ASTContext.cpp revision 16e20cce43385001f33f8e3f90ee345609c805d1
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExternalASTSource.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/Basic/Builtins.h"
24#include "clang/Basic/SourceManager.h"
25#include "clang/Basic/TargetInfo.h"
26#include "llvm/ADT/SmallString.h"
27#include "llvm/ADT/StringExtras.h"
28#include "llvm/Support/MathExtras.h"
29#include "llvm/Support/raw_ostream.h"
30#include "RecordLayoutBuilder.h"
31
32using namespace clang;
33
34enum FloatingRank {
35  FloatRank, DoubleRank, LongDoubleRank
36};
37
38ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
39                       const TargetInfo &t,
40                       IdentifierTable &idents, SelectorTable &sels,
41                       Builtin::Context &builtins,
42                       bool FreeMem, unsigned size_reserve) :
43  GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
44  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0), jmp_bufDecl(0),
45  sigjmp_bufDecl(0), BlockDescriptorType(0), BlockDescriptorExtendedType(0),
46  SourceMgr(SM), LangOpts(LOpts),
47  LoadedExternalComments(false), FreeMemory(FreeMem), Target(t),
48  Idents(idents), Selectors(sels),
49  BuiltinInfo(builtins), ExternalSource(0), PrintingPolicy(LOpts) {
50  ObjCIdRedefinitionType = QualType();
51  ObjCClassRedefinitionType = QualType();
52  ObjCSelRedefinitionType = QualType();
53  if (size_reserve > 0) Types.reserve(size_reserve);
54  TUDecl = TranslationUnitDecl::Create(*this);
55  InitBuiltinTypes();
56}
57
58ASTContext::~ASTContext() {
59  if (FreeMemory) {
60    // Deallocate all the types.
61    while (!Types.empty()) {
62      Types.back()->Destroy(*this);
63      Types.pop_back();
64    }
65
66    for (llvm::FoldingSet<ExtQuals>::iterator
67         I = ExtQualNodes.begin(), E = ExtQualNodes.end(); I != E; ) {
68      // Increment in loop to prevent using deallocated memory.
69      Deallocate(&*I++);
70    }
71  }
72
73  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
74       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
75    // Increment in loop to prevent using deallocated memory.
76    ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
77    delete R;
78  }
79
80  for (llvm::DenseMap<const ObjCContainerDecl*,
81                      const ASTRecordLayout*>::iterator
82       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; ) {
83    // Increment in loop to prevent using deallocated memory.
84    ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
85    delete R;
86  }
87
88  // Destroy nested-name-specifiers.
89  for (llvm::FoldingSet<NestedNameSpecifier>::iterator
90         NNS = NestedNameSpecifiers.begin(),
91         NNSEnd = NestedNameSpecifiers.end();
92       NNS != NNSEnd; ) {
93    // Increment in loop to prevent using deallocated memory.
94    (*NNS++).Destroy(*this);
95  }
96
97  if (GlobalNestedNameSpecifier)
98    GlobalNestedNameSpecifier->Destroy(*this);
99
100  TUDecl->Destroy(*this);
101}
102
103void
104ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
105  ExternalSource.reset(Source.take());
106}
107
108void ASTContext::PrintStats() const {
109  fprintf(stderr, "*** AST Context Stats:\n");
110  fprintf(stderr, "  %d types total.\n", (int)Types.size());
111
112  unsigned counts[] = {
113#define TYPE(Name, Parent) 0,
114#define ABSTRACT_TYPE(Name, Parent)
115#include "clang/AST/TypeNodes.def"
116    0 // Extra
117  };
118
119  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
120    Type *T = Types[i];
121    counts[(unsigned)T->getTypeClass()]++;
122  }
123
124  unsigned Idx = 0;
125  unsigned TotalBytes = 0;
126#define TYPE(Name, Parent)                                              \
127  if (counts[Idx])                                                      \
128    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
129  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
130  ++Idx;
131#define ABSTRACT_TYPE(Name, Parent)
132#include "clang/AST/TypeNodes.def"
133
134  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
135
136  if (ExternalSource.get()) {
137    fprintf(stderr, "\n");
138    ExternalSource->PrintStats();
139  }
140}
141
142
143void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
144  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
145  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
146  Types.push_back(Ty);
147}
148
149void ASTContext::InitBuiltinTypes() {
150  assert(VoidTy.isNull() && "Context reinitialized?");
151
152  // C99 6.2.5p19.
153  InitBuiltinType(VoidTy,              BuiltinType::Void);
154
155  // C99 6.2.5p2.
156  InitBuiltinType(BoolTy,              BuiltinType::Bool);
157  // C99 6.2.5p3.
158  if (LangOpts.CharIsSigned)
159    InitBuiltinType(CharTy,            BuiltinType::Char_S);
160  else
161    InitBuiltinType(CharTy,            BuiltinType::Char_U);
162  // C99 6.2.5p4.
163  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
164  InitBuiltinType(ShortTy,             BuiltinType::Short);
165  InitBuiltinType(IntTy,               BuiltinType::Int);
166  InitBuiltinType(LongTy,              BuiltinType::Long);
167  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
168
169  // C99 6.2.5p6.
170  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
171  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
172  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
173  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
174  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
175
176  // C99 6.2.5p10.
177  InitBuiltinType(FloatTy,             BuiltinType::Float);
178  InitBuiltinType(DoubleTy,            BuiltinType::Double);
179  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
180
181  // GNU extension, 128-bit integers.
182  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
183  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
184
185  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
186    InitBuiltinType(WCharTy,           BuiltinType::WChar);
187  else // C99
188    WCharTy = getFromTargetType(Target.getWCharType());
189
190  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
191    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
192  else // C99
193    Char16Ty = getFromTargetType(Target.getChar16Type());
194
195  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
196    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
197  else // C99
198    Char32Ty = getFromTargetType(Target.getChar32Type());
199
200  // Placeholder type for functions.
201  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
202
203  // Placeholder type for type-dependent expressions whose type is
204  // completely unknown. No code should ever check a type against
205  // DependentTy and users should never see it; however, it is here to
206  // help diagnose failures to properly check for type-dependent
207  // expressions.
208  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
209
210  // Placeholder type for C++0x auto declarations whose real type has
211  // not yet been deduced.
212  InitBuiltinType(UndeducedAutoTy, BuiltinType::UndeducedAuto);
213
214  // C99 6.2.5p11.
215  FloatComplexTy      = getComplexType(FloatTy);
216  DoubleComplexTy     = getComplexType(DoubleTy);
217  LongDoubleComplexTy = getComplexType(LongDoubleTy);
218
219  BuiltinVaListType = QualType();
220
221  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
222  ObjCIdTypedefType = QualType();
223  ObjCClassTypedefType = QualType();
224  ObjCSelTypedefType = QualType();
225
226  // Builtin types for 'id', 'Class', and 'SEL'.
227  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
228  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
229  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
230
231  ObjCConstantStringType = QualType();
232
233  // void * type
234  VoidPtrTy = getPointerType(VoidTy);
235
236  // nullptr type (C++0x 2.14.7)
237  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
238}
239
240MemberSpecializationInfo *
241ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
242  assert(Var->isStaticDataMember() && "Not a static data member");
243  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
244    = InstantiatedFromStaticDataMember.find(Var);
245  if (Pos == InstantiatedFromStaticDataMember.end())
246    return 0;
247
248  return Pos->second;
249}
250
251void
252ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
253                                                TemplateSpecializationKind TSK) {
254  assert(Inst->isStaticDataMember() && "Not a static data member");
255  assert(Tmpl->isStaticDataMember() && "Not a static data member");
256  assert(!InstantiatedFromStaticDataMember[Inst] &&
257         "Already noted what static data member was instantiated from");
258  InstantiatedFromStaticDataMember[Inst]
259    = new (*this) MemberSpecializationInfo(Tmpl, TSK);
260}
261
262NamedDecl *
263ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
264  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
265    = InstantiatedFromUsingDecl.find(UUD);
266  if (Pos == InstantiatedFromUsingDecl.end())
267    return 0;
268
269  return Pos->second;
270}
271
272void
273ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
274  assert((isa<UsingDecl>(Pattern) ||
275          isa<UnresolvedUsingValueDecl>(Pattern) ||
276          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
277         "pattern decl is not a using decl");
278  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
279  InstantiatedFromUsingDecl[Inst] = Pattern;
280}
281
282UsingShadowDecl *
283ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
284  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
285    = InstantiatedFromUsingShadowDecl.find(Inst);
286  if (Pos == InstantiatedFromUsingShadowDecl.end())
287    return 0;
288
289  return Pos->second;
290}
291
292void
293ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
294                                               UsingShadowDecl *Pattern) {
295  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
296  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
297}
298
299FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
300  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
301    = InstantiatedFromUnnamedFieldDecl.find(Field);
302  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
303    return 0;
304
305  return Pos->second;
306}
307
308void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
309                                                     FieldDecl *Tmpl) {
310  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
311  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
312  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
313         "Already noted what unnamed field was instantiated from");
314
315  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
316}
317
318namespace {
319  class BeforeInTranslationUnit
320    : std::binary_function<SourceRange, SourceRange, bool> {
321    SourceManager *SourceMgr;
322
323  public:
324    explicit BeforeInTranslationUnit(SourceManager *SM) : SourceMgr(SM) { }
325
326    bool operator()(SourceRange X, SourceRange Y) {
327      return SourceMgr->isBeforeInTranslationUnit(X.getBegin(), Y.getBegin());
328    }
329  };
330}
331
332/// \brief Determine whether the given comment is a Doxygen-style comment.
333///
334/// \param Start the start of the comment text.
335///
336/// \param End the end of the comment text.
337///
338/// \param Member whether we want to check whether this is a member comment
339/// (which requires a < after the Doxygen-comment delimiter). Otherwise,
340/// we only return true when we find a non-member comment.
341static bool
342isDoxygenComment(SourceManager &SourceMgr, SourceRange Comment,
343                 bool Member = false) {
344  const char *BufferStart
345    = SourceMgr.getBufferData(SourceMgr.getFileID(Comment.getBegin())).first;
346  const char *Start = BufferStart + SourceMgr.getFileOffset(Comment.getBegin());
347  const char* End = BufferStart + SourceMgr.getFileOffset(Comment.getEnd());
348
349  if (End - Start < 4)
350    return false;
351
352  assert(Start[0] == '/' && "Not a comment?");
353  if (Start[1] == '*' && !(Start[2] == '!' || Start[2] == '*'))
354    return false;
355  if (Start[1] == '/' && !(Start[2] == '!' || Start[2] == '/'))
356    return false;
357
358  return (Start[3] == '<') == Member;
359}
360
361/// \brief Retrieve the comment associated with the given declaration, if
362/// it has one.
363const char *ASTContext::getCommentForDecl(const Decl *D) {
364  if (!D)
365    return 0;
366
367  // Check whether we have cached a comment string for this declaration
368  // already.
369  llvm::DenseMap<const Decl *, std::string>::iterator Pos
370    = DeclComments.find(D);
371  if (Pos != DeclComments.end())
372    return Pos->second.c_str();
373
374  // If we have an external AST source and have not yet loaded comments from
375  // that source, do so now.
376  if (ExternalSource && !LoadedExternalComments) {
377    std::vector<SourceRange> LoadedComments;
378    ExternalSource->ReadComments(LoadedComments);
379
380    if (!LoadedComments.empty())
381      Comments.insert(Comments.begin(), LoadedComments.begin(),
382                      LoadedComments.end());
383
384    LoadedExternalComments = true;
385  }
386
387  // If there are no comments anywhere, we won't find anything.
388  if (Comments.empty())
389    return 0;
390
391  // If the declaration doesn't map directly to a location in a file, we
392  // can't find the comment.
393  SourceLocation DeclStartLoc = D->getLocStart();
394  if (DeclStartLoc.isInvalid() || !DeclStartLoc.isFileID())
395    return 0;
396
397  // Find the comment that occurs just before this declaration.
398  std::vector<SourceRange>::iterator LastComment
399    = std::lower_bound(Comments.begin(), Comments.end(),
400                       SourceRange(DeclStartLoc),
401                       BeforeInTranslationUnit(&SourceMgr));
402
403  // Decompose the location for the start of the declaration and find the
404  // beginning of the file buffer.
405  std::pair<FileID, unsigned> DeclStartDecomp
406    = SourceMgr.getDecomposedLoc(DeclStartLoc);
407  const char *FileBufferStart
408    = SourceMgr.getBufferData(DeclStartDecomp.first).first;
409
410  // First check whether we have a comment for a member.
411  if (LastComment != Comments.end() &&
412      !isa<TagDecl>(D) && !isa<NamespaceDecl>(D) &&
413      isDoxygenComment(SourceMgr, *LastComment, true)) {
414    std::pair<FileID, unsigned> LastCommentEndDecomp
415      = SourceMgr.getDecomposedLoc(LastComment->getEnd());
416    if (DeclStartDecomp.first == LastCommentEndDecomp.first &&
417        SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second)
418          == SourceMgr.getLineNumber(LastCommentEndDecomp.first,
419                                     LastCommentEndDecomp.second)) {
420      // The Doxygen member comment comes after the declaration starts and
421      // is on the same line and in the same file as the declaration. This
422      // is the comment we want.
423      std::string &Result = DeclComments[D];
424      Result.append(FileBufferStart +
425                      SourceMgr.getFileOffset(LastComment->getBegin()),
426                    FileBufferStart + LastCommentEndDecomp.second + 1);
427      return Result.c_str();
428    }
429  }
430
431  if (LastComment == Comments.begin())
432    return 0;
433  --LastComment;
434
435  // Decompose the end of the comment.
436  std::pair<FileID, unsigned> LastCommentEndDecomp
437    = SourceMgr.getDecomposedLoc(LastComment->getEnd());
438
439  // If the comment and the declaration aren't in the same file, then they
440  // aren't related.
441  if (DeclStartDecomp.first != LastCommentEndDecomp.first)
442    return 0;
443
444  // Check that we actually have a Doxygen comment.
445  if (!isDoxygenComment(SourceMgr, *LastComment))
446    return 0;
447
448  // Compute the starting line for the declaration and for the end of the
449  // comment (this is expensive).
450  unsigned DeclStartLine
451    = SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second);
452  unsigned CommentEndLine
453    = SourceMgr.getLineNumber(LastCommentEndDecomp.first,
454                              LastCommentEndDecomp.second);
455
456  // If the comment does not end on the line prior to the declaration, then
457  // the comment is not associated with the declaration at all.
458  if (CommentEndLine + 1 != DeclStartLine)
459    return 0;
460
461  // We have a comment, but there may be more comments on the previous lines.
462  // Keep looking so long as the comments are still Doxygen comments and are
463  // still adjacent.
464  unsigned ExpectedLine
465    = SourceMgr.getSpellingLineNumber(LastComment->getBegin()) - 1;
466  std::vector<SourceRange>::iterator FirstComment = LastComment;
467  while (FirstComment != Comments.begin()) {
468    // Look at the previous comment
469    --FirstComment;
470    std::pair<FileID, unsigned> Decomp
471      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
472
473    // If this previous comment is in a different file, we're done.
474    if (Decomp.first != DeclStartDecomp.first) {
475      ++FirstComment;
476      break;
477    }
478
479    // If this comment is not a Doxygen comment, we're done.
480    if (!isDoxygenComment(SourceMgr, *FirstComment)) {
481      ++FirstComment;
482      break;
483    }
484
485    // If the line number is not what we expected, we're done.
486    unsigned Line = SourceMgr.getLineNumber(Decomp.first, Decomp.second);
487    if (Line != ExpectedLine) {
488      ++FirstComment;
489      break;
490    }
491
492    // Set the next expected line number.
493    ExpectedLine
494      = SourceMgr.getSpellingLineNumber(FirstComment->getBegin()) - 1;
495  }
496
497  // The iterator range [FirstComment, LastComment] contains all of the
498  // BCPL comments that, together, are associated with this declaration.
499  // Form a single comment block string for this declaration that concatenates
500  // all of these comments.
501  std::string &Result = DeclComments[D];
502  while (FirstComment != LastComment) {
503    std::pair<FileID, unsigned> DecompStart
504      = SourceMgr.getDecomposedLoc(FirstComment->getBegin());
505    std::pair<FileID, unsigned> DecompEnd
506      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
507    Result.append(FileBufferStart + DecompStart.second,
508                  FileBufferStart + DecompEnd.second + 1);
509    ++FirstComment;
510  }
511
512  // Append the last comment line.
513  Result.append(FileBufferStart +
514                  SourceMgr.getFileOffset(LastComment->getBegin()),
515                FileBufferStart + LastCommentEndDecomp.second + 1);
516  return Result.c_str();
517}
518
519//===----------------------------------------------------------------------===//
520//                         Type Sizing and Analysis
521//===----------------------------------------------------------------------===//
522
523/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
524/// scalar floating point type.
525const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
526  const BuiltinType *BT = T->getAs<BuiltinType>();
527  assert(BT && "Not a floating point type!");
528  switch (BT->getKind()) {
529  default: assert(0 && "Not a floating point type!");
530  case BuiltinType::Float:      return Target.getFloatFormat();
531  case BuiltinType::Double:     return Target.getDoubleFormat();
532  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
533  }
534}
535
536/// getDeclAlignInBytes - Return a conservative estimate of the alignment of the
537/// specified decl.  Note that bitfields do not have a valid alignment, so
538/// this method will assert on them.
539/// If @p RefAsPointee, references are treated like their underlying type
540/// (for alignof), else they're treated like pointers (for CodeGen).
541unsigned ASTContext::getDeclAlignInBytes(const Decl *D, bool RefAsPointee) {
542  unsigned Align = Target.getCharWidth();
543
544  if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
545    Align = std::max(Align, AA->getMaxAlignment());
546
547  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
548    QualType T = VD->getType();
549    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
550      if (RefAsPointee)
551        T = RT->getPointeeType();
552      else
553        T = getPointerType(RT->getPointeeType());
554    }
555    if (!T->isIncompleteType() && !T->isFunctionType()) {
556      // Incomplete or function types default to 1.
557      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
558        T = cast<ArrayType>(T)->getElementType();
559
560      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
561    }
562  }
563
564  return Align / Target.getCharWidth();
565}
566
567/// getTypeSize - Return the size of the specified type, in bits.  This method
568/// does not work on incomplete types.
569///
570/// FIXME: Pointers into different addr spaces could have different sizes and
571/// alignment requirements: getPointerInfo should take an AddrSpace, this
572/// should take a QualType, &c.
573std::pair<uint64_t, unsigned>
574ASTContext::getTypeInfo(const Type *T) {
575  uint64_t Width=0;
576  unsigned Align=8;
577  switch (T->getTypeClass()) {
578#define TYPE(Class, Base)
579#define ABSTRACT_TYPE(Class, Base)
580#define NON_CANONICAL_TYPE(Class, Base)
581#define DEPENDENT_TYPE(Class, Base) case Type::Class:
582#include "clang/AST/TypeNodes.def"
583    assert(false && "Should not see dependent types");
584    break;
585
586  case Type::FunctionNoProto:
587  case Type::FunctionProto:
588    // GCC extension: alignof(function) = 32 bits
589    Width = 0;
590    Align = 32;
591    break;
592
593  case Type::IncompleteArray:
594  case Type::VariableArray:
595    Width = 0;
596    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
597    break;
598
599  case Type::ConstantArray: {
600    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
601
602    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
603    Width = EltInfo.first*CAT->getSize().getZExtValue();
604    Align = EltInfo.second;
605    break;
606  }
607  case Type::ExtVector:
608  case Type::Vector: {
609    const VectorType *VT = cast<VectorType>(T);
610    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
611    Width = EltInfo.first*VT->getNumElements();
612    Align = Width;
613    // If the alignment is not a power of 2, round up to the next power of 2.
614    // This happens for non-power-of-2 length vectors.
615    if (VT->getNumElements() & (VT->getNumElements()-1)) {
616      Align = llvm::NextPowerOf2(Align);
617      Width = llvm::RoundUpToAlignment(Width, Align);
618    }
619    break;
620  }
621
622  case Type::Builtin:
623    switch (cast<BuiltinType>(T)->getKind()) {
624    default: assert(0 && "Unknown builtin type!");
625    case BuiltinType::Void:
626      // GCC extension: alignof(void) = 8 bits.
