ASTContext.cpp revision 184d7900e0202ac468710b731e42075129bb6000
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExternalASTSource.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/Basic/Builtins.h"
24#include "clang/Basic/SourceManager.h"
25#include "clang/Basic/TargetInfo.h"
26#include "llvm/ADT/SmallString.h"
27#include "llvm/ADT/StringExtras.h"
28#include "llvm/Support/MathExtras.h"
29#include "llvm/Support/raw_ostream.h"
30#include "RecordLayoutBuilder.h"
31
32using namespace clang;
33
34enum FloatingRank {
35  FloatRank, DoubleRank, LongDoubleRank
36};
37
38ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
39                       const TargetInfo &t,
40                       IdentifierTable &idents, SelectorTable &sels,
41                       Builtin::Context &builtins,
42                       bool FreeMem, unsigned size_reserve) :
43  GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
44  NSConstantStringTypeDecl(0),
45  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0), jmp_bufDecl(0),
46  sigjmp_bufDecl(0), BlockDescriptorType(0), BlockDescriptorExtendedType(0),
47  SourceMgr(SM), LangOpts(LOpts), FreeMemory(FreeMem), Target(t),
48  Idents(idents), Selectors(sels),
49  BuiltinInfo(builtins), ExternalSource(0), PrintingPolicy(LOpts),
50  LastSDM(0, 0) {
51  ObjCIdRedefinitionType = QualType();
52  ObjCClassRedefinitionType = QualType();
53  ObjCSelRedefinitionType = QualType();
54  if (size_reserve > 0) Types.reserve(size_reserve);
55  TUDecl = TranslationUnitDecl::Create(*this);
56  InitBuiltinTypes();
57}
58
59ASTContext::~ASTContext() {
60  // Release the DenseMaps associated with DeclContext objects.
61  // FIXME: Is this the ideal solution?
62  ReleaseDeclContextMaps();
63
64  // Release all of the memory associated with overridden C++ methods.
65  for (llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::iterator
66         OM = OverriddenMethods.begin(), OMEnd = OverriddenMethods.end();
67       OM != OMEnd; ++OM)
68    OM->second.Destroy();
69
70  if (FreeMemory) {
71    // Deallocate all the types.
72    while (!Types.empty()) {
73      Types.back()->Destroy(*this);
74      Types.pop_back();
75    }
76
77    for (llvm::FoldingSet<ExtQuals>::iterator
78         I = ExtQualNodes.begin(), E = ExtQualNodes.end(); I != E; ) {
79      // Increment in loop to prevent using deallocated memory.
80      Deallocate(&*I++);
81    }
82
83    for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
84         I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
85      // Increment in loop to prevent using deallocated memory.
86      if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
87        R->Destroy(*this);
88    }
89
90    for (llvm::DenseMap<const ObjCContainerDecl*,
91         const ASTRecordLayout*>::iterator
92         I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; ) {
93      // Increment in loop to prevent using deallocated memory.
94      if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
95        R->Destroy(*this);
96    }
97  }
98
99  // Destroy nested-name-specifiers.
100  for (llvm::FoldingSet<NestedNameSpecifier>::iterator
101         NNS = NestedNameSpecifiers.begin(),
102         NNSEnd = NestedNameSpecifiers.end();
103       NNS != NNSEnd; ) {
104    // Increment in loop to prevent using deallocated memory.
105    (*NNS++).Destroy(*this);
106  }
107
108  if (GlobalNestedNameSpecifier)
109    GlobalNestedNameSpecifier->Destroy(*this);
110
111  TUDecl->Destroy(*this);
112}
113
114void
115ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
116  ExternalSource.reset(Source.take());
117}
118
119void ASTContext::PrintStats() const {
120  fprintf(stderr, "*** AST Context Stats:\n");
121  fprintf(stderr, "  %d types total.\n", (int)Types.size());
122
123  unsigned counts[] = {
124#define TYPE(Name, Parent) 0,
125#define ABSTRACT_TYPE(Name, Parent)
126#include "clang/AST/TypeNodes.def"
127    0 // Extra
128  };
129
130  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
131    Type *T = Types[i];
132    counts[(unsigned)T->getTypeClass()]++;
133  }
134
135  unsigned Idx = 0;
136  unsigned TotalBytes = 0;
137#define TYPE(Name, Parent)                                              \
138  if (counts[Idx])                                                      \
139    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
140  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
141  ++Idx;
142#define ABSTRACT_TYPE(Name, Parent)
143#include "clang/AST/TypeNodes.def"
144
145  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
146
147  if (ExternalSource.get()) {
148    fprintf(stderr, "\n");
149    ExternalSource->PrintStats();
150  }
151}
152
153
154void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
155  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
156  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
157  Types.push_back(Ty);
158}
159
160void ASTContext::InitBuiltinTypes() {
161  assert(VoidTy.isNull() && "Context reinitialized?");
162
163  // C99 6.2.5p19.
164  InitBuiltinType(VoidTy,              BuiltinType::Void);
165
166  // C99 6.2.5p2.
167  InitBuiltinType(BoolTy,              BuiltinType::Bool);
168  // C99 6.2.5p3.
169  if (LangOpts.CharIsSigned)
170    InitBuiltinType(CharTy,            BuiltinType::Char_S);
171  else
172    InitBuiltinType(CharTy,            BuiltinType::Char_U);
173  // C99 6.2.5p4.
174  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
175  InitBuiltinType(ShortTy,             BuiltinType::Short);
176  InitBuiltinType(IntTy,               BuiltinType::Int);
177  InitBuiltinType(LongTy,              BuiltinType::Long);
178  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
179
180  // C99 6.2.5p6.
181  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
182  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
183  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
184  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
185  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
186
187  // C99 6.2.5p10.
188  InitBuiltinType(FloatTy,             BuiltinType::Float);
189  InitBuiltinType(DoubleTy,            BuiltinType::Double);
190  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
191
192  // GNU extension, 128-bit integers.
193  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
194  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
195
196  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
197    InitBuiltinType(WCharTy,           BuiltinType::WChar);
198  else // C99
199    WCharTy = getFromTargetType(Target.getWCharType());
200
201  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
202    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
203  else // C99
204    Char16Ty = getFromTargetType(Target.getChar16Type());
205
206  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
207    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
208  else // C99
209    Char32Ty = getFromTargetType(Target.getChar32Type());
210
211  // Placeholder type for functions.
212  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
213
214  // Placeholder type for type-dependent expressions whose type is
215  // completely unknown. No code should ever check a type against
216  // DependentTy and users should never see it; however, it is here to
217  // help diagnose failures to properly check for type-dependent
218  // expressions.
219  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
220
221  // Placeholder type for C++0x auto declarations whose real type has
222  // not yet been deduced.
223  InitBuiltinType(UndeducedAutoTy, BuiltinType::UndeducedAuto);
224
225  // C99 6.2.5p11.
226  FloatComplexTy      = getComplexType(FloatTy);
227  DoubleComplexTy     = getComplexType(DoubleTy);
228  LongDoubleComplexTy = getComplexType(LongDoubleTy);
229
230  BuiltinVaListType = QualType();
231
232  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
233  ObjCIdTypedefType = QualType();
234  ObjCClassTypedefType = QualType();
235  ObjCSelTypedefType = QualType();
236
237  // Builtin types for 'id', 'Class', and 'SEL'.
238  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
239  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
240  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
241
242  ObjCConstantStringType = QualType();
243
244  // void * type
245  VoidPtrTy = getPointerType(VoidTy);
246
247  // nullptr type (C++0x 2.14.7)
248  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
249}
250
251MemberSpecializationInfo *
252ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
253  assert(Var->isStaticDataMember() && "Not a static data member");
254  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
255    = InstantiatedFromStaticDataMember.find(Var);
256  if (Pos == InstantiatedFromStaticDataMember.end())
257    return 0;
258
259  return Pos->second;
260}
261
262void
263ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
264                                                TemplateSpecializationKind TSK) {
265  assert(Inst->isStaticDataMember() && "Not a static data member");
266  assert(Tmpl->isStaticDataMember() && "Not a static data member");
267  assert(!InstantiatedFromStaticDataMember[Inst] &&
268         "Already noted what static data member was instantiated from");
269  InstantiatedFromStaticDataMember[Inst]
270    = new (*this) MemberSpecializationInfo(Tmpl, TSK);
271}
272
273NamedDecl *
274ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
275  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
276    = InstantiatedFromUsingDecl.find(UUD);
277  if (Pos == InstantiatedFromUsingDecl.end())
278    return 0;
279
280  return Pos->second;
281}
282
283void
284ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
285  assert((isa<UsingDecl>(Pattern) ||
286          isa<UnresolvedUsingValueDecl>(Pattern) ||
287          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
288         "pattern decl is not a using decl");
289  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
290  InstantiatedFromUsingDecl[Inst] = Pattern;
291}
292
293UsingShadowDecl *
294ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
295  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
296    = InstantiatedFromUsingShadowDecl.find(Inst);
297  if (Pos == InstantiatedFromUsingShadowDecl.end())
298    return 0;
299
300  return Pos->second;
301}
302
303void
304ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
305                                               UsingShadowDecl *Pattern) {
306  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
307  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
308}
309
310FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
311  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
312    = InstantiatedFromUnnamedFieldDecl.find(Field);
313  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
314    return 0;
315
316  return Pos->second;
317}
318
319void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
320                                                     FieldDecl *Tmpl) {
321  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
322  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
323  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
324         "Already noted what unnamed field was instantiated from");
325
326  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
327}
328
329ASTContext::overridden_cxx_method_iterator
330ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
331  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
332    = OverriddenMethods.find(Method);
333  if (Pos == OverriddenMethods.end())
334    return 0;
335
336  return Pos->second.begin();
337}
338
339ASTContext::overridden_cxx_method_iterator
340ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
341  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
342    = OverriddenMethods.find(Method);
343  if (Pos == OverriddenMethods.end())
344    return 0;
345
346  return Pos->second.end();
347}
348
349void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
350                                     const CXXMethodDecl *Overridden) {
351  OverriddenMethods[Method].push_back(Overridden);
352}
353
354namespace {
355  class BeforeInTranslationUnit
356    : std::binary_function<SourceRange, SourceRange, bool> {
357    SourceManager *SourceMgr;
358
359  public:
360    explicit BeforeInTranslationUnit(SourceManager *SM) : SourceMgr(SM) { }
361
362    bool operator()(SourceRange X, SourceRange Y) {
363      return SourceMgr->isBeforeInTranslationUnit(X.getBegin(), Y.getBegin());
364    }
365  };
366}
367
368//===----------------------------------------------------------------------===//
369//                         Type Sizing and Analysis
370//===----------------------------------------------------------------------===//
371
372/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
373/// scalar floating point type.
374const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
375  const BuiltinType *BT = T->getAs<BuiltinType>();
376  assert(BT && "Not a floating point type!");
377  switch (BT->getKind()) {
378  default: assert(0 && "Not a floating point type!");
379  case BuiltinType::Float:      return Target.getFloatFormat();
380  case BuiltinType::Double:     return Target.getDoubleFormat();
381  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
382  }
383}
384
385/// getDeclAlign - Return a conservative estimate of the alignment of the
386/// specified decl.  Note that bitfields do not have a valid alignment, so
387/// this method will assert on them.
388/// If @p RefAsPointee, references are treated like their underlying type
389/// (for alignof), else they're treated like pointers (for CodeGen).
390CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) {
391  unsigned Align = Target.getCharWidth();
392
393  if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
394    Align = std::max(Align, AA->getMaxAlignment());
395
396  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
397    QualType T = VD->getType();
398    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
399      if (RefAsPointee)
400        T = RT->getPointeeType();
401      else
402        T = getPointerType(RT->getPointeeType());
403    }
404    if (!T->isIncompleteType() && !T->isFunctionType()) {
405      // Incomplete or function types default to 1.
406      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
407        T = cast<ArrayType>(T)->getElementType();
408
409      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
410    }
411    if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
412      // In the case of a field in a packed struct, we want the minimum
413      // of the alignment of the field and the alignment of the struct.
414      Align = std::min(Align,
415        getPreferredTypeAlign(FD->getParent()->getTypeForDecl()));
416    }
417  }
418
419  return CharUnits::fromQuantity(Align / Target.getCharWidth());
420}
421
422/// getTypeSize - Return the size of the specified type, in bits.  This method
423/// does not work on incomplete types.
424///
425/// FIXME: Pointers into different addr spaces could have different sizes and
426/// alignment requirements: getPointerInfo should take an AddrSpace, this
427/// should take a QualType, &c.
428std::pair<uint64_t, unsigned>
429ASTContext::getTypeInfo(const Type *T) {
430  uint64_t Width=0;
431  unsigned Align=8;
432  switch (T->getTypeClass()) {
433#define TYPE(Class, Base)
434#define ABSTRACT_TYPE(Class, Base)
435#define NON_CANONICAL_TYPE(Class, Base)
436#define DEPENDENT_TYPE(Class, Base) case Type::Class:
437#include "clang/AST/TypeNodes.def"
438    assert(false && "Should not see dependent types");
439    break;
440
441  case Type::FunctionNoProto:
442  case Type::FunctionProto:
443    // GCC extension: alignof(function) = 32 bits
444    Width = 0;
445    Align = 32;
446    break;
447
448  case Type::IncompleteArray:
449  case Type::VariableArray:
450    Width = 0;
451    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
452    break;
453
454  case Type::ConstantArray: {
455    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
456
457    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
458    Width = EltInfo.first*CAT->getSize().getZExtValue();
459    Align = EltInfo.second;
460    break;
461  }
462  case Type::ExtVector:
463  case Type::Vector: {
464    const VectorType *VT = cast<VectorType>(T);
465    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
466    Width = EltInfo.first*VT->getNumElements();
467    Align = Width;
468    // If the alignment is not a power of 2, round up to the next power of 2.
469    // This happens for non-power-of-2 length vectors.
470    if (Align & (Align-1)) {
471      Align = llvm::NextPowerOf2(Align);
472      Width = llvm::RoundUpToAlignment(Width, Align);
473    }
474    break;
475  }
476
477  case Type::Builtin:
478    switch (cast<BuiltinType>(T)->getKind()) {
479    default: assert(0 && "Unknown builtin type!");
480    case BuiltinType::Void:
481      // GCC extension: alignof(void) = 8 bits.
482      Width = 0;
483      Align = 8;
484      break;
485
486    case BuiltinType::Bool:
487      Width = Target.getBoolWidth();
488      Align = Target.getBoolAlign();
489      break;
490    case BuiltinType::Char_S:
491    case BuiltinType::Char_U:
492    case BuiltinType::UChar:
493    case BuiltinType::SChar:
494      Width = Target.getCharWidth();
495      Align = Target.getCharAlign();
496      break;
497    case BuiltinType::WChar:
498      Width = Target.getWCharWidth();
499      Align = Target.getWCharAlign();
500      break;
501    case BuiltinType::Char16:
502      Width = Target.getChar16Width();
503      Align = Target.getChar16Align();
504      break;
505    case BuiltinType::Char32:
506      Width = Target.getChar32Width();
507      Align = Target.getChar32Align();
508      break;
509    case BuiltinType::UShort:
510    case BuiltinType::Short:
511      Width = Target.getShortWidth();
512      Align = Target.getShortAlign();
513      break;
514    case BuiltinType::UInt:
515    case BuiltinType::Int:
516      Width = Target.getIntWidth();
517      Align = Target.getIntAlign();
518      break;
519    case BuiltinType::ULong:
520    case BuiltinType::Long:
521      Width = Target.getLongWidth();
522      Align = Target.getLongAlign();
523      break;
524    case BuiltinType::ULongLong:
525    case BuiltinType::LongLong:
526      Width = Target.getLongLongWidth();
527      Align = Target.getLongLongAlign();
528      break;
529    case BuiltinType::Int128:
530    case BuiltinType::UInt128:
531      Width = 128;
532      Align = 128; // int128_t is 128-bit aligned on all targets.
533      break;
534    case BuiltinType::Float:
535      Width = Target.getFloatWidth();
536      Align = Target.getFloatAlign();
537      break;
538    case BuiltinType::Double:
539      Width = Target.getDoubleWidth();
540      Align = Target.getDoubleAlign();
541      break;
542    case BuiltinType::LongDouble:
543      Width = Target.getLongDoubleWidth();
544      Align = Target.getLongDoubleAlign();
545      break;
546    case BuiltinType::NullPtr:
547      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
548      Align = Target.getPointerAlign(0); //   == sizeof(void*)
549      break;
550    }
551    break;
552  case Type::ObjCObjectPointer:
553    Width = Target.getPointerWidth(0);
554    Align = Target.getPointerAlign(0);
555    break;
556  case Type::BlockPointer: {
557    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
558    Width = Target.getPointerWidth(AS);
559    Align = Target.getPointerAlign(AS);
560    break;
561  }
562  case Type::LValueReference:
563  case Type::RValueReference: {
564    // alignof and sizeof should never enter this code path here, so we go
565    // the pointer route.
566    unsigned AS = cast<ReferenceType>(T)->getPointeeType().getAddressSpace();
567    Width = Target.getPointerWidth(AS);
568    Align = Target.getPointerAlign(AS);
569    break;
570  }
571  case Type::Pointer: {
572    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
573    Width = Target.getPointerWidth(AS);
574    Align = Target.getPointerAlign(AS);
575    break;
576  }
577  case Type::MemberPointer: {
578    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
579    std::pair<uint64_t, unsigned> PtrDiffInfo =
580      getTypeInfo(getPointerDiffType());
581    Width = PtrDiffInfo.first;
582    if (Pointee->isFunctionType())
583      Width *= 2;
584    Align = PtrDiffInfo.second;
585    break;
586  }
587  case Type::Complex: {
588    // Complex types have the same alignment as their elements, but twice the
589    // size.
590    std::pair<uint64_t, unsigned> EltInfo =
591      getTypeInfo(cast<ComplexType>(T)->getElementType());
592    Width = EltInfo.first*2;
593    Align = EltInfo.second;
594    break;
595  }
596  case Type::ObjCInterface: {
597    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
598    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
599    Width = Layout.getSize();
600    Align = Layout.getAlignment();
601    break;
602  }
603  case Type::Record:
604  case Type::Enum: {
605    const TagType *TT = cast<TagType>(T);
606
607    if (TT->getDecl()->isInvalidDecl()) {
608      Width = 1;
609      Align = 1;
610      break;
611    }
612
613    if (const EnumType *ET = dyn_cast<EnumType>(TT))
614      return getTypeInfo(ET->getDecl()->getIntegerType());
615
616    const RecordType *RT = cast<RecordType>(TT);
617    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
618    Width = Layout.getSize();
619    Align = Layout.getAlignment();
620    break;
621  }
622
623  case Type::SubstTemplateTypeParm:
624    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
625                       getReplacementType().getTypePtr());
626
627  case Type::Elaborated:
628    return getTypeInfo(cast<ElaboratedType>(T)->getUnderlyingType()
629                         .getTypePtr());
630
631  case Type::Typedef: {
632    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
633    if (const AlignedAttr *Aligned = Typedef->getAttr<AlignedAttr>()) {
634      Align = std::max(Aligned->getMaxAlignment(),
635                       getTypeAlign(Typedef->getUnderlyingType().getTypePtr()));
636      Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
637    } else
638      return getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
639    break;
640  }
641
642  case Type::TypeOfExpr:
643    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
644                         .getTypePtr());
645
646  case Type::TypeOf:
647    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
648
649  case Type::Decltype:
650    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
651                        .getTypePtr());
652
653  case Type::QualifiedName:
654    return getTypeInfo(cast<QualifiedNameType>(T)->getNamedType().getTypePtr());
655
656 case Type::InjectedClassName:
657   return getTypeInfo(cast<InjectedClassNameType>(T)
658                        ->getUnderlyingType().getTypePtr());
659
660  case Type::TemplateSpecialization:
661    assert(getCanonicalType(T) != T &&
662           "Cannot request the size of a dependent type");
663    // FIXME: this is likely to be wrong once we support template
664    // aliases, since a template alias could refer to a typedef that
665    // has an __aligned__ attribute on it.
666    return getTypeInfo(getCanonicalType(T));
667  }
668
669  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
670  return std::make_pair(Width, Align);
671}
672
673/// getTypeSizeInChars - Return the size of the specified type, in characters.
674/// This method does not work on incomplete types.
675CharUnits ASTContext::getTypeSizeInChars(QualType T) {
676  return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
677}
678CharUnits ASTContext::getTypeSizeInChars(const Type *T) {
679  return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
680}
681
682/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
683/// characters. This method does not work on incomplete types.
684CharUnits ASTContext::getTypeAlignInChars(QualType T) {
685  return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
686}
687CharUnits ASTContext::getTypeAlignInChars(const Type *T) {
688  return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
689}
690
691/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
692/// type for the current target in bits.  This can be different than the ABI
693/// alignment in cases where it is beneficial for performance to overalign
694/// a data type.
695unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
696  unsigned ABIAlign = getTypeAlign(T);
697
698  // Double and long long should be naturally aligned if possible.
699  if (const ComplexType* CT = T->getAs<ComplexType>())
700    T = CT->getElementType().getTypePtr();
701  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
702      T->isSpecificBuiltinType(BuiltinType::LongLong))
703    return std::max(ABIAlign, (unsigned)getTypeSize(T));
704
705  return ABIAlign;
706}
707
708static void CollectLocalObjCIvars(ASTContext *Ctx,
709                                  const ObjCInterfaceDecl *OI,
710                                  llvm::SmallVectorImpl<FieldDecl*> &Fields) {
711  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
712       E = OI->ivar_end(); I != E; ++I) {
713    ObjCIvarDecl *IVDecl = *I;
714    if (!IVDecl->isInvalidDecl())
715      Fields.push_back(cast<FieldDecl>(IVDecl));
716  }
717}
718
719void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
720                             llvm::SmallVectorImpl<FieldDecl*> &Fields) {
721  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
722    CollectObjCIvars(SuperClass, Fields);
723  CollectLocalObjCIvars(this, OI, Fields);
724}
725
726/// ShallowCollectObjCIvars -
727/// Collect all ivars, including those synthesized, in the current class.
