
5543    return UnsignedCharTy;
5544  case BuiltinType::Short:
5545    return UnsignedShortTy;
5546  case BuiltinType::Int:
5547    return UnsignedIntTy;
5548  case BuiltinType::Long:
5549    return UnsignedLongTy;
5550  case BuiltinType::LongLong:
5551    return UnsignedLongLongTy;
5552  case BuiltinType::Int128:
5553    return UnsignedInt128Ty;
5554  default:
5555    assert(0 && "Unexpected signed integer type");
5556    return QualType();
5557  }
5558}
5559
5560ExternalASTSource::~ExternalASTSource() { }
5561
5562void ExternalASTSource::PrintStats() { }
5563
5564ASTMutationListener::~ASTMutationListener() { }
5565
5566
5567//===----------------------------------------------------------------------===//
5568//                          Builtin Type Computation
5569//===----------------------------------------------------------------------===//
5570
5571/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
5572/// pointer over the consumed characters.  This returns the resultant type.  If
5573/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
5574/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
5575/// a vector of "i*".
5576///
5577/// RequiresICE is filled in on return to indicate whether the value is required
5578/// to be an Integer Constant Expression.
5579static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
5580                                  ASTContext::GetBuiltinTypeError &Error,
5581                                  bool &RequiresICE,
5582                                  bool AllowTypeModifiers) {
5583  // Modifiers.
5584  int HowLong = 0;
5585  bool Signed = false, Unsigned = false;
5586  RequiresICE = false;
5587
5588  // Read the prefixed modifiers first.
5589  bool Done = false;
5590  while (!Done) {
5591    switch (*Str++) {
5592    default: Done = true; --Str; break;
5593    case 'I':
5594      RequiresICE = true;
5595      break;
5596    case 'S':
5597      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
5598      assert(!Signed && "Can't use 'S' modifier multiple times!");
5599      Signed = true;
5600      break;
5601    case 'U':
5602      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
5603      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
5604      Unsigned = true;
5605      break;
5606    case 'L':
5607      assert(HowLong <= 2 && "Can't have LLLL modifier");
5608      ++HowLong;
5609      break;
5610    }
5611  }
5612
5613  QualType Type;
5614
5615  // Read the base type.
5616  switch (*Str++) {
5617  default: assert(0 && "Unknown builtin type letter!");
5618  case 'v':
5619    assert(HowLong == 0 && !Signed && !Unsigned &&
5620           "Bad modifiers used with 'v'!");
5621    Type = Context.VoidTy;
5622    break;
5623  case 'f':
5624    assert(HowLong == 0 && !Signed && !Unsigned &&
5625           "Bad modifiers used with 'f'!");
5626    Type = Context.FloatTy;
5627    break;
5628  case 'd':
5629    assert(HowLong < 2 && !Signed && !Unsigned &&
5630           "Bad modifiers used with 'd'!");
5631    if (HowLong)
5632      Type = Context.LongDoubleTy;
5633    else
5634      Type = Context.DoubleTy;
5635    break;
5636  case 's':
5637    assert(HowLong == 0 && "Bad modifiers used with 's'!");
5638    if (Unsigned)
5639      Type = Context.UnsignedShortTy;
5640    else
5641      Type = Context.ShortTy;
5642    break;
5643  case 'i':
5644    if (HowLong == 3)
5645      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
5646    else if (HowLong == 2)
5647      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
5648    else if (HowLong == 1)
5649      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
5650    else
5651      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
5652    break;
5653  case 'c':
5654    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
5655    if (Signed)
5656      Type = Context.SignedCharTy;
5657    else if (Unsigned)
5658      Type = Context.UnsignedCharTy;
5659    else
5660      Type = Context.CharTy;
5661    break;
5662  case 'b': // boolean
5663    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
5664    Type = Context.BoolTy;
5665    break;
5666  case 'z':  // size_t.
5667    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
5668    Type = Context.getSizeType();
5669    break;
5670  case 'F':
5671    Type = Context.getCFConstantStringType();
5672    break;
5673  case 'G':
5674    Type = Context.getObjCIdType();
5675    break;
5676  case 'H':
5677    Type = Context.getObjCSelType();
5678    break;
5679  case 'a':
5680    Type = Context.getBuiltinVaListType();
5681    assert(!Type.isNull() && "builtin va list type not initialized!");
5682    break;
5683  case 'A':
5684    // This is a "reference" to a va_list; however, what exactly
5685    // this means depends on how va_list is defined. There are two
5686    // different kinds of va_list: ones passed by value, and ones
5687    // passed by reference.  An example of a by-value va_list is
5688    // x86, where va_list is a char*. An example of by-ref va_list
5689    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
5690    // we want this argument to be a char*&; for x86-64, we want
5691    // it to be a __va_list_tag*.