627      Width = 0;
628      Align = 8;
629      break;
630
631    case BuiltinType::Bool:
632      Width = Target.getBoolWidth();
633      Align = Target.getBoolAlign();
634      break;
635    case BuiltinType::Char_S:
636    case BuiltinType::Char_U:
637    case BuiltinType::UChar:
638    case BuiltinType::SChar:
639      Width = Target.getCharWidth();
640      Align = Target.getCharAlign();
641      break;
642    case BuiltinType::WChar:
643      Width = Target.getWCharWidth();
644      Align = Target.getWCharAlign();
645      break;
646    case BuiltinType::Char16:
647      Width = Target.getChar16Width();
648      Align = Target.getChar16Align();
649      break;
650    case BuiltinType::Char32:
651      Width = Target.getChar32Width();
652      Align = Target.getChar32Align();
653      break;
654    case BuiltinType::UShort:
655    case BuiltinType::Short:
656      Width = Target.getShortWidth();
657      Align = Target.getShortAlign();
658      break;
659    case BuiltinType::UInt:
660    case BuiltinType::Int:
661      Width = Target.getIntWidth();
662      Align = Target.getIntAlign();
663      break;
664    case BuiltinType::ULong:
665    case BuiltinType::Long:
666      Width = Target.getLongWidth();
667      Align = Target.getLongAlign();
668      break;
669    case BuiltinType::ULongLong:
670    case BuiltinType::LongLong:
671      Width = Target.getLongLongWidth();
672      Align = Target.getLongLongAlign();
673      break;
674    case BuiltinType::Int128:
675    case BuiltinType::UInt128:
676      Width = 128;
677      Align = 128; // int128_t is 128-bit aligned on all targets.
678      break;
679    case BuiltinType::Float:
680      Width = Target.getFloatWidth();
681      Align = Target.getFloatAlign();
682      break;
683    case BuiltinType::Double:
684      Width = Target.getDoubleWidth();
685      Align = Target.getDoubleAlign();
686      break;
687    case BuiltinType::LongDouble:
688      Width = Target.getLongDoubleWidth();
689      Align = Target.getLongDoubleAlign();
690      break;
691    case BuiltinType::NullPtr:
692      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
693      Align = Target.getPointerAlign(0); //   == sizeof(void*)
694      break;
695    }
696    break;
697  case Type::ObjCObjectPointer:
698    Width = Target.getPointerWidth(0);
699    Align = Target.getPointerAlign(0);
700    break;
701  case Type::BlockPointer: {
702    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
703    Width = Target.getPointerWidth(AS);
704    Align = Target.getPointerAlign(AS);
705    break;
706  }
707  case Type::LValueReference:
708  case Type::RValueReference: {
709    // alignof and sizeof should never enter this code path here, so we go
710    // the pointer route.
711    unsigned AS = cast<ReferenceType>(T)->getPointeeType().getAddressSpace();
712    Width = Target.getPointerWidth(AS);
713    Align = Target.getPointerAlign(AS);
714    break;
715  }
716  case Type::Pointer: {
717    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
718    Width = Target.getPointerWidth(AS);
719    Align = Target.getPointerAlign(AS);
720    break;
721  }
722  case Type::MemberPointer: {
723    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
724    std::pair<uint64_t, unsigned> PtrDiffInfo =
725      getTypeInfo(getPointerDiffType());
726    Width = PtrDiffInfo.first;
727    if (Pointee->isFunctionType())
728      Width *= 2;
729    Align = PtrDiffInfo.second;
730    break;
731  }
732  case Type::Complex: {
733    // Complex types have the same alignment as their elements, but twice the
734    // size.
735    std::pair<uint64_t, unsigned> EltInfo =
736      getTypeInfo(cast<ComplexType>(T)->getElementType());
737    Width = EltInfo.first*2;
738    Align = EltInfo.second;
739    break;
740  }
741  case Type::ObjCInterface: {
742    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
743    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
744    Width = Layout.getSize();
745    Align = Layout.getAlignment();
746    break;
747  }
748  case Type::Record:
749  case Type::Enum: {
750    const TagType *TT = cast<TagType>(T);
751
752    if (TT->getDecl()->isInvalidDecl()) {
753      Width = 1;
754      Align = 1;
755      break;
756    }
757
758    if (const EnumType *ET = dyn_cast<EnumType>(TT))
759      return getTypeInfo(ET->getDecl()->getIntegerType());
760
761    const RecordType *RT = cast<RecordType>(TT);
762    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
763    Width = Layout.getSize();
764    Align = Layout.getAlignment();
765    break;
766  }
767
768  case Type::SubstTemplateTypeParm:
769    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
770                       getReplacementType().getTypePtr());
771
772  case Type::Elaborated:
773    return getTypeInfo(cast<ElaboratedType>(T)->getUnderlyingType()
774                         .getTypePtr());
775
776  case Type::Typedef: {
777    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
778    if (const AlignedAttr *Aligned = Typedef->getAttr<AlignedAttr>()) {
779      Align = std::max(Aligned->getMaxAlignment(),
780                       getTypeAlign(Typedef->getUnderlyingType().getTypePtr()));
781      Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
782    } else
783      return getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
784    break;
785  }
786
787  case Type::TypeOfExpr:
788    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
789                         .getTypePtr());
790
791  case Type::TypeOf:
792    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
793
794  case Type::Decltype:
795    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
796                        .getTypePtr());
797
798  case Type::QualifiedName:
799    return getTypeInfo(cast<QualifiedNameType>(T)->getNamedType().getTypePtr());
800
801  case Type::TemplateSpecialization:
802    assert(getCanonicalType(T) != T &&
803           "Cannot request the size of a dependent type");
804    // FIXME: this is likely to be wrong once we support template
805    // aliases, since a template alias could refer to a typedef that
806    // has an __aligned__ attribute on it.
807    return getTypeInfo(getCanonicalType(T));
808  }
809
810  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
811  return std::make_pair(Width, Align);
812}
813
814/// getTypeSizeInChars - Return the size of the specified type, in characters.
815/// This method does not work on incomplete types.
816CharUnits ASTContext::getTypeSizeInChars(QualType T) {
817  return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
818}
819CharUnits ASTContext::getTypeSizeInChars(const Type *T) {
820  return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
821}
822
823/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
824/// characters. This method does not work on incomplete types.
825CharUnits ASTContext::getTypeAlignInChars(QualType T) {
826  return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
827}
828CharUnits ASTContext::getTypeAlignInChars(const Type *T) {
829  return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
830}
831
832/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
833/// type for the current target in bits.  This can be different than the ABI
834/// alignment in cases where it is beneficial for performance to overalign
835/// a data type.
836unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
837  unsigned ABIAlign = getTypeAlign(T);
838
839  // Double and long long should be naturally aligned if possible.
840  if (const ComplexType* CT = T->getAs<ComplexType>())
841    T = CT->getElementType().getTypePtr();
842  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
843      T->isSpecificBuiltinType(BuiltinType::LongLong))
844    return std::max(ABIAlign, (unsigned)getTypeSize(T));
845
846  return ABIAlign;
847}
848
849static void CollectLocalObjCIvars(ASTContext *Ctx,
850                                  const ObjCInterfaceDecl *OI,
851                                  llvm::SmallVectorImpl<FieldDecl*> &Fields) {
852  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
853       E = OI->ivar_end(); I != E; ++I) {
854    ObjCIvarDecl *IVDecl = *I;
855    if (!IVDecl->isInvalidDecl())
856      Fields.push_back(cast<FieldDecl>(IVDecl));
857  }
858}
859
860void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
861                             llvm::SmallVectorImpl<FieldDecl*> &Fields) {
862  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
863    CollectObjCIvars(SuperClass, Fields);
864  CollectLocalObjCIvars(this, OI, Fields);
865}
866
867/// ShallowCollectObjCIvars -
868/// Collect all ivars, including those synthesized, in the current class.
869///
870void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
871                                 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars,
872                                 bool CollectSynthesized) {
873  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
874         E = OI->ivar_end(); I != E; ++I) {
875     Ivars.push_back(*I);
876  }
877  if (CollectSynthesized)
878    CollectSynthesizedIvars(OI, Ivars);
879}
880
881void ASTContext::CollectProtocolSynthesizedIvars(const ObjCProtocolDecl *PD,
882                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
883  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
884       E = PD->prop_end(); I != E; ++I)
885    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
886      Ivars.push_back(Ivar);
887
888  // Also look into nested protocols.
889  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
890       E = PD->protocol_end(); P != E; ++P)
891    CollectProtocolSynthesizedIvars(*P, Ivars);
892}
893
894/// CollectSynthesizedIvars -
895/// This routine collect synthesized ivars for the designated class.
896///
897void ASTContext::CollectSynthesizedIvars(const ObjCInterfaceDecl *OI,
898                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
899  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
900       E = OI->prop_end(); I != E; ++I) {
901    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
902      Ivars.push_back(Ivar);
903  }
904  // Also look into interface's protocol list for properties declared
905  // in the protocol and whose ivars are synthesized.
906  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
907       PE = OI->protocol_end(); P != PE; ++P) {
908    ObjCProtocolDecl *PD = (*P);
909    CollectProtocolSynthesizedIvars(PD, Ivars);
910  }
911}
912
913/// CollectInheritedProtocols - Collect all protocols in current class and
914/// those inherited by it.
915void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
916                          llvm::SmallVectorImpl<ObjCProtocolDecl*> &Protocols) {
917  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
918    for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
919         PE = OI->protocol_end(); P != PE; ++P) {
920      ObjCProtocolDecl *Proto = (*P);
921      Protocols.push_back(Proto);
922      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
923           PE = Proto->protocol_end(); P != PE; ++P)
924        CollectInheritedProtocols(*P, Protocols);
925      }
926
927    // Categories of this Interface.
928    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
929         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
930      CollectInheritedProtocols(CDeclChain, Protocols);
931    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
932      while (SD) {
933        CollectInheritedProtocols(SD, Protocols);
934        SD = SD->getSuperClass();
935      }
936    return;
937  }
938  if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
939    for (ObjCInterfaceDecl::protocol_iterator P = OC->protocol_begin(),
940         PE = OC->protocol_end(); P != PE; ++P) {
941      ObjCProtocolDecl *Proto = (*P);
942      Protocols.push_back(Proto);
943      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
944           PE = Proto->protocol_end(); P != PE; ++P)
945        CollectInheritedProtocols(*P, Protocols);
946    }
947    return;
948  }
949  if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
950    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
951         PE = OP->protocol_end(); P != PE; ++P) {
952      ObjCProtocolDecl *Proto = (*P);
953      Protocols.push_back(Proto);
954      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
955           PE = Proto->protocol_end(); P != PE; ++P)
956        CollectInheritedProtocols(*P, Protocols);
957    }
958    return;
959  }
960}
961
962unsigned ASTContext::CountProtocolSynthesizedIvars(const ObjCProtocolDecl *PD) {
963  unsigned count = 0;
964  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
965       E = PD->prop_end(); I != E; ++I)
966    if ((*I)->getPropertyIvarDecl())
967      ++count;
968
969  // Also look into nested protocols.
970  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
971       E = PD->protocol_end(); P != E; ++P)
972    count += CountProtocolSynthesizedIvars(*P);
973  return count;
974}
975
976unsigned ASTContext::CountSynthesizedIvars(const ObjCInterfaceDecl *OI) {
977  unsigned count = 0;
978  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
979       E = OI->prop_end(); I != E; ++I) {
980    if ((*I)->getPropertyIvarDecl())
981      ++count;
982  }
983  // Also look into interface's protocol list for properties declared
984  // in the protocol and whose ivars are synthesized.
985  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
986       PE = OI->protocol_end(); P != PE; ++P) {
987    ObjCProtocolDecl *PD = (*P);
988    count += CountProtocolSynthesizedIvars(PD);
989  }
990  return count;
991}
992
993/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
994ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
995  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
996    I = ObjCImpls.find(D);
997  if (I != ObjCImpls.end())
998    return cast<ObjCImplementationDecl>(I->second);
999  return 0;
1000}
1001/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1002ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1003  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1004    I = ObjCImpls.find(D);
1005  if (I != ObjCImpls.end())
1006    return cast<ObjCCategoryImplDecl>(I->second);
1007  return 0;
1008}
1009
1010/// \brief Set the implementation of ObjCInterfaceDecl.
1011void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1012                           ObjCImplementationDecl *ImplD) {
1013  assert(IFaceD && ImplD && "Passed null params");
1014  ObjCImpls[IFaceD] = ImplD;
1015}
1016/// \brief Set the implementation of ObjCCategoryDecl.
1017void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1018                           ObjCCategoryImplDecl *ImplD) {
1019  assert(CatD && ImplD && "Passed null params");
1020  ObjCImpls[CatD] = ImplD;
1021}
1022
1023/// \brief Allocate an uninitialized TypeSourceInfo.
1024///
1025/// The caller should initialize the memory held by TypeSourceInfo using
1026/// the TypeLoc wrappers.
1027///
1028/// \param T the type that will be the basis for type source info. This type
1029/// should refer to how the declarator was written in source code, not to
1030/// what type semantic analysis resolved the declarator to.
1031TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1032                                                 unsigned DataSize) {
1033  if (!DataSize)
1034    DataSize = TypeLoc::getFullDataSizeForType(T);
1035  else
1036    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1037           "incorrect data size provided to CreateTypeSourceInfo!");
1038
1039  TypeSourceInfo *TInfo =
1040    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1041  new (TInfo) TypeSourceInfo(T);
1042  return TInfo;
1043}
1044
1045TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1046                                                     SourceLocation L) {
1047  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1048  DI->getTypeLoc().initialize(L);
1049  return DI;
1050}
1051
1052/// getInterfaceLayoutImpl - Get or compute information about the
1053/// layout of the given interface.
1054///
1055/// \param Impl - If given, also include the layout of the interface's
1056/// implementation. This may differ by including synthesized ivars.
1057const ASTRecordLayout &
1058ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
1059                          const ObjCImplementationDecl *Impl) {
1060  assert(!D->isForwardDecl() && "Invalid interface decl!");
1061
1062  // Look up this layout, if already laid out, return what we have.
1063  ObjCContainerDecl *Key =
1064    Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D;
1065  if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
1066    return *Entry;
1067
1068  // Add in synthesized ivar count if laying out an implementation.
1069  if (Impl) {
1070    unsigned SynthCount = CountSynthesizedIvars(D);
1071    // If there aren't any sythesized ivars then reuse the interface
1072    // entry. Note we can't cache this because we simply free all
1073    // entries later; however we shouldn't look up implementations
1074    // frequently.
1075    if (SynthCount == 0)
1076      return getObjCLayout(D, 0);
1077  }
1078
1079  const ASTRecordLayout *NewEntry =
1080    ASTRecordLayoutBuilder::ComputeLayout(*this, D, Impl);
1081  ObjCLayouts[Key] = NewEntry;
1082
1083  return *NewEntry;
1084}
1085
1086const ASTRecordLayout &
1087ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
1088  return getObjCLayout(D, 0);
1089}
1090
1091const ASTRecordLayout &
1092ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
1093  return getObjCLayout(D->getClassInterface(), D);
1094}
1095
1096/// getASTRecordLayout - Get or compute information about the layout of the
1097/// specified record (struct/union/class), which indicates its size and field
1098/// position information.
1099const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
1100  D = D->getDefinition(*this);
1101  assert(D && "Cannot get layout of forward declarations!");
1102
1103  // Look up this layout, if already laid out, return what we have.
1104  // Note that we can't save a reference to the entry because this function
1105  // is recursive.
1106  const ASTRecordLayout *Entry = ASTRecordLayouts[D];
1107  if (Entry) return *Entry;
1108
1109  const ASTRecordLayout *NewEntry =
1110    ASTRecordLayoutBuilder::ComputeLayout(*this, D);
1111  ASTRecordLayouts[D] = NewEntry;
1112
1113  return *NewEntry;
1114}
1115
1116const CXXMethodDecl *ASTContext::getKeyFunction(const CXXRecordDecl *RD) {
1117  RD = cast<CXXRecordDecl>(RD->getDefinition(*this));
1118  assert(RD && "Cannot get key function for forward declarations!");
1119
1120  const CXXMethodDecl *&Entry = KeyFunctions[RD];
1121  if (!Entry)
1122    Entry = ASTRecordLayoutBuilder::ComputeKeyFunction(RD);
1123  else
1124    assert(Entry == ASTRecordLayoutBuilder::ComputeKeyFunction(RD) &&
1125           "Key function changed!");
1126
1127  return Entry;
1128}
1129
1130//===----------------------------------------------------------------------===//
1131//                   Type creation/memoization methods
1132//===----------------------------------------------------------------------===//
1133
1134QualType ASTContext::getExtQualType(const Type *TypeNode, Qualifiers Quals) {
1135  unsigned Fast = Quals.getFastQualifiers();
1136  Quals.removeFastQualifiers();
1137
1138  // Check if we've already instantiated this type.
1139  llvm::FoldingSetNodeID ID;
1140  ExtQuals::Profile(ID, TypeNode, Quals);
1141  void *InsertPos = 0;
1142  if (ExtQuals *EQ = ExtQualNodes.FindNodeOrInsertPos(ID, InsertPos)) {
1143    assert(EQ->getQualifiers() == Quals);
1144    QualType T = QualType(EQ, Fast);
1145    return T;
1146  }
1147
1148  ExtQuals *New = new (*this, TypeAlignment) ExtQuals(*this, TypeNode, Quals);
1149  ExtQualNodes.InsertNode(New, InsertPos);
1150  QualType T = QualType(New, Fast);
1151  return T;
1152}
1153
1154QualType ASTContext::getVolatileType(QualType T) {
1155  QualType CanT = getCanonicalType(T);
1156  if (CanT.isVolatileQualified()) return T;
1157
1158  QualifierCollector Quals;
1159  const Type *TypeNode = Quals.strip(T);
1160  Quals.addVolatile();
1161
1162  return getExtQualType(TypeNode, Quals);
1163}
1164
1165QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
1166  QualType CanT = getCanonicalType(T);
1167  if (CanT.getAddressSpace() == AddressSpace)
1168    return T;
1169
1170  // If we are composing extended qualifiers together, merge together
1171  // into one ExtQuals node.
1172  QualifierCollector Quals;
1173  const Type *TypeNode = Quals.strip(T);
1174
1175  // If this type already has an address space specified, it cannot get
1176  // another one.
1177  assert(!Quals.hasAddressSpace() &&
1178         "Type cannot be in multiple addr spaces!");
1179  Quals.addAddressSpace(AddressSpace);
1180
1181  return getExtQualType(TypeNode, Quals);
1182}
1183
1184QualType ASTContext::getObjCGCQualType(QualType T,
1185                                       Qualifiers::GC GCAttr) {
1186  QualType CanT = getCanonicalType(T);
1187  if (CanT.getObjCGCAttr() == GCAttr)
1188    return T;
1189
1190  if (T->isPointerType()) {
1191    QualType Pointee = T->getAs<PointerType>()->getPointeeType();
1192    if (Pointee->isAnyPointerType()) {
1193      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1194      return getPointerType(ResultType);
1195    }
1196  }
1197
1198  // If we are composing extended qualifiers together, merge together
1199  // into one ExtQuals node.
1200  QualifierCollector Quals;
1201  const Type *TypeNode = Quals.strip(T);
1202
1203  // If this type already has an ObjCGC specified, it cannot get
1204  // another one.
1205  assert(!Quals.hasObjCGCAttr() &&
1206         "Type cannot have multiple ObjCGCs!");
1207  Quals.addObjCGCAttr(GCAttr);
1208
1209  return getExtQualType(TypeNode, Quals);
1210}
1211
1212static QualType getNoReturnCallConvType(ASTContext& Context, QualType T,
1213                                        bool AddNoReturn,
1214                                        CallingConv CallConv) {
1215  QualType ResultType;
1216  if (const PointerType *Pointer = T->getAs<PointerType>()) {
1217    QualType Pointee = Pointer->getPointeeType();
1218    ResultType = getNoReturnCallConvType(Context, Pointee, AddNoReturn,
1219                                         CallConv);
1220    if (ResultType == Pointee)
1221      return T;
1222
1223    ResultType = Context.getPointerType(ResultType);
1224  } else if (const BlockPointerType *BlockPointer
1225                                              = T->getAs<BlockPointerType>()) {
1226    QualType Pointee = BlockPointer->getPointeeType();
1227    ResultType = getNoReturnCallConvType(Context, Pointee, AddNoReturn,
1228                                         CallConv);
1229    if (ResultType == Pointee)
1230      return T;
1231
1232    ResultType = Context.getBlockPointerType(ResultType);
1233   } else if (const FunctionType *F = T->getAs<FunctionType>()) {
1234    if (F->getNoReturnAttr() == AddNoReturn && F->getCallConv() == CallConv)
1235      return T;
1236
1237    if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(F)) {
1238      ResultType = Context.getFunctionNoProtoType(FNPT->getResultType(),
1239                                                  AddNoReturn, CallConv);
1240    } else {
1241      const FunctionProtoType *FPT = cast<FunctionProtoType>(F);
1242      ResultType
1243        = Context.getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1244                                  FPT->getNumArgs(), FPT->isVariadic(),
1245                                  FPT->getTypeQuals(),
1246                                  FPT->hasExceptionSpec(),
1247                                  FPT->hasAnyExceptionSpec(),
1248                                  FPT->getNumExceptions(),
1249                                  FPT->exception_begin(),
1250                                  AddNoReturn, CallConv);
1251    }
1252  } else
1253    return T;
1254
1255  return Context.getQualifiedType(ResultType, T.getLocalQualifiers());
1256}
1257
1258QualType ASTContext::getNoReturnType(QualType T, bool AddNoReturn) {
1259  return getNoReturnCallConvType(*this, T, AddNoReturn, T.getCallConv());
1260}
1261
1262QualType ASTContext::getCallConvType(QualType T, CallingConv CallConv) {
1263  return getNoReturnCallConvType(*this, T, T.getNoReturnAttr(), CallConv);
1264}
1265
1266/// getComplexType - Return the uniqued reference to the type for a complex
1267/// number with the specified element type.
1268QualType ASTContext::getComplexType(QualType T) {
1269  // Unique pointers, to guarantee there is only one pointer of a particular
1270  // structure.
1271  llvm::FoldingSetNodeID ID;
1272  ComplexType::Profile(ID, T);
1273
1274  void *InsertPos = 0;
1275  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1276    return QualType(CT, 0);
1277
1278  // If the pointee type isn't canonical, this won't be a canonical type either,
1279  // so fill in the canonical type field.
