ASTContext.cpp revision 1952354bd376062c3ab3d328c0fc6c36530c9309
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/CommentCommandTraits.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/TypeLoc.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExternalASTSource.h"
24#include "clang/AST/ASTMutationListener.h"
25#include "clang/AST/RecordLayout.h"
26#include "clang/AST/Mangle.h"
27#include "clang/Basic/Builtins.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "llvm/ADT/SmallString.h"
31#include "llvm/ADT/StringExtras.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/Support/Capacity.h"
35#include "CXXABI.h"
36#include <map>
37
38using namespace clang;
39
40unsigned ASTContext::NumImplicitDefaultConstructors;
41unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
42unsigned ASTContext::NumImplicitCopyConstructors;
43unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
44unsigned ASTContext::NumImplicitMoveConstructors;
45unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
46unsigned ASTContext::NumImplicitCopyAssignmentOperators;
47unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
48unsigned ASTContext::NumImplicitMoveAssignmentOperators;
49unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
50unsigned ASTContext::NumImplicitDestructors;
51unsigned ASTContext::NumImplicitDestructorsDeclared;
52
53enum FloatingRank {
54  HalfRank, FloatRank, DoubleRank, LongDoubleRank
55};
56
57RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
58  if (!CommentsLoaded && ExternalSource) {
59    ExternalSource->ReadComments();
60    CommentsLoaded = true;
61  }
62
63  assert(D);
64
65  // User can not attach documentation to implicit declarations.
66  if (D->isImplicit())
67    return NULL;
68
69  // User can not attach documentation to implicit instantiations.
70  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
71    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
72      return NULL;
73  }
74
75  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
76    if (VD->isStaticDataMember() &&
77        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
78      return NULL;
79  }
80
81  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
82    if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
83      return NULL;
84  }
85
86  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
87    if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
88      return NULL;
89  }
90
91  // TODO: handle comments for function parameters properly.
92  if (isa<ParmVarDecl>(D))
93    return NULL;
94
95  // TODO: we could look up template parameter documentation in the template
96  // documentation.
97  if (isa<TemplateTypeParmDecl>(D) ||
98      isa<NonTypeTemplateParmDecl>(D) ||
99      isa<TemplateTemplateParmDecl>(D))
100    return NULL;
101
102  ArrayRef<RawComment *> RawComments = Comments.getComments();
103
104  // If there are no comments anywhere, we won't find anything.
105  if (RawComments.empty())
106    return NULL;
107
108  // Find declaration location.
109  // For Objective-C declarations we generally don't expect to have multiple
110  // declarators, thus use declaration starting location as the "declaration
111  // location".
112  // For all other declarations multiple declarators are used quite frequently,
113  // so we use the location of the identifier as the "declaration location".
114  SourceLocation DeclLoc;
115  if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
116      isa<ObjCPropertyDecl>(D) ||
117      isa<RedeclarableTemplateDecl>(D) ||
118      isa<ClassTemplateSpecializationDecl>(D))
119    DeclLoc = D->getLocStart();
120  else
121    DeclLoc = D->getLocation();
122
123  // If the declaration doesn't map directly to a location in a file, we
124  // can't find the comment.
125  if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
126    return NULL;
127
128  // Find the comment that occurs just after this declaration.
129  ArrayRef<RawComment *>::iterator Comment;
130  {
131    // When searching for comments during parsing, the comment we are looking
132    // for is usually among the last two comments we parsed -- check them
133    // first.
134    RawComment CommentAtDeclLoc(SourceMgr, SourceRange(DeclLoc));
135    BeforeThanCompare<RawComment> Compare(SourceMgr);
136    ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
137    bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
138    if (!Found && RawComments.size() >= 2) {
139      MaybeBeforeDecl--;
140      Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
141    }
142
143    if (Found) {
144      Comment = MaybeBeforeDecl + 1;
145      assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),
146                                         &CommentAtDeclLoc, Compare));
147    } else {
148      // Slow path.