5692    Type = Context.getBuiltinVaListType();
5693    assert(!Type.isNull() && "builtin va list type not initialized!");
5694    if (Type->isArrayType())
5695      Type = Context.getArrayDecayedType(Type);
5696    else
5697      Type = Context.getLValueReferenceType(Type);
5698    break;
5699  case 'V': {
5700    char *End;
5701    unsigned NumElements = strtoul(Str, &End, 10);
5702    assert(End != Str && "Missing vector size");
5703    Str = End;
5704
5705    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
5706                                             RequiresICE, false);
5707    assert(!RequiresICE && "Can't require vector ICE");
5708
5709    // TODO: No way to make AltiVec vectors in builtins yet.
5710    Type = Context.getVectorType(ElementType, NumElements,
5711                                 VectorType::GenericVector);
5712    break;
5713  }
5714  case 'X': {
5715    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
5716                                             false);
5717    assert(!RequiresICE && "Can't require complex ICE");
5718    Type = Context.getComplexType(ElementType);
5719    break;
5720  }
5721  case 'P':
5722    Type = Context.getFILEType();
5723    if (Type.isNull()) {
5724      Error = ASTContext::GE_Missing_stdio;
5725      return QualType();
5726    }
5727    break;
5728  case 'J':
5729    if (Signed)
5730      Type = Context.getsigjmp_bufType();
5731    else
5732      Type = Context.getjmp_bufType();
5733
5734    if (Type.isNull()) {
5735      Error = ASTContext::GE_Missing_setjmp;
5736      return QualType();
5737    }
5738    break;
5739  }
5740
5741  // If there are modifiers and if we're allowed to parse them, go for it.
5742  Done = !AllowTypeModifiers;
5743  while (!Done) {
5744    switch (char c = *Str++) {
5745    default: Done = true; --Str; break;
5746    case '*':
5747    case '&': {
5748      // Both pointers and references can have their pointee types
5749      // qualified with an address space.
5750      char *End;
5751      unsigned AddrSpace = strtoul(Str, &End, 10);
5752      if (End != Str && AddrSpace != 0) {
5753        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
5754        Str = End;
5755      }
5756      if (c == '*')
5757        Type = Context.getPointerType(Type);
5758      else
5759        Type = Context.getLValueReferenceType(Type);
5760      break;
5761    }
5762    // FIXME: There's no way to have a built-in with an rvalue ref arg.
5763    case 'C':
5764      Type = Type.withConst();
5765      break;
5766    case 'D':
5767      Type = Context.getVolatileType(Type);
5768      break;
5769    }
5770  }
5771
5772  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
5773         "Integer constant 'I' type must be an integer");
5774
5775  return Type;
5776}
5777
5778/// GetBuiltinType - Return the type for the specified builtin.
5779QualType ASTContext::GetBuiltinType(unsigned Id,
5780                                    GetBuiltinTypeError &Error,
5781                                    unsigned *IntegerConstantArgs) const {
5782  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
5783
5784  llvm::SmallVector<QualType, 8> ArgTypes;
5785
5786  bool RequiresICE = false;
5787  Error = GE_None;
5788  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
5789                                       RequiresICE, true);
5790  if (Error != GE_None)
5791    return QualType();
5792
5793  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
5794
5795  while (TypeStr[0] && TypeStr[0] != '.') {
5796    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
5797    if (Error != GE_None)
5798      return QualType();
5799
5800    // If this argument is required to be an IntegerConstantExpression and the
5801    // caller cares, fill in the bitmask we return.
5802    if (RequiresICE && IntegerConstantArgs)
5803      *IntegerConstantArgs |= 1 << ArgTypes.size();
5804
5805    // Do array -> pointer decay.  The builtin should use the decayed type.
5806    if (Ty->isArrayType())
5807      Ty = getArrayDecayedType(Ty);
5808
5809    ArgTypes.push_back(Ty);
5810  }
5811
5812  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
5813         "'.' should only occur at end of builtin type list!");
5814
5815  FunctionType::ExtInfo EI;
5816  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
5817
5818  bool Variadic = (TypeStr[0] == '.');
5819
5820  // We really shouldn't be making a no-proto type here, especially in C++.
5821  if (ArgTypes.empty() && Variadic)
5822    return getFunctionNoProtoType(ResType, EI);
5823
5824  FunctionProtoType::ExtProtoInfo EPI;
5825  EPI.ExtInfo = EI;
5826  EPI.Variadic = Variadic;
5827
5828  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
5829}
5830
5831GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
5832  GVALinkage External = GVA_StrongExternal;
5833
5834  Linkage L = FD->getLinkage();
5835  switch (L) {
5836  case NoLinkage:
5837  case InternalLinkage:
5838  case UniqueExternalLinkage:
5839    return GVA_Internal;
5840
5841  case ExternalLinkage:
5842    switch (FD->getTemplateSpecializationKind()) {
5843    case TSK_Undeclared:
5844    case TSK_ExplicitSpecialization:
5845      External = GVA_StrongExternal;
5846      break;
5847
5848    case TSK_ExplicitInstantiationDefinition:
5849      return GVA_ExplicitTemplateInstantiation;
5850
5851    case TSK_ExplicitInstantiationDeclaration:
5852    case TSK_ImplicitInstantiation:
5853      External = GVA_TemplateInstantiation;
5854      break;
5855    }
5856  }
5857
5858  if (!FD->isInlined())
5859    return External;
5860
5861  if (!getLangOptions().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
5862    // GNU or C99 inline semantics. Determine whether this symbol should be
5863    // externally visible.