1280  QualType Canonical;
1281  if (!T.isCanonical()) {
1282    Canonical = getComplexType(getCanonicalType(T));
1283
1284    // Get the new insert position for the node we care about.
1285    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1286    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1287  }
1288  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1289  Types.push_back(New);
1290  ComplexTypes.InsertNode(New, InsertPos);
1291  return QualType(New, 0);
1292}
1293
1294/// getPointerType - Return the uniqued reference to the type for a pointer to
1295/// the specified type.
1296QualType ASTContext::getPointerType(QualType T) {
1297  // Unique pointers, to guarantee there is only one pointer of a particular
1298  // structure.
1299  llvm::FoldingSetNodeID ID;
1300  PointerType::Profile(ID, T);
1301
1302  void *InsertPos = 0;
1303  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1304    return QualType(PT, 0);
1305
1306  // If the pointee type isn't canonical, this won't be a canonical type either,
1307  // so fill in the canonical type field.
1308  QualType Canonical;
1309  if (!T.isCanonical()) {
1310    Canonical = getPointerType(getCanonicalType(T));
1311
1312    // Get the new insert position for the node we care about.
1313    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1314    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1315  }
1316  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1317  Types.push_back(New);
1318  PointerTypes.InsertNode(New, InsertPos);
1319  return QualType(New, 0);
1320}
1321
1322/// getBlockPointerType - Return the uniqued reference to the type for
1323/// a pointer to the specified block.
1324QualType ASTContext::getBlockPointerType(QualType T) {
1325  assert(T->isFunctionType() && "block of function types only");
1326  // Unique pointers, to guarantee there is only one block of a particular
1327  // structure.
1328  llvm::FoldingSetNodeID ID;
1329  BlockPointerType::Profile(ID, T);
1330
1331  void *InsertPos = 0;
1332  if (BlockPointerType *PT =
1333        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1334    return QualType(PT, 0);
1335
1336  // If the block pointee type isn't canonical, this won't be a canonical
1337  // type either so fill in the canonical type field.
1338  QualType Canonical;
1339  if (!T.isCanonical()) {
1340    Canonical = getBlockPointerType(getCanonicalType(T));
1341
1342    // Get the new insert position for the node we care about.
1343    BlockPointerType *NewIP =
1344      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1345    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1346  }
1347  BlockPointerType *New
1348    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1349  Types.push_back(New);
1350  BlockPointerTypes.InsertNode(New, InsertPos);
1351  return QualType(New, 0);
1352}
1353
1354/// getLValueReferenceType - Return the uniqued reference to the type for an
1355/// lvalue reference to the specified type.
1356QualType ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) {
1357  // Unique pointers, to guarantee there is only one pointer of a particular
1358  // structure.
1359  llvm::FoldingSetNodeID ID;
1360  ReferenceType::Profile(ID, T, SpelledAsLValue);
1361
1362  void *InsertPos = 0;
1363  if (LValueReferenceType *RT =
1364        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1365    return QualType(RT, 0);
1366
1367  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1368
1369  // If the referencee type isn't canonical, this won't be a canonical type
1370  // either, so fill in the canonical type field.
1371  QualType Canonical;
1372  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1373    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1374    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1375
1376    // Get the new insert position for the node we care about.
1377    LValueReferenceType *NewIP =
1378      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1379    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1380  }
1381
1382  LValueReferenceType *New
1383    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1384                                                     SpelledAsLValue);
1385  Types.push_back(New);
1386  LValueReferenceTypes.InsertNode(New, InsertPos);
1387
1388  return QualType(New, 0);
1389}
1390
1391/// getRValueReferenceType - Return the uniqued reference to the type for an
1392/// rvalue reference to the specified type.
1393QualType ASTContext::getRValueReferenceType(QualType T) {
1394  // Unique pointers, to guarantee there is only one pointer of a particular
1395  // structure.
1396  llvm::FoldingSetNodeID ID;
1397  ReferenceType::Profile(ID, T, false);
1398
1399  void *InsertPos = 0;
1400  if (RValueReferenceType *RT =
1401        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1402    return QualType(RT, 0);
1403
1404  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1405
1406  // If the referencee type isn't canonical, this won't be a canonical type
1407  // either, so fill in the canonical type field.
1408  QualType Canonical;
1409  if (InnerRef || !T.isCanonical()) {
1410    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1411    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1412
1413    // Get the new insert position for the node we care about.
1414    RValueReferenceType *NewIP =
1415      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1416    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1417  }
1418
1419  RValueReferenceType *New
1420    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1421  Types.push_back(New);
1422  RValueReferenceTypes.InsertNode(New, InsertPos);
1423  return QualType(New, 0);
1424}
1425
1426/// getMemberPointerType - Return the uniqued reference to the type for a
1427/// member pointer to the specified type, in the specified class.
1428QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) {
1429  // Unique pointers, to guarantee there is only one pointer of a particular
1430  // structure.
1431  llvm::FoldingSetNodeID ID;
1432  MemberPointerType::Profile(ID, T, Cls);
1433
1434  void *InsertPos = 0;
1435  if (MemberPointerType *PT =
1436      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1437    return QualType(PT, 0);
1438
1439  // If the pointee or class type isn't canonical, this won't be a canonical
1440  // type either, so fill in the canonical type field.
1441  QualType Canonical;
1442  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1443    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1444
1445    // Get the new insert position for the node we care about.
1446    MemberPointerType *NewIP =
1447      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1448    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1449  }
1450  MemberPointerType *New
1451    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1452  Types.push_back(New);
1453  MemberPointerTypes.InsertNode(New, InsertPos);
1454  return QualType(New, 0);
1455}
1456
1457/// getConstantArrayType - Return the unique reference to the type for an
1458/// array of the specified element type.
1459QualType ASTContext::getConstantArrayType(QualType EltTy,
1460                                          const llvm::APInt &ArySizeIn,
1461                                          ArrayType::ArraySizeModifier ASM,
1462                                          unsigned EltTypeQuals) {
1463  assert((EltTy->isDependentType() ||
1464          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1465         "Constant array of VLAs is illegal!");
1466
1467  // Convert the array size into a canonical width matching the pointer size for
1468  // the target.
1469  llvm::APInt ArySize(ArySizeIn);
1470  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1471
1472  llvm::FoldingSetNodeID ID;
1473  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1474
1475  void *InsertPos = 0;
1476  if (ConstantArrayType *ATP =
1477      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1478    return QualType(ATP, 0);
1479
1480  // If the element type isn't canonical, this won't be a canonical type either,
1481  // so fill in the canonical type field.
1482  QualType Canonical;
1483  if (!EltTy.isCanonical()) {
1484    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1485                                     ASM, EltTypeQuals);
1486    // Get the new insert position for the node we care about.
1487    ConstantArrayType *NewIP =
1488      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1489    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1490  }
1491
1492  ConstantArrayType *New = new(*this,TypeAlignment)
1493    ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1494  ConstantArrayTypes.InsertNode(New, InsertPos);
1495  Types.push_back(New);
1496  return QualType(New, 0);
1497}
1498
1499/// getVariableArrayType - Returns a non-unique reference to the type for a
1500/// variable array of the specified element type.
1501QualType ASTContext::getVariableArrayType(QualType EltTy,
1502                                          Expr *NumElts,
1503                                          ArrayType::ArraySizeModifier ASM,
1504                                          unsigned EltTypeQuals,
1505                                          SourceRange Brackets) {
1506  // Since we don't unique expressions, it isn't possible to unique VLA's
1507  // that have an expression provided for their size.
1508
1509  VariableArrayType *New = new(*this, TypeAlignment)
1510    VariableArrayType(EltTy, QualType(), NumElts, ASM, EltTypeQuals, Brackets);
1511
1512  VariableArrayTypes.push_back(New);
1513  Types.push_back(New);
1514  return QualType(New, 0);
1515}
1516
1517/// getDependentSizedArrayType - Returns a non-unique reference to
1518/// the type for a dependently-sized array of the specified element
1519/// type.
1520QualType ASTContext::getDependentSizedArrayType(QualType EltTy,
1521                                                Expr *NumElts,
1522                                                ArrayType::ArraySizeModifier ASM,
1523                                                unsigned EltTypeQuals,
1524                                                SourceRange Brackets) {
1525  assert((!NumElts || NumElts->isTypeDependent() ||
1526          NumElts->isValueDependent()) &&
1527         "Size must be type- or value-dependent!");
1528
1529  void *InsertPos = 0;
1530  DependentSizedArrayType *Canon = 0;
1531
1532  if (NumElts) {
1533    // Dependently-sized array types that do not have a specified
1534    // number of elements will have their sizes deduced from an
1535    // initializer.
1536    llvm::FoldingSetNodeID ID;
1537    DependentSizedArrayType::Profile(ID, *this, getCanonicalType(EltTy), ASM,
1538                                     EltTypeQuals, NumElts);
1539
1540    Canon = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1541  }
1542
1543  DependentSizedArrayType *New;
1544  if (Canon) {
1545    // We already have a canonical version of this array type; use it as
1546    // the canonical type for a newly-built type.
1547    New = new (*this, TypeAlignment)
1548      DependentSizedArrayType(*this, EltTy, QualType(Canon, 0),
1549                              NumElts, ASM, EltTypeQuals, Brackets);
1550  } else {
1551    QualType CanonEltTy = getCanonicalType(EltTy);
1552    if (CanonEltTy == EltTy) {
1553      New = new (*this, TypeAlignment)
1554        DependentSizedArrayType(*this, EltTy, QualType(),
1555                                NumElts, ASM, EltTypeQuals, Brackets);
1556
1557      if (NumElts)
1558        DependentSizedArrayTypes.InsertNode(New, InsertPos);
1559    } else {
1560      QualType Canon = getDependentSizedArrayType(CanonEltTy, NumElts,
1561                                                  ASM, EltTypeQuals,
1562                                                  SourceRange());
1563      New = new (*this, TypeAlignment)
1564        DependentSizedArrayType(*this, EltTy, Canon,
1565                                NumElts, ASM, EltTypeQuals, Brackets);
1566    }
1567  }
1568
1569  Types.push_back(New);
1570  return QualType(New, 0);
1571}
1572
1573QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1574                                            ArrayType::ArraySizeModifier ASM,
1575                                            unsigned EltTypeQuals) {
1576  llvm::FoldingSetNodeID ID;
1577  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1578
1579  void *InsertPos = 0;
1580  if (IncompleteArrayType *ATP =
1581       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1582    return QualType(ATP, 0);
1583
1584  // If the element type isn't canonical, this won't be a canonical type
1585  // either, so fill in the canonical type field.
1586  QualType Canonical;
1587
1588  if (!EltTy.isCanonical()) {
1589    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1590                                       ASM, EltTypeQuals);
1591
1592    // Get the new insert position for the node we care about.
1593    IncompleteArrayType *NewIP =
1594      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1595    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1596  }
1597
1598  IncompleteArrayType *New = new (*this, TypeAlignment)
1599    IncompleteArrayType(EltTy, Canonical, ASM, EltTypeQuals);
1600
1601  IncompleteArrayTypes.InsertNode(New, InsertPos);
1602  Types.push_back(New);
1603  return QualType(New, 0);
1604}
1605
1606/// getVectorType - Return the unique reference to a vector type of
1607/// the specified element type and size. VectorType must be a built-in type.
1608QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
1609  BuiltinType *baseType;
1610
1611  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1612  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1613
1614  // Check if we've already instantiated a vector of this type.
1615  llvm::FoldingSetNodeID ID;
1616  VectorType::Profile(ID, vecType, NumElts, Type::Vector);
1617  void *InsertPos = 0;
1618  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1619    return QualType(VTP, 0);
1620
1621  // If the element type isn't canonical, this won't be a canonical type either,
1622  // so fill in the canonical type field.
1623  QualType Canonical;
1624  if (!vecType.isCanonical()) {
1625    Canonical = getVectorType(getCanonicalType(vecType), NumElts);
1626
1627    // Get the new insert position for the node we care about.
1628    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1629    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1630  }
1631  VectorType *New = new (*this, TypeAlignment)
1632    VectorType(vecType, NumElts, Canonical);
1633  VectorTypes.InsertNode(New, InsertPos);
1634  Types.push_back(New);
1635  return QualType(New, 0);
1636}
1637
1638/// getExtVectorType - Return the unique reference to an extended vector type of
1639/// the specified element type and size. VectorType must be a built-in type.
1640QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1641  BuiltinType *baseType;
1642
1643  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1644  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1645
1646  // Check if we've already instantiated a vector of this type.
1647  llvm::FoldingSetNodeID ID;
1648  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector);
1649  void *InsertPos = 0;
1650  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1651    return QualType(VTP, 0);
1652
1653  // If the element type isn't canonical, this won't be a canonical type either,
1654  // so fill in the canonical type field.
1655  QualType Canonical;
1656  if (!vecType.isCanonical()) {
1657    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1658
1659    // Get the new insert position for the node we care about.
1660    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1661    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1662  }
1663  ExtVectorType *New = new (*this, TypeAlignment)
1664    ExtVectorType(vecType, NumElts, Canonical);
1665  VectorTypes.InsertNode(New, InsertPos);
1666  Types.push_back(New);
1667  return QualType(New, 0);
1668}
1669
1670QualType ASTContext::getDependentSizedExtVectorType(QualType vecType,
1671                                                    Expr *SizeExpr,
1672                                                    SourceLocation AttrLoc) {
1673  llvm::FoldingSetNodeID ID;
1674  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1675                                       SizeExpr);
1676
1677  void *InsertPos = 0;
1678  DependentSizedExtVectorType *Canon
1679    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1680  DependentSizedExtVectorType *New;
1681  if (Canon) {
1682    // We already have a canonical version of this array type; use it as
1683    // the canonical type for a newly-built type.
1684    New = new (*this, TypeAlignment)
1685      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
1686                                  SizeExpr, AttrLoc);
1687  } else {
1688    QualType CanonVecTy = getCanonicalType(vecType);
1689    if (CanonVecTy == vecType) {
1690      New = new (*this, TypeAlignment)
1691        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
1692                                    AttrLoc);
1693      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1694    } else {
1695      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1696                                                      SourceLocation());
1697      New = new (*this, TypeAlignment)
1698        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
1699    }
1700  }
1701
1702  Types.push_back(New);
1703  return QualType(New, 0);
1704}
1705
1706static CallingConv getCanonicalCallingConv(CallingConv CC) {
1707  if (CC == CC_C)
1708    return CC_Default;
1709  return CC;
1710}
1711
1712/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1713///
1714QualType ASTContext::getFunctionNoProtoType(QualType ResultTy, bool NoReturn,
1715                                            CallingConv CallConv) {
1716  // Unique functions, to guarantee there is only one function of a particular
1717  // structure.
1718  llvm::FoldingSetNodeID ID;
1719  FunctionNoProtoType::Profile(ID, ResultTy, NoReturn);
1720
1721  void *InsertPos = 0;
1722  if (FunctionNoProtoType *FT =
1723        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1724    return QualType(FT, 0);
1725
1726  QualType Canonical;
1727  if (!ResultTy.isCanonical() ||
1728      getCanonicalCallingConv(CallConv) != CallConv) {
1729    Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy), NoReturn,
1730                                       getCanonicalCallingConv(CallConv));
1731
1732    // Get the new insert position for the node we care about.
1733    FunctionNoProtoType *NewIP =
1734      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1735    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1736  }
1737
1738  FunctionNoProtoType *New = new (*this, TypeAlignment)
1739    FunctionNoProtoType(ResultTy, Canonical, NoReturn);
1740  Types.push_back(New);
1741  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1742  return QualType(New, 0);
1743}
1744
1745/// getFunctionType - Return a normal function type with a typed argument
1746/// list.  isVariadic indicates whether the argument list includes '...'.
1747QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1748                                     unsigned NumArgs, bool isVariadic,
1749                                     unsigned TypeQuals, bool hasExceptionSpec,
1750                                     bool hasAnyExceptionSpec, unsigned NumExs,
1751                                     const QualType *ExArray, bool NoReturn,
1752                                     CallingConv CallConv) {
1753  // Unique functions, to guarantee there is only one function of a particular
1754  // structure.
1755  llvm::FoldingSetNodeID ID;
1756  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1757                             TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1758                             NumExs, ExArray, NoReturn);
1759
1760  void *InsertPos = 0;
1761  if (FunctionProtoType *FTP =
1762        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1763    return QualType(FTP, 0);
1764
1765  // Determine whether the type being created is already canonical or not.
1766  bool isCanonical = !hasExceptionSpec && ResultTy.isCanonical();
1767  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1768    if (!ArgArray[i].isCanonicalAsParam())
1769      isCanonical = false;
1770
1771  // If this type isn't canonical, get the canonical version of it.
1772  // The exception spec is not part of the canonical type.
1773  QualType Canonical;
1774  if (!isCanonical || getCanonicalCallingConv(CallConv) != CallConv) {
1775    llvm::SmallVector<QualType, 16> CanonicalArgs;
1776    CanonicalArgs.reserve(NumArgs);
1777    for (unsigned i = 0; i != NumArgs; ++i)
1778      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
1779
1780    Canonical = getFunctionType(getCanonicalType(ResultTy),
1781                                CanonicalArgs.data(), NumArgs,
1782                                isVariadic, TypeQuals, false,
1783                                false, 0, 0, NoReturn,
1784                                getCanonicalCallingConv(CallConv));
1785
1786    // Get the new insert position for the node we care about.
1787    FunctionProtoType *NewIP =
1788      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1789    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1790  }
1791
1792  // FunctionProtoType objects are allocated with extra bytes after them
1793  // for two variable size arrays (for parameter and exception types) at the
1794  // end of them.
1795  FunctionProtoType *FTP =
1796    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1797                                 NumArgs*sizeof(QualType) +
1798                                 NumExs*sizeof(QualType), TypeAlignment);
1799  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1800                              TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1801                              ExArray, NumExs, Canonical, NoReturn, CallConv);
1802  Types.push_back(FTP);
1803  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1804  return QualType(FTP, 0);
1805}
1806
1807/// getTypeDeclType - Return the unique reference to the type for the
1808/// specified type declaration.
1809QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) {
1810  assert(Decl && "Passed null for Decl param");
1811  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1812
1813  if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1814    return getTypedefType(Typedef);
1815  else if (isa<TemplateTypeParmDecl>(Decl)) {
1816    assert(false && "Template type parameter types are always available.");
1817  } else if (ObjCInterfaceDecl *ObjCInterface
1818               = dyn_cast<ObjCInterfaceDecl>(Decl))
1819    return getObjCInterfaceType(ObjCInterface);
1820
1821  if (RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1822    if (PrevDecl)
1823      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1824    else
1825      Decl->TypeForDecl = new (*this, TypeAlignment) RecordType(Record);
1826  } else if (EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1827    if (PrevDecl)
1828      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1829    else
1830      Decl->TypeForDecl = new (*this, TypeAlignment) EnumType(Enum);
1831  } else if (UnresolvedUsingTypenameDecl *Using =
1832               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
1833    Decl->TypeForDecl = new (*this, TypeAlignment) UnresolvedUsingType(Using);
1834  } else
1835    assert(false && "TypeDecl without a type?");
1836
1837  if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
1838  return QualType(Decl->TypeForDecl, 0);
1839}
1840
1841/// getTypedefType - Return the unique reference to the type for the
1842/// specified typename decl.
1843QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
1844  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1845
1846  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1847  Decl->TypeForDecl = new(*this, TypeAlignment)
1848    TypedefType(Type::Typedef, Decl, Canonical);
1849  Types.push_back(Decl->TypeForDecl);
1850  return QualType(Decl->TypeForDecl, 0);
1851}
1852
1853/// \brief Retrieve a substitution-result type.
1854QualType
1855ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
1856                                         QualType Replacement) {
1857  assert(Replacement.isCanonical()
1858         && "replacement types must always be canonical");
1859
1860  llvm::FoldingSetNodeID ID;
1861  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
1862  void *InsertPos = 0;
1863  SubstTemplateTypeParmType *SubstParm
1864    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1865
1866  if (!SubstParm) {
1867    SubstParm = new (*this, TypeAlignment)
1868      SubstTemplateTypeParmType(Parm, Replacement);
1869    Types.push_back(SubstParm);
1870    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
1871  }
1872
1873  return QualType(SubstParm, 0);
1874}
1875
1876/// \brief Retrieve the template type parameter type for a template
1877/// parameter or parameter pack with the given depth, index, and (optionally)
1878/// name.
1879QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1880                                             bool ParameterPack,
1881                                             IdentifierInfo *Name) {
1882  llvm::FoldingSetNodeID ID;
1883  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
1884  void *InsertPos = 0;
1885  TemplateTypeParmType *TypeParm
1886    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1887
1888  if (TypeParm)
1889    return QualType(TypeParm, 0);
1890
1891  if (Name) {
1892    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
1893    TypeParm = new (*this, TypeAlignment)
1894      TemplateTypeParmType(Depth, Index, ParameterPack, Name, Canon);
1895  } else
1896    TypeParm = new (*this, TypeAlignment)
1897      TemplateTypeParmType(Depth, Index, ParameterPack);
1898
1899  Types.push_back(TypeParm);
1900  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1901
1902  return QualType(TypeParm, 0);
1903}
1904
1905QualType
1906ASTContext::getTemplateSpecializationType(TemplateName Template,
1907                                          const TemplateArgumentListInfo &Args,
1908                                          QualType Canon) {
1909  unsigned NumArgs = Args.size();
1910
1911  llvm::SmallVector<TemplateArgument, 4> ArgVec;
1912  ArgVec.reserve(NumArgs);
1913  for (unsigned i = 0; i != NumArgs; ++i)
1914    ArgVec.push_back(Args[i].getArgument());
1915
1916  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs, Canon);
1917}
1918
1919QualType
1920ASTContext::getTemplateSpecializationType(TemplateName Template,
1921                                          const TemplateArgument *Args,
1922                                          unsigned NumArgs,
1923                                          QualType Canon) {
1924  if (!Canon.isNull())
1925    Canon = getCanonicalType(Canon);
1926  else {
1927    // Build the canonical template specialization type.