728///
729void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
730                                 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
731  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
732         E = OI->ivar_end(); I != E; ++I) {
733     Ivars.push_back(*I);
734  }
735
736  CollectNonClassIvars(OI, Ivars);
737}
738
739/// CollectNonClassIvars -
740/// This routine collects all other ivars which are not declared in the class.
741/// This includes synthesized ivars (via @synthesize) and those in
742//  class's @implementation.
743///
744void ASTContext::CollectNonClassIvars(const ObjCInterfaceDecl *OI,
745                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
746  // Find ivars declared in class extension.
747  if (const ObjCCategoryDecl *CDecl = OI->getClassExtension()) {
748    for (ObjCCategoryDecl::ivar_iterator I = CDecl->ivar_begin(),
749         E = CDecl->ivar_end(); I != E; ++I) {
750      Ivars.push_back(*I);
751    }
752  }
753
754  // Also add any ivar defined in this class's implementation.  This
755  // includes synthesized ivars.
756  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation()) {
757    for (ObjCImplementationDecl::ivar_iterator I = ImplDecl->ivar_begin(),
758         E = ImplDecl->ivar_end(); I != E; ++I)
759      Ivars.push_back(*I);
760  }
761}
762
763/// CollectInheritedProtocols - Collect all protocols in current class and
764/// those inherited by it.
765void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
766                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
767  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
768    for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
769         PE = OI->protocol_end(); P != PE; ++P) {
770      ObjCProtocolDecl *Proto = (*P);
771      Protocols.insert(Proto);
772      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
773           PE = Proto->protocol_end(); P != PE; ++P) {
774        Protocols.insert(*P);
775        CollectInheritedProtocols(*P, Protocols);
776      }
777    }
778
779    // Categories of this Interface.
780    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
781         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
782      CollectInheritedProtocols(CDeclChain, Protocols);
783    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
784      while (SD) {
785        CollectInheritedProtocols(SD, Protocols);
786        SD = SD->getSuperClass();
787      }
788    return;
789  }
790  if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
791    for (ObjCInterfaceDecl::protocol_iterator P = OC->protocol_begin(),
792         PE = OC->protocol_end(); P != PE; ++P) {
793      ObjCProtocolDecl *Proto = (*P);
794      Protocols.insert(Proto);
795      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
796           PE = Proto->protocol_end(); P != PE; ++P)
797        CollectInheritedProtocols(*P, Protocols);
798    }
799    return;
800  }
801  if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
802    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
803         PE = OP->protocol_end(); P != PE; ++P) {
804      ObjCProtocolDecl *Proto = (*P);
805      Protocols.insert(Proto);
806      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
807           PE = Proto->protocol_end(); P != PE; ++P)
808        CollectInheritedProtocols(*P, Protocols);
809    }
810    return;
811  }
812}
813
814/// CollectIvarsToConstructOrDestruct - Collect those ivars which require
815/// construction (construct=true) or destruction (construct=false)
816///
817void ASTContext::CollectIvarsToConstructOrDestruct(const ObjCInterfaceDecl *OI,
818                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars,
819                                bool construct) {
820  if (!getLangOptions().CPlusPlus)
821    return;
822  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
823       E = OI->ivar_end(); I != E; ++I) {
824    ObjCIvarDecl *Iv = (*I);
825    if (const RecordType *RT = Iv->getType()->getAs<RecordType>()) {
826      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
827        if (construct && !RD->hasTrivialConstructor() ||
828            !construct && !RD->hasTrivialDestructor())
829          Ivars.push_back(*I);
830    }
831  }
832
833  // Find ivars to construct/destruct in class extension.
834  if (const ObjCCategoryDecl *CDecl = OI->getClassExtension()) {
835    for (ObjCCategoryDecl::ivar_iterator I = CDecl->ivar_begin(),
836         E = CDecl->ivar_end(); I != E; ++I) {
837      ObjCIvarDecl *Iv = (*I);
838      if (const RecordType *RT = Iv->getType()->getAs<RecordType>()) {
839        if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
840          if (construct && !RD->hasTrivialConstructor() ||
841              !construct && !RD->hasTrivialDestructor())
842            Ivars.push_back(*I);
843      }
844    }
845  }
846
847  // Also add any ivar defined in this class's implementation.  This
848  // includes synthesized ivars.
849  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation()) {
850    for (ObjCImplementationDecl::ivar_iterator I = ImplDecl->ivar_begin(),
851         E = ImplDecl->ivar_end(); I != E; ++I) {
852      ObjCIvarDecl *Iv = (*I);
853      if (const RecordType *RT = Iv->getType()->getAs<RecordType>()) {
854        if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
855          if (construct && !RD->hasTrivialConstructor() ||
856              !construct && !RD->hasTrivialDestructor())
857            Ivars.push_back(*I);
858      }
859    }
860  }
861}
862
863unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) {
864  unsigned count = 0;
865  // Count ivars declared in class extension.
866  if (const ObjCCategoryDecl *CDecl = OI->getClassExtension()) {
867    for (ObjCCategoryDecl::ivar_iterator I = CDecl->ivar_begin(),
868         E = CDecl->ivar_end(); I != E; ++I) {
869      ++count;
870    }
871  }
872
873  // Count ivar defined in this class's implementation.  This
874  // includes synthesized ivars.
875  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
876    for (ObjCImplementationDecl::ivar_iterator I = ImplDecl->ivar_begin(),
877         E = ImplDecl->ivar_end(); I != E; ++I)
878      ++count;
879  return count;
880}
881
882/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
883ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
884  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
885    I = ObjCImpls.find(D);
886  if (I != ObjCImpls.end())
887    return cast<ObjCImplementationDecl>(I->second);
888  return 0;
889}
890/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
891ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
892  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
893    I = ObjCImpls.find(D);
894  if (I != ObjCImpls.end())
895    return cast<ObjCCategoryImplDecl>(I->second);
896  return 0;
897}
898
899/// \brief Set the implementation of ObjCInterfaceDecl.
900void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
901                           ObjCImplementationDecl *ImplD) {
902  assert(IFaceD && ImplD && "Passed null params");
903  ObjCImpls[IFaceD] = ImplD;
904}
905/// \brief Set the implementation of ObjCCategoryDecl.
906void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
907                           ObjCCategoryImplDecl *ImplD) {
908  assert(CatD && ImplD && "Passed null params");
909  ObjCImpls[CatD] = ImplD;
910}
911
912/// \brief Allocate an uninitialized TypeSourceInfo.
913///
914/// The caller should initialize the memory held by TypeSourceInfo using
915/// the TypeLoc wrappers.
916///
917/// \param T the type that will be the basis for type source info. This type
918/// should refer to how the declarator was written in source code, not to
919/// what type semantic analysis resolved the declarator to.
920TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
921                                                 unsigned DataSize) {
922  if (!DataSize)
923    DataSize = TypeLoc::getFullDataSizeForType(T);
924  else
925    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
926           "incorrect data size provided to CreateTypeSourceInfo!");
927
928  TypeSourceInfo *TInfo =
929    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
930  new (TInfo) TypeSourceInfo(T);
931  return TInfo;
932}
933
934TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
935                                                     SourceLocation L) {
936  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
937  DI->getTypeLoc().initialize(L);
938  return DI;
939}
940
941/// getInterfaceLayoutImpl - Get or compute information about the
942/// layout of the given interface.
943///
944/// \param Impl - If given, also include the layout of the interface's
945/// implementation. This may differ by including synthesized ivars.
946const ASTRecordLayout &
947ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
948                          const ObjCImplementationDecl *Impl) {
949  assert(!D->isForwardDecl() && "Invalid interface decl!");
950
951  // Look up this layout, if already laid out, return what we have.
952  ObjCContainerDecl *Key =
953    Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D;
954  if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
955    return *Entry;
956
957  // Add in synthesized ivar count if laying out an implementation.
958  if (Impl) {
959    unsigned SynthCount = CountNonClassIvars(D);
960    // If there aren't any sythesized ivars then reuse the interface
961    // entry. Note we can't cache this because we simply free all
962    // entries later; however we shouldn't look up implementations
963    // frequently.
964    if (SynthCount == 0)
965      return getObjCLayout(D, 0);
966  }
967
968  const ASTRecordLayout *NewEntry =
969    ASTRecordLayoutBuilder::ComputeLayout(*this, D, Impl);
970  ObjCLayouts[Key] = NewEntry;
971
972  return *NewEntry;
973}
974
975const ASTRecordLayout &
976ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
977  return getObjCLayout(D, 0);
978}
979
980const ASTRecordLayout &
981ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
982  return getObjCLayout(D->getClassInterface(), D);
983}
984
985/// getASTRecordLayout - Get or compute information about the layout of the
986/// specified record (struct/union/class), which indicates its size and field
987/// position information.
988const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
989  D = D->getDefinition();
990  assert(D && "Cannot get layout of forward declarations!");
991
992  // Look up this layout, if already laid out, return what we have.
993  // Note that we can't save a reference to the entry because this function
994  // is recursive.
995  const ASTRecordLayout *Entry = ASTRecordLayouts[D];
996  if (Entry) return *Entry;
997
998  const ASTRecordLayout *NewEntry =
999    ASTRecordLayoutBuilder::ComputeLayout(*this, D);
1000  ASTRecordLayouts[D] = NewEntry;
1001
1002  if (getLangOptions().DumpRecordLayouts) {
1003    llvm::errs() << "\n*** Dumping AST Record Layout\n";
1004    DumpRecordLayout(D, llvm::errs());
1005  }
1006
1007  return *NewEntry;
1008}
1009
1010const CXXMethodDecl *ASTContext::getKeyFunction(const CXXRecordDecl *RD) {
1011  RD = cast<CXXRecordDecl>(RD->getDefinition());
1012  assert(RD && "Cannot get key function for forward declarations!");
1013
1014  const CXXMethodDecl *&Entry = KeyFunctions[RD];
1015  if (!Entry)
1016    Entry = ASTRecordLayoutBuilder::ComputeKeyFunction(RD);
1017  else
1018    assert(Entry == ASTRecordLayoutBuilder::ComputeKeyFunction(RD) &&
1019           "Key function changed!");
1020
1021  return Entry;
1022}
1023
1024//===----------------------------------------------------------------------===//
1025//                   Type creation/memoization methods
1026//===----------------------------------------------------------------------===//
1027
1028QualType ASTContext::getExtQualType(const Type *TypeNode, Qualifiers Quals) {
1029  unsigned Fast = Quals.getFastQualifiers();
1030  Quals.removeFastQualifiers();
1031
1032  // Check if we've already instantiated this type.
1033  llvm::FoldingSetNodeID ID;
1034  ExtQuals::Profile(ID, TypeNode, Quals);
1035  void *InsertPos = 0;
1036  if (ExtQuals *EQ = ExtQualNodes.FindNodeOrInsertPos(ID, InsertPos)) {
1037    assert(EQ->getQualifiers() == Quals);
1038    QualType T = QualType(EQ, Fast);
1039    return T;
1040  }
1041
1042  ExtQuals *New = new (*this, TypeAlignment) ExtQuals(*this, TypeNode, Quals);
1043  ExtQualNodes.InsertNode(New, InsertPos);
1044  QualType T = QualType(New, Fast);
1045  return T;
1046}
1047
1048QualType ASTContext::getVolatileType(QualType T) {
1049  QualType CanT = getCanonicalType(T);
1050  if (CanT.isVolatileQualified()) return T;
1051
1052  QualifierCollector Quals;
1053  const Type *TypeNode = Quals.strip(T);
1054  Quals.addVolatile();
1055
1056  return getExtQualType(TypeNode, Quals);
1057}
1058
1059QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
1060  QualType CanT = getCanonicalType(T);
1061  if (CanT.getAddressSpace() == AddressSpace)
1062    return T;
1063
1064  // If we are composing extended qualifiers together, merge together
1065  // into one ExtQuals node.
1066  QualifierCollector Quals;
1067  const Type *TypeNode = Quals.strip(T);
1068
1069  // If this type already has an address space specified, it cannot get
1070  // another one.
1071  assert(!Quals.hasAddressSpace() &&
1072         "Type cannot be in multiple addr spaces!");
1073  Quals.addAddressSpace(AddressSpace);
1074
1075  return getExtQualType(TypeNode, Quals);
1076}
1077
1078QualType ASTContext::getObjCGCQualType(QualType T,
1079                                       Qualifiers::GC GCAttr) {
1080  QualType CanT = getCanonicalType(T);
1081  if (CanT.getObjCGCAttr() == GCAttr)
1082    return T;
1083
1084  if (T->isPointerType()) {
1085    QualType Pointee = T->getAs<PointerType>()->getPointeeType();
1086    if (Pointee->isAnyPointerType()) {
1087      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1088      return getPointerType(ResultType);
1089    }
1090  }
1091
1092  // If we are composing extended qualifiers together, merge together
1093  // into one ExtQuals node.
1094  QualifierCollector Quals;
1095  const Type *TypeNode = Quals.strip(T);
1096
1097  // If this type already has an ObjCGC specified, it cannot get
1098  // another one.
1099  assert(!Quals.hasObjCGCAttr() &&
1100         "Type cannot have multiple ObjCGCs!");
1101  Quals.addObjCGCAttr(GCAttr);
1102
1103  return getExtQualType(TypeNode, Quals);
1104}
1105
1106static QualType getExtFunctionType(ASTContext& Context, QualType T,
1107                                        const FunctionType::ExtInfo &Info) {
1108  QualType ResultType;
1109  if (const PointerType *Pointer = T->getAs<PointerType>()) {
1110    QualType Pointee = Pointer->getPointeeType();
1111    ResultType = getExtFunctionType(Context, Pointee, Info);
1112    if (ResultType == Pointee)
1113      return T;
1114
1115    ResultType = Context.getPointerType(ResultType);
1116  } else if (const BlockPointerType *BlockPointer
1117                                              = T->getAs<BlockPointerType>()) {
1118    QualType Pointee = BlockPointer->getPointeeType();
1119    ResultType = getExtFunctionType(Context, Pointee, Info);
1120    if (ResultType == Pointee)
1121      return T;
1122
1123    ResultType = Context.getBlockPointerType(ResultType);
1124   } else if (const FunctionType *F = T->getAs<FunctionType>()) {
1125    if (F->getExtInfo() == Info)
1126      return T;
1127
1128    if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(F)) {
1129      ResultType = Context.getFunctionNoProtoType(FNPT->getResultType(),
1130                                                  Info);
1131    } else {
1132      const FunctionProtoType *FPT = cast<FunctionProtoType>(F);
1133      ResultType
1134        = Context.getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1135                                  FPT->getNumArgs(), FPT->isVariadic(),
1136                                  FPT->getTypeQuals(),
1137                                  FPT->hasExceptionSpec(),
1138                                  FPT->hasAnyExceptionSpec(),
1139                                  FPT->getNumExceptions(),
1140                                  FPT->exception_begin(),
1141                                  Info);
1142    }
1143  } else
1144    return T;
1145
1146  return Context.getQualifiedType(ResultType, T.getLocalQualifiers());
1147}
1148
1149QualType ASTContext::getNoReturnType(QualType T, bool AddNoReturn) {
1150  FunctionType::ExtInfo Info = getFunctionExtInfo(T);
1151  return getExtFunctionType(*this, T,
1152                                 Info.withNoReturn(AddNoReturn));
1153}
1154
1155QualType ASTContext::getCallConvType(QualType T, CallingConv CallConv) {
1156  FunctionType::ExtInfo Info = getFunctionExtInfo(T);
1157  return getExtFunctionType(*this, T,
1158                            Info.withCallingConv(CallConv));
1159}
1160
1161QualType ASTContext::getRegParmType(QualType T, unsigned RegParm) {
1162  FunctionType::ExtInfo Info = getFunctionExtInfo(T);
1163  return getExtFunctionType(*this, T,
1164                                 Info.withRegParm(RegParm));
1165}
1166
1167/// getComplexType - Return the uniqued reference to the type for a complex
1168/// number with the specified element type.
1169QualType ASTContext::getComplexType(QualType T) {
1170  // Unique pointers, to guarantee there is only one pointer of a particular
1171  // structure.
1172  llvm::FoldingSetNodeID ID;
1173  ComplexType::Profile(ID, T);
1174
1175  void *InsertPos = 0;
1176  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1177    return QualType(CT, 0);
1178
1179  // If the pointee type isn't canonical, this won't be a canonical type either,
1180  // so fill in the canonical type field.
1181  QualType Canonical;
1182  if (!T.isCanonical()) {
1183    Canonical = getComplexType(getCanonicalType(T));
1184
1185    // Get the new insert position for the node we care about.
1186    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1187    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1188  }
1189  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1190  Types.push_back(New);
1191  ComplexTypes.InsertNode(New, InsertPos);
1192  return QualType(New, 0);
1193}
1194
1195/// getPointerType - Return the uniqued reference to the type for a pointer to
1196/// the specified type.
1197QualType ASTContext::getPointerType(QualType T) {
1198  // Unique pointers, to guarantee there is only one pointer of a particular
1199  // structure.
1200  llvm::FoldingSetNodeID ID;
1201  PointerType::Profile(ID, T);
1202
1203  void *InsertPos = 0;
1204  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1205    return QualType(PT, 0);
1206
1207  // If the pointee type isn't canonical, this won't be a canonical type either,
1208  // so fill in the canonical type field.
1209  QualType Canonical;
1210  if (!T.isCanonical()) {
1211    Canonical = getPointerType(getCanonicalType(T));
1212
1213    // Get the new insert position for the node we care about.
1214    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1215    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1216  }
1217  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1218  Types.push_back(New);
1219  PointerTypes.InsertNode(New, InsertPos);
1220  return QualType(New, 0);
1221}
1222
1223/// getBlockPointerType - Return the uniqued reference to the type for
1224/// a pointer to the specified block.
1225QualType ASTContext::getBlockPointerType(QualType T) {
1226  assert(T->isFunctionType() && "block of function types only");
1227  // Unique pointers, to guarantee there is only one block of a particular
1228  // structure.
1229  llvm::FoldingSetNodeID ID;
1230  BlockPointerType::Profile(ID, T);
1231
1232  void *InsertPos = 0;
1233  if (BlockPointerType *PT =
1234        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1235    return QualType(PT, 0);
1236
1237  // If the block pointee type isn't canonical, this won't be a canonical
1238  // type either so fill in the canonical type field.
1239  QualType Canonical;
1240  if (!T.isCanonical()) {
1241    Canonical = getBlockPointerType(getCanonicalType(T));
1242
1243    // Get the new insert position for the node we care about.
1244    BlockPointerType *NewIP =
1245      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1246    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1247  }
1248  BlockPointerType *New
1249    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1250  Types.push_back(New);
1251  BlockPointerTypes.InsertNode(New, InsertPos);
1252  return QualType(New, 0);
1253}
1254
1255/// getLValueReferenceType - Return the uniqued reference to the type for an
1256/// lvalue reference to the specified type.
1257QualType ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) {
1258  // Unique pointers, to guarantee there is only one pointer of a particular
1259  // structure.
1260  llvm::FoldingSetNodeID ID;
1261  ReferenceType::Profile(ID, T, SpelledAsLValue);
1262
1263  void *InsertPos = 0;
1264  if (LValueReferenceType *RT =
1265        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1266    return QualType(RT, 0);
1267
1268  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1269
1270  // If the referencee type isn't canonical, this won't be a canonical type
1271  // either, so fill in the canonical type field.
1272  QualType Canonical;
1273  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1274    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1275    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1276
1277    // Get the new insert position for the node we care about.
1278    LValueReferenceType *NewIP =
1279      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1280    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1281  }
1282
1283  LValueReferenceType *New
1284    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1285                                                     SpelledAsLValue);
1286  Types.push_back(New);
1287  LValueReferenceTypes.InsertNode(New, InsertPos);
1288
1289  return QualType(New, 0);
1290}
1291
1292/// getRValueReferenceType - Return the uniqued reference to the type for an
1293/// rvalue reference to the specified type.
1294QualType ASTContext::getRValueReferenceType(QualType T) {
1295  // Unique pointers, to guarantee there is only one pointer of a particular
1296  // structure.
1297  llvm::FoldingSetNodeID ID;
1298  ReferenceType::Profile(ID, T, false);
1299
1300  void *InsertPos = 0;
1301  if (RValueReferenceType *RT =
1302        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1303    return QualType(RT, 0);
1304
1305  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1306
1307  // If the referencee type isn't canonical, this won't be a canonical type
1308  // either, so fill in the canonical type field.
1309  QualType Canonical;
1310  if (InnerRef || !T.isCanonical()) {
1311    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1312    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1313
1314    // Get the new insert position for the node we care about.
1315    RValueReferenceType *NewIP =
1316      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1317    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1318  }
1319
1320  RValueReferenceType *New
1321    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1322  Types.push_back(New);
1323  RValueReferenceTypes.InsertNode(New, InsertPos);
1324  return QualType(New, 0);
1325}
1326
1327/// getMemberPointerType - Return the uniqued reference to the type for a
1328/// member pointer to the specified type, in the specified class.
1329QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) {
1330  // Unique pointers, to guarantee there is only one pointer of a particular
1331  // structure.
1332  llvm::FoldingSetNodeID ID;
1333  MemberPointerType::Profile(ID, T, Cls);
1334
1335  void *InsertPos = 0;
1336  if (MemberPointerType *PT =
1337      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1338    return QualType(PT, 0);
1339
1340  // If the pointee or class type isn't canonical, this won't be a canonical
1341  // type either, so fill in the canonical type field.
1342  QualType Canonical;
1343  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1344    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1345
1346    // Get the new insert position for the node we care about.
1347    MemberPointerType *NewIP =
1348      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1349    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1350  }
1351  MemberPointerType *New
1352    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1353  Types.push_back(New);
1354  MemberPointerTypes.InsertNode(New, InsertPos);
1355  return QualType(New, 0);
1356}
1357
1358/// getConstantArrayType - Return the unique reference to the type for an
1359/// array of the specified element type.
