ASTContext.cpp revision 175c8e2e57befe2db15dd339ab5eb27d0c2b6013
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "CXXABI.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/Attr.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/Comment.h"
20#include "clang/AST/CommentCommandTraits.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExternalASTSource.h"
27#include "clang/AST/Mangle.h"
28#include "clang/AST/RecordLayout.h"
29#include "clang/AST/TypeLoc.h"
30#include "clang/Basic/Builtins.h"
31#include "clang/Basic/SourceManager.h"
32#include "clang/Basic/TargetInfo.h"
33#include "llvm/ADT/SmallString.h"
34#include "llvm/ADT/StringExtras.h"
35#include "llvm/Support/Capacity.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/raw_ostream.h"
38#include <map>
39
40using namespace clang;
41
42unsigned ASTContext::NumImplicitDefaultConstructors;
43unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
44unsigned ASTContext::NumImplicitCopyConstructors;
45unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
46unsigned ASTContext::NumImplicitMoveConstructors;
47unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
48unsigned ASTContext::NumImplicitCopyAssignmentOperators;
49unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
50unsigned ASTContext::NumImplicitMoveAssignmentOperators;
51unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
52unsigned ASTContext::NumImplicitDestructors;
53unsigned ASTContext::NumImplicitDestructorsDeclared;
54
55enum FloatingRank {
56  HalfRank, FloatRank, DoubleRank, LongDoubleRank
57};
58
59RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
60  if (!CommentsLoaded && ExternalSource) {
61    ExternalSource->ReadComments();
62    CommentsLoaded = true;
63  }
64
65  assert(D);
66
67  // User can not attach documentation to implicit declarations.
68  if (D->isImplicit())
69    return NULL;
70
71  // User can not attach documentation to implicit instantiations.
72  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
73    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
74      return NULL;
75  }
76
77  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
78    if (VD->isStaticDataMember() &&
79        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
80      return NULL;
81  }
82
83  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
84    if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
85      return NULL;
86  }
87
88  if (const ClassTemplateSpecializationDecl *CTSD =
89          dyn_cast<ClassTemplateSpecializationDecl>(D)) {
90    TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
91    if (TSK == TSK_ImplicitInstantiation ||
92        TSK == TSK_Undeclared)
93      return NULL;
94  }
95
96  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
97    if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
98      return NULL;
99  }
100
101  // TODO: handle comments for function parameters properly.
102  if (isa<ParmVarDecl>(D))
103    return NULL;
104
105  // TODO: we could look up template parameter documentation in the template
106  // documentation.
107  if (isa<TemplateTypeParmDecl>(D) ||
108      isa<NonTypeTemplateParmDecl>(D) ||
109      isa<TemplateTemplateParmDecl>(D))
110    return NULL;
111
112  ArrayRef<RawComment *> RawComments = Comments.getComments();
113
114  // If there are no comments anywhere, we won't find anything.
115  if (RawComments.empty())
116    return NULL;
117
118  // Find declaration location.
119  // For Objective-C declarations we generally don't expect to have multiple
120  // declarators, thus use declaration starting location as the "declaration
121  // location".
122  // For all other declarations multiple declarators are used quite frequently,
123  // so we use the location of the identifier as the "declaration location".
124  SourceLocation DeclLoc;
125  if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
126      isa<ObjCPropertyDecl>(D) ||
127      isa<RedeclarableTemplateDecl>(D) ||
128      isa<ClassTemplateSpecializationDecl>(D))
129    DeclLoc = D->getLocStart();
130  else
131    DeclLoc = D->getLocation();
132
133  // If the declaration doesn't map directly to a location in a file, we
134  // can't find the comment.
135  if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
136    return NULL;
137
138  // Find the comment that occurs just after this declaration.
139  ArrayRef<RawComment *>::iterator Comment;
140  {
141    // When searching for comments during parsing, the comment we are looking
142    // for is usually among the last two comments we parsed -- check them
143    // first.
144    RawComment CommentAtDeclLoc(
145        SourceMgr, SourceRange(DeclLoc), false,
146        LangOpts.CommentOpts.ParseAllComments);
147    BeforeThanCompare<RawComment> Compare(SourceMgr);
148    ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
149    bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
150    if (!Found && RawComments.size() >= 2) {
151      MaybeBeforeDecl--;
152      Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
153    }
154
155    if (Found) {
156      Comment = MaybeBeforeDecl + 1;
157      assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),
158                                         &CommentAtDeclLoc, Compare));
159    } else {
160      // Slow path.
161      Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
162                                 &CommentAtDeclLoc, Compare);
163    }
164  }
165
166  // Decompose the location for the declaration and find the beginning of the
167  // file buffer.
168  std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
169
170  // First check whether we have a trailing comment.
171  if (Comment != RawComments.end() &&
172      (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() &&
173      (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D))) {
174    std::pair<FileID, unsigned> CommentBeginDecomp
175      = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
176    // Check that Doxygen trailing comment comes after the declaration, starts
177    // on the same line and in the same file as the declaration.
178    if (DeclLocDecomp.first == CommentBeginDecomp.first &&
179        SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
180          == SourceMgr.getLineNumber(CommentBeginDecomp.first,
181                                     CommentBeginDecomp.second)) {
182      return *Comment;
183    }
184  }
185
186  // The comment just after the declaration was not a trailing comment.
187  // Let's look at the previous comment.
188  if (Comment == RawComments.begin())
189    return NULL;
190  --Comment;
191
192  // Check that we actually have a non-member Doxygen comment.
193  if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment())
194    return NULL;
195
196  // Decompose the end of the comment.
197  std::pair<FileID, unsigned> CommentEndDecomp
198    = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
199
200  // If the comment and the declaration aren't in the same file, then they
201  // aren't related.
202  if (DeclLocDecomp.first != CommentEndDecomp.first)
203    return NULL;
204
205  // Get the corresponding buffer.
206  bool Invalid = false;
207  const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
208                                               &Invalid).data();
209  if (Invalid)
210    return NULL;
211
212  // Extract text between the comment and declaration.
213  StringRef Text(Buffer + CommentEndDecomp.second,
214                 DeclLocDecomp.second - CommentEndDecomp.second);
215
216  // There should be no other declarations or preprocessor directives between
217  // comment and declaration.
218  if (Text.find_first_of(",;{}#@") != StringRef::npos)
219    return NULL;
220
221  return *Comment;
222}
223
224namespace {
225/// If we have a 'templated' declaration for a template, adjust 'D' to
226/// refer to the actual template.
227/// If we have an implicit instantiation, adjust 'D' to refer to template.
228const Decl *adjustDeclToTemplate(const Decl *D) {
229  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
230    // Is this function declaration part of a function template?
231    if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
232      return FTD;
233
234    // Nothing to do if function is not an implicit instantiation.
235    if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
236      return D;
237
238    // Function is an implicit instantiation of a function template?
239    if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
240      return FTD;
241
242    // Function is instantiated from a member definition of a class template?
243    if (const FunctionDecl *MemberDecl =
244            FD->getInstantiatedFromMemberFunction())
245      return MemberDecl;
246
247    return D;
248  }
249  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
250    // Static data member is instantiated from a member definition of a class
251    // template?
252    if (VD->isStaticDataMember())
253      if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
254        return MemberDecl;
255
256    return D;
257  }
258  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
259    // Is this class declaration part of a class template?
260    if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
261      return CTD;
262
263    // Class is an implicit instantiation of a class template or partial
264    // specialization?
265    if (const ClassTemplateSpecializationDecl *CTSD =
266            dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
267      if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
268        return D;
269      llvm::PointerUnion<ClassTemplateDecl *,
270                         ClassTemplatePartialSpecializationDecl *>
271          PU = CTSD->getSpecializedTemplateOrPartial();
272      return PU.is<ClassTemplateDecl*>() ?
273          static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) :
274          static_cast<const Decl*>(
275              PU.get<ClassTemplatePartialSpecializationDecl *>());
276    }
277
278    // Class is instantiated from a member definition of a class template?
279    if (const MemberSpecializationInfo *Info =
280                   CRD->getMemberSpecializationInfo())
281      return Info->getInstantiatedFrom();
282
283    return D;
284  }
285  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
286    // Enum is instantiated from a member definition of a class template?
287    if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
288      return MemberDecl;
289
290    return D;
291  }
292  // FIXME: Adjust alias templates?
293  return D;
294}
295} // unnamed namespace
296
297const RawComment *ASTContext::getRawCommentForAnyRedecl(
298                                                const Decl *D,
299                                                const Decl **OriginalDecl) const {
300  D = adjustDeclToTemplate(D);
301
302  // Check whether we have cached a comment for this declaration already.
303  {
304    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
305        RedeclComments.find(D);
306    if (Pos != RedeclComments.end()) {
307      const RawCommentAndCacheFlags &Raw = Pos->second;
308      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
309        if (OriginalDecl)
310          *OriginalDecl = Raw.getOriginalDecl();
311        return Raw.getRaw();
312      }
313    }
314  }
315
316  // Search for comments attached to declarations in the redeclaration chain.
317  const RawComment *RC = NULL;
318  const Decl *OriginalDeclForRC = NULL;
319  for (Decl::redecl_iterator I = D->redecls_begin(),
320                             E = D->redecls_end();
321       I != E; ++I) {
322    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
323        RedeclComments.find(*I);
324    if (Pos != RedeclComments.end()) {
325      const RawCommentAndCacheFlags &Raw = Pos->second;
326      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
327        RC = Raw.getRaw();
328        OriginalDeclForRC = Raw.getOriginalDecl();
329        break;
330      }
331    } else {
332      RC = getRawCommentForDeclNoCache(*I);
333      OriginalDeclForRC = *I;
334      RawCommentAndCacheFlags Raw;
335      if (RC) {
336        Raw.setRaw(RC);
337        Raw.setKind(RawCommentAndCacheFlags::FromDecl);
338      } else
339        Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl);
340      Raw.setOriginalDecl(*I);
341      RedeclComments[*I] = Raw;
342      if (RC)
343        break;
344    }
345  }
346
347  // If we found a comment, it should be a documentation comment.
348  assert(!RC || RC->isDocumentation());
349
350  if (OriginalDecl)
351    *OriginalDecl = OriginalDeclForRC;
352
353  // Update cache for every declaration in the redeclaration chain.
354  RawCommentAndCacheFlags Raw;
355  Raw.setRaw(RC);
356  Raw.setKind(RawCommentAndCacheFlags::FromRedecl);
357  Raw.setOriginalDecl(OriginalDeclForRC);
358
359  for (Decl::redecl_iterator I = D->redecls_begin(),
360                             E = D->redecls_end();
361       I != E; ++I) {
362    RawCommentAndCacheFlags &R = RedeclComments[*I];
363    if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl)
364      R = Raw;
365  }
366
367  return RC;
368}
369
370static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
371                   SmallVectorImpl<const NamedDecl *> &Redeclared) {
372  const DeclContext *DC = ObjCMethod->getDeclContext();
373  if (const ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(DC)) {
374    const ObjCInterfaceDecl *ID = IMD->getClassInterface();
375    if (!ID)
376      return;
377    // Add redeclared method here.
378    for (ObjCInterfaceDecl::known_extensions_iterator
379           Ext = ID->known_extensions_begin(),
380           ExtEnd = ID->known_extensions_end();
381         Ext != ExtEnd; ++Ext) {
382      if (ObjCMethodDecl *RedeclaredMethod =
383            Ext->getMethod(ObjCMethod->getSelector(),
384                                  ObjCMethod->isInstanceMethod()))
385        Redeclared.push_back(RedeclaredMethod);
386    }
387  }
388}
389
390comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
391                                                    const Decl *D) const {
392  comments::DeclInfo *ThisDeclInfo = new (*this) comments::DeclInfo;
393  ThisDeclInfo->CommentDecl = D;
394  ThisDeclInfo->IsFilled = false;
395  ThisDeclInfo->fill();
396  ThisDeclInfo->CommentDecl = FC->getDecl();
397  comments::FullComment *CFC =
398    new (*this) comments::FullComment(FC->getBlocks(),
399                                      ThisDeclInfo);
400  return CFC;
401
402}
403
404comments::FullComment *ASTContext::getCommentForDecl(
405                                              const Decl *D,
406                                              const Preprocessor *PP) const {
407  D = adjustDeclToTemplate(D);
408
409  const Decl *Canonical = D->getCanonicalDecl();
410  llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
411      ParsedComments.find(Canonical);
412
413  if (Pos != ParsedComments.end()) {
414    if (Canonical != D) {
415      comments::FullComment *FC = Pos->second;
416      comments::FullComment *CFC = cloneFullComment(FC, D);
417      return CFC;
418    }
419    return Pos->second;
420  }
421
422  const Decl *OriginalDecl;
423
424  const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
425  if (!RC) {
426    if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
427      SmallVector<const NamedDecl*, 8> Overridden;
428      const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(D);
429      if (OMD && OMD->isPropertyAccessor())
430        if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
431          if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
432            return cloneFullComment(FC, D);
433      if (OMD)
434        addRedeclaredMethods(OMD, Overridden);
435      getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
436      for (unsigned i = 0, e = Overridden.size(); i < e; i++)
437        if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
438          return cloneFullComment(FC, D);
439    }
440    else if (const TypedefDecl *TD = dyn_cast<TypedefDecl>(D)) {
441      // Attach any tag type's documentation to its typedef if latter
442      // does not have one of its own.
443      QualType QT = TD->getUnderlyingType();
444      if (const TagType *TT = QT->getAs<TagType>())
445        if (const Decl *TD = TT->getDecl())
446          if (comments::FullComment *FC = getCommentForDecl(TD, PP))
447            return cloneFullComment(FC, D);
448    }
449    return NULL;
450  }
451
452  // If the RawComment was attached to other redeclaration of this Decl, we
453  // should parse the comment in context of that other Decl.  This is important
454  // because comments can contain references to parameter names which can be
455  // different across redeclarations.
456  if (D != OriginalDecl)
457    return getCommentForDecl(OriginalDecl, PP);
458
459  comments::FullComment *FC = RC->parse(*this, PP, D);
460  ParsedComments[Canonical] = FC;
461  return FC;
462}
463
464void
465ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
466                                               TemplateTemplateParmDecl *Parm) {
467  ID.AddInteger(Parm->getDepth());
468  ID.AddInteger(Parm->getPosition());
469  ID.AddBoolean(Parm->isParameterPack());
470
471  TemplateParameterList *Params = Parm->getTemplateParameters();
472  ID.AddInteger(Params->size());
473  for (TemplateParameterList::const_iterator P = Params->begin(),
474                                          PEnd = Params->end();
475       P != PEnd; ++P) {
476    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
477      ID.AddInteger(0);
478      ID.AddBoolean(TTP->isParameterPack());
479      continue;
480    }
481
482    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
483      ID.AddInteger(1);
484      ID.AddBoolean(NTTP->isParameterPack());
485      ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
486      if (NTTP->isExpandedParameterPack()) {
487        ID.AddBoolean(true);
488        ID.AddInteger(NTTP->getNumExpansionTypes());
489        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
490          QualType T = NTTP->getExpansionType(I);
491          ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
492        }
493      } else
494        ID.AddBoolean(false);
495      continue;
496    }
497
498    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
499    ID.AddInteger(2);
500    Profile(ID, TTP);
501  }
502}
503
504TemplateTemplateParmDecl *
505ASTContext::getCanonicalTemplateTemplateParmDecl(
506                                          TemplateTemplateParmDecl *TTP) const {
507  // Check if we already have a canonical template template parameter.
508  llvm::FoldingSetNodeID ID;
509  CanonicalTemplateTemplateParm::Profile(ID, TTP);
510  void *InsertPos = 0;
511  CanonicalTemplateTemplateParm *Canonical
512    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
513  if (Canonical)
514    return Canonical->getParam();
515
516  // Build a canonical template parameter list.
517  TemplateParameterList *Params = TTP->getTemplateParameters();
518  SmallVector<NamedDecl *, 4> CanonParams;
519  CanonParams.reserve(Params->size());
520  for (TemplateParameterList::const_iterator P = Params->begin(),
521                                          PEnd = Params->end();
522       P != PEnd; ++P) {
523    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
524      CanonParams.push_back(
525                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
526                                               SourceLocation(),
527                                               SourceLocation(),
528                                               TTP->getDepth(),
529                                               TTP->getIndex(), 0, false,
530                                               TTP->isParameterPack()));
531    else if (NonTypeTemplateParmDecl *NTTP
532             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
533      QualType T = getCanonicalType(NTTP->getType());
534      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
535      NonTypeTemplateParmDecl *Param;
536      if (NTTP->isExpandedParameterPack()) {
537        SmallVector<QualType, 2> ExpandedTypes;
538        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
539        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
540          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
541          ExpandedTInfos.push_back(
542                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
543        }
544
545        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
546                                                SourceLocation(),
547                                                SourceLocation(),
548                                                NTTP->getDepth(),
549                                                NTTP->getPosition(), 0,
550                                                T,
551                                                TInfo,
552                                                ExpandedTypes.data(),
553                                                ExpandedTypes.size(),
554                                                ExpandedTInfos.data());
555      } else {
556        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
557                                                SourceLocation(),
558                                                SourceLocation(),
559                                                NTTP->getDepth(),
560                                                NTTP->getPosition(), 0,
561                                                T,
562                                                NTTP->isParameterPack(),
563                                                TInfo);
564      }
565      CanonParams.push_back(Param);
566
567    } else
568      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
569                                           cast<TemplateTemplateParmDecl>(*P)));
570  }
571
572  TemplateTemplateParmDecl *CanonTTP
573    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
574                                       SourceLocation(), TTP->getDepth(),
575                                       TTP->getPosition(),
576                                       TTP->isParameterPack(),
577                                       0,
578                         TemplateParameterList::Create(*this, SourceLocation(),
579                                                       SourceLocation(),
580                                                       CanonParams.data(),
581                                                       CanonParams.size(),
582                                                       SourceLocation()));
583
584  // Get the new insert position for the node we care about.
585  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
586  assert(Canonical == 0 && "Shouldn't be in the map!");
587  (void)Canonical;
588
589  // Create the canonical template template parameter entry.
590  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
591  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
592  return CanonTTP;
593}
594
595CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
596  if (!LangOpts.CPlusPlus) return 0;
597
598  switch (T.getCXXABI().getKind()) {
599  case TargetCXXABI::GenericARM:
600  case TargetCXXABI::iOS:
601    return CreateARMCXXABI(*this);
602  case TargetCXXABI::GenericAArch64: // Same as Itanium at this level
603  case TargetCXXABI::GenericItanium:
604    return CreateItaniumCXXABI(*this);
605  case TargetCXXABI::Microsoft:
606    return CreateMicrosoftCXXABI(*this);
607  }
608  llvm_unreachable("Invalid CXXABI type!");
609}
610
611static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
612                                             const LangOptions &LOpts) {
613  if (LOpts.FakeAddressSpaceMap) {
614    // The fake address space map must have a distinct entry for each
615    // language-specific address space.
616    static const unsigned FakeAddrSpaceMap[] = {
617      1, // opencl_global
618      2, // opencl_local
619      3, // opencl_constant
620      4, // cuda_device
621      5, // cuda_constant
622      6  // cuda_shared
623    };
624    return &FakeAddrSpaceMap;
625  } else {
626    return &T.getAddressSpaceMap();
627  }
628}
629
630ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
631                       const TargetInfo *t,
632                       IdentifierTable &idents, SelectorTable &sels,
633                       Builtin::Context &builtins,
634                       unsigned size_reserve,
635                       bool DelayInitialization)
636  : FunctionProtoTypes(this_()),
637    TemplateSpecializationTypes(this_()),
638    DependentTemplateSpecializationTypes(this_()),
639    SubstTemplateTemplateParmPacks(this_()),
640    GlobalNestedNameSpecifier(0),
641    Int128Decl(0), UInt128Decl(0),
642    BuiltinVaListDecl(0),
643    ObjCIdDecl(0), ObjCSelDecl(0), ObjCClassDecl(0), ObjCProtocolClassDecl(0),
644    BOOLDecl(0),
645    CFConstantStringTypeDecl(0), ObjCInstanceTypeDecl(0),
646    FILEDecl(0),
647    jmp_bufDecl(0), sigjmp_bufDecl(0), ucontext_tDecl(0),
648    BlockDescriptorType(0), BlockDescriptorExtendedType(0),
649    cudaConfigureCallDecl(0),
650    NullTypeSourceInfo(QualType()),
651    FirstLocalImport(), LastLocalImport(),
652    SourceMgr(SM), LangOpts(LOpts),
653    AddrSpaceMap(0), Target(t), PrintingPolicy(LOpts),
654    Idents(idents), Selectors(sels),
655    BuiltinInfo(builtins),
656    DeclarationNames(*this),
657    ExternalSource(0), Listener(0),
658    Comments(SM), CommentsLoaded(false),
659    CommentCommandTraits(BumpAlloc, LOpts.CommentOpts),
660    LastSDM(0, 0),
661    UniqueBlockByRefTypeID(0)
662{
663  if (size_reserve > 0) Types.reserve(size_reserve);
664  TUDecl = TranslationUnitDecl::Create(*this);
665
666  if (!DelayInitialization) {
667    assert(t && "No target supplied for ASTContext initialization");
668    InitBuiltinTypes(*t);
669  }
670}
671
672ASTContext::~ASTContext() {
673  // Release the DenseMaps associated with DeclContext objects.
674  // FIXME: Is this the ideal solution?
675  ReleaseDeclContextMaps();
676
677  // Call all of the deallocation functions.
678  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
679    Deallocations[I].first(Deallocations[I].second);
680
681  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
682  // because they can contain DenseMaps.
683  for (llvm::DenseMap<const ObjCContainerDecl*,
684       const ASTRecordLayout*>::iterator
685       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
686    // Increment in loop to prevent using deallocated memory.
687    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
688      R->Destroy(*this);
689
690  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
691       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
692    // Increment in loop to prevent using deallocated memory.
693    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
694      R->Destroy(*this);
695  }
696
697  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
698                                                    AEnd = DeclAttrs.end();
699       A != AEnd; ++A)
700    A->second->~AttrVec();
701}
702
703void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
704  Deallocations.push_back(std::make_pair(Callback, Data));
705}
706
707void
708ASTContext::setExternalSource(OwningPtr<ExternalASTSource> &Source) {
709  ExternalSource.reset(Source.take());
710}
711
712void ASTContext::PrintStats() const {
713  llvm::errs() << "\n*** AST Context Stats:\n";
714  llvm::errs() << "  " << Types.size() << " types total.\n";
715
716  unsigned counts[] = {
717#define TYPE(Name, Parent) 0,
718#define ABSTRACT_TYPE(Name, Parent)
719#include "clang/AST/TypeNodes.def"
720    0 // Extra
721  };
722
723  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
724    Type *T = Types[i];
725    counts[(unsigned)T->getTypeClass()]++;
726  }
727
728  unsigned Idx = 0;
729  unsigned TotalBytes = 0;
730#define TYPE(Name, Parent)                                              \
731  if (counts[Idx])                                                      \
732    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
733                 << " types\n";                                         \
734  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
735  ++Idx;
736#define ABSTRACT_TYPE(Name, Parent)
737#include "clang/AST/TypeNodes.def"
738
739  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
740
741  // Implicit special member functions.
742  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
743               << NumImplicitDefaultConstructors
744               << " implicit default constructors created\n";
745  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
746               << NumImplicitCopyConstructors
747               << " implicit copy constructors created\n";
748  if (getLangOpts().CPlusPlus)
749    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
750                 << NumImplicitMoveConstructors
751                 << " implicit move constructors created\n";
752  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
753               << NumImplicitCopyAssignmentOperators
754               << " implicit copy assignment operators created\n";
755  if (getLangOpts().CPlusPlus)
756    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
757                 << NumImplicitMoveAssignmentOperators
758                 << " implicit move assignment operators created\n";
759  llvm::errs() << NumImplicitDestructorsDeclared << "/"
760               << NumImplicitDestructors
761               << " implicit destructors created\n";
762
763  if (ExternalSource.get()) {
764    llvm::errs() << "\n";
765    ExternalSource->PrintStats();
766  }
767
768  BumpAlloc.PrintStats();
769}
770
771TypedefDecl *ASTContext::getInt128Decl() const {
772  if (!Int128Decl) {
773    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(Int128Ty);
774    Int128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
775                                     getTranslationUnitDecl(),
776                                     SourceLocation(),
777                                     SourceLocation(),
778                                     &Idents.get("__int128_t"),
779                                     TInfo);
780  }
781
782  return Int128Decl;
783}
784
785TypedefDecl *ASTContext::getUInt128Decl() const {
786  if (!UInt128Decl) {
787    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(UnsignedInt128Ty);
788    UInt128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
789                                     getTranslationUnitDecl(),
790                                     SourceLocation(),
791                                     SourceLocation(),
792                                     &Idents.get("__uint128_t"),
793                                     TInfo);
794  }
795
796  return UInt128Decl;
797}
798
799void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
800  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
801  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
802  Types.push_back(Ty);
803}
804
805void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
806  assert((!this->Target || this->Target == &Target) &&
807         "Incorrect target reinitialization");
808  assert(VoidTy.isNull() && "Context reinitialized?");
809
810  this->Target = &Target;
811
812  ABI.reset(createCXXABI(Target));
813  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
814
815  // C99 6.2.5p19.
816  InitBuiltinType(VoidTy,              BuiltinType::Void);
817
818  // C99 6.2.5p2.
819  InitBuiltinType(BoolTy,              BuiltinType::Bool);
820  // C99 6.2.5p3.
821  if (LangOpts.CharIsSigned)
822    InitBuiltinType(CharTy,            BuiltinType::Char_S);
823  else
824    InitBuiltinType(CharTy,            BuiltinType::Char_U);
825  // C99 6.2.5p4.
826  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
827  InitBuiltinType(ShortTy,             BuiltinType::Short);
828  InitBuiltinType(IntTy,               BuiltinType::Int);
829  InitBuiltinType(LongTy,              BuiltinType::Long);
830  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
831
832  // C99 6.2.5p6.
833  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
834  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
835  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
836  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
837  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
838
839  // C99 6.2.5p10.
840  InitBuiltinType(FloatTy,             BuiltinType::Float);
841  InitBuiltinType(DoubleTy,            BuiltinType::Double);
842  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
843
844  // GNU extension, 128-bit integers.
845  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
846  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
847
848  if (LangOpts.CPlusPlus && LangOpts.WChar) { // C++ 3.9.1p5
849    if (TargetInfo::isTypeSigned(Target.getWCharType()))
850      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
851    else  // -fshort-wchar makes wchar_t be unsigned.
852      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
853  } else // C99 (or C++ using -fno-wchar)
854    WCharTy = getFromTargetType(Target.getWCharType());
855
856  WIntTy = getFromTargetType(Target.getWIntType());
857
858  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
859    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
860  else // C99
861    Char16Ty = getFromTargetType(Target.getChar16Type());
862
863  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
864    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
865  else // C99
866    Char32Ty = getFromTargetType(Target.getChar32Type());
867
868  // Placeholder type for type-dependent expressions whose type is
869  // completely unknown. No code should ever check a type against
870  // DependentTy and users should never see it; however, it is here to
871  // help diagnose failures to properly check for type-dependent
872  // expressions.
873  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
874
875  // Placeholder type for functions.
876  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
877
878  // Placeholder type for bound members.
879  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
880
881  // Placeholder type for pseudo-objects.
882  InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
883
884  // "any" type; useful for debugger-like clients.
885  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
886
887  // Placeholder type for unbridged ARC casts.
888  InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
889
890  // Placeholder type for builtin functions.
891  InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
892
893  // C99 6.2.5p11.
894  FloatComplexTy      = getComplexType(FloatTy);
895  DoubleComplexTy     = getComplexType(DoubleTy);
896  LongDoubleComplexTy = getComplexType(LongDoubleTy);
897
898  // Builtin types for 'id', 'Class', and 'SEL'.
899  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
900  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
901  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
902
903  if (LangOpts.OpenCL) {
904    InitBuiltinType(OCLImage1dTy, BuiltinType::OCLImage1d);
905    InitBuiltinType(OCLImage1dArrayTy, BuiltinType::OCLImage1dArray);
906    InitBuiltinType(OCLImage1dBufferTy, BuiltinType::OCLImage1dBuffer);
907    InitBuiltinType(OCLImage2dTy, BuiltinType::OCLImage2d);
908    InitBuiltinType(OCLImage2dArrayTy, BuiltinType::OCLImage2dArray);
909    InitBuiltinType(OCLImage3dTy, BuiltinType::OCLImage3d);
910
911    InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
912    InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
913  }
914
915  // Builtin type for __objc_yes and __objc_no
916  ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
917                       SignedCharTy : BoolTy);
918
919  ObjCConstantStringType = QualType();
920
921  ObjCSuperType = QualType();
922
923  // void * type
924  VoidPtrTy = getPointerType(VoidTy);
925
926  // nullptr type (C++0x 2.14.7)
927  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
928
929  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
930  InitBuiltinType(HalfTy, BuiltinType::Half);
931
932  // Builtin type used to help define __builtin_va_list.
933  VaListTagTy = QualType();
934}
935
936DiagnosticsEngine &ASTContext::getDiagnostics() const {
937  return SourceMgr.getDiagnostics();
938}
939
940AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
941  AttrVec *&Result = DeclAttrs[D];
942  if (!Result) {
943    void *Mem = Allocate(sizeof(AttrVec));
944    Result = new (Mem) AttrVec;
945  }
946
947  return *Result;
948}
949
950/// \brief Erase the attributes corresponding to the given declaration.
951void ASTContext::eraseDeclAttrs(const Decl *D) {
952  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
953  if (Pos != DeclAttrs.end()) {
954    Pos->second->~AttrVec();
955    DeclAttrs.erase(Pos);
956  }
957}
958
959MemberSpecializationInfo *
960ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
961  assert(Var->isStaticDataMember() && "Not a static data member");
962  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
963    = InstantiatedFromStaticDataMember.find(Var);
964  if (Pos == InstantiatedFromStaticDataMember.end())
965    return 0;
966
967  return Pos->second;
968}
969
970void
971ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
972                                                TemplateSpecializationKind TSK,
973                                          SourceLocation PointOfInstantiation) {
974  assert(Inst->isStaticDataMember() && "Not a static data member");
975  assert(Tmpl->isStaticDataMember() && "Not a static data member");
976  assert(!InstantiatedFromStaticDataMember[Inst] &&
977         "Already noted what static data member was instantiated from");
978  InstantiatedFromStaticDataMember[Inst]
979    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
980}
981
982FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
983                                                     const FunctionDecl *FD){
984  assert(FD && "Specialization is 0");
985  llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
986    = ClassScopeSpecializationPattern.find(FD);
987  if (Pos == ClassScopeSpecializationPattern.end())
988    return 0;
989
990  return Pos->second;
991}
992
993void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
994                                        FunctionDecl *Pattern) {
995  assert(FD && "Specialization is 0");
996  assert(Pattern && "Class scope specialization pattern is 0");
997  ClassScopeSpecializationPattern[FD] = Pattern;
998}
999
1000NamedDecl *
1001ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
1002  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
1003    = InstantiatedFromUsingDecl.find(UUD);
1004  if (Pos == InstantiatedFromUsingDecl.end())
1005    return 0;
1006
1007  return Pos->second;
1008}
1009
1010void
1011ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
1012  assert((isa<UsingDecl>(Pattern) ||
1013          isa<UnresolvedUsingValueDecl>(Pattern) ||
1014          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
1015         "pattern decl is not a using decl");
1016  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
1017  InstantiatedFromUsingDecl[Inst] = Pattern;
1018}
1019
1020UsingShadowDecl *
1021ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
1022  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
1023    = InstantiatedFromUsingShadowDecl.find(Inst);
1024  if (Pos == InstantiatedFromUsingShadowDecl.end())
1025    return 0;
1026
1027  return Pos->second;
1028}
1029
1030void
1031ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
1032                                               UsingShadowDecl *Pattern) {
1033  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
1034  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1035}
1036
1037FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
1038  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
1039    = InstantiatedFromUnnamedFieldDecl.find(Field);
1040  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
1041    return 0;
1042
1043  return Pos->second;
1044}
1045
1046void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1047                                                     FieldDecl *Tmpl) {
1048  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
1049  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
1050  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
1051         "Already noted what unnamed field was instantiated from");
1052
1053  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1054}
1055
1056bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
1057                                    const FieldDecl *LastFD) const {
1058  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
1059          FD->getBitWidthValue(*this) == 0);
1060}
1061
1062bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
1063                                             const FieldDecl *LastFD) const {
1064  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
1065          FD->getBitWidthValue(*this) == 0 &&
1066          LastFD->getBitWidthValue(*this) != 0);
1067}
1068
1069bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
1070                                         const FieldDecl *LastFD) const {
1071  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
1072          FD->getBitWidthValue(*this) &&
1073          LastFD->getBitWidthValue(*this));
1074}
1075
1076bool ASTContext::NonBitfieldFollowsBitfield(const FieldDecl *FD,
1077                                         const FieldDecl *LastFD) const {
1078  return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
1079          LastFD->getBitWidthValue(*this));
1080}
1081
1082bool ASTContext::BitfieldFollowsNonBitfield(const FieldDecl *FD,
1083                                             const FieldDecl *LastFD) const {
1084  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
1085          FD->getBitWidthValue(*this));
1086}
1087
1088ASTContext::overridden_cxx_method_iterator
1089ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1090  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1091    = OverriddenMethods.find(Method->getCanonicalDecl());
1092  if (Pos == OverriddenMethods.end())
1093    return 0;
1094
1095  return Pos->second.begin();
1096}
1097
1098ASTContext::overridden_cxx_method_iterator
1099ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1100  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1101    = OverriddenMethods.find(Method->getCanonicalDecl());
1102  if (Pos == OverriddenMethods.end())
1103    return 0;
1104
1105  return Pos->second.end();
1106}
1107
1108unsigned
1109ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1110  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1111    = OverriddenMethods.find(Method->getCanonicalDecl());
1112  if (Pos == OverriddenMethods.end())
1113    return 0;
1114
1115  return Pos->second.size();
1116}
1117
1118void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1119                                     const CXXMethodDecl *Overridden) {
1120  assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1121  OverriddenMethods[Method].push_back(Overridden);
1122}
1123
1124void ASTContext::getOverriddenMethods(
1125                      const NamedDecl *D,
1126                      SmallVectorImpl<const NamedDecl *> &Overridden) const {
1127  assert(D);
1128
1129  if (const CXXMethodDecl *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1130    Overridden.append(overridden_methods_begin(CXXMethod),
1131                      overridden_methods_end(CXXMethod));
1132    return;
1133  }
1134
1135  const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(D);
1136  if (!Method)
1137    return;
1138
1139  SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1140  Method->getOverriddenMethods(OverDecls);
1141  Overridden.append(OverDecls.begin(), OverDecls.end());
1142}
1143
1144void ASTContext::getBaseObjCCategoriesAfterInterface(
1145                        const ObjCInterfaceDecl *D,
1146                        SmallVectorImpl<const ObjCCategoryDecl *> &Cats) const {
1147  if (!D)
1148    return;
1149
1150  typedef llvm::SmallVector<const ObjCCategoryDecl *, 2> VecTy;
1151  typedef llvm::DenseMap<const ObjCInterfaceDecl *, VecTy> MapTy;
1152
1153  std::pair<MapTy::iterator, bool>
1154    InsertOp = CatsAfterInterface.insert(std::make_pair(D, VecTy()));
1155  VecTy &Vec = InsertOp.first->second;
1156  if (!InsertOp.second) {
1157    // already in map.