1928    TemplateName CanonTemplate = getCanonicalTemplateName(Template);
1929    llvm::SmallVector<TemplateArgument, 4> CanonArgs;
1930    CanonArgs.reserve(NumArgs);
1931    for (unsigned I = 0; I != NumArgs; ++I)
1932      CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
1933
1934    // Determine whether this canonical template specialization type already
1935    // exists.
1936    llvm::FoldingSetNodeID ID;
1937    TemplateSpecializationType::Profile(ID, CanonTemplate,
1938                                        CanonArgs.data(), NumArgs, *this);
1939
1940    void *InsertPos = 0;
1941    TemplateSpecializationType *Spec
1942      = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1943
1944    if (!Spec) {
1945      // Allocate a new canonical template specialization type.
1946      void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1947                            sizeof(TemplateArgument) * NumArgs),
1948                           TypeAlignment);
1949      Spec = new (Mem) TemplateSpecializationType(*this, CanonTemplate,
1950                                                  CanonArgs.data(), NumArgs,
1951                                                  Canon);
1952      Types.push_back(Spec);
1953      TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1954    }
1955
1956    if (Canon.isNull())
1957      Canon = QualType(Spec, 0);
1958    assert(Canon->isDependentType() &&
1959           "Non-dependent template-id type must have a canonical type");
1960  }
1961
1962  // Allocate the (non-canonical) template specialization type, but don't
1963  // try to unique it: these types typically have location information that
1964  // we don't unique and don't want to lose.
1965  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1966                        sizeof(TemplateArgument) * NumArgs),
1967                       TypeAlignment);
1968  TemplateSpecializationType *Spec
1969    = new (Mem) TemplateSpecializationType(*this, Template, Args, NumArgs,
1970                                           Canon);
1971
1972  Types.push_back(Spec);
1973  return QualType(Spec, 0);
1974}
1975
1976QualType
1977ASTContext::getQualifiedNameType(NestedNameSpecifier *NNS,
1978                                 QualType NamedType) {
1979  llvm::FoldingSetNodeID ID;
1980  QualifiedNameType::Profile(ID, NNS, NamedType);
1981
1982  void *InsertPos = 0;
1983  QualifiedNameType *T
1984    = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1985  if (T)
1986    return QualType(T, 0);
1987
1988  T = new (*this) QualifiedNameType(NNS, NamedType,
1989                                    getCanonicalType(NamedType));
1990  Types.push_back(T);
1991  QualifiedNameTypes.InsertNode(T, InsertPos);
1992  return QualType(T, 0);
1993}
1994
1995QualType ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1996                                     const IdentifierInfo *Name,
1997                                     QualType Canon) {
1998  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1999
2000  if (Canon.isNull()) {
2001    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2002    if (CanonNNS != NNS)
2003      Canon = getTypenameType(CanonNNS, Name);
2004  }
2005
2006  llvm::FoldingSetNodeID ID;
2007  TypenameType::Profile(ID, NNS, Name);
2008
2009  void *InsertPos = 0;
2010  TypenameType *T
2011    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
2012  if (T)
2013    return QualType(T, 0);
2014
2015  T = new (*this) TypenameType(NNS, Name, Canon);
2016  Types.push_back(T);
2017  TypenameTypes.InsertNode(T, InsertPos);
2018  return QualType(T, 0);
2019}
2020
2021QualType
2022ASTContext::getTypenameType(NestedNameSpecifier *NNS,
2023                            const TemplateSpecializationType *TemplateId,
2024                            QualType Canon) {
2025  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2026
2027  if (Canon.isNull()) {
2028    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2029    QualType CanonType = getCanonicalType(QualType(TemplateId, 0));
2030    if (CanonNNS != NNS || CanonType != QualType(TemplateId, 0)) {
2031      const TemplateSpecializationType *CanonTemplateId
2032        = CanonType->getAs<TemplateSpecializationType>();
2033      assert(CanonTemplateId &&
2034             "Canonical type must also be a template specialization type");
2035      Canon = getTypenameType(CanonNNS, CanonTemplateId);
2036    }
2037  }
2038
2039  llvm::FoldingSetNodeID ID;
2040  TypenameType::Profile(ID, NNS, TemplateId);
2041
2042  void *InsertPos = 0;
2043  TypenameType *T
2044    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
2045  if (T)
2046    return QualType(T, 0);
2047
2048  T = new (*this) TypenameType(NNS, TemplateId, Canon);
2049  Types.push_back(T);
2050  TypenameTypes.InsertNode(T, InsertPos);
2051  return QualType(T, 0);
2052}
2053
2054QualType
2055ASTContext::getElaboratedType(QualType UnderlyingType,
2056                              ElaboratedType::TagKind Tag) {
2057  llvm::FoldingSetNodeID ID;
2058  ElaboratedType::Profile(ID, UnderlyingType, Tag);
2059
2060  void *InsertPos = 0;
2061  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2062  if (T)
2063    return QualType(T, 0);
2064
2065  QualType Canon = getCanonicalType(UnderlyingType);
2066
2067  T = new (*this) ElaboratedType(UnderlyingType, Tag, Canon);
2068  Types.push_back(T);
2069  ElaboratedTypes.InsertNode(T, InsertPos);
2070  return QualType(T, 0);
2071}
2072
2073/// CmpProtocolNames - Comparison predicate for sorting protocols
2074/// alphabetically.
2075static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2076                            const ObjCProtocolDecl *RHS) {
2077  return LHS->getDeclName() < RHS->getDeclName();
2078}
2079
2080static bool areSortedAndUniqued(ObjCProtocolDecl **Protocols,
2081                                unsigned NumProtocols) {
2082  if (NumProtocols == 0) return true;
2083
2084  for (unsigned i = 1; i != NumProtocols; ++i)
2085    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
2086      return false;
2087  return true;
2088}
2089
2090static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2091                                   unsigned &NumProtocols) {
2092  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2093
2094  // Sort protocols, keyed by name.
2095  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2096
2097  // Remove duplicates.
2098  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2099  NumProtocols = ProtocolsEnd-Protocols;
2100}
2101
2102/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2103/// the given interface decl and the conforming protocol list.
2104QualType ASTContext::getObjCObjectPointerType(QualType InterfaceT,
2105                                              ObjCProtocolDecl **Protocols,
2106                                              unsigned NumProtocols) {
2107  llvm::FoldingSetNodeID ID;
2108  ObjCObjectPointerType::Profile(ID, InterfaceT, Protocols, NumProtocols);
2109
2110  void *InsertPos = 0;
2111  if (ObjCObjectPointerType *QT =
2112              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2113    return QualType(QT, 0);
2114
2115  // Sort the protocol list alphabetically to canonicalize it.
2116  QualType Canonical;
2117  if (!InterfaceT.isCanonical() ||
2118      !areSortedAndUniqued(Protocols, NumProtocols)) {
2119    if (!areSortedAndUniqued(Protocols, NumProtocols)) {
2120      llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(NumProtocols);
2121      unsigned UniqueCount = NumProtocols;
2122
2123      std::copy(Protocols, Protocols + NumProtocols, Sorted.begin());
2124      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2125
2126      Canonical = getObjCObjectPointerType(getCanonicalType(InterfaceT),
2127                                           &Sorted[0], UniqueCount);
2128    } else {
2129      Canonical = getObjCObjectPointerType(getCanonicalType(InterfaceT),
2130                                           Protocols, NumProtocols);
2131    }
2132
2133    // Regenerate InsertPos.
2134    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2135  }
2136
2137  // No Match;
2138  ObjCObjectPointerType *QType = new (*this, TypeAlignment)
2139    ObjCObjectPointerType(*this, Canonical, InterfaceT, Protocols,
2140                          NumProtocols);
2141
2142  Types.push_back(QType);
2143  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2144  return QualType(QType, 0);
2145}
2146
2147/// getObjCInterfaceType - Return the unique reference to the type for the
2148/// specified ObjC interface decl. The list of protocols is optional.
2149QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
2150                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
2151  llvm::FoldingSetNodeID ID;
2152  ObjCInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
2153
2154  void *InsertPos = 0;
2155  if (ObjCInterfaceType *QT =
2156      ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
2157    return QualType(QT, 0);
2158
2159  // Sort the protocol list alphabetically to canonicalize it.
2160  QualType Canonical;
2161  if (NumProtocols && !areSortedAndUniqued(Protocols, NumProtocols)) {
2162    llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(NumProtocols);
2163    std::copy(Protocols, Protocols + NumProtocols, Sorted.begin());
2164
2165    unsigned UniqueCount = NumProtocols;
2166    SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2167
2168    Canonical = getObjCInterfaceType(Decl, &Sorted[0], UniqueCount);
2169
2170    ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos);
2171  }
2172
2173  ObjCInterfaceType *QType = new (*this, TypeAlignment)
2174    ObjCInterfaceType(*this, Canonical, const_cast<ObjCInterfaceDecl*>(Decl),
2175                      Protocols, NumProtocols);
2176
2177  Types.push_back(QType);
2178  ObjCInterfaceTypes.InsertNode(QType, InsertPos);
2179  return QualType(QType, 0);
2180}
2181
2182/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2183/// TypeOfExprType AST's (since expression's are never shared). For example,
2184/// multiple declarations that refer to "typeof(x)" all contain different
2185/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2186/// on canonical type's (which are always unique).
2187QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
2188  TypeOfExprType *toe;
2189  if (tofExpr->isTypeDependent()) {
2190    llvm::FoldingSetNodeID ID;
2191    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2192
2193    void *InsertPos = 0;
2194    DependentTypeOfExprType *Canon
2195      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2196    if (Canon) {
2197      // We already have a "canonical" version of an identical, dependent
2198      // typeof(expr) type. Use that as our canonical type.
2199      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2200                                          QualType((TypeOfExprType*)Canon, 0));
2201    }
2202    else {
2203      // Build a new, canonical typeof(expr) type.
2204      Canon
2205        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2206      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2207      toe = Canon;
2208    }
2209  } else {
2210    QualType Canonical = getCanonicalType(tofExpr->getType());
2211    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2212  }
2213  Types.push_back(toe);
2214  return QualType(toe, 0);
2215}
2216
2217/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2218/// TypeOfType AST's. The only motivation to unique these nodes would be
2219/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2220/// an issue. This doesn't effect the type checker, since it operates
2221/// on canonical type's (which are always unique).
2222QualType ASTContext::getTypeOfType(QualType tofType) {
2223  QualType Canonical = getCanonicalType(tofType);
2224  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2225  Types.push_back(tot);
2226  return QualType(tot, 0);
2227}
2228
2229/// getDecltypeForExpr - Given an expr, will return the decltype for that
2230/// expression, according to the rules in C++0x [dcl.type.simple]p4
2231static QualType getDecltypeForExpr(const Expr *e, ASTContext &Context) {
2232  if (e->isTypeDependent())
2233    return Context.DependentTy;
2234
2235  // If e is an id expression or a class member access, decltype(e) is defined
2236  // as the type of the entity named by e.
2237  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2238    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2239      return VD->getType();
2240  }
2241  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2242    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2243      return FD->getType();
2244  }
2245  // If e is a function call or an invocation of an overloaded operator,
2246  // (parentheses around e are ignored), decltype(e) is defined as the
2247  // return type of that function.
2248  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2249    return CE->getCallReturnType();
2250
2251  QualType T = e->getType();
2252
2253  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2254  // defined as T&, otherwise decltype(e) is defined as T.
2255  if (e->isLvalue(Context) == Expr::LV_Valid)
2256    T = Context.getLValueReferenceType(T);
2257
2258  return T;
2259}
2260
2261/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2262/// DecltypeType AST's. The only motivation to unique these nodes would be
2263/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2264/// an issue. This doesn't effect the type checker, since it operates
2265/// on canonical type's (which are always unique).
2266QualType ASTContext::getDecltypeType(Expr *e) {
2267  DecltypeType *dt;
2268  if (e->isTypeDependent()) {
2269    llvm::FoldingSetNodeID ID;
2270    DependentDecltypeType::Profile(ID, *this, e);
2271
2272    void *InsertPos = 0;
2273    DependentDecltypeType *Canon
2274      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2275    if (Canon) {
2276      // We already have a "canonical" version of an equivalent, dependent
2277      // decltype type. Use that as our canonical type.
2278      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2279                                       QualType((DecltypeType*)Canon, 0));
2280    }
2281    else {
2282      // Build a new, canonical typeof(expr) type.
2283      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2284      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2285      dt = Canon;
2286    }
2287  } else {
2288    QualType T = getDecltypeForExpr(e, *this);
2289    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2290  }
2291  Types.push_back(dt);
2292  return QualType(dt, 0);
2293}
2294
2295/// getTagDeclType - Return the unique reference to the type for the
2296/// specified TagDecl (struct/union/class/enum) decl.
2297QualType ASTContext::getTagDeclType(const TagDecl *Decl) {
2298  assert (Decl);
2299  // FIXME: What is the design on getTagDeclType when it requires casting
2300  // away const?  mutable?
2301  return getTypeDeclType(const_cast<TagDecl*>(Decl));
2302}
2303
2304/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2305/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2306/// needs to agree with the definition in <stddef.h>.
2307CanQualType ASTContext::getSizeType() const {
2308  return getFromTargetType(Target.getSizeType());
2309}
2310
2311/// getSignedWCharType - Return the type of "signed wchar_t".
2312/// Used when in C++, as a GCC extension.
2313QualType ASTContext::getSignedWCharType() const {
2314  // FIXME: derive from "Target" ?
2315  return WCharTy;
2316}
2317
2318/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2319/// Used when in C++, as a GCC extension.
2320QualType ASTContext::getUnsignedWCharType() const {
2321  // FIXME: derive from "Target" ?
2322  return UnsignedIntTy;
2323}
2324
2325/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2326/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2327QualType ASTContext::getPointerDiffType() const {
2328  return getFromTargetType(Target.getPtrDiffType(0));
2329}
2330
2331//===----------------------------------------------------------------------===//
2332//                              Type Operators
2333//===----------------------------------------------------------------------===//
2334
2335CanQualType ASTContext::getCanonicalParamType(QualType T) {
2336  // Push qualifiers into arrays, and then discard any remaining
2337  // qualifiers.
2338  T = getCanonicalType(T);
2339  const Type *Ty = T.getTypePtr();
2340
2341  QualType Result;
2342  if (isa<ArrayType>(Ty)) {
2343    Result = getArrayDecayedType(QualType(Ty,0));
2344  } else if (isa<FunctionType>(Ty)) {
2345    Result = getPointerType(QualType(Ty, 0));
2346  } else {
2347    Result = QualType(Ty, 0);
2348  }
2349
2350  return CanQualType::CreateUnsafe(Result);
2351}
2352
2353/// getCanonicalType - Return the canonical (structural) type corresponding to
2354/// the specified potentially non-canonical type.  The non-canonical version
2355/// of a type may have many "decorated" versions of types.  Decorators can
2356/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
2357/// to be free of any of these, allowing two canonical types to be compared
2358/// for exact equality with a simple pointer comparison.
2359CanQualType ASTContext::getCanonicalType(QualType T) {
2360  QualifierCollector Quals;
2361  const Type *Ptr = Quals.strip(T);
2362  QualType CanType = Ptr->getCanonicalTypeInternal();
2363
2364  // The canonical internal type will be the canonical type *except*
2365  // that we push type qualifiers down through array types.
2366
2367  // If there are no new qualifiers to push down, stop here.
2368  if (!Quals.hasQualifiers())
2369    return CanQualType::CreateUnsafe(CanType);
2370
2371  // If the type qualifiers are on an array type, get the canonical
2372  // type of the array with the qualifiers applied to the element
2373  // type.
2374  ArrayType *AT = dyn_cast<ArrayType>(CanType);
2375  if (!AT)
2376    return CanQualType::CreateUnsafe(getQualifiedType(CanType, Quals));
2377
2378  // Get the canonical version of the element with the extra qualifiers on it.
2379  // This can recursively sink qualifiers through multiple levels of arrays.
2380  QualType NewEltTy = getQualifiedType(AT->getElementType(), Quals);
2381  NewEltTy = getCanonicalType(NewEltTy);
2382
2383  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2384    return CanQualType::CreateUnsafe(
2385             getConstantArrayType(NewEltTy, CAT->getSize(),
2386                                  CAT->getSizeModifier(),
2387                                  CAT->getIndexTypeCVRQualifiers()));
2388  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
2389    return CanQualType::CreateUnsafe(
2390             getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
2391                                    IAT->getIndexTypeCVRQualifiers()));
2392
2393  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
2394    return CanQualType::CreateUnsafe(
2395             getDependentSizedArrayType(NewEltTy,
2396                                        DSAT->getSizeExpr() ?
2397                                          DSAT->getSizeExpr()->Retain() : 0,
2398                                        DSAT->getSizeModifier(),
2399                                        DSAT->getIndexTypeCVRQualifiers(),
2400                        DSAT->getBracketsRange())->getCanonicalTypeInternal());
2401
2402  VariableArrayType *VAT = cast<VariableArrayType>(AT);
2403  return CanQualType::CreateUnsafe(getVariableArrayType(NewEltTy,
2404                                                        VAT->getSizeExpr() ?
2405                                              VAT->getSizeExpr()->Retain() : 0,
2406                                                        VAT->getSizeModifier(),
2407                                              VAT->getIndexTypeCVRQualifiers(),
2408                                                     VAT->getBracketsRange()));
2409}
2410
2411QualType ASTContext::getUnqualifiedArrayType(QualType T,
2412                                             Qualifiers &Quals) {
2413  Quals = T.getQualifiers();
2414  if (!isa<ArrayType>(T)) {
2415    return T.getUnqualifiedType();
2416  }
2417
2418  const ArrayType *AT = cast<ArrayType>(T);
2419  QualType Elt = AT->getElementType();
2420  QualType UnqualElt = getUnqualifiedArrayType(Elt, Quals);
2421  if (Elt == UnqualElt)
2422    return T;
2423
2424  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(T)) {
2425    return getConstantArrayType(UnqualElt, CAT->getSize(),
2426                                CAT->getSizeModifier(), 0);
2427  }
2428
2429  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(T)) {
2430    return getIncompleteArrayType(UnqualElt, IAT->getSizeModifier(), 0);
2431  }
2432
2433  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(T);
2434  return getDependentSizedArrayType(UnqualElt, DSAT->getSizeExpr()->Retain(),
2435                                    DSAT->getSizeModifier(), 0,
2436                                    SourceRange());
2437}
2438
2439DeclarationName ASTContext::getNameForTemplate(TemplateName Name) {
2440  if (TemplateDecl *TD = Name.getAsTemplateDecl())
2441    return TD->getDeclName();
2442
2443  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
2444    if (DTN->isIdentifier()) {
2445      return DeclarationNames.getIdentifier(DTN->getIdentifier());
2446    } else {
2447      return DeclarationNames.getCXXOperatorName(DTN->getOperator());
2448    }
2449  }
2450
2451  OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
2452  assert(Storage);
2453  return (*Storage->begin())->getDeclName();
2454}
2455
2456TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
2457  // If this template name refers to a template, the canonical
2458  // template name merely stores the template itself.
2459  if (TemplateDecl *Template = Name.getAsTemplateDecl())
2460    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
2461
2462  assert(!Name.getAsOverloadedTemplate());
2463
2464  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
2465  assert(DTN && "Non-dependent template names must refer to template decls.");
2466  return DTN->CanonicalTemplateName;
2467}
2468
2469bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
2470  X = getCanonicalTemplateName(X);
2471  Y = getCanonicalTemplateName(Y);
2472  return X.getAsVoidPointer() == Y.getAsVoidPointer();
2473}
2474
2475TemplateArgument
2476ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) {
2477  switch (Arg.getKind()) {
2478    case TemplateArgument::Null:
2479      return Arg;
2480
2481    case TemplateArgument::Expression:
2482      return Arg;
2483
2484    case TemplateArgument::Declaration:
2485      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
2486
2487    case TemplateArgument::Template:
2488      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
2489
2490    case TemplateArgument::Integral:
2491      return TemplateArgument(*Arg.getAsIntegral(),
2492                              getCanonicalType(Arg.getIntegralType()));
2493
2494    case TemplateArgument::Type:
2495      return TemplateArgument(getCanonicalType(Arg.getAsType()));
2496
2497    case TemplateArgument::Pack: {
2498      // FIXME: Allocate in ASTContext
2499      TemplateArgument *CanonArgs = new TemplateArgument[Arg.pack_size()];
2500      unsigned Idx = 0;
2501      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
2502                                        AEnd = Arg.pack_end();
2503           A != AEnd; (void)++A, ++Idx)
2504        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
2505
2506      TemplateArgument Result;
2507      Result.setArgumentPack(CanonArgs, Arg.pack_size(), false);
2508      return Result;
2509    }
2510  }
2511
2512  // Silence GCC warning
2513  assert(false && "Unhandled template argument kind");
2514  return TemplateArgument();
2515}
2516
2517NestedNameSpecifier *
2518ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
2519  if (!NNS)
2520    return 0;
2521
2522  switch (NNS->getKind()) {
2523  case NestedNameSpecifier::Identifier:
2524    // Canonicalize the prefix but keep the identifier the same.