1360QualType ASTContext::getConstantArrayType(QualType EltTy,
1361                                          const llvm::APInt &ArySizeIn,
1362                                          ArrayType::ArraySizeModifier ASM,
1363                                          unsigned EltTypeQuals) {
1364  assert((EltTy->isDependentType() ||
1365          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1366         "Constant array of VLAs is illegal!");
1367
1368  // Convert the array size into a canonical width matching the pointer size for
1369  // the target.
1370  llvm::APInt ArySize(ArySizeIn);
1371  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1372
1373  llvm::FoldingSetNodeID ID;
1374  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1375
1376  void *InsertPos = 0;
1377  if (ConstantArrayType *ATP =
1378      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1379    return QualType(ATP, 0);
1380
1381  // If the element type isn't canonical, this won't be a canonical type either,
1382  // so fill in the canonical type field.
1383  QualType Canonical;
1384  if (!EltTy.isCanonical()) {
1385    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1386                                     ASM, EltTypeQuals);
1387    // Get the new insert position for the node we care about.
1388    ConstantArrayType *NewIP =
1389      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1390    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1391  }
1392
1393  ConstantArrayType *New = new(*this,TypeAlignment)
1394    ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1395  ConstantArrayTypes.InsertNode(New, InsertPos);
1396  Types.push_back(New);
1397  return QualType(New, 0);
1398}
1399
1400/// getVariableArrayType - Returns a non-unique reference to the type for a
1401/// variable array of the specified element type.
1402QualType ASTContext::getVariableArrayType(QualType EltTy,
1403                                          Expr *NumElts,
1404                                          ArrayType::ArraySizeModifier ASM,
1405                                          unsigned EltTypeQuals,
1406                                          SourceRange Brackets) {
1407  // Since we don't unique expressions, it isn't possible to unique VLA's
1408  // that have an expression provided for their size.
1409
1410  VariableArrayType *New = new(*this, TypeAlignment)
1411    VariableArrayType(EltTy, QualType(), NumElts, ASM, EltTypeQuals, Brackets);
1412
1413  VariableArrayTypes.push_back(New);
1414  Types.push_back(New);
1415  return QualType(New, 0);
1416}
1417
1418/// getDependentSizedArrayType - Returns a non-unique reference to
1419/// the type for a dependently-sized array of the specified element
1420/// type.
1421QualType ASTContext::getDependentSizedArrayType(QualType EltTy,
1422                                                Expr *NumElts,
1423                                                ArrayType::ArraySizeModifier ASM,
1424                                                unsigned EltTypeQuals,
1425                                                SourceRange Brackets) {
1426  assert((!NumElts || NumElts->isTypeDependent() ||
1427          NumElts->isValueDependent()) &&
1428         "Size must be type- or value-dependent!");
1429
1430  void *InsertPos = 0;
1431  DependentSizedArrayType *Canon = 0;
1432  llvm::FoldingSetNodeID ID;
1433
1434  if (NumElts) {
1435    // Dependently-sized array types that do not have a specified
1436    // number of elements will have their sizes deduced from an
1437    // initializer.
1438    DependentSizedArrayType::Profile(ID, *this, getCanonicalType(EltTy), ASM,
1439                                     EltTypeQuals, NumElts);
1440
1441    Canon = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1442  }
1443
1444  DependentSizedArrayType *New;
1445  if (Canon) {
1446    // We already have a canonical version of this array type; use it as
1447    // the canonical type for a newly-built type.
1448    New = new (*this, TypeAlignment)
1449      DependentSizedArrayType(*this, EltTy, QualType(Canon, 0),
1450                              NumElts, ASM, EltTypeQuals, Brackets);
1451  } else {
1452    QualType CanonEltTy = getCanonicalType(EltTy);
1453    if (CanonEltTy == EltTy) {
1454      New = new (*this, TypeAlignment)
1455        DependentSizedArrayType(*this, EltTy, QualType(),
1456                                NumElts, ASM, EltTypeQuals, Brackets);
1457
1458      if (NumElts) {
1459        DependentSizedArrayType *CanonCheck
1460          = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1461        assert(!CanonCheck && "Dependent-sized canonical array type broken");
1462        (void)CanonCheck;
1463        DependentSizedArrayTypes.InsertNode(New, InsertPos);
1464      }
1465    } else {
1466      QualType Canon = getDependentSizedArrayType(CanonEltTy, NumElts,
1467                                                  ASM, EltTypeQuals,
1468                                                  SourceRange());
1469      New = new (*this, TypeAlignment)
1470        DependentSizedArrayType(*this, EltTy, Canon,
1471                                NumElts, ASM, EltTypeQuals, Brackets);
1472    }
1473  }
1474
1475  Types.push_back(New);
1476  return QualType(New, 0);
1477}
1478
1479QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1480                                            ArrayType::ArraySizeModifier ASM,
1481                                            unsigned EltTypeQuals) {
1482  llvm::FoldingSetNodeID ID;
1483  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1484
1485  void *InsertPos = 0;
1486  if (IncompleteArrayType *ATP =
1487       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1488    return QualType(ATP, 0);
1489
1490  // If the element type isn't canonical, this won't be a canonical type
1491  // either, so fill in the canonical type field.
1492  QualType Canonical;
1493
1494  if (!EltTy.isCanonical()) {
1495    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1496                                       ASM, EltTypeQuals);
1497
1498    // Get the new insert position for the node we care about.
1499    IncompleteArrayType *NewIP =
1500      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1501    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1502  }
1503
1504  IncompleteArrayType *New = new (*this, TypeAlignment)
1505    IncompleteArrayType(EltTy, Canonical, ASM, EltTypeQuals);
1506
1507  IncompleteArrayTypes.InsertNode(New, InsertPos);
1508  Types.push_back(New);
1509  return QualType(New, 0);
1510}
1511
1512/// getVectorType - Return the unique reference to a vector type of
1513/// the specified element type and size. VectorType must be a built-in type.
1514QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
1515                                   bool IsAltiVec, bool IsPixel) {
1516  BuiltinType *baseType;
1517
1518  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1519  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1520
1521  // Check if we've already instantiated a vector of this type.
1522  llvm::FoldingSetNodeID ID;
1523  VectorType::Profile(ID, vecType, NumElts, Type::Vector,
1524    IsAltiVec, IsPixel);
1525  void *InsertPos = 0;
1526  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1527    return QualType(VTP, 0);
1528
1529  // If the element type isn't canonical, this won't be a canonical type either,
1530  // so fill in the canonical type field.
1531  QualType Canonical;
1532  if (!vecType.isCanonical() || IsAltiVec || IsPixel) {
1533    Canonical = getVectorType(getCanonicalType(vecType),
1534      NumElts, false, false);
1535
1536    // Get the new insert position for the node we care about.
1537    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1538    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1539  }
1540  VectorType *New = new (*this, TypeAlignment)
1541    VectorType(vecType, NumElts, Canonical, IsAltiVec, IsPixel);
1542  VectorTypes.InsertNode(New, InsertPos);
1543  Types.push_back(New);
1544  return QualType(New, 0);
1545}
1546
1547/// getExtVectorType - Return the unique reference to an extended vector type of
1548/// the specified element type and size. VectorType must be a built-in type.
1549QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1550  BuiltinType *baseType;
1551
1552  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1553  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1554
1555  // Check if we've already instantiated a vector of this type.
1556  llvm::FoldingSetNodeID ID;
1557  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector, false, false);
1558  void *InsertPos = 0;
1559  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1560    return QualType(VTP, 0);
1561
1562  // If the element type isn't canonical, this won't be a canonical type either,
1563  // so fill in the canonical type field.
1564  QualType Canonical;
1565  if (!vecType.isCanonical()) {
1566    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1567
1568    // Get the new insert position for the node we care about.
1569    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1570    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1571  }
1572  ExtVectorType *New = new (*this, TypeAlignment)
1573    ExtVectorType(vecType, NumElts, Canonical);
1574  VectorTypes.InsertNode(New, InsertPos);
1575  Types.push_back(New);
1576  return QualType(New, 0);
1577}
1578
1579QualType ASTContext::getDependentSizedExtVectorType(QualType vecType,
1580                                                    Expr *SizeExpr,
1581                                                    SourceLocation AttrLoc) {
1582  llvm::FoldingSetNodeID ID;
1583  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1584                                       SizeExpr);
1585
1586  void *InsertPos = 0;
1587  DependentSizedExtVectorType *Canon
1588    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1589  DependentSizedExtVectorType *New;
1590  if (Canon) {
1591    // We already have a canonical version of this array type; use it as
1592    // the canonical type for a newly-built type.
1593    New = new (*this, TypeAlignment)
1594      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
1595                                  SizeExpr, AttrLoc);
1596  } else {
1597    QualType CanonVecTy = getCanonicalType(vecType);
1598    if (CanonVecTy == vecType) {
1599      New = new (*this, TypeAlignment)
1600        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
1601                                    AttrLoc);
1602
1603      DependentSizedExtVectorType *CanonCheck
1604        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1605      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
1606      (void)CanonCheck;
1607      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1608    } else {
1609      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1610                                                      SourceLocation());
1611      New = new (*this, TypeAlignment)
1612        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
1613    }
1614  }
1615
1616  Types.push_back(New);
1617  return QualType(New, 0);
1618}
1619
1620/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1621///
1622QualType ASTContext::getFunctionNoProtoType(QualType ResultTy,
1623                                            const FunctionType::ExtInfo &Info) {
1624  const CallingConv CallConv = Info.getCC();
1625  // Unique functions, to guarantee there is only one function of a particular
1626  // structure.
1627  llvm::FoldingSetNodeID ID;
1628  FunctionNoProtoType::Profile(ID, ResultTy, Info);
1629
1630  void *InsertPos = 0;
1631  if (FunctionNoProtoType *FT =
1632        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1633    return QualType(FT, 0);
1634
1635  QualType Canonical;
1636  if (!ResultTy.isCanonical() ||
1637      getCanonicalCallConv(CallConv) != CallConv) {
1638    Canonical =
1639      getFunctionNoProtoType(getCanonicalType(ResultTy),
1640                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
1641
1642    // Get the new insert position for the node we care about.
1643    FunctionNoProtoType *NewIP =
1644      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1645    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1646  }
1647
1648  FunctionNoProtoType *New = new (*this, TypeAlignment)
1649    FunctionNoProtoType(ResultTy, Canonical, Info);
1650  Types.push_back(New);
1651  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1652  return QualType(New, 0);
1653}
1654
1655/// getFunctionType - Return a normal function type with a typed argument
1656/// list.  isVariadic indicates whether the argument list includes '...'.
1657QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1658                                     unsigned NumArgs, bool isVariadic,
1659                                     unsigned TypeQuals, bool hasExceptionSpec,
1660                                     bool hasAnyExceptionSpec, unsigned NumExs,
1661                                     const QualType *ExArray,
1662                                     const FunctionType::ExtInfo &Info) {
1663  const CallingConv CallConv= Info.getCC();
1664  // Unique functions, to guarantee there is only one function of a particular
1665  // structure.
1666  llvm::FoldingSetNodeID ID;
1667  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1668                             TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1669                             NumExs, ExArray, Info);
1670
1671  void *InsertPos = 0;
1672  if (FunctionProtoType *FTP =
1673        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1674    return QualType(FTP, 0);
1675
1676  // Determine whether the type being created is already canonical or not.
1677  bool isCanonical = !hasExceptionSpec && ResultTy.isCanonical();
1678  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1679    if (!ArgArray[i].isCanonicalAsParam())
1680      isCanonical = false;
1681
1682  // If this type isn't canonical, get the canonical version of it.
1683  // The exception spec is not part of the canonical type.
1684  QualType Canonical;
1685  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
1686    llvm::SmallVector<QualType, 16> CanonicalArgs;
1687    CanonicalArgs.reserve(NumArgs);
1688    for (unsigned i = 0; i != NumArgs; ++i)
1689      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
1690
1691    Canonical = getFunctionType(getCanonicalType(ResultTy),
1692                                CanonicalArgs.data(), NumArgs,
1693                                isVariadic, TypeQuals, false,
1694                                false, 0, 0,
1695                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
1696
1697    // Get the new insert position for the node we care about.
1698    FunctionProtoType *NewIP =
1699      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1700    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1701  }
1702
1703  // FunctionProtoType objects are allocated with extra bytes after them
1704  // for two variable size arrays (for parameter and exception types) at the
1705  // end of them.
1706  FunctionProtoType *FTP =
1707    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1708                                 NumArgs*sizeof(QualType) +
1709                                 NumExs*sizeof(QualType), TypeAlignment);
1710  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1711                              TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1712                              ExArray, NumExs, Canonical, Info);
1713  Types.push_back(FTP);
1714  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1715  return QualType(FTP, 0);
1716}
1717
1718#ifndef NDEBUG
1719static bool NeedsInjectedClassNameType(const RecordDecl *D) {
1720  if (!isa<CXXRecordDecl>(D)) return false;
1721  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
1722  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
1723    return true;
1724  if (RD->getDescribedClassTemplate() &&
1725      !isa<ClassTemplateSpecializationDecl>(RD))
1726    return true;
1727  return false;
1728}
1729#endif
1730
1731/// getInjectedClassNameType - Return the unique reference to the
1732/// injected class name type for the specified templated declaration.
1733QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
1734                                              QualType TST) {
1735  assert(NeedsInjectedClassNameType(Decl));
1736  if (Decl->TypeForDecl) {
1737    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
1738  } else if (CXXRecordDecl *PrevDecl
1739               = cast_or_null<CXXRecordDecl>(Decl->getPreviousDeclaration())) {
1740    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
1741    Decl->TypeForDecl = PrevDecl->TypeForDecl;
1742    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
1743  } else {
1744    Decl->TypeForDecl = new (*this, TypeAlignment)
1745      InjectedClassNameType(Decl, TST, TST->getCanonicalTypeInternal());
1746    Types.push_back(Decl->TypeForDecl);
1747  }
1748  return QualType(Decl->TypeForDecl, 0);
1749}
1750
1751/// getTypeDeclType - Return the unique reference to the type for the
1752/// specified type declaration.
1753QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) {
1754  assert(Decl && "Passed null for Decl param");
1755  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
1756
1757  if (const TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1758    return getTypedefType(Typedef);
1759
1760  if (const ObjCInterfaceDecl *ObjCInterface
1761               = dyn_cast<ObjCInterfaceDecl>(Decl))
1762    return getObjCInterfaceType(ObjCInterface);
1763
1764  assert(!isa<TemplateTypeParmDecl>(Decl) &&
1765         "Template type parameter types are always available.");
1766
1767  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1768    assert(!Record->getPreviousDeclaration() &&
1769           "struct/union has previous declaration");
1770    assert(!NeedsInjectedClassNameType(Record));
1771    Decl->TypeForDecl = new (*this, TypeAlignment) RecordType(Record);
1772  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1773    assert(!Enum->getPreviousDeclaration() &&
1774           "enum has previous declaration");
1775    Decl->TypeForDecl = new (*this, TypeAlignment) EnumType(Enum);
1776  } else if (const UnresolvedUsingTypenameDecl *Using =
1777               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
1778    Decl->TypeForDecl = new (*this, TypeAlignment) UnresolvedUsingType(Using);
1779  } else
1780    llvm_unreachable("TypeDecl without a type?");
1781
1782  Types.push_back(Decl->TypeForDecl);
1783  return QualType(Decl->TypeForDecl, 0);
1784}
1785
1786/// getTypedefType - Return the unique reference to the type for the
1787/// specified typename decl.
1788QualType ASTContext::getTypedefType(const TypedefDecl *Decl) {
1789  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1790
1791  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1792  Decl->TypeForDecl = new(*this, TypeAlignment)
1793    TypedefType(Type::Typedef, Decl, Canonical);
1794  Types.push_back(Decl->TypeForDecl);
1795  return QualType(Decl->TypeForDecl, 0);
1796}
1797
1798/// \brief Retrieve a substitution-result type.
1799QualType
1800ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
1801                                         QualType Replacement) {
1802  assert(Replacement.isCanonical()
1803         && "replacement types must always be canonical");
1804
1805  llvm::FoldingSetNodeID ID;
1806  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
1807  void *InsertPos = 0;
1808  SubstTemplateTypeParmType *SubstParm
1809    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1810
1811  if (!SubstParm) {
1812    SubstParm = new (*this, TypeAlignment)
1813      SubstTemplateTypeParmType(Parm, Replacement);
1814    Types.push_back(SubstParm);
1815    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
1816  }
1817
1818  return QualType(SubstParm, 0);
1819}
1820
1821/// \brief Retrieve the template type parameter type for a template
1822/// parameter or parameter pack with the given depth, index, and (optionally)
1823/// name.
1824QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1825                                             bool ParameterPack,
1826                                             IdentifierInfo *Name) {
1827  llvm::FoldingSetNodeID ID;
1828  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
1829  void *InsertPos = 0;
1830  TemplateTypeParmType *TypeParm
1831    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1832
1833  if (TypeParm)
1834    return QualType(TypeParm, 0);
1835
1836  if (Name) {
1837    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
1838    TypeParm = new (*this, TypeAlignment)
1839      TemplateTypeParmType(Depth, Index, ParameterPack, Name, Canon);
1840
1841    TemplateTypeParmType *TypeCheck
1842      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1843    assert(!TypeCheck && "Template type parameter canonical type broken");
1844    (void)TypeCheck;
1845  } else
1846    TypeParm = new (*this, TypeAlignment)
1847      TemplateTypeParmType(Depth, Index, ParameterPack);
1848
1849  Types.push_back(TypeParm);
1850  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1851
1852  return QualType(TypeParm, 0);
1853}
1854
1855TypeSourceInfo *
1856ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
1857                                              SourceLocation NameLoc,
1858                                        const TemplateArgumentListInfo &Args,
1859                                              QualType CanonType) {
1860  QualType TST = getTemplateSpecializationType(Name, Args, CanonType);
1861
1862  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
1863  TemplateSpecializationTypeLoc TL
1864    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1865  TL.setTemplateNameLoc(NameLoc);
1866  TL.setLAngleLoc(Args.getLAngleLoc());
1867  TL.setRAngleLoc(Args.getRAngleLoc());
1868  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1869    TL.setArgLocInfo(i, Args[i].getLocInfo());
1870  return DI;
1871}
1872
1873QualType
1874ASTContext::getTemplateSpecializationType(TemplateName Template,
1875                                          const TemplateArgumentListInfo &Args,
1876                                          QualType Canon) {
1877  unsigned NumArgs = Args.size();
1878
1879  llvm::SmallVector<TemplateArgument, 4> ArgVec;
1880  ArgVec.reserve(NumArgs);
1881  for (unsigned i = 0; i != NumArgs; ++i)
1882    ArgVec.push_back(Args[i].getArgument());
1883
1884  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs, Canon);
1885}
1886
1887QualType
1888ASTContext::getTemplateSpecializationType(TemplateName Template,
1889                                          const TemplateArgument *Args,
1890                                          unsigned NumArgs,
1891                                          QualType Canon) {
1892  if (!Canon.isNull())
1893    Canon = getCanonicalType(Canon);
1894  else {
1895    // Build the canonical template specialization type.
1896    TemplateName CanonTemplate = getCanonicalTemplateName(Template);
1897    llvm::SmallVector<TemplateArgument, 4> CanonArgs;
1898    CanonArgs.reserve(NumArgs);
1899    for (unsigned I = 0; I != NumArgs; ++I)
1900      CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
1901
1902    // Determine whether this canonical template specialization type already
1903    // exists.
1904    llvm::FoldingSetNodeID ID;
1905    TemplateSpecializationType::Profile(ID, CanonTemplate,
1906                                        CanonArgs.data(), NumArgs, *this);
1907
1908    void *InsertPos = 0;
1909    TemplateSpecializationType *Spec
1910      = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1911
1912    if (!Spec) {
1913      // Allocate a new canonical template specialization type.
1914      void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1915                            sizeof(TemplateArgument) * NumArgs),
1916                           TypeAlignment);
1917      Spec = new (Mem) TemplateSpecializationType(*this, CanonTemplate,
1918                                                  CanonArgs.data(), NumArgs,
1919                                                  Canon);
1920      Types.push_back(Spec);
1921      TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1922    }
1923
1924    if (Canon.isNull())
1925      Canon = QualType(Spec, 0);
1926    assert(Canon->isDependentType() &&
1927           "Non-dependent template-id type must have a canonical type");
1928  }
1929
1930  // Allocate the (non-canonical) template specialization type, but don't
1931  // try to unique it: these types typically have location information that
1932  // we don't unique and don't want to lose.