1158    Cats.append(Vec.begin(), Vec.end());
1159    return;
1160  }
1161
1162  SourceLocation Loc = D->getLocation();
1163  for (const ObjCInterfaceDecl *
1164         Class = D->getSuperClass(); Class; Class = Class->getSuperClass()) {
1165    for (ObjCInterfaceDecl::known_categories_iterator
1166           CatI = Class->known_categories_begin(),
1167           CatEnd = Class->known_categories_end();
1168         CatI != CatEnd; ++CatI) {
1169      if (SourceMgr.isBeforeInTranslationUnit(Loc, CatI->getLocation()))
1170        Vec.push_back(*CatI);
1171    }
1172  }
1173
1174  Cats.append(Vec.begin(), Vec.end());
1175}
1176
1177void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1178  assert(!Import->NextLocalImport && "Import declaration already in the chain");
1179  assert(!Import->isFromASTFile() && "Non-local import declaration");
1180  if (!FirstLocalImport) {
1181    FirstLocalImport = Import;
1182    LastLocalImport = Import;
1183    return;
1184  }
1185
1186  LastLocalImport->NextLocalImport = Import;
1187  LastLocalImport = Import;
1188}
1189
1190//===----------------------------------------------------------------------===//
1191//                         Type Sizing and Analysis
1192//===----------------------------------------------------------------------===//
1193
1194/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1195/// scalar floating point type.
1196const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1197  const BuiltinType *BT = T->getAs<BuiltinType>();
1198  assert(BT && "Not a floating point type!");
1199  switch (BT->getKind()) {
1200  default: llvm_unreachable("Not a floating point type!");
1201  case BuiltinType::Half:       return Target->getHalfFormat();
1202  case BuiltinType::Float:      return Target->getFloatFormat();
1203  case BuiltinType::Double:     return Target->getDoubleFormat();
1204  case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
1205  }
1206}
1207
1208/// getDeclAlign - Return a conservative estimate of the alignment of the
1209/// specified decl.  Note that bitfields do not have a valid alignment, so
1210/// this method will assert on them.
1211/// If @p RefAsPointee, references are treated like their underlying type
1212/// (for alignof), else they're treated like pointers (for CodeGen).
1213CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
1214  unsigned Align = Target->getCharWidth();
1215
1216  bool UseAlignAttrOnly = false;
1217  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1218    Align = AlignFromAttr;
1219
1220    // __attribute__((aligned)) can increase or decrease alignment
1221    // *except* on a struct or struct member, where it only increases
1222    // alignment unless 'packed' is also specified.
1223    //
1224    // It is an error for alignas to decrease alignment, so we can
1225    // ignore that possibility;  Sema should diagnose it.
1226    if (isa<FieldDecl>(D)) {
1227      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1228        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1229    } else {
1230      UseAlignAttrOnly = true;
1231    }
1232  }
1233  else if (isa<FieldDecl>(D))
1234      UseAlignAttrOnly =
1235        D->hasAttr<PackedAttr>() ||
1236        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1237
1238  // If we're using the align attribute only, just ignore everything
1239  // else about the declaration and its type.
1240  if (UseAlignAttrOnly) {
1241    // do nothing
1242
1243  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1244    QualType T = VD->getType();
1245    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
1246      if (RefAsPointee)
1247        T = RT->getPointeeType();
1248      else
1249        T = getPointerType(RT->getPointeeType());
1250    }
1251    if (!T->isIncompleteType() && !T->isFunctionType()) {
1252      // Adjust alignments of declarations with array type by the
1253      // large-array alignment on the target.
1254      unsigned MinWidth = Target->getLargeArrayMinWidth();
1255      const ArrayType *arrayType;
1256      if (MinWidth && (arrayType = getAsArrayType(T))) {
1257        if (isa<VariableArrayType>(arrayType))
1258          Align = std::max(Align, Target->getLargeArrayAlign());
1259        else if (isa<ConstantArrayType>(arrayType) &&
1260                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1261          Align = std::max(Align, Target->getLargeArrayAlign());
1262
1263        // Walk through any array types while we're at it.
1264        T = getBaseElementType(arrayType);
1265      }
1266      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1267    }
1268
1269    // Fields can be subject to extra alignment constraints, like if
1270    // the field is packed, the struct is packed, or the struct has a
1271    // a max-field-alignment constraint (#pragma pack).  So calculate
1272    // the actual alignment of the field within the struct, and then
1273    // (as we're expected to) constrain that by the alignment of the type.
1274    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
1275      // So calculate the alignment of the field.
1276      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
1277
1278      // Start with the record's overall alignment.
1279      unsigned fieldAlign = toBits(layout.getAlignment());
1280
1281      // Use the GCD of that and the offset within the record.
1282      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
1283      if (offset > 0) {
1284        // Alignment is always a power of 2, so the GCD will be a power of 2,
1285        // which means we get to do this crazy thing instead of Euclid's.
1286        uint64_t lowBitOfOffset = offset & (~offset + 1);
1287        if (lowBitOfOffset < fieldAlign)
1288          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
1289      }
1290
1291      Align = std::min(Align, fieldAlign);
1292    }
1293  }
1294
1295  return toCharUnitsFromBits(Align);
1296}
1297
1298// getTypeInfoDataSizeInChars - Return the size of a type, in
1299// chars. If the type is a record, its data size is returned.  This is
1300// the size of the memcpy that's performed when assigning this type
1301// using a trivial copy/move assignment operator.
1302std::pair<CharUnits, CharUnits>
1303ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1304  std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
1305
1306  // In C++, objects can sometimes be allocated into the tail padding
1307  // of a base-class subobject.  We decide whether that's possible
1308  // during class layout, so here we can just trust the layout results.
1309  if (getLangOpts().CPlusPlus) {
1310    if (const RecordType *RT = T->getAs<RecordType>()) {
1311      const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1312      sizeAndAlign.first = layout.getDataSize();
1313    }
1314  }
1315
1316  return sizeAndAlign;
1317}
1318
1319std::pair<CharUnits, CharUnits>
1320ASTContext::getTypeInfoInChars(const Type *T) const {
1321  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
1322  return std::make_pair(toCharUnitsFromBits(Info.first),
1323                        toCharUnitsFromBits(Info.second));
1324}
1325
1326std::pair<CharUnits, CharUnits>
1327ASTContext::getTypeInfoInChars(QualType T) const {
1328  return getTypeInfoInChars(T.getTypePtr());
1329}
1330
1331std::pair<uint64_t, unsigned> ASTContext::getTypeInfo(const Type *T) const {
1332  TypeInfoMap::iterator it = MemoizedTypeInfo.find(T);
1333  if (it != MemoizedTypeInfo.end())
1334    return it->second;
1335
1336  std::pair<uint64_t, unsigned> Info = getTypeInfoImpl(T);
1337  MemoizedTypeInfo.insert(std::make_pair(T, Info));
1338  return Info;
1339}
1340
1341/// getTypeInfoImpl - Return the size of the specified type, in bits.  This
1342/// method does not work on incomplete types.
1343///
1344/// FIXME: Pointers into different addr spaces could have different sizes and
1345/// alignment requirements: getPointerInfo should take an AddrSpace, this
1346/// should take a QualType, &c.
1347std::pair<uint64_t, unsigned>
1348ASTContext::getTypeInfoImpl(const Type *T) const {
1349  uint64_t Width=0;
1350  unsigned Align=8;
1351  switch (T->getTypeClass()) {
1352#define TYPE(Class, Base)
1353#define ABSTRACT_TYPE(Class, Base)
1354#define NON_CANONICAL_TYPE(Class, Base)
1355#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1356#include "clang/AST/TypeNodes.def"
1357    llvm_unreachable("Should not see dependent types");
1358
1359  case Type::FunctionNoProto:
1360  case Type::FunctionProto:
1361    // GCC extension: alignof(function) = 32 bits
1362    Width = 0;
1363    Align = 32;
1364    break;
1365
1366  case Type::IncompleteArray:
1367  case Type::VariableArray:
1368    Width = 0;
1369    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
1370    break;
1371
1372  case Type::ConstantArray: {
1373    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
1374
1375    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
1376    uint64_t Size = CAT->getSize().getZExtValue();
1377    assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) &&
1378           "Overflow in array type bit size evaluation");
1379    Width = EltInfo.first*Size;
1380    Align = EltInfo.second;
1381    Width = llvm::RoundUpToAlignment(Width, Align);
1382    break;
1383  }
1384  case Type::ExtVector:
1385  case Type::Vector: {
1386    const VectorType *VT = cast<VectorType>(T);
1387    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
1388    Width = EltInfo.first*VT->getNumElements();
1389    Align = Width;
1390    // If the alignment is not a power of 2, round up to the next power of 2.
1391    // This happens for non-power-of-2 length vectors.
1392    if (Align & (Align-1)) {
1393      Align = llvm::NextPowerOf2(Align);
1394      Width = llvm::RoundUpToAlignment(Width, Align);
1395    }
1396    // Adjust the alignment based on the target max.
1397    uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1398    if (TargetVectorAlign && TargetVectorAlign < Align)
1399      Align = TargetVectorAlign;
1400    break;
1401  }
1402
1403  case Type::Builtin:
1404    switch (cast<BuiltinType>(T)->getKind()) {
1405    default: llvm_unreachable("Unknown builtin type!");
1406    case BuiltinType::Void:
1407      // GCC extension: alignof(void) = 8 bits.
1408      Width = 0;
1409      Align = 8;
1410      break;
1411
1412    case BuiltinType::Bool:
1413      Width = Target->getBoolWidth();
1414      Align = Target->getBoolAlign();
1415      break;
1416    case BuiltinType::Char_S:
1417    case BuiltinType::Char_U:
1418    case BuiltinType::UChar:
1419    case BuiltinType::SChar:
1420      Width = Target->getCharWidth();
1421      Align = Target->getCharAlign();
1422      break;
1423    case BuiltinType::WChar_S:
1424    case BuiltinType::WChar_U:
1425      Width = Target->getWCharWidth();
1426      Align = Target->getWCharAlign();
1427      break;
1428    case BuiltinType::Char16:
1429      Width = Target->getChar16Width();
1430      Align = Target->getChar16Align();
1431      break;
1432    case BuiltinType::Char32:
1433      Width = Target->getChar32Width();
1434      Align = Target->getChar32Align();
1435      break;
1436    case BuiltinType::UShort:
1437    case BuiltinType::Short:
1438      Width = Target->getShortWidth();
1439      Align = Target->getShortAlign();
1440      break;
1441    case BuiltinType::UInt:
1442    case BuiltinType::Int:
1443      Width = Target->getIntWidth();
1444      Align = Target->getIntAlign();
1445      break;
1446    case BuiltinType::ULong:
1447    case BuiltinType::Long:
1448      Width = Target->getLongWidth();
1449      Align = Target->getLongAlign();
1450      break;
1451    case BuiltinType::ULongLong:
1452    case BuiltinType::LongLong:
1453      Width = Target->getLongLongWidth();
1454      Align = Target->getLongLongAlign();
1455      break;
1456    case BuiltinType::Int128:
1457    case BuiltinType::UInt128:
1458      Width = 128;
1459      Align = 128; // int128_t is 128-bit aligned on all targets.
1460      break;
1461    case BuiltinType::Half:
1462      Width = Target->getHalfWidth();
1463      Align = Target->getHalfAlign();
1464      break;
1465    case BuiltinType::Float:
1466      Width = Target->getFloatWidth();
1467      Align = Target->getFloatAlign();
1468      break;
1469    case BuiltinType::Double:
1470      Width = Target->getDoubleWidth();
1471      Align = Target->getDoubleAlign();
1472      break;
1473    case BuiltinType::LongDouble:
1474      Width = Target->getLongDoubleWidth();
1475      Align = Target->getLongDoubleAlign();
1476      break;
1477    case BuiltinType::NullPtr:
1478      Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
1479      Align = Target->getPointerAlign(0); //   == sizeof(void*)
1480      break;
1481    case BuiltinType::ObjCId:
1482    case BuiltinType::ObjCClass:
1483    case BuiltinType::ObjCSel:
1484      Width = Target->getPointerWidth(0);
1485      Align = Target->getPointerAlign(0);
1486      break;
1487    case BuiltinType::OCLSampler:
1488      // Samplers are modeled as integers.
1489      Width = Target->getIntWidth();
1490      Align = Target->getIntAlign();
1491      break;
1492    case BuiltinType::OCLEvent:
1493    case BuiltinType::OCLImage1d:
1494    case BuiltinType::OCLImage1dArray:
1495    case BuiltinType::OCLImage1dBuffer:
1496    case BuiltinType::OCLImage2d:
1497    case BuiltinType::OCLImage2dArray:
1498    case BuiltinType::OCLImage3d:
1499      // Currently these types are pointers to opaque types.
1500      Width = Target->getPointerWidth(0);
1501      Align = Target->getPointerAlign(0);
1502      break;
1503    }
1504    break;
1505  case Type::ObjCObjectPointer:
1506    Width = Target->getPointerWidth(0);
1507    Align = Target->getPointerAlign(0);
1508    break;
1509  case Type::BlockPointer: {
1510    unsigned AS = getTargetAddressSpace(
1511        cast<BlockPointerType>(T)->getPointeeType());
1512    Width = Target->getPointerWidth(AS);
1513    Align = Target->getPointerAlign(AS);
1514    break;
1515  }
1516  case Type::LValueReference:
1517  case Type::RValueReference: {
1518    // alignof and sizeof should never enter this code path here, so we go
1519    // the pointer route.
1520    unsigned AS = getTargetAddressSpace(
1521        cast<ReferenceType>(T)->getPointeeType());
1522    Width = Target->getPointerWidth(AS);
1523    Align = Target->getPointerAlign(AS);
1524    break;
1525  }
1526  case Type::Pointer: {
1527    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
1528    Width = Target->getPointerWidth(AS);
1529    Align = Target->getPointerAlign(AS);
1530    break;
1531  }
1532  case Type::MemberPointer: {
1533    const MemberPointerType *MPT = cast<MemberPointerType>(T);
1534    llvm::tie(Width, Align) = ABI->getMemberPointerWidthAndAlign(MPT);
1535    break;
1536  }
1537  case Type::Complex: {
1538    // Complex types have the same alignment as their elements, but twice the
1539    // size.
1540    std::pair<uint64_t, unsigned> EltInfo =
1541      getTypeInfo(cast<ComplexType>(T)->getElementType());
1542    Width = EltInfo.first*2;
1543    Align = EltInfo.second;
1544    break;
1545  }
1546  case Type::ObjCObject:
1547    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1548  case Type::ObjCInterface: {
1549    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1550    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1551    Width = toBits(Layout.getSize());
1552    Align = toBits(Layout.getAlignment());
1553    break;
1554  }
1555  case Type::Record:
1556  case Type::Enum: {
1557    const TagType *TT = cast<TagType>(T);
1558
1559    if (TT->getDecl()->isInvalidDecl()) {
1560      Width = 8;
1561      Align = 8;
1562      break;
1563    }
1564
1565    if (const EnumType *ET = dyn_cast<EnumType>(TT))
1566      return getTypeInfo(ET->getDecl()->getIntegerType());
1567
1568    const RecordType *RT = cast<RecordType>(TT);
1569    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1570    Width = toBits(Layout.getSize());
1571    Align = toBits(Layout.getAlignment());
1572    break;
1573  }
1574
1575  case Type::SubstTemplateTypeParm:
1576    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1577                       getReplacementType().getTypePtr());
1578
1579  case Type::Auto: {
1580    const AutoType *A = cast<AutoType>(T);
1581    assert(A->isDeduced() && "Cannot request the size of a dependent type");
1582    return getTypeInfo(A->getDeducedType().getTypePtr());
1583  }
1584
1585  case Type::Paren:
1586    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1587
1588  case Type::Typedef: {
1589    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1590    std::pair<uint64_t, unsigned> Info
1591      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1592    // If the typedef has an aligned attribute on it, it overrides any computed
1593    // alignment we have.  This violates the GCC documentation (which says that
1594    // attribute(aligned) can only round up) but matches its implementation.
1595    if (unsigned AttrAlign = Typedef->getMaxAlignment())
1596      Align = AttrAlign;
1597    else
1598      Align = Info.second;
1599    Width = Info.first;
1600    break;
1601  }
1602
1603  case Type::TypeOfExpr:
1604    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
1605                         .getTypePtr());
1606
1607  case Type::TypeOf:
1608    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
1609
1610  case Type::Decltype:
1611    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
1612                        .getTypePtr());
1613
1614  case Type::UnaryTransform:
1615    return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
1616
1617  case Type::Elaborated:
1618    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1619
1620  case Type::Attributed:
1621    return getTypeInfo(
1622                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1623
1624  case Type::TemplateSpecialization: {
1625    assert(getCanonicalType(T) != T &&
1626           "Cannot request the size of a dependent type");
1627    const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1628    // A type alias template specialization may refer to a typedef with the
1629    // aligned attribute on it.
1630    if (TST->isTypeAlias())
1631      return getTypeInfo(TST->getAliasedType().getTypePtr());
1632    else
1633      return getTypeInfo(getCanonicalType(T));
1634  }
1635
1636  case Type::Atomic: {
1637    // Start with the base type information.
1638    std::pair<uint64_t, unsigned> Info
1639      = getTypeInfo(cast<AtomicType>(T)->getValueType());
1640    Width = Info.first;
1641    Align = Info.second;
1642
1643    // If the size of the type doesn't exceed the platform's max
1644    // atomic promotion width, make the size and alignment more
1645    // favorable to atomic operations:
1646    if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth()) {
1647      // Round the size up to a power of 2.
1648      if (!llvm::isPowerOf2_64(Width))
1649        Width = llvm::NextPowerOf2(Width);
1650
1651      // Set the alignment equal to the size.
1652      Align = static_cast<unsigned>(Width);
1653    }
1654  }
1655
1656  }
1657
1658  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1659  return std::make_pair(Width, Align);
1660}
1661
1662/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1663CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1664  return CharUnits::fromQuantity(BitSize / getCharWidth());
1665}
1666
1667/// toBits - Convert a size in characters to a size in characters.
1668int64_t ASTContext::toBits(CharUnits CharSize) const {
1669  return CharSize.getQuantity() * getCharWidth();
1670}
1671
1672/// getTypeSizeInChars - Return the size of the specified type, in characters.
1673/// This method does not work on incomplete types.
1674CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1675  return toCharUnitsFromBits(getTypeSize(T));
1676}
1677CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1678  return toCharUnitsFromBits(getTypeSize(T));
1679}
1680
1681/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1682/// characters. This method does not work on incomplete types.
1683CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1684  return toCharUnitsFromBits(getTypeAlign(T));
1685}
1686CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1687  return toCharUnitsFromBits(getTypeAlign(T));
1688}
1689
1690/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1691/// type for the current target in bits.  This can be different than the ABI
1692/// alignment in cases where it is beneficial for performance to overalign
1693/// a data type.
1694unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1695  unsigned ABIAlign = getTypeAlign(T);
1696
1697  // Double and long long should be naturally aligned if possible.
1698  if (const ComplexType* CT = T->getAs<ComplexType>())
1699    T = CT->getElementType().getTypePtr();
1700  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1701      T->isSpecificBuiltinType(BuiltinType::LongLong) ||
1702      T->isSpecificBuiltinType(BuiltinType::ULongLong))
1703    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1704
1705  return ABIAlign;
1706}
1707
1708/// DeepCollectObjCIvars -
1709/// This routine first collects all declared, but not synthesized, ivars in
1710/// super class and then collects all ivars, including those synthesized for
1711/// current class. This routine is used for implementation of current class
1712/// when all ivars, declared and synthesized are known.
1713///
1714void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1715                                      bool leafClass,
1716                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1717  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1718    DeepCollectObjCIvars(SuperClass, false, Ivars);
1719  if (!leafClass) {
1720    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1721         E = OI->ivar_end(); I != E; ++I)
1722      Ivars.push_back(*I);
1723  } else {
1724    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1725    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1726         Iv= Iv->getNextIvar())
1727      Ivars.push_back(Iv);
1728  }
1729}
1730
1731/// CollectInheritedProtocols - Collect all protocols in current class and
1732/// those inherited by it.
1733void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1734                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1735  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1736    // We can use protocol_iterator here instead of
1737    // all_referenced_protocol_iterator since we are walking all categories.
1738    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1739         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1740      ObjCProtocolDecl *Proto = (*P);
1741      Protocols.insert(Proto->getCanonicalDecl());
1742      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1743           PE = Proto->protocol_end(); P != PE; ++P) {
1744        Protocols.insert((*P)->getCanonicalDecl());
1745        CollectInheritedProtocols(*P, Protocols);
1746      }
1747    }
1748
1749    // Categories of this Interface.
1750    for (ObjCInterfaceDecl::visible_categories_iterator
1751           Cat = OI->visible_categories_begin(),
1752           CatEnd = OI->visible_categories_end();
1753         Cat != CatEnd; ++Cat) {
1754      CollectInheritedProtocols(*Cat, Protocols);
1755    }
1756
1757    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1758      while (SD) {
1759        CollectInheritedProtocols(SD, Protocols);
1760        SD = SD->getSuperClass();
1761      }
1762  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1763    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1764         PE = OC->protocol_end(); P != PE; ++P) {
1765      ObjCProtocolDecl *Proto = (*P);
1766      Protocols.insert(Proto->getCanonicalDecl());
1767      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1768           PE = Proto->protocol_end(); P != PE; ++P)
1769        CollectInheritedProtocols(*P, Protocols);
1770    }
1771  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1772    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1773         PE = OP->protocol_end(); P != PE; ++P) {
1774      ObjCProtocolDecl *Proto = (*P);
1775      Protocols.insert(Proto->getCanonicalDecl());
1776      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1777           PE = Proto->protocol_end(); P != PE; ++P)
1778        CollectInheritedProtocols(*P, Protocols);
1779    }
1780  }
1781}
1782
1783unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1784  unsigned count = 0;
1785  // Count ivars declared in class extension.
1786  for (ObjCInterfaceDecl::known_extensions_iterator
1787         Ext = OI->known_extensions_begin(),
1788         ExtEnd = OI->known_extensions_end();
1789       Ext != ExtEnd; ++Ext) {
1790    count += Ext->ivar_size();
1791  }
1792
1793  // Count ivar defined in this class's implementation.  This
1794  // includes synthesized ivars.
1795  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1796    count += ImplDecl->ivar_size();
1797
1798  return count;
1799}
1800
1801bool ASTContext::isSentinelNullExpr(const Expr *E) {
1802  if (!E)
1803    return false;
1804
1805  // nullptr_t is always treated as null.
1806  if (E->getType()->isNullPtrType()) return true;
1807
1808  if (E->getType()->isAnyPointerType() &&
1809      E->IgnoreParenCasts()->isNullPointerConstant(*this,
1810                                                Expr::NPC_ValueDependentIsNull))
1811    return true;
1812
1813  // Unfortunately, __null has type 'int'.
1814  if (isa<GNUNullExpr>(E)) return true;
1815
1816  return false;
1817}
1818
1819/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1820ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1821  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1822    I = ObjCImpls.find(D);
1823  if (I != ObjCImpls.end())
1824    return cast<ObjCImplementationDecl>(I->second);
1825  return 0;
1826}
1827/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1828ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1829  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1830    I = ObjCImpls.find(D);
1831  if (I != ObjCImpls.end())
1832    return cast<ObjCCategoryImplDecl>(I->second);
1833  return 0;
1834}
1835
1836/// \brief Set the implementation of ObjCInterfaceDecl.
1837void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1838                           ObjCImplementationDecl *ImplD) {
1839  assert(IFaceD && ImplD && "Passed null params");
1840  ObjCImpls[IFaceD] = ImplD;
1841}
1842/// \brief Set the implementation of ObjCCategoryDecl.
1843void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1844                           ObjCCategoryImplDecl *ImplD) {
1845  assert(CatD && ImplD && "Passed null params");
1846  ObjCImpls[CatD] = ImplD;
1847}
1848
1849const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
1850                                              const NamedDecl *ND) const {
1851  if (const ObjCInterfaceDecl *ID =
1852          dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1853    return ID;
1854  if (const ObjCCategoryDecl *CD =
1855          dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1856    return CD->getClassInterface();
1857  if (const ObjCImplDecl *IMD =
1858          dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1859    return IMD->getClassInterface();
1860
1861  return 0;
1862}
1863
1864/// \brief Get the copy initialization expression of VarDecl,or NULL if
1865/// none exists.
1866Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1867  assert(VD && "Passed null params");
1868  assert(VD->hasAttr<BlocksAttr>() &&
1869         "getBlockVarCopyInits - not __block var");
1870  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1871    I = BlockVarCopyInits.find(VD);
1872  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1873}
1874
1875/// \brief Set the copy inialization expression of a block var decl.
1876void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1877  assert(VD && Init && "Passed null params");
1878  assert(VD->hasAttr<BlocksAttr>() &&
1879         "setBlockVarCopyInits - not __block var");
1880  BlockVarCopyInits[VD] = Init;
1881}
1882
1883TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1884                                                 unsigned DataSize) const {
1885  if (!DataSize)
1886    DataSize = TypeLoc::getFullDataSizeForType(T);
1887  else
1888    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1889           "incorrect data size provided to CreateTypeSourceInfo!");
1890
1891  TypeSourceInfo *TInfo =
1892    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1893  new (TInfo) TypeSourceInfo(T);
1894  return TInfo;
1895}
1896
1897TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1898                                                     SourceLocation L) const {
1899  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1900  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1901  return DI;
1902}
1903
1904const ASTRecordLayout &
1905ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1906  return getObjCLayout(D, 0);
1907}
1908
1909const ASTRecordLayout &
1910ASTContext::getASTObjCImplementationLayout(
1911                                        const ObjCImplementationDecl *D) const {
1912  return getObjCLayout(D->getClassInterface(), D);
1913}
1914
1915//===----------------------------------------------------------------------===//
1916//                   Type creation/memoization methods
1917//===----------------------------------------------------------------------===//
1918
1919QualType
1920ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1921  unsigned fastQuals = quals.getFastQualifiers();
1922  quals.removeFastQualifiers();
1923
1924  // Check if we've already instantiated this type.
1925  llvm::FoldingSetNodeID ID;
1926  ExtQuals::Profile(ID, baseType, quals);
1927  void *insertPos = 0;
1928  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1929    assert(eq->getQualifiers() == quals);
1930    return QualType(eq, fastQuals);
1931  }
1932
1933  // If the base type is not canonical, make the appropriate canonical type.
1934  QualType canon;
1935  if (!baseType->isCanonicalUnqualified()) {
1936    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1937    canonSplit.Quals.addConsistentQualifiers(quals);
1938    canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
1939
1940    // Re-find the insert position.
1941    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1942  }
1943
1944  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1945  ExtQualNodes.InsertNode(eq, insertPos);
1946  return QualType(eq, fastQuals);
1947}
1948
1949QualType
1950ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1951  QualType CanT = getCanonicalType(T);
1952  if (CanT.getAddressSpace() == AddressSpace)
1953    return T;
1954
1955  // If we are composing extended qualifiers together, merge together
1956  // into one ExtQuals node.
1957  QualifierCollector Quals;
1958  const Type *TypeNode = Quals.strip(T);
1959
1960  // If this type already has an address space specified, it cannot get
1961  // another one.
1962  assert(!Quals.hasAddressSpace() &&
1963         "Type cannot be in multiple addr spaces!");
1964  Quals.addAddressSpace(AddressSpace);
1965
1966  return getExtQualType(TypeNode, Quals);
1967}
1968
1969QualType ASTContext::getObjCGCQualType(QualType T,
1970                                       Qualifiers::GC GCAttr) const {
1971  QualType CanT = getCanonicalType(T);
1972  if (CanT.getObjCGCAttr() == GCAttr)
1973    return T;
1974
1975  if (const PointerType *ptr = T->getAs<PointerType>()) {
1976    QualType Pointee = ptr->getPointeeType();
1977    if (Pointee->isAnyPointerType()) {
1978      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1979      return getPointerType(ResultType);
1980    }
1981  }
1982
1983  // If we are composing extended qualifiers together, merge together
1984  // into one ExtQuals node.
1985  QualifierCollector Quals;
1986  const Type *TypeNode = Quals.strip(T);
1987
1988  // If this type already has an ObjCGC specified, it cannot get
1989  // another one.
1990  assert(!Quals.hasObjCGCAttr() &&
1991         "Type cannot have multiple ObjCGCs!");
1992  Quals.addObjCGCAttr(GCAttr);
1993
1994  return getExtQualType(TypeNode, Quals);
1995}
1996
1997const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1998                                                   FunctionType::ExtInfo Info) {
1999  if (T->getExtInfo() == Info)
2000    return T;
2001
2002  QualType Result;
2003  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
2004    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
2005  } else {
2006    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
2007    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2008    EPI.ExtInfo = Info;
2009    Result = getFunctionType(FPT->getResultType(),
2010                             ArrayRef<QualType>(FPT->arg_type_begin(),
2011                                                FPT->getNumArgs()),
2012                             EPI);
2013  }
2014
2015  return cast<FunctionType>(Result.getTypePtr());
2016}
2017
2018/// getComplexType - Return the uniqued reference to the type for a complex
2019/// number with the specified element type.
2020QualType ASTContext::getComplexType(QualType T) const {
2021  // Unique pointers, to guarantee there is only one pointer of a particular
2022  // structure.
2023  llvm::FoldingSetNodeID ID;
2024  ComplexType::Profile(ID, T);
2025
2026  void *InsertPos = 0;
2027  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
2028    return QualType(CT, 0);
2029
2030  // If the pointee type isn't canonical, this won't be a canonical type either,
2031  // so fill in the canonical type field.