2525    return NestedNameSpecifier::Create(*this,
2526                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
2527                                       NNS->getAsIdentifier());
2528
2529  case NestedNameSpecifier::Namespace:
2530    // A namespace is canonical; build a nested-name-specifier with
2531    // this namespace and no prefix.
2532    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
2533
2534  case NestedNameSpecifier::TypeSpec:
2535  case NestedNameSpecifier::TypeSpecWithTemplate: {
2536    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
2537    return NestedNameSpecifier::Create(*this, 0,
2538                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
2539                                       T.getTypePtr());
2540  }
2541
2542  case NestedNameSpecifier::Global:
2543    // The global specifier is canonical and unique.
2544    return NNS;
2545  }
2546
2547  // Required to silence a GCC warning
2548  return 0;
2549}
2550
2551
2552const ArrayType *ASTContext::getAsArrayType(QualType T) {
2553  // Handle the non-qualified case efficiently.
2554  if (!T.hasLocalQualifiers()) {
2555    // Handle the common positive case fast.
2556    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
2557      return AT;
2558  }
2559
2560  // Handle the common negative case fast.
2561  QualType CType = T->getCanonicalTypeInternal();
2562  if (!isa<ArrayType>(CType))
2563    return 0;
2564
2565  // Apply any qualifiers from the array type to the element type.  This
2566  // implements C99 6.7.3p8: "If the specification of an array type includes
2567  // any type qualifiers, the element type is so qualified, not the array type."
2568
2569  // If we get here, we either have type qualifiers on the type, or we have
2570  // sugar such as a typedef in the way.  If we have type qualifiers on the type
2571  // we must propagate them down into the element type.
2572
2573  QualifierCollector Qs;
2574  const Type *Ty = Qs.strip(T.getDesugaredType());
2575
2576  // If we have a simple case, just return now.
2577  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
2578  if (ATy == 0 || Qs.empty())
2579    return ATy;
2580
2581  // Otherwise, we have an array and we have qualifiers on it.  Push the
2582  // qualifiers into the array element type and return a new array type.
2583  // Get the canonical version of the element with the extra qualifiers on it.
2584  // This can recursively sink qualifiers through multiple levels of arrays.
2585  QualType NewEltTy = getQualifiedType(ATy->getElementType(), Qs);
2586
2587  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
2588    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
2589                                                CAT->getSizeModifier(),
2590                                           CAT->getIndexTypeCVRQualifiers()));
2591  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
2592    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
2593                                                  IAT->getSizeModifier(),
2594                                           IAT->getIndexTypeCVRQualifiers()));
2595
2596  if (const DependentSizedArrayType *DSAT
2597        = dyn_cast<DependentSizedArrayType>(ATy))
2598    return cast<ArrayType>(
2599                     getDependentSizedArrayType(NewEltTy,
2600                                                DSAT->getSizeExpr() ?
2601                                              DSAT->getSizeExpr()->Retain() : 0,
2602                                                DSAT->getSizeModifier(),
2603                                              DSAT->getIndexTypeCVRQualifiers(),
2604                                                DSAT->getBracketsRange()));
2605
2606  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
2607  return cast<ArrayType>(getVariableArrayType(NewEltTy,
2608                                              VAT->getSizeExpr() ?
2609                                              VAT->getSizeExpr()->Retain() : 0,
2610                                              VAT->getSizeModifier(),
2611                                              VAT->getIndexTypeCVRQualifiers(),
2612                                              VAT->getBracketsRange()));
2613}
2614
2615
2616/// getArrayDecayedType - Return the properly qualified result of decaying the
2617/// specified array type to a pointer.  This operation is non-trivial when
2618/// handling typedefs etc.  The canonical type of "T" must be an array type,
2619/// this returns a pointer to a properly qualified element of the array.
2620///
2621/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2622QualType ASTContext::getArrayDecayedType(QualType Ty) {
2623  // Get the element type with 'getAsArrayType' so that we don't lose any
2624  // typedefs in the element type of the array.  This also handles propagation
2625  // of type qualifiers from the array type into the element type if present
2626  // (C99 6.7.3p8).
2627  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
2628  assert(PrettyArrayType && "Not an array type!");
2629
2630  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
2631
2632  // int x[restrict 4] ->  int *restrict
2633  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
2634}
2635
2636QualType ASTContext::getBaseElementType(QualType QT) {
2637  QualifierCollector Qs;
2638  while (true) {
2639    const Type *UT = Qs.strip(QT);
2640    if (const ArrayType *AT = getAsArrayType(QualType(UT,0))) {
2641      QT = AT->getElementType();
2642    } else {
2643      return Qs.apply(QT);
2644    }
2645  }
2646}
2647
2648QualType ASTContext::getBaseElementType(const ArrayType *AT) {
2649  QualType ElemTy = AT->getElementType();
2650
2651  if (const ArrayType *AT = getAsArrayType(ElemTy))
2652    return getBaseElementType(AT);
2653
2654  return ElemTy;
2655}
2656
2657/// getConstantArrayElementCount - Returns number of constant array elements.
2658uint64_t
2659ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
2660  uint64_t ElementCount = 1;
2661  do {
2662    ElementCount *= CA->getSize().getZExtValue();
2663    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
2664  } while (CA);
2665  return ElementCount;
2666}
2667
2668/// getFloatingRank - Return a relative rank for floating point types.
2669/// This routine will assert if passed a built-in type that isn't a float.
2670static FloatingRank getFloatingRank(QualType T) {
2671  if (const ComplexType *CT = T->getAs<ComplexType>())
2672    return getFloatingRank(CT->getElementType());
2673
2674  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
2675  switch (T->getAs<BuiltinType>()->getKind()) {
2676  default: assert(0 && "getFloatingRank(): not a floating type");
2677  case BuiltinType::Float:      return FloatRank;
2678  case BuiltinType::Double:     return DoubleRank;
2679  case BuiltinType::LongDouble: return LongDoubleRank;
2680  }
2681}
2682
2683/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
2684/// point or a complex type (based on typeDomain/typeSize).
2685/// 'typeDomain' is a real floating point or complex type.
2686/// 'typeSize' is a real floating point or complex type.
2687QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
2688                                                       QualType Domain) const {
2689  FloatingRank EltRank = getFloatingRank(Size);
2690  if (Domain->isComplexType()) {
2691    switch (EltRank) {
2692    default: assert(0 && "getFloatingRank(): illegal value for rank");
2693    case FloatRank:      return FloatComplexTy;
2694    case DoubleRank:     return DoubleComplexTy;
2695    case LongDoubleRank: return LongDoubleComplexTy;
2696    }
2697  }
2698
2699  assert(Domain->isRealFloatingType() && "Unknown domain!");
2700  switch (EltRank) {
2701  default: assert(0 && "getFloatingRank(): illegal value for rank");
2702  case FloatRank:      return FloatTy;
2703  case DoubleRank:     return DoubleTy;
2704  case LongDoubleRank: return LongDoubleTy;
2705  }
2706}
2707
2708/// getFloatingTypeOrder - Compare the rank of the two specified floating
2709/// point types, ignoring the domain of the type (i.e. 'double' ==
2710/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2711/// LHS < RHS, return -1.
2712int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
2713  FloatingRank LHSR = getFloatingRank(LHS);
2714  FloatingRank RHSR = getFloatingRank(RHS);
2715
2716  if (LHSR == RHSR)
2717    return 0;
2718  if (LHSR > RHSR)
2719    return 1;
2720  return -1;
2721}
2722
2723/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
2724/// routine will assert if passed a built-in type that isn't an integer or enum,
2725/// or if it is not canonicalized.
2726unsigned ASTContext::getIntegerRank(Type *T) {
2727  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
2728  if (EnumType* ET = dyn_cast<EnumType>(T))
2729    T = ET->getDecl()->getPromotionType().getTypePtr();
2730
2731  if (T->isSpecificBuiltinType(BuiltinType::WChar))
2732    T = getFromTargetType(Target.getWCharType()).getTypePtr();
2733
2734  if (T->isSpecificBuiltinType(BuiltinType::Char16))
2735    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
2736
2737  if (T->isSpecificBuiltinType(BuiltinType::Char32))
2738    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
2739
2740  switch (cast<BuiltinType>(T)->getKind()) {
2741  default: assert(0 && "getIntegerRank(): not a built-in integer");
2742  case BuiltinType::Bool:
2743    return 1 + (getIntWidth(BoolTy) << 3);
2744  case BuiltinType::Char_S:
2745  case BuiltinType::Char_U:
2746  case BuiltinType::SChar:
2747  case BuiltinType::UChar:
2748    return 2 + (getIntWidth(CharTy) << 3);
2749  case BuiltinType::Short:
2750  case BuiltinType::UShort:
2751    return 3 + (getIntWidth(ShortTy) << 3);
2752  case BuiltinType::Int:
2753  case BuiltinType::UInt:
2754    return 4 + (getIntWidth(IntTy) << 3);
2755  case BuiltinType::Long:
2756  case BuiltinType::ULong:
2757    return 5 + (getIntWidth(LongTy) << 3);
2758  case BuiltinType::LongLong:
2759  case BuiltinType::ULongLong:
2760    return 6 + (getIntWidth(LongLongTy) << 3);
2761  case BuiltinType::Int128:
2762  case BuiltinType::UInt128:
2763    return 7 + (getIntWidth(Int128Ty) << 3);
2764  }
2765}
2766
2767/// \brief Whether this is a promotable bitfield reference according
2768/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
2769///
2770/// \returns the type this bit-field will promote to, or NULL if no
2771/// promotion occurs.
2772QualType ASTContext::isPromotableBitField(Expr *E) {
2773  FieldDecl *Field = E->getBitField();
2774  if (!Field)
2775    return QualType();
2776
2777  QualType FT = Field->getType();
2778
2779  llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
2780  uint64_t BitWidth = BitWidthAP.getZExtValue();
2781  uint64_t IntSize = getTypeSize(IntTy);
2782  // GCC extension compatibility: if the bit-field size is less than or equal
2783  // to the size of int, it gets promoted no matter what its type is.
2784  // For instance, unsigned long bf : 4 gets promoted to signed int.
2785  if (BitWidth < IntSize)
2786    return IntTy;
2787
2788  if (BitWidth == IntSize)
2789    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
2790
2791  // Types bigger than int are not subject to promotions, and therefore act
2792  // like the base type.
2793  // FIXME: This doesn't quite match what gcc does, but what gcc does here
2794  // is ridiculous.
2795  return QualType();
2796}
2797
2798/// getPromotedIntegerType - Returns the type that Promotable will
2799/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
2800/// integer type.
2801QualType ASTContext::getPromotedIntegerType(QualType Promotable) {
2802  assert(!Promotable.isNull());
2803  assert(Promotable->isPromotableIntegerType());
2804  if (const EnumType *ET = Promotable->getAs<EnumType>())
2805    return ET->getDecl()->getPromotionType();
2806  if (Promotable->isSignedIntegerType())
2807    return IntTy;
2808  uint64_t PromotableSize = getTypeSize(Promotable);
2809  uint64_t IntSize = getTypeSize(IntTy);
2810  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
2811  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
2812}
2813
2814/// getIntegerTypeOrder - Returns the highest ranked integer type:
2815/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2816/// LHS < RHS, return -1.
2817int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
2818  Type *LHSC = getCanonicalType(LHS).getTypePtr();
2819  Type *RHSC = getCanonicalType(RHS).getTypePtr();
2820  if (LHSC == RHSC) return 0;
2821
2822  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
2823  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
2824
2825  unsigned LHSRank = getIntegerRank(LHSC);
2826  unsigned RHSRank = getIntegerRank(RHSC);
2827
2828  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
2829    if (LHSRank == RHSRank) return 0;
2830    return LHSRank > RHSRank ? 1 : -1;
2831  }
2832
2833  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
2834  if (LHSUnsigned) {
2835    // If the unsigned [LHS] type is larger, return it.
2836    if (LHSRank >= RHSRank)
2837      return 1;
2838
2839    // If the signed type can represent all values of the unsigned type, it
2840    // wins.  Because we are dealing with 2's complement and types that are
2841    // powers of two larger than each other, this is always safe.
2842    return -1;
2843  }
2844
2845  // If the unsigned [RHS] type is larger, return it.
2846  if (RHSRank >= LHSRank)
2847    return -1;
2848
2849  // If the signed type can represent all values of the unsigned type, it
2850  // wins.  Because we are dealing with 2's complement and types that are
2851  // powers of two larger than each other, this is always safe.
2852  return 1;
2853}
2854
2855static RecordDecl *
2856CreateRecordDecl(ASTContext &Ctx, RecordDecl::TagKind TK, DeclContext *DC,
2857                 SourceLocation L, IdentifierInfo *Id) {
2858  if (Ctx.getLangOptions().CPlusPlus)
2859    return CXXRecordDecl::Create(Ctx, TK, DC, L, Id);
2860  else
2861    return RecordDecl::Create(Ctx, TK, DC, L, Id);
2862}
2863
2864// getCFConstantStringType - Return the type used for constant CFStrings.
2865QualType ASTContext::getCFConstantStringType() {
2866  if (!CFConstantStringTypeDecl) {
2867    CFConstantStringTypeDecl =
2868      CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2869                       &Idents.get("NSConstantString"));
2870
2871    QualType FieldTypes[4];
2872
2873    // const int *isa;
2874    FieldTypes[0] = getPointerType(IntTy.withConst());
2875    // int flags;
2876    FieldTypes[1] = IntTy;
2877    // const char *str;
2878    FieldTypes[2] = getPointerType(CharTy.withConst());
2879    // long length;
2880    FieldTypes[3] = LongTy;
2881
2882    // Create fields
2883    for (unsigned i = 0; i < 4; ++i) {
2884      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
2885                                           SourceLocation(), 0,
2886                                           FieldTypes[i], /*TInfo=*/0,
2887                                           /*BitWidth=*/0,
2888                                           /*Mutable=*/false);
2889      CFConstantStringTypeDecl->addDecl(Field);
2890    }
2891
2892    CFConstantStringTypeDecl->completeDefinition(*this);
2893  }
2894
2895  return getTagDeclType(CFConstantStringTypeDecl);
2896}
2897
2898void ASTContext::setCFConstantStringType(QualType T) {
2899  const RecordType *Rec = T->getAs<RecordType>();
2900  assert(Rec && "Invalid CFConstantStringType");
2901  CFConstantStringTypeDecl = Rec->getDecl();
2902}
2903
2904QualType ASTContext::getObjCFastEnumerationStateType() {
2905  if (!ObjCFastEnumerationStateTypeDecl) {
2906    ObjCFastEnumerationStateTypeDecl =
2907      CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2908                       &Idents.get("__objcFastEnumerationState"));
2909
2910    QualType FieldTypes[] = {
2911      UnsignedLongTy,
2912      getPointerType(ObjCIdTypedefType),
2913      getPointerType(UnsignedLongTy),
2914      getConstantArrayType(UnsignedLongTy,
2915                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2916    };
2917
2918    for (size_t i = 0; i < 4; ++i) {
2919      FieldDecl *Field = FieldDecl::Create(*this,
2920                                           ObjCFastEnumerationStateTypeDecl,
2921                                           SourceLocation(), 0,
2922                                           FieldTypes[i], /*TInfo=*/0,
2923                                           /*BitWidth=*/0,
2924                                           /*Mutable=*/false);
2925      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
2926    }
2927
2928    ObjCFastEnumerationStateTypeDecl->completeDefinition(*this);
2929  }
2930
2931  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
2932}
2933
2934QualType ASTContext::getBlockDescriptorType() {
2935  if (BlockDescriptorType)
2936    return getTagDeclType(BlockDescriptorType);
2937
2938  RecordDecl *T;
2939  // FIXME: Needs the FlagAppleBlock bit.
2940  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2941                       &Idents.get("__block_descriptor"));
2942
2943  QualType FieldTypes[] = {
2944    UnsignedLongTy,
2945    UnsignedLongTy,
2946  };
2947
2948  const char *FieldNames[] = {
2949    "reserved",
2950    "Size"
2951  };
2952
2953  for (size_t i = 0; i < 2; ++i) {
2954    FieldDecl *Field = FieldDecl::Create(*this,
2955                                         T,
2956                                         SourceLocation(),
2957                                         &Idents.get(FieldNames[i]),
2958                                         FieldTypes[i], /*TInfo=*/0,
2959                                         /*BitWidth=*/0,
2960                                         /*Mutable=*/false);
2961    T->addDecl(Field);
2962  }
2963
2964  T->completeDefinition(*this);
2965
2966  BlockDescriptorType = T;
2967
2968  return getTagDeclType(BlockDescriptorType);
2969}
2970
2971void ASTContext::setBlockDescriptorType(QualType T) {
2972  const RecordType *Rec = T->getAs<RecordType>();
2973  assert(Rec && "Invalid BlockDescriptorType");
2974  BlockDescriptorType = Rec->getDecl();
2975}
2976
2977QualType ASTContext::getBlockDescriptorExtendedType() {
2978  if (BlockDescriptorExtendedType)
2979    return getTagDeclType(BlockDescriptorExtendedType);
2980
2981  RecordDecl *T;
2982  // FIXME: Needs the FlagAppleBlock bit.
2983  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2984                       &Idents.get("__block_descriptor_withcopydispose"));
2985
2986  QualType FieldTypes[] = {
2987    UnsignedLongTy,
2988    UnsignedLongTy,
2989    getPointerType(VoidPtrTy),
2990    getPointerType(VoidPtrTy)
2991  };
2992
2993  const char *FieldNames[] = {
2994    "reserved",
2995    "Size",
2996    "CopyFuncPtr",
2997    "DestroyFuncPtr"
2998  };
2999
3000  for (size_t i = 0; i < 4; ++i) {
3001    FieldDecl *Field = FieldDecl::Create(*this,
3002                                         T,
3003                                         SourceLocation(),
3004                                         &Idents.get(FieldNames[i]),
3005                                         FieldTypes[i], /*TInfo=*/0,
3006                                         /*BitWidth=*/0,
3007                                         /*Mutable=*/false);
3008    T->addDecl(Field);
3009  }
3010
3011  T->completeDefinition(*this);
3012
3013  BlockDescriptorExtendedType = T;
3014
3015  return getTagDeclType(BlockDescriptorExtendedType);
3016}
3017
3018void ASTContext::setBlockDescriptorExtendedType(QualType T) {
3019  const RecordType *Rec = T->getAs<RecordType>();
3020  assert(Rec && "Invalid BlockDescriptorType");
3021  BlockDescriptorExtendedType = Rec->getDecl();
3022}
3023
3024bool ASTContext::BlockRequiresCopying(QualType Ty) {
3025  if (Ty->isBlockPointerType())
3026    return true;
3027  if (isObjCNSObjectType(Ty))
3028    return true;
3029  if (Ty->isObjCObjectPointerType())
3030    return true;
3031  return false;
3032}
3033
3034QualType ASTContext::BuildByRefType(const char *DeclName, QualType Ty) {
3035  //  type = struct __Block_byref_1_X {
3036  //    void *__isa;
3037  //    struct __Block_byref_1_X *__forwarding;
3038  //    unsigned int __flags;
3039  //    unsigned int __size;
3040  //    void *__copy_helper;		// as needed
3041  //    void *__destroy_help		// as needed
3042  //    int X;
3043  //  } *
3044
3045  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
3046
3047  // FIXME: Move up
3048  static unsigned int UniqueBlockByRefTypeID = 0;
3049  llvm::SmallString<36> Name;
3050  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
3051                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
3052  RecordDecl *T;
3053  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
3054                       &Idents.get(Name.str()));
3055  T->startDefinition();
3056  QualType Int32Ty = IntTy;
3057  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
3058  QualType FieldTypes[] = {
3059    getPointerType(VoidPtrTy),
3060    getPointerType(getTagDeclType(T)),
3061    Int32Ty,
3062    Int32Ty,
3063    getPointerType(VoidPtrTy),
3064    getPointerType(VoidPtrTy),
3065    Ty
3066  };
3067
3068  const char *FieldNames[] = {
3069    "__isa",
3070    "__forwarding",
3071    "__flags",
3072    "__size",
3073    "__copy_helper",
3074    "__destroy_helper",
3075    DeclName,
3076  };
3077
3078  for (size_t i = 0; i < 7; ++i) {
3079    if (!HasCopyAndDispose && i >=4 && i <= 5)
3080      continue;
3081    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3082                                         &Idents.get(FieldNames[i]),
3083                                         FieldTypes[i], /*TInfo=*/0,
3084                                         /*BitWidth=*/0, /*Mutable=*/false);
3085    T->addDecl(Field);
3086  }
3087
3088  T->completeDefinition(*this);
3089
3090  return getPointerType(getTagDeclType(T));
3091}
3092
3093
3094QualType ASTContext::getBlockParmType(
3095  bool BlockHasCopyDispose,
3096  llvm::SmallVector<const Expr *, 8> &BlockDeclRefDecls) {
3097  // FIXME: Move up
3098  static unsigned int UniqueBlockParmTypeID = 0;
3099  llvm::SmallString<36> Name;
3100  llvm::raw_svector_ostream(Name) << "__block_literal_"
3101                                  << ++UniqueBlockParmTypeID;
3102  RecordDecl *T;
3103  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
3104                       &Idents.get(Name.str()));
3105  QualType FieldTypes[] = {
3106    getPointerType(VoidPtrTy),
3107    IntTy,
3108    IntTy,
3109    getPointerType(VoidPtrTy),
3110    (BlockHasCopyDispose ?