1933  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1934                        sizeof(TemplateArgument) * NumArgs),
1935                       TypeAlignment);
1936  TemplateSpecializationType *Spec
1937    = new (Mem) TemplateSpecializationType(*this, Template, Args, NumArgs,
1938                                           Canon);
1939
1940  Types.push_back(Spec);
1941  return QualType(Spec, 0);
1942}
1943
1944QualType
1945ASTContext::getQualifiedNameType(NestedNameSpecifier *NNS,
1946                                 QualType NamedType) {
1947  llvm::FoldingSetNodeID ID;
1948  QualifiedNameType::Profile(ID, NNS, NamedType);
1949
1950  void *InsertPos = 0;
1951  QualifiedNameType *T
1952    = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1953  if (T)
1954    return QualType(T, 0);
1955
1956  QualType Canon = NamedType;
1957  if (!Canon.isCanonical()) {
1958    Canon = getCanonicalType(NamedType);
1959    QualifiedNameType *CheckT
1960      = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1961    assert(!CheckT && "Qualified name canonical type broken");
1962    (void)CheckT;
1963  }
1964
1965  T = new (*this) QualifiedNameType(NNS, NamedType, Canon);
1966  Types.push_back(T);
1967  QualifiedNameTypes.InsertNode(T, InsertPos);
1968  return QualType(T, 0);
1969}
1970
1971QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
1972                                          NestedNameSpecifier *NNS,
1973                                          const IdentifierInfo *Name,
1974                                          QualType Canon) {
1975  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1976
1977  if (Canon.isNull()) {
1978    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1979    ElaboratedTypeKeyword CanonKeyword = Keyword;
1980    if (Keyword == ETK_None)
1981      CanonKeyword = ETK_Typename;
1982
1983    if (CanonNNS != NNS || CanonKeyword != Keyword)
1984      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
1985  }
1986
1987  llvm::FoldingSetNodeID ID;
1988  DependentNameType::Profile(ID, Keyword, NNS, Name);
1989
1990  void *InsertPos = 0;
1991  DependentNameType *T
1992    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1993  if (T)
1994    return QualType(T, 0);
1995
1996  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
1997  Types.push_back(T);
1998  DependentNameTypes.InsertNode(T, InsertPos);
1999  return QualType(T, 0);
2000}
2001
2002QualType
2003ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
2004                                 NestedNameSpecifier *NNS,
2005                                 const TemplateSpecializationType *TemplateId,
2006                                 QualType Canon) {
2007  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2008
2009  llvm::FoldingSetNodeID ID;
2010  DependentNameType::Profile(ID, Keyword, NNS, TemplateId);
2011
2012  void *InsertPos = 0;
2013  DependentNameType *T
2014    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2015  if (T)
2016    return QualType(T, 0);
2017
2018  if (Canon.isNull()) {
2019    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2020    QualType CanonType = getCanonicalType(QualType(TemplateId, 0));
2021    ElaboratedTypeKeyword CanonKeyword = Keyword;
2022    if (Keyword == ETK_None)
2023      CanonKeyword = ETK_Typename;
2024    if (CanonNNS != NNS || CanonKeyword != Keyword ||
2025        CanonType != QualType(TemplateId, 0)) {
2026      const TemplateSpecializationType *CanonTemplateId
2027        = CanonType->getAs<TemplateSpecializationType>();
2028      assert(CanonTemplateId &&
2029             "Canonical type must also be a template specialization type");
2030      Canon = getDependentNameType(CanonKeyword, CanonNNS, CanonTemplateId);
2031    }
2032
2033    DependentNameType *CheckT
2034      = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2035    assert(!CheckT && "Typename canonical type is broken"); (void)CheckT;
2036  }
2037
2038  T = new (*this) DependentNameType(Keyword, NNS, TemplateId, Canon);
2039  Types.push_back(T);
2040  DependentNameTypes.InsertNode(T, InsertPos);
2041  return QualType(T, 0);
2042}
2043
2044QualType
2045ASTContext::getElaboratedType(QualType UnderlyingType,
2046                              ElaboratedType::TagKind Tag) {
2047  llvm::FoldingSetNodeID ID;
2048  ElaboratedType::Profile(ID, UnderlyingType, Tag);
2049
2050  void *InsertPos = 0;
2051  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2052  if (T)
2053    return QualType(T, 0);
2054
2055  QualType Canon = UnderlyingType;
2056  if (!Canon.isCanonical()) {
2057    Canon = getCanonicalType(Canon);
2058    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2059    assert(!CheckT && "Elaborated canonical type is broken"); (void)CheckT;
2060  }
2061
2062  T = new (*this) ElaboratedType(UnderlyingType, Tag, Canon);
2063  Types.push_back(T);
2064  ElaboratedTypes.InsertNode(T, InsertPos);
2065  return QualType(T, 0);
2066}
2067
2068/// CmpProtocolNames - Comparison predicate for sorting protocols
2069/// alphabetically.
2070static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2071                            const ObjCProtocolDecl *RHS) {
2072  return LHS->getDeclName() < RHS->getDeclName();
2073}
2074
2075static bool areSortedAndUniqued(ObjCProtocolDecl **Protocols,
2076                                unsigned NumProtocols) {
2077  if (NumProtocols == 0) return true;
2078
2079  for (unsigned i = 1; i != NumProtocols; ++i)
2080    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
2081      return false;
2082  return true;
2083}
2084
2085static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2086                                   unsigned &NumProtocols) {
2087  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2088
2089  // Sort protocols, keyed by name.
2090  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2091
2092  // Remove duplicates.
2093  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2094  NumProtocols = ProtocolsEnd-Protocols;
2095}
2096
2097/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2098/// the given interface decl and the conforming protocol list.
2099QualType ASTContext::getObjCObjectPointerType(QualType InterfaceT,
2100                                              ObjCProtocolDecl **Protocols,
2101                                              unsigned NumProtocols,
2102                                              unsigned Quals) {
2103  llvm::FoldingSetNodeID ID;
2104  ObjCObjectPointerType::Profile(ID, InterfaceT, Protocols, NumProtocols);
2105  Qualifiers Qs = Qualifiers::fromCVRMask(Quals);
2106
2107  void *InsertPos = 0;
2108  if (ObjCObjectPointerType *QT =
2109              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2110    return getQualifiedType(QualType(QT, 0), Qs);
2111
2112  // Sort the protocol list alphabetically to canonicalize it.
2113  QualType Canonical;
2114  if (!InterfaceT.isCanonical() ||
2115      !areSortedAndUniqued(Protocols, NumProtocols)) {
2116    if (!areSortedAndUniqued(Protocols, NumProtocols)) {
2117      llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(NumProtocols);
2118      unsigned UniqueCount = NumProtocols;
2119
2120      std::copy(Protocols, Protocols + NumProtocols, Sorted.begin());
2121      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2122
2123      Canonical = getObjCObjectPointerType(getCanonicalType(InterfaceT),
2124                                           &Sorted[0], UniqueCount);
2125    } else {
2126      Canonical = getObjCObjectPointerType(getCanonicalType(InterfaceT),
2127                                           Protocols, NumProtocols);
2128    }
2129
2130    // Regenerate InsertPos.
2131    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2132  }
2133
2134  // No match.
2135  unsigned Size = sizeof(ObjCObjectPointerType)
2136                + NumProtocols * sizeof(ObjCProtocolDecl *);
2137  void *Mem = Allocate(Size, TypeAlignment);
2138  ObjCObjectPointerType *QType = new (Mem) ObjCObjectPointerType(Canonical,
2139                                                                 InterfaceT,
2140                                                                 Protocols,
2141                                                                 NumProtocols);
2142
2143  Types.push_back(QType);
2144  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2145  return getQualifiedType(QualType(QType, 0), Qs);
2146}
2147
2148/// getObjCInterfaceType - Return the unique reference to the type for the
2149/// specified ObjC interface decl. The list of protocols is optional.
2150QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
2151                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
2152  llvm::FoldingSetNodeID ID;
2153  ObjCInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
2154
2155  void *InsertPos = 0;
2156  if (ObjCInterfaceType *QT =
2157      ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
2158    return QualType(QT, 0);
2159
2160  // Sort the protocol list alphabetically to canonicalize it.
2161  QualType Canonical;
2162  if (NumProtocols && !areSortedAndUniqued(Protocols, NumProtocols)) {
2163    llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(NumProtocols);
2164    std::copy(Protocols, Protocols + NumProtocols, Sorted.begin());
2165
2166    unsigned UniqueCount = NumProtocols;
2167    SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2168
2169    Canonical = getObjCInterfaceType(Decl, &Sorted[0], UniqueCount);
2170
2171    ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos);
2172  }
2173
2174  unsigned Size = sizeof(ObjCInterfaceType)
2175    + NumProtocols * sizeof(ObjCProtocolDecl *);
2176  void *Mem = Allocate(Size, TypeAlignment);
2177  ObjCInterfaceType *QType = new (Mem) ObjCInterfaceType(Canonical,
2178                                        const_cast<ObjCInterfaceDecl*>(Decl),
2179                                                         Protocols,
2180                                                         NumProtocols);
2181
2182  Types.push_back(QType);
2183  ObjCInterfaceTypes.InsertNode(QType, InsertPos);
2184  return QualType(QType, 0);
2185}
2186
2187/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2188/// TypeOfExprType AST's (since expression's are never shared). For example,
2189/// multiple declarations that refer to "typeof(x)" all contain different
2190/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2191/// on canonical type's (which are always unique).
2192QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
2193  TypeOfExprType *toe;
2194  if (tofExpr->isTypeDependent()) {
2195    llvm::FoldingSetNodeID ID;
2196    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2197
2198    void *InsertPos = 0;
2199    DependentTypeOfExprType *Canon
2200      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2201    if (Canon) {
2202      // We already have a "canonical" version of an identical, dependent
2203      // typeof(expr) type. Use that as our canonical type.
2204      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2205                                          QualType((TypeOfExprType*)Canon, 0));
2206    }
2207    else {
2208      // Build a new, canonical typeof(expr) type.
2209      Canon
2210        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2211      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2212      toe = Canon;
2213    }
2214  } else {
2215    QualType Canonical = getCanonicalType(tofExpr->getType());
2216    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2217  }
2218  Types.push_back(toe);
2219  return QualType(toe, 0);
2220}
2221
2222/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2223/// TypeOfType AST's. The only motivation to unique these nodes would be
2224/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2225/// an issue. This doesn't effect the type checker, since it operates
2226/// on canonical type's (which are always unique).
2227QualType ASTContext::getTypeOfType(QualType tofType) {
2228  QualType Canonical = getCanonicalType(tofType);
2229  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2230  Types.push_back(tot);
2231  return QualType(tot, 0);
2232}
2233
2234/// getDecltypeForExpr - Given an expr, will return the decltype for that
2235/// expression, according to the rules in C++0x [dcl.type.simple]p4
2236static QualType getDecltypeForExpr(const Expr *e, ASTContext &Context) {
2237  if (e->isTypeDependent())
2238    return Context.DependentTy;
2239
2240  // If e is an id expression or a class member access, decltype(e) is defined
2241  // as the type of the entity named by e.
2242  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2243    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2244      return VD->getType();
2245  }
2246  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2247    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2248      return FD->getType();
2249  }
2250  // If e is a function call or an invocation of an overloaded operator,
2251  // (parentheses around e are ignored), decltype(e) is defined as the
2252  // return type of that function.
2253  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2254    return CE->getCallReturnType();
2255
2256  QualType T = e->getType();
2257
2258  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2259  // defined as T&, otherwise decltype(e) is defined as T.
2260  if (e->isLvalue(Context) == Expr::LV_Valid)
2261    T = Context.getLValueReferenceType(T);
2262
2263  return T;
2264}
2265
2266/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2267/// DecltypeType AST's. The only motivation to unique these nodes would be
2268/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2269/// an issue. This doesn't effect the type checker, since it operates
2270/// on canonical type's (which are always unique).
2271QualType ASTContext::getDecltypeType(Expr *e) {
2272  DecltypeType *dt;
2273  if (e->isTypeDependent()) {
2274    llvm::FoldingSetNodeID ID;
2275    DependentDecltypeType::Profile(ID, *this, e);
2276
2277    void *InsertPos = 0;
2278    DependentDecltypeType *Canon
2279      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2280    if (Canon) {
2281      // We already have a "canonical" version of an equivalent, dependent
2282      // decltype type. Use that as our canonical type.
2283      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2284                                       QualType((DecltypeType*)Canon, 0));
2285    }
2286    else {
2287      // Build a new, canonical typeof(expr) type.
2288      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2289      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2290      dt = Canon;
2291    }
2292  } else {
2293    QualType T = getDecltypeForExpr(e, *this);
2294    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2295  }
2296  Types.push_back(dt);
2297  return QualType(dt, 0);
2298}
2299
2300/// getTagDeclType - Return the unique reference to the type for the
2301/// specified TagDecl (struct/union/class/enum) decl.
2302QualType ASTContext::getTagDeclType(const TagDecl *Decl) {
2303  assert (Decl);
2304  // FIXME: What is the design on getTagDeclType when it requires casting
2305  // away const?  mutable?
2306  return getTypeDeclType(const_cast<TagDecl*>(Decl));
2307}
2308
2309/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2310/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2311/// needs to agree with the definition in <stddef.h>.
2312CanQualType ASTContext::getSizeType() const {
2313  return getFromTargetType(Target.getSizeType());
2314}
2315
2316/// getSignedWCharType - Return the type of "signed wchar_t".
2317/// Used when in C++, as a GCC extension.
2318QualType ASTContext::getSignedWCharType() const {
2319  // FIXME: derive from "Target" ?
2320  return WCharTy;
2321}
2322
2323/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2324/// Used when in C++, as a GCC extension.
2325QualType ASTContext::getUnsignedWCharType() const {
2326  // FIXME: derive from "Target" ?
2327  return UnsignedIntTy;
2328}
2329
2330/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2331/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2332QualType ASTContext::getPointerDiffType() const {
2333  return getFromTargetType(Target.getPtrDiffType(0));
2334}
2335
2336//===----------------------------------------------------------------------===//
2337//                              Type Operators
2338//===----------------------------------------------------------------------===//
2339
2340CanQualType ASTContext::getCanonicalParamType(QualType T) {
2341  // Push qualifiers into arrays, and then discard any remaining
2342  // qualifiers.
2343  T = getCanonicalType(T);
2344  const Type *Ty = T.getTypePtr();
2345
2346  QualType Result;
2347  if (isa<ArrayType>(Ty)) {
2348    Result = getArrayDecayedType(QualType(Ty,0));
2349  } else if (isa<FunctionType>(Ty)) {
2350    Result = getPointerType(QualType(Ty, 0));
2351  } else {
2352    Result = QualType(Ty, 0);
2353  }
2354
2355  return CanQualType::CreateUnsafe(Result);
2356}
2357
2358/// getCanonicalType - Return the canonical (structural) type corresponding to
2359/// the specified potentially non-canonical type.  The non-canonical version
2360/// of a type may have many "decorated" versions of types.  Decorators can
2361/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
2362/// to be free of any of these, allowing two canonical types to be compared
2363/// for exact equality with a simple pointer comparison.
2364CanQualType ASTContext::getCanonicalType(QualType T) {
2365  QualifierCollector Quals;
2366  const Type *Ptr = Quals.strip(T);
2367  QualType CanType = Ptr->getCanonicalTypeInternal();
2368
2369  // The canonical internal type will be the canonical type *except*
2370  // that we push type qualifiers down through array types.
2371
2372  // If there are no new qualifiers to push down, stop here.
2373  if (!Quals.hasQualifiers())
2374    return CanQualType::CreateUnsafe(CanType);
2375
2376  // If the type qualifiers are on an array type, get the canonical
2377  // type of the array with the qualifiers applied to the element
2378  // type.
2379  ArrayType *AT = dyn_cast<ArrayType>(CanType);
2380  if (!AT)
2381    return CanQualType::CreateUnsafe(getQualifiedType(CanType, Quals));
2382
2383  // Get the canonical version of the element with the extra qualifiers on it.
2384  // This can recursively sink qualifiers through multiple levels of arrays.
2385  QualType NewEltTy = getQualifiedType(AT->getElementType(), Quals);
2386  NewEltTy = getCanonicalType(NewEltTy);
2387
2388  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2389    return CanQualType::CreateUnsafe(
2390             getConstantArrayType(NewEltTy, CAT->getSize(),
2391                                  CAT->getSizeModifier(),
2392                                  CAT->getIndexTypeCVRQualifiers()));
2393  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
2394    return CanQualType::CreateUnsafe(
2395             getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
2396                                    IAT->getIndexTypeCVRQualifiers()));
2397
2398  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
2399    return CanQualType::CreateUnsafe(
2400             getDependentSizedArrayType(NewEltTy,
2401                                        DSAT->getSizeExpr() ?
2402                                          DSAT->getSizeExpr()->Retain() : 0,
2403                                        DSAT->getSizeModifier(),
2404                                        DSAT->getIndexTypeCVRQualifiers(),
2405                        DSAT->getBracketsRange())->getCanonicalTypeInternal());
2406
2407  VariableArrayType *VAT = cast<VariableArrayType>(AT);
2408  return CanQualType::CreateUnsafe(getVariableArrayType(NewEltTy,
2409                                                        VAT->getSizeExpr() ?
2410                                              VAT->getSizeExpr()->Retain() : 0,
2411                                                        VAT->getSizeModifier(),
2412                                              VAT->getIndexTypeCVRQualifiers(),
2413                                                     VAT->getBracketsRange()));
2414}
2415
2416QualType ASTContext::getUnqualifiedArrayType(QualType T,
2417                                             Qualifiers &Quals) {
2418  Quals = T.getQualifiers();
2419  if (!isa<ArrayType>(T)) {
2420    return T.getUnqualifiedType();
2421  }
2422
2423  const ArrayType *AT = cast<ArrayType>(T);
2424  QualType Elt = AT->getElementType();
2425  QualType UnqualElt = getUnqualifiedArrayType(Elt, Quals);
2426  if (Elt == UnqualElt)
2427    return T;
2428
2429  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(T)) {
2430    return getConstantArrayType(UnqualElt, CAT->getSize(),
2431                                CAT->getSizeModifier(), 0);
2432  }
2433
2434  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(T)) {
2435    return getIncompleteArrayType(UnqualElt, IAT->getSizeModifier(), 0);
2436  }
2437
2438  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(T);
2439  return getDependentSizedArrayType(UnqualElt, DSAT->getSizeExpr()->Retain(),
2440                                    DSAT->getSizeModifier(), 0,
2441                                    SourceRange());
2442}
2443
2444DeclarationName ASTContext::getNameForTemplate(TemplateName Name) {
2445  if (TemplateDecl *TD = Name.getAsTemplateDecl())
2446    return TD->getDeclName();
2447
2448  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
2449    if (DTN->isIdentifier()) {
2450      return DeclarationNames.getIdentifier(DTN->getIdentifier());
2451    } else {
2452      return DeclarationNames.getCXXOperatorName(DTN->getOperator());
2453    }
2454  }
2455
2456  OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
2457  assert(Storage);
2458  return (*Storage->begin())->getDeclName();
2459}
2460
2461TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
2462  // If this template name refers to a template, the canonical
2463  // template name merely stores the template itself.
2464  if (TemplateDecl *Template = Name.getAsTemplateDecl())
2465    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
2466
2467  assert(!Name.getAsOverloadedTemplate());
2468
2469  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
2470  assert(DTN && "Non-dependent template names must refer to template decls.");
2471  return DTN->CanonicalTemplateName;
2472}
2473
2474bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
2475  X = getCanonicalTemplateName(X);
2476  Y = getCanonicalTemplateName(Y);
2477  return X.getAsVoidPointer() == Y.getAsVoidPointer();
2478}
2479
2480TemplateArgument
2481ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) {
2482  switch (Arg.getKind()) {
2483    case TemplateArgument::Null:
2484      return Arg;
2485
2486    case TemplateArgument::Expression:
2487      return Arg;
2488
2489    case TemplateArgument::Declaration:
2490      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
2491
2492    case TemplateArgument::Template:
2493      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
2494
2495    case TemplateArgument::Integral:
2496      return TemplateArgument(*Arg.getAsIntegral(),
2497                              getCanonicalType(Arg.getIntegralType()));
2498
2499    case TemplateArgument::Type:
2500      return TemplateArgument(getCanonicalType(Arg.getAsType()));
2501
2502    case TemplateArgument::Pack: {
2503      // FIXME: Allocate in ASTContext
2504      TemplateArgument *CanonArgs = new TemplateArgument[Arg.pack_size()];
2505      unsigned Idx = 0;
2506      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
2507                                        AEnd = Arg.pack_end();
2508           A != AEnd; (void)++A, ++Idx)
2509        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
2510
2511      TemplateArgument Result;
2512      Result.setArgumentPack(CanonArgs, Arg.pack_size(), false);
2513      return Result;
2514    }
2515  }
2516
2517  // Silence GCC warning
2518  assert(false && "Unhandled template argument kind");
2519  return TemplateArgument();
2520}
2521
2522NestedNameSpecifier *
2523ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
2524  if (!NNS)
2525    return 0;
2526
2527  switch (NNS->getKind()) {
2528  case NestedNameSpecifier::Identifier:
2529    // Canonicalize the prefix but keep the identifier the same.
2530    return NestedNameSpecifier::Create(*this,
2531                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
2532                                       NNS->getAsIdentifier());
2533
2534  case NestedNameSpecifier::Namespace:
2535    // A namespace is canonical; build a nested-name-specifier with
2536    // this namespace and no prefix.
2537    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
2538
2539  case NestedNameSpecifier::TypeSpec:
2540  case NestedNameSpecifier::TypeSpecWithTemplate: {
2541    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
2542    return NestedNameSpecifier::Create(*this, 0,
2543                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
2544                                       T.getTypePtr());
2545  }
2546
2547  case NestedNameSpecifier::Global:
2548    // The global specifier is canonical and unique.
2549    return NNS;
2550  }
2551
2552  // Required to silence a GCC warning
2553  return 0;
2554}
2555
2556
2557const ArrayType *ASTContext::getAsArrayType(QualType T) {
2558  // Handle the non-qualified case efficiently.
2559  if (!T.hasLocalQualifiers()) {
2560    // Handle the common positive case fast.
2561    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
2562      return AT;
2563  }
2564
2565  // Handle the common negative case fast.
2566  QualType CType = T->getCanonicalTypeInternal();
2567  if (!isa<ArrayType>(CType))
2568    return 0;
2569
2570  // Apply any qualifiers from the array type to the element type.  This
2571  // implements C99 6.7.3p8: "If the specification of an array type includes
2572  // any type qualifiers, the element type is so qualified, not the array type."
2573
2574  // If we get here, we either have type qualifiers on the type, or we have
2575  // sugar such as a typedef in the way.  If we have type qualifiers on the type
2576  // we must propagate them down into the element type.
2577
2578  QualifierCollector Qs;
2579  const Type *Ty = Qs.strip(T.getDesugaredType());
2580
2581  // If we have a simple case, just return now.
2582  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
2583  if (ATy == 0 || Qs.empty())
2584    return ATy;
2585
2586  // Otherwise, we have an array and we have qualifiers on it.  Push the
2587  // qualifiers into the array element type and return a new array type.