149      Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
150                                 &CommentAtDeclLoc, Compare);
151    }
152  }
153
154  // Decompose the location for the declaration and find the beginning of the
155  // file buffer.
156  std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
157
158  // First check whether we have a trailing comment.
159  if (Comment != RawComments.end() &&
160      (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() &&
161      (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D))) {
162    std::pair<FileID, unsigned> CommentBeginDecomp
163      = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
164    // Check that Doxygen trailing comment comes after the declaration, starts
165    // on the same line and in the same file as the declaration.
166    if (DeclLocDecomp.first == CommentBeginDecomp.first &&
167        SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
168          == SourceMgr.getLineNumber(CommentBeginDecomp.first,
169                                     CommentBeginDecomp.second)) {
170      return *Comment;
171    }
172  }
173
174  // The comment just after the declaration was not a trailing comment.
175  // Let's look at the previous comment.
176  if (Comment == RawComments.begin())
177    return NULL;
178  --Comment;
179
180  // Check that we actually have a non-member Doxygen comment.
181  if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment())
182    return NULL;
183
184  // Decompose the end of the comment.
185  std::pair<FileID, unsigned> CommentEndDecomp
186    = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
187
188  // If the comment and the declaration aren't in the same file, then they
189  // aren't related.
190  if (DeclLocDecomp.first != CommentEndDecomp.first)
191    return NULL;
192
193  // Get the corresponding buffer.
194  bool Invalid = false;
195  const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
196                                               &Invalid).data();
197  if (Invalid)
198    return NULL;
199
200  // Extract text between the comment and declaration.
201  StringRef Text(Buffer + CommentEndDecomp.second,
202                 DeclLocDecomp.second - CommentEndDecomp.second);
203
204  // There should be no other declarations or preprocessor directives between
205  // comment and declaration.
206  if (Text.find_first_of(",;{}#@") != StringRef::npos)
207    return NULL;
208
209  return *Comment;
210}
211
212namespace {
213/// If we have a 'templated' declaration for a template, adjust 'D' to
214/// refer to the actual template.
215/// If we have an implicit instantiation, adjust 'D' to refer to template.
216const Decl *adjustDeclToTemplate(const Decl *D) {
217  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
218    // Is this function declaration part of a function template?
219    if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
220      return FTD;
221
222    // Nothing to do if function is not an implicit instantiation.
223    if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
224      return D;
225
226    // Function is an implicit instantiation of a function template?
227    if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
228      return FTD;
229
230    // Function is instantiated from a member definition of a class template?
231    if (const FunctionDecl *MemberDecl =
232            FD->getInstantiatedFromMemberFunction())
233      return MemberDecl;
234
235    return D;
236  }
237  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
238    // Static data member is instantiated from a member definition of a class
239    // template?
240    if (VD->isStaticDataMember())
241      if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
242        return MemberDecl;
243
244    return D;
245  }
246  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
247    // Is this class declaration part of a class template?
248    if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
249      return CTD;
250
251    // Class is an implicit instantiation of a class template or partial
252    // specialization?
253    if (const ClassTemplateSpecializationDecl *CTSD =
254            dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
255      if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
256        return D;
257      llvm::PointerUnion<ClassTemplateDecl *,
258                         ClassTemplatePartialSpecializationDecl *>
259          PU = CTSD->getSpecializedTemplateOrPartial();
260      return PU.is<ClassTemplateDecl*>() ?
261          static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) :
262          static_cast<const Decl*>(
263              PU.get<ClassTemplatePartialSpecializationDecl *>());
264    }
265
266    // Class is instantiated from a member definition of a class template?
267    if (const MemberSpecializationInfo *Info =
268                   CRD->getMemberSpecializationInfo())
269      return Info->getInstantiatedFrom();
270
271    return D;
272  }
273  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
274    // Enum is instantiated from a member definition of a class template?
275    if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
276      return MemberDecl;
277
278    return D;
279  }
280  // FIXME: Adjust alias templates?