3111     getPointerType(getBlockDescriptorExtendedType()) :
3112     getPointerType(getBlockDescriptorType()))
3113  };
3114
3115  const char *FieldNames[] = {
3116    "__isa",
3117    "__flags",
3118    "__reserved",
3119    "__FuncPtr",
3120    "__descriptor"
3121  };
3122
3123  for (size_t i = 0; i < 5; ++i) {
3124    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3125                                         &Idents.get(FieldNames[i]),
3126                                         FieldTypes[i], /*TInfo=*/0,
3127                                         /*BitWidth=*/0, /*Mutable=*/false);
3128    T->addDecl(Field);
3129  }
3130
3131  for (size_t i = 0; i < BlockDeclRefDecls.size(); ++i) {
3132    const Expr *E = BlockDeclRefDecls[i];
3133    const BlockDeclRefExpr *BDRE = dyn_cast<BlockDeclRefExpr>(E);
3134    clang::IdentifierInfo *Name = 0;
3135    if (BDRE) {
3136      const ValueDecl *D = BDRE->getDecl();
3137      Name = &Idents.get(D->getName());
3138    }
3139    QualType FieldType = E->getType();
3140
3141    if (BDRE && BDRE->isByRef())
3142      FieldType = BuildByRefType(BDRE->getDecl()->getNameAsCString(),
3143                                 FieldType);
3144
3145    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3146                                         Name, FieldType, /*TInfo=*/0,
3147                                         /*BitWidth=*/0, /*Mutable=*/false);
3148    T->addDecl(Field);
3149  }
3150
3151  T->completeDefinition(*this);
3152
3153  return getPointerType(getTagDeclType(T));
3154}
3155
3156void ASTContext::setObjCFastEnumerationStateType(QualType T) {
3157  const RecordType *Rec = T->getAs<RecordType>();
3158  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
3159  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
3160}
3161
3162// This returns true if a type has been typedefed to BOOL:
3163// typedef <type> BOOL;
3164static bool isTypeTypedefedAsBOOL(QualType T) {
3165  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3166    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3167      return II->isStr("BOOL");
3168
3169  return false;
3170}
3171
3172/// getObjCEncodingTypeSize returns size of type for objective-c encoding
3173/// purpose.
3174CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) {
3175  CharUnits sz = getTypeSizeInChars(type);
3176
3177  // Make all integer and enum types at least as large as an int
3178  if (sz.isPositive() && type->isIntegralType())
3179    sz = std::max(sz, getTypeSizeInChars(IntTy));
3180  // Treat arrays as pointers, since that's how they're passed in.
3181  else if (type->isArrayType())
3182    sz = getTypeSizeInChars(VoidPtrTy);
3183  return sz;
3184}
3185
3186static inline
3187std::string charUnitsToString(const CharUnits &CU) {
3188  return llvm::itostr(CU.getQuantity());
3189}
3190
3191/// getObjCEncodingForBlockDecl - Return the encoded type for this method
3192/// declaration.
3193void ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr,
3194                                             std::string& S) {
3195  const BlockDecl *Decl = Expr->getBlockDecl();
3196  QualType BlockTy =
3197      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
3198  // Encode result type.
3199  getObjCEncodingForType(cast<FunctionType>(BlockTy)->getResultType(), S);
3200  // Compute size of all parameters.
3201  // Start with computing size of a pointer in number of bytes.
3202  // FIXME: There might(should) be a better way of doing this computation!
3203  SourceLocation Loc;
3204  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3205  CharUnits ParmOffset = PtrSize;
3206  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3207       E = Decl->param_end(); PI != E; ++PI) {
3208    QualType PType = (*PI)->getType();
3209    CharUnits sz = getObjCEncodingTypeSize(PType);
3210    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
3211    ParmOffset += sz;
3212  }
3213  // Size of the argument frame
3214  S += charUnitsToString(ParmOffset);
3215  // Block pointer and offset.
3216  S += "@?0";
3217  ParmOffset = PtrSize;
3218
3219  // Argument types.
3220  ParmOffset = PtrSize;
3221  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
3222       Decl->param_end(); PI != E; ++PI) {
3223    ParmVarDecl *PVDecl = *PI;
3224    QualType PType = PVDecl->getOriginalType();
3225    if (const ArrayType *AT =
3226          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3227      // Use array's original type only if it has known number of
3228      // elements.
3229      if (!isa<ConstantArrayType>(AT))
3230        PType = PVDecl->getType();
3231    } else if (PType->isFunctionType())
3232      PType = PVDecl->getType();
3233    getObjCEncodingForType(PType, S);
3234    S += charUnitsToString(ParmOffset);
3235    ParmOffset += getObjCEncodingTypeSize(PType);
3236  }
3237}
3238
3239/// getObjCEncodingForMethodDecl - Return the encoded type for this method
3240/// declaration.
3241void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
3242                                              std::string& S) {
3243  // FIXME: This is not very efficient.
3244  // Encode type qualifer, 'in', 'inout', etc. for the return type.
3245  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
3246  // Encode result type.
3247  getObjCEncodingForType(Decl->getResultType(), S);
3248  // Compute size of all parameters.
3249  // Start with computing size of a pointer in number of bytes.
3250  // FIXME: There might(should) be a better way of doing this computation!
3251  SourceLocation Loc;
3252  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3253  // The first two arguments (self and _cmd) are pointers; account for
3254  // their size.
3255  CharUnits ParmOffset = 2 * PtrSize;
3256  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3257       E = Decl->param_end(); PI != E; ++PI) {
3258    QualType PType = (*PI)->getType();
3259    CharUnits sz = getObjCEncodingTypeSize(PType);
3260    assert (sz.isPositive() &&
3261        "getObjCEncodingForMethodDecl - Incomplete param type");
3262    ParmOffset += sz;
3263  }
3264  S += charUnitsToString(ParmOffset);
3265  S += "@0:";
3266  S += charUnitsToString(PtrSize);
3267
3268  // Argument types.
3269  ParmOffset = 2 * PtrSize;
3270  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3271       E = Decl->param_end(); PI != E; ++PI) {
3272    ParmVarDecl *PVDecl = *PI;
3273    QualType PType = PVDecl->getOriginalType();
3274    if (const ArrayType *AT =
3275          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3276      // Use array's original type only if it has known number of
3277      // elements.
3278      if (!isa<ConstantArrayType>(AT))
3279        PType = PVDecl->getType();
3280    } else if (PType->isFunctionType())
3281      PType = PVDecl->getType();
3282    // Process argument qualifiers for user supplied arguments; such as,
3283    // 'in', 'inout', etc.
3284    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
3285    getObjCEncodingForType(PType, S);
3286    S += charUnitsToString(ParmOffset);
3287    ParmOffset += getObjCEncodingTypeSize(PType);
3288  }
3289}
3290
3291/// getObjCEncodingForPropertyDecl - Return the encoded type for this
3292/// property declaration. If non-NULL, Container must be either an
3293/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
3294/// NULL when getting encodings for protocol properties.
3295/// Property attributes are stored as a comma-delimited C string. The simple
3296/// attributes readonly and bycopy are encoded as single characters. The
3297/// parametrized attributes, getter=name, setter=name, and ivar=name, are
3298/// encoded as single characters, followed by an identifier. Property types
3299/// are also encoded as a parametrized attribute. The characters used to encode
3300/// these attributes are defined by the following enumeration:
3301/// @code
3302/// enum PropertyAttributes {
3303/// kPropertyReadOnly = 'R',   // property is read-only.
3304/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
3305/// kPropertyByref = '&',  // property is a reference to the value last assigned
3306/// kPropertyDynamic = 'D',    // property is dynamic
3307/// kPropertyGetter = 'G',     // followed by getter selector name
3308/// kPropertySetter = 'S',     // followed by setter selector name
3309/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
3310/// kPropertyType = 't'              // followed by old-style type encoding.
3311/// kPropertyWeak = 'W'              // 'weak' property
3312/// kPropertyStrong = 'P'            // property GC'able
3313/// kPropertyNonAtomic = 'N'         // property non-atomic
3314/// };
3315/// @endcode
3316void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
3317                                                const Decl *Container,
3318                                                std::string& S) {
3319  // Collect information from the property implementation decl(s).
3320  bool Dynamic = false;
3321  ObjCPropertyImplDecl *SynthesizePID = 0;
3322
3323  // FIXME: Duplicated code due to poor abstraction.
3324  if (Container) {
3325    if (const ObjCCategoryImplDecl *CID =
3326        dyn_cast<ObjCCategoryImplDecl>(Container)) {
3327      for (ObjCCategoryImplDecl::propimpl_iterator
3328             i = CID->propimpl_begin(), e = CID->propimpl_end();
3329           i != e; ++i) {
3330        ObjCPropertyImplDecl *PID = *i;
3331        if (PID->getPropertyDecl() == PD) {
3332          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3333            Dynamic = true;
3334          } else {
3335            SynthesizePID = PID;
3336          }
3337        }
3338      }
3339    } else {
3340      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
3341      for (ObjCCategoryImplDecl::propimpl_iterator
3342             i = OID->propimpl_begin(), e = OID->propimpl_end();
3343           i != e; ++i) {
3344        ObjCPropertyImplDecl *PID = *i;
3345        if (PID->getPropertyDecl() == PD) {
3346          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3347            Dynamic = true;
3348          } else {
3349            SynthesizePID = PID;
3350          }
3351        }
3352      }
3353    }
3354  }
3355
3356  // FIXME: This is not very efficient.
3357  S = "T";
3358
3359  // Encode result type.
3360  // GCC has some special rules regarding encoding of properties which
3361  // closely resembles encoding of ivars.
3362  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
3363                             true /* outermost type */,
3364                             true /* encoding for property */);
3365
3366  if (PD->isReadOnly()) {
3367    S += ",R";
3368  } else {
3369    switch (PD->getSetterKind()) {
3370    case ObjCPropertyDecl::Assign: break;
3371    case ObjCPropertyDecl::Copy:   S += ",C"; break;
3372    case ObjCPropertyDecl::Retain: S += ",&"; break;
3373    }
3374  }
3375
3376  // It really isn't clear at all what this means, since properties
3377  // are "dynamic by default".
3378  if (Dynamic)
3379    S += ",D";
3380
3381  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
3382    S += ",N";
3383
3384  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
3385    S += ",G";
3386    S += PD->getGetterName().getAsString();
3387  }
3388
3389  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
3390    S += ",S";
3391    S += PD->getSetterName().getAsString();
3392  }
3393
3394  if (SynthesizePID) {
3395    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
3396    S += ",V";
3397    S += OID->getNameAsString();
3398  }
3399
3400  // FIXME: OBJCGC: weak & strong
3401}
3402
3403/// getLegacyIntegralTypeEncoding -
3404/// Another legacy compatibility encoding: 32-bit longs are encoded as
3405/// 'l' or 'L' , but not always.  For typedefs, we need to use
3406/// 'i' or 'I' instead if encoding a struct field, or a pointer!
3407///
3408void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
3409  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
3410    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
3411      if (BT->getKind() == BuiltinType::ULong &&
3412          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3413        PointeeTy = UnsignedIntTy;
3414      else
3415        if (BT->getKind() == BuiltinType::Long &&
3416            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3417          PointeeTy = IntTy;
3418    }
3419  }
3420}
3421
3422void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
3423                                        const FieldDecl *Field) {
3424  // We follow the behavior of gcc, expanding structures which are
3425  // directly pointed to, and expanding embedded structures. Note that
3426  // these rules are sufficient to prevent recursive encoding of the
3427  // same type.
3428  getObjCEncodingForTypeImpl(T, S, true, true, Field,
3429                             true /* outermost type */);
3430}
3431
3432static void EncodeBitField(const ASTContext *Context, std::string& S,
3433                           const FieldDecl *FD) {
3434  const Expr *E = FD->getBitWidth();
3435  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
3436  ASTContext *Ctx = const_cast<ASTContext*>(Context);
3437  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
3438  S += 'b';
3439  S += llvm::utostr(N);
3440}
3441
3442// FIXME: Use SmallString for accumulating string.
3443void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
3444                                            bool ExpandPointedToStructures,
3445                                            bool ExpandStructures,
3446                                            const FieldDecl *FD,
3447                                            bool OutermostType,
3448                                            bool EncodingProperty) {
3449  if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
3450    if (FD && FD->isBitField())
3451      return EncodeBitField(this, S, FD);
3452    char encoding;
3453    switch (BT->getKind()) {
3454    default: assert(0 && "Unhandled builtin type kind");
3455    case BuiltinType::Void:       encoding = 'v'; break;
3456    case BuiltinType::Bool:       encoding = 'B'; break;
3457    case BuiltinType::Char_U:
3458    case BuiltinType::UChar:      encoding = 'C'; break;
3459    case BuiltinType::UShort:     encoding = 'S'; break;
3460    case BuiltinType::UInt:       encoding = 'I'; break;
3461    case BuiltinType::ULong:
3462        encoding =
3463          (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q';
3464        break;
3465    case BuiltinType::UInt128:    encoding = 'T'; break;
3466    case BuiltinType::ULongLong:  encoding = 'Q'; break;
3467    case BuiltinType::Char_S:
3468    case BuiltinType::SChar:      encoding = 'c'; break;
3469    case BuiltinType::Short:      encoding = 's'; break;
3470    case BuiltinType::Int:        encoding = 'i'; break;
3471    case BuiltinType::Long:
3472      encoding =
3473        (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q';
3474      break;
3475    case BuiltinType::LongLong:   encoding = 'q'; break;
3476    case BuiltinType::Int128:     encoding = 't'; break;
3477    case BuiltinType::Float:      encoding = 'f'; break;
3478    case BuiltinType::Double:     encoding = 'd'; break;
3479    case BuiltinType::LongDouble: encoding = 'd'; break;
3480    }
3481
3482    S += encoding;
3483    return;
3484  }
3485
3486  if (const ComplexType *CT = T->getAs<ComplexType>()) {
3487    S += 'j';
3488    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
3489                               false);
3490    return;
3491  }
3492
3493  if (const PointerType *PT = T->getAs<PointerType>()) {
3494    if (PT->isObjCSelType()) {
3495      S += ':';
3496      return;
3497    }
3498    QualType PointeeTy = PT->getPointeeType();
3499
3500    bool isReadOnly = false;
3501    // For historical/compatibility reasons, the read-only qualifier of the
3502    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
3503    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
3504    // Also, do not emit the 'r' for anything but the outermost type!
3505    if (isa<TypedefType>(T.getTypePtr())) {
3506      if (OutermostType && T.isConstQualified()) {
3507        isReadOnly = true;
3508        S += 'r';
3509      }
3510    } else if (OutermostType) {
3511      QualType P = PointeeTy;
3512      while (P->getAs<PointerType>())
3513        P = P->getAs<PointerType>()->getPointeeType();
3514      if (P.isConstQualified()) {
3515        isReadOnly = true;
3516        S += 'r';
3517      }
3518    }
3519    if (isReadOnly) {
3520      // Another legacy compatibility encoding. Some ObjC qualifier and type
3521      // combinations need to be rearranged.
3522      // Rewrite "in const" from "nr" to "rn"
3523      const char * s = S.c_str();
3524      int len = S.length();
3525      if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
3526        std::string replace = "rn";
3527        S.replace(S.end()-2, S.end(), replace);
3528      }
3529    }
3530
3531    if (PointeeTy->isCharType()) {
3532      // char pointer types should be encoded as '*' unless it is a
3533      // type that has been typedef'd to 'BOOL'.
3534      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
3535        S += '*';
3536        return;
3537      }
3538    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
3539      // GCC binary compat: Need to convert "struct objc_class *" to "#".
3540      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
3541        S += '#';
3542        return;
3543      }
3544      // GCC binary compat: Need to convert "struct objc_object *" to "@".
3545      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
3546        S += '@';
3547        return;
3548      }
3549      // fall through...
3550    }
3551    S += '^';
3552    getLegacyIntegralTypeEncoding(PointeeTy);
3553
3554    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
3555                               NULL);
3556    return;
3557  }
3558
3559  if (const ArrayType *AT =
3560      // Ignore type qualifiers etc.
3561        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
3562    if (isa<IncompleteArrayType>(AT)) {
3563      // Incomplete arrays are encoded as a pointer to the array element.
3564      S += '^';
3565
3566      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3567                                 false, ExpandStructures, FD);
3568    } else {
3569      S += '[';
3570
3571      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
3572        S += llvm::utostr(CAT->getSize().getZExtValue());
3573      else {
3574        //Variable length arrays are encoded as a regular array with 0 elements.
3575        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
3576        S += '0';
3577      }
3578
3579      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3580                                 false, ExpandStructures, FD);
3581      S += ']';
3582    }
3583    return;
3584  }
3585
3586  if (T->getAs<FunctionType>()) {
3587    S += '?';
3588    return;
3589  }
3590
3591  if (const RecordType *RTy = T->getAs<RecordType>()) {
3592    RecordDecl *RDecl = RTy->getDecl();
3593    S += RDecl->isUnion() ? '(' : '{';
3594    // Anonymous structures print as '?'
3595    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
3596      S += II->getName();
3597    } else {
3598      S += '?';
3599    }
3600    if (ExpandStructures) {
3601      S += '=';
3602      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
3603                                   FieldEnd = RDecl->field_end();
3604           Field != FieldEnd; ++Field) {
3605        if (FD) {
3606          S += '"';
3607          S += Field->getNameAsString();
3608          S += '"';
3609        }
3610
3611        // Special case bit-fields.
3612        if (Field->isBitField()) {
3613          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
3614                                     (*Field));
3615        } else {
3616          QualType qt = Field->getType();
3617          getLegacyIntegralTypeEncoding(qt);
3618          getObjCEncodingForTypeImpl(qt, S, false, true,
3619                                     FD);
3620        }
3621      }
3622    }
3623    S += RDecl->isUnion() ? ')' : '}';
3624    return;
3625  }
3626
3627  if (T->isEnumeralType()) {
3628    if (FD && FD->isBitField())
3629      EncodeBitField(this, S, FD);
3630    else
3631      S += 'i';
3632    return;
3633  }
3634
3635  if (T->isBlockPointerType()) {
3636    S += "@?"; // Unlike a pointer-to-function, which is "^?".
3637    return;
3638  }
3639
3640  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
3641    // @encode(class_name)
3642    ObjCInterfaceDecl *OI = OIT->getDecl();
3643    S += '{';
3644    const IdentifierInfo *II = OI->getIdentifier();
3645    S += II->getName();
3646    S += '=';
3647    llvm::SmallVector<FieldDecl*, 32> RecFields;
3648    CollectObjCIvars(OI, RecFields);
3649    for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
3650      if (RecFields[i]->isBitField())
3651        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3652                                   RecFields[i]);
3653      else
3654        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3655                                   FD);
3656    }
3657    S += '}';
3658    return;
3659  }
3660
3661  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
3662    if (OPT->isObjCIdType()) {
3663      S += '@';
3664      return;
3665    }
3666
3667    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
3668      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
3669      // Since this is a binary compatibility issue, need to consult with runtime
3670      // folks. Fortunately, this is a *very* obsure construct.
3671      S += '#';
3672      return;
3673    }
3674
3675    if (OPT->isObjCQualifiedIdType()) {
3676      getObjCEncodingForTypeImpl(getObjCIdType(), S,
3677                                 ExpandPointedToStructures,
3678                                 ExpandStructures, FD);
3679      if (FD || EncodingProperty) {
3680        // Note that we do extended encoding of protocol qualifer list
3681        // Only when doing ivar or property encoding.
3682        S += '"';
3683        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3684             E = OPT->qual_end(); I != E; ++I) {
3685          S += '<';
3686          S += (*I)->getNameAsString();
3687          S += '>';
3688        }
3689        S += '"';
3690      }
3691      return;
3692    }
3693
3694    QualType PointeeTy = OPT->getPointeeType();
3695    if (!EncodingProperty &&
3696        isa<TypedefType>(PointeeTy.getTypePtr())) {
3697      // Another historical/compatibility reason.