2588  // Get the canonical version of the element with the extra qualifiers on it.
2589  // This can recursively sink qualifiers through multiple levels of arrays.
2590  QualType NewEltTy = getQualifiedType(ATy->getElementType(), Qs);
2591
2592  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
2593    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
2594                                                CAT->getSizeModifier(),
2595                                           CAT->getIndexTypeCVRQualifiers()));
2596  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
2597    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
2598                                                  IAT->getSizeModifier(),
2599                                           IAT->getIndexTypeCVRQualifiers()));
2600
2601  if (const DependentSizedArrayType *DSAT
2602        = dyn_cast<DependentSizedArrayType>(ATy))
2603    return cast<ArrayType>(
2604                     getDependentSizedArrayType(NewEltTy,
2605                                                DSAT->getSizeExpr() ?
2606                                              DSAT->getSizeExpr()->Retain() : 0,
2607                                                DSAT->getSizeModifier(),
2608                                              DSAT->getIndexTypeCVRQualifiers(),
2609                                                DSAT->getBracketsRange()));
2610
2611  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
2612  return cast<ArrayType>(getVariableArrayType(NewEltTy,
2613                                              VAT->getSizeExpr() ?
2614                                              VAT->getSizeExpr()->Retain() : 0,
2615                                              VAT->getSizeModifier(),
2616                                              VAT->getIndexTypeCVRQualifiers(),
2617                                              VAT->getBracketsRange()));
2618}
2619
2620
2621/// getArrayDecayedType - Return the properly qualified result of decaying the
2622/// specified array type to a pointer.  This operation is non-trivial when
2623/// handling typedefs etc.  The canonical type of "T" must be an array type,
2624/// this returns a pointer to a properly qualified element of the array.
2625///
2626/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2627QualType ASTContext::getArrayDecayedType(QualType Ty) {
2628  // Get the element type with 'getAsArrayType' so that we don't lose any
2629  // typedefs in the element type of the array.  This also handles propagation
2630  // of type qualifiers from the array type into the element type if present
2631  // (C99 6.7.3p8).
2632  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
2633  assert(PrettyArrayType && "Not an array type!");
2634
2635  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
2636
2637  // int x[restrict 4] ->  int *restrict
2638  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
2639}
2640
2641QualType ASTContext::getBaseElementType(QualType QT) {
2642  QualifierCollector Qs;
2643  while (true) {
2644    const Type *UT = Qs.strip(QT);
2645    if (const ArrayType *AT = getAsArrayType(QualType(UT,0))) {
2646      QT = AT->getElementType();
2647    } else {
2648      return Qs.apply(QT);
2649    }
2650  }
2651}
2652
2653QualType ASTContext::getBaseElementType(const ArrayType *AT) {
2654  QualType ElemTy = AT->getElementType();
2655
2656  if (const ArrayType *AT = getAsArrayType(ElemTy))
2657    return getBaseElementType(AT);
2658
2659  return ElemTy;
2660}
2661
2662/// getConstantArrayElementCount - Returns number of constant array elements.
2663uint64_t
2664ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
2665  uint64_t ElementCount = 1;
2666  do {
2667    ElementCount *= CA->getSize().getZExtValue();
2668    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
2669  } while (CA);
2670  return ElementCount;
2671}
2672
2673/// getFloatingRank - Return a relative rank for floating point types.
2674/// This routine will assert if passed a built-in type that isn't a float.
2675static FloatingRank getFloatingRank(QualType T) {
2676  if (const ComplexType *CT = T->getAs<ComplexType>())
2677    return getFloatingRank(CT->getElementType());
2678
2679  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
2680  switch (T->getAs<BuiltinType>()->getKind()) {
2681  default: assert(0 && "getFloatingRank(): not a floating type");
2682  case BuiltinType::Float:      return FloatRank;
2683  case BuiltinType::Double:     return DoubleRank;
2684  case BuiltinType::LongDouble: return LongDoubleRank;
2685  }
2686}
2687
2688/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
2689/// point or a complex type (based on typeDomain/typeSize).
2690/// 'typeDomain' is a real floating point or complex type.
2691/// 'typeSize' is a real floating point or complex type.
2692QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
2693                                                       QualType Domain) const {
2694  FloatingRank EltRank = getFloatingRank(Size);
2695  if (Domain->isComplexType()) {
2696    switch (EltRank) {
2697    default: assert(0 && "getFloatingRank(): illegal value for rank");
2698    case FloatRank:      return FloatComplexTy;
2699    case DoubleRank:     return DoubleComplexTy;
2700    case LongDoubleRank: return LongDoubleComplexTy;
2701    }
2702  }
2703
2704  assert(Domain->isRealFloatingType() && "Unknown domain!");
2705  switch (EltRank) {
2706  default: assert(0 && "getFloatingRank(): illegal value for rank");
2707  case FloatRank:      return FloatTy;
2708  case DoubleRank:     return DoubleTy;
2709  case LongDoubleRank: return LongDoubleTy;
2710  }
2711}
2712
2713/// getFloatingTypeOrder - Compare the rank of the two specified floating
2714/// point types, ignoring the domain of the type (i.e. 'double' ==
2715/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2716/// LHS < RHS, return -1.
2717int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
2718  FloatingRank LHSR = getFloatingRank(LHS);
2719  FloatingRank RHSR = getFloatingRank(RHS);
2720
2721  if (LHSR == RHSR)
2722    return 0;
2723  if (LHSR > RHSR)
2724    return 1;
2725  return -1;
2726}
2727
2728/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
2729/// routine will assert if passed a built-in type that isn't an integer or enum,
2730/// or if it is not canonicalized.
2731unsigned ASTContext::getIntegerRank(Type *T) {
2732  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
2733  if (EnumType* ET = dyn_cast<EnumType>(T))
2734    T = ET->getDecl()->getPromotionType().getTypePtr();
2735
2736  if (T->isSpecificBuiltinType(BuiltinType::WChar))
2737    T = getFromTargetType(Target.getWCharType()).getTypePtr();
2738
2739  if (T->isSpecificBuiltinType(BuiltinType::Char16))
2740    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
2741
2742  if (T->isSpecificBuiltinType(BuiltinType::Char32))
2743    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
2744
2745  switch (cast<BuiltinType>(T)->getKind()) {
2746  default: assert(0 && "getIntegerRank(): not a built-in integer");
2747  case BuiltinType::Bool:
2748    return 1 + (getIntWidth(BoolTy) << 3);
2749  case BuiltinType::Char_S:
2750  case BuiltinType::Char_U:
2751  case BuiltinType::SChar:
2752  case BuiltinType::UChar:
2753    return 2 + (getIntWidth(CharTy) << 3);
2754  case BuiltinType::Short:
2755  case BuiltinType::UShort:
2756    return 3 + (getIntWidth(ShortTy) << 3);
2757  case BuiltinType::Int:
2758  case BuiltinType::UInt:
2759    return 4 + (getIntWidth(IntTy) << 3);
2760  case BuiltinType::Long:
2761  case BuiltinType::ULong:
2762    return 5 + (getIntWidth(LongTy) << 3);
2763  case BuiltinType::LongLong:
2764  case BuiltinType::ULongLong:
2765    return 6 + (getIntWidth(LongLongTy) << 3);
2766  case BuiltinType::Int128:
2767  case BuiltinType::UInt128:
2768    return 7 + (getIntWidth(Int128Ty) << 3);
2769  }
2770}
2771
2772/// \brief Whether this is a promotable bitfield reference according
2773/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
2774///
2775/// \returns the type this bit-field will promote to, or NULL if no
2776/// promotion occurs.
2777QualType ASTContext::isPromotableBitField(Expr *E) {
2778  FieldDecl *Field = E->getBitField();
2779  if (!Field)
2780    return QualType();
2781
2782  QualType FT = Field->getType();
2783
2784  llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
2785  uint64_t BitWidth = BitWidthAP.getZExtValue();
2786  uint64_t IntSize = getTypeSize(IntTy);
2787  // GCC extension compatibility: if the bit-field size is less than or equal
2788  // to the size of int, it gets promoted no matter what its type is.
2789  // For instance, unsigned long bf : 4 gets promoted to signed int.
2790  if (BitWidth < IntSize)
2791    return IntTy;
2792
2793  if (BitWidth == IntSize)
2794    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
2795
2796  // Types bigger than int are not subject to promotions, and therefore act
2797  // like the base type.
2798  // FIXME: This doesn't quite match what gcc does, but what gcc does here
2799  // is ridiculous.
2800  return QualType();
2801}
2802
2803/// getPromotedIntegerType - Returns the type that Promotable will
2804/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
2805/// integer type.
2806QualType ASTContext::getPromotedIntegerType(QualType Promotable) {
2807  assert(!Promotable.isNull());
2808  assert(Promotable->isPromotableIntegerType());
2809  if (const EnumType *ET = Promotable->getAs<EnumType>())
2810    return ET->getDecl()->getPromotionType();
2811  if (Promotable->isSignedIntegerType())
2812    return IntTy;
2813  uint64_t PromotableSize = getTypeSize(Promotable);
2814  uint64_t IntSize = getTypeSize(IntTy);
2815  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
2816  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
2817}
2818
2819/// getIntegerTypeOrder - Returns the highest ranked integer type:
2820/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2821/// LHS < RHS, return -1.
2822int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
2823  Type *LHSC = getCanonicalType(LHS).getTypePtr();
2824  Type *RHSC = getCanonicalType(RHS).getTypePtr();
2825  if (LHSC == RHSC) return 0;
2826
2827  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
2828  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
2829
2830  unsigned LHSRank = getIntegerRank(LHSC);
2831  unsigned RHSRank = getIntegerRank(RHSC);
2832
2833  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
2834    if (LHSRank == RHSRank) return 0;
2835    return LHSRank > RHSRank ? 1 : -1;
2836  }
2837
2838  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
2839  if (LHSUnsigned) {
2840    // If the unsigned [LHS] type is larger, return it.
2841    if (LHSRank >= RHSRank)
2842      return 1;
2843
2844    // If the signed type can represent all values of the unsigned type, it
2845    // wins.  Because we are dealing with 2's complement and types that are
2846    // powers of two larger than each other, this is always safe.
2847    return -1;
2848  }
2849
2850  // If the unsigned [RHS] type is larger, return it.
2851  if (RHSRank >= LHSRank)
2852    return -1;
2853
2854  // If the signed type can represent all values of the unsigned type, it
2855  // wins.  Because we are dealing with 2's complement and types that are
2856  // powers of two larger than each other, this is always safe.
2857  return 1;
2858}
2859
2860static RecordDecl *
2861CreateRecordDecl(ASTContext &Ctx, RecordDecl::TagKind TK, DeclContext *DC,
2862                 SourceLocation L, IdentifierInfo *Id) {
2863  if (Ctx.getLangOptions().CPlusPlus)
2864    return CXXRecordDecl::Create(Ctx, TK, DC, L, Id);
2865  else
2866    return RecordDecl::Create(Ctx, TK, DC, L, Id);
2867}
2868
2869// getCFConstantStringType - Return the type used for constant CFStrings.
2870QualType ASTContext::getCFConstantStringType() {
2871  if (!CFConstantStringTypeDecl) {
2872    CFConstantStringTypeDecl =
2873      CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2874                       &Idents.get("NSConstantString"));
2875    CFConstantStringTypeDecl->startDefinition();
2876
2877    QualType FieldTypes[4];
2878
2879    // const int *isa;
2880    FieldTypes[0] = getPointerType(IntTy.withConst());
2881    // int flags;
2882    FieldTypes[1] = IntTy;
2883    // const char *str;
2884    FieldTypes[2] = getPointerType(CharTy.withConst());
2885    // long length;
2886    FieldTypes[3] = LongTy;
2887
2888    // Create fields
2889    for (unsigned i = 0; i < 4; ++i) {
2890      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
2891                                           SourceLocation(), 0,
2892                                           FieldTypes[i], /*TInfo=*/0,
2893                                           /*BitWidth=*/0,
2894                                           /*Mutable=*/false);
2895      CFConstantStringTypeDecl->addDecl(Field);
2896    }
2897
2898    CFConstantStringTypeDecl->completeDefinition();
2899  }
2900
2901  return getTagDeclType(CFConstantStringTypeDecl);
2902}
2903
2904void ASTContext::setCFConstantStringType(QualType T) {
2905  const RecordType *Rec = T->getAs<RecordType>();
2906  assert(Rec && "Invalid CFConstantStringType");
2907  CFConstantStringTypeDecl = Rec->getDecl();
2908}
2909
2910// getNSConstantStringType - Return the type used for constant NSStrings.
2911QualType ASTContext::getNSConstantStringType() {
2912  if (!NSConstantStringTypeDecl) {
2913    NSConstantStringTypeDecl =
2914    CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2915                     &Idents.get("__builtin_NSString"));
2916    NSConstantStringTypeDecl->startDefinition();
2917
2918    QualType FieldTypes[3];
2919
2920    // const int *isa;
2921    FieldTypes[0] = getPointerType(IntTy.withConst());
2922    // const char *str;
2923    FieldTypes[1] = getPointerType(CharTy.withConst());
2924    // unsigned int length;
2925    FieldTypes[2] = UnsignedIntTy;
2926
2927    // Create fields
2928    for (unsigned i = 0; i < 3; ++i) {
2929      FieldDecl *Field = FieldDecl::Create(*this, NSConstantStringTypeDecl,
2930                                           SourceLocation(), 0,
2931                                           FieldTypes[i], /*TInfo=*/0,
2932                                           /*BitWidth=*/0,
2933                                           /*Mutable=*/false);
2934      NSConstantStringTypeDecl->addDecl(Field);
2935    }
2936
2937    NSConstantStringTypeDecl->completeDefinition();
2938  }
2939
2940  return getTagDeclType(NSConstantStringTypeDecl);
2941}
2942
2943void ASTContext::setNSConstantStringType(QualType T) {
2944  const RecordType *Rec = T->getAs<RecordType>();
2945  assert(Rec && "Invalid NSConstantStringType");
2946  NSConstantStringTypeDecl = Rec->getDecl();
2947}
2948
2949QualType ASTContext::getObjCFastEnumerationStateType() {
2950  if (!ObjCFastEnumerationStateTypeDecl) {
2951    ObjCFastEnumerationStateTypeDecl =
2952      CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2953                       &Idents.get("__objcFastEnumerationState"));
2954    ObjCFastEnumerationStateTypeDecl->startDefinition();
2955
2956    QualType FieldTypes[] = {
2957      UnsignedLongTy,
2958      getPointerType(ObjCIdTypedefType),
2959      getPointerType(UnsignedLongTy),
2960      getConstantArrayType(UnsignedLongTy,
2961                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2962    };
2963
2964    for (size_t i = 0; i < 4; ++i) {
2965      FieldDecl *Field = FieldDecl::Create(*this,
2966                                           ObjCFastEnumerationStateTypeDecl,
2967                                           SourceLocation(), 0,
2968                                           FieldTypes[i], /*TInfo=*/0,
2969                                           /*BitWidth=*/0,
2970                                           /*Mutable=*/false);
2971      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
2972    }
2973
2974    ObjCFastEnumerationStateTypeDecl->completeDefinition();
2975  }
2976
2977  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
2978}
2979
2980QualType ASTContext::getBlockDescriptorType() {
2981  if (BlockDescriptorType)
2982    return getTagDeclType(BlockDescriptorType);
2983
2984  RecordDecl *T;
2985  // FIXME: Needs the FlagAppleBlock bit.
2986  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2987                       &Idents.get("__block_descriptor"));
2988  T->startDefinition();
2989
2990  QualType FieldTypes[] = {
2991    UnsignedLongTy,
2992    UnsignedLongTy,
2993  };
2994
2995  const char *FieldNames[] = {
2996    "reserved",
2997    "Size"
2998  };
2999
3000  for (size_t i = 0; i < 2; ++i) {
3001    FieldDecl *Field = FieldDecl::Create(*this,
3002                                         T,
3003                                         SourceLocation(),
3004                                         &Idents.get(FieldNames[i]),
3005                                         FieldTypes[i], /*TInfo=*/0,
3006                                         /*BitWidth=*/0,
3007                                         /*Mutable=*/false);
3008    T->addDecl(Field);
3009  }
3010
3011  T->completeDefinition();
3012
3013  BlockDescriptorType = T;
3014
3015  return getTagDeclType(BlockDescriptorType);
3016}
3017
3018void ASTContext::setBlockDescriptorType(QualType T) {
3019  const RecordType *Rec = T->getAs<RecordType>();
3020  assert(Rec && "Invalid BlockDescriptorType");
3021  BlockDescriptorType = Rec->getDecl();
3022}
3023
3024QualType ASTContext::getBlockDescriptorExtendedType() {
3025  if (BlockDescriptorExtendedType)
3026    return getTagDeclType(BlockDescriptorExtendedType);
3027
3028  RecordDecl *T;
3029  // FIXME: Needs the FlagAppleBlock bit.
3030  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
3031                       &Idents.get("__block_descriptor_withcopydispose"));
3032  T->startDefinition();
3033
3034  QualType FieldTypes[] = {
3035    UnsignedLongTy,
3036    UnsignedLongTy,
3037    getPointerType(VoidPtrTy),
3038    getPointerType(VoidPtrTy)
3039  };
3040
3041  const char *FieldNames[] = {
3042    "reserved",
3043    "Size",
3044    "CopyFuncPtr",
3045    "DestroyFuncPtr"
3046  };
3047
3048  for (size_t i = 0; i < 4; ++i) {
3049    FieldDecl *Field = FieldDecl::Create(*this,
3050                                         T,
3051                                         SourceLocation(),
3052                                         &Idents.get(FieldNames[i]),
3053                                         FieldTypes[i], /*TInfo=*/0,
3054                                         /*BitWidth=*/0,
3055                                         /*Mutable=*/false);
3056    T->addDecl(Field);
3057  }
3058
3059  T->completeDefinition();
3060
3061  BlockDescriptorExtendedType = T;
3062
3063  return getTagDeclType(BlockDescriptorExtendedType);
3064}
3065
3066void ASTContext::setBlockDescriptorExtendedType(QualType T) {
3067  const RecordType *Rec = T->getAs<RecordType>();
3068  assert(Rec && "Invalid BlockDescriptorType");
3069  BlockDescriptorExtendedType = Rec->getDecl();
3070}
3071
3072bool ASTContext::BlockRequiresCopying(QualType Ty) {
3073  if (Ty->isBlockPointerType())
3074    return true;
3075  if (isObjCNSObjectType(Ty))
3076    return true;
3077  if (Ty->isObjCObjectPointerType())
3078    return true;
3079  return false;
3080}
3081
3082QualType ASTContext::BuildByRefType(const char *DeclName, QualType Ty) {
3083  //  type = struct __Block_byref_1_X {
3084  //    void *__isa;
3085  //    struct __Block_byref_1_X *__forwarding;
3086  //    unsigned int __flags;
3087  //    unsigned int __size;
3088  //    void *__copy_helper;		// as needed
3089  //    void *__destroy_help		// as needed
3090  //    int X;
3091  //  } *
3092
3093  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
3094
3095  // FIXME: Move up
3096  static unsigned int UniqueBlockByRefTypeID = 0;
3097  llvm::SmallString<36> Name;
3098  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
3099                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
3100  RecordDecl *T;
3101  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
3102                       &Idents.get(Name.str()));
3103  T->startDefinition();
3104  QualType Int32Ty = IntTy;
3105  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
3106  QualType FieldTypes[] = {
3107    getPointerType(VoidPtrTy),
3108    getPointerType(getTagDeclType(T)),
3109    Int32Ty,
3110    Int32Ty,
3111    getPointerType(VoidPtrTy),
3112    getPointerType(VoidPtrTy),
3113    Ty
3114  };
3115
3116  const char *FieldNames[] = {
3117    "__isa",
3118    "__forwarding",
3119    "__flags",
3120    "__size",
3121    "__copy_helper",
3122    "__destroy_helper",
3123    DeclName,
3124  };
3125
3126  for (size_t i = 0; i < 7; ++i) {
3127    if (!HasCopyAndDispose && i >=4 && i <= 5)
3128      continue;
3129    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3130                                         &Idents.get(FieldNames[i]),
3131                                         FieldTypes[i], /*TInfo=*/0,
3132                                         /*BitWidth=*/0, /*Mutable=*/false);
3133    T->addDecl(Field);
3134  }
3135
3136  T->completeDefinition();
3137
3138  return getPointerType(getTagDeclType(T));
3139}
3140
3141
3142QualType ASTContext::getBlockParmType(
3143  bool BlockHasCopyDispose,
3144  llvm::SmallVector<const Expr *, 8> &BlockDeclRefDecls) {
3145  // FIXME: Move up
3146  static unsigned int UniqueBlockParmTypeID = 0;
3147  llvm::SmallString<36> Name;
3148  llvm::raw_svector_ostream(Name) << "__block_literal_"
3149                                  << ++UniqueBlockParmTypeID;
3150  RecordDecl *T;
3151  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
3152                       &Idents.get(Name.str()));
3153  T->startDefinition();
3154  QualType FieldTypes[] = {
3155    getPointerType(VoidPtrTy),
3156    IntTy,
3157    IntTy,
3158    getPointerType(VoidPtrTy),
3159    (BlockHasCopyDispose ?