281  return D;
282}
283} // unnamed namespace
284
285const RawComment *ASTContext::getRawCommentForAnyRedecl(
286                                                const Decl *D,
287                                                const Decl **OriginalDecl) const {
288  D = adjustDeclToTemplate(D);
289
290  // Check whether we have cached a comment for this declaration already.
291  {
292    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
293        RedeclComments.find(D);
294    if (Pos != RedeclComments.end()) {
295      const RawCommentAndCacheFlags &Raw = Pos->second;
296      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
297        if (OriginalDecl)
298          *OriginalDecl = Raw.getOriginalDecl();
299        return Raw.getRaw();
300      }
301    }
302  }
303
304  // Search for comments attached to declarations in the redeclaration chain.
305  const RawComment *RC = NULL;
306  const Decl *OriginalDeclForRC = NULL;
307  for (Decl::redecl_iterator I = D->redecls_begin(),
308                             E = D->redecls_end();
309       I != E; ++I) {
310    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
311        RedeclComments.find(*I);
312    if (Pos != RedeclComments.end()) {
313      const RawCommentAndCacheFlags &Raw = Pos->second;
314      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
315        RC = Raw.getRaw();
316        OriginalDeclForRC = Raw.getOriginalDecl();
317        break;
318      }
319    } else {
320      RC = getRawCommentForDeclNoCache(*I);
321      OriginalDeclForRC = *I;
322      RawCommentAndCacheFlags Raw;
323      if (RC) {
324        Raw.setRaw(RC);
325        Raw.setKind(RawCommentAndCacheFlags::FromDecl);
326      } else
327        Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl);
328      Raw.setOriginalDecl(*I);
329      RedeclComments[*I] = Raw;
330      if (RC)
331        break;
332    }
333  }
334
335  // If we found a comment, it should be a documentation comment.
336  assert(!RC || RC->isDocumentation());
337
338  if (OriginalDecl)
339    *OriginalDecl = OriginalDeclForRC;
340
341  // Update cache for every declaration in the redeclaration chain.
342  RawCommentAndCacheFlags Raw;
343  Raw.setRaw(RC);
344  Raw.setKind(RawCommentAndCacheFlags::FromRedecl);
345  Raw.setOriginalDecl(OriginalDeclForRC);
346
347  for (Decl::redecl_iterator I = D->redecls_begin(),
348                             E = D->redecls_end();
349       I != E; ++I) {
350    RawCommentAndCacheFlags &R = RedeclComments[*I];
351    if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl)
352      R = Raw;
353  }
354
355  return RC;
356}
357
358comments::FullComment *ASTContext::getCommentForDecl(
359                                              const Decl *D,
360                                              const Preprocessor *PP) const {
361  D = adjustDeclToTemplate(D);
362  const Decl *Canonical = D->getCanonicalDecl();
363  llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
364      ParsedComments.find(Canonical);
365  if (Pos != ParsedComments.end())
366    return Pos->second;
367
368  const Decl *OriginalDecl;
369  const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
370  if (!RC)
371    return NULL;
372
373  // If the RawComment was attached to other redeclaration of this Decl, we
374  // should parse the comment in context of that other Decl.  This is important
375  // because comments can contain references to parameter names which can be
376  // different across redeclarations.