3698      // We encode the underlying type which comes out as
3699      // {...};
3700      S += '^';
3701      getObjCEncodingForTypeImpl(PointeeTy, S,
3702                                 false, ExpandPointedToStructures,
3703                                 NULL);
3704      return;
3705    }
3706
3707    S += '@';
3708    if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
3709      S += '"';
3710      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
3711      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3712           E = OPT->qual_end(); I != E; ++I) {
3713        S += '<';
3714        S += (*I)->getNameAsString();
3715        S += '>';
3716      }
3717      S += '"';
3718    }
3719    return;
3720  }
3721
3722  assert(0 && "@encode for type not implemented!");
3723}
3724
3725void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
3726                                                 std::string& S) const {
3727  if (QT & Decl::OBJC_TQ_In)
3728    S += 'n';
3729  if (QT & Decl::OBJC_TQ_Inout)
3730    S += 'N';
3731  if (QT & Decl::OBJC_TQ_Out)
3732    S += 'o';
3733  if (QT & Decl::OBJC_TQ_Bycopy)
3734    S += 'O';
3735  if (QT & Decl::OBJC_TQ_Byref)
3736    S += 'R';
3737  if (QT & Decl::OBJC_TQ_Oneway)
3738    S += 'V';
3739}
3740
3741void ASTContext::setBuiltinVaListType(QualType T) {
3742  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
3743
3744  BuiltinVaListType = T;
3745}
3746
3747void ASTContext::setObjCIdType(QualType T) {
3748  ObjCIdTypedefType = T;
3749}
3750
3751void ASTContext::setObjCSelType(QualType T) {
3752  ObjCSelTypedefType = T;
3753}
3754
3755void ASTContext::setObjCProtoType(QualType QT) {
3756  ObjCProtoType = QT;
3757}
3758
3759void ASTContext::setObjCClassType(QualType T) {
3760  ObjCClassTypedefType = T;
3761}
3762
3763void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
3764  assert(ObjCConstantStringType.isNull() &&
3765         "'NSConstantString' type already set!");
3766
3767  ObjCConstantStringType = getObjCInterfaceType(Decl);
3768}
3769
3770/// \brief Retrieve the template name that corresponds to a non-empty
3771/// lookup.
3772TemplateName ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
3773                                                   UnresolvedSetIterator End) {
3774  unsigned size = End - Begin;
3775  assert(size > 1 && "set is not overloaded!");
3776
3777  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
3778                          size * sizeof(FunctionTemplateDecl*));
3779  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
3780
3781  NamedDecl **Storage = OT->getStorage();
3782  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
3783    NamedDecl *D = *I;
3784    assert(isa<FunctionTemplateDecl>(D) ||
3785           (isa<UsingShadowDecl>(D) &&
3786            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
3787    *Storage++ = D;
3788  }
3789
3790  return TemplateName(OT);
3791}
3792
3793/// \brief Retrieve the template name that represents a qualified
3794/// template name such as \c std::vector.
3795TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
3796                                                  bool TemplateKeyword,
3797                                                  TemplateDecl *Template) {
3798  llvm::FoldingSetNodeID ID;
3799  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
3800
3801  void *InsertPos = 0;
3802  QualifiedTemplateName *QTN =
3803    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3804  if (!QTN) {
3805    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
3806    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
3807  }
3808
3809  return TemplateName(QTN);
3810}
3811
3812/// \brief Retrieve the template name that represents a dependent
3813/// template name such as \c MetaFun::template apply.
3814TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3815                                                  const IdentifierInfo *Name) {
3816  assert((!NNS || NNS->isDependent()) &&
3817         "Nested name specifier must be dependent");
3818
3819  llvm::FoldingSetNodeID ID;
3820  DependentTemplateName::Profile(ID, NNS, Name);
3821
3822  void *InsertPos = 0;
3823  DependentTemplateName *QTN =
3824    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3825
3826  if (QTN)
3827    return TemplateName(QTN);
3828
3829  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3830  if (CanonNNS == NNS) {
3831    QTN = new (*this,4) DependentTemplateName(NNS, Name);
3832  } else {
3833    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
3834    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
3835  }
3836
3837  DependentTemplateNames.InsertNode(QTN, InsertPos);
3838  return TemplateName(QTN);
3839}
3840
3841/// \brief Retrieve the template name that represents a dependent
3842/// template name such as \c MetaFun::template operator+.
3843TemplateName
3844ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3845                                     OverloadedOperatorKind Operator) {
3846  assert((!NNS || NNS->isDependent()) &&
3847         "Nested name specifier must be dependent");
3848
3849  llvm::FoldingSetNodeID ID;
3850  DependentTemplateName::Profile(ID, NNS, Operator);
3851
3852  void *InsertPos = 0;
3853  DependentTemplateName *QTN =
3854  DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3855
3856  if (QTN)
3857    return TemplateName(QTN);
3858
3859  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3860  if (CanonNNS == NNS) {
3861    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
3862  } else {
3863    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
3864    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
3865  }
3866
3867  DependentTemplateNames.InsertNode(QTN, InsertPos);
3868  return TemplateName(QTN);
3869}
3870
3871/// getFromTargetType - Given one of the integer types provided by
3872/// TargetInfo, produce the corresponding type. The unsigned @p Type
3873/// is actually a value of type @c TargetInfo::IntType.
3874CanQualType ASTContext::getFromTargetType(unsigned Type) const {
3875  switch (Type) {
3876  case TargetInfo::NoInt: return CanQualType();
3877  case TargetInfo::SignedShort: return ShortTy;
3878  case TargetInfo::UnsignedShort: return UnsignedShortTy;
3879  case TargetInfo::SignedInt: return IntTy;
3880  case TargetInfo::UnsignedInt: return UnsignedIntTy;
3881  case TargetInfo::SignedLong: return LongTy;
3882  case TargetInfo::UnsignedLong: return UnsignedLongTy;
3883  case TargetInfo::SignedLongLong: return LongLongTy;
3884  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
3885  }
3886
3887  assert(false && "Unhandled TargetInfo::IntType value");
3888  return CanQualType();
3889}
3890
3891//===----------------------------------------------------------------------===//
3892//                        Type Predicates.
3893//===----------------------------------------------------------------------===//
3894
3895/// isObjCNSObjectType - Return true if this is an NSObject object using
3896/// NSObject attribute on a c-style pointer type.
3897/// FIXME - Make it work directly on types.
3898/// FIXME: Move to Type.
3899///
3900bool ASTContext::isObjCNSObjectType(QualType Ty) const {
3901  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
3902    if (TypedefDecl *TD = TDT->getDecl())
3903      if (TD->getAttr<ObjCNSObjectAttr>())
3904        return true;
3905  }
3906  return false;
3907}
3908
3909/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
3910/// garbage collection attribute.
3911///
3912Qualifiers::GC ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
3913  Qualifiers::GC GCAttrs = Qualifiers::GCNone;
3914  if (getLangOptions().ObjC1 &&
3915      getLangOptions().getGCMode() != LangOptions::NonGC) {
3916    GCAttrs = Ty.getObjCGCAttr();
3917    // Default behavious under objective-c's gc is for objective-c pointers
3918    // (or pointers to them) be treated as though they were declared
3919    // as __strong.
3920    if (GCAttrs == Qualifiers::GCNone) {
3921      if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
3922        GCAttrs = Qualifiers::Strong;
3923      else if (Ty->isPointerType())
3924        return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
3925    }
3926    // Non-pointers have none gc'able attribute regardless of the attribute
3927    // set on them.
3928    else if (!Ty->isAnyPointerType() && !Ty->isBlockPointerType())
3929      return Qualifiers::GCNone;
3930  }
3931  return GCAttrs;
3932}
3933
3934//===----------------------------------------------------------------------===//
3935//                        Type Compatibility Testing
3936//===----------------------------------------------------------------------===//
3937
3938/// areCompatVectorTypes - Return true if the two specified vector types are
3939/// compatible.
3940static bool areCompatVectorTypes(const VectorType *LHS,
3941                                 const VectorType *RHS) {
3942  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
3943  return LHS->getElementType() == RHS->getElementType() &&
3944         LHS->getNumElements() == RHS->getNumElements();
3945}
3946
3947//===----------------------------------------------------------------------===//
3948// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
3949//===----------------------------------------------------------------------===//
3950
3951/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
3952/// inheritance hierarchy of 'rProto'.
3953bool ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
3954                                                ObjCProtocolDecl *rProto) {
3955  if (lProto == rProto)
3956    return true;
3957  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
3958       E = rProto->protocol_end(); PI != E; ++PI)
3959    if (ProtocolCompatibleWithProtocol(lProto, *PI))
3960      return true;
3961  return false;
3962}
3963
3964/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
3965/// return true if lhs's protocols conform to rhs's protocol; false
3966/// otherwise.
3967bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
3968  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
3969    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
3970  return false;
3971}
3972
3973/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
3974/// ObjCQualifiedIDType.
3975bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
3976                                                   bool compare) {
3977  // Allow id<P..> and an 'id' or void* type in all cases.
3978  if (lhs->isVoidPointerType() ||
3979      lhs->isObjCIdType() || lhs->isObjCClassType())
3980    return true;
3981  else if (rhs->isVoidPointerType() ||
3982           rhs->isObjCIdType() || rhs->isObjCClassType())
3983    return true;
3984
3985  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
3986    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
3987
3988    if (!rhsOPT) return false;
3989
3990    if (rhsOPT->qual_empty()) {
3991      // If the RHS is a unqualified interface pointer "NSString*",
3992      // make sure we check the class hierarchy.
3993      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
3994        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3995             E = lhsQID->qual_end(); I != E; ++I) {
3996          // when comparing an id<P> on lhs with a static type on rhs,
3997          // see if static class implements all of id's protocols, directly or
3998          // through its super class and categories.
3999          if (!rhsID->ClassImplementsProtocol(*I, true))
4000            return false;
4001        }
4002      }
4003      // If there are no qualifiers and no interface, we have an 'id'.
4004      return true;
4005    }
4006    // Both the right and left sides have qualifiers.
4007    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4008         E = lhsQID->qual_end(); I != E; ++I) {
4009      ObjCProtocolDecl *lhsProto = *I;
4010      bool match = false;
4011
4012      // when comparing an id<P> on lhs with a static type on rhs,
4013      // see if static class implements all of id's protocols, directly or
4014      // through its super class and categories.
4015      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
4016           E = rhsOPT->qual_end(); J != E; ++J) {
4017        ObjCProtocolDecl *rhsProto = *J;
4018        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4019            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4020          match = true;
4021          break;
4022        }
4023      }
4024      // If the RHS is a qualified interface pointer "NSString<P>*",
4025      // make sure we check the class hierarchy.
4026      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4027        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4028             E = lhsQID->qual_end(); I != E; ++I) {
4029          // when comparing an id<P> on lhs with a static type on rhs,
4030          // see if static class implements all of id's protocols, directly or
4031          // through its super class and categories.
4032          if (rhsID->ClassImplementsProtocol(*I, true)) {
4033            match = true;
4034            break;
4035          }
4036        }
4037      }
4038      if (!match)
4039        return false;
4040    }
4041
4042    return true;
4043  }
4044
4045  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
4046  assert(rhsQID && "One of the LHS/RHS should be id<x>");
4047
4048  if (const ObjCObjectPointerType *lhsOPT =
4049        lhs->getAsObjCInterfacePointerType()) {
4050    if (lhsOPT->qual_empty()) {
4051      bool match = false;
4052      if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
4053        for (ObjCObjectPointerType::qual_iterator I = rhsQID->qual_begin(),
4054             E = rhsQID->qual_end(); I != E; ++I) {
4055          // when comparing an id<P> on lhs with a static type on rhs,
4056          // see if static class implements all of id's protocols, directly or
4057          // through its super class and categories.
4058          if (lhsID->ClassImplementsProtocol(*I, true)) {
4059            match = true;
4060            break;
4061          }
4062        }
4063        if (!match)
4064          return false;
4065      }
4066      return true;
4067    }
4068    // Both the right and left sides have qualifiers.
4069    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
4070         E = lhsOPT->qual_end(); I != E; ++I) {
4071      ObjCProtocolDecl *lhsProto = *I;
4072      bool match = false;
4073
4074      // when comparing an id<P> on lhs with a static type on rhs,
4075      // see if static class implements all of id's protocols, directly or
4076      // through its super class and categories.
4077      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
4078           E = rhsQID->qual_end(); J != E; ++J) {
4079        ObjCProtocolDecl *rhsProto = *J;
4080        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4081            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4082          match = true;
4083          break;
4084        }
4085      }
4086      if (!match)
4087        return false;
4088    }
4089    return true;
4090  }
4091  return false;
4092}
4093
4094/// canAssignObjCInterfaces - Return true if the two interface types are
4095/// compatible for assignment from RHS to LHS.  This handles validation of any
4096/// protocol qualifiers on the LHS or RHS.
4097///
4098bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
4099                                         const ObjCObjectPointerType *RHSOPT) {
4100  // If either type represents the built-in 'id' or 'Class' types, return true.
4101  if (LHSOPT->isObjCBuiltinType() || RHSOPT->isObjCBuiltinType())
4102    return true;
4103
4104  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
4105    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4106                                             QualType(RHSOPT,0),
4107                                             false);
4108
4109  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4110  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4111  if (LHS && RHS) // We have 2 user-defined types.
4112    return canAssignObjCInterfaces(LHS, RHS);
4113
4114  return false;
4115}
4116
4117/// getIntersectionOfProtocols - This routine finds the intersection of set
4118/// of protocols inherited from two distinct objective-c pointer objects.
4119/// It is used to build composite qualifier list of the composite type of
4120/// the conditional expression involving two objective-c pointer objects.
4121static
4122void getIntersectionOfProtocols(ASTContext &Context,
4123                                const ObjCObjectPointerType *LHSOPT,
4124                                const ObjCObjectPointerType *RHSOPT,
4125      llvm::SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
4126
4127  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4128  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4129
4130  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
4131  unsigned LHSNumProtocols = LHS->getNumProtocols();
4132  if (LHSNumProtocols > 0)
4133    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
4134  else {
4135    llvm::SmallVector<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
4136     Context.CollectInheritedProtocols(LHS->getDecl(), LHSInheritedProtocols);
4137    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
4138                                LHSInheritedProtocols.end());
4139  }
4140
4141  unsigned RHSNumProtocols = RHS->getNumProtocols();
4142  if (RHSNumProtocols > 0) {
4143    ObjCProtocolDecl **RHSProtocols = (ObjCProtocolDecl **)RHS->qual_begin();
4144    for (unsigned i = 0; i < RHSNumProtocols; ++i)
4145      if (InheritedProtocolSet.count(RHSProtocols[i]))
4146        IntersectionOfProtocols.push_back(RHSProtocols[i]);
4147  }
4148  else {
4149    llvm::SmallVector<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
4150    Context.CollectInheritedProtocols(RHS->getDecl(), RHSInheritedProtocols);
4151    // FIXME. This may cause duplication of protocols in the list, but should
4152    // be harmless.
4153    for (unsigned i = 0, len = RHSInheritedProtocols.size(); i < len; ++i)
4154      if (InheritedProtocolSet.count(RHSInheritedProtocols[i]))
4155        IntersectionOfProtocols.push_back(RHSInheritedProtocols[i]);
4156  }
4157}
4158
4159/// areCommonBaseCompatible - Returns common base class of the two classes if
4160/// one found. Note that this is O'2 algorithm. But it will be called as the
4161/// last type comparison in a ?-exp of ObjC pointer types before a
4162/// warning is issued. So, its invokation is extremely rare.
4163QualType ASTContext::areCommonBaseCompatible(
4164                                          const ObjCObjectPointerType *LHSOPT,
4165                                          const ObjCObjectPointerType *RHSOPT) {
4166  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4167  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4168  if (!LHS || !RHS)
4169    return QualType();
4170
4171  while (const ObjCInterfaceDecl *LHSIDecl = LHS->getDecl()->getSuperClass()) {
4172    QualType LHSTy = getObjCInterfaceType(LHSIDecl);
4173    LHS = LHSTy->getAs<ObjCInterfaceType>();
4174    if (canAssignObjCInterfaces(LHS, RHS)) {
4175      llvm::SmallVector<ObjCProtocolDecl *, 8> IntersectionOfProtocols;
4176      getIntersectionOfProtocols(*this,
4177                                 LHSOPT, RHSOPT, IntersectionOfProtocols);
4178      if (IntersectionOfProtocols.empty())
4179        LHSTy = getObjCObjectPointerType(LHSTy);
4180      else
4181        LHSTy = getObjCObjectPointerType(LHSTy, &IntersectionOfProtocols[0],
4182                                                IntersectionOfProtocols.size());
4183      return LHSTy;
4184    }
4185  }
4186
4187  return QualType();
4188}
4189
4190bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
4191                                         const ObjCInterfaceType *RHS) {
4192  // Verify that the base decls are compatible: the RHS must be a subclass of
4193  // the LHS.
4194  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
4195    return false;
4196
4197  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
4198  // protocol qualified at all, then we are good.
4199  if (LHS->getNumProtocols() == 0)
4200    return true;
4201
4202  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
4203  // isn't a superset.
4204  if (RHS->getNumProtocols() == 0)
4205    return true;  // FIXME: should return false!
4206
4207  for (ObjCInterfaceType::qual_iterator LHSPI = LHS->qual_begin(),
4208                                        LHSPE = LHS->qual_end();
4209       LHSPI != LHSPE; LHSPI++) {
4210    bool RHSImplementsProtocol = false;
4211
4212    // If the RHS doesn't implement the protocol on the left, the types
4213    // are incompatible.
4214    for (ObjCInterfaceType::qual_iterator RHSPI = RHS->qual_begin(),
4215                                          RHSPE = RHS->qual_end();
4216         RHSPI != RHSPE; RHSPI++) {
4217      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
4218        RHSImplementsProtocol = true;
4219        break;
4220      }
4221    }
4222    // FIXME: For better diagnostics, consider passing back the protocol name.
4223    if (!RHSImplementsProtocol)
4224      return false;
4225  }
4226  // The RHS implements all protocols listed on the LHS.
4227  return true;
4228}
4229
4230bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
4231  // get the "pointed to" types
4232  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
4233  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
4234
4235  if (!LHSOPT || !RHSOPT)
4236    return false;
4237
4238  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
4239         canAssignObjCInterfaces(RHSOPT, LHSOPT);
4240}
4241
4242/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
4243/// both shall have the identically qualified version of a compatible type.
4244/// C99 6.2.7p1: Two types have compatible types if their types are the
4245/// same. See 6.7.[2,3,5] for additional rules.
4246bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
4247  return !mergeTypes(LHS, RHS).isNull();
4248}
4249
4250static bool isSameCallingConvention(CallingConv lcc, CallingConv rcc) {
4251  return (getCanonicalCallingConv(lcc) == getCanonicalCallingConv(rcc));
4252}
4253
4254QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
4255  const FunctionType *lbase = lhs->getAs<FunctionType>();
4256  const FunctionType *rbase = rhs->getAs<FunctionType>();
4257  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
4258  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
4259  bool allLTypes = true;
4260  bool allRTypes = true;
4261
4262  // Check return type
4263  QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
4264  if (retType.isNull()) return QualType();
4265  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
4266    allLTypes = false;
4267  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
4268    allRTypes = false;
4269  // FIXME: double check this
4270  bool NoReturn = lbase->getNoReturnAttr() || rbase->getNoReturnAttr();
4271  if (NoReturn != lbase->getNoReturnAttr())
4272    allLTypes = false;
4273  if (NoReturn != rbase->getNoReturnAttr())
4274    allRTypes = false;
4275  CallingConv lcc = lbase->getCallConv();
4276  CallingConv rcc = rbase->getCallConv();
4277  // Compatible functions must have compatible calling conventions
4278  if (!isSameCallingConvention(lcc, rcc))
4279    return QualType();
4280
4281  if (lproto && rproto) { // two C99 style function prototypes
4282    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
4283           "C++ shouldn't be here");
4284    unsigned lproto_nargs = lproto->getNumArgs();
4285    unsigned rproto_nargs = rproto->getNumArgs();
4286
4287    // Compatible functions must have the same number of arguments
4288    if (lproto_nargs != rproto_nargs)
4289      return QualType();
4290
4291    // Variadic and non-variadic functions aren't compatible
4292    if (lproto->isVariadic() != rproto->isVariadic())
4293      return QualType();
4294
4295    if (lproto->getTypeQuals() != rproto->getTypeQuals())
4296      return QualType();
4297
4298    // Check argument compatibility
4299    llvm::SmallVector<QualType, 10> types;
4300    for (unsigned i = 0; i < lproto_nargs; i++) {
4301      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
4302      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
4303      QualType argtype = mergeTypes(largtype, rargtype);
4304      if (argtype.isNull()) return QualType();
4305      types.push_back(argtype);
4306      if (getCanonicalType(argtype) != getCanonicalType(largtype))
4307        allLTypes = false;
4308      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
4309        allRTypes = false;
4310    }
4311    if (allLTypes) return lhs;
4312    if (allRTypes) return rhs;
4313    return getFunctionType(retType, types.begin(), types.size(),
4314                           lproto->isVariadic(), lproto->getTypeQuals(),
4315                           NoReturn, lcc);
4316  }
4317
4318  if (lproto) allRTypes = false;
4319  if (rproto) allLTypes = false;
4320
4321  const FunctionProtoType *proto = lproto ? lproto : rproto;
4322  if (proto) {
4323    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
4324    if (proto->isVariadic()) return QualType();
4325    // Check that the types are compatible with the types that
4326    // would result from default argument promotions (C99 6.7.5.3p15).
4327    // The only types actually affected are promotable integer
4328    // types and floats, which would be passed as a different
4329    // type depending on whether the prototype is visible.
4330    unsigned proto_nargs = proto->getNumArgs();
4331    for (unsigned i = 0; i < proto_nargs; ++i) {
4332      QualType argTy = proto->getArgType(i);
4333      if (argTy->isPromotableIntegerType() ||
4334          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
4335        return QualType();
4336    }
4337
4338    if (allLTypes) return lhs;
4339    if (allRTypes) return rhs;
4340    return getFunctionType(retType, proto->arg_type_begin(),
4341                           proto->getNumArgs(), proto->isVariadic(),
4342                           proto->getTypeQuals(), NoReturn, lcc);
4343  }
4344
4345  if (allLTypes) return lhs;
4346  if (allRTypes) return rhs;
4347  return getFunctionNoProtoType(retType, NoReturn, lcc);
4348}
4349
4350QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
4351  // C++ [expr]: If an expression initially has the type "reference to T", the
4352  // type is adjusted to "T" prior to any further analysis, the expression
4353  // designates the object or function denoted by the reference, and the
4354  // expression is an lvalue unless the reference is an rvalue reference and
4355  // the expression is a function call (possibly inside parentheses).