2032  QualType Canonical;
2033  if (!T.isCanonical()) {
2034    Canonical = getComplexType(getCanonicalType(T));
2035
2036    // Get the new insert position for the node we care about.
2037    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
2038    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2039  }
2040  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
2041  Types.push_back(New);
2042  ComplexTypes.InsertNode(New, InsertPos);
2043  return QualType(New, 0);
2044}
2045
2046/// getPointerType - Return the uniqued reference to the type for a pointer to
2047/// the specified type.
2048QualType ASTContext::getPointerType(QualType T) const {
2049  // Unique pointers, to guarantee there is only one pointer of a particular
2050  // structure.
2051  llvm::FoldingSetNodeID ID;
2052  PointerType::Profile(ID, T);
2053
2054  void *InsertPos = 0;
2055  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2056    return QualType(PT, 0);
2057
2058  // If the pointee type isn't canonical, this won't be a canonical type either,
2059  // so fill in the canonical type field.
2060  QualType Canonical;
2061  if (!T.isCanonical()) {
2062    Canonical = getPointerType(getCanonicalType(T));
2063
2064    // Get the new insert position for the node we care about.
2065    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2066    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2067  }
2068  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
2069  Types.push_back(New);
2070  PointerTypes.InsertNode(New, InsertPos);
2071  return QualType(New, 0);
2072}
2073
2074/// getBlockPointerType - Return the uniqued reference to the type for
2075/// a pointer to the specified block.
2076QualType ASTContext::getBlockPointerType(QualType T) const {
2077  assert(T->isFunctionType() && "block of function types only");
2078  // Unique pointers, to guarantee there is only one block of a particular
2079  // structure.
2080  llvm::FoldingSetNodeID ID;
2081  BlockPointerType::Profile(ID, T);
2082
2083  void *InsertPos = 0;
2084  if (BlockPointerType *PT =
2085        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2086    return QualType(PT, 0);
2087
2088  // If the block pointee type isn't canonical, this won't be a canonical
2089  // type either so fill in the canonical type field.
2090  QualType Canonical;
2091  if (!T.isCanonical()) {
2092    Canonical = getBlockPointerType(getCanonicalType(T));
2093
2094    // Get the new insert position for the node we care about.
2095    BlockPointerType *NewIP =
2096      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2097    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2098  }
2099  BlockPointerType *New
2100    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
2101  Types.push_back(New);
2102  BlockPointerTypes.InsertNode(New, InsertPos);
2103  return QualType(New, 0);
2104}
2105
2106/// getLValueReferenceType - Return the uniqued reference to the type for an
2107/// lvalue reference to the specified type.
2108QualType
2109ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
2110  assert(getCanonicalType(T) != OverloadTy &&
2111         "Unresolved overloaded function type");
2112
2113  // Unique pointers, to guarantee there is only one pointer of a particular
2114  // structure.
2115  llvm::FoldingSetNodeID ID;
2116  ReferenceType::Profile(ID, T, SpelledAsLValue);
2117
2118  void *InsertPos = 0;
2119  if (LValueReferenceType *RT =
2120        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2121    return QualType(RT, 0);
2122
2123  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2124
2125  // If the referencee type isn't canonical, this won't be a canonical type
2126  // either, so fill in the canonical type field.
2127  QualType Canonical;
2128  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
2129    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2130    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
2131
2132    // Get the new insert position for the node we care about.
2133    LValueReferenceType *NewIP =
2134      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2135    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2136  }
2137
2138  LValueReferenceType *New
2139    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
2140                                                     SpelledAsLValue);
2141  Types.push_back(New);
2142  LValueReferenceTypes.InsertNode(New, InsertPos);
2143
2144  return QualType(New, 0);
2145}
2146
2147/// getRValueReferenceType - Return the uniqued reference to the type for an
2148/// rvalue reference to the specified type.
2149QualType ASTContext::getRValueReferenceType(QualType T) const {
2150  // Unique pointers, to guarantee there is only one pointer of a particular
2151  // structure.
2152  llvm::FoldingSetNodeID ID;
2153  ReferenceType::Profile(ID, T, false);
2154
2155  void *InsertPos = 0;
2156  if (RValueReferenceType *RT =
2157        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2158    return QualType(RT, 0);
2159
2160  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2161
2162  // If the referencee type isn't canonical, this won't be a canonical type
2163  // either, so fill in the canonical type field.
2164  QualType Canonical;
2165  if (InnerRef || !T.isCanonical()) {
2166    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2167    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
2168
2169    // Get the new insert position for the node we care about.
2170    RValueReferenceType *NewIP =
2171      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2172    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2173  }
2174
2175  RValueReferenceType *New
2176    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
2177  Types.push_back(New);
2178  RValueReferenceTypes.InsertNode(New, InsertPos);
2179  return QualType(New, 0);
2180}
2181
2182/// getMemberPointerType - Return the uniqued reference to the type for a
2183/// member pointer to the specified type, in the specified class.
2184QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
2185  // Unique pointers, to guarantee there is only one pointer of a particular
2186  // structure.
2187  llvm::FoldingSetNodeID ID;
2188  MemberPointerType::Profile(ID, T, Cls);
2189
2190  void *InsertPos = 0;
2191  if (MemberPointerType *PT =
2192      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2193    return QualType(PT, 0);
2194
2195  // If the pointee or class type isn't canonical, this won't be a canonical
2196  // type either, so fill in the canonical type field.
2197  QualType Canonical;
2198  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
2199    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
2200
2201    // Get the new insert position for the node we care about.
2202    MemberPointerType *NewIP =
2203      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2204    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2205  }
2206  MemberPointerType *New
2207    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
2208  Types.push_back(New);
2209  MemberPointerTypes.InsertNode(New, InsertPos);
2210  return QualType(New, 0);
2211}
2212
2213/// getConstantArrayType - Return the unique reference to the type for an
2214/// array of the specified element type.
2215QualType ASTContext::getConstantArrayType(QualType EltTy,
2216                                          const llvm::APInt &ArySizeIn,
2217                                          ArrayType::ArraySizeModifier ASM,
2218                                          unsigned IndexTypeQuals) const {
2219  assert((EltTy->isDependentType() ||
2220          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
2221         "Constant array of VLAs is illegal!");
2222
2223  // Convert the array size into a canonical width matching the pointer size for
2224  // the target.
2225  llvm::APInt ArySize(ArySizeIn);
2226  ArySize =
2227    ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
2228
2229  llvm::FoldingSetNodeID ID;
2230  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
2231
2232  void *InsertPos = 0;
2233  if (ConstantArrayType *ATP =
2234      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
2235    return QualType(ATP, 0);
2236
2237  // If the element type isn't canonical or has qualifiers, this won't
2238  // be a canonical type either, so fill in the canonical type field.
2239  QualType Canon;
2240  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2241    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2242    Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
2243                                 ASM, IndexTypeQuals);
2244    Canon = getQualifiedType(Canon, canonSplit.Quals);
2245
2246    // Get the new insert position for the node we care about.
2247    ConstantArrayType *NewIP =
2248      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
2249    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2250  }
2251
2252  ConstantArrayType *New = new(*this,TypeAlignment)
2253    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
2254  ConstantArrayTypes.InsertNode(New, InsertPos);
2255  Types.push_back(New);
2256  return QualType(New, 0);
2257}
2258
2259/// getVariableArrayDecayedType - Turns the given type, which may be
2260/// variably-modified, into the corresponding type with all the known
2261/// sizes replaced with [*].
2262QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
2263  // Vastly most common case.
2264  if (!type->isVariablyModifiedType()) return type;
2265
2266  QualType result;
2267
2268  SplitQualType split = type.getSplitDesugaredType();
2269  const Type *ty = split.Ty;
2270  switch (ty->getTypeClass()) {
2271#define TYPE(Class, Base)
2272#define ABSTRACT_TYPE(Class, Base)
2273#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2274#include "clang/AST/TypeNodes.def"
2275    llvm_unreachable("didn't desugar past all non-canonical types?");
2276
2277  // These types should never be variably-modified.
2278  case Type::Builtin:
2279  case Type::Complex:
2280  case Type::Vector:
2281  case Type::ExtVector:
2282  case Type::DependentSizedExtVector:
2283  case Type::ObjCObject:
2284  case Type::ObjCInterface:
2285  case Type::ObjCObjectPointer:
2286  case Type::Record:
2287  case Type::Enum:
2288  case Type::UnresolvedUsing:
2289  case Type::TypeOfExpr:
2290  case Type::TypeOf:
2291  case Type::Decltype:
2292  case Type::UnaryTransform:
2293  case Type::DependentName:
2294  case Type::InjectedClassName:
2295  case Type::TemplateSpecialization:
2296  case Type::DependentTemplateSpecialization:
2297  case Type::TemplateTypeParm:
2298  case Type::SubstTemplateTypeParmPack:
2299  case Type::Auto:
2300  case Type::PackExpansion:
2301    llvm_unreachable("type should never be variably-modified");
2302
2303  // These types can be variably-modified but should never need to
2304  // further decay.
2305  case Type::FunctionNoProto:
2306  case Type::FunctionProto:
2307  case Type::BlockPointer:
2308  case Type::MemberPointer:
2309    return type;
2310
2311  // These types can be variably-modified.  All these modifications
2312  // preserve structure except as noted by comments.
2313  // TODO: if we ever care about optimizing VLAs, there are no-op
2314  // optimizations available here.
2315  case Type::Pointer:
2316    result = getPointerType(getVariableArrayDecayedType(
2317                              cast<PointerType>(ty)->getPointeeType()));
2318    break;
2319
2320  case Type::LValueReference: {
2321    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
2322    result = getLValueReferenceType(
2323                 getVariableArrayDecayedType(lv->getPointeeType()),
2324                                    lv->isSpelledAsLValue());
2325    break;
2326  }
2327
2328  case Type::RValueReference: {
2329    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
2330    result = getRValueReferenceType(
2331                 getVariableArrayDecayedType(lv->getPointeeType()));
2332    break;
2333  }
2334
2335  case Type::Atomic: {
2336    const AtomicType *at = cast<AtomicType>(ty);
2337    result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
2338    break;
2339  }
2340
2341  case Type::ConstantArray: {
2342    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
2343    result = getConstantArrayType(
2344                 getVariableArrayDecayedType(cat->getElementType()),
2345                                  cat->getSize(),
2346                                  cat->getSizeModifier(),
2347                                  cat->getIndexTypeCVRQualifiers());
2348    break;
2349  }
2350
2351  case Type::DependentSizedArray: {
2352    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
2353    result = getDependentSizedArrayType(
2354                 getVariableArrayDecayedType(dat->getElementType()),
2355                                        dat->getSizeExpr(),
2356                                        dat->getSizeModifier(),
2357                                        dat->getIndexTypeCVRQualifiers(),
2358                                        dat->getBracketsRange());
2359    break;
2360  }
2361
2362  // Turn incomplete types into [*] types.
2363  case Type::IncompleteArray: {
2364    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
2365    result = getVariableArrayType(
2366                 getVariableArrayDecayedType(iat->getElementType()),
2367                                  /*size*/ 0,
2368                                  ArrayType::Normal,
2369                                  iat->getIndexTypeCVRQualifiers(),
2370                                  SourceRange());
2371    break;
2372  }
2373
2374  // Turn VLA types into [*] types.
2375  case Type::VariableArray: {
2376    const VariableArrayType *vat = cast<VariableArrayType>(ty);
2377    result = getVariableArrayType(
2378                 getVariableArrayDecayedType(vat->getElementType()),
2379                                  /*size*/ 0,
2380                                  ArrayType::Star,
2381                                  vat->getIndexTypeCVRQualifiers(),
2382                                  vat->getBracketsRange());
2383    break;
2384  }
2385  }
2386
2387  // Apply the top-level qualifiers from the original.
2388  return getQualifiedType(result, split.Quals);
2389}
2390
2391/// getVariableArrayType - Returns a non-unique reference to the type for a
2392/// variable array of the specified element type.
2393QualType ASTContext::getVariableArrayType(QualType EltTy,
2394                                          Expr *NumElts,
2395                                          ArrayType::ArraySizeModifier ASM,
2396                                          unsigned IndexTypeQuals,
2397                                          SourceRange Brackets) const {
2398  // Since we don't unique expressions, it isn't possible to unique VLA's
2399  // that have an expression provided for their size.
2400  QualType Canon;
2401
2402  // Be sure to pull qualifiers off the element type.
2403  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2404    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2405    Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
2406                                 IndexTypeQuals, Brackets);
2407    Canon = getQualifiedType(Canon, canonSplit.Quals);
2408  }
2409
2410  VariableArrayType *New = new(*this, TypeAlignment)
2411    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
2412
2413  VariableArrayTypes.push_back(New);
2414  Types.push_back(New);
2415  return QualType(New, 0);
2416}
2417
2418/// getDependentSizedArrayType - Returns a non-unique reference to
2419/// the type for a dependently-sized array of the specified element
2420/// type.
2421QualType ASTContext::getDependentSizedArrayType(QualType elementType,
2422                                                Expr *numElements,
2423                                                ArrayType::ArraySizeModifier ASM,
2424                                                unsigned elementTypeQuals,
2425                                                SourceRange brackets) const {
2426  assert((!numElements || numElements->isTypeDependent() ||
2427          numElements->isValueDependent()) &&
2428         "Size must be type- or value-dependent!");
2429
2430  // Dependently-sized array types that do not have a specified number
2431  // of elements will have their sizes deduced from a dependent
2432  // initializer.  We do no canonicalization here at all, which is okay
2433  // because they can't be used in most locations.
2434  if (!numElements) {
2435    DependentSizedArrayType *newType
2436      = new (*this, TypeAlignment)
2437          DependentSizedArrayType(*this, elementType, QualType(),
2438                                  numElements, ASM, elementTypeQuals,
2439                                  brackets);
2440    Types.push_back(newType);
2441    return QualType(newType, 0);
2442  }
2443
2444  // Otherwise, we actually build a new type every time, but we
2445  // also build a canonical type.
2446
2447  SplitQualType canonElementType = getCanonicalType(elementType).split();
2448
2449  void *insertPos = 0;
2450  llvm::FoldingSetNodeID ID;
2451  DependentSizedArrayType::Profile(ID, *this,
2452                                   QualType(canonElementType.Ty, 0),
2453                                   ASM, elementTypeQuals, numElements);
2454
2455  // Look for an existing type with these properties.
2456  DependentSizedArrayType *canonTy =
2457    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2458
2459  // If we don't have one, build one.
2460  if (!canonTy) {
2461    canonTy = new (*this, TypeAlignment)
2462      DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
2463                              QualType(), numElements, ASM, elementTypeQuals,
2464                              brackets);
2465    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
2466    Types.push_back(canonTy);
2467  }
2468
2469  // Apply qualifiers from the element type to the array.
2470  QualType canon = getQualifiedType(QualType(canonTy,0),
2471                                    canonElementType.Quals);
2472
2473  // If we didn't need extra canonicalization for the element type,
2474  // then just use that as our result.
2475  if (QualType(canonElementType.Ty, 0) == elementType)
2476    return canon;
2477
2478  // Otherwise, we need to build a type which follows the spelling
2479  // of the element type.
2480  DependentSizedArrayType *sugaredType
2481    = new (*this, TypeAlignment)
2482        DependentSizedArrayType(*this, elementType, canon, numElements,
2483                                ASM, elementTypeQuals, brackets);
2484  Types.push_back(sugaredType);
2485  return QualType(sugaredType, 0);
2486}
2487
2488QualType ASTContext::getIncompleteArrayType(QualType elementType,
2489                                            ArrayType::ArraySizeModifier ASM,
2490                                            unsigned elementTypeQuals) const {
2491  llvm::FoldingSetNodeID ID;
2492  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
2493
2494  void *insertPos = 0;
2495  if (IncompleteArrayType *iat =
2496       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
2497    return QualType(iat, 0);
2498
2499  // If the element type isn't canonical, this won't be a canonical type
2500  // either, so fill in the canonical type field.  We also have to pull
2501  // qualifiers off the element type.
2502  QualType canon;
2503
2504  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
2505    SplitQualType canonSplit = getCanonicalType(elementType).split();
2506    canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
2507                                   ASM, elementTypeQuals);
2508    canon = getQualifiedType(canon, canonSplit.Quals);
2509
2510    // Get the new insert position for the node we care about.
2511    IncompleteArrayType *existing =
2512      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2513    assert(!existing && "Shouldn't be in the map!"); (void) existing;
2514  }
2515
2516  IncompleteArrayType *newType = new (*this, TypeAlignment)
2517    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
2518
2519  IncompleteArrayTypes.InsertNode(newType, insertPos);
2520  Types.push_back(newType);
2521  return QualType(newType, 0);
2522}
2523
2524/// getVectorType - Return the unique reference to a vector type of
2525/// the specified element type and size. VectorType must be a built-in type.
2526QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
2527                                   VectorType::VectorKind VecKind) const {
2528  assert(vecType->isBuiltinType());
2529
2530  // Check if we've already instantiated a vector of this type.
2531  llvm::FoldingSetNodeID ID;
2532  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
2533
2534  void *InsertPos = 0;
2535  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2536    return QualType(VTP, 0);
2537
2538  // If the element type isn't canonical, this won't be a canonical type either,
2539  // so fill in the canonical type field.
2540  QualType Canonical;
2541  if (!vecType.isCanonical()) {
2542    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
2543
2544    // Get the new insert position for the node we care about.
2545    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2546    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2547  }
2548  VectorType *New = new (*this, TypeAlignment)
2549    VectorType(vecType, NumElts, Canonical, VecKind);
2550  VectorTypes.InsertNode(New, InsertPos);
2551  Types.push_back(New);
2552  return QualType(New, 0);
2553}
2554
2555/// getExtVectorType - Return the unique reference to an extended vector type of
2556/// the specified element type and size. VectorType must be a built-in type.
2557QualType
2558ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2559  assert(vecType->isBuiltinType() || vecType->isDependentType());
2560
2561  // Check if we've already instantiated a vector of this type.
2562  llvm::FoldingSetNodeID ID;
2563  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2564                      VectorType::GenericVector);
2565  void *InsertPos = 0;
2566  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2567    return QualType(VTP, 0);
2568
2569  // If the element type isn't canonical, this won't be a canonical type either,
2570  // so fill in the canonical type field.
2571  QualType Canonical;
2572  if (!vecType.isCanonical()) {
2573    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2574
2575    // Get the new insert position for the node we care about.
2576    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2577    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2578  }
2579  ExtVectorType *New = new (*this, TypeAlignment)
2580    ExtVectorType(vecType, NumElts, Canonical);
2581  VectorTypes.InsertNode(New, InsertPos);
2582  Types.push_back(New);
2583  return QualType(New, 0);
2584}
2585
2586QualType
2587ASTContext::getDependentSizedExtVectorType(QualType vecType,
2588                                           Expr *SizeExpr,
2589                                           SourceLocation AttrLoc) const {
2590  llvm::FoldingSetNodeID ID;
2591  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2592                                       SizeExpr);
2593
2594  void *InsertPos = 0;
2595  DependentSizedExtVectorType *Canon
2596    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2597  DependentSizedExtVectorType *New;
2598  if (Canon) {
2599    // We already have a canonical version of this array type; use it as
2600    // the canonical type for a newly-built type.
2601    New = new (*this, TypeAlignment)
2602      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2603                                  SizeExpr, AttrLoc);
2604  } else {
2605    QualType CanonVecTy = getCanonicalType(vecType);
2606    if (CanonVecTy == vecType) {
2607      New = new (*this, TypeAlignment)
2608        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2609                                    AttrLoc);
2610
2611      DependentSizedExtVectorType *CanonCheck
2612        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2613      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2614      (void)CanonCheck;
2615      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2616    } else {
2617      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2618                                                      SourceLocation());
2619      New = new (*this, TypeAlignment)
2620        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2621    }
2622  }
2623
2624  Types.push_back(New);
2625  return QualType(New, 0);
2626}
2627
2628/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2629///
2630QualType
2631ASTContext::getFunctionNoProtoType(QualType ResultTy,
2632                                   const FunctionType::ExtInfo &Info) const {
2633  const CallingConv DefaultCC = Info.getCC();
2634  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2635                               CC_X86StdCall : DefaultCC;
2636  // Unique functions, to guarantee there is only one function of a particular
2637  // structure.
2638  llvm::FoldingSetNodeID ID;
2639  FunctionNoProtoType::Profile(ID, ResultTy, Info);
2640
2641  void *InsertPos = 0;
2642  if (FunctionNoProtoType *FT =
2643        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2644    return QualType(FT, 0);
2645
2646  QualType Canonical;
2647  if (!ResultTy.isCanonical() ||
2648      getCanonicalCallConv(CallConv) != CallConv) {
2649    Canonical =
2650      getFunctionNoProtoType(getCanonicalType(ResultTy),
2651                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
2652
2653    // Get the new insert position for the node we care about.
2654    FunctionNoProtoType *NewIP =
2655      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2656    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2657  }
2658
2659  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2660  FunctionNoProtoType *New = new (*this, TypeAlignment)
2661    FunctionNoProtoType(ResultTy, Canonical, newInfo);
2662  Types.push_back(New);
2663  FunctionNoProtoTypes.InsertNode(New, InsertPos);
2664  return QualType(New, 0);
2665}
2666
2667/// \brief Determine whether \p T is canonical as the result type of a function.
2668static bool isCanonicalResultType(QualType T) {
2669  return T.isCanonical() &&
2670         (T.getObjCLifetime() == Qualifiers::OCL_None ||
2671          T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
2672}
2673
2674/// getFunctionType - Return a normal function type with a typed argument
2675/// list.  isVariadic indicates whether the argument list includes '...'.
2676QualType
2677ASTContext::getFunctionType(QualType ResultTy, ArrayRef<QualType> ArgArray,
2678                            const FunctionProtoType::ExtProtoInfo &EPI) const {
2679  size_t NumArgs = ArgArray.size();
2680
2681  // Unique functions, to guarantee there is only one function of a particular
2682  // structure.
2683  llvm::FoldingSetNodeID ID;
2684  FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
2685                             *this);
2686
2687  void *InsertPos = 0;
2688  if (FunctionProtoType *FTP =
2689        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2690    return QualType(FTP, 0);
2691
2692  // Determine whether the type being created is already canonical or not.
2693  bool isCanonical =
2694    EPI.ExceptionSpecType == EST_None && isCanonicalResultType(ResultTy) &&
2695    !EPI.HasTrailingReturn;
2696  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2697    if (!ArgArray[i].isCanonicalAsParam())
2698      isCanonical = false;
2699
2700  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2701  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2702                               CC_X86StdCall : DefaultCC;
2703
2704  // If this type isn't canonical, get the canonical version of it.
2705  // The exception spec is not part of the canonical type.
2706  QualType Canonical;
2707  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2708    SmallVector<QualType, 16> CanonicalArgs;
2709    CanonicalArgs.reserve(NumArgs);
2710    for (unsigned i = 0; i != NumArgs; ++i)
2711      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2712
2713    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2714    CanonicalEPI.HasTrailingReturn = false;
2715    CanonicalEPI.ExceptionSpecType = EST_None;
2716    CanonicalEPI.NumExceptions = 0;
2717    CanonicalEPI.ExtInfo
2718      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2719
2720    // Result types do not have ARC lifetime qualifiers.
2721    QualType CanResultTy = getCanonicalType(ResultTy);
2722    if (ResultTy.getQualifiers().hasObjCLifetime()) {
2723      Qualifiers Qs = CanResultTy.getQualifiers();
2724      Qs.removeObjCLifetime();
2725      CanResultTy = getQualifiedType(CanResultTy.getUnqualifiedType(), Qs);
2726    }
2727
2728    Canonical = getFunctionType(CanResultTy, CanonicalArgs, CanonicalEPI);
2729
2730    // Get the new insert position for the node we care about.
2731    FunctionProtoType *NewIP =
2732      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2733    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2734  }
2735
2736  // FunctionProtoType objects are allocated with extra bytes after
2737  // them for three variable size arrays at the end:
2738  //  - parameter types
2739  //  - exception types
2740  //  - consumed-arguments flags
2741  // Instead of the exception types, there could be a noexcept
2742  // expression, or information used to resolve the exception
2743  // specification.
2744  size_t Size = sizeof(FunctionProtoType) +
2745                NumArgs * sizeof(QualType);
2746  if (EPI.ExceptionSpecType == EST_Dynamic) {
2747    Size += EPI.NumExceptions * sizeof(QualType);
2748  } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2749    Size += sizeof(Expr*);
2750  } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
2751    Size += 2 * sizeof(FunctionDecl*);
2752  } else if (EPI.ExceptionSpecType == EST_Unevaluated) {
2753    Size += sizeof(FunctionDecl*);
2754  }
2755  if (EPI.ConsumedArguments)
2756    Size += NumArgs * sizeof(bool);
2757
2758  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2759  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2760  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2761  new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
2762  Types.push_back(FTP);
2763  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2764  return QualType(FTP, 0);
2765}
2766
2767#ifndef NDEBUG
2768static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2769  if (!isa<CXXRecordDecl>(D)) return false;
2770  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2771  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2772    return true;
2773  if (RD->getDescribedClassTemplate() &&
2774      !isa<ClassTemplateSpecializationDecl>(RD))
2775    return true;
2776  return false;
2777}
2778#endif
2779
2780/// getInjectedClassNameType - Return the unique reference to the
2781/// injected class name type for the specified templated declaration.
2782QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2783                                              QualType TST) const {
2784  assert(NeedsInjectedClassNameType(Decl));
2785  if (Decl->TypeForDecl) {
2786    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2787  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
2788    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2789    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2790    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2791  } else {
2792    Type *newType =
2793      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2794    Decl->TypeForDecl = newType;
2795    Types.push_back(newType);
2796  }
2797  return QualType(Decl->TypeForDecl, 0);
2798}
2799
2800/// getTypeDeclType - Return the unique reference to the type for the
2801/// specified type declaration.
2802QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2803  assert(Decl && "Passed null for Decl param");
2804  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2805
2806  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2807    return getTypedefType(Typedef);
2808
2809  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2810         "Template type parameter types are always available.");
2811
2812  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2813    assert(!Record->getPreviousDecl() &&
2814           "struct/union has previous declaration");
2815    assert(!NeedsInjectedClassNameType(Record));
2816    return getRecordType(Record);
2817  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2818    assert(!Enum->getPreviousDecl() &&
2819           "enum has previous declaration");
2820    return getEnumType(Enum);
2821  } else if (const UnresolvedUsingTypenameDecl *Using =
2822               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2823    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2824    Decl->TypeForDecl = newType;
2825    Types.push_back(newType);
2826  } else
2827    llvm_unreachable("TypeDecl without a type?");
2828
2829  return QualType(Decl->TypeForDecl, 0);
2830}
2831
2832/// getTypedefType - Return the unique reference to the type for the
2833/// specified typedef name decl.
2834QualType
2835ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2836                           QualType Canonical) const {
2837  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2838
2839  if (Canonical.isNull())
2840    Canonical = getCanonicalType(Decl->getUnderlyingType());
2841  TypedefType *newType = new(*this, TypeAlignment)
2842    TypedefType(Type::Typedef, Decl, Canonical);
2843  Decl->TypeForDecl = newType;
2844  Types.push_back(newType);
2845  return QualType(newType, 0);
2846}
2847
2848QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2849  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2850
2851  if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
2852    if (PrevDecl->TypeForDecl)
2853      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2854
2855  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2856  Decl->TypeForDecl = newType;
2857  Types.push_back(newType);
2858  return QualType(newType, 0);
2859}
2860
2861QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2862  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2863
2864  if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
2865    if (PrevDecl->TypeForDecl)
2866      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2867
2868  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2869  Decl->TypeForDecl = newType;
2870  Types.push_back(newType);
2871  return QualType(newType, 0);
2872}
2873
2874QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2875                                       QualType modifiedType,
2876                                       QualType equivalentType) {
2877  llvm::FoldingSetNodeID id;
2878  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2879
2880  void *insertPos = 0;
2881  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2882  if (type) return QualType(type, 0);
2883
2884  QualType canon = getCanonicalType(equivalentType);
2885  type = new (*this, TypeAlignment)
2886           AttributedType(canon, attrKind, modifiedType, equivalentType);
2887
2888  Types.push_back(type);
2889  AttributedTypes.InsertNode(type, insertPos);
2890
2891  return QualType(type, 0);
2892}
2893
2894
2895/// \brief Retrieve a substitution-result type.
2896QualType
2897ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2898                                         QualType Replacement) const {
2899  assert(Replacement.isCanonical()
2900         && "replacement types must always be canonical");
2901
2902  llvm::FoldingSetNodeID ID;
2903  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2904  void *InsertPos = 0;
2905  SubstTemplateTypeParmType *SubstParm
2906    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2907
2908  if (!SubstParm) {
2909    SubstParm = new (*this, TypeAlignment)
2910      SubstTemplateTypeParmType(Parm, Replacement);
2911    Types.push_back(SubstParm);
2912    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2913  }
2914
2915  return QualType(SubstParm, 0);
2916}
2917
2918/// \brief Retrieve a
2919QualType ASTContext::getSubstTemplateTypeParmPackType(
2920                                          const TemplateTypeParmType *Parm,
2921                                              const TemplateArgument &ArgPack) {
2922#ifndef NDEBUG
2923  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2924                                    PEnd = ArgPack.pack_end();
2925       P != PEnd; ++P) {
2926    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2927    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2928  }
2929#endif
2930
2931  llvm::FoldingSetNodeID ID;
2932  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2933  void *InsertPos = 0;
2934  if (SubstTemplateTypeParmPackType *SubstParm
2935        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2936    return QualType(SubstParm, 0);
2937
2938  QualType Canon;
2939  if (!Parm->isCanonicalUnqualified()) {
2940    Canon = getCanonicalType(QualType(Parm, 0));
2941    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2942                                             ArgPack);
2943    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2944  }
2945
2946  SubstTemplateTypeParmPackType *SubstParm
2947    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2948                                                               ArgPack);
2949  Types.push_back(SubstParm);
2950  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2951  return QualType(SubstParm, 0);
2952}
2953
2954/// \brief Retrieve the template type parameter type for a template
2955/// parameter or parameter pack with the given depth, index, and (optionally)
2956/// name.
2957QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2958                                             bool ParameterPack,
2959                                             TemplateTypeParmDecl *TTPDecl) const {
2960  llvm::FoldingSetNodeID ID;
2961  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
2962  void *InsertPos = 0;
2963  TemplateTypeParmType *TypeParm
2964    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2965
2966  if (TypeParm)
2967    return QualType(TypeParm, 0);
2968
2969  if (TTPDecl) {
2970    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2971    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
2972
2973    TemplateTypeParmType *TypeCheck
2974      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2975    assert(!TypeCheck && "Template type parameter canonical type broken");
2976    (void)TypeCheck;
2977  } else
2978    TypeParm = new (*this, TypeAlignment)
2979      TemplateTypeParmType(Depth, Index, ParameterPack);
2980
2981  Types.push_back(TypeParm);
2982  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2983
2984  return QualType(TypeParm, 0);
2985}
2986
2987TypeSourceInfo *
2988ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2989                                              SourceLocation NameLoc,
2990                                        const TemplateArgumentListInfo &Args,
2991                                              QualType Underlying) const {
2992  assert(!Name.getAsDependentTemplateName() &&
2993         "No dependent template names here!");
2994  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
2995
2996  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2997  TemplateSpecializationTypeLoc TL =
2998      DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
2999  TL.setTemplateKeywordLoc(SourceLocation());
3000  TL.setTemplateNameLoc(NameLoc);
3001  TL.setLAngleLoc(Args.getLAngleLoc());
3002  TL.setRAngleLoc(Args.getRAngleLoc());
3003  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
3004    TL.setArgLocInfo(i, Args[i].getLocInfo());
3005  return DI;
3006}
3007
3008QualType
3009ASTContext::getTemplateSpecializationType(TemplateName Template,
3010                                          const TemplateArgumentListInfo &Args,
3011                                          QualType Underlying) const {
3012  assert(!Template.getAsDependentTemplateName() &&
3013         "No dependent template names here!");
3014
3015  unsigned NumArgs = Args.size();
3016
3017  SmallVector<TemplateArgument, 4> ArgVec;
3018  ArgVec.reserve(NumArgs);
3019  for (unsigned i = 0; i != NumArgs; ++i)
3020    ArgVec.push_back(Args[i].getArgument());
3021
3022  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
3023                                       Underlying);
3024}
3025
3026#ifndef NDEBUG
3027static bool hasAnyPackExpansions(const TemplateArgument *Args,
3028                                 unsigned NumArgs) {
3029  for (unsigned I = 0; I != NumArgs; ++I)
3030    if (Args[I].isPackExpansion())
3031      return true;
3032
3033  return true;
3034}
3035#endif
3036
3037QualType
3038ASTContext::getTemplateSpecializationType(TemplateName Template,
3039                                          const TemplateArgument *Args,
3040                                          unsigned NumArgs,
3041                                          QualType Underlying) const {
3042  assert(!Template.getAsDependentTemplateName() &&
3043         "No dependent template names here!");
3044  // Look through qualified template names.