5864    if (FD->isInlineDefinitionExternallyVisible())
5865      return External;
5866
5867    // C99 inline semantics, where the symbol is not externally visible.
5868    return GVA_C99Inline;
5869  }
5870
5871  // C++0x [temp.explicit]p9:
5872  //   [ Note: The intent is that an inline function that is the subject of
5873  //   an explicit instantiation declaration will still be implicitly
5874  //   instantiated when used so that the body can be considered for
5875  //   inlining, but that no out-of-line copy of the inline function would be
5876  //   generated in the translation unit. -- end note ]
5877  if (FD->getTemplateSpecializationKind()
5878                                       == TSK_ExplicitInstantiationDeclaration)
5879    return GVA_C99Inline;
5880
5881  return GVA_CXXInline;
5882}
5883
5884GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
5885  // If this is a static data member, compute the kind of template
5886  // specialization. Otherwise, this variable is not part of a
5887  // template.
5888  TemplateSpecializationKind TSK = TSK_Undeclared;
5889  if (VD->isStaticDataMember())
5890    TSK = VD->getTemplateSpecializationKind();
5891
5892  Linkage L = VD->getLinkage();
5893  if (L == ExternalLinkage && getLangOptions().CPlusPlus &&
5894      VD->getType()->getLinkage() == UniqueExternalLinkage)
5895    L = UniqueExternalLinkage;
5896
5897  switch (L) {
5898  case NoLinkage:
5899  case InternalLinkage:
5900  case UniqueExternalLinkage:
5901    return GVA_Internal;
5902
5903  case ExternalLinkage:
5904    switch (TSK) {
5905    case TSK_Undeclared:
5906    case TSK_ExplicitSpecialization:
5907      return GVA_StrongExternal;
5908
5909    case TSK_ExplicitInstantiationDeclaration:
5910      llvm_unreachable("Variable should not be instantiated");
5911      // Fall through to treat this like any other instantiation.
5912
5913    case TSK_ExplicitInstantiationDefinition:
5914      return GVA_ExplicitTemplateInstantiation;
5915
5916    case TSK_ImplicitInstantiation:
5917      return GVA_TemplateInstantiation;
5918    }
5919  }
5920
5921  return GVA_StrongExternal;
5922}
5923
5924bool ASTContext::DeclMustBeEmitted(const Decl *D) {
5925  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
5926    if (!VD->isFileVarDecl())
5927      return false;
5928  } else if (!isa<FunctionDecl>(D))
5929    return false;
5930
5931  // Weak references don't produce any output by themselves.
5932  if (D->hasAttr<WeakRefAttr>())
5933    return false;
5934
5935  // Aliases and used decls are required.
5936  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
5937    return true;
5938
5939  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5940    // Forward declarations aren't required.
5941    if (!FD->isThisDeclarationADefinition())
5942      return false;
5943
5944    // Constructors and destructors are required.
5945    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
5946      return true;
5947
5948    // The key function for a class is required.
5949    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5950      const CXXRecordDecl *RD = MD->getParent();
5951      if (MD->isOutOfLine() && RD->isDynamicClass()) {
5952        const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
5953        if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
5954          return true;
5955      }
5956    }
5957
5958    GVALinkage Linkage = GetGVALinkageForFunction(FD);
5959
5960    // static, static inline, always_inline, and extern inline functions can
5961    // always be deferred.  Normal inline functions can be deferred in C99/C++.
5962    // Implicit template instantiations can also be deferred in C++.
5963    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
5964        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
5965      return false;
5966    return true;
5967  }
5968
5969  const VarDecl *VD = cast<VarDecl>(D);
5970  assert(VD->isFileVarDecl() && "Expected file scoped var");
5971
5972  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
5973    return false;
5974
5975  // Structs that have non-trivial constructors or destructors are required.
5976
5977  // FIXME: Handle references.
5978  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
5979    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
5980      if (RD->hasDefinition() &&
5981          (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()))
5982        return true;
5983    }
5984  }
5985
5986  GVALinkage L = GetGVALinkageForVariable(VD);
5987  if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
5988    if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
5989      return false;
5990  }
5991
5992  return true;
5993}
5994
5995CallingConv ASTContext::getDefaultMethodCallConv() {
5996  // Pass through to the C++ ABI object
5997  return ABI->getDefaultMethodCallConv();
5998}
5999
6000bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
6001  // Pass through to the C++ ABI object
6002  return ABI->isNearlyEmpty(RD);
6003}
6004
6005MangleContext *ASTContext::createMangleContext() {
6006  switch (Target.getCXXABI()) {
6007  case CXXABI_ARM:
6008  case CXXABI_Itanium:
6009    return createItaniumMangleContext(*this, getDiagnostics());
6010  case CXXABI_Microsoft:
6011    return createMicrosoftMangleContext(*this, getDiagnostics());
6012  }
6013  assert(0 && "Unsupported ABI");
6014  return 0;
6015}
6016
6017CXXABI::~CXXABI() {}
6018