4356  // FIXME: C++ shouldn't be going through here!  The rules are different
4357  // enough that they should be handled separately.
4358  // FIXME: Merging of lvalue and rvalue references is incorrect. C++ *really*
4359  // shouldn't be going through here!
4360  if (const ReferenceType *RT = LHS->getAs<ReferenceType>())
4361    LHS = RT->getPointeeType();
4362  if (const ReferenceType *RT = RHS->getAs<ReferenceType>())
4363    RHS = RT->getPointeeType();
4364
4365  QualType LHSCan = getCanonicalType(LHS),
4366           RHSCan = getCanonicalType(RHS);
4367
4368  // If two types are identical, they are compatible.
4369  if (LHSCan == RHSCan)
4370    return LHS;
4371
4372  // If the qualifiers are different, the types aren't compatible... mostly.
4373  Qualifiers LQuals = LHSCan.getLocalQualifiers();
4374  Qualifiers RQuals = RHSCan.getLocalQualifiers();
4375  if (LQuals != RQuals) {
4376    // If any of these qualifiers are different, we have a type
4377    // mismatch.
4378    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
4379        LQuals.getAddressSpace() != RQuals.getAddressSpace())
4380      return QualType();
4381
4382    // Exactly one GC qualifier difference is allowed: __strong is
4383    // okay if the other type has no GC qualifier but is an Objective
4384    // C object pointer (i.e. implicitly strong by default).  We fix
4385    // this by pretending that the unqualified type was actually
4386    // qualified __strong.
4387    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
4388    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
4389    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
4390
4391    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
4392      return QualType();
4393
4394    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
4395      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
4396    }
4397    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
4398      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
4399    }
4400    return QualType();
4401  }
4402
4403  // Okay, qualifiers are equal.
4404
4405  Type::TypeClass LHSClass = LHSCan->getTypeClass();
4406  Type::TypeClass RHSClass = RHSCan->getTypeClass();
4407
4408  // We want to consider the two function types to be the same for these
4409  // comparisons, just force one to the other.
4410  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
4411  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
4412
4413  // Same as above for arrays
4414  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
4415    LHSClass = Type::ConstantArray;
4416  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
4417    RHSClass = Type::ConstantArray;
4418
4419  // Canonicalize ExtVector -> Vector.
4420  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
4421  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
4422
4423  // If the canonical type classes don't match.
4424  if (LHSClass != RHSClass) {
4425    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
4426    // a signed integer type, or an unsigned integer type.
4427    // Compatibility is based on the underlying type, not the promotion
4428    // type.
4429    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
4430      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
4431        return RHS;
4432    }
4433    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
4434      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
4435        return LHS;
4436    }
4437
4438    return QualType();
4439  }
4440
4441  // The canonical type classes match.
4442  switch (LHSClass) {
4443#define TYPE(Class, Base)
4444#define ABSTRACT_TYPE(Class, Base)
4445#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
4446#define DEPENDENT_TYPE(Class, Base) case Type::Class:
4447#include "clang/AST/TypeNodes.def"
4448    assert(false && "Non-canonical and dependent types shouldn't get here");
4449    return QualType();
4450
4451  case Type::LValueReference:
4452  case Type::RValueReference:
4453  case Type::MemberPointer:
4454    assert(false && "C++ should never be in mergeTypes");
4455    return QualType();
4456
4457  case Type::IncompleteArray:
4458  case Type::VariableArray:
4459  case Type::FunctionProto:
4460  case Type::ExtVector:
4461    assert(false && "Types are eliminated above");
4462    return QualType();
4463
4464  case Type::Pointer:
4465  {
4466    // Merge two pointer types, while trying to preserve typedef info
4467    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
4468    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
4469    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
4470    if (ResultType.isNull()) return QualType();
4471    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4472      return LHS;
4473    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4474      return RHS;
4475    return getPointerType(ResultType);
4476  }
4477  case Type::BlockPointer:
4478  {
4479    // Merge two block pointer types, while trying to preserve typedef info
4480    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
4481    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
4482    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
4483    if (ResultType.isNull()) return QualType();
4484    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4485      return LHS;
4486    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4487      return RHS;
4488    return getBlockPointerType(ResultType);
4489  }
4490  case Type::ConstantArray:
4491  {
4492    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
4493    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
4494    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
4495      return QualType();
4496
4497    QualType LHSElem = getAsArrayType(LHS)->getElementType();
4498    QualType RHSElem = getAsArrayType(RHS)->getElementType();
4499    QualType ResultType = mergeTypes(LHSElem, RHSElem);
4500    if (ResultType.isNull()) return QualType();
4501    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4502      return LHS;
4503    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4504      return RHS;
4505    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
4506                                          ArrayType::ArraySizeModifier(), 0);
4507    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
4508                                          ArrayType::ArraySizeModifier(), 0);
4509    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
4510    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
4511    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4512      return LHS;
4513    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4514      return RHS;
4515    if (LVAT) {
4516      // FIXME: This isn't correct! But tricky to implement because
4517      // the array's size has to be the size of LHS, but the type
4518      // has to be different.
4519      return LHS;
4520    }
4521    if (RVAT) {
4522      // FIXME: This isn't correct! But tricky to implement because
4523      // the array's size has to be the size of RHS, but the type
4524      // has to be different.
4525      return RHS;
4526    }
4527    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
4528    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
4529    return getIncompleteArrayType(ResultType,
4530                                  ArrayType::ArraySizeModifier(), 0);
4531  }
4532  case Type::FunctionNoProto:
4533    return mergeFunctionTypes(LHS, RHS);
4534  case Type::Record:
4535  case Type::Enum:
4536    return QualType();
4537  case Type::Builtin:
4538    // Only exactly equal builtin types are compatible, which is tested above.
4539    return QualType();
4540  case Type::Complex:
4541    // Distinct complex types are incompatible.
4542    return QualType();
4543  case Type::Vector:
4544    // FIXME: The merged type should be an ExtVector!
4545    if (areCompatVectorTypes(LHS->getAs<VectorType>(), RHS->getAs<VectorType>()))
4546      return LHS;
4547    return QualType();
4548  case Type::ObjCInterface: {
4549    // Check if the interfaces are assignment compatible.
4550    // FIXME: This should be type compatibility, e.g. whether
4551    // "LHS x; RHS x;" at global scope is legal.
4552    const ObjCInterfaceType* LHSIface = LHS->getAs<ObjCInterfaceType>();
4553    const ObjCInterfaceType* RHSIface = RHS->getAs<ObjCInterfaceType>();
4554    if (LHSIface && RHSIface &&
4555        canAssignObjCInterfaces(LHSIface, RHSIface))
4556      return LHS;
4557
4558    return QualType();
4559  }
4560  case Type::ObjCObjectPointer: {
4561    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
4562                                RHS->getAs<ObjCObjectPointerType>()))
4563      return LHS;
4564
4565    return QualType();
4566  }
4567  case Type::TemplateSpecialization:
4568    assert(false && "Dependent types have no size");
4569    break;
4570  }
4571
4572  return QualType();
4573}
4574
4575//===----------------------------------------------------------------------===//
4576//                         Integer Predicates
4577//===----------------------------------------------------------------------===//
4578
4579unsigned ASTContext::getIntWidth(QualType T) {
4580  if (T->isBooleanType())
4581    return 1;
4582  if (EnumType *ET = dyn_cast<EnumType>(T))
4583    T = ET->getDecl()->getIntegerType();
4584  // For builtin types, just use the standard type sizing method
4585  return (unsigned)getTypeSize(T);
4586}
4587
4588QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
4589  assert(T->isSignedIntegerType() && "Unexpected type");
4590
4591  // Turn <4 x signed int> -> <4 x unsigned int>
4592  if (const VectorType *VTy = T->getAs<VectorType>())
4593    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
4594                         VTy->getNumElements());
4595
4596  // For enums, we return the unsigned version of the base type.
4597  if (const EnumType *ETy = T->getAs<EnumType>())
4598    T = ETy->getDecl()->getIntegerType();
4599
4600  const BuiltinType *BTy = T->getAs<BuiltinType>();
4601  assert(BTy && "Unexpected signed integer type");
4602  switch (BTy->getKind()) {
4603  case BuiltinType::Char_S:
4604  case BuiltinType::SChar:
4605    return UnsignedCharTy;
4606  case BuiltinType::Short:
4607    return UnsignedShortTy;
4608  case BuiltinType::Int:
4609    return UnsignedIntTy;
4610  case BuiltinType::Long:
4611    return UnsignedLongTy;
4612  case BuiltinType::LongLong:
4613    return UnsignedLongLongTy;
4614  case BuiltinType::Int128:
4615    return UnsignedInt128Ty;
4616  default:
4617    assert(0 && "Unexpected signed integer type");
4618    return QualType();
4619  }
4620}
4621
4622ExternalASTSource::~ExternalASTSource() { }
4623
4624void ExternalASTSource::PrintStats() { }
4625
4626
4627//===----------------------------------------------------------------------===//
4628//                          Builtin Type Computation
4629//===----------------------------------------------------------------------===//
4630
4631/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
4632/// pointer over the consumed characters.  This returns the resultant type.
4633static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context,
4634                                  ASTContext::GetBuiltinTypeError &Error,
4635                                  bool AllowTypeModifiers = true) {
4636  // Modifiers.
4637  int HowLong = 0;
4638  bool Signed = false, Unsigned = false;
4639
4640  // Read the modifiers first.
4641  bool Done = false;
4642  while (!Done) {
4643    switch (*Str++) {
4644    default: Done = true; --Str; break;
4645    case 'S':
4646      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
4647      assert(!Signed && "Can't use 'S' modifier multiple times!");
4648      Signed = true;
4649      break;
4650    case 'U':
4651      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
4652      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
4653      Unsigned = true;
4654      break;
4655    case 'L':
4656      assert(HowLong <= 2 && "Can't have LLLL modifier");
4657      ++HowLong;
4658      break;
4659    }
4660  }
4661
4662  QualType Type;
4663
4664  // Read the base type.
4665  switch (*Str++) {
4666  default: assert(0 && "Unknown builtin type letter!");
4667  case 'v':
4668    assert(HowLong == 0 && !Signed && !Unsigned &&
4669           "Bad modifiers used with 'v'!");
4670    Type = Context.VoidTy;
4671    break;
4672  case 'f':
4673    assert(HowLong == 0 && !Signed && !Unsigned &&
4674           "Bad modifiers used with 'f'!");
4675    Type = Context.FloatTy;
4676    break;
4677  case 'd':
4678    assert(HowLong < 2 && !Signed && !Unsigned &&
4679           "Bad modifiers used with 'd'!");
4680    if (HowLong)
4681      Type = Context.LongDoubleTy;
4682    else
4683      Type = Context.DoubleTy;
4684    break;
4685  case 's':
4686    assert(HowLong == 0 && "Bad modifiers used with 's'!");
4687    if (Unsigned)
4688      Type = Context.UnsignedShortTy;
4689    else
4690      Type = Context.ShortTy;
4691    break;
4692  case 'i':
4693    if (HowLong == 3)
4694      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
4695    else if (HowLong == 2)
4696      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
4697    else if (HowLong == 1)
4698      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
4699    else
4700      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
4701    break;
4702  case 'c':
4703    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
4704    if (Signed)
4705      Type = Context.SignedCharTy;
4706    else if (Unsigned)
4707      Type = Context.UnsignedCharTy;
4708    else
4709      Type = Context.CharTy;
4710    break;
4711  case 'b': // boolean
4712    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
4713    Type = Context.BoolTy;
4714    break;
4715  case 'z':  // size_t.
4716    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
4717    Type = Context.getSizeType();
4718    break;
4719  case 'F':
4720    Type = Context.getCFConstantStringType();
4721    break;
4722  case 'a':
4723    Type = Context.getBuiltinVaListType();
4724    assert(!Type.isNull() && "builtin va list type not initialized!");
4725    break;
4726  case 'A':
4727    // This is a "reference" to a va_list; however, what exactly
4728    // this means depends on how va_list is defined. There are two
4729    // different kinds of va_list: ones passed by value, and ones
4730    // passed by reference.  An example of a by-value va_list is
4731    // x86, where va_list is a char*. An example of by-ref va_list
4732    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
4733    // we want this argument to be a char*&; for x86-64, we want
4734    // it to be a __va_list_tag*.
4735    Type = Context.getBuiltinVaListType();
4736    assert(!Type.isNull() && "builtin va list type not initialized!");
4737    if (Type->isArrayType()) {
4738      Type = Context.getArrayDecayedType(Type);
4739    } else {
4740      Type = Context.getLValueReferenceType(Type);
4741    }
4742    break;
4743  case 'V': {
4744    char *End;
4745    unsigned NumElements = strtoul(Str, &End, 10);
4746    assert(End != Str && "Missing vector size");
4747
4748    Str = End;
4749
4750    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4751    Type = Context.getVectorType(ElementType, NumElements);
4752    break;
4753  }
4754  case 'X': {
4755    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4756    Type = Context.getComplexType(ElementType);
4757    break;
4758  }
4759  case 'P':
4760    Type = Context.getFILEType();
4761    if (Type.isNull()) {
4762      Error = ASTContext::GE_Missing_stdio;
4763      return QualType();
4764    }
4765    break;
4766  case 'J':
4767    if (Signed)
4768      Type = Context.getsigjmp_bufType();
4769    else
4770      Type = Context.getjmp_bufType();
4771
4772    if (Type.isNull()) {
4773      Error = ASTContext::GE_Missing_setjmp;
4774      return QualType();
4775    }
4776    break;
4777  }
4778
4779  if (!AllowTypeModifiers)
4780    return Type;
4781
4782  Done = false;
4783  while (!Done) {
4784    switch (*Str++) {
4785      default: Done = true; --Str; break;
4786      case '*':
4787        Type = Context.getPointerType(Type);
4788        break;
4789      case '&':
4790        Type = Context.getLValueReferenceType(Type);
4791        break;
4792      // FIXME: There's no way to have a built-in with an rvalue ref arg.
4793      case 'C':
4794        Type = Type.withConst();
4795        break;
4796    }
4797  }
4798
4799  return Type;
4800}
4801
4802/// GetBuiltinType - Return the type for the specified builtin.
4803QualType ASTContext::GetBuiltinType(unsigned id,
4804                                    GetBuiltinTypeError &Error) {
4805  const char *TypeStr = BuiltinInfo.GetTypeString(id);
4806
4807  llvm::SmallVector<QualType, 8> ArgTypes;
4808
4809  Error = GE_None;
4810  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error);
4811  if (Error != GE_None)
4812    return QualType();
4813  while (TypeStr[0] && TypeStr[0] != '.') {
4814    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error);
4815    if (Error != GE_None)
4816      return QualType();
4817
4818    // Do array -> pointer decay.  The builtin should use the decayed type.
4819    if (Ty->isArrayType())
4820      Ty = getArrayDecayedType(Ty);
4821
4822    ArgTypes.push_back(Ty);
4823  }
4824
4825  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
4826         "'.' should only occur at end of builtin type list!");
4827
4828  // handle untyped/variadic arguments "T c99Style();" or "T cppStyle(...);".
4829  if (ArgTypes.size() == 0 && TypeStr[0] == '.')
4830    return getFunctionNoProtoType(ResType);
4831  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(),
4832                         TypeStr[0] == '.', 0);
4833}
4834
4835QualType
4836ASTContext::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
4837  // Perform the usual unary conversions. We do this early so that
4838  // integral promotions to "int" can allow us to exit early, in the
4839  // lhs == rhs check. Also, for conversion purposes, we ignore any
4840  // qualifiers.  For example, "const float" and "float" are
4841  // equivalent.
4842  if (lhs->isPromotableIntegerType())
4843    lhs = getPromotedIntegerType(lhs);
4844  else
4845    lhs = lhs.getUnqualifiedType();
4846  if (rhs->isPromotableIntegerType())
4847    rhs = getPromotedIntegerType(rhs);
4848  else
4849    rhs = rhs.getUnqualifiedType();
4850
4851  // If both types are identical, no conversion is needed.
4852  if (lhs == rhs)
4853    return lhs;
4854
4855  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
4856  // The caller can deal with this (e.g. pointer + int).
4857  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
4858    return lhs;
4859
4860  // At this point, we have two different arithmetic types.
4861
4862  // Handle complex types first (C99 6.3.1.8p1).
4863  if (lhs->isComplexType() || rhs->isComplexType()) {
4864    // if we have an integer operand, the result is the complex type.
4865    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
4866      // convert the rhs to the lhs complex type.
4867      return lhs;
4868    }
4869    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
4870      // convert the lhs to the rhs complex type.
4871      return rhs;
4872    }
4873    // This handles complex/complex, complex/float, or float/complex.
4874    // When both operands are complex, the shorter operand is converted to the
4875    // type of the longer, and that is the type of the result. This corresponds
4876    // to what is done when combining two real floating-point operands.
4877    // The fun begins when size promotion occur across type domains.
4878    // From H&S 6.3.4: When one operand is complex and the other is a real
4879    // floating-point type, the less precise type is converted, within it's
4880    // real or complex domain, to the precision of the other type. For example,
4881    // when combining a "long double" with a "double _Complex", the
4882    // "double _Complex" is promoted to "long double _Complex".
4883    int result = getFloatingTypeOrder(lhs, rhs);
4884
4885    if (result > 0) { // The left side is bigger, convert rhs.
4886      rhs = getFloatingTypeOfSizeWithinDomain(lhs, rhs);
4887    } else if (result < 0) { // The right side is bigger, convert lhs.
4888      lhs = getFloatingTypeOfSizeWithinDomain(rhs, lhs);
4889    }
4890    // At this point, lhs and rhs have the same rank/size. Now, make sure the
4891    // domains match. This is a requirement for our implementation, C99
4892    // does not require this promotion.
4893    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
4894      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
4895        return rhs;
4896      } else { // handle "_Complex double, double".
4897        return lhs;
4898      }
4899    }
4900    return lhs; // The domain/size match exactly.
4901  }
4902  // Now handle "real" floating types (i.e. float, double, long double).
4903  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
4904    // if we have an integer operand, the result is the real floating type.
4905    if (rhs->isIntegerType()) {
4906      // convert rhs to the lhs floating point type.
4907      return lhs;
4908    }
4909    if (rhs->isComplexIntegerType()) {
4910      // convert rhs to the complex floating point type.
4911      return getComplexType(lhs);
4912    }
4913    if (lhs->isIntegerType()) {
4914      // convert lhs to the rhs floating point type.
4915      return rhs;
4916    }
4917    if (lhs->isComplexIntegerType()) {
4918      // convert lhs to the complex floating point type.
4919      return getComplexType(rhs);
4920    }
4921    // We have two real floating types, float/complex combos were handled above.
4922    // Convert the smaller operand to the bigger result.
4923    int result = getFloatingTypeOrder(lhs, rhs);
4924    if (result > 0) // convert the rhs
4925      return lhs;
4926    assert(result < 0 && "illegal float comparison");
4927    return rhs;   // convert the lhs
4928  }
4929  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
4930    // Handle GCC complex int extension.
4931    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
4932    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
4933
4934    if (lhsComplexInt && rhsComplexInt) {
4935      if (getIntegerTypeOrder(lhsComplexInt->getElementType(),
4936                              rhsComplexInt->getElementType()) >= 0)
4937        return lhs; // convert the rhs
4938      return rhs;
4939    } else if (lhsComplexInt && rhs->isIntegerType()) {
4940      // convert the rhs to the lhs complex type.
4941      return lhs;
4942    } else if (rhsComplexInt && lhs->isIntegerType()) {
4943      // convert the lhs to the rhs complex type.
4944      return rhs;
4945    }
4946  }
4947  // Finally, we have two differing integer types.
4948  // The rules for this case are in C99 6.3.1.8
4949  int compare = getIntegerTypeOrder(lhs, rhs);
4950  bool lhsSigned = lhs->isSignedIntegerType(),
4951       rhsSigned = rhs->isSignedIntegerType();
4952  QualType destType;
4953  if (lhsSigned == rhsSigned) {
4954    // Same signedness; use the higher-ranked type
4955    destType = compare >= 0 ? lhs : rhs;
4956  } else if (compare != (lhsSigned ? 1 : -1)) {
4957    // The unsigned type has greater than or equal rank to the
4958    // signed type, so use the unsigned type
4959    destType = lhsSigned ? rhs : lhs;
4960  } else if (getIntWidth(lhs) != getIntWidth(rhs)) {
4961    // The two types are different widths; if we are here, that
4962    // means the signed type is larger than the unsigned type, so
4963    // use the signed type.
4964    destType = lhsSigned ? lhs : rhs;
4965  } else {
4966    // The signed type is higher-ranked than the unsigned type,
4967    // but isn't actually any bigger (like unsigned int and long
4968    // on most 32-bit systems).  Use the unsigned type corresponding
4969    // to the signed type.
4970    destType = getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
4971  }
4972  return destType;
4973}
4974