3045  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3046    Template = TemplateName(QTN->getTemplateDecl());
3047
3048  bool IsTypeAlias =
3049    Template.getAsTemplateDecl() &&
3050    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
3051  QualType CanonType;
3052  if (!Underlying.isNull())
3053    CanonType = getCanonicalType(Underlying);
3054  else {
3055    // We can get here with an alias template when the specialization contains
3056    // a pack expansion that does not match up with a parameter pack.
3057    assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
3058           "Caller must compute aliased type");
3059    IsTypeAlias = false;
3060    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
3061                                                       NumArgs);
3062  }
3063
3064  // Allocate the (non-canonical) template specialization type, but don't
3065  // try to unique it: these types typically have location information that
3066  // we don't unique and don't want to lose.
3067  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
3068                       sizeof(TemplateArgument) * NumArgs +
3069                       (IsTypeAlias? sizeof(QualType) : 0),
3070                       TypeAlignment);
3071  TemplateSpecializationType *Spec
3072    = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
3073                                         IsTypeAlias ? Underlying : QualType());
3074
3075  Types.push_back(Spec);
3076  return QualType(Spec, 0);
3077}
3078
3079QualType
3080ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
3081                                                   const TemplateArgument *Args,
3082                                                   unsigned NumArgs) const {
3083  assert(!Template.getAsDependentTemplateName() &&
3084         "No dependent template names here!");
3085
3086  // Look through qualified template names.
3087  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3088    Template = TemplateName(QTN->getTemplateDecl());
3089
3090  // Build the canonical template specialization type.
3091  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
3092  SmallVector<TemplateArgument, 4> CanonArgs;
3093  CanonArgs.reserve(NumArgs);
3094  for (unsigned I = 0; I != NumArgs; ++I)
3095    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
3096
3097  // Determine whether this canonical template specialization type already
3098  // exists.
3099  llvm::FoldingSetNodeID ID;
3100  TemplateSpecializationType::Profile(ID, CanonTemplate,
3101                                      CanonArgs.data(), NumArgs, *this);
3102
3103  void *InsertPos = 0;
3104  TemplateSpecializationType *Spec
3105    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3106
3107  if (!Spec) {
3108    // Allocate a new canonical template specialization type.
3109    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
3110                          sizeof(TemplateArgument) * NumArgs),
3111                         TypeAlignment);
3112    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
3113                                                CanonArgs.data(), NumArgs,
3114                                                QualType(), QualType());
3115    Types.push_back(Spec);
3116    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
3117  }
3118
3119  assert(Spec->isDependentType() &&
3120         "Non-dependent template-id type must have a canonical type");
3121  return QualType(Spec, 0);
3122}
3123
3124QualType
3125ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
3126                              NestedNameSpecifier *NNS,
3127                              QualType NamedType) const {
3128  llvm::FoldingSetNodeID ID;
3129  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
3130
3131  void *InsertPos = 0;
3132  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3133  if (T)
3134    return QualType(T, 0);
3135
3136  QualType Canon = NamedType;
3137  if (!Canon.isCanonical()) {
3138    Canon = getCanonicalType(NamedType);
3139    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3140    assert(!CheckT && "Elaborated canonical type broken");
3141    (void)CheckT;
3142  }
3143
3144  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
3145  Types.push_back(T);
3146  ElaboratedTypes.InsertNode(T, InsertPos);
3147  return QualType(T, 0);
3148}
3149
3150QualType
3151ASTContext::getParenType(QualType InnerType) const {
3152  llvm::FoldingSetNodeID ID;
3153  ParenType::Profile(ID, InnerType);
3154
3155  void *InsertPos = 0;
3156  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3157  if (T)
3158    return QualType(T, 0);
3159
3160  QualType Canon = InnerType;
3161  if (!Canon.isCanonical()) {
3162    Canon = getCanonicalType(InnerType);
3163    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3164    assert(!CheckT && "Paren canonical type broken");
3165    (void)CheckT;
3166  }
3167
3168  T = new (*this) ParenType(InnerType, Canon);
3169  Types.push_back(T);
3170  ParenTypes.InsertNode(T, InsertPos);
3171  return QualType(T, 0);
3172}
3173
3174QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
3175                                          NestedNameSpecifier *NNS,
3176                                          const IdentifierInfo *Name,
3177                                          QualType Canon) const {
3178  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
3179
3180  if (Canon.isNull()) {
3181    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3182    ElaboratedTypeKeyword CanonKeyword = Keyword;
3183    if (Keyword == ETK_None)
3184      CanonKeyword = ETK_Typename;
3185
3186    if (CanonNNS != NNS || CanonKeyword != Keyword)
3187      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
3188  }
3189
3190  llvm::FoldingSetNodeID ID;
3191  DependentNameType::Profile(ID, Keyword, NNS, Name);
3192
3193  void *InsertPos = 0;
3194  DependentNameType *T
3195    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
3196  if (T)
3197    return QualType(T, 0);
3198
3199  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
3200  Types.push_back(T);
3201  DependentNameTypes.InsertNode(T, InsertPos);
3202  return QualType(T, 0);
3203}
3204
3205QualType
3206ASTContext::getDependentTemplateSpecializationType(
3207                                 ElaboratedTypeKeyword Keyword,
3208                                 NestedNameSpecifier *NNS,
3209                                 const IdentifierInfo *Name,
3210                                 const TemplateArgumentListInfo &Args) const {
3211  // TODO: avoid this copy
3212  SmallVector<TemplateArgument, 16> ArgCopy;
3213  for (unsigned I = 0, E = Args.size(); I != E; ++I)
3214    ArgCopy.push_back(Args[I].getArgument());
3215  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
3216                                                ArgCopy.size(),
3217                                                ArgCopy.data());
3218}
3219
3220QualType
3221ASTContext::getDependentTemplateSpecializationType(
3222                                 ElaboratedTypeKeyword Keyword,
3223                                 NestedNameSpecifier *NNS,
3224                                 const IdentifierInfo *Name,
3225                                 unsigned NumArgs,
3226                                 const TemplateArgument *Args) const {
3227  assert((!NNS || NNS->isDependent()) &&
3228         "nested-name-specifier must be dependent");
3229
3230  llvm::FoldingSetNodeID ID;
3231  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
3232                                               Name, NumArgs, Args);
3233
3234  void *InsertPos = 0;
3235  DependentTemplateSpecializationType *T
3236    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3237  if (T)
3238    return QualType(T, 0);
3239
3240  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3241
3242  ElaboratedTypeKeyword CanonKeyword = Keyword;
3243  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
3244
3245  bool AnyNonCanonArgs = false;
3246  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
3247  for (unsigned I = 0; I != NumArgs; ++I) {
3248    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
3249    if (!CanonArgs[I].structurallyEquals(Args[I]))
3250      AnyNonCanonArgs = true;
3251  }
3252
3253  QualType Canon;
3254  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
3255    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
3256                                                   Name, NumArgs,
3257                                                   CanonArgs.data());
3258
3259    // Find the insert position again.
3260    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3261  }
3262
3263  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
3264                        sizeof(TemplateArgument) * NumArgs),
3265                       TypeAlignment);
3266  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
3267                                                    Name, NumArgs, Args, Canon);
3268  Types.push_back(T);
3269  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
3270  return QualType(T, 0);
3271}
3272
3273QualType ASTContext::getPackExpansionType(QualType Pattern,
3274                                          Optional<unsigned> NumExpansions) {
3275  llvm::FoldingSetNodeID ID;
3276  PackExpansionType::Profile(ID, Pattern, NumExpansions);
3277
3278  assert(Pattern->containsUnexpandedParameterPack() &&
3279         "Pack expansions must expand one or more parameter packs");
3280  void *InsertPos = 0;
3281  PackExpansionType *T
3282    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3283  if (T)
3284    return QualType(T, 0);
3285
3286  QualType Canon;
3287  if (!Pattern.isCanonical()) {
3288    Canon = getCanonicalType(Pattern);
3289    // The canonical type might not contain an unexpanded parameter pack, if it
3290    // contains an alias template specialization which ignores one of its
3291    // parameters.
3292    if (Canon->containsUnexpandedParameterPack()) {
3293      Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
3294
3295      // Find the insert position again, in case we inserted an element into
3296      // PackExpansionTypes and invalidated our insert position.
3297      PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3298    }
3299  }
3300
3301  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
3302  Types.push_back(T);
3303  PackExpansionTypes.InsertNode(T, InsertPos);
3304  return QualType(T, 0);
3305}
3306
3307/// CmpProtocolNames - Comparison predicate for sorting protocols
3308/// alphabetically.
3309static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
3310                            const ObjCProtocolDecl *RHS) {
3311  return LHS->getDeclName() < RHS->getDeclName();
3312}
3313
3314static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
3315                                unsigned NumProtocols) {
3316  if (NumProtocols == 0) return true;
3317
3318  if (Protocols[0]->getCanonicalDecl() != Protocols[0])
3319    return false;
3320
3321  for (unsigned i = 1; i != NumProtocols; ++i)
3322    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
3323        Protocols[i]->getCanonicalDecl() != Protocols[i])
3324      return false;
3325  return true;
3326}
3327
3328static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
3329                                   unsigned &NumProtocols) {
3330  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
3331
3332  // Sort protocols, keyed by name.
3333  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
3334
3335  // Canonicalize.
3336  for (unsigned I = 0, N = NumProtocols; I != N; ++I)
3337    Protocols[I] = Protocols[I]->getCanonicalDecl();
3338
3339  // Remove duplicates.
3340  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
3341  NumProtocols = ProtocolsEnd-Protocols;
3342}
3343
3344QualType ASTContext::getObjCObjectType(QualType BaseType,
3345                                       ObjCProtocolDecl * const *Protocols,
3346                                       unsigned NumProtocols) const {
3347  // If the base type is an interface and there aren't any protocols
3348  // to add, then the interface type will do just fine.
3349  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
3350    return BaseType;
3351
3352  // Look in the folding set for an existing type.
3353  llvm::FoldingSetNodeID ID;
3354  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
3355  void *InsertPos = 0;
3356  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
3357    return QualType(QT, 0);
3358
3359  // Build the canonical type, which has the canonical base type and
3360  // a sorted-and-uniqued list of protocols.
3361  QualType Canonical;
3362  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
3363  if (!ProtocolsSorted || !BaseType.isCanonical()) {
3364    if (!ProtocolsSorted) {
3365      SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
3366                                                     Protocols + NumProtocols);
3367      unsigned UniqueCount = NumProtocols;
3368
3369      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
3370      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3371                                    &Sorted[0], UniqueCount);
3372    } else {
3373      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3374                                    Protocols, NumProtocols);
3375    }
3376
3377    // Regenerate InsertPos.
3378    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
3379  }
3380
3381  unsigned Size = sizeof(ObjCObjectTypeImpl);
3382  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
3383  void *Mem = Allocate(Size, TypeAlignment);
3384  ObjCObjectTypeImpl *T =
3385    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
3386
3387  Types.push_back(T);
3388  ObjCObjectTypes.InsertNode(T, InsertPos);
3389  return QualType(T, 0);
3390}
3391
3392/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
3393/// the given object type.
3394QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
3395  llvm::FoldingSetNodeID ID;
3396  ObjCObjectPointerType::Profile(ID, ObjectT);
3397
3398  void *InsertPos = 0;
3399  if (ObjCObjectPointerType *QT =
3400              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3401    return QualType(QT, 0);
3402
3403  // Find the canonical object type.
3404  QualType Canonical;
3405  if (!ObjectT.isCanonical()) {
3406    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
3407
3408    // Regenerate InsertPos.
3409    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3410  }
3411
3412  // No match.
3413  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
3414  ObjCObjectPointerType *QType =
3415    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
3416
3417  Types.push_back(QType);
3418  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
3419  return QualType(QType, 0);
3420}
3421
3422/// getObjCInterfaceType - Return the unique reference to the type for the
3423/// specified ObjC interface decl. The list of protocols is optional.
3424QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
3425                                          ObjCInterfaceDecl *PrevDecl) const {
3426  if (Decl->TypeForDecl)
3427    return QualType(Decl->TypeForDecl, 0);
3428
3429  if (PrevDecl) {
3430    assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
3431    Decl->TypeForDecl = PrevDecl->TypeForDecl;
3432    return QualType(PrevDecl->TypeForDecl, 0);
3433  }
3434
3435  // Prefer the definition, if there is one.
3436  if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
3437    Decl = Def;
3438
3439  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
3440  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
3441  Decl->TypeForDecl = T;
3442  Types.push_back(T);
3443  return QualType(T, 0);
3444}
3445
3446/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
3447/// TypeOfExprType AST's (since expression's are never shared). For example,
3448/// multiple declarations that refer to "typeof(x)" all contain different
3449/// DeclRefExpr's. This doesn't effect the type checker, since it operates
3450/// on canonical type's (which are always unique).
3451QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
3452  TypeOfExprType *toe;
3453  if (tofExpr->isTypeDependent()) {
3454    llvm::FoldingSetNodeID ID;
3455    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
3456
3457    void *InsertPos = 0;
3458    DependentTypeOfExprType *Canon
3459      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
3460    if (Canon) {
3461      // We already have a "canonical" version of an identical, dependent
3462      // typeof(expr) type. Use that as our canonical type.
3463      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
3464                                          QualType((TypeOfExprType*)Canon, 0));
3465    } else {
3466      // Build a new, canonical typeof(expr) type.
3467      Canon
3468        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
3469      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
3470      toe = Canon;
3471    }
3472  } else {
3473    QualType Canonical = getCanonicalType(tofExpr->getType());
3474    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
3475  }
3476  Types.push_back(toe);
3477  return QualType(toe, 0);
3478}
3479
3480/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
3481/// TypeOfType AST's. The only motivation to unique these nodes would be
3482/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
3483/// an issue. This doesn't effect the type checker, since it operates
3484/// on canonical type's (which are always unique).
3485QualType ASTContext::getTypeOfType(QualType tofType) const {
3486  QualType Canonical = getCanonicalType(tofType);
3487  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
3488  Types.push_back(tot);
3489  return QualType(tot, 0);
3490}
3491
3492
3493/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
3494/// DecltypeType AST's. The only motivation to unique these nodes would be
3495/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
3496/// an issue. This doesn't effect the type checker, since it operates
3497/// on canonical types (which are always unique).
3498QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
3499  DecltypeType *dt;
3500
3501  // C++0x [temp.type]p2:
3502  //   If an expression e involves a template parameter, decltype(e) denotes a
3503  //   unique dependent type. Two such decltype-specifiers refer to the same
3504  //   type only if their expressions are equivalent (14.5.6.1).
3505  if (e->isInstantiationDependent()) {
3506    llvm::FoldingSetNodeID ID;
3507    DependentDecltypeType::Profile(ID, *this, e);
3508
3509    void *InsertPos = 0;
3510    DependentDecltypeType *Canon
3511      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
3512    if (Canon) {
3513      // We already have a "canonical" version of an equivalent, dependent
3514      // decltype type. Use that as our canonical type.
3515      dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3516                                       QualType((DecltypeType*)Canon, 0));
3517    } else {
3518      // Build a new, canonical typeof(expr) type.
3519      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
3520      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
3521      dt = Canon;
3522    }
3523  } else {
3524    dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3525                                      getCanonicalType(UnderlyingType));
3526  }
3527  Types.push_back(dt);
3528  return QualType(dt, 0);
3529}
3530
3531/// getUnaryTransformationType - We don't unique these, since the memory
3532/// savings are minimal and these are rare.
3533QualType ASTContext::getUnaryTransformType(QualType BaseType,
3534                                           QualType UnderlyingType,
3535                                           UnaryTransformType::UTTKind Kind)
3536    const {
3537  UnaryTransformType *Ty =
3538    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
3539                                                   Kind,
3540                                 UnderlyingType->isDependentType() ?
3541                                 QualType() : getCanonicalType(UnderlyingType));
3542  Types.push_back(Ty);
3543  return QualType(Ty, 0);
3544}
3545
3546/// getAutoType - We only unique auto types after they've been deduced.
3547QualType ASTContext::getAutoType(QualType DeducedType) const {
3548  void *InsertPos = 0;
3549  if (!DeducedType.isNull()) {
3550    // Look in the folding set for an existing type.
3551    llvm::FoldingSetNodeID ID;
3552    AutoType::Profile(ID, DeducedType);
3553    if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
3554      return QualType(AT, 0);
3555  }
3556
3557  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
3558  Types.push_back(AT);
3559  if (InsertPos)
3560    AutoTypes.InsertNode(AT, InsertPos);
3561  return QualType(AT, 0);
3562}
3563
3564/// getAtomicType - Return the uniqued reference to the atomic type for
3565/// the given value type.
3566QualType ASTContext::getAtomicType(QualType T) const {
3567  // Unique pointers, to guarantee there is only one pointer of a particular
3568  // structure.
3569  llvm::FoldingSetNodeID ID;
3570  AtomicType::Profile(ID, T);
3571
3572  void *InsertPos = 0;
3573  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
3574    return QualType(AT, 0);
3575
3576  // If the atomic value type isn't canonical, this won't be a canonical type
3577  // either, so fill in the canonical type field.
3578  QualType Canonical;
3579  if (!T.isCanonical()) {
3580    Canonical = getAtomicType(getCanonicalType(T));
3581
3582    // Get the new insert position for the node we care about.
3583    AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
3584    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
3585  }
3586  AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
3587  Types.push_back(New);
3588  AtomicTypes.InsertNode(New, InsertPos);
3589  return QualType(New, 0);
3590}
3591
3592/// getAutoDeductType - Get type pattern for deducing against 'auto'.
3593QualType ASTContext::getAutoDeductType() const {
3594  if (AutoDeductTy.isNull())
3595    AutoDeductTy = getAutoType(QualType());
3596  assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern");
3597  return AutoDeductTy;
3598}
3599
3600/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
3601QualType ASTContext::getAutoRRefDeductType() const {
3602  if (AutoRRefDeductTy.isNull())
3603    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3604  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3605  return AutoRRefDeductTy;
3606}
3607
3608/// getTagDeclType - Return the unique reference to the type for the
3609/// specified TagDecl (struct/union/class/enum) decl.
3610QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3611  assert (Decl);
3612  // FIXME: What is the design on getTagDeclType when it requires casting
3613  // away const?  mutable?
3614  return getTypeDeclType(const_cast<TagDecl*>(Decl));
3615}
3616
3617/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3618/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3619/// needs to agree with the definition in <stddef.h>.
3620CanQualType ASTContext::getSizeType() const {
3621  return getFromTargetType(Target->getSizeType());
3622}
3623
3624/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
3625CanQualType ASTContext::getIntMaxType() const {
3626  return getFromTargetType(Target->getIntMaxType());
3627}
3628
3629/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
3630CanQualType ASTContext::getUIntMaxType() const {
3631  return getFromTargetType(Target->getUIntMaxType());
3632}
3633
3634/// getSignedWCharType - Return the type of "signed wchar_t".
3635/// Used when in C++, as a GCC extension.
3636QualType ASTContext::getSignedWCharType() const {
3637  // FIXME: derive from "Target" ?
3638  return WCharTy;
3639}
3640
3641/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3642/// Used when in C++, as a GCC extension.
3643QualType ASTContext::getUnsignedWCharType() const {
3644  // FIXME: derive from "Target" ?
3645  return UnsignedIntTy;
3646}
3647
3648QualType ASTContext::getIntPtrType() const {
3649  return getFromTargetType(Target->getIntPtrType());
3650}
3651
3652QualType ASTContext::getUIntPtrType() const {
3653  return getCorrespondingUnsignedType(getIntPtrType());
3654}
3655
3656/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3657/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
3658QualType ASTContext::getPointerDiffType() const {
3659  return getFromTargetType(Target->getPtrDiffType(0));
3660}
3661
3662/// \brief Return the unique type for "pid_t" defined in
3663/// <sys/types.h>. We need this to compute the correct type for vfork().
3664QualType ASTContext::getProcessIDType() const {
3665  return getFromTargetType(Target->getProcessIDType());
3666}
3667
3668//===----------------------------------------------------------------------===//
3669//                              Type Operators
3670//===----------------------------------------------------------------------===//
3671
3672CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3673  // Push qualifiers into arrays, and then discard any remaining
3674  // qualifiers.
3675  T = getCanonicalType(T);
3676  T = getVariableArrayDecayedType(T);
3677  const Type *Ty = T.getTypePtr();
3678  QualType Result;
3679  if (isa<ArrayType>(Ty)) {
3680    Result = getArrayDecayedType(QualType(Ty,0));
3681  } else if (isa<FunctionType>(Ty)) {
3682    Result = getPointerType(QualType(Ty, 0));
3683  } else {
3684    Result = QualType(Ty, 0);
3685  }
3686
3687  return CanQualType::CreateUnsafe(Result);
3688}
3689
3690QualType ASTContext::getUnqualifiedArrayType(QualType type,
3691                                             Qualifiers &quals) {
3692  SplitQualType splitType = type.getSplitUnqualifiedType();
3693
3694  // FIXME: getSplitUnqualifiedType() actually walks all the way to
3695  // the unqualified desugared type and then drops it on the floor.
3696  // We then have to strip that sugar back off with
3697  // getUnqualifiedDesugaredType(), which is silly.
3698  const ArrayType *AT =
3699    dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
3700
3701  // If we don't have an array, just use the results in splitType.
3702  if (!AT) {
3703    quals = splitType.Quals;
3704    return QualType(splitType.Ty, 0);
3705  }
3706
3707  // Otherwise, recurse on the array's element type.
3708  QualType elementType = AT->getElementType();
3709  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3710
3711  // If that didn't change the element type, AT has no qualifiers, so we
3712  // can just use the results in splitType.
3713  if (elementType == unqualElementType) {
3714    assert(quals.empty()); // from the recursive call
3715    quals = splitType.Quals;
3716    return QualType(splitType.Ty, 0);
3717  }
3718
3719  // Otherwise, add in the qualifiers from the outermost type, then
3720  // build the type back up.
3721  quals.addConsistentQualifiers(splitType.Quals);
3722
3723  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3724    return getConstantArrayType(unqualElementType, CAT->getSize(),
3725                                CAT->getSizeModifier(), 0);
3726  }
3727
3728  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3729    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3730  }
3731
3732  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3733    return getVariableArrayType(unqualElementType,
3734                                VAT->getSizeExpr(),
3735                                VAT->getSizeModifier(),
3736                                VAT->getIndexTypeCVRQualifiers(),
3737                                VAT->getBracketsRange());
3738  }
3739
3740  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
3741  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
3742                                    DSAT->getSizeModifier(), 0,
3743                                    SourceRange());
3744}
3745
3746/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
3747/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
3748/// they point to and return true. If T1 and T2 aren't pointer types
3749/// or pointer-to-member types, or if they are not similar at this
3750/// level, returns false and leaves T1 and T2 unchanged. Top-level
3751/// qualifiers on T1 and T2 are ignored. This function will typically
3752/// be called in a loop that successively "unwraps" pointer and
3753/// pointer-to-member types to compare them at each level.
3754bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3755  const PointerType *T1PtrType = T1->getAs<PointerType>(),
3756                    *T2PtrType = T2->getAs<PointerType>();
3757  if (T1PtrType && T2PtrType) {
3758    T1 = T1PtrType->getPointeeType();
3759    T2 = T2PtrType->getPointeeType();
3760    return true;
3761  }
3762
3763  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3764                          *T2MPType = T2->getAs<MemberPointerType>();
3765  if (T1MPType && T2MPType &&
3766      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3767                             QualType(T2MPType->getClass(), 0))) {
3768    T1 = T1MPType->getPointeeType();
3769    T2 = T2MPType->getPointeeType();
3770    return true;
3771  }
3772
3773  if (getLangOpts().ObjC1) {
3774    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3775                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
3776    if (T1OPType && T2OPType) {
3777      T1 = T1OPType->getPointeeType();
3778      T2 = T2OPType->getPointeeType();
3779      return true;
3780    }
3781  }
3782
3783  // FIXME: Block pointers, too?
3784
3785  return false;
3786}
3787
3788DeclarationNameInfo
3789ASTContext::getNameForTemplate(TemplateName Name,
3790                               SourceLocation NameLoc) const {
3791  switch (Name.getKind()) {
3792  case TemplateName::QualifiedTemplate:
3793  case TemplateName::Template:
3794    // DNInfo work in progress: CHECKME: what about DNLoc?
3795    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3796                               NameLoc);
3797
3798  case TemplateName::OverloadedTemplate: {
3799    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3800    // DNInfo work in progress: CHECKME: what about DNLoc?
3801    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3802  }
3803
3804  case TemplateName::DependentTemplate: {
3805    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3806    DeclarationName DName;
3807    if (DTN->isIdentifier()) {
3808      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3809      return DeclarationNameInfo(DName, NameLoc);
3810    } else {
3811      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3812      // DNInfo work in progress: FIXME: source locations?
3813      DeclarationNameLoc DNLoc;
3814      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3815      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3816      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3817    }
3818  }
3819
3820  case TemplateName::SubstTemplateTemplateParm: {
3821    SubstTemplateTemplateParmStorage *subst
3822      = Name.getAsSubstTemplateTemplateParm();
3823    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3824                               NameLoc);
3825  }
3826
3827  case TemplateName::SubstTemplateTemplateParmPack: {
3828    SubstTemplateTemplateParmPackStorage *subst
3829      = Name.getAsSubstTemplateTemplateParmPack();
3830    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3831                               NameLoc);
3832  }
3833  }
3834
3835  llvm_unreachable("bad template name kind!");
3836}
3837
3838TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3839  switch (Name.getKind()) {
3840  case TemplateName::QualifiedTemplate:
3841  case TemplateName::Template: {
3842    TemplateDecl *Template = Name.getAsTemplateDecl();
3843    if (TemplateTemplateParmDecl *TTP
3844          = dyn_cast<TemplateTemplateParmDecl>(Template))
3845      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3846
3847    // The canonical template name is the canonical template declaration.
3848    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3849  }
3850
3851  case TemplateName::OverloadedTemplate:
3852    llvm_unreachable("cannot canonicalize overloaded template");
3853
3854  case TemplateName::DependentTemplate: {
3855    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3856    assert(DTN && "Non-dependent template names must refer to template decls.");
3857    return DTN->CanonicalTemplateName;
3858  }
3859
3860  case TemplateName::SubstTemplateTemplateParm: {
3861    SubstTemplateTemplateParmStorage *subst
3862      = Name.getAsSubstTemplateTemplateParm();
3863    return getCanonicalTemplateName(subst->getReplacement());
3864  }
3865
3866  case TemplateName::SubstTemplateTemplateParmPack: {
3867    SubstTemplateTemplateParmPackStorage *subst
3868                                  = Name.getAsSubstTemplateTemplateParmPack();
3869    TemplateTemplateParmDecl *canonParameter
3870      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3871    TemplateArgument canonArgPack
3872      = getCanonicalTemplateArgument(subst->getArgumentPack());
3873    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3874  }
3875  }
3876
3877  llvm_unreachable("bad template name!");
3878}
3879
3880bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3881  X = getCanonicalTemplateName(X);
3882  Y = getCanonicalTemplateName(Y);
3883  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3884}
3885
3886TemplateArgument
3887ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3888  switch (Arg.getKind()) {
3889    case TemplateArgument::Null:
3890      return Arg;
3891
3892    case TemplateArgument::Expression:
3893      return Arg;
3894
3895    case TemplateArgument::Declaration: {
3896      ValueDecl *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
3897      return TemplateArgument(D, Arg.isDeclForReferenceParam());
3898    }
3899
3900    case TemplateArgument::NullPtr:
3901      return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
3902                              /*isNullPtr*/true);
3903
3904    case TemplateArgument::Template:
3905      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3906
3907    case TemplateArgument::TemplateExpansion:
3908      return TemplateArgument(getCanonicalTemplateName(
3909                                         Arg.getAsTemplateOrTemplatePattern()),
3910                              Arg.getNumTemplateExpansions());
3911
3912    case TemplateArgument::Integral:
3913      return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
3914
3915    case TemplateArgument::Type:
3916      return TemplateArgument(getCanonicalType(Arg.getAsType()));
3917
3918    case TemplateArgument::Pack: {
3919      if (Arg.pack_size() == 0)
3920        return Arg;
3921
3922      TemplateArgument *CanonArgs
3923        = new (*this) TemplateArgument[Arg.pack_size()];
3924      unsigned Idx = 0;
3925      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
3926                                        AEnd = Arg.pack_end();
3927           A != AEnd; (void)++A, ++Idx)
3928        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
3929
3930      return TemplateArgument(CanonArgs, Arg.pack_size());
3931    }
3932  }
3933
3934  // Silence GCC warning
3935  llvm_unreachable("Unhandled template argument kind");
3936}
3937
3938NestedNameSpecifier *
3939ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
3940  if (!NNS)
3941    return 0;
3942
3943  switch (NNS->getKind()) {
3944  case NestedNameSpecifier::Identifier:
3945    // Canonicalize the prefix but keep the identifier the same.
3946    return NestedNameSpecifier::Create(*this,
3947                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
3948                                       NNS->getAsIdentifier());
3949
3950  case NestedNameSpecifier::Namespace:
3951    // A namespace is canonical; build a nested-name-specifier with
3952    // this namespace and no prefix.
3953    return NestedNameSpecifier::Create(*this, 0,
3954                                 NNS->getAsNamespace()->getOriginalNamespace());
3955
3956  case NestedNameSpecifier::NamespaceAlias:
3957    // A namespace is canonical; build a nested-name-specifier with
3958    // this namespace and no prefix.
3959    return NestedNameSpecifier::Create(*this, 0,
3960                                    NNS->getAsNamespaceAlias()->getNamespace()
3961                                                      ->getOriginalNamespace());
3962
3963  case NestedNameSpecifier::TypeSpec:
3964  case NestedNameSpecifier::TypeSpecWithTemplate: {
3965    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
3966
3967    // If we have some kind of dependent-named type (e.g., "typename T::type"),
3968    // break it apart into its prefix and identifier, then reconsititute those
3969    // as the canonical nested-name-specifier. This is required to canonicalize
3970    // a dependent nested-name-specifier involving typedefs of dependent-name
3971    // types, e.g.,
3972    //   typedef typename T::type T1;
3973    //   typedef typename T1::type T2;
3974    if (const DependentNameType *DNT = T->getAs<DependentNameType>())
3975      return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
3976                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
3977
3978    // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
3979    // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
3980    // first place?
3981    return NestedNameSpecifier::Create(*this, 0, false,
3982                                       const_cast<Type*>(T.getTypePtr()));
3983  }
3984
3985  case NestedNameSpecifier::Global:
3986    // The global specifier is canonical and unique.
3987    return NNS;
3988  }
3989
3990  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
3991}
3992
3993
3994const ArrayType *ASTContext::getAsArrayType(QualType T) const {
3995  // Handle the non-qualified case efficiently.
3996  if (!T.hasLocalQualifiers()) {
3997    // Handle the common positive case fast.
3998    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
3999      return AT;
4000  }
4001
4002  // Handle the common negative case fast.
4003  if (!isa<ArrayType>(T.getCanonicalType()))
4004    return 0;
4005
4006  // Apply any qualifiers from the array type to the element type.  This
4007  // implements C99 6.7.3p8: "If the specification of an array type includes
4008  // any type qualifiers, the element type is so qualified, not the array type."
4009
4010  // If we get here, we either have type qualifiers on the type, or we have
4011  // sugar such as a typedef in the way.  If we have type qualifiers on the type
4012  // we must propagate them down into the element type.
4013
4014  SplitQualType split = T.getSplitDesugaredType();
4015  Qualifiers qs = split.Quals;
4016
4017  // If we have a simple case, just return now.
4018  const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
4019  if (ATy == 0 || qs.empty())
4020    return ATy;
4021
4022  // Otherwise, we have an array and we have qualifiers on it.  Push the
4023  // qualifiers into the array element type and return a new array type.