3160     getPointerType(getBlockDescriptorExtendedType()) :
3161     getPointerType(getBlockDescriptorType()))
3162  };
3163
3164  const char *FieldNames[] = {
3165    "__isa",
3166    "__flags",
3167    "__reserved",
3168    "__FuncPtr",
3169    "__descriptor"
3170  };
3171
3172  for (size_t i = 0; i < 5; ++i) {
3173    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3174                                         &Idents.get(FieldNames[i]),
3175                                         FieldTypes[i], /*TInfo=*/0,
3176                                         /*BitWidth=*/0, /*Mutable=*/false);
3177    T->addDecl(Field);
3178  }
3179
3180  for (size_t i = 0; i < BlockDeclRefDecls.size(); ++i) {
3181    const Expr *E = BlockDeclRefDecls[i];
3182    const BlockDeclRefExpr *BDRE = dyn_cast<BlockDeclRefExpr>(E);
3183    clang::IdentifierInfo *Name = 0;
3184    if (BDRE) {
3185      const ValueDecl *D = BDRE->getDecl();
3186      Name = &Idents.get(D->getName());
3187    }
3188    QualType FieldType = E->getType();
3189
3190    if (BDRE && BDRE->isByRef())
3191      FieldType = BuildByRefType(BDRE->getDecl()->getNameAsCString(),
3192                                 FieldType);
3193
3194    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3195                                         Name, FieldType, /*TInfo=*/0,
3196                                         /*BitWidth=*/0, /*Mutable=*/false);
3197    T->addDecl(Field);
3198  }
3199
3200  T->completeDefinition();
3201
3202  return getPointerType(getTagDeclType(T));
3203}
3204
3205void ASTContext::setObjCFastEnumerationStateType(QualType T) {
3206  const RecordType *Rec = T->getAs<RecordType>();
3207  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
3208  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
3209}
3210
3211// This returns true if a type has been typedefed to BOOL:
3212// typedef <type> BOOL;
3213static bool isTypeTypedefedAsBOOL(QualType T) {
3214  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3215    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3216      return II->isStr("BOOL");
3217
3218  return false;
3219}
3220
3221/// getObjCEncodingTypeSize returns size of type for objective-c encoding
3222/// purpose.
3223CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) {
3224  CharUnits sz = getTypeSizeInChars(type);
3225
3226  // Make all integer and enum types at least as large as an int
3227  if (sz.isPositive() && type->isIntegralType())
3228    sz = std::max(sz, getTypeSizeInChars(IntTy));
3229  // Treat arrays as pointers, since that's how they're passed in.
3230  else if (type->isArrayType())
3231    sz = getTypeSizeInChars(VoidPtrTy);
3232  return sz;
3233}
3234
3235static inline
3236std::string charUnitsToString(const CharUnits &CU) {
3237  return llvm::itostr(CU.getQuantity());
3238}
3239
3240/// getObjCEncodingForBlockDecl - Return the encoded type for this block
3241/// declaration.
3242void ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr,
3243                                             std::string& S) {
3244  const BlockDecl *Decl = Expr->getBlockDecl();
3245  QualType BlockTy =
3246      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
3247  // Encode result type.
3248  getObjCEncodingForType(cast<FunctionType>(BlockTy)->getResultType(), S);
3249  // Compute size of all parameters.
3250  // Start with computing size of a pointer in number of bytes.
3251  // FIXME: There might(should) be a better way of doing this computation!
3252  SourceLocation Loc;
3253  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3254  CharUnits ParmOffset = PtrSize;
3255  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
3256       E = Decl->param_end(); PI != E; ++PI) {
3257    QualType PType = (*PI)->getType();
3258    CharUnits sz = getObjCEncodingTypeSize(PType);
3259    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
3260    ParmOffset += sz;
3261  }
3262  // Size of the argument frame
3263  S += charUnitsToString(ParmOffset);
3264  // Block pointer and offset.
3265  S += "@?0";
3266  ParmOffset = PtrSize;
3267
3268  // Argument types.
3269  ParmOffset = PtrSize;
3270  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
3271       Decl->param_end(); PI != E; ++PI) {
3272    ParmVarDecl *PVDecl = *PI;
3273    QualType PType = PVDecl->getOriginalType();
3274    if (const ArrayType *AT =
3275          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3276      // Use array's original type only if it has known number of
3277      // elements.
3278      if (!isa<ConstantArrayType>(AT))
3279        PType = PVDecl->getType();
3280    } else if (PType->isFunctionType())
3281      PType = PVDecl->getType();
3282    getObjCEncodingForType(PType, S);
3283    S += charUnitsToString(ParmOffset);
3284    ParmOffset += getObjCEncodingTypeSize(PType);
3285  }
3286}
3287
3288/// getObjCEncodingForMethodDecl - Return the encoded type for this method
3289/// declaration.
3290void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
3291                                              std::string& S) {
3292  // FIXME: This is not very efficient.
3293  // Encode type qualifer, 'in', 'inout', etc. for the return type.
3294  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
3295  // Encode result type.
3296  getObjCEncodingForType(Decl->getResultType(), S);
3297  // Compute size of all parameters.
3298  // Start with computing size of a pointer in number of bytes.
3299  // FIXME: There might(should) be a better way of doing this computation!
3300  SourceLocation Loc;
3301  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3302  // The first two arguments (self and _cmd) are pointers; account for
3303  // their size.
3304  CharUnits ParmOffset = 2 * PtrSize;
3305  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3306       E = Decl->sel_param_end(); PI != E; ++PI) {
3307    QualType PType = (*PI)->getType();
3308    CharUnits sz = getObjCEncodingTypeSize(PType);
3309    assert (sz.isPositive() &&
3310        "getObjCEncodingForMethodDecl - Incomplete param type");
3311    ParmOffset += sz;
3312  }
3313  S += charUnitsToString(ParmOffset);
3314  S += "@0:";
3315  S += charUnitsToString(PtrSize);
3316
3317  // Argument types.
3318  ParmOffset = 2 * PtrSize;
3319  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3320       E = Decl->sel_param_end(); PI != E; ++PI) {
3321    ParmVarDecl *PVDecl = *PI;
3322    QualType PType = PVDecl->getOriginalType();
3323    if (const ArrayType *AT =
3324          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3325      // Use array's original type only if it has known number of
3326      // elements.
3327      if (!isa<ConstantArrayType>(AT))
3328        PType = PVDecl->getType();
3329    } else if (PType->isFunctionType())
3330      PType = PVDecl->getType();
3331    // Process argument qualifiers for user supplied arguments; such as,
3332    // 'in', 'inout', etc.
3333    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
3334    getObjCEncodingForType(PType, S);
3335    S += charUnitsToString(ParmOffset);
3336    ParmOffset += getObjCEncodingTypeSize(PType);
3337  }
3338}
3339
3340/// getObjCEncodingForPropertyDecl - Return the encoded type for this
3341/// property declaration. If non-NULL, Container must be either an
3342/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
3343/// NULL when getting encodings for protocol properties.
3344/// Property attributes are stored as a comma-delimited C string. The simple
3345/// attributes readonly and bycopy are encoded as single characters. The
3346/// parametrized attributes, getter=name, setter=name, and ivar=name, are
3347/// encoded as single characters, followed by an identifier. Property types
3348/// are also encoded as a parametrized attribute. The characters used to encode
3349/// these attributes are defined by the following enumeration:
3350/// @code
3351/// enum PropertyAttributes {
3352/// kPropertyReadOnly = 'R',   // property is read-only.
3353/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
3354/// kPropertyByref = '&',  // property is a reference to the value last assigned
3355/// kPropertyDynamic = 'D',    // property is dynamic
3356/// kPropertyGetter = 'G',     // followed by getter selector name
3357/// kPropertySetter = 'S',     // followed by setter selector name
3358/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
3359/// kPropertyType = 't'              // followed by old-style type encoding.
3360/// kPropertyWeak = 'W'              // 'weak' property
3361/// kPropertyStrong = 'P'            // property GC'able
3362/// kPropertyNonAtomic = 'N'         // property non-atomic
3363/// };
3364/// @endcode
3365void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
3366                                                const Decl *Container,
3367                                                std::string& S) {
3368  // Collect information from the property implementation decl(s).
3369  bool Dynamic = false;
3370  ObjCPropertyImplDecl *SynthesizePID = 0;
3371
3372  // FIXME: Duplicated code due to poor abstraction.
3373  if (Container) {
3374    if (const ObjCCategoryImplDecl *CID =
3375        dyn_cast<ObjCCategoryImplDecl>(Container)) {
3376      for (ObjCCategoryImplDecl::propimpl_iterator
3377             i = CID->propimpl_begin(), e = CID->propimpl_end();
3378           i != e; ++i) {
3379        ObjCPropertyImplDecl *PID = *i;
3380        if (PID->getPropertyDecl() == PD) {
3381          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3382            Dynamic = true;
3383          } else {
3384            SynthesizePID = PID;
3385          }
3386        }
3387      }
3388    } else {
3389      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
3390      for (ObjCCategoryImplDecl::propimpl_iterator
3391             i = OID->propimpl_begin(), e = OID->propimpl_end();
3392           i != e; ++i) {
3393        ObjCPropertyImplDecl *PID = *i;
3394        if (PID->getPropertyDecl() == PD) {
3395          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3396            Dynamic = true;
3397          } else {
3398            SynthesizePID = PID;
3399          }
3400        }
3401      }
3402    }
3403  }
3404
3405  // FIXME: This is not very efficient.
3406  S = "T";
3407
3408  // Encode result type.
3409  // GCC has some special rules regarding encoding of properties which
3410  // closely resembles encoding of ivars.
3411  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
3412                             true /* outermost type */,
3413                             true /* encoding for property */);
3414
3415  if (PD->isReadOnly()) {
3416    S += ",R";
3417  } else {
3418    switch (PD->getSetterKind()) {
3419    case ObjCPropertyDecl::Assign: break;
3420    case ObjCPropertyDecl::Copy:   S += ",C"; break;
3421    case ObjCPropertyDecl::Retain: S += ",&"; break;
3422    }
3423  }
3424
3425  // It really isn't clear at all what this means, since properties
3426  // are "dynamic by default".
3427  if (Dynamic)
3428    S += ",D";
3429
3430  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
3431    S += ",N";
3432
3433  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
3434    S += ",G";
3435    S += PD->getGetterName().getAsString();
3436  }
3437
3438  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
3439    S += ",S";
3440    S += PD->getSetterName().getAsString();
3441  }
3442
3443  if (SynthesizePID) {
3444    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
3445    S += ",V";
3446    S += OID->getNameAsString();
3447  }
3448
3449  // FIXME: OBJCGC: weak & strong
3450}
3451
3452/// getLegacyIntegralTypeEncoding -
3453/// Another legacy compatibility encoding: 32-bit longs are encoded as
3454/// 'l' or 'L' , but not always.  For typedefs, we need to use
3455/// 'i' or 'I' instead if encoding a struct field, or a pointer!
3456///
3457void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
3458  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
3459    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
3460      if (BT->getKind() == BuiltinType::ULong &&
3461          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3462        PointeeTy = UnsignedIntTy;
3463      else
3464        if (BT->getKind() == BuiltinType::Long &&
3465            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3466          PointeeTy = IntTy;
3467    }
3468  }
3469}
3470
3471void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
3472                                        const FieldDecl *Field) {
3473  // We follow the behavior of gcc, expanding structures which are
3474  // directly pointed to, and expanding embedded structures. Note that
3475  // these rules are sufficient to prevent recursive encoding of the
3476  // same type.
3477  getObjCEncodingForTypeImpl(T, S, true, true, Field,
3478                             true /* outermost type */);
3479}
3480
3481static void EncodeBitField(const ASTContext *Context, std::string& S,
3482                           const FieldDecl *FD) {
3483  const Expr *E = FD->getBitWidth();
3484  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
3485  ASTContext *Ctx = const_cast<ASTContext*>(Context);
3486  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
3487  S += 'b';
3488  S += llvm::utostr(N);
3489}
3490
3491// FIXME: Use SmallString for accumulating string.
3492void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
3493                                            bool ExpandPointedToStructures,
3494                                            bool ExpandStructures,
3495                                            const FieldDecl *FD,
3496                                            bool OutermostType,
3497                                            bool EncodingProperty) {
3498  if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
3499    if (FD && FD->isBitField())
3500      return EncodeBitField(this, S, FD);
3501    char encoding;
3502    switch (BT->getKind()) {
3503    default: assert(0 && "Unhandled builtin type kind");
3504    case BuiltinType::Void:       encoding = 'v'; break;
3505    case BuiltinType::Bool:       encoding = 'B'; break;
3506    case BuiltinType::Char_U:
3507    case BuiltinType::UChar:      encoding = 'C'; break;
3508    case BuiltinType::UShort:     encoding = 'S'; break;
3509    case BuiltinType::UInt:       encoding = 'I'; break;
3510    case BuiltinType::ULong:
3511        encoding =
3512          (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q';
3513        break;
3514    case BuiltinType::UInt128:    encoding = 'T'; break;
3515    case BuiltinType::ULongLong:  encoding = 'Q'; break;
3516    case BuiltinType::Char_S:
3517    case BuiltinType::SChar:      encoding = 'c'; break;
3518    case BuiltinType::Short:      encoding = 's'; break;
3519    case BuiltinType::Int:        encoding = 'i'; break;
3520    case BuiltinType::Long:
3521      encoding =
3522        (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q';
3523      break;
3524    case BuiltinType::LongLong:   encoding = 'q'; break;
3525    case BuiltinType::Int128:     encoding = 't'; break;
3526    case BuiltinType::Float:      encoding = 'f'; break;
3527    case BuiltinType::Double:     encoding = 'd'; break;
3528    case BuiltinType::LongDouble: encoding = 'd'; break;
3529    }
3530
3531    S += encoding;
3532    return;
3533  }
3534
3535  if (const ComplexType *CT = T->getAs<ComplexType>()) {
3536    S += 'j';
3537    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
3538                               false);
3539    return;
3540  }
3541
3542  // encoding for pointer or r3eference types.
3543  QualType PointeeTy;
3544  if (const PointerType *PT = T->getAs<PointerType>()) {
3545    if (PT->isObjCSelType()) {
3546      S += ':';
3547      return;
3548    }
3549    PointeeTy = PT->getPointeeType();
3550  }
3551  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
3552    PointeeTy = RT->getPointeeType();
3553  if (!PointeeTy.isNull()) {
3554    bool isReadOnly = false;
3555    // For historical/compatibility reasons, the read-only qualifier of the
3556    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
3557    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
3558    // Also, do not emit the 'r' for anything but the outermost type!
3559    if (isa<TypedefType>(T.getTypePtr())) {
3560      if (OutermostType && T.isConstQualified()) {
3561        isReadOnly = true;
3562        S += 'r';
3563      }
3564    } else if (OutermostType) {
3565      QualType P = PointeeTy;
3566      while (P->getAs<PointerType>())
3567        P = P->getAs<PointerType>()->getPointeeType();
3568      if (P.isConstQualified()) {
3569        isReadOnly = true;
3570        S += 'r';
3571      }
3572    }
3573    if (isReadOnly) {
3574      // Another legacy compatibility encoding. Some ObjC qualifier and type
3575      // combinations need to be rearranged.
3576      // Rewrite "in const" from "nr" to "rn"
3577      const char * s = S.c_str();
3578      int len = S.length();
3579      if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
3580        std::string replace = "rn";
3581        S.replace(S.end()-2, S.end(), replace);
3582      }
3583    }
3584
3585    if (PointeeTy->isCharType()) {
3586      // char pointer types should be encoded as '*' unless it is a
3587      // type that has been typedef'd to 'BOOL'.
3588      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
3589        S += '*';
3590        return;
3591      }
3592    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
3593      // GCC binary compat: Need to convert "struct objc_class *" to "#".
3594      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
3595        S += '#';
3596        return;
3597      }
3598      // GCC binary compat: Need to convert "struct objc_object *" to "@".
3599      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
3600        S += '@';
3601        return;
3602      }
3603      // fall through...
3604    }
3605    S += '^';
3606    getLegacyIntegralTypeEncoding(PointeeTy);
3607
3608    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
3609                               NULL);
3610    return;
3611  }
3612
3613  if (const ArrayType *AT =
3614      // Ignore type qualifiers etc.
3615        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
3616    if (isa<IncompleteArrayType>(AT)) {
3617      // Incomplete arrays are encoded as a pointer to the array element.
3618      S += '^';
3619
3620      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3621                                 false, ExpandStructures, FD);
3622    } else {
3623      S += '[';
3624
3625      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
3626        S += llvm::utostr(CAT->getSize().getZExtValue());
3627      else {
3628        //Variable length arrays are encoded as a regular array with 0 elements.
3629        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
3630        S += '0';
3631      }
3632
3633      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3634                                 false, ExpandStructures, FD);
3635      S += ']';
3636    }
3637    return;
3638  }
3639
3640  if (T->getAs<FunctionType>()) {
3641    S += '?';
3642    return;
3643  }
3644
3645  if (const RecordType *RTy = T->getAs<RecordType>()) {
3646    RecordDecl *RDecl = RTy->getDecl();
3647    S += RDecl->isUnion() ? '(' : '{';
3648    // Anonymous structures print as '?'
3649    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
3650      S += II->getName();
3651    } else {
3652      S += '?';
3653    }
3654    if (ExpandStructures) {
3655      S += '=';
3656      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
3657                                   FieldEnd = RDecl->field_end();
3658           Field != FieldEnd; ++Field) {
3659        if (FD) {
3660          S += '"';
3661          S += Field->getNameAsString();
3662          S += '"';
3663        }
3664
3665        // Special case bit-fields.
3666        if (Field->isBitField()) {
3667          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
3668                                     (*Field));
3669        } else {
3670          QualType qt = Field->getType();
3671          getLegacyIntegralTypeEncoding(qt);
3672          getObjCEncodingForTypeImpl(qt, S, false, true,
3673                                     FD);
3674        }
3675      }
3676    }
3677    S += RDecl->isUnion() ? ')' : '}';
3678    return;
3679  }
3680
3681  if (T->isEnumeralType()) {
3682    if (FD && FD->isBitField())
3683      EncodeBitField(this, S, FD);
3684    else
3685      S += 'i';
3686    return;
3687  }
3688
3689  if (T->isBlockPointerType()) {
3690    S += "@?"; // Unlike a pointer-to-function, which is "^?".
3691    return;
3692  }
3693
3694  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
3695    // @encode(class_name)
3696    ObjCInterfaceDecl *OI = OIT->getDecl();
3697    S += '{';
3698    const IdentifierInfo *II = OI->getIdentifier();
3699    S += II->getName();
3700    S += '=';
3701    llvm::SmallVector<FieldDecl*, 32> RecFields;
3702    CollectObjCIvars(OI, RecFields);
3703    for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
3704      if (RecFields[i]->isBitField())
3705        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3706                                   RecFields[i]);
3707      else
3708        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3709                                   FD);
3710    }
3711    S += '}';
3712    return;
3713  }
3714
3715  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
3716    if (OPT->isObjCIdType()) {
3717      S += '@';
3718      return;
3719    }
3720
3721    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
3722      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
3723      // Since this is a binary compatibility issue, need to consult with runtime
3724      // folks. Fortunately, this is a *very* obsure construct.
3725      S += '#';
3726      return;
3727    }
3728
3729    if (OPT->isObjCQualifiedIdType()) {
3730      getObjCEncodingForTypeImpl(getObjCIdType(), S,
3731                                 ExpandPointedToStructures,
3732                                 ExpandStructures, FD);
3733      if (FD || EncodingProperty) {
3734        // Note that we do extended encoding of protocol qualifer list
3735        // Only when doing ivar or property encoding.
3736        S += '"';
3737        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3738             E = OPT->qual_end(); I != E; ++I) {
3739          S += '<';
3740          S += (*I)->getNameAsString();
3741          S += '>';
3742        }
3743        S += '"';
3744      }
3745      return;
3746    }
3747
3748    QualType PointeeTy = OPT->getPointeeType();
3749    if (!EncodingProperty &&
3750        isa<TypedefType>(PointeeTy.getTypePtr())) {
3751      // Another historical/compatibility reason.
3752      // We encode the underlying type which comes out as
3753      // {...};
3754      S += '^';
3755      getObjCEncodingForTypeImpl(PointeeTy, S,
3756                                 false, ExpandPointedToStructures,
3757                                 NULL);
3758      return;
3759    }
3760
3761    S += '@';
3762    if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
3763      S += '"';
3764      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
3765      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3766           E = OPT->qual_end(); I != E; ++I) {
3767        S += '<';
3768        S += (*I)->getNameAsString();
3769        S += '>';
3770      }
3771      S += '"';
3772    }
3773    return;
3774  }
3775
3776  assert(0 && "@encode for type not implemented!");
3777}
3778
3779void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
3780                                                 std::string& S) const {
3781  if (QT & Decl::OBJC_TQ_In)
3782    S += 'n';
3783  if (QT & Decl::OBJC_TQ_Inout)
3784    S += 'N';
3785  if (QT & Decl::OBJC_TQ_Out)
3786    S += 'o';
3787  if (QT & Decl::OBJC_TQ_Bycopy)
3788    S += 'O';
3789  if (QT & Decl::OBJC_TQ_Byref)
3790    S += 'R';
3791  if (QT & Decl::OBJC_TQ_Oneway)
3792    S += 'V';
3793}
3794
3795void ASTContext::setBuiltinVaListType(QualType T) {
3796  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
3797
3798  BuiltinVaListType = T;
3799}
3800
3801void ASTContext::setObjCIdType(QualType T) {
3802  ObjCIdTypedefType = T;
3803}
3804
3805void ASTContext::setObjCSelType(QualType T) {
3806  ObjCSelTypedefType = T;
3807}
3808
3809void ASTContext::setObjCProtoType(QualType QT) {
3810  ObjCProtoType = QT;
3811}
3812
3813void ASTContext::setObjCClassType(QualType T) {
3814  ObjCClassTypedefType = T;
3815}
3816
3817void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
3818  assert(ObjCConstantStringType.isNull() &&
3819         "'NSConstantString' type already set!");
3820
3821  ObjCConstantStringType = getObjCInterfaceType(Decl);
3822}
3823
3824/// \brief Retrieve the template name that corresponds to a non-empty
3825/// lookup.