4024  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
4025
4026  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
4027    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
4028                                                CAT->getSizeModifier(),
4029                                           CAT->getIndexTypeCVRQualifiers()));
4030  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
4031    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
4032                                                  IAT->getSizeModifier(),
4033                                           IAT->getIndexTypeCVRQualifiers()));
4034
4035  if (const DependentSizedArrayType *DSAT
4036        = dyn_cast<DependentSizedArrayType>(ATy))
4037    return cast<ArrayType>(
4038                     getDependentSizedArrayType(NewEltTy,
4039                                                DSAT->getSizeExpr(),
4040                                                DSAT->getSizeModifier(),
4041                                              DSAT->getIndexTypeCVRQualifiers(),
4042                                                DSAT->getBracketsRange()));
4043
4044  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
4045  return cast<ArrayType>(getVariableArrayType(NewEltTy,
4046                                              VAT->getSizeExpr(),
4047                                              VAT->getSizeModifier(),
4048                                              VAT->getIndexTypeCVRQualifiers(),
4049                                              VAT->getBracketsRange()));
4050}
4051
4052QualType ASTContext::getAdjustedParameterType(QualType T) const {
4053  // C99 6.7.5.3p7:
4054  //   A declaration of a parameter as "array of type" shall be
4055  //   adjusted to "qualified pointer to type", where the type
4056  //   qualifiers (if any) are those specified within the [ and ] of
4057  //   the array type derivation.
4058  if (T->isArrayType())
4059    return getArrayDecayedType(T);
4060
4061  // C99 6.7.5.3p8:
4062  //   A declaration of a parameter as "function returning type"
4063  //   shall be adjusted to "pointer to function returning type", as
4064  //   in 6.3.2.1.
4065  if (T->isFunctionType())
4066    return getPointerType(T);
4067
4068  return T;
4069}
4070
4071QualType ASTContext::getSignatureParameterType(QualType T) const {
4072  T = getVariableArrayDecayedType(T);
4073  T = getAdjustedParameterType(T);
4074  return T.getUnqualifiedType();
4075}
4076
4077/// getArrayDecayedType - Return the properly qualified result of decaying the
4078/// specified array type to a pointer.  This operation is non-trivial when
4079/// handling typedefs etc.  The canonical type of "T" must be an array type,
4080/// this returns a pointer to a properly qualified element of the array.
4081///
4082/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
4083QualType ASTContext::getArrayDecayedType(QualType Ty) const {
4084  // Get the element type with 'getAsArrayType' so that we don't lose any
4085  // typedefs in the element type of the array.  This also handles propagation
4086  // of type qualifiers from the array type into the element type if present
4087  // (C99 6.7.3p8).
4088  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
4089  assert(PrettyArrayType && "Not an array type!");
4090
4091  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
4092
4093  // int x[restrict 4] ->  int *restrict
4094  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
4095}
4096
4097QualType ASTContext::getBaseElementType(const ArrayType *array) const {
4098  return getBaseElementType(array->getElementType());
4099}
4100
4101QualType ASTContext::getBaseElementType(QualType type) const {
4102  Qualifiers qs;
4103  while (true) {
4104    SplitQualType split = type.getSplitDesugaredType();
4105    const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
4106    if (!array) break;
4107
4108    type = array->getElementType();
4109    qs.addConsistentQualifiers(split.Quals);
4110  }
4111
4112  return getQualifiedType(type, qs);
4113}
4114
4115/// getConstantArrayElementCount - Returns number of constant array elements.
4116uint64_t
4117ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
4118  uint64_t ElementCount = 1;
4119  do {
4120    ElementCount *= CA->getSize().getZExtValue();
4121    CA = dyn_cast_or_null<ConstantArrayType>(
4122      CA->getElementType()->getAsArrayTypeUnsafe());
4123  } while (CA);
4124  return ElementCount;
4125}
4126
4127/// getFloatingRank - Return a relative rank for floating point types.
4128/// This routine will assert if passed a built-in type that isn't a float.
4129static FloatingRank getFloatingRank(QualType T) {
4130  if (const ComplexType *CT = T->getAs<ComplexType>())
4131    return getFloatingRank(CT->getElementType());
4132
4133  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
4134  switch (T->getAs<BuiltinType>()->getKind()) {
4135  default: llvm_unreachable("getFloatingRank(): not a floating type");
4136  case BuiltinType::Half:       return HalfRank;
4137  case BuiltinType::Float:      return FloatRank;
4138  case BuiltinType::Double:     return DoubleRank;
4139  case BuiltinType::LongDouble: return LongDoubleRank;
4140  }
4141}
4142
4143/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
4144/// point or a complex type (based on typeDomain/typeSize).
4145/// 'typeDomain' is a real floating point or complex type.
4146/// 'typeSize' is a real floating point or complex type.
4147QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
4148                                                       QualType Domain) const {
4149  FloatingRank EltRank = getFloatingRank(Size);
4150  if (Domain->isComplexType()) {
4151    switch (EltRank) {
4152    case HalfRank: llvm_unreachable("Complex half is not supported");
4153    case FloatRank:      return FloatComplexTy;
4154    case DoubleRank:     return DoubleComplexTy;
4155    case LongDoubleRank: return LongDoubleComplexTy;
4156    }
4157  }
4158
4159  assert(Domain->isRealFloatingType() && "Unknown domain!");
4160  switch (EltRank) {
4161  case HalfRank:       return HalfTy;
4162  case FloatRank:      return FloatTy;
4163  case DoubleRank:     return DoubleTy;
4164  case LongDoubleRank: return LongDoubleTy;
4165  }
4166  llvm_unreachable("getFloatingRank(): illegal value for rank");
4167}
4168
4169/// getFloatingTypeOrder - Compare the rank of the two specified floating
4170/// point types, ignoring the domain of the type (i.e. 'double' ==
4171/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4172/// LHS < RHS, return -1.
4173int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
4174  FloatingRank LHSR = getFloatingRank(LHS);
4175  FloatingRank RHSR = getFloatingRank(RHS);
4176
4177  if (LHSR == RHSR)
4178    return 0;
4179  if (LHSR > RHSR)
4180    return 1;
4181  return -1;
4182}
4183
4184/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
4185/// routine will assert if passed a built-in type that isn't an integer or enum,
4186/// or if it is not canonicalized.
4187unsigned ASTContext::getIntegerRank(const Type *T) const {
4188  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
4189
4190  switch (cast<BuiltinType>(T)->getKind()) {
4191  default: llvm_unreachable("getIntegerRank(): not a built-in integer");
4192  case BuiltinType::Bool:
4193    return 1 + (getIntWidth(BoolTy) << 3);
4194  case BuiltinType::Char_S:
4195  case BuiltinType::Char_U:
4196  case BuiltinType::SChar:
4197  case BuiltinType::UChar:
4198    return 2 + (getIntWidth(CharTy) << 3);
4199  case BuiltinType::Short:
4200  case BuiltinType::UShort:
4201    return 3 + (getIntWidth(ShortTy) << 3);
4202  case BuiltinType::Int:
4203  case BuiltinType::UInt:
4204    return 4 + (getIntWidth(IntTy) << 3);
4205  case BuiltinType::Long:
4206  case BuiltinType::ULong:
4207    return 5 + (getIntWidth(LongTy) << 3);
4208  case BuiltinType::LongLong:
4209  case BuiltinType::ULongLong:
4210    return 6 + (getIntWidth(LongLongTy) << 3);
4211  case BuiltinType::Int128:
4212  case BuiltinType::UInt128:
4213    return 7 + (getIntWidth(Int128Ty) << 3);
4214  }
4215}
4216
4217/// \brief Whether this is a promotable bitfield reference according
4218/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
4219///
4220/// \returns the type this bit-field will promote to, or NULL if no
4221/// promotion occurs.
4222QualType ASTContext::isPromotableBitField(Expr *E) const {
4223  if (E->isTypeDependent() || E->isValueDependent())
4224    return QualType();
4225
4226  FieldDecl *Field = E->getBitField();
4227  if (!Field)
4228    return QualType();
4229
4230  QualType FT = Field->getType();
4231
4232  uint64_t BitWidth = Field->getBitWidthValue(*this);
4233  uint64_t IntSize = getTypeSize(IntTy);
4234  // GCC extension compatibility: if the bit-field size is less than or equal
4235  // to the size of int, it gets promoted no matter what its type is.
4236  // For instance, unsigned long bf : 4 gets promoted to signed int.
4237  if (BitWidth < IntSize)
4238    return IntTy;
4239
4240  if (BitWidth == IntSize)
4241    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
4242
4243  // Types bigger than int are not subject to promotions, and therefore act
4244  // like the base type.
4245  // FIXME: This doesn't quite match what gcc does, but what gcc does here
4246  // is ridiculous.
4247  return QualType();
4248}
4249
4250/// getPromotedIntegerType - Returns the type that Promotable will
4251/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
4252/// integer type.
4253QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
4254  assert(!Promotable.isNull());
4255  assert(Promotable->isPromotableIntegerType());
4256  if (const EnumType *ET = Promotable->getAs<EnumType>())
4257    return ET->getDecl()->getPromotionType();
4258
4259  if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
4260    // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
4261    // (3.9.1) can be converted to a prvalue of the first of the following
4262    // types that can represent all the values of its underlying type:
4263    // int, unsigned int, long int, unsigned long int, long long int, or
4264    // unsigned long long int [...]
4265    // FIXME: Is there some better way to compute this?
4266    if (BT->getKind() == BuiltinType::WChar_S ||
4267        BT->getKind() == BuiltinType::WChar_U ||
4268        BT->getKind() == BuiltinType::Char16 ||
4269        BT->getKind() == BuiltinType::Char32) {
4270      bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
4271      uint64_t FromSize = getTypeSize(BT);
4272      QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
4273                                  LongLongTy, UnsignedLongLongTy };
4274      for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
4275        uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
4276        if (FromSize < ToSize ||
4277            (FromSize == ToSize &&
4278             FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
4279          return PromoteTypes[Idx];
4280      }
4281      llvm_unreachable("char type should fit into long long");
4282    }
4283  }
4284
4285  // At this point, we should have a signed or unsigned integer type.
4286  if (Promotable->isSignedIntegerType())
4287    return IntTy;
4288  uint64_t PromotableSize = getIntWidth(Promotable);
4289  uint64_t IntSize = getIntWidth(IntTy);
4290  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
4291  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
4292}
4293
4294/// \brief Recurses in pointer/array types until it finds an objc retainable
4295/// type and returns its ownership.
4296Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
4297  while (!T.isNull()) {
4298    if (T.getObjCLifetime() != Qualifiers::OCL_None)
4299      return T.getObjCLifetime();
4300    if (T->isArrayType())
4301      T = getBaseElementType(T);
4302    else if (const PointerType *PT = T->getAs<PointerType>())
4303      T = PT->getPointeeType();
4304    else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4305      T = RT->getPointeeType();
4306    else
4307      break;
4308  }
4309
4310  return Qualifiers::OCL_None;
4311}
4312
4313/// getIntegerTypeOrder - Returns the highest ranked integer type:
4314/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4315/// LHS < RHS, return -1.
4316int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
4317  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
4318  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
4319  if (LHSC == RHSC) return 0;
4320
4321  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
4322  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
4323
4324  unsigned LHSRank = getIntegerRank(LHSC);
4325  unsigned RHSRank = getIntegerRank(RHSC);
4326
4327  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
4328    if (LHSRank == RHSRank) return 0;
4329    return LHSRank > RHSRank ? 1 : -1;
4330  }
4331
4332  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
4333  if (LHSUnsigned) {
4334    // If the unsigned [LHS] type is larger, return it.
4335    if (LHSRank >= RHSRank)
4336      return 1;
4337
4338    // If the signed type can represent all values of the unsigned type, it
4339    // wins.  Because we are dealing with 2's complement and types that are
4340    // powers of two larger than each other, this is always safe.
4341    return -1;
4342  }
4343
4344  // If the unsigned [RHS] type is larger, return it.
4345  if (RHSRank >= LHSRank)
4346    return -1;
4347
4348  // If the signed type can represent all values of the unsigned type, it
4349  // wins.  Because we are dealing with 2's complement and types that are
4350  // powers of two larger than each other, this is always safe.
4351  return 1;
4352}
4353
4354static RecordDecl *
4355CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
4356                 DeclContext *DC, IdentifierInfo *Id) {
4357  SourceLocation Loc;
4358  if (Ctx.getLangOpts().CPlusPlus)
4359    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4360  else
4361    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4362}
4363
4364// getCFConstantStringType - Return the type used for constant CFStrings.
4365QualType ASTContext::getCFConstantStringType() const {
4366  if (!CFConstantStringTypeDecl) {
4367    CFConstantStringTypeDecl =
4368      CreateRecordDecl(*this, TTK_Struct, TUDecl,
4369                       &Idents.get("NSConstantString"));
4370    CFConstantStringTypeDecl->startDefinition();
4371
4372    QualType FieldTypes[4];
4373
4374    // const int *isa;
4375    FieldTypes[0] = getPointerType(IntTy.withConst());
4376    // int flags;
4377    FieldTypes[1] = IntTy;
4378    // const char *str;
4379    FieldTypes[2] = getPointerType(CharTy.withConst());
4380    // long length;
4381    FieldTypes[3] = LongTy;
4382
4383    // Create fields
4384    for (unsigned i = 0; i < 4; ++i) {
4385      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
4386                                           SourceLocation(),
4387                                           SourceLocation(), 0,
4388                                           FieldTypes[i], /*TInfo=*/0,
4389                                           /*BitWidth=*/0,
4390                                           /*Mutable=*/false,
4391                                           ICIS_NoInit);
4392      Field->setAccess(AS_public);
4393      CFConstantStringTypeDecl->addDecl(Field);
4394    }
4395
4396    CFConstantStringTypeDecl->completeDefinition();
4397  }
4398
4399  return getTagDeclType(CFConstantStringTypeDecl);
4400}
4401
4402QualType ASTContext::getObjCSuperType() const {
4403  if (ObjCSuperType.isNull()) {
4404    RecordDecl *ObjCSuperTypeDecl  =
4405      CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get("objc_super"));
4406    TUDecl->addDecl(ObjCSuperTypeDecl);
4407    ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
4408  }
4409  return ObjCSuperType;
4410}
4411
4412void ASTContext::setCFConstantStringType(QualType T) {
4413  const RecordType *Rec = T->getAs<RecordType>();
4414  assert(Rec && "Invalid CFConstantStringType");
4415  CFConstantStringTypeDecl = Rec->getDecl();
4416}
4417
4418QualType ASTContext::getBlockDescriptorType() const {
4419  if (BlockDescriptorType)
4420    return getTagDeclType(BlockDescriptorType);
4421
4422  RecordDecl *T;
4423  // FIXME: Needs the FlagAppleBlock bit.
4424  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4425                       &Idents.get("__block_descriptor"));
4426  T->startDefinition();
4427
4428  QualType FieldTypes[] = {
4429    UnsignedLongTy,
4430    UnsignedLongTy,
4431  };
4432
4433  const char *FieldNames[] = {
4434    "reserved",
4435    "Size"
4436  };
4437
4438  for (size_t i = 0; i < 2; ++i) {
4439    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4440                                         SourceLocation(),
4441                                         &Idents.get(FieldNames[i]),
4442                                         FieldTypes[i], /*TInfo=*/0,
4443                                         /*BitWidth=*/0,
4444                                         /*Mutable=*/false,
4445                                         ICIS_NoInit);
4446    Field->setAccess(AS_public);
4447    T->addDecl(Field);
4448  }
4449
4450  T->completeDefinition();
4451
4452  BlockDescriptorType = T;
4453
4454  return getTagDeclType(BlockDescriptorType);
4455}
4456
4457QualType ASTContext::getBlockDescriptorExtendedType() const {
4458  if (BlockDescriptorExtendedType)
4459    return getTagDeclType(BlockDescriptorExtendedType);
4460
4461  RecordDecl *T;
4462  // FIXME: Needs the FlagAppleBlock bit.
4463  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4464                       &Idents.get("__block_descriptor_withcopydispose"));
4465  T->startDefinition();
4466
4467  QualType FieldTypes[] = {
4468    UnsignedLongTy,
4469    UnsignedLongTy,
4470    getPointerType(VoidPtrTy),
4471    getPointerType(VoidPtrTy)
4472  };
4473
4474  const char *FieldNames[] = {
4475    "reserved",
4476    "Size",
4477    "CopyFuncPtr",
4478    "DestroyFuncPtr"
4479  };
4480
4481  for (size_t i = 0; i < 4; ++i) {
4482    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4483                                         SourceLocation(),
4484                                         &Idents.get(FieldNames[i]),
4485                                         FieldTypes[i], /*TInfo=*/0,
4486                                         /*BitWidth=*/0,
4487                                         /*Mutable=*/false,
4488                                         ICIS_NoInit);
4489    Field->setAccess(AS_public);
4490    T->addDecl(Field);
4491  }
4492
4493  T->completeDefinition();
4494
4495  BlockDescriptorExtendedType = T;
4496
4497  return getTagDeclType(BlockDescriptorExtendedType);
4498}
4499
4500/// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
4501/// requires copy/dispose. Note that this must match the logic
4502/// in buildByrefHelpers.
4503bool ASTContext::BlockRequiresCopying(QualType Ty,
4504                                      const VarDecl *D) {
4505  if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
4506    const Expr *copyExpr = getBlockVarCopyInits(D);
4507    if (!copyExpr && record->hasTrivialDestructor()) return false;
4508
4509    return true;
4510  }
4511
4512  if (!Ty->isObjCRetainableType()) return false;
4513
4514  Qualifiers qs = Ty.getQualifiers();
4515
4516  // If we have lifetime, that dominates.
4517  if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
4518    assert(getLangOpts().ObjCAutoRefCount);
4519
4520    switch (lifetime) {
4521      case Qualifiers::OCL_None: llvm_unreachable("impossible");
4522
4523      // These are just bits as far as the runtime is concerned.
4524      case Qualifiers::OCL_ExplicitNone:
4525      case Qualifiers::OCL_Autoreleasing:
4526        return false;
4527
4528      // Tell the runtime that this is ARC __weak, called by the
4529      // byref routines.
4530      case Qualifiers::OCL_Weak:
4531      // ARC __strong __block variables need to be retained.
4532      case Qualifiers::OCL_Strong:
4533        return true;
4534    }
4535    llvm_unreachable("fell out of lifetime switch!");
4536  }
4537  return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
4538          Ty->isObjCObjectPointerType());
4539}
4540
4541bool ASTContext::getByrefLifetime(QualType Ty,
4542                              Qualifiers::ObjCLifetime &LifeTime,
4543                              bool &HasByrefExtendedLayout) const {
4544
4545  if (!getLangOpts().ObjC1 ||
4546      getLangOpts().getGC() != LangOptions::NonGC)
4547    return false;
4548
4549  HasByrefExtendedLayout = false;
4550  if (Ty->isRecordType()) {
4551    HasByrefExtendedLayout = true;
4552    LifeTime = Qualifiers::OCL_None;
4553  }
4554  else if (getLangOpts().ObjCAutoRefCount)
4555    LifeTime = Ty.getObjCLifetime();
4556  // MRR.
4557  else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4558    LifeTime = Qualifiers::OCL_ExplicitNone;
4559  else
4560    LifeTime = Qualifiers::OCL_None;
4561  return true;
4562}
4563
4564TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
4565  if (!ObjCInstanceTypeDecl)
4566    ObjCInstanceTypeDecl = TypedefDecl::Create(*this,
4567                                               getTranslationUnitDecl(),
4568                                               SourceLocation(),
4569                                               SourceLocation(),
4570                                               &Idents.get("instancetype"),
4571                                     getTrivialTypeSourceInfo(getObjCIdType()));
4572  return ObjCInstanceTypeDecl;
4573}
4574
4575// This returns true if a type has been typedefed to BOOL:
4576// typedef <type> BOOL;
4577static bool isTypeTypedefedAsBOOL(QualType T) {
4578  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
4579    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
4580      return II->isStr("BOOL");
4581
4582  return false;
4583}
4584
4585/// getObjCEncodingTypeSize returns size of type for objective-c encoding
4586/// purpose.
4587CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
4588  if (!type->isIncompleteArrayType() && type->isIncompleteType())
4589    return CharUnits::Zero();
4590
4591  CharUnits sz = getTypeSizeInChars(type);
4592
4593  // Make all integer and enum types at least as large as an int
4594  if (sz.isPositive() && type->isIntegralOrEnumerationType())
4595    sz = std::max(sz, getTypeSizeInChars(IntTy));
4596  // Treat arrays as pointers, since that's how they're passed in.
4597  else if (type->isArrayType())
4598    sz = getTypeSizeInChars(VoidPtrTy);
4599  return sz;
4600}
4601
4602static inline
4603std::string charUnitsToString(const CharUnits &CU) {
4604  return llvm::itostr(CU.getQuantity());
4605}
4606
4607/// getObjCEncodingForBlock - Return the encoded type for this block
4608/// declaration.
4609std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4610  std::string S;
4611
4612  const BlockDecl *Decl = Expr->getBlockDecl();
4613  QualType BlockTy =
4614      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4615  // Encode result type.
4616  if (getLangOpts().EncodeExtendedBlockSig)
4617    getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None,
4618                            BlockTy->getAs<FunctionType>()->getResultType(),
4619                            S, true /*Extended*/);
4620  else
4621    getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(),
4622                           S);
4623  // Compute size of all parameters.
4624  // Start with computing size of a pointer in number of bytes.
4625  // FIXME: There might(should) be a better way of doing this computation!
4626  SourceLocation Loc;
4627  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4628  CharUnits ParmOffset = PtrSize;
4629  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
4630       E = Decl->param_end(); PI != E; ++PI) {
4631    QualType PType = (*PI)->getType();
4632    CharUnits sz = getObjCEncodingTypeSize(PType);
4633    if (sz.isZero())
4634      continue;
4635    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4636    ParmOffset += sz;
4637  }
4638  // Size of the argument frame
4639  S += charUnitsToString(ParmOffset);
4640  // Block pointer and offset.
4641  S += "@?0";
4642
4643  // Argument types.
4644  ParmOffset = PtrSize;
4645  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
4646       Decl->param_end(); PI != E; ++PI) {
4647    ParmVarDecl *PVDecl = *PI;
4648    QualType PType = PVDecl->getOriginalType();
4649    if (const ArrayType *AT =
4650          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4651      // Use array's original type only if it has known number of
4652      // elements.
4653      if (!isa<ConstantArrayType>(AT))
4654        PType = PVDecl->getType();
4655    } else if (PType->isFunctionType())
4656      PType = PVDecl->getType();
4657    if (getLangOpts().EncodeExtendedBlockSig)
4658      getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
4659                                      S, true /*Extended*/);
4660    else
4661      getObjCEncodingForType(PType, S);
4662    S += charUnitsToString(ParmOffset);
4663    ParmOffset += getObjCEncodingTypeSize(PType);
4664  }
4665
4666  return S;
4667}
4668
4669bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4670                                                std::string& S) {
4671  // Encode result type.
4672  getObjCEncodingForType(Decl->getResultType(), S);
4673  CharUnits ParmOffset;
4674  // Compute size of all parameters.
4675  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4676       E = Decl->param_end(); PI != E; ++PI) {
4677    QualType PType = (*PI)->getType();
4678    CharUnits sz = getObjCEncodingTypeSize(PType);
4679    if (sz.isZero())
4680      continue;
4681
4682    assert (sz.isPositive() &&
4683        "getObjCEncodingForFunctionDecl - Incomplete param type");
4684    ParmOffset += sz;
4685  }
4686  S += charUnitsToString(ParmOffset);
4687  ParmOffset = CharUnits::Zero();
4688
4689  // Argument types.
4690  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4691       E = Decl->param_end(); PI != E; ++PI) {
4692    ParmVarDecl *PVDecl = *PI;
4693    QualType PType = PVDecl->getOriginalType();
4694    if (const ArrayType *AT =
4695          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4696      // Use array's original type only if it has known number of
4697      // elements.
4698      if (!isa<ConstantArrayType>(AT))
4699        PType = PVDecl->getType();
4700    } else if (PType->isFunctionType())
4701      PType = PVDecl->getType();
4702    getObjCEncodingForType(PType, S);
4703    S += charUnitsToString(ParmOffset);
4704    ParmOffset += getObjCEncodingTypeSize(PType);
4705  }
4706
4707  return false;
4708}
4709
4710/// getObjCEncodingForMethodParameter - Return the encoded type for a single
4711/// method parameter or return type. If Extended, include class names and
4712/// block object types.
4713void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
4714                                                   QualType T, std::string& S,
4715                                                   bool Extended) const {
4716  // Encode type qualifer, 'in', 'inout', etc. for the parameter.
4717  getObjCEncodingForTypeQualifier(QT, S);
4718  // Encode parameter type.
4719  getObjCEncodingForTypeImpl(T, S, true, true, 0,
4720                             true     /*OutermostType*/,
4721                             false    /*EncodingProperty*/,
4722                             false    /*StructField*/,
4723                             Extended /*EncodeBlockParameters*/,
4724                             Extended /*EncodeClassNames*/);
4725}
4726
4727/// getObjCEncodingForMethodDecl - Return the encoded type for this method
4728/// declaration.
4729bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4730                                              std::string& S,
4731                                              bool Extended) const {
4732  // FIXME: This is not very efficient.
4733  // Encode return type.
4734  getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
4735                                    Decl->getResultType(), S, Extended);
4736  // Compute size of all parameters.
4737  // Start with computing size of a pointer in number of bytes.
4738  // FIXME: There might(should) be a better way of doing this computation!
4739  SourceLocation Loc;
4740  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4741  // The first two arguments (self and _cmd) are pointers; account for
4742  // their size.
4743  CharUnits ParmOffset = 2 * PtrSize;
4744  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4745       E = Decl->sel_param_end(); PI != E; ++PI) {
4746    QualType PType = (*PI)->getType();
4747    CharUnits sz = getObjCEncodingTypeSize(PType);
4748    if (sz.isZero())
4749      continue;
4750
4751    assert (sz.isPositive() &&
4752        "getObjCEncodingForMethodDecl - Incomplete param type");
4753    ParmOffset += sz;
4754  }
4755  S += charUnitsToString(ParmOffset);
4756  S += "@0:";
4757  S += charUnitsToString(PtrSize);
4758
4759  // Argument types.
4760  ParmOffset = 2 * PtrSize;
4761  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4762       E = Decl->sel_param_end(); PI != E; ++PI) {
4763    const ParmVarDecl *PVDecl = *PI;
4764    QualType PType = PVDecl->getOriginalType();
4765    if (const ArrayType *AT =
4766          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4767      // Use array's original type only if it has known number of
4768      // elements.
4769      if (!isa<ConstantArrayType>(AT))
4770        PType = PVDecl->getType();
4771    } else if (PType->isFunctionType())
4772      PType = PVDecl->getType();
4773    getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
4774                                      PType, S, Extended);
4775    S += charUnitsToString(ParmOffset);
4776    ParmOffset += getObjCEncodingTypeSize(PType);
4777  }
4778
4779  return false;
4780}
4781
4782/// getObjCEncodingForPropertyDecl - Return the encoded type for this
4783/// property declaration. If non-NULL, Container must be either an
4784/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4785/// NULL when getting encodings for protocol properties.
4786/// Property attributes are stored as a comma-delimited C string. The simple
4787/// attributes readonly and bycopy are encoded as single characters. The
4788/// parametrized attributes, getter=name, setter=name, and ivar=name, are
4789/// encoded as single characters, followed by an identifier. Property types
4790/// are also encoded as a parametrized attribute. The characters used to encode
4791/// these attributes are defined by the following enumeration:
4792/// @code
4793/// enum PropertyAttributes {
4794/// kPropertyReadOnly = 'R',   // property is read-only.
4795/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4796/// kPropertyByref = '&',  // property is a reference to the value last assigned
4797/// kPropertyDynamic = 'D',    // property is dynamic
4798/// kPropertyGetter = 'G',     // followed by getter selector name
4799/// kPropertySetter = 'S',     // followed by setter selector name
4800/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4801/// kPropertyType = 'T'              // followed by old-style type encoding.
4802/// kPropertyWeak = 'W'              // 'weak' property
4803/// kPropertyStrong = 'P'            // property GC'able
4804/// kPropertyNonAtomic = 'N'         // property non-atomic
4805/// };
4806/// @endcode
4807void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4808                                                const Decl *Container,
4809                                                std::string& S) const {
4810  // Collect information from the property implementation decl(s).
4811  bool Dynamic = false;
4812  ObjCPropertyImplDecl *SynthesizePID = 0;
4813
4814  // FIXME: Duplicated code due to poor abstraction.
4815  if (Container) {
4816    if (const ObjCCategoryImplDecl *CID =
4817        dyn_cast<ObjCCategoryImplDecl>(Container)) {
4818      for (ObjCCategoryImplDecl::propimpl_iterator
4819             i = CID->propimpl_begin(), e = CID->propimpl_end();
4820           i != e; ++i) {
4821        ObjCPropertyImplDecl *PID = *i;
4822        if (PID->getPropertyDecl() == PD) {
4823          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4824            Dynamic = true;
4825          } else {
4826            SynthesizePID = PID;
4827          }
4828        }
4829      }
4830    } else {
4831      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4832      for (ObjCCategoryImplDecl::propimpl_iterator
4833             i = OID->propimpl_begin(), e = OID->propimpl_end();
4834           i != e; ++i) {
4835        ObjCPropertyImplDecl *PID = *i;
4836        if (PID->getPropertyDecl() == PD) {
4837          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4838            Dynamic = true;
4839          } else {
4840            SynthesizePID = PID;
4841          }
4842        }
4843      }
4844    }
4845  }
4846
4847  // FIXME: This is not very efficient.
4848  S = "T";
4849
4850  // Encode result type.
4851  // GCC has some special rules regarding encoding of properties which
4852  // closely resembles encoding of ivars.
4853  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4854                             true /* outermost type */,
4855                             true /* encoding for property */);
4856
4857  if (PD->isReadOnly()) {
4858    S += ",R";
4859  } else {
4860    switch (PD->getSetterKind()) {
4861    case ObjCPropertyDecl::Assign: break;
4862    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4863    case ObjCPropertyDecl::Retain: S += ",&"; break;
4864    case ObjCPropertyDecl::Weak:   S += ",W"; break;
4865    }
4866  }
4867
4868  // It really isn't clear at all what this means, since properties
4869  // are "dynamic by default".
4870  if (Dynamic)
4871    S += ",D";
4872
4873  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4874    S += ",N";
4875
4876  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4877    S += ",G";
4878    S += PD->getGetterName().getAsString();
4879  }
4880
4881  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4882    S += ",S";
4883    S += PD->getSetterName().getAsString();
4884  }
4885
4886  if (SynthesizePID) {
4887    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4888    S += ",V";
4889    S += OID->getNameAsString();
4890  }
4891
4892  // FIXME: OBJCGC: weak & strong
4893}
4894
4895/// getLegacyIntegralTypeEncoding -
4896/// Another legacy compatibility encoding: 32-bit longs are encoded as
4897/// 'l' or 'L' , but not always.  For typedefs, we need to use
4898/// 'i' or 'I' instead if encoding a struct field, or a pointer!
4899///
4900void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4901  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4902    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4903      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4904        PointeeTy = UnsignedIntTy;
4905      else
4906        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4907          PointeeTy = IntTy;
4908    }
4909  }
4910}
4911
4912void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
4913                                        const FieldDecl *Field) const {
4914  // We follow the behavior of gcc, expanding structures which are
4915  // directly pointed to, and expanding embedded structures. Note that
4916  // these rules are sufficient to prevent recursive encoding of the
4917  // same type.
4918  getObjCEncodingForTypeImpl(T, S, true, true, Field,
4919                             true /* outermost type */);
4920}
4921
4922static char getObjCEncodingForPrimitiveKind(const ASTContext *C,
4923                                            BuiltinType::Kind kind) {
4924    switch (kind) {
4925    case BuiltinType::Void:       return 'v';
4926    case BuiltinType::Bool:       return 'B';
4927    case BuiltinType::Char_U:
4928    case BuiltinType::UChar:      return 'C';
4929    case BuiltinType::Char16:
4930    case BuiltinType::UShort:     return 'S';
4931    case BuiltinType::Char32:
4932    case BuiltinType::UInt:       return 'I';
4933    case BuiltinType::ULong:
4934        return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
4935    case BuiltinType::UInt128:    return 'T';
4936    case BuiltinType::ULongLong:  return 'Q';
4937    case BuiltinType::Char_S:
4938    case BuiltinType::SChar:      return 'c';
4939    case BuiltinType::Short:      return 's';
4940    case BuiltinType::WChar_S:
4941    case BuiltinType::WChar_U:
4942    case BuiltinType::Int:        return 'i';
4943    case BuiltinType::Long:
4944      return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
4945    case BuiltinType::LongLong:   return 'q';
4946    case BuiltinType::Int128:     return 't';
4947    case BuiltinType::Float:      return 'f';
4948    case BuiltinType::Double:     return 'd';
4949    case BuiltinType::LongDouble: return 'D';
4950    case BuiltinType::NullPtr:    return '*'; // like char*
4951
4952    case BuiltinType::Half:
4953      // FIXME: potentially need @encodes for these!
4954      return ' ';
4955
4956    case BuiltinType::ObjCId:
4957    case BuiltinType::ObjCClass:
4958    case BuiltinType::ObjCSel:
4959      llvm_unreachable("@encoding ObjC primitive type");
4960
4961    // OpenCL and placeholder types don't need @encodings.
4962    case BuiltinType::OCLImage1d:
4963    case BuiltinType::OCLImage1dArray:
4964    case BuiltinType::OCLImage1dBuffer:
4965    case BuiltinType::OCLImage2d:
4966    case BuiltinType::OCLImage2dArray:
4967    case BuiltinType::OCLImage3d:
4968    case BuiltinType::OCLEvent:
4969    case BuiltinType::OCLSampler:
4970    case BuiltinType::Dependent:
4971#define BUILTIN_TYPE(KIND, ID)
4972#define PLACEHOLDER_TYPE(KIND, ID) \
4973    case BuiltinType::KIND:
4974#include "clang/AST/BuiltinTypes.def"
4975      llvm_unreachable("invalid builtin type for @encode");
4976    }
4977    llvm_unreachable("invalid BuiltinType::Kind value");
4978}
4979
4980static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
4981  EnumDecl *Enum = ET->getDecl();
4982
4983  // The encoding of an non-fixed enum type is always 'i', regardless of size.
4984  if (!Enum->isFixed())
4985    return 'i';
4986
4987  // The encoding of a fixed enum type matches its fixed underlying type.
4988  const BuiltinType *BT = Enum->getIntegerType()->castAs<BuiltinType>();
4989  return getObjCEncodingForPrimitiveKind(C, BT->getKind());
4990}
4991
4992static void EncodeBitField(const ASTContext *Ctx, std::string& S,
4993                           QualType T, const FieldDecl *FD) {
4994  assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
4995  S += 'b';
4996  // The NeXT runtime encodes bit fields as b followed by the number of bits.
4997  // The GNU runtime requires more information; bitfields are encoded as b,
4998  // then the offset (in bits) of the first element, then the type of the
4999  // bitfield, then the size in bits.  For example, in this structure:
5000  //
5001  // struct
5002  // {
5003  //    int integer;
5004  //    int flags:2;
5005  // };
5006  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
5007  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
5008  // information is not especially sensible, but we're stuck with it for
5009  // compatibility with GCC, although providing it breaks anything that
5010  // actually uses runtime introspection and wants to work on both runtimes...
5011  if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
5012    const RecordDecl *RD = FD->getParent();
5013    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
5014    S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
5015    if (const EnumType *ET = T->getAs<EnumType>())
5016      S += ObjCEncodingForEnumType(Ctx, ET);
5017    else {
5018      const BuiltinType *BT = T->castAs<BuiltinType>();
5019      S += getObjCEncodingForPrimitiveKind(Ctx, BT->getKind());
5020    }
5021  }
5022  S += llvm::utostr(FD->getBitWidthValue(*Ctx));
5023}
5024
5025// FIXME: Use SmallString for accumulating string.
5026void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
5027                                            bool ExpandPointedToStructures,
5028                                            bool ExpandStructures,
5029                                            const FieldDecl *FD,
5030                                            bool OutermostType,
5031                                            bool EncodingProperty,
5032                                            bool StructField,
5033                                            bool EncodeBlockParameters,
5034                                            bool EncodeClassNames,
5035                                            bool EncodePointerToObjCTypedef) const {
5036  CanQualType CT = getCanonicalType(T);
5037  switch (CT->getTypeClass()) {
5038  case Type::Builtin:
5039  case Type::Enum:
5040    if (FD && FD->isBitField())
5041      return EncodeBitField(this, S, T, FD);
5042    if (const BuiltinType *BT = dyn_cast<BuiltinType>(CT))
5043      S += getObjCEncodingForPrimitiveKind(this, BT->getKind());
5044    else
5045      S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
5046    return;
5047
5048  case Type::Complex: {
5049    const ComplexType *CT = T->castAs<ComplexType>();
5050    S += 'j';
5051    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
5052                               false);
5053    return;
5054  }
5055
5056  case Type::Atomic: {
5057    const AtomicType *AT = T->castAs<AtomicType>();
5058    S += 'A';
5059    getObjCEncodingForTypeImpl(AT->getValueType(), S, false, false, 0,
5060                               false, false);
5061    return;
5062  }
5063
5064  // encoding for pointer or reference types.
5065  case Type::Pointer:
5066  case Type::LValueReference:
5067  case Type::RValueReference: {
5068    QualType PointeeTy;
5069    if (isa<PointerType>(CT)) {
5070      const PointerType *PT = T->castAs<PointerType>();
5071      if (PT->isObjCSelType()) {
5072        S += ':';
5073        return;
5074      }
5075      PointeeTy = PT->getPointeeType();
5076    } else {
5077      PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
5078    }
5079
5080    bool isReadOnly = false;
5081    // For historical/compatibility reasons, the read-only qualifier of the
5082    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
5083    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
5084    // Also, do not emit the 'r' for anything but the outermost type!
5085    if (isa<TypedefType>(T.getTypePtr())) {
5086      if (OutermostType && T.isConstQualified()) {
5087        isReadOnly = true;
5088        S += 'r';
5089      }
5090    } else if (OutermostType) {
5091      QualType P = PointeeTy;
5092      while (P->getAs<PointerType>())
5093        P = P->getAs<PointerType>()->getPointeeType();
5094      if (P.isConstQualified()) {
5095        isReadOnly = true;
5096        S += 'r';
5097      }
5098    }
5099    if (isReadOnly) {
5100      // Another legacy compatibility encoding. Some ObjC qualifier and type
5101      // combinations need to be rearranged.
5102      // Rewrite "in const" from "nr" to "rn"
5103      if (StringRef(S).endswith("nr"))
5104        S.replace(S.end()-2, S.end(), "rn");
5105    }
5106
5107    if (PointeeTy->isCharType()) {
5108      // char pointer types should be encoded as '*' unless it is a
5109      // type that has been typedef'd to 'BOOL'.
5110      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
5111        S += '*';
5112        return;
5113      }
5114    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
5115      // GCC binary compat: Need to convert "struct objc_class *" to "#".
5116      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
5117        S += '#';
5118        return;
5119      }
5120      // GCC binary compat: Need to convert "struct objc_object *" to "@".
5121      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
5122        S += '@';
5123        return;
5124      }
5125      // fall through...
5126    }
5127    S += '^';
5128    getLegacyIntegralTypeEncoding(PointeeTy);
5129
5130    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
5131                               NULL);
5132    return;
5133  }
5134
5135  case Type::ConstantArray:
5136  case Type::IncompleteArray:
5137  case Type::VariableArray: {
5138    const ArrayType *AT = cast<ArrayType>(CT);
5139
5140    if (isa<IncompleteArrayType>(AT) && !StructField) {
5141      // Incomplete arrays are encoded as a pointer to the array element.
5142      S += '^';
5143
5144      getObjCEncodingForTypeImpl(AT->getElementType(), S,
5145                                 false, ExpandStructures, FD);
5146    } else {
5147      S += '[';
5148
5149      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
5150        if (getTypeSize(CAT->getElementType()) == 0)
5151          S += '0';
5152        else
5153          S += llvm::utostr(CAT->getSize().getZExtValue());
5154      } else {
5155        //Variable length arrays are encoded as a regular array with 0 elements.
5156        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
5157               "Unknown array type!");
5158        S += '0';
5159      }
5160
5161      getObjCEncodingForTypeImpl(AT->getElementType(), S,
5162                                 false, ExpandStructures, FD);
5163      S += ']';
5164    }
5165    return;
5166  }
5167
5168  case Type::FunctionNoProto:
5169  case Type::FunctionProto:
5170    S += '?';
5171    return;
5172
5173  case Type::Record: {
5174    RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
5175    S += RDecl->isUnion() ? '(' : '{';
5176    // Anonymous structures print as '?'
5177    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
5178      S += II->getName();
5179      if (ClassTemplateSpecializationDecl *Spec
5180          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
5181        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
5182        llvm::raw_string_ostream OS(S);
5183        TemplateSpecializationType::PrintTemplateArgumentList(OS,
5184                                            TemplateArgs.data(),
5185                                            TemplateArgs.size(),
5186                                            (*this).getPrintingPolicy());
5187      }
5188    } else {
5189      S += '?';
5190    }
5191    if (ExpandStructures) {
5192      S += '=';
5193      if (!RDecl->isUnion()) {
5194        getObjCEncodingForStructureImpl(RDecl, S, FD);
5195      } else {
5196        for (RecordDecl::field_iterator Field = RDecl->field_begin(),
5197                                     FieldEnd = RDecl->field_end();
5198             Field != FieldEnd; ++Field) {
5199          if (FD) {
5200            S += '"';
5201            S += Field->getNameAsString();
5202            S += '"';
5203          }
5204
5205          // Special case bit-fields.
5206          if (Field->isBitField()) {
5207            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
5208                                       *Field);
5209          } else {
5210            QualType qt = Field->getType();
5211            getLegacyIntegralTypeEncoding(qt);
5212            getObjCEncodingForTypeImpl(qt, S, false, true,
5213                                       FD, /*OutermostType*/false,
5214                                       /*EncodingProperty*/false,
5215                                       /*StructField*/true);
5216          }
5217        }
5218      }
5219    }
5220    S += RDecl->isUnion() ? ')' : '}';
5221    return;
5222  }
5223
5224  case Type::BlockPointer: {
5225    const BlockPointerType *BT = T->castAs<BlockPointerType>();
5226    S += "@?"; // Unlike a pointer-to-function, which is "^?".
5227    if (EncodeBlockParameters) {
5228      const FunctionType *FT = BT->getPointeeType()->castAs<FunctionType>();
5229
5230      S += '<';
5231      // Block return type
5232      getObjCEncodingForTypeImpl(FT->getResultType(), S,
5233                                 ExpandPointedToStructures, ExpandStructures,
5234                                 FD,
5235                                 false /* OutermostType */,
5236                                 EncodingProperty,
5237                                 false /* StructField */,
5238                                 EncodeBlockParameters,
5239                                 EncodeClassNames);
5240      // Block self
5241      S += "@?";
5242      // Block parameters
5243      if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
5244        for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
5245               E = FPT->arg_type_end(); I && (I != E); ++I) {
5246          getObjCEncodingForTypeImpl(*I, S,
5247                                     ExpandPointedToStructures,
5248                                     ExpandStructures,
5249                                     FD,
5250                                     false /* OutermostType */,
5251                                     EncodingProperty,
5252                                     false /* StructField */,
5253                                     EncodeBlockParameters,
5254                                     EncodeClassNames);
5255        }
5256      }
5257      S += '>';
5258    }
5259    return;
5260  }
5261
5262  case Type::ObjCObject:
5263  case Type::ObjCInterface: {
5264    // Ignore protocol qualifiers when mangling at this level.
5265    T = T->castAs<ObjCObjectType>()->getBaseType();
5266
5267    // The assumption seems to be that this assert will succeed
5268    // because nested levels will have filtered out 'id' and 'Class'.
5269    const ObjCInterfaceType *OIT = T->castAs<ObjCInterfaceType>();
5270    // @encode(class_name)
5271    ObjCInterfaceDecl *OI = OIT->getDecl();
5272    S += '{';
5273    const IdentifierInfo *II = OI->getIdentifier();
5274    S += II->getName();
5275    S += '=';
5276    SmallVector<const ObjCIvarDecl*, 32> Ivars;
5277    DeepCollectObjCIvars(OI, true, Ivars);
5278    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
5279      const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
5280      if (Field->isBitField())
5281        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
5282      else
5283        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD,
5284                                   false, false, false, false, false,
5285                                   EncodePointerToObjCTypedef);
5286    }
5287    S += '}';
5288    return;
5289  }
5290
5291  case Type::ObjCObjectPointer: {
5292    const ObjCObjectPointerType *OPT = T->castAs<ObjCObjectPointerType>();
5293    if (OPT->isObjCIdType()) {
5294      S += '@';
5295      return;
5296    }
5297
5298    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
5299      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
5300      // Since this is a binary compatibility issue, need to consult with runtime
5301      // folks. Fortunately, this is a *very* obsure construct.
5302      S += '#';
5303      return;
5304    }
5305
5306    if (OPT->isObjCQualifiedIdType()) {
5307      getObjCEncodingForTypeImpl(getObjCIdType(), S,
5308                                 ExpandPointedToStructures,
5309                                 ExpandStructures, FD);
5310      if (FD || EncodingProperty || EncodeClassNames) {
5311        // Note that we do extended encoding of protocol qualifer list
5312        // Only when doing ivar or property encoding.
5313        S += '"';
5314        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5315             E = OPT->qual_end(); I != E; ++I) {
5316          S += '<';
5317          S += (*I)->getNameAsString();
5318          S += '>';
5319        }
5320        S += '"';
5321      }
5322      return;
5323    }
5324
5325    QualType PointeeTy = OPT->getPointeeType();
5326    if (!EncodingProperty &&
5327        isa<TypedefType>(PointeeTy.getTypePtr()) &&
5328        !EncodePointerToObjCTypedef) {
5329      // Another historical/compatibility reason.
5330      // We encode the underlying type which comes out as
5331      // {...};
5332      S += '^';
5333      getObjCEncodingForTypeImpl(PointeeTy, S,
5334                                 false, ExpandPointedToStructures,
5335                                 NULL,
5336                                 false, false, false, false, false,
5337                                 /*EncodePointerToObjCTypedef*/true);
5338      return;
5339    }
5340
5341    S += '@';
5342    if (OPT->getInterfaceDecl() &&
5343        (FD || EncodingProperty || EncodeClassNames)) {
5344      S += '"';
5345      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
5346      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5347           E = OPT->qual_end(); I != E; ++I) {
5348        S += '<';
5349        S += (*I)->getNameAsString();
5350        S += '>';
5351      }
5352      S += '"';
5353    }
5354    return;
5355  }
5356
5357  // gcc just blithely ignores member pointers.
5358  // FIXME: we shoul do better than that.  'M' is available.
5359  case Type::MemberPointer:
5360    return;
5361
5362  case Type::Vector:
5363  case Type::ExtVector:
5364    // This matches gcc's encoding, even though technically it is
5365    // insufficient.
5366    // FIXME. We should do a better job than gcc.
5367    return;
5368
5369#define ABSTRACT_TYPE(KIND, BASE)
5370#define TYPE(KIND, BASE)
5371#define DEPENDENT_TYPE(KIND, BASE) \
5372  case Type::KIND:
5373#define NON_CANONICAL_TYPE(KIND, BASE) \
5374  case Type::KIND:
5375#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
5376  case Type::KIND:
5377#include "clang/AST/TypeNodes.def"
5378    llvm_unreachable("@encode for dependent type!");
5379  }
5380  llvm_unreachable("bad type kind!");
5381}
5382
5383void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
5384                                                 std::string &S,
5385                                                 const FieldDecl *FD,
5386                                                 bool includeVBases) const {
5387  assert(RDecl && "Expected non-null RecordDecl");
5388  assert(!RDecl->isUnion() && "Should not be called for unions");
5389  if (!RDecl->getDefinition())
5390    return;
5391
5392  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
5393  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
5394  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
5395
5396  if (CXXRec) {
5397    for (CXXRecordDecl::base_class_iterator
5398           BI = CXXRec->bases_begin(),
5399           BE = CXXRec->bases_end(); BI != BE; ++BI) {
5400      if (!BI->isVirtual()) {
5401        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5402        if (base->isEmpty())
5403          continue;
5404        uint64_t offs = toBits(layout.getBaseClassOffset(base));
5405        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5406                                  std::make_pair(offs, base));
5407      }
5408    }
5409  }
5410
5411  unsigned i = 0;
5412  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
5413                               FieldEnd = RDecl->field_end();
5414       Field != FieldEnd; ++Field, ++i) {
5415    uint64_t offs = layout.getFieldOffset(i);
5416    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5417                              std::make_pair(offs, *Field));
5418  }
5419
5420  if (CXXRec && includeVBases) {
5421    for (CXXRecordDecl::base_class_iterator
5422           BI = CXXRec->vbases_begin(),
5423           BE = CXXRec->vbases_end(); BI != BE; ++BI) {
5424      CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5425      if (base->isEmpty())
5426        continue;
5427      uint64_t offs = toBits(layout.getVBaseClassOffset(base));
5428      if (FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
5429        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
5430                                  std::make_pair(offs, base));
5431    }
5432  }
5433
5434  CharUnits size;
5435  if (CXXRec) {
5436    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
5437  } else {
5438    size = layout.getSize();
5439  }
5440
5441  uint64_t CurOffs = 0;
5442  std::multimap<uint64_t, NamedDecl *>::iterator
5443    CurLayObj = FieldOrBaseOffsets.begin();
5444
5445  if (CXXRec && CXXRec->isDynamicClass() &&
5446      (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
5447    if (FD) {
5448      S += "\"_vptr$";
5449      std::string recname = CXXRec->getNameAsString();
5450      if (recname.empty()) recname = "?";
5451      S += recname;
5452      S += '"';
5453    }
5454    S += "^^?";
5455    CurOffs += getTypeSize(VoidPtrTy);
5456  }
5457
5458  if (!RDecl->hasFlexibleArrayMember()) {
5459    // Mark the end of the structure.
5460    uint64_t offs = toBits(size);
5461    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5462                              std::make_pair(offs, (NamedDecl*)0));
5463  }
5464
5465  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
5466    assert(CurOffs <= CurLayObj->first);
5467
5468    if (CurOffs < CurLayObj->first) {
5469      uint64_t padding = CurLayObj->first - CurOffs;
5470      // FIXME: There doesn't seem to be a way to indicate in the encoding that
5471      // packing/alignment of members is different that normal, in which case
5472      // the encoding will be out-of-sync with the real layout.
5473      // If the runtime switches to just consider the size of types without
5474      // taking into account alignment, we could make padding explicit in the
5475      // encoding (e.g. using arrays of chars). The encoding strings would be
5476      // longer then though.
5477      CurOffs += padding;
5478    }
5479
5480    NamedDecl *dcl = CurLayObj->second;
5481    if (dcl == 0)
5482      break; // reached end of structure.
5483
5484    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
5485      // We expand the bases without their virtual bases since those are going
5486      // in the initial structure. Note that this differs from gcc which
5487      // expands virtual bases each time one is encountered in the hierarchy,
5488      // making the encoding type bigger than it really is.
5489      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
5490      assert(!base->isEmpty());
5491      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
5492    } else {
5493      FieldDecl *field = cast<FieldDecl>(dcl);
5494      if (FD) {
5495        S += '"';
5496        S += field->getNameAsString();
5497        S += '"';
5498      }
5499
5500      if (field->isBitField()) {
5501        EncodeBitField(this, S, field->getType(), field);
5502        CurOffs += field->getBitWidthValue(*this);
5503      } else {
5504        QualType qt = field->getType();
5505        getLegacyIntegralTypeEncoding(qt);
5506        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
5507                                   /*OutermostType*/false,
5508                                   /*EncodingProperty*/false,
5509                                   /*StructField*/true);
5510        CurOffs += getTypeSize(field->getType());
5511      }
5512    }
5513  }
5514}
5515
5516void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
5517                                                 std::string& S) const {
5518  if (QT & Decl::OBJC_TQ_In)
5519    S += 'n';
5520  if (QT & Decl::OBJC_TQ_Inout)
5521    S += 'N';
5522  if (QT & Decl::OBJC_TQ_Out)
5523    S += 'o';
5524  if (QT & Decl::OBJC_TQ_Bycopy)
5525    S += 'O';
5526  if (QT & Decl::OBJC_TQ_Byref)
5527    S += 'R';
5528  if (QT & Decl::OBJC_TQ_Oneway)
5529    S += 'V';
5530}
5531
5532TypedefDecl *ASTContext::getObjCIdDecl() const {
5533  if (!ObjCIdDecl) {
5534    QualType T = getObjCObjectType(ObjCBuiltinIdTy, 0, 0);
5535    T = getObjCObjectPointerType(T);
5536    TypeSourceInfo *IdInfo = getTrivialTypeSourceInfo(T);
5537    ObjCIdDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5538                                     getTranslationUnitDecl(),
5539                                     SourceLocation(), SourceLocation(),
5540                                     &Idents.get("id"), IdInfo);
5541  }
5542
5543  return ObjCIdDecl;
5544}
5545
5546TypedefDecl *ASTContext::getObjCSelDecl() const {
5547  if (!ObjCSelDecl) {
5548    QualType SelT = getPointerType(ObjCBuiltinSelTy);
5549    TypeSourceInfo *SelInfo = getTrivialTypeSourceInfo(SelT);
5550    ObjCSelDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5551                                      getTranslationUnitDecl(),
5552                                      SourceLocation(), SourceLocation(),
5553                                      &Idents.get("SEL"), SelInfo);
5554  }
5555  return ObjCSelDecl;
5556}
5557
5558TypedefDecl *ASTContext::getObjCClassDecl() const {
5559  if (!ObjCClassDecl) {
5560    QualType T = getObjCObjectType(ObjCBuiltinClassTy, 0, 0);
5561    T = getObjCObjectPointerType(T);
5562    TypeSourceInfo *ClassInfo = getTrivialTypeSourceInfo(T);
5563    ObjCClassDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5564                                        getTranslationUnitDecl(),
5565                                        SourceLocation(), SourceLocation(),
5566                                        &Idents.get("Class"), ClassInfo);
5567  }
5568
5569  return ObjCClassDecl;
5570}
5571
5572ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
5573  if (!ObjCProtocolClassDecl) {
5574    ObjCProtocolClassDecl
5575      = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
5576                                  SourceLocation(),
5577                                  &Idents.get("Protocol"),
5578                                  /*PrevDecl=*/0,
5579                                  SourceLocation(), true);
5580  }
5581
5582  return ObjCProtocolClassDecl;
5583}
5584
5585//===----------------------------------------------------------------------===//
5586// __builtin_va_list Construction Functions
5587//===----------------------------------------------------------------------===//
5588
5589static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
5590  // typedef char* __builtin_va_list;
5591  QualType CharPtrType = Context->getPointerType(Context->CharTy);
5592  TypeSourceInfo *TInfo
5593    = Context->getTrivialTypeSourceInfo(CharPtrType);
5594
5595  TypedefDecl *VaListTypeDecl
5596    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5597                          Context->getTranslationUnitDecl(),
5598                          SourceLocation(), SourceLocation(),
5599                          &Context->Idents.get("__builtin_va_list"),
5600                          TInfo);
5601  return VaListTypeDecl;
5602}
5603
5604static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
5605  // typedef void* __builtin_va_list;
5606  QualType VoidPtrType = Context->getPointerType(Context->VoidTy);
5607  TypeSourceInfo *TInfo
5608    = Context->getTrivialTypeSourceInfo(VoidPtrType);
5609
5610  TypedefDecl *VaListTypeDecl
5611    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5612                          Context->getTranslationUnitDecl(),
5613                          SourceLocation(), SourceLocation(),
5614                          &Context->Idents.get("__builtin_va_list"),
5615                          TInfo);
5616  return VaListTypeDecl;
5617}
5618
5619static TypedefDecl *
5620CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
5621  RecordDecl *VaListTagDecl;
5622  if (Context->getLangOpts().CPlusPlus) {
5623    // namespace std { struct __va_list {
5624    NamespaceDecl *NS;
5625    NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
5626                               Context->getTranslationUnitDecl(),
5627                               /*Inline*/false, SourceLocation(),
5628                               SourceLocation(), &Context->Idents.get("std"),
5629                               /*PrevDecl*/0);
5630
5631    VaListTagDecl = CXXRecordDecl::Create(*Context, TTK_Struct,
5632                                          Context->getTranslationUnitDecl(),
5633                                          SourceLocation(), SourceLocation(),
5634                                          &Context->Idents.get("__va_list"));
5635    VaListTagDecl->setDeclContext(NS);
5636  } else {
5637    // struct __va_list
5638    VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5639                                   Context->getTranslationUnitDecl(),
5640                                   &Context->Idents.get("__va_list"));
5641  }
5642
5643  VaListTagDecl->startDefinition();
5644
5645  const size_t NumFields = 5;
5646  QualType FieldTypes[NumFields];
5647  const char *FieldNames[NumFields];
5648
5649  // void *__stack;
5650  FieldTypes[0] = Context->getPointerType(Context->VoidTy);
5651  FieldNames[0] = "__stack";
5652
5653  // void *__gr_top;
5654  FieldTypes[1] = Context->getPointerType(Context->VoidTy);
5655  FieldNames[1] = "__gr_top";
5656
5657  // void *__vr_top;
5658  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5659  FieldNames[2] = "__vr_top";
5660
5661  // int __gr_offs;
5662  FieldTypes[3] = Context->IntTy;
5663  FieldNames[3] = "__gr_offs";
5664
5665  // int __vr_offs;
5666  FieldTypes[4] = Context->IntTy;
5667  FieldNames[4] = "__vr_offs";
5668
5669  // Create fields
5670  for (unsigned i = 0; i < NumFields; ++i) {
5671    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5672                                         VaListTagDecl,
5673                                         SourceLocation(),
5674                                         SourceLocation(),
5675                                         &Context->Idents.get(FieldNames[i]),
5676                                         FieldTypes[i], /*TInfo=*/0,
5677                                         /*BitWidth=*/0,
5678                                         /*Mutable=*/false,
5679                                         ICIS_NoInit);
5680    Field->setAccess(AS_public);
5681    VaListTagDecl->addDecl(Field);
5682  }
5683  VaListTagDecl->completeDefinition();
5684  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5685  Context->VaListTagTy = VaListTagType;
5686
5687  // } __builtin_va_list;
5688  TypedefDecl *VaListTypedefDecl
5689    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5690                          Context->getTranslationUnitDecl(),
5691                          SourceLocation(), SourceLocation(),
5692                          &Context->Idents.get("__builtin_va_list"),
5693                          Context->getTrivialTypeSourceInfo(VaListTagType));
5694
5695  return VaListTypedefDecl;
5696}
5697
5698static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
5699  // typedef struct __va_list_tag {
5700  RecordDecl *VaListTagDecl;
5701
5702  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5703                                   Context->getTranslationUnitDecl(),
5704                                   &Context->Idents.get("__va_list_tag"));
5705  VaListTagDecl->startDefinition();
5706
5707  const size_t NumFields = 5;
5708  QualType FieldTypes[NumFields];
5709  const char *FieldNames[NumFields];
5710
5711  //   unsigned char gpr;
5712  FieldTypes[0] = Context->UnsignedCharTy;
5713  FieldNames[0] = "gpr";
5714
5715  //   unsigned char fpr;
5716  FieldTypes[1] = Context->UnsignedCharTy;
5717  FieldNames[1] = "fpr";
5718
5719  //   unsigned short reserved;
5720  FieldTypes[2] = Context->UnsignedShortTy;
5721  FieldNames[2] = "reserved";
5722
5723  //   void* overflow_arg_area;
5724  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5725  FieldNames[3] = "overflow_arg_area";
5726
5727  //   void* reg_save_area;
5728  FieldTypes[4] = Context->getPointerType(Context->VoidTy);
5729  FieldNames[4] = "reg_save_area";
5730
5731  // Create fields
5732  for (unsigned i = 0; i < NumFields; ++i) {
5733    FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
5734                                         SourceLocation(),
5735                                         SourceLocation(),
5736                                         &Context->Idents.get(FieldNames[i]),
5737                                         FieldTypes[i], /*TInfo=*/0,
5738                                         /*BitWidth=*/0,
5739                                         /*Mutable=*/false,
5740                                         ICIS_NoInit);
5741    Field->setAccess(AS_public);
5742    VaListTagDecl->addDecl(Field);
5743  }
5744  VaListTagDecl->completeDefinition();
5745  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5746  Context->VaListTagTy = VaListTagType;
5747
5748  // } __va_list_tag;
5749  TypedefDecl *VaListTagTypedefDecl
5750    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5751                          Context->getTranslationUnitDecl(),
5752                          SourceLocation(), SourceLocation(),
5753                          &Context->Idents.get("__va_list_tag"),
5754                          Context->getTrivialTypeSourceInfo(VaListTagType));
5755  QualType VaListTagTypedefType =
5756    Context->getTypedefType(VaListTagTypedefDecl);
5757
5758  // typedef __va_list_tag __builtin_va_list[1];
5759  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5760  QualType VaListTagArrayType
5761    = Context->getConstantArrayType(VaListTagTypedefType,
5762                                    Size, ArrayType::Normal, 0);
5763  TypeSourceInfo *TInfo
5764    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5765  TypedefDecl *VaListTypedefDecl
5766    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5767                          Context->getTranslationUnitDecl(),
5768                          SourceLocation(), SourceLocation(),
5769                          &Context->Idents.get("__builtin_va_list"),
5770                          TInfo);
5771
5772  return VaListTypedefDecl;
5773}
5774
5775static TypedefDecl *
5776CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
5777  // typedef struct __va_list_tag {
5778  RecordDecl *VaListTagDecl;
5779  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5780                                   Context->getTranslationUnitDecl(),
5781                                   &Context->Idents.get("__va_list_tag"));
5782  VaListTagDecl->startDefinition();
5783
5784  const size_t NumFields = 4;
5785  QualType FieldTypes[NumFields];
5786  const char *FieldNames[NumFields];
5787
5788  //   unsigned gp_offset;
5789  FieldTypes[0] = Context->UnsignedIntTy;
5790  FieldNames[0] = "gp_offset";
5791
5792  //   unsigned fp_offset;
5793  FieldTypes[1] = Context->UnsignedIntTy;
5794  FieldNames[1] = "fp_offset";
5795
5796  //   void* overflow_arg_area;
5797  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5798  FieldNames[2] = "overflow_arg_area";
5799
5800  //   void* reg_save_area;
5801  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5802  FieldNames[3] = "reg_save_area";
5803
5804  // Create fields
5805  for (unsigned i = 0; i < NumFields; ++i) {
5806    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5807                                         VaListTagDecl,
5808                                         SourceLocation(),
5809                                         SourceLocation(),
5810                                         &Context->Idents.get(FieldNames[i]),
5811                                         FieldTypes[i], /*TInfo=*/0,
5812                                         /*BitWidth=*/0,
5813                                         /*Mutable=*/false,
5814                                         ICIS_NoInit);
5815    Field->setAccess(AS_public);
5816    VaListTagDecl->addDecl(Field);
5817  }
5818  VaListTagDecl->completeDefinition();
5819  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5820  Context->VaListTagTy = VaListTagType;
5821
5822  // } __va_list_tag;
5823  TypedefDecl *VaListTagTypedefDecl
5824    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5825                          Context->getTranslationUnitDecl(),
5826                          SourceLocation(), SourceLocation(),
5827                          &Context->Idents.get("__va_list_tag"),
5828                          Context->getTrivialTypeSourceInfo(VaListTagType));
5829  QualType VaListTagTypedefType =
5830    Context->getTypedefType(VaListTagTypedefDecl);
5831
5832  // typedef __va_list_tag __builtin_va_list[1];
5833  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5834  QualType VaListTagArrayType
5835    = Context->getConstantArrayType(VaListTagTypedefType,
5836                                      Size, ArrayType::Normal,0);
5837  TypeSourceInfo *TInfo
5838    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5839  TypedefDecl *VaListTypedefDecl
5840    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5841                          Context->getTranslationUnitDecl(),
5842                          SourceLocation(), SourceLocation(),
5843                          &Context->Idents.get("__builtin_va_list"),
5844                          TInfo);
5845
5846  return VaListTypedefDecl;
5847}
5848
5849static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
5850  // typedef int __builtin_va_list[4];
5851  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
5852  QualType IntArrayType
5853    = Context->getConstantArrayType(Context->IntTy,
5854				    Size, ArrayType::Normal, 0);
5855  TypedefDecl *VaListTypedefDecl
5856    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5857                          Context->getTranslationUnitDecl(),
5858                          SourceLocation(), SourceLocation(),
5859                          &Context->Idents.get("__builtin_va_list"),
5860                          Context->getTrivialTypeSourceInfo(IntArrayType));
5861
5862  return VaListTypedefDecl;
5863}
5864
5865static TypedefDecl *
5866CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
5867  RecordDecl *VaListDecl;
5868  if (Context->getLangOpts().CPlusPlus) {
5869    // namespace std { struct __va_list {
5870    NamespaceDecl *NS;
5871    NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
5872                               Context->getTranslationUnitDecl(),
5873                               /*Inline*/false, SourceLocation(),
5874                               SourceLocation(), &Context->Idents.get("std"),
5875                               /*PrevDecl*/0);
5876
5877    VaListDecl = CXXRecordDecl::Create(*Context, TTK_Struct,
5878                                       Context->getTranslationUnitDecl(),
5879                                       SourceLocation(), SourceLocation(),
5880                                       &Context->Idents.get("__va_list"));
5881
5882    VaListDecl->setDeclContext(NS);
5883
5884  } else {
5885    // struct __va_list {
5886    VaListDecl = CreateRecordDecl(*Context, TTK_Struct,
5887                                  Context->getTranslationUnitDecl(),
5888                                  &Context->Idents.get("__va_list"));
5889  }
5890
5891  VaListDecl->startDefinition();
5892
5893  // void * __ap;
5894  FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5895                                       VaListDecl,
5896                                       SourceLocation(),
5897                                       SourceLocation(),
5898                                       &Context->Idents.get("__ap"),
5899                                       Context->getPointerType(Context->VoidTy),
5900                                       /*TInfo=*/0,
5901                                       /*BitWidth=*/0,
5902                                       /*Mutable=*/false,
5903                                       ICIS_NoInit);
5904  Field->setAccess(AS_public);
5905  VaListDecl->addDecl(Field);
5906
5907  // };
5908  VaListDecl->completeDefinition();
5909
5910  // typedef struct __va_list __builtin_va_list;
5911  TypeSourceInfo *TInfo
5912    = Context->getTrivialTypeSourceInfo(Context->getRecordType(VaListDecl));
5913
5914  TypedefDecl *VaListTypeDecl
5915    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5916                          Context->getTranslationUnitDecl(),
5917                          SourceLocation(), SourceLocation(),
5918                          &Context->Idents.get("__builtin_va_list"),
5919                          TInfo);
5920
5921  return VaListTypeDecl;
5922}
5923
5924static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
5925                                     TargetInfo::BuiltinVaListKind Kind) {
5926  switch (Kind) {
5927  case TargetInfo::CharPtrBuiltinVaList:
5928    return CreateCharPtrBuiltinVaListDecl(Context);
5929  case TargetInfo::VoidPtrBuiltinVaList:
5930    return CreateVoidPtrBuiltinVaListDecl(Context);
5931  case TargetInfo::AArch64ABIBuiltinVaList:
5932    return CreateAArch64ABIBuiltinVaListDecl(Context);
5933  case TargetInfo::PowerABIBuiltinVaList:
5934    return CreatePowerABIBuiltinVaListDecl(Context);
5935  case TargetInfo::X86_64ABIBuiltinVaList:
5936    return CreateX86_64ABIBuiltinVaListDecl(Context);
5937  case TargetInfo::PNaClABIBuiltinVaList:
5938    return CreatePNaClABIBuiltinVaListDecl(Context);
5939  case TargetInfo::AAPCSABIBuiltinVaList:
5940    return CreateAAPCSABIBuiltinVaListDecl(Context);
5941  }
5942
5943  llvm_unreachable("Unhandled __builtin_va_list type kind");
5944}
5945
5946TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
5947  if (!BuiltinVaListDecl)
5948    BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
5949
5950  return BuiltinVaListDecl;
5951}
5952
5953QualType ASTContext::getVaListTagType() const {
5954  // Force the creation of VaListTagTy by building the __builtin_va_list
5955  // declaration.