3826TemplateName ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
3827                                                   UnresolvedSetIterator End) {
3828  unsigned size = End - Begin;
3829  assert(size > 1 && "set is not overloaded!");
3830
3831  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
3832                          size * sizeof(FunctionTemplateDecl*));
3833  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
3834
3835  NamedDecl **Storage = OT->getStorage();
3836  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
3837    NamedDecl *D = *I;
3838    assert(isa<FunctionTemplateDecl>(D) ||
3839           (isa<UsingShadowDecl>(D) &&
3840            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
3841    *Storage++ = D;
3842  }
3843
3844  return TemplateName(OT);
3845}
3846
3847/// \brief Retrieve the template name that represents a qualified
3848/// template name such as \c std::vector.
3849TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
3850                                                  bool TemplateKeyword,
3851                                                  TemplateDecl *Template) {
3852  // FIXME: Canonicalization?
3853  llvm::FoldingSetNodeID ID;
3854  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
3855
3856  void *InsertPos = 0;
3857  QualifiedTemplateName *QTN =
3858    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3859  if (!QTN) {
3860    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
3861    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
3862  }
3863
3864  return TemplateName(QTN);
3865}
3866
3867/// \brief Retrieve the template name that represents a dependent
3868/// template name such as \c MetaFun::template apply.
3869TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3870                                                  const IdentifierInfo *Name) {
3871  assert((!NNS || NNS->isDependent()) &&
3872         "Nested name specifier must be dependent");
3873
3874  llvm::FoldingSetNodeID ID;
3875  DependentTemplateName::Profile(ID, NNS, Name);
3876
3877  void *InsertPos = 0;
3878  DependentTemplateName *QTN =
3879    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3880
3881  if (QTN)
3882    return TemplateName(QTN);
3883
3884  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3885  if (CanonNNS == NNS) {
3886    QTN = new (*this,4) DependentTemplateName(NNS, Name);
3887  } else {
3888    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
3889    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
3890    DependentTemplateName *CheckQTN =
3891      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3892    assert(!CheckQTN && "Dependent type name canonicalization broken");
3893    (void)CheckQTN;
3894  }
3895
3896  DependentTemplateNames.InsertNode(QTN, InsertPos);
3897  return TemplateName(QTN);
3898}
3899
3900/// \brief Retrieve the template name that represents a dependent
3901/// template name such as \c MetaFun::template operator+.
3902TemplateName
3903ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3904                                     OverloadedOperatorKind Operator) {
3905  assert((!NNS || NNS->isDependent()) &&
3906         "Nested name specifier must be dependent");
3907
3908  llvm::FoldingSetNodeID ID;
3909  DependentTemplateName::Profile(ID, NNS, Operator);
3910
3911  void *InsertPos = 0;
3912  DependentTemplateName *QTN
3913    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3914
3915  if (QTN)
3916    return TemplateName(QTN);
3917
3918  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3919  if (CanonNNS == NNS) {
3920    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
3921  } else {
3922    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
3923    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
3924
3925    DependentTemplateName *CheckQTN
3926      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3927    assert(!CheckQTN && "Dependent template name canonicalization broken");
3928    (void)CheckQTN;
3929  }
3930
3931  DependentTemplateNames.InsertNode(QTN, InsertPos);
3932  return TemplateName(QTN);
3933}
3934
3935/// getFromTargetType - Given one of the integer types provided by
3936/// TargetInfo, produce the corresponding type. The unsigned @p Type
3937/// is actually a value of type @c TargetInfo::IntType.
3938CanQualType ASTContext::getFromTargetType(unsigned Type) const {
3939  switch (Type) {
3940  case TargetInfo::NoInt: return CanQualType();
3941  case TargetInfo::SignedShort: return ShortTy;
3942  case TargetInfo::UnsignedShort: return UnsignedShortTy;
3943  case TargetInfo::SignedInt: return IntTy;
3944  case TargetInfo::UnsignedInt: return UnsignedIntTy;
3945  case TargetInfo::SignedLong: return LongTy;
3946  case TargetInfo::UnsignedLong: return UnsignedLongTy;
3947  case TargetInfo::SignedLongLong: return LongLongTy;
3948  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
3949  }
3950
3951  assert(false && "Unhandled TargetInfo::IntType value");
3952  return CanQualType();
3953}
3954
3955//===----------------------------------------------------------------------===//
3956//                        Type Predicates.
3957//===----------------------------------------------------------------------===//
3958
3959/// isObjCNSObjectType - Return true if this is an NSObject object using
3960/// NSObject attribute on a c-style pointer type.
3961/// FIXME - Make it work directly on types.
3962/// FIXME: Move to Type.
3963///
3964bool ASTContext::isObjCNSObjectType(QualType Ty) const {
3965  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
3966    if (TypedefDecl *TD = TDT->getDecl())
3967      if (TD->getAttr<ObjCNSObjectAttr>())
3968        return true;
3969  }
3970  return false;
3971}
3972
3973/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
3974/// garbage collection attribute.
3975///
3976Qualifiers::GC ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
3977  Qualifiers::GC GCAttrs = Qualifiers::GCNone;
3978  if (getLangOptions().ObjC1 &&
3979      getLangOptions().getGCMode() != LangOptions::NonGC) {
3980    GCAttrs = Ty.getObjCGCAttr();
3981    // Default behavious under objective-c's gc is for objective-c pointers
3982    // (or pointers to them) be treated as though they were declared
3983    // as __strong.
3984    if (GCAttrs == Qualifiers::GCNone) {
3985      if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
3986        GCAttrs = Qualifiers::Strong;
3987      else if (Ty->isPointerType())
3988        return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
3989    }
3990    // Non-pointers have none gc'able attribute regardless of the attribute
3991    // set on them.
3992    else if (!Ty->isAnyPointerType() && !Ty->isBlockPointerType())
3993      return Qualifiers::GCNone;
3994  }
3995  return GCAttrs;
3996}
3997
3998//===----------------------------------------------------------------------===//
3999//                        Type Compatibility Testing
4000//===----------------------------------------------------------------------===//
4001
4002/// areCompatVectorTypes - Return true if the two specified vector types are
4003/// compatible.
4004static bool areCompatVectorTypes(const VectorType *LHS,
4005                                 const VectorType *RHS) {
4006  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
4007  return LHS->getElementType() == RHS->getElementType() &&
4008         LHS->getNumElements() == RHS->getNumElements();
4009}
4010
4011//===----------------------------------------------------------------------===//
4012// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
4013//===----------------------------------------------------------------------===//
4014
4015/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
4016/// inheritance hierarchy of 'rProto'.
4017bool ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
4018                                                ObjCProtocolDecl *rProto) {
4019  if (lProto == rProto)
4020    return true;
4021  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
4022       E = rProto->protocol_end(); PI != E; ++PI)
4023    if (ProtocolCompatibleWithProtocol(lProto, *PI))
4024      return true;
4025  return false;
4026}
4027
4028/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
4029/// return true if lhs's protocols conform to rhs's protocol; false
4030/// otherwise.
4031bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
4032  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
4033    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
4034  return false;
4035}
4036
4037/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
4038/// ObjCQualifiedIDType.
4039bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
4040                                                   bool compare) {
4041  // Allow id<P..> and an 'id' or void* type in all cases.
4042  if (lhs->isVoidPointerType() ||
4043      lhs->isObjCIdType() || lhs->isObjCClassType())
4044    return true;
4045  else if (rhs->isVoidPointerType() ||
4046           rhs->isObjCIdType() || rhs->isObjCClassType())
4047    return true;
4048
4049  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
4050    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
4051
4052    if (!rhsOPT) return false;
4053
4054    if (rhsOPT->qual_empty()) {
4055      // If the RHS is a unqualified interface pointer "NSString*",
4056      // make sure we check the class hierarchy.
4057      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4058        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4059             E = lhsQID->qual_end(); I != E; ++I) {
4060          // when comparing an id<P> on lhs with a static type on rhs,
4061          // see if static class implements all of id's protocols, directly or
4062          // through its super class and categories.
4063          if (!rhsID->ClassImplementsProtocol(*I, true))
4064            return false;
4065        }
4066      }
4067      // If there are no qualifiers and no interface, we have an 'id'.
4068      return true;
4069    }
4070    // Both the right and left sides have qualifiers.
4071    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4072         E = lhsQID->qual_end(); I != E; ++I) {
4073      ObjCProtocolDecl *lhsProto = *I;
4074      bool match = false;
4075
4076      // when comparing an id<P> on lhs with a static type on rhs,
4077      // see if static class implements all of id's protocols, directly or
4078      // through its super class and categories.
4079      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
4080           E = rhsOPT->qual_end(); J != E; ++J) {
4081        ObjCProtocolDecl *rhsProto = *J;
4082        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4083            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4084          match = true;
4085          break;
4086        }
4087      }
4088      // If the RHS is a qualified interface pointer "NSString<P>*",
4089      // make sure we check the class hierarchy.
4090      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4091        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4092             E = lhsQID->qual_end(); I != E; ++I) {
4093          // when comparing an id<P> on lhs with a static type on rhs,
4094          // see if static class implements all of id's protocols, directly or
4095          // through its super class and categories.
4096          if (rhsID->ClassImplementsProtocol(*I, true)) {
4097            match = true;
4098            break;
4099          }
4100        }
4101      }
4102      if (!match)
4103        return false;
4104    }
4105
4106    return true;
4107  }
4108
4109  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
4110  assert(rhsQID && "One of the LHS/RHS should be id<x>");
4111
4112  if (const ObjCObjectPointerType *lhsOPT =
4113        lhs->getAsObjCInterfacePointerType()) {
4114    if (lhsOPT->qual_empty()) {
4115      bool match = false;
4116      if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
4117        for (ObjCObjectPointerType::qual_iterator I = rhsQID->qual_begin(),
4118             E = rhsQID->qual_end(); I != E; ++I) {
4119          // when comparing an id<P> on lhs with a static type on rhs,
4120          // see if static class implements all of id's protocols, directly or
4121          // through its super class and categories.
4122          if (lhsID->ClassImplementsProtocol(*I, true)) {
4123            match = true;
4124            break;
4125          }
4126        }
4127        if (!match)
4128          return false;
4129      }
4130      return true;
4131    }
4132    // Both the right and left sides have qualifiers.
4133    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
4134         E = lhsOPT->qual_end(); I != E; ++I) {
4135      ObjCProtocolDecl *lhsProto = *I;
4136      bool match = false;
4137
4138      // when comparing an id<P> on lhs with a static type on rhs,
4139      // see if static class implements all of id's protocols, directly or
4140      // through its super class and categories.
4141      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
4142           E = rhsQID->qual_end(); J != E; ++J) {
4143        ObjCProtocolDecl *rhsProto = *J;
4144        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4145            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4146          match = true;
4147          break;
4148        }
4149      }
4150      if (!match)
4151        return false;
4152    }
4153    return true;
4154  }
4155  return false;
4156}
4157
4158/// canAssignObjCInterfaces - Return true if the two interface types are
4159/// compatible for assignment from RHS to LHS.  This handles validation of any
4160/// protocol qualifiers on the LHS or RHS.
4161///
4162bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
4163                                         const ObjCObjectPointerType *RHSOPT) {
4164  // If either type represents the built-in 'id' or 'Class' types, return true.
4165  if (LHSOPT->isObjCBuiltinType() || RHSOPT->isObjCBuiltinType())
4166    return true;
4167
4168  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
4169    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4170                                             QualType(RHSOPT,0),
4171                                             false);
4172
4173  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4174  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4175  if (LHS && RHS) // We have 2 user-defined types.
4176    return canAssignObjCInterfaces(LHS, RHS);
4177
4178  return false;
4179}
4180
4181/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
4182/// for providing type-safty for objective-c pointers used to pass/return
4183/// arguments in block literals. When passed as arguments, passing 'A*' where
4184/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
4185/// not OK. For the return type, the opposite is not OK.
4186bool ASTContext::canAssignObjCInterfacesInBlockPointer(
4187                                         const ObjCObjectPointerType *LHSOPT,
4188                                         const ObjCObjectPointerType *RHSOPT) {
4189  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
4190    return true;
4191
4192  if (LHSOPT->isObjCBuiltinType()) {
4193    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
4194  }
4195
4196  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
4197    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4198                                             QualType(RHSOPT,0),
4199                                             false);
4200
4201  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4202  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4203  if (LHS && RHS)  { // We have 2 user-defined types.
4204    if (LHS != RHS) {
4205      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
4206        return false;
4207      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
4208        return true;
4209    }
4210    else
4211      return true;
4212  }
4213  return false;
4214}
4215
4216/// getIntersectionOfProtocols - This routine finds the intersection of set
4217/// of protocols inherited from two distinct objective-c pointer objects.
4218/// It is used to build composite qualifier list of the composite type of
4219/// the conditional expression involving two objective-c pointer objects.
4220static
4221void getIntersectionOfProtocols(ASTContext &Context,
4222                                const ObjCObjectPointerType *LHSOPT,
4223                                const ObjCObjectPointerType *RHSOPT,
4224      llvm::SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
4225
4226  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4227  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4228
4229  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
4230  unsigned LHSNumProtocols = LHS->getNumProtocols();
4231  if (LHSNumProtocols > 0)
4232    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
4233  else {
4234    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
4235    Context.CollectInheritedProtocols(LHS->getDecl(), LHSInheritedProtocols);
4236    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
4237                                LHSInheritedProtocols.end());
4238  }
4239
4240  unsigned RHSNumProtocols = RHS->getNumProtocols();
4241  if (RHSNumProtocols > 0) {
4242    ObjCProtocolDecl **RHSProtocols =
4243      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
4244    for (unsigned i = 0; i < RHSNumProtocols; ++i)
4245      if (InheritedProtocolSet.count(RHSProtocols[i]))
4246        IntersectionOfProtocols.push_back(RHSProtocols[i]);
4247  }
4248  else {
4249    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
4250    Context.CollectInheritedProtocols(RHS->getDecl(), RHSInheritedProtocols);
4251    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
4252         RHSInheritedProtocols.begin(),
4253         E = RHSInheritedProtocols.end(); I != E; ++I)
4254      if (InheritedProtocolSet.count((*I)))
4255        IntersectionOfProtocols.push_back((*I));
4256  }
4257}
4258
4259/// areCommonBaseCompatible - Returns common base class of the two classes if
4260/// one found. Note that this is O'2 algorithm. But it will be called as the
4261/// last type comparison in a ?-exp of ObjC pointer types before a
4262/// warning is issued. So, its invokation is extremely rare.
4263QualType ASTContext::areCommonBaseCompatible(
4264                                          const ObjCObjectPointerType *LHSOPT,
4265                                          const ObjCObjectPointerType *RHSOPT) {
4266  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4267  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4268  if (!LHS || !RHS)
4269    return QualType();
4270
4271  while (const ObjCInterfaceDecl *LHSIDecl = LHS->getDecl()->getSuperClass()) {
4272    QualType LHSTy = getObjCInterfaceType(LHSIDecl);
4273    LHS = LHSTy->getAs<ObjCInterfaceType>();
4274    if (canAssignObjCInterfaces(LHS, RHS)) {
4275      llvm::SmallVector<ObjCProtocolDecl *, 8> IntersectionOfProtocols;
4276      getIntersectionOfProtocols(*this,
4277                                 LHSOPT, RHSOPT, IntersectionOfProtocols);
4278      if (IntersectionOfProtocols.empty())
4279        LHSTy = getObjCObjectPointerType(LHSTy);
4280      else
4281        LHSTy = getObjCObjectPointerType(LHSTy, &IntersectionOfProtocols[0],
4282                                                IntersectionOfProtocols.size());
4283      return LHSTy;
4284    }
4285  }
4286
4287  return QualType();
4288}
4289
4290bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
4291                                         const ObjCInterfaceType *RHS) {
4292  // Verify that the base decls are compatible: the RHS must be a subclass of
4293  // the LHS.
4294  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
4295    return false;
4296
4297  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
4298  // protocol qualified at all, then we are good.
4299  if (LHS->getNumProtocols() == 0)
4300    return true;
4301
4302  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
4303  // isn't a superset.
4304  if (RHS->getNumProtocols() == 0)
4305    return true;  // FIXME: should return false!
4306
4307  for (ObjCInterfaceType::qual_iterator LHSPI = LHS->qual_begin(),
4308                                        LHSPE = LHS->qual_end();
4309       LHSPI != LHSPE; LHSPI++) {
4310    bool RHSImplementsProtocol = false;
4311
4312    // If the RHS doesn't implement the protocol on the left, the types
4313    // are incompatible.
4314    for (ObjCInterfaceType::qual_iterator RHSPI = RHS->qual_begin(),
4315                                          RHSPE = RHS->qual_end();
4316         RHSPI != RHSPE; RHSPI++) {
4317      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
4318        RHSImplementsProtocol = true;
4319        break;
4320      }
4321    }
4322    // FIXME: For better diagnostics, consider passing back the protocol name.
4323    if (!RHSImplementsProtocol)
4324      return false;
4325  }
4326  // The RHS implements all protocols listed on the LHS.
4327  return true;
4328}
4329
4330bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
4331  // get the "pointed to" types
4332  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
4333  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
4334
4335  if (!LHSOPT || !RHSOPT)
4336    return false;
4337
4338  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
4339         canAssignObjCInterfaces(RHSOPT, LHSOPT);
4340}
4341
4342/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
4343/// both shall have the identically qualified version of a compatible type.
4344/// C99 6.2.7p1: Two types have compatible types if their types are the
4345/// same. See 6.7.[2,3,5] for additional rules.
4346bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
4347  if (getLangOptions().CPlusPlus)
4348    return hasSameType(LHS, RHS);
4349
4350  return !mergeTypes(LHS, RHS).isNull();
4351}
4352
4353bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
4354  return !mergeTypes(LHS, RHS, true).isNull();
4355}
4356
4357QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
4358                                        bool OfBlockPointer) {
4359  const FunctionType *lbase = lhs->getAs<FunctionType>();
4360  const FunctionType *rbase = rhs->getAs<FunctionType>();
4361  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
4362  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
4363  bool allLTypes = true;
4364  bool allRTypes = true;
4365
4366  // Check return type
4367  QualType retType;
4368  if (OfBlockPointer)
4369    retType = mergeTypes(rbase->getResultType(), lbase->getResultType(), true);
4370  else
4371   retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
4372  if (retType.isNull()) return QualType();
4373  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
4374    allLTypes = false;
4375  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
4376    allRTypes = false;
4377  // FIXME: double check this
4378  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
4379  //                           rbase->getRegParmAttr() != 0 &&
4380  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
4381  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
4382  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
4383  unsigned RegParm = lbaseInfo.getRegParm() == 0 ? rbaseInfo.getRegParm() :
4384      lbaseInfo.getRegParm();
4385  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
4386  if (NoReturn != lbaseInfo.getNoReturn() ||
4387      RegParm != lbaseInfo.getRegParm())
4388    allLTypes = false;
4389  if (NoReturn != rbaseInfo.getNoReturn() ||
4390      RegParm != rbaseInfo.getRegParm())
4391    allRTypes = false;
4392  CallingConv lcc = lbaseInfo.getCC();
4393  CallingConv rcc = rbaseInfo.getCC();
4394  // Compatible functions must have compatible calling conventions
4395  if (!isSameCallConv(lcc, rcc))
4396    return QualType();
4397
4398  if (lproto && rproto) { // two C99 style function prototypes
4399    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
4400           "C++ shouldn't be here");
4401    unsigned lproto_nargs = lproto->getNumArgs();
4402    unsigned rproto_nargs = rproto->getNumArgs();
4403
4404    // Compatible functions must have the same number of arguments
4405    if (lproto_nargs != rproto_nargs)
4406      return QualType();
4407
4408    // Variadic and non-variadic functions aren't compatible
4409    if (lproto->isVariadic() != rproto->isVariadic())
4410      return QualType();
4411
4412    if (lproto->getTypeQuals() != rproto->getTypeQuals())
4413      return QualType();
4414
4415    // Check argument compatibility
4416    llvm::SmallVector<QualType, 10> types;
4417    for (unsigned i = 0; i < lproto_nargs; i++) {
4418      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
4419      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
4420      QualType argtype = mergeTypes(largtype, rargtype, OfBlockPointer);
4421      if (argtype.isNull()) return QualType();
4422      types.push_back(argtype);
4423      if (getCanonicalType(argtype) != getCanonicalType(largtype))
4424        allLTypes = false;
4425      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
4426        allRTypes = false;
4427    }
4428    if (allLTypes) return lhs;
4429    if (allRTypes) return rhs;
4430    return getFunctionType(retType, types.begin(), types.size(),
4431                           lproto->isVariadic(), lproto->getTypeQuals(),
4432                           false, false, 0, 0,
4433                           FunctionType::ExtInfo(NoReturn, RegParm, lcc));
4434  }
4435
4436  if (lproto) allRTypes = false;
4437  if (rproto) allLTypes = false;
4438
4439  const FunctionProtoType *proto = lproto ? lproto : rproto;
4440  if (proto) {
4441    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
4442    if (proto->isVariadic()) return QualType();
4443    // Check that the types are compatible with the types that
4444    // would result from default argument promotions (C99 6.7.5.3p15).
4445    // The only types actually affected are promotable integer
4446    // types and floats, which would be passed as a different
4447    // type depending on whether the prototype is visible.
4448    unsigned proto_nargs = proto->getNumArgs();
4449    for (unsigned i = 0; i < proto_nargs; ++i) {
4450      QualType argTy = proto->getArgType(i);
4451
4452      // Look at the promotion type of enum types, since that is the type used
4453      // to pass enum values.