5956  if (VaListTagTy.isNull())
5957    (void) getBuiltinVaListDecl();
5958
5959  return VaListTagTy;
5960}
5961
5962void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
5963  assert(ObjCConstantStringType.isNull() &&
5964         "'NSConstantString' type already set!");
5965
5966  ObjCConstantStringType = getObjCInterfaceType(Decl);
5967}
5968
5969/// \brief Retrieve the template name that corresponds to a non-empty
5970/// lookup.
5971TemplateName
5972ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
5973                                      UnresolvedSetIterator End) const {
5974  unsigned size = End - Begin;
5975  assert(size > 1 && "set is not overloaded!");
5976
5977  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
5978                          size * sizeof(FunctionTemplateDecl*));
5979  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
5980
5981  NamedDecl **Storage = OT->getStorage();
5982  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
5983    NamedDecl *D = *I;
5984    assert(isa<FunctionTemplateDecl>(D) ||
5985           (isa<UsingShadowDecl>(D) &&
5986            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
5987    *Storage++ = D;
5988  }
5989
5990  return TemplateName(OT);
5991}
5992
5993/// \brief Retrieve the template name that represents a qualified
5994/// template name such as \c std::vector.
5995TemplateName
5996ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
5997                                     bool TemplateKeyword,
5998                                     TemplateDecl *Template) const {
5999  assert(NNS && "Missing nested-name-specifier in qualified template name");
6000
6001  // FIXME: Canonicalization?
6002  llvm::FoldingSetNodeID ID;
6003  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
6004
6005  void *InsertPos = 0;
6006  QualifiedTemplateName *QTN =
6007    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6008  if (!QTN) {
6009    QTN = new (*this, llvm::alignOf<QualifiedTemplateName>())
6010        QualifiedTemplateName(NNS, TemplateKeyword, Template);
6011    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
6012  }
6013
6014  return TemplateName(QTN);
6015}
6016
6017/// \brief Retrieve the template name that represents a dependent
6018/// template name such as \c MetaFun::template apply.
6019TemplateName
6020ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
6021                                     const IdentifierInfo *Name) const {
6022  assert((!NNS || NNS->isDependent()) &&
6023         "Nested name specifier must be dependent");
6024
6025  llvm::FoldingSetNodeID ID;
6026  DependentTemplateName::Profile(ID, NNS, Name);
6027
6028  void *InsertPos = 0;
6029  DependentTemplateName *QTN =
6030    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6031
6032  if (QTN)
6033    return TemplateName(QTN);
6034
6035  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6036  if (CanonNNS == NNS) {
6037    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6038        DependentTemplateName(NNS, Name);
6039  } else {
6040    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
6041    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6042        DependentTemplateName(NNS, Name, Canon);
6043    DependentTemplateName *CheckQTN =
6044      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6045    assert(!CheckQTN && "Dependent type name canonicalization broken");
6046    (void)CheckQTN;
6047  }
6048
6049  DependentTemplateNames.InsertNode(QTN, InsertPos);
6050  return TemplateName(QTN);
6051}
6052
6053/// \brief Retrieve the template name that represents a dependent
6054/// template name such as \c MetaFun::template operator+.
6055TemplateName
6056ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
6057                                     OverloadedOperatorKind Operator) const {
6058  assert((!NNS || NNS->isDependent()) &&
6059         "Nested name specifier must be dependent");
6060
6061  llvm::FoldingSetNodeID ID;
6062  DependentTemplateName::Profile(ID, NNS, Operator);
6063
6064  void *InsertPos = 0;
6065  DependentTemplateName *QTN
6066    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6067
6068  if (QTN)
6069    return TemplateName(QTN);
6070
6071  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6072  if (CanonNNS == NNS) {
6073    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6074        DependentTemplateName(NNS, Operator);
6075  } else {
6076    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
6077    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6078        DependentTemplateName(NNS, Operator, Canon);
6079
6080    DependentTemplateName *CheckQTN
6081      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6082    assert(!CheckQTN && "Dependent template name canonicalization broken");
6083    (void)CheckQTN;
6084  }
6085
6086  DependentTemplateNames.InsertNode(QTN, InsertPos);
6087  return TemplateName(QTN);
6088}
6089
6090TemplateName
6091ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
6092                                         TemplateName replacement) const {
6093  llvm::FoldingSetNodeID ID;
6094  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
6095
6096  void *insertPos = 0;
6097  SubstTemplateTemplateParmStorage *subst
6098    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
6099
6100  if (!subst) {
6101    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
6102    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
6103  }
6104
6105  return TemplateName(subst);
6106}
6107
6108TemplateName
6109ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
6110                                       const TemplateArgument &ArgPack) const {
6111  ASTContext &Self = const_cast<ASTContext &>(*this);
6112  llvm::FoldingSetNodeID ID;
6113  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
6114
6115  void *InsertPos = 0;
6116  SubstTemplateTemplateParmPackStorage *Subst
6117    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
6118
6119  if (!Subst) {
6120    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
6121                                                           ArgPack.pack_size(),
6122                                                         ArgPack.pack_begin());
6123    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
6124  }
6125
6126  return TemplateName(Subst);
6127}
6128
6129/// getFromTargetType - Given one of the integer types provided by
6130/// TargetInfo, produce the corresponding type. The unsigned @p Type
6131/// is actually a value of type @c TargetInfo::IntType.
6132CanQualType ASTContext::getFromTargetType(unsigned Type) const {
6133  switch (Type) {
6134  case TargetInfo::NoInt: return CanQualType();
6135  case TargetInfo::SignedShort: return ShortTy;
6136  case TargetInfo::UnsignedShort: return UnsignedShortTy;
6137  case TargetInfo::SignedInt: return IntTy;
6138  case TargetInfo::UnsignedInt: return UnsignedIntTy;
6139  case TargetInfo::SignedLong: return LongTy;
6140  case TargetInfo::UnsignedLong: return UnsignedLongTy;
6141  case TargetInfo::SignedLongLong: return LongLongTy;
6142  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
6143  }
6144
6145  llvm_unreachable("Unhandled TargetInfo::IntType value");
6146}
6147
6148//===----------------------------------------------------------------------===//
6149//                        Type Predicates.
6150//===----------------------------------------------------------------------===//
6151
6152/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
6153/// garbage collection attribute.
6154///
6155Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
6156  if (getLangOpts().getGC() == LangOptions::NonGC)
6157    return Qualifiers::GCNone;
6158
6159  assert(getLangOpts().ObjC1);
6160  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
6161
6162  // Default behaviour under objective-C's gc is for ObjC pointers
6163  // (or pointers to them) be treated as though they were declared
6164  // as __strong.
6165  if (GCAttrs == Qualifiers::GCNone) {
6166    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
6167      return Qualifiers::Strong;
6168    else if (Ty->isPointerType())
6169      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
6170  } else {
6171    // It's not valid to set GC attributes on anything that isn't a
6172    // pointer.
6173#ifndef NDEBUG
6174    QualType CT = Ty->getCanonicalTypeInternal();
6175    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
6176      CT = AT->getElementType();
6177    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
6178#endif
6179  }
6180  return GCAttrs;
6181}
6182
6183//===----------------------------------------------------------------------===//
6184//                        Type Compatibility Testing
6185//===----------------------------------------------------------------------===//
6186
6187/// areCompatVectorTypes - Return true if the two specified vector types are
6188/// compatible.
6189static bool areCompatVectorTypes(const VectorType *LHS,
6190                                 const VectorType *RHS) {
6191  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
6192  return LHS->getElementType() == RHS->getElementType() &&
6193         LHS->getNumElements() == RHS->getNumElements();
6194}
6195
6196bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
6197                                          QualType SecondVec) {
6198  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
6199  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
6200
6201  if (hasSameUnqualifiedType(FirstVec, SecondVec))
6202    return true;
6203
6204  // Treat Neon vector types and most AltiVec vector types as if they are the
6205  // equivalent GCC vector types.
6206  const VectorType *First = FirstVec->getAs<VectorType>();
6207  const VectorType *Second = SecondVec->getAs<VectorType>();
6208  if (First->getNumElements() == Second->getNumElements() &&
6209      hasSameType(First->getElementType(), Second->getElementType()) &&
6210      First->getVectorKind() != VectorType::AltiVecPixel &&
6211      First->getVectorKind() != VectorType::AltiVecBool &&
6212      Second->getVectorKind() != VectorType::AltiVecPixel &&
6213      Second->getVectorKind() != VectorType::AltiVecBool)
6214    return true;
6215
6216  return false;
6217}
6218
6219//===----------------------------------------------------------------------===//
6220// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
6221//===----------------------------------------------------------------------===//
6222
6223/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
6224/// inheritance hierarchy of 'rProto'.
6225bool
6226ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
6227                                           ObjCProtocolDecl *rProto) const {
6228  if (declaresSameEntity(lProto, rProto))
6229    return true;
6230  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
6231       E = rProto->protocol_end(); PI != E; ++PI)
6232    if (ProtocolCompatibleWithProtocol(lProto, *PI))
6233      return true;
6234  return false;
6235}
6236
6237/// QualifiedIdConformsQualifiedId - compare id<pr,...> with id<pr1,...>
6238/// return true if lhs's protocols conform to rhs's protocol; false
6239/// otherwise.
6240bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
6241  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
6242    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
6243  return false;
6244}
6245
6246/// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
6247/// Class<pr1, ...>.
6248bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
6249                                                      QualType rhs) {
6250  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
6251  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6252  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
6253
6254  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6255       E = lhsQID->qual_end(); I != E; ++I) {
6256    bool match = false;
6257    ObjCProtocolDecl *lhsProto = *I;
6258    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
6259         E = rhsOPT->qual_end(); J != E; ++J) {
6260      ObjCProtocolDecl *rhsProto = *J;
6261      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
6262        match = true;
6263        break;
6264      }
6265    }
6266    if (!match)
6267      return false;
6268  }
6269  return true;
6270}
6271
6272/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
6273/// ObjCQualifiedIDType.
6274bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
6275                                                   bool compare) {
6276  // Allow id<P..> and an 'id' or void* type in all cases.
6277  if (lhs->isVoidPointerType() ||
6278      lhs->isObjCIdType() || lhs->isObjCClassType())
6279    return true;
6280  else if (rhs->isVoidPointerType() ||
6281           rhs->isObjCIdType() || rhs->isObjCClassType())
6282    return true;
6283
6284  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
6285    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6286
6287    if (!rhsOPT) return false;
6288
6289    if (rhsOPT->qual_empty()) {
6290      // If the RHS is a unqualified interface pointer "NSString*",
6291      // make sure we check the class hierarchy.
6292      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6293        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6294             E = lhsQID->qual_end(); I != E; ++I) {
6295          // when comparing an id<P> on lhs with a static type on rhs,
6296          // see if static class implements all of id's protocols, directly or
6297          // through its super class and categories.
6298          if (!rhsID->ClassImplementsProtocol(*I, true))
6299            return false;
6300        }
6301      }
6302      // If there are no qualifiers and no interface, we have an 'id'.
6303      return true;
6304    }
6305    // Both the right and left sides have qualifiers.
6306    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6307         E = lhsQID->qual_end(); I != E; ++I) {
6308      ObjCProtocolDecl *lhsProto = *I;
6309      bool match = false;
6310
6311      // when comparing an id<P> on lhs with a static type on rhs,
6312      // see if static class implements all of id's protocols, directly or
6313      // through its super class and categories.
6314      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
6315           E = rhsOPT->qual_end(); J != E; ++J) {
6316        ObjCProtocolDecl *rhsProto = *J;
6317        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6318            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6319          match = true;
6320          break;
6321        }
6322      }
6323      // If the RHS is a qualified interface pointer "NSString<P>*",
6324      // make sure we check the class hierarchy.
6325      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6326        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6327             E = lhsQID->qual_end(); I != E; ++I) {
6328          // when comparing an id<P> on lhs with a static type on rhs,
6329          // see if static class implements all of id's protocols, directly or
6330          // through its super class and categories.
6331          if (rhsID->ClassImplementsProtocol(*I, true)) {
6332            match = true;
6333            break;
6334          }
6335        }
6336      }
6337      if (!match)
6338        return false;
6339    }
6340
6341    return true;
6342  }
6343
6344  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
6345  assert(rhsQID && "One of the LHS/RHS should be id<x>");
6346
6347  if (const ObjCObjectPointerType *lhsOPT =
6348        lhs->getAsObjCInterfacePointerType()) {
6349    // If both the right and left sides have qualifiers.
6350    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
6351         E = lhsOPT->qual_end(); I != E; ++I) {
6352      ObjCProtocolDecl *lhsProto = *I;
6353      bool match = false;
6354
6355      // when comparing an id<P> on rhs with a static type on lhs,
6356      // see if static class implements all of id's protocols, directly or
6357      // through its super class and categories.
6358      // First, lhs protocols in the qualifier list must be found, direct
6359      // or indirect in rhs's qualifier list or it is a mismatch.
6360      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
6361           E = rhsQID->qual_end(); J != E; ++J) {
6362        ObjCProtocolDecl *rhsProto = *J;
6363        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6364            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6365          match = true;
6366          break;
6367        }
6368      }
6369      if (!match)
6370        return false;
6371    }
6372
6373    // Static class's protocols, or its super class or category protocols
6374    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
6375    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
6376      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6377      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
6378      // This is rather dubious but matches gcc's behavior. If lhs has
6379      // no type qualifier and its class has no static protocol(s)
6380      // assume that it is mismatch.
6381      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
6382        return false;
6383      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6384           LHSInheritedProtocols.begin(),
6385           E = LHSInheritedProtocols.end(); I != E; ++I) {
6386        bool match = false;
6387        ObjCProtocolDecl *lhsProto = (*I);
6388        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
6389             E = rhsQID->qual_end(); J != E; ++J) {
6390          ObjCProtocolDecl *rhsProto = *J;
6391          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6392              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6393            match = true;
6394            break;
6395          }
6396        }
6397        if (!match)
6398          return false;
6399      }
6400    }
6401    return true;
6402  }
6403  return false;
6404}
6405
6406/// canAssignObjCInterfaces - Return true if the two interface types are
6407/// compatible for assignment from RHS to LHS.  This handles validation of any
6408/// protocol qualifiers on the LHS or RHS.
6409///
6410bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
6411                                         const ObjCObjectPointerType *RHSOPT) {
6412  const ObjCObjectType* LHS = LHSOPT->getObjectType();
6413  const ObjCObjectType* RHS = RHSOPT->getObjectType();
6414
6415  // If either type represents the built-in 'id' or 'Class' types, return true.
6416  if (LHS->isObjCUnqualifiedIdOrClass() ||
6417      RHS->isObjCUnqualifiedIdOrClass())
6418    return true;
6419
6420  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
6421    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6422                                             QualType(RHSOPT,0),
6423                                             false);
6424
6425  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
6426    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
6427                                                QualType(RHSOPT,0));
6428
6429  // If we have 2 user-defined types, fall into that path.
6430  if (LHS->getInterface() && RHS->getInterface())
6431    return canAssignObjCInterfaces(LHS, RHS);
6432
6433  return false;
6434}
6435
6436/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
6437/// for providing type-safety for objective-c pointers used to pass/return
6438/// arguments in block literals. When passed as arguments, passing 'A*' where
6439/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
6440/// not OK. For the return type, the opposite is not OK.
6441bool ASTContext::canAssignObjCInterfacesInBlockPointer(
6442                                         const ObjCObjectPointerType *LHSOPT,
6443                                         const ObjCObjectPointerType *RHSOPT,
6444                                         bool BlockReturnType) {
6445  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
6446    return true;
6447
6448  if (LHSOPT->isObjCBuiltinType()) {
6449    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
6450  }
6451
6452  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
6453    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6454                                             QualType(RHSOPT,0),
6455                                             false);
6456
6457  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
6458  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
6459  if (LHS && RHS)  { // We have 2 user-defined types.
6460    if (LHS != RHS) {
6461      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
6462        return BlockReturnType;
6463      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
6464        return !BlockReturnType;
6465    }
6466    else
6467      return true;
6468  }
6469  return false;
6470}
6471
6472/// getIntersectionOfProtocols - This routine finds the intersection of set
6473/// of protocols inherited from two distinct objective-c pointer objects.
6474/// It is used to build composite qualifier list of the composite type of
6475/// the conditional expression involving two objective-c pointer objects.
6476static
6477void getIntersectionOfProtocols(ASTContext &Context,
6478                                const ObjCObjectPointerType *LHSOPT,
6479                                const ObjCObjectPointerType *RHSOPT,
6480      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
6481
6482  const ObjCObjectType* LHS = LHSOPT->getObjectType();
6483  const ObjCObjectType* RHS = RHSOPT->getObjectType();
6484  assert(LHS->getInterface() && "LHS must have an interface base");
6485  assert(RHS->getInterface() && "RHS must have an interface base");
6486
6487  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
6488  unsigned LHSNumProtocols = LHS->getNumProtocols();
6489  if (LHSNumProtocols > 0)
6490    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
6491  else {
6492    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6493    Context.CollectInheritedProtocols(LHS->getInterface(),
6494                                      LHSInheritedProtocols);
6495    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
6496                                LHSInheritedProtocols.end());
6497  }
6498
6499  unsigned RHSNumProtocols = RHS->getNumProtocols();
6500  if (RHSNumProtocols > 0) {
6501    ObjCProtocolDecl **RHSProtocols =
6502      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
6503    for (unsigned i = 0; i < RHSNumProtocols; ++i)
6504      if (InheritedProtocolSet.count(RHSProtocols[i]))
6505        IntersectionOfProtocols.push_back(RHSProtocols[i]);
6506  } else {
6507    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
6508    Context.CollectInheritedProtocols(RHS->getInterface(),
6509                                      RHSInheritedProtocols);
6510    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6511         RHSInheritedProtocols.begin(),
6512         E = RHSInheritedProtocols.end(); I != E; ++I)
6513      if (InheritedProtocolSet.count((*I)))
6514        IntersectionOfProtocols.push_back((*I));
6515  }
6516}
6517
6518/// areCommonBaseCompatible - Returns common base class of the two classes if
6519/// one found. Note that this is O'2 algorithm. But it will be called as the
6520/// last type comparison in a ?-exp of ObjC pointer types before a
6521/// warning is issued. So, its invokation is extremely rare.
6522QualType ASTContext::areCommonBaseCompatible(
6523                                          const ObjCObjectPointerType *Lptr,
6524                                          const ObjCObjectPointerType *Rptr) {
6525  const ObjCObjectType *LHS = Lptr->getObjectType();
6526  const ObjCObjectType *RHS = Rptr->getObjectType();
6527  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
6528  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
6529  if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
6530    return QualType();
6531
6532  do {
6533    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
6534    if (canAssignObjCInterfaces(LHS, RHS)) {
6535      SmallVector<ObjCProtocolDecl *, 8> Protocols;
6536      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
6537
6538      QualType Result = QualType(LHS, 0);
6539      if (!Protocols.empty())
6540        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
6541      Result = getObjCObjectPointerType(Result);
6542      return Result;
6543    }
6544  } while ((LDecl = LDecl->getSuperClass()));
6545
6546  return QualType();
6547}
6548
6549bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
6550                                         const ObjCObjectType *RHS) {
6551  assert(LHS->getInterface() && "LHS is not an interface type");
6552  assert(RHS->getInterface() && "RHS is not an interface type");
6553
6554  // Verify that the base decls are compatible: the RHS must be a subclass of
6555  // the LHS.
6556  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
6557    return false;
6558
6559  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
6560  // protocol qualified at all, then we are good.
6561  if (LHS->getNumProtocols() == 0)
6562    return true;
6563
6564  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
6565  // more detailed analysis is required.
6566  if (RHS->getNumProtocols() == 0) {
6567    // OK, if LHS is a superclass of RHS *and*
6568    // this superclass is assignment compatible with LHS.
6569    // false otherwise.
6570    bool IsSuperClass =
6571      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
6572    if (IsSuperClass) {
6573      // OK if conversion of LHS to SuperClass results in narrowing of types
6574      // ; i.e., SuperClass may implement at least one of the protocols
6575      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
6576      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
6577      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
6578      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
6579      // If super class has no protocols, it is not a match.
6580      if (SuperClassInheritedProtocols.empty())
6581        return false;
6582
6583      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6584           LHSPE = LHS->qual_end();
6585           LHSPI != LHSPE; LHSPI++) {
6586        bool SuperImplementsProtocol = false;
6587        ObjCProtocolDecl *LHSProto = (*LHSPI);
6588
6589        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6590             SuperClassInheritedProtocols.begin(),
6591             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
6592          ObjCProtocolDecl *SuperClassProto = (*I);
6593          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
6594            SuperImplementsProtocol = true;
6595            break;
6596          }
6597        }
6598        if (!SuperImplementsProtocol)
6599          return false;
6600      }
6601      return true;
6602    }
6603    return false;
6604  }
6605
6606  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6607                                     LHSPE = LHS->qual_end();
6608       LHSPI != LHSPE; LHSPI++) {
6609    bool RHSImplementsProtocol = false;
6610
6611    // If the RHS doesn't implement the protocol on the left, the types
6612    // are incompatible.
6613    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
6614                                       RHSPE = RHS->qual_end();
6615         RHSPI != RHSPE; RHSPI++) {
6616      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
6617        RHSImplementsProtocol = true;
6618        break;
6619      }
6620    }
6621    // FIXME: For better diagnostics, consider passing back the protocol name.
6622    if (!RHSImplementsProtocol)
6623      return false;
6624  }
6625  // The RHS implements all protocols listed on the LHS.
6626  return true;
6627}
6628
6629bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
6630  // get the "pointed to" types
6631  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
6632  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
6633
6634  if (!LHSOPT || !RHSOPT)
6635    return false;
6636
6637  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
6638         canAssignObjCInterfaces(RHSOPT, LHSOPT);
6639}
6640
6641bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
6642  return canAssignObjCInterfaces(
6643                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
6644                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
6645}
6646
6647/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
6648/// both shall have the identically qualified version of a compatible type.
6649/// C99 6.2.7p1: Two types have compatible types if their types are the
6650/// same. See 6.7.[2,3,5] for additional rules.
6651bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
6652                                    bool CompareUnqualified) {
6653  if (getLangOpts().CPlusPlus)
6654    return hasSameType(LHS, RHS);
6655
6656  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
6657}
6658
6659bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
6660  return typesAreCompatible(LHS, RHS);
6661}
6662
6663bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
6664  return !mergeTypes(LHS, RHS, true).isNull();
6665}
6666
6667/// mergeTransparentUnionType - if T is a transparent union type and a member
6668/// of T is compatible with SubType, return the merged type, else return
6669/// QualType()
6670QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
6671                                               bool OfBlockPointer,
6672                                               bool Unqualified) {
6673  if (const RecordType *UT = T->getAsUnionType()) {
6674    RecordDecl *UD = UT->getDecl();
6675    if (UD->hasAttr<TransparentUnionAttr>()) {
6676      for (RecordDecl::field_iterator it = UD->field_begin(),
6677           itend = UD->field_end(); it != itend; ++it) {
6678        QualType ET = it->getType().getUnqualifiedType();
6679        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
6680        if (!MT.isNull())
6681          return MT;
6682      }
6683    }
6684  }
6685
6686  return QualType();
6687}
6688
6689/// mergeFunctionArgumentTypes - merge two types which appear as function
6690/// argument types
6691QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
6692                                                bool OfBlockPointer,
6693                                                bool Unqualified) {
6694  // GNU extension: two types are compatible if they appear as a function
6695  // argument, one of the types is a transparent union type and the other
6696  // type is compatible with a union member
6697  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
6698                                              Unqualified);
6699  if (!lmerge.isNull())
6700    return lmerge;
6701
6702  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
6703                                              Unqualified);
6704  if (!rmerge.isNull())
6705    return rmerge;
6706
6707  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
6708}
6709
6710QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
6711                                        bool OfBlockPointer,
6712                                        bool Unqualified) {
6713  const FunctionType *lbase = lhs->getAs<FunctionType>();
6714  const FunctionType *rbase = rhs->getAs<FunctionType>();
6715  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
6716  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
6717  bool allLTypes = true;
6718  bool allRTypes = true;
6719
6720  // Check return type
6721  QualType retType;
6722  if (OfBlockPointer) {
6723    QualType RHS = rbase->getResultType();
6724    QualType LHS = lbase->getResultType();
6725    bool UnqualifiedResult = Unqualified;
6726    if (!UnqualifiedResult)
6727      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
6728    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
6729  }
6730  else
6731    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
6732                         Unqualified);
6733  if (retType.isNull()) return QualType();
6734
6735  if (Unqualified)
6736    retType = retType.getUnqualifiedType();
6737
6738  CanQualType LRetType = getCanonicalType(lbase->getResultType());
6739  CanQualType RRetType = getCanonicalType(rbase->getResultType());
6740  if (Unqualified) {
6741    LRetType = LRetType.getUnqualifiedType();
6742    RRetType = RRetType.getUnqualifiedType();
6743  }
6744
6745  if (getCanonicalType(retType) != LRetType)
6746    allLTypes = false;
6747  if (getCanonicalType(retType) != RRetType)
6748    allRTypes = false;
6749
6750  // FIXME: double check this
6751  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
6752  //                           rbase->getRegParmAttr() != 0 &&
6753  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
6754  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
6755  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
6756
6757  // Compatible functions must have compatible calling conventions
6758  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
6759    return QualType();
6760
6761  // Regparm is part of the calling convention.
6762  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
6763    return QualType();
6764  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
6765    return QualType();
6766
6767  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
6768    return QualType();
6769
6770  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
6771  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
6772
6773  if (lbaseInfo.getNoReturn() != NoReturn)
6774    allLTypes = false;
6775  if (rbaseInfo.getNoReturn() != NoReturn)
6776    allRTypes = false;
6777
6778  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
6779
6780  if (lproto && rproto) { // two C99 style function prototypes
6781    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
6782           "C++ shouldn't be here");
6783    unsigned lproto_nargs = lproto->getNumArgs();
6784    unsigned rproto_nargs = rproto->getNumArgs();
6785
6786    // Compatible functions must have the same number of arguments
6787    if (lproto_nargs != rproto_nargs)
6788      return QualType();
6789
6790    // Variadic and non-variadic functions aren't compatible
6791    if (lproto->isVariadic() != rproto->isVariadic())
6792      return QualType();
6793
6794    if (lproto->getTypeQuals() != rproto->getTypeQuals())
6795      return QualType();
6796
6797    if (LangOpts.ObjCAutoRefCount &&
6798        !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
6799      return QualType();
6800
6801    // Check argument compatibility
6802    SmallVector<QualType, 10> types;
6803    for (unsigned i = 0; i < lproto_nargs; i++) {
6804      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
6805      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
6806      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
6807                                                    OfBlockPointer,
6808                                                    Unqualified);
6809      if (argtype.isNull()) return QualType();
6810
6811      if (Unqualified)
6812        argtype = argtype.getUnqualifiedType();
6813
6814      types.push_back(argtype);
6815      if (Unqualified) {
6816        largtype = largtype.getUnqualifiedType();
6817        rargtype = rargtype.getUnqualifiedType();
6818      }
6819
6820      if (getCanonicalType(argtype) != getCanonicalType(largtype))
6821        allLTypes = false;
6822      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
6823        allRTypes = false;
6824    }
6825
6826    if (allLTypes) return lhs;
6827    if (allRTypes) return rhs;
6828
6829    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
6830    EPI.ExtInfo = einfo;
6831    return getFunctionType(retType, types, EPI);
6832  }
6833
6834  if (lproto) allRTypes = false;
6835  if (rproto) allLTypes = false;
6836
6837  const FunctionProtoType *proto = lproto ? lproto : rproto;
6838  if (proto) {
6839    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
6840    if (proto->isVariadic()) return QualType();
6841    // Check that the types are compatible with the types that
6842    // would result from default argument promotions (C99 6.7.5.3p15).
6843    // The only types actually affected are promotable integer
6844    // types and floats, which would be passed as a different
6845    // type depending on whether the prototype is visible.
6846    unsigned proto_nargs = proto->getNumArgs();
6847    for (unsigned i = 0; i < proto_nargs; ++i) {
6848      QualType argTy = proto->getArgType(i);
6849
6850      // Look at the converted type of enum types, since that is the type used
6851      // to pass enum values.
6852      if (const EnumType *Enum = argTy->getAs<EnumType>()) {
6853        argTy = Enum->getDecl()->getIntegerType();
6854        if (argTy.isNull())
6855          return QualType();
6856      }
6857
6858      if (argTy->isPromotableIntegerType() ||
6859          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
6860        return QualType();
6861    }
6862
6863    if (allLTypes) return lhs;
6864    if (allRTypes) return rhs;
6865
6866    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
6867    EPI.ExtInfo = einfo;
6868    return getFunctionType(retType,
6869                           ArrayRef<QualType>(proto->arg_type_begin(),
6870                                              proto->getNumArgs()),
6871                           EPI);
6872  }
6873
6874  if (allLTypes) return lhs;
6875  if (allRTypes) return rhs;
6876  return getFunctionNoProtoType(retType, einfo);
6877}
6878
6879/// Given that we have an enum type and a non-enum type, try to merge them.