4454      if (const EnumType *Enum = argTy->getAs<EnumType>())
4455        argTy = Enum->getDecl()->getPromotionType();
4456
4457      if (argTy->isPromotableIntegerType() ||
4458          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
4459        return QualType();
4460    }
4461
4462    if (allLTypes) return lhs;
4463    if (allRTypes) return rhs;
4464    return getFunctionType(retType, proto->arg_type_begin(),
4465                           proto->getNumArgs(), proto->isVariadic(),
4466                           proto->getTypeQuals(),
4467                           false, false, 0, 0,
4468                           FunctionType::ExtInfo(NoReturn, RegParm, lcc));
4469  }
4470
4471  if (allLTypes) return lhs;
4472  if (allRTypes) return rhs;
4473  FunctionType::ExtInfo Info(NoReturn, RegParm, lcc);
4474  return getFunctionNoProtoType(retType, Info);
4475}
4476
4477QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
4478                                bool OfBlockPointer) {
4479  // C++ [expr]: If an expression initially has the type "reference to T", the
4480  // type is adjusted to "T" prior to any further analysis, the expression
4481  // designates the object or function denoted by the reference, and the
4482  // expression is an lvalue unless the reference is an rvalue reference and
4483  // the expression is a function call (possibly inside parentheses).
4484  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
4485  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
4486
4487  QualType LHSCan = getCanonicalType(LHS),
4488           RHSCan = getCanonicalType(RHS);
4489
4490  // If two types are identical, they are compatible.
4491  if (LHSCan == RHSCan)
4492    return LHS;
4493
4494  // If the qualifiers are different, the types aren't compatible... mostly.
4495  Qualifiers LQuals = LHSCan.getLocalQualifiers();
4496  Qualifiers RQuals = RHSCan.getLocalQualifiers();
4497  if (LQuals != RQuals) {
4498    // If any of these qualifiers are different, we have a type
4499    // mismatch.
4500    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
4501        LQuals.getAddressSpace() != RQuals.getAddressSpace())
4502      return QualType();
4503
4504    // Exactly one GC qualifier difference is allowed: __strong is
4505    // okay if the other type has no GC qualifier but is an Objective
4506    // C object pointer (i.e. implicitly strong by default).  We fix
4507    // this by pretending that the unqualified type was actually
4508    // qualified __strong.
4509    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
4510    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
4511    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
4512
4513    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
4514      return QualType();
4515
4516    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
4517      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
4518    }
4519    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
4520      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
4521    }
4522    return QualType();
4523  }
4524
4525  // Okay, qualifiers are equal.
4526
4527  Type::TypeClass LHSClass = LHSCan->getTypeClass();
4528  Type::TypeClass RHSClass = RHSCan->getTypeClass();
4529
4530  // We want to consider the two function types to be the same for these
4531  // comparisons, just force one to the other.
4532  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
4533  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
4534
4535  // Same as above for arrays
4536  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
4537    LHSClass = Type::ConstantArray;
4538  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
4539    RHSClass = Type::ConstantArray;
4540
4541  // Canonicalize ExtVector -> Vector.
4542  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
4543  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
4544
4545  // If the canonical type classes don't match.
4546  if (LHSClass != RHSClass) {
4547    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
4548    // a signed integer type, or an unsigned integer type.
4549    // Compatibility is based on the underlying type, not the promotion
4550    // type.
4551    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
4552      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
4553        return RHS;
4554    }
4555    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
4556      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
4557        return LHS;
4558    }
4559
4560    return QualType();
4561  }
4562
4563  // The canonical type classes match.
4564  switch (LHSClass) {
4565#define TYPE(Class, Base)
4566#define ABSTRACT_TYPE(Class, Base)
4567#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
4568#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
4569#define DEPENDENT_TYPE(Class, Base) case Type::Class:
4570#include "clang/AST/TypeNodes.def"
4571    assert(false && "Non-canonical and dependent types shouldn't get here");
4572    return QualType();
4573
4574  case Type::LValueReference:
4575  case Type::RValueReference:
4576  case Type::MemberPointer:
4577    assert(false && "C++ should never be in mergeTypes");
4578    return QualType();
4579
4580  case Type::IncompleteArray:
4581  case Type::VariableArray:
4582  case Type::FunctionProto:
4583  case Type::ExtVector:
4584    assert(false && "Types are eliminated above");
4585    return QualType();
4586
4587  case Type::Pointer:
4588  {
4589    // Merge two pointer types, while trying to preserve typedef info
4590    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
4591    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
4592    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
4593    if (ResultType.isNull()) return QualType();
4594    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4595      return LHS;
4596    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4597      return RHS;
4598    return getPointerType(ResultType);
4599  }
4600  case Type::BlockPointer:
4601  {
4602    // Merge two block pointer types, while trying to preserve typedef info
4603    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
4604    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
4605    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer);
4606    if (ResultType.isNull()) return QualType();
4607    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4608      return LHS;
4609    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4610      return RHS;
4611    return getBlockPointerType(ResultType);
4612  }
4613  case Type::ConstantArray:
4614  {
4615    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
4616    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
4617    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
4618      return QualType();
4619
4620    QualType LHSElem = getAsArrayType(LHS)->getElementType();
4621    QualType RHSElem = getAsArrayType(RHS)->getElementType();
4622    QualType ResultType = mergeTypes(LHSElem, RHSElem);
4623    if (ResultType.isNull()) return QualType();
4624    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4625      return LHS;
4626    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4627      return RHS;
4628    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
4629                                          ArrayType::ArraySizeModifier(), 0);
4630    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
4631                                          ArrayType::ArraySizeModifier(), 0);
4632    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
4633    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
4634    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4635      return LHS;
4636    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4637      return RHS;
4638    if (LVAT) {
4639      // FIXME: This isn't correct! But tricky to implement because
4640      // the array's size has to be the size of LHS, but the type
4641      // has to be different.
4642      return LHS;
4643    }
4644    if (RVAT) {
4645      // FIXME: This isn't correct! But tricky to implement because
4646      // the array's size has to be the size of RHS, but the type
4647      // has to be different.
4648      return RHS;
4649    }
4650    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
4651    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
4652    return getIncompleteArrayType(ResultType,
4653                                  ArrayType::ArraySizeModifier(), 0);
4654  }
4655  case Type::FunctionNoProto:
4656    return mergeFunctionTypes(LHS, RHS, OfBlockPointer);
4657  case Type::Record:
4658  case Type::Enum:
4659    return QualType();
4660  case Type::Builtin:
4661    // Only exactly equal builtin types are compatible, which is tested above.
4662    return QualType();
4663  case Type::Complex:
4664    // Distinct complex types are incompatible.
4665    return QualType();
4666  case Type::Vector:
4667    // FIXME: The merged type should be an ExtVector!
4668    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
4669                             RHSCan->getAs<VectorType>()))
4670      return LHS;
4671    return QualType();
4672  case Type::ObjCInterface: {
4673    // Check if the interfaces are assignment compatible.
4674    // FIXME: This should be type compatibility, e.g. whether
4675    // "LHS x; RHS x;" at global scope is legal.
4676    const ObjCInterfaceType* LHSIface = LHS->getAs<ObjCInterfaceType>();
4677    const ObjCInterfaceType* RHSIface = RHS->getAs<ObjCInterfaceType>();
4678    if (LHSIface && RHSIface &&
4679        canAssignObjCInterfaces(LHSIface, RHSIface))
4680      return LHS;
4681
4682    return QualType();
4683  }
4684  case Type::ObjCObjectPointer: {
4685    if (OfBlockPointer) {
4686      if (canAssignObjCInterfacesInBlockPointer(
4687                                          LHS->getAs<ObjCObjectPointerType>(),
4688                                          RHS->getAs<ObjCObjectPointerType>()))
4689      return LHS;
4690      return QualType();
4691    }
4692    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
4693                                RHS->getAs<ObjCObjectPointerType>()))
4694      return LHS;
4695
4696    return QualType();
4697    }
4698  }
4699
4700  return QualType();
4701}
4702
4703//===----------------------------------------------------------------------===//
4704//                         Integer Predicates
4705//===----------------------------------------------------------------------===//
4706
4707unsigned ASTContext::getIntWidth(QualType T) {
4708  if (T->isBooleanType())
4709    return 1;
4710  if (EnumType *ET = dyn_cast<EnumType>(T))
4711    T = ET->getDecl()->getIntegerType();
4712  // For builtin types, just use the standard type sizing method
4713  return (unsigned)getTypeSize(T);
4714}
4715
4716QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
4717  assert(T->isSignedIntegerType() && "Unexpected type");
4718
4719  // Turn <4 x signed int> -> <4 x unsigned int>
4720  if (const VectorType *VTy = T->getAs<VectorType>())
4721    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
4722             VTy->getNumElements(), VTy->isAltiVec(), VTy->isPixel());
4723
4724  // For enums, we return the unsigned version of the base type.
4725  if (const EnumType *ETy = T->getAs<EnumType>())
4726    T = ETy->getDecl()->getIntegerType();
4727
4728  const BuiltinType *BTy = T->getAs<BuiltinType>();
4729  assert(BTy && "Unexpected signed integer type");
4730  switch (BTy->getKind()) {
4731  case BuiltinType::Char_S:
4732  case BuiltinType::SChar:
4733    return UnsignedCharTy;
4734  case BuiltinType::Short:
4735    return UnsignedShortTy;
4736  case BuiltinType::Int:
4737    return UnsignedIntTy;
4738  case BuiltinType::Long:
4739    return UnsignedLongTy;
4740  case BuiltinType::LongLong:
4741    return UnsignedLongLongTy;
4742  case BuiltinType::Int128:
4743    return UnsignedInt128Ty;
4744  default:
4745    assert(0 && "Unexpected signed integer type");
4746    return QualType();
4747  }
4748}
4749
4750ExternalASTSource::~ExternalASTSource() { }
4751
4752void ExternalASTSource::PrintStats() { }
4753
4754
4755//===----------------------------------------------------------------------===//
4756//                          Builtin Type Computation
4757//===----------------------------------------------------------------------===//
4758
4759/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
4760/// pointer over the consumed characters.  This returns the resultant type.
4761static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context,
4762                                  ASTContext::GetBuiltinTypeError &Error,
4763                                  bool AllowTypeModifiers = true) {
4764  // Modifiers.
4765  int HowLong = 0;
4766  bool Signed = false, Unsigned = false;
4767
4768  // Read the modifiers first.
4769  bool Done = false;
4770  while (!Done) {
4771    switch (*Str++) {
4772    default: Done = true; --Str; break;
4773    case 'S':
4774      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
4775      assert(!Signed && "Can't use 'S' modifier multiple times!");
4776      Signed = true;
4777      break;
4778    case 'U':
4779      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
4780      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
4781      Unsigned = true;
4782      break;
4783    case 'L':
4784      assert(HowLong <= 2 && "Can't have LLLL modifier");
4785      ++HowLong;
4786      break;
4787    }
4788  }
4789
4790  QualType Type;
4791
4792  // Read the base type.
4793  switch (*Str++) {
4794  default: assert(0 && "Unknown builtin type letter!");
4795  case 'v':
4796    assert(HowLong == 0 && !Signed && !Unsigned &&
4797           "Bad modifiers used with 'v'!");
4798    Type = Context.VoidTy;
4799    break;
4800  case 'f':
4801    assert(HowLong == 0 && !Signed && !Unsigned &&
4802           "Bad modifiers used with 'f'!");
4803    Type = Context.FloatTy;
4804    break;
4805  case 'd':
4806    assert(HowLong < 2 && !Signed && !Unsigned &&
4807           "Bad modifiers used with 'd'!");
4808    if (HowLong)
4809      Type = Context.LongDoubleTy;
4810    else
4811      Type = Context.DoubleTy;
4812    break;
4813  case 's':
4814    assert(HowLong == 0 && "Bad modifiers used with 's'!");
4815    if (Unsigned)
4816      Type = Context.UnsignedShortTy;
4817    else
4818      Type = Context.ShortTy;
4819    break;
4820  case 'i':
4821    if (HowLong == 3)
4822      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
4823    else if (HowLong == 2)
4824      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
4825    else if (HowLong == 1)
4826      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
4827    else
4828      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
4829    break;
4830  case 'c':
4831    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
4832    if (Signed)
4833      Type = Context.SignedCharTy;
4834    else if (Unsigned)
4835      Type = Context.UnsignedCharTy;
4836    else
4837      Type = Context.CharTy;
4838    break;
4839  case 'b': // boolean
4840    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
4841    Type = Context.BoolTy;
4842    break;
4843  case 'z':  // size_t.
4844    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
4845    Type = Context.getSizeType();
4846    break;
4847  case 'F':
4848    Type = Context.getCFConstantStringType();
4849    break;
4850  case 'a':
4851    Type = Context.getBuiltinVaListType();
4852    assert(!Type.isNull() && "builtin va list type not initialized!");
4853    break;
4854  case 'A':
4855    // This is a "reference" to a va_list; however, what exactly
4856    // this means depends on how va_list is defined. There are two
4857    // different kinds of va_list: ones passed by value, and ones
4858    // passed by reference.  An example of a by-value va_list is
4859    // x86, where va_list is a char*. An example of by-ref va_list
4860    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
4861    // we want this argument to be a char*&; for x86-64, we want
4862    // it to be a __va_list_tag*.
4863    Type = Context.getBuiltinVaListType();
4864    assert(!Type.isNull() && "builtin va list type not initialized!");
4865    if (Type->isArrayType()) {
4866      Type = Context.getArrayDecayedType(Type);
4867    } else {
4868      Type = Context.getLValueReferenceType(Type);
4869    }
4870    break;
4871  case 'V': {
4872    char *End;
4873    unsigned NumElements = strtoul(Str, &End, 10);
4874    assert(End != Str && "Missing vector size");
4875
4876    Str = End;
4877
4878    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4879    // FIXME: Don't know what to do about AltiVec.
4880    Type = Context.getVectorType(ElementType, NumElements, false, false);
4881    break;
4882  }
4883  case 'X': {
4884    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4885    Type = Context.getComplexType(ElementType);
4886    break;
4887  }
4888  case 'P':
4889    Type = Context.getFILEType();
4890    if (Type.isNull()) {
4891      Error = ASTContext::GE_Missing_stdio;
4892      return QualType();
4893    }
4894    break;
4895  case 'J':
4896    if (Signed)
4897      Type = Context.getsigjmp_bufType();
4898    else
4899      Type = Context.getjmp_bufType();
4900
4901    if (Type.isNull()) {
4902      Error = ASTContext::GE_Missing_setjmp;
4903      return QualType();
4904    }
4905    break;
4906  }
4907
4908  if (!AllowTypeModifiers)
4909    return Type;
4910
4911  Done = false;
4912  while (!Done) {
4913    switch (char c = *Str++) {
4914      default: Done = true; --Str; break;
4915      case '*':
4916      case '&':
4917        {
4918          // Both pointers and references can have their pointee types
4919          // qualified with an address space.
4920          char *End;
4921          unsigned AddrSpace = strtoul(Str, &End, 10);
4922          if (End != Str && AddrSpace != 0) {
4923            Type = Context.getAddrSpaceQualType(Type, AddrSpace);
4924            Str = End;
4925          }
4926        }
4927        if (c == '*')
4928          Type = Context.getPointerType(Type);
4929        else
4930          Type = Context.getLValueReferenceType(Type);
4931        break;
4932      // FIXME: There's no way to have a built-in with an rvalue ref arg.
4933      case 'C':
4934        Type = Type.withConst();
4935        break;
4936      case 'D':
4937        Type = Context.getVolatileType(Type);
4938        break;
4939    }
4940  }
4941
4942  return Type;
4943}
4944
4945/// GetBuiltinType - Return the type for the specified builtin.
4946QualType ASTContext::GetBuiltinType(unsigned id,
4947                                    GetBuiltinTypeError &Error) {
4948  const char *TypeStr = BuiltinInfo.GetTypeString(id);
4949
4950  llvm::SmallVector<QualType, 8> ArgTypes;
4951
4952  Error = GE_None;
4953  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error);
4954  if (Error != GE_None)
4955    return QualType();
4956  while (TypeStr[0] && TypeStr[0] != '.') {
4957    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error);
4958    if (Error != GE_None)
4959      return QualType();
4960
4961    // Do array -> pointer decay.  The builtin should use the decayed type.
4962    if (Ty->isArrayType())
4963      Ty = getArrayDecayedType(Ty);
4964
4965    ArgTypes.push_back(Ty);
4966  }
4967
4968  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
4969         "'.' should only occur at end of builtin type list!");
4970
4971  // handle untyped/variadic arguments "T c99Style();" or "T cppStyle(...);".
4972  if (ArgTypes.size() == 0 && TypeStr[0] == '.')
4973    return getFunctionNoProtoType(ResType);
4974
4975  // FIXME: Should we create noreturn types?
4976  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(),
4977                         TypeStr[0] == '.', 0, false, false, 0, 0,
4978                         FunctionType::ExtInfo());
4979}
4980
4981QualType
4982ASTContext::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
4983  // Perform the usual unary conversions. We do this early so that
4984  // integral promotions to "int" can allow us to exit early, in the
4985  // lhs == rhs check. Also, for conversion purposes, we ignore any
4986  // qualifiers.  For example, "const float" and "float" are
4987  // equivalent.
4988  if (lhs->isPromotableIntegerType())
4989    lhs = getPromotedIntegerType(lhs);
4990  else
4991    lhs = lhs.getUnqualifiedType();
4992  if (rhs->isPromotableIntegerType())
4993    rhs = getPromotedIntegerType(rhs);
4994  else
4995    rhs = rhs.getUnqualifiedType();
4996
4997  // If both types are identical, no conversion is needed.
4998  if (lhs == rhs)
4999    return lhs;
5000
5001  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
5002  // The caller can deal with this (e.g. pointer + int).
5003  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
5004    return lhs;
5005
5006  // At this point, we have two different arithmetic types.
5007
5008  // Handle complex types first (C99 6.3.1.8p1).
5009  if (lhs->isComplexType() || rhs->isComplexType()) {
5010    // if we have an integer operand, the result is the complex type.
5011    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
5012      // convert the rhs to the lhs complex type.
5013      return lhs;
5014    }
5015    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
5016      // convert the lhs to the rhs complex type.
5017      return rhs;
5018    }
5019    // This handles complex/complex, complex/float, or float/complex.
5020    // When both operands are complex, the shorter operand is converted to the
5021    // type of the longer, and that is the type of the result. This corresponds
5022    // to what is done when combining two real floating-point operands.
5023    // The fun begins when size promotion occur across type domains.
5024    // From H&S 6.3.4: When one operand is complex and the other is a real
5025    // floating-point type, the less precise type is converted, within it's
5026    // real or complex domain, to the precision of the other type. For example,
5027    // when combining a "long double" with a "double _Complex", the
5028    // "double _Complex" is promoted to "long double _Complex".
5029    int result = getFloatingTypeOrder(lhs, rhs);
5030
5031    if (result > 0) { // The left side is bigger, convert rhs.
5032      rhs = getFloatingTypeOfSizeWithinDomain(lhs, rhs);
5033    } else if (result < 0) { // The right side is bigger, convert lhs.
5034      lhs = getFloatingTypeOfSizeWithinDomain(rhs, lhs);
5035    }
5036    // At this point, lhs and rhs have the same rank/size. Now, make sure the
5037    // domains match. This is a requirement for our implementation, C99
5038    // does not require this promotion.
5039    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
5040      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
5041        return rhs;
5042      } else { // handle "_Complex double, double".
5043        return lhs;
5044      }
5045    }
5046    return lhs; // The domain/size match exactly.
5047  }
5048  // Now handle "real" floating types (i.e. float, double, long double).
5049  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
5050    // if we have an integer operand, the result is the real floating type.
5051    if (rhs->isIntegerType()) {
5052      // convert rhs to the lhs floating point type.
5053      return lhs;
5054    }
5055    if (rhs->isComplexIntegerType()) {
5056      // convert rhs to the complex floating point type.
5057      return getComplexType(lhs);
5058    }
5059    if (lhs->isIntegerType()) {
5060      // convert lhs to the rhs floating point type.
5061      return rhs;
5062    }
5063    if (lhs->isComplexIntegerType()) {
5064      // convert lhs to the complex floating point type.
5065      return getComplexType(rhs);
5066    }
5067    // We have two real floating types, float/complex combos were handled above.
5068    // Convert the smaller operand to the bigger result.
5069    int result = getFloatingTypeOrder(lhs, rhs);
5070    if (result > 0) // convert the rhs
5071      return lhs;
5072    assert(result < 0 && "illegal float comparison");
5073    return rhs;   // convert the lhs
5074  }
5075  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
5076    // Handle GCC complex int extension.
5077    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
5078    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
5079
5080    if (lhsComplexInt && rhsComplexInt) {
5081      if (getIntegerTypeOrder(lhsComplexInt->getElementType(),
5082                              rhsComplexInt->getElementType()) >= 0)
5083        return lhs; // convert the rhs
5084      return rhs;
5085    } else if (lhsComplexInt && rhs->isIntegerType()) {
5086      // convert the rhs to the lhs complex type.
5087      return lhs;
5088    } else if (rhsComplexInt && lhs->isIntegerType()) {
5089      // convert the lhs to the rhs complex type.
5090      return rhs;
5091    }
5092  }
5093  // Finally, we have two differing integer types.
5094  // The rules for this case are in C99 6.3.1.8
5095  int compare = getIntegerTypeOrder(lhs, rhs);
5096  bool lhsSigned = lhs->isSignedIntegerType(),
5097       rhsSigned = rhs->isSignedIntegerType();
5098  QualType destType;
5099  if (lhsSigned == rhsSigned) {
5100    // Same signedness; use the higher-ranked type
5101    destType = compare >= 0 ? lhs : rhs;
5102  } else if (compare != (lhsSigned ? 1 : -1)) {
5103    // The unsigned type has greater than or equal rank to the
5104    // signed type, so use the unsigned type
5105    destType = lhsSigned ? rhs : lhs;
5106  } else if (getIntWidth(lhs) != getIntWidth(rhs)) {
5107    // The two types are different widths; if we are here, that
5108    // means the signed type is larger than the unsigned type, so
5109    // use the signed type.
5110    destType = lhsSigned ? lhs : rhs;
5111  } else {
5112    // The signed type is higher-ranked than the unsigned type,
5113    // but isn't actually any bigger (like unsigned int and long
5114    // on most 32-bit systems).  Use the unsigned type corresponding
5115    // to the signed type.
5116    destType = getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
5117  }
5118  return destType;
5119}
5120