6880static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET,
6881                                     QualType other, bool isBlockReturnType) {
6882  // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
6883  // a signed integer type, or an unsigned integer type.
6884  // Compatibility is based on the underlying type, not the promotion
6885  // type.
6886  QualType underlyingType = ET->getDecl()->getIntegerType();
6887  if (underlyingType.isNull()) return QualType();
6888  if (Context.hasSameType(underlyingType, other))
6889    return other;
6890
6891  // In block return types, we're more permissive and accept any
6892  // integral type of the same size.
6893  if (isBlockReturnType && other->isIntegerType() &&
6894      Context.getTypeSize(underlyingType) == Context.getTypeSize(other))
6895    return other;
6896
6897  return QualType();
6898}
6899
6900QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
6901                                bool OfBlockPointer,
6902                                bool Unqualified, bool BlockReturnType) {
6903  // C++ [expr]: If an expression initially has the type "reference to T", the
6904  // type is adjusted to "T" prior to any further analysis, the expression
6905  // designates the object or function denoted by the reference, and the
6906  // expression is an lvalue unless the reference is an rvalue reference and
6907  // the expression is a function call (possibly inside parentheses).
6908  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
6909  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
6910
6911  if (Unqualified) {
6912    LHS = LHS.getUnqualifiedType();
6913    RHS = RHS.getUnqualifiedType();
6914  }
6915
6916  QualType LHSCan = getCanonicalType(LHS),
6917           RHSCan = getCanonicalType(RHS);
6918
6919  // If two types are identical, they are compatible.
6920  if (LHSCan == RHSCan)
6921    return LHS;
6922
6923  // If the qualifiers are different, the types aren't compatible... mostly.
6924  Qualifiers LQuals = LHSCan.getLocalQualifiers();
6925  Qualifiers RQuals = RHSCan.getLocalQualifiers();
6926  if (LQuals != RQuals) {
6927    // If any of these qualifiers are different, we have a type
6928    // mismatch.
6929    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
6930        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
6931        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
6932      return QualType();
6933
6934    // Exactly one GC qualifier difference is allowed: __strong is
6935    // okay if the other type has no GC qualifier but is an Objective
6936    // C object pointer (i.e. implicitly strong by default).  We fix
6937    // this by pretending that the unqualified type was actually
6938    // qualified __strong.
6939    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
6940    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
6941    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
6942
6943    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
6944      return QualType();
6945
6946    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
6947      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
6948    }
6949    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
6950      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
6951    }
6952    return QualType();
6953  }
6954
6955  // Okay, qualifiers are equal.
6956
6957  Type::TypeClass LHSClass = LHSCan->getTypeClass();
6958  Type::TypeClass RHSClass = RHSCan->getTypeClass();
6959
6960  // We want to consider the two function types to be the same for these
6961  // comparisons, just force one to the other.
6962  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
6963  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
6964
6965  // Same as above for arrays
6966  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
6967    LHSClass = Type::ConstantArray;
6968  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
6969    RHSClass = Type::ConstantArray;
6970
6971  // ObjCInterfaces are just specialized ObjCObjects.
6972  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
6973  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
6974
6975  // Canonicalize ExtVector -> Vector.
6976  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
6977  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
6978
6979  // If the canonical type classes don't match.
6980  if (LHSClass != RHSClass) {
6981    // Note that we only have special rules for turning block enum
6982    // returns into block int returns, not vice-versa.
6983    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
6984      return mergeEnumWithInteger(*this, ETy, RHS, false);
6985    }
6986    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
6987      return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType);
6988    }
6989    // allow block pointer type to match an 'id' type.
6990    if (OfBlockPointer && !BlockReturnType) {
6991       if (LHS->isObjCIdType() && RHS->isBlockPointerType())
6992         return LHS;
6993      if (RHS->isObjCIdType() && LHS->isBlockPointerType())
6994        return RHS;
6995    }
6996
6997    return QualType();
6998  }
6999
7000  // The canonical type classes match.
7001  switch (LHSClass) {
7002#define TYPE(Class, Base)
7003#define ABSTRACT_TYPE(Class, Base)
7004#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
7005#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
7006#define DEPENDENT_TYPE(Class, Base) case Type::Class:
7007#include "clang/AST/TypeNodes.def"
7008    llvm_unreachable("Non-canonical and dependent types shouldn't get here");
7009
7010  case Type::LValueReference:
7011  case Type::RValueReference:
7012  case Type::MemberPointer:
7013    llvm_unreachable("C++ should never be in mergeTypes");
7014
7015  case Type::ObjCInterface:
7016  case Type::IncompleteArray:
7017  case Type::VariableArray:
7018  case Type::FunctionProto:
7019  case Type::ExtVector:
7020    llvm_unreachable("Types are eliminated above");
7021
7022  case Type::Pointer:
7023  {
7024    // Merge two pointer types, while trying to preserve typedef info
7025    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
7026    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
7027    if (Unqualified) {
7028      LHSPointee = LHSPointee.getUnqualifiedType();
7029      RHSPointee = RHSPointee.getUnqualifiedType();
7030    }
7031    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
7032                                     Unqualified);
7033    if (ResultType.isNull()) return QualType();
7034    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
7035      return LHS;
7036    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
7037      return RHS;
7038    return getPointerType(ResultType);
7039  }
7040  case Type::BlockPointer:
7041  {
7042    // Merge two block pointer types, while trying to preserve typedef info
7043    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
7044    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
7045    if (Unqualified) {
7046      LHSPointee = LHSPointee.getUnqualifiedType();
7047      RHSPointee = RHSPointee.getUnqualifiedType();
7048    }
7049    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
7050                                     Unqualified);
7051    if (ResultType.isNull()) return QualType();
7052    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
7053      return LHS;
7054    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
7055      return RHS;
7056    return getBlockPointerType(ResultType);
7057  }
7058  case Type::Atomic:
7059  {
7060    // Merge two pointer types, while trying to preserve typedef info
7061    QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
7062    QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
7063    if (Unqualified) {
7064      LHSValue = LHSValue.getUnqualifiedType();
7065      RHSValue = RHSValue.getUnqualifiedType();
7066    }
7067    QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
7068                                     Unqualified);
7069    if (ResultType.isNull()) return QualType();
7070    if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
7071      return LHS;
7072    if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
7073      return RHS;
7074    return getAtomicType(ResultType);
7075  }
7076  case Type::ConstantArray:
7077  {
7078    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
7079    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
7080    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
7081      return QualType();
7082
7083    QualType LHSElem = getAsArrayType(LHS)->getElementType();
7084    QualType RHSElem = getAsArrayType(RHS)->getElementType();
7085    if (Unqualified) {
7086      LHSElem = LHSElem.getUnqualifiedType();
7087      RHSElem = RHSElem.getUnqualifiedType();
7088    }
7089
7090    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
7091    if (ResultType.isNull()) return QualType();
7092    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7093      return LHS;
7094    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7095      return RHS;
7096    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
7097                                          ArrayType::ArraySizeModifier(), 0);
7098    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
7099                                          ArrayType::ArraySizeModifier(), 0);
7100    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
7101    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
7102    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7103      return LHS;
7104    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7105      return RHS;
7106    if (LVAT) {
7107      // FIXME: This isn't correct! But tricky to implement because
7108      // the array's size has to be the size of LHS, but the type
7109      // has to be different.
7110      return LHS;
7111    }
7112    if (RVAT) {
7113      // FIXME: This isn't correct! But tricky to implement because
7114      // the array's size has to be the size of RHS, but the type
7115      // has to be different.
7116      return RHS;
7117    }
7118    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
7119    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
7120    return getIncompleteArrayType(ResultType,
7121                                  ArrayType::ArraySizeModifier(), 0);
7122  }
7123  case Type::FunctionNoProto:
7124    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
7125  case Type::Record:
7126  case Type::Enum:
7127    return QualType();
7128  case Type::Builtin:
7129    // Only exactly equal builtin types are compatible, which is tested above.
7130    return QualType();
7131  case Type::Complex:
7132    // Distinct complex types are incompatible.
7133    return QualType();
7134  case Type::Vector:
7135    // FIXME: The merged type should be an ExtVector!
7136    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
7137                             RHSCan->getAs<VectorType>()))
7138      return LHS;
7139    return QualType();
7140  case Type::ObjCObject: {
7141    // Check if the types are assignment compatible.
7142    // FIXME: This should be type compatibility, e.g. whether
7143    // "LHS x; RHS x;" at global scope is legal.
7144    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
7145    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
7146    if (canAssignObjCInterfaces(LHSIface, RHSIface))
7147      return LHS;
7148
7149    return QualType();
7150  }
7151  case Type::ObjCObjectPointer: {
7152    if (OfBlockPointer) {
7153      if (canAssignObjCInterfacesInBlockPointer(
7154                                          LHS->getAs<ObjCObjectPointerType>(),
7155                                          RHS->getAs<ObjCObjectPointerType>(),
7156                                          BlockReturnType))
7157        return LHS;
7158      return QualType();
7159    }
7160    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
7161                                RHS->getAs<ObjCObjectPointerType>()))
7162      return LHS;
7163
7164    return QualType();
7165  }
7166  }
7167
7168  llvm_unreachable("Invalid Type::Class!");
7169}
7170
7171bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
7172                   const FunctionProtoType *FromFunctionType,
7173                   const FunctionProtoType *ToFunctionType) {
7174  if (FromFunctionType->hasAnyConsumedArgs() !=
7175      ToFunctionType->hasAnyConsumedArgs())
7176    return false;
7177  FunctionProtoType::ExtProtoInfo FromEPI =
7178    FromFunctionType->getExtProtoInfo();
7179  FunctionProtoType::ExtProtoInfo ToEPI =
7180    ToFunctionType->getExtProtoInfo();
7181  if (FromEPI.ConsumedArguments && ToEPI.ConsumedArguments)
7182    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
7183         ArgIdx != NumArgs; ++ArgIdx)  {
7184      if (FromEPI.ConsumedArguments[ArgIdx] !=
7185          ToEPI.ConsumedArguments[ArgIdx])
7186        return false;
7187    }
7188  return true;
7189}
7190
7191/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
7192/// 'RHS' attributes and returns the merged version; including for function
7193/// return types.
7194QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
7195  QualType LHSCan = getCanonicalType(LHS),
7196  RHSCan = getCanonicalType(RHS);
7197  // If two types are identical, they are compatible.
7198  if (LHSCan == RHSCan)
7199    return LHS;
7200  if (RHSCan->isFunctionType()) {
7201    if (!LHSCan->isFunctionType())
7202      return QualType();
7203    QualType OldReturnType =
7204      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
7205    QualType NewReturnType =
7206      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
7207    QualType ResReturnType =
7208      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
7209    if (ResReturnType.isNull())
7210      return QualType();
7211    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
7212      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
7213      // In either case, use OldReturnType to build the new function type.
7214      const FunctionType *F = LHS->getAs<FunctionType>();
7215      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
7216        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7217        EPI.ExtInfo = getFunctionExtInfo(LHS);
7218        QualType ResultType
7219          = getFunctionType(OldReturnType,
7220                            ArrayRef<QualType>(FPT->arg_type_begin(),
7221                                               FPT->getNumArgs()),
7222                            EPI);
7223        return ResultType;
7224      }
7225    }
7226    return QualType();
7227  }
7228
7229  // If the qualifiers are different, the types can still be merged.
7230  Qualifiers LQuals = LHSCan.getLocalQualifiers();
7231  Qualifiers RQuals = RHSCan.getLocalQualifiers();
7232  if (LQuals != RQuals) {
7233    // If any of these qualifiers are different, we have a type mismatch.
7234    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7235        LQuals.getAddressSpace() != RQuals.getAddressSpace())
7236      return QualType();
7237
7238    // Exactly one GC qualifier difference is allowed: __strong is
7239    // okay if the other type has no GC qualifier but is an Objective
7240    // C object pointer (i.e. implicitly strong by default).  We fix
7241    // this by pretending that the unqualified type was actually
7242    // qualified __strong.
7243    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7244    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7245    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
7246
7247    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7248      return QualType();
7249
7250    if (GC_L == Qualifiers::Strong)
7251      return LHS;
7252    if (GC_R == Qualifiers::Strong)
7253      return RHS;
7254    return QualType();
7255  }
7256
7257  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
7258    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7259    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7260    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
7261    if (ResQT == LHSBaseQT)
7262      return LHS;
7263    if (ResQT == RHSBaseQT)
7264      return RHS;
7265  }
7266  return QualType();
7267}
7268
7269//===----------------------------------------------------------------------===//
7270//                         Integer Predicates
7271//===----------------------------------------------------------------------===//
7272
7273unsigned ASTContext::getIntWidth(QualType T) const {
7274  if (const EnumType *ET = dyn_cast<EnumType>(T))
7275    T = ET->getDecl()->getIntegerType();
7276  if (T->isBooleanType())
7277    return 1;
7278  // For builtin types, just use the standard type sizing method
7279  return (unsigned)getTypeSize(T);
7280}
7281
7282QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
7283  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
7284
7285  // Turn <4 x signed int> -> <4 x unsigned int>
7286  if (const VectorType *VTy = T->getAs<VectorType>())
7287    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
7288                         VTy->getNumElements(), VTy->getVectorKind());
7289
7290  // For enums, we return the unsigned version of the base type.
7291  if (const EnumType *ETy = T->getAs<EnumType>())
7292    T = ETy->getDecl()->getIntegerType();
7293
7294  const BuiltinType *BTy = T->getAs<BuiltinType>();
7295  assert(BTy && "Unexpected signed integer type");
7296  switch (BTy->getKind()) {
7297  case BuiltinType::Char_S:
7298  case BuiltinType::SChar:
7299    return UnsignedCharTy;
7300  case BuiltinType::Short:
7301    return UnsignedShortTy;
7302  case BuiltinType::Int:
7303    return UnsignedIntTy;
7304  case BuiltinType::Long:
7305    return UnsignedLongTy;
7306  case BuiltinType::LongLong:
7307    return UnsignedLongLongTy;
7308  case BuiltinType::Int128:
7309    return UnsignedInt128Ty;
7310  default:
7311    llvm_unreachable("Unexpected signed integer type");
7312  }
7313}
7314
7315ASTMutationListener::~ASTMutationListener() { }
7316
7317
7318//===----------------------------------------------------------------------===//
7319//                          Builtin Type Computation
7320//===----------------------------------------------------------------------===//
7321
7322/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
7323/// pointer over the consumed characters.  This returns the resultant type.  If
7324/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
7325/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
7326/// a vector of "i*".
7327///
7328/// RequiresICE is filled in on return to indicate whether the value is required
7329/// to be an Integer Constant Expression.
7330static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
7331                                  ASTContext::GetBuiltinTypeError &Error,
7332                                  bool &RequiresICE,
7333                                  bool AllowTypeModifiers) {
7334  // Modifiers.
7335  int HowLong = 0;
7336  bool Signed = false, Unsigned = false;
7337  RequiresICE = false;
7338
7339  // Read the prefixed modifiers first.
7340  bool Done = false;
7341  while (!Done) {
7342    switch (*Str++) {
7343    default: Done = true; --Str; break;
7344    case 'I':
7345      RequiresICE = true;
7346      break;
7347    case 'S':
7348      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
7349      assert(!Signed && "Can't use 'S' modifier multiple times!");
7350      Signed = true;
7351      break;
7352    case 'U':
7353      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
7354      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
7355      Unsigned = true;
7356      break;
7357    case 'L':
7358      assert(HowLong <= 2 && "Can't have LLLL modifier");
7359      ++HowLong;
7360      break;
7361    }
7362  }
7363
7364  QualType Type;
7365
7366  // Read the base type.
7367  switch (*Str++) {
7368  default: llvm_unreachable("Unknown builtin type letter!");
7369  case 'v':
7370    assert(HowLong == 0 && !Signed && !Unsigned &&
7371           "Bad modifiers used with 'v'!");
7372    Type = Context.VoidTy;
7373    break;
7374  case 'f':
7375    assert(HowLong == 0 && !Signed && !Unsigned &&
7376           "Bad modifiers used with 'f'!");
7377    Type = Context.FloatTy;
7378    break;
7379  case 'd':
7380    assert(HowLong < 2 && !Signed && !Unsigned &&
7381           "Bad modifiers used with 'd'!");
7382    if (HowLong)
7383      Type = Context.LongDoubleTy;
7384    else
7385      Type = Context.DoubleTy;
7386    break;
7387  case 's':
7388    assert(HowLong == 0 && "Bad modifiers used with 's'!");
7389    if (Unsigned)
7390      Type = Context.UnsignedShortTy;
7391    else
7392      Type = Context.ShortTy;
7393    break;
7394  case 'i':
7395    if (HowLong == 3)
7396      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
7397    else if (HowLong == 2)
7398      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
7399    else if (HowLong == 1)
7400      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
7401    else
7402      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
7403    break;
7404  case 'c':
7405    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
7406    if (Signed)
7407      Type = Context.SignedCharTy;
7408    else if (Unsigned)
7409      Type = Context.UnsignedCharTy;
7410    else
7411      Type = Context.CharTy;
7412    break;
7413  case 'b': // boolean
7414    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
7415    Type = Context.BoolTy;
7416    break;
7417  case 'z':  // size_t.
7418    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
7419    Type = Context.getSizeType();
7420    break;
7421  case 'F':
7422    Type = Context.getCFConstantStringType();
7423    break;
7424  case 'G':
7425    Type = Context.getObjCIdType();
7426    break;
7427  case 'H':
7428    Type = Context.getObjCSelType();
7429    break;
7430  case 'M':
7431    Type = Context.getObjCSuperType();
7432    break;
7433  case 'a':
7434    Type = Context.getBuiltinVaListType();
7435    assert(!Type.isNull() && "builtin va list type not initialized!");
7436    break;
7437  case 'A':
7438    // This is a "reference" to a va_list; however, what exactly
7439    // this means depends on how va_list is defined. There are two
7440    // different kinds of va_list: ones passed by value, and ones
7441    // passed by reference.  An example of a by-value va_list is
7442    // x86, where va_list is a char*. An example of by-ref va_list
7443    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
7444    // we want this argument to be a char*&; for x86-64, we want
7445    // it to be a __va_list_tag*.
7446    Type = Context.getBuiltinVaListType();
7447    assert(!Type.isNull() && "builtin va list type not initialized!");
7448    if (Type->isArrayType())
7449      Type = Context.getArrayDecayedType(Type);
7450    else
7451      Type = Context.getLValueReferenceType(Type);
7452    break;
7453  case 'V': {
7454    char *End;
7455    unsigned NumElements = strtoul(Str, &End, 10);
7456    assert(End != Str && "Missing vector size");
7457    Str = End;
7458
7459    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
7460                                             RequiresICE, false);
7461    assert(!RequiresICE && "Can't require vector ICE");
7462
7463    // TODO: No way to make AltiVec vectors in builtins yet.
7464    Type = Context.getVectorType(ElementType, NumElements,
7465                                 VectorType::GenericVector);
7466    break;
7467  }
7468  case 'E': {
7469    char *End;
7470
7471    unsigned NumElements = strtoul(Str, &End, 10);
7472    assert(End != Str && "Missing vector size");
7473
7474    Str = End;
7475
7476    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7477                                             false);
7478    Type = Context.getExtVectorType(ElementType, NumElements);
7479    break;
7480  }
7481  case 'X': {
7482    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7483                                             false);
7484    assert(!RequiresICE && "Can't require complex ICE");
7485    Type = Context.getComplexType(ElementType);
7486    break;
7487  }
7488  case 'Y' : {
7489    Type = Context.getPointerDiffType();
7490    break;
7491  }
7492  case 'P':
7493    Type = Context.getFILEType();
7494    if (Type.isNull()) {
7495      Error = ASTContext::GE_Missing_stdio;
7496      return QualType();
7497    }
7498    break;
7499  case 'J':
7500    if (Signed)
7501      Type = Context.getsigjmp_bufType();
7502    else
7503      Type = Context.getjmp_bufType();
7504
7505    if (Type.isNull()) {
7506      Error = ASTContext::GE_Missing_setjmp;
7507      return QualType();
7508    }
7509    break;
7510  case 'K':
7511    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
7512    Type = Context.getucontext_tType();
7513
7514    if (Type.isNull()) {
7515      Error = ASTContext::GE_Missing_ucontext;
7516      return QualType();
7517    }
7518    break;
7519  case 'p':
7520    Type = Context.getProcessIDType();
7521    break;
7522  }
7523
7524  // If there are modifiers and if we're allowed to parse them, go for it.
7525  Done = !AllowTypeModifiers;
7526  while (!Done) {
7527    switch (char c = *Str++) {
7528    default: Done = true; --Str; break;
7529    case '*':
7530    case '&': {
7531      // Both pointers and references can have their pointee types
7532      // qualified with an address space.
7533      char *End;
7534      unsigned AddrSpace = strtoul(Str, &End, 10);
7535      if (End != Str && AddrSpace != 0) {
7536        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
7537        Str = End;
7538      }
7539      if (c == '*')
7540        Type = Context.getPointerType(Type);
7541      else
7542        Type = Context.getLValueReferenceType(Type);
7543      break;
7544    }
7545    // FIXME: There's no way to have a built-in with an rvalue ref arg.
7546    case 'C':
7547      Type = Type.withConst();
7548      break;
7549    case 'D':
7550      Type = Context.getVolatileType(Type);
7551      break;
7552    case 'R':
7553      Type = Type.withRestrict();
7554      break;
7555    }
7556  }
7557
7558  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
7559         "Integer constant 'I' type must be an integer");
7560
7561  return Type;
7562}
7563
7564/// GetBuiltinType - Return the type for the specified builtin.
7565QualType ASTContext::GetBuiltinType(unsigned Id,
7566                                    GetBuiltinTypeError &Error,
7567                                    unsigned *IntegerConstantArgs) const {
7568  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
7569
7570  SmallVector<QualType, 8> ArgTypes;
7571
7572  bool RequiresICE = false;
7573  Error = GE_None;
7574  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
7575                                       RequiresICE, true);
7576  if (Error != GE_None)
7577    return QualType();
7578
7579  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
7580
7581  while (TypeStr[0] && TypeStr[0] != '.') {
7582    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
7583    if (Error != GE_None)
7584      return QualType();
7585
7586    // If this argument is required to be an IntegerConstantExpression and the
7587    // caller cares, fill in the bitmask we return.
7588    if (RequiresICE && IntegerConstantArgs)
7589      *IntegerConstantArgs |= 1 << ArgTypes.size();
7590
7591    // Do array -> pointer decay.  The builtin should use the decayed type.
7592    if (Ty->isArrayType())
7593      Ty = getArrayDecayedType(Ty);
7594
7595    ArgTypes.push_back(Ty);
7596  }
7597
7598  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
7599         "'.' should only occur at end of builtin type list!");
7600
7601  FunctionType::ExtInfo EI;
7602  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
7603
7604  bool Variadic = (TypeStr[0] == '.');
7605
7606  // We really shouldn't be making a no-proto type here, especially in C++.
7607  if (ArgTypes.empty() && Variadic)
7608    return getFunctionNoProtoType(ResType, EI);
7609
7610  FunctionProtoType::ExtProtoInfo EPI;
7611  EPI.ExtInfo = EI;
7612  EPI.Variadic = Variadic;
7613
7614  return getFunctionType(ResType, ArgTypes, EPI);
7615}
7616
7617GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
7618  GVALinkage External = GVA_StrongExternal;
7619
7620  Linkage L = FD->getLinkage();
7621  switch (L) {
7622  case NoLinkage:
7623  case InternalLinkage:
7624  case UniqueExternalLinkage:
7625    return GVA_Internal;
7626
7627  case ExternalLinkage:
7628    switch (FD->getTemplateSpecializationKind()) {
7629    case TSK_Undeclared:
7630    case TSK_ExplicitSpecialization:
7631      External = GVA_StrongExternal;
7632      break;
7633
7634    case TSK_ExplicitInstantiationDefinition:
7635      return GVA_ExplicitTemplateInstantiation;
7636
7637    case TSK_ExplicitInstantiationDeclaration:
7638    case TSK_ImplicitInstantiation:
7639      External = GVA_TemplateInstantiation;
7640      break;
7641    }
7642  }
7643
7644  if (!FD->isInlined())
7645    return External;
7646
7647  if (!getLangOpts().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
7648    // GNU or C99 inline semantics. Determine whether this symbol should be
7649    // externally visible.
7650    if (FD->isInlineDefinitionExternallyVisible())
7651      return External;
7652
7653    // C99 inline semantics, where the symbol is not externally visible.
7654    return GVA_C99Inline;
7655  }
7656
7657  // C++0x [temp.explicit]p9:
7658  //   [ Note: The intent is that an inline function that is the subject of
7659  //   an explicit instantiation declaration will still be implicitly
7660  //   instantiated when used so that the body can be considered for
7661  //   inlining, but that no out-of-line copy of the inline function would be
7662  //   generated in the translation unit. -- end note ]
7663  if (FD->getTemplateSpecializationKind()
7664                                       == TSK_ExplicitInstantiationDeclaration)
7665    return GVA_C99Inline;
7666
7667  return GVA_CXXInline;
7668}
7669
7670GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
7671  // If this is a static data member, compute the kind of template
7672  // specialization. Otherwise, this variable is not part of a
7673  // template.
7674  TemplateSpecializationKind TSK = TSK_Undeclared;
7675  if (VD->isStaticDataMember())
7676    TSK = VD->getTemplateSpecializationKind();
7677
7678  Linkage L = VD->getLinkage();
7679
7680  switch (L) {
7681  case NoLinkage:
7682  case InternalLinkage:
7683  case UniqueExternalLinkage:
7684    return GVA_Internal;
7685
7686  case ExternalLinkage:
7687    switch (TSK) {
7688    case TSK_Undeclared:
7689    case TSK_ExplicitSpecialization:
7690      return GVA_StrongExternal;
7691
7692    case TSK_ExplicitInstantiationDeclaration:
7693      llvm_unreachable("Variable should not be instantiated");
7694      // Fall through to treat this like any other instantiation.
7695
7696    case TSK_ExplicitInstantiationDefinition:
7697      return GVA_ExplicitTemplateInstantiation;
7698
7699    case TSK_ImplicitInstantiation:
7700      return GVA_TemplateInstantiation;
7701    }
7702  }
7703
7704  llvm_unreachable("Invalid Linkage!");
7705}
7706
7707bool ASTContext::DeclMustBeEmitted(const Decl *D) {
7708  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7709    if (!VD->isFileVarDecl())
7710      return false;
7711  } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7712    // We never need to emit an uninstantiated function template.
7713    if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
7714      return false;
7715  } else
7716    return false;
7717
7718  // If this is a member of a class template, we do not need to emit it.
7719  if (D->getDeclContext()->isDependentContext())
7720    return false;
7721
7722  // Weak references don't produce any output by themselves.
7723  if (D->hasAttr<WeakRefAttr>())
7724    return false;
7725
7726  // Aliases and used decls are required.
7727  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
7728    return true;
7729
7730  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7731    // Forward declarations aren't required.
7732    if (!FD->doesThisDeclarationHaveABody())
7733      return FD->doesDeclarationForceExternallyVisibleDefinition();
7734
7735    // Constructors and destructors are required.
7736    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
7737      return true;
7738
7739    // The key function for a class is required.  This rule only comes
7740    // into play when inline functions can be key functions, though.
7741    if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
7742      if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
7743        const CXXRecordDecl *RD = MD->getParent();
7744        if (MD->isOutOfLine() && RD->isDynamicClass()) {
7745          const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
7746          if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
7747            return true;
7748        }
7749      }
7750    }
7751
7752    GVALinkage Linkage = GetGVALinkageForFunction(FD);
7753
7754    // static, static inline, always_inline, and extern inline functions can
7755    // always be deferred.  Normal inline functions can be deferred in C99/C++.
7756    // Implicit template instantiations can also be deferred in C++.
7757    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
7758        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
7759      return false;
7760    return true;
7761  }
7762
7763  const VarDecl *VD = cast<VarDecl>(D);
7764  assert(VD->isFileVarDecl() && "Expected file scoped var");
7765
7766  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
7767    return false;
7768
7769  // Variables that can be needed in other TUs are required.
7770  GVALinkage L = GetGVALinkageForVariable(VD);
7771  if (L != GVA_Internal && L != GVA_TemplateInstantiation)
7772    return true;
7773
7774  // Variables that have destruction with side-effects are required.
7775  if (VD->getType().isDestructedType())
7776    return true;
7777
7778  // Variables that have initialization with side-effects are required.
7779  if (VD->getInit() && VD->getInit()->HasSideEffects(*this))
7780    return true;
7781
7782  return false;
7783}
7784
7785CallingConv ASTContext::getDefaultCXXMethodCallConv(bool isVariadic) {
7786  // Pass through to the C++ ABI object
7787  return ABI->getDefaultMethodCallConv(isVariadic);
7788}
7789
7790CallingConv ASTContext::getCanonicalCallConv(CallingConv CC) const {
7791  if (CC == CC_C && !LangOpts.MRTD &&
7792      getTargetInfo().getCXXABI().isMemberFunctionCCDefault())
7793    return CC_Default;
7794  return CC;
7795}
7796
7797bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
7798  // Pass through to the C++ ABI object
7799  return ABI->isNearlyEmpty(RD);
7800}
7801
7802MangleContext *ASTContext::createMangleContext() {
7803  switch (Target->getCXXABI().getKind()) {
7804  case TargetCXXABI::GenericAArch64:
7805  case TargetCXXABI::GenericItanium:
7806  case TargetCXXABI::GenericARM:
7807  case TargetCXXABI::iOS:
7808    return createItaniumMangleContext(*this, getDiagnostics());
7809  case TargetCXXABI::Microsoft:
7810    return createMicrosoftMangleContext(*this, getDiagnostics());
7811  }
7812  llvm_unreachable("Unsupported ABI");
7813}
7814
7815CXXABI::~CXXABI() {}
7816
7817size_t ASTContext::getSideTableAllocatedMemory() const {
7818  return ASTRecordLayouts.getMemorySize()
7819    + llvm::capacity_in_bytes(ObjCLayouts)
7820    + llvm::capacity_in_bytes(KeyFunctions)
7821    + llvm::capacity_in_bytes(ObjCImpls)
7822    + llvm::capacity_in_bytes(BlockVarCopyInits)
7823    + llvm::capacity_in_bytes(DeclAttrs)
7824    + llvm::capacity_in_bytes(InstantiatedFromStaticDataMember)
7825    + llvm::capacity_in_bytes(InstantiatedFromUsingDecl)
7826    + llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl)
7827    + llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl)
7828    + llvm::capacity_in_bytes(OverriddenMethods)
7829    + llvm::capacity_in_bytes(Types)
7830    + llvm::capacity_in_bytes(VariableArrayTypes)
7831    + llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
7832}
7833
7834void ASTContext::addUnnamedTag(const TagDecl *Tag) {
7835  // FIXME: This mangling should be applied to function local classes too
7836  if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl() ||
7837      !isa<CXXRecordDecl>(Tag->getParent()) || Tag->getLinkage() != ExternalLinkage)
7838    return;
7839
7840  std::pair<llvm::DenseMap<const DeclContext *, unsigned>::iterator, bool> P =
7841    UnnamedMangleContexts.insert(std::make_pair(Tag->getParent(), 0));
7842  UnnamedMangleNumbers.insert(std::make_pair(Tag, P.first->second++));
7843}
7844
7845int ASTContext::getUnnamedTagManglingNumber(const TagDecl *Tag) const {
7846  llvm::DenseMap<const TagDecl *, unsigned>::const_iterator I =
7847    UnnamedMangleNumbers.find(Tag);
7848  return I != UnnamedMangleNumbers.end() ? I->second : -1;
7849}
7850
7851unsigned ASTContext::getLambdaManglingNumber(CXXMethodDecl *CallOperator) {
7852  CXXRecordDecl *Lambda = CallOperator->getParent();
7853  return LambdaMangleContexts[Lambda->getDeclContext()]
7854           .getManglingNumber(CallOperator);
7855}
7856
7857
7858void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
7859  ParamIndices[D] = index;
7860}
7861
7862unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
7863  ParameterIndexTable::const_iterator I = ParamIndices.find(D);
7864  assert(I != ParamIndices.end() &&
7865         "ParmIndices lacks entry set by ParmVarDecl");
7866  return I->second;
7867}
7868