377  if (D != OriginalDecl)
378    return getCommentForDecl(OriginalDecl, PP);
379
380  comments::FullComment *FC = RC->parse(*this, PP, D);
381  ParsedComments[Canonical] = FC;
382  return FC;
383}
384
385void
386ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
387                                               TemplateTemplateParmDecl *Parm) {
388  ID.AddInteger(Parm->getDepth());
389  ID.AddInteger(Parm->getPosition());
390  ID.AddBoolean(Parm->isParameterPack());
391
392  TemplateParameterList *Params = Parm->getTemplateParameters();
393  ID.AddInteger(Params->size());
394  for (TemplateParameterList::const_iterator P = Params->begin(),
395                                          PEnd = Params->end();
396       P != PEnd; ++P) {
397    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
398      ID.AddInteger(0);
399      ID.AddBoolean(TTP->isParameterPack());
400      continue;
401    }
402
403    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
404      ID.AddInteger(1);
405      ID.AddBoolean(NTTP->isParameterPack());
406      ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
407      if (NTTP->isExpandedParameterPack()) {
408        ID.AddBoolean(true);
409        ID.AddInteger(NTTP->getNumExpansionTypes());
410        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
411          QualType T = NTTP->getExpansionType(I);
412          ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
413        }
414      } else
415        ID.AddBoolean(false);
416      continue;
417    }
418
419    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
420    ID.AddInteger(2);
421    Profile(ID, TTP);
422  }
423}
424
425TemplateTemplateParmDecl *
426ASTContext::getCanonicalTemplateTemplateParmDecl(
427                                          TemplateTemplateParmDecl *TTP) const {
428  // Check if we already have a canonical template template parameter.
429  llvm::FoldingSetNodeID ID;
430  CanonicalTemplateTemplateParm::Profile(ID, TTP);
431  void *InsertPos = 0;
432  CanonicalTemplateTemplateParm *Canonical
433    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
434  if (Canonical)
435    return Canonical->getParam();
436
437  // Build a canonical template parameter list.
438  TemplateParameterList *Params = TTP->getTemplateParameters();
439  SmallVector<NamedDecl *, 4> CanonParams;
440  CanonParams.reserve(Params->size());
441  for (TemplateParameterList::const_iterator P = Params->begin(),
442                                          PEnd = Params->end();
443       P != PEnd; ++P) {
444    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
445      CanonParams.push_back(
446                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
447                                               SourceLocation(),
448                                               SourceLocation(),
449                                               TTP->getDepth(),
450                                               TTP->getIndex(), 0, false,
451                                               TTP->isParameterPack()));
452    else if (NonTypeTemplateParmDecl *NTTP
453             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
454      QualType T = getCanonicalType(NTTP->getType());
455      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
456      NonTypeTemplateParmDecl *Param;
457      if (NTTP->isExpandedParameterPack()) {
458        SmallVector<QualType, 2> ExpandedTypes;
459        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
460        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
461          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
462          ExpandedTInfos.push_back(
463                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
464        }
465
466        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
467                                                SourceLocation(),
468                                                SourceLocation(),
469                                                NTTP->getDepth(),
470                                                NTTP->getPosition(), 0,
471                                                T,
472                                                TInfo,
473                                                ExpandedTypes.data(),
474                                                ExpandedTypes.size(),
475                                                ExpandedTInfos.data());
476      } else {
477        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
478                                                SourceLocation(),
479                                                SourceLocation(),
480                                                NTTP->getDepth(),
481                                                NTTP->getPosition(), 0,
482                                                T,
483                                                NTTP->isParameterPack(),
484                                                TInfo);
485      }
486      CanonParams.push_back(Param);
487
488    } else
489      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
490                                           cast<TemplateTemplateParmDecl>(*P)));
491  }
492
493  TemplateTemplateParmDecl *CanonTTP
494    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
495                                       SourceLocation(), TTP->getDepth(),
496                                       TTP->getPosition(),
497                                       TTP->isParameterPack(),
498                                       0,
499                         TemplateParameterList::Create(*this, SourceLocation(),
500                                                       SourceLocation(),
501                                                       CanonParams.data(),
502                                                       CanonParams.size(),
503                                                       SourceLocation()));
504
505  // Get the new insert position for the node we care about.
506  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
507  assert(Canonical == 0 && "Shouldn't be in the map!");
508  (void)Canonical;
509
510  // Create the canonical template template parameter entry.
511  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
512  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
513  return CanonTTP;
514}
515
516CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
517  if (!LangOpts.CPlusPlus) return 0;
518
519  switch (T.getCXXABI()) {
520  case CXXABI_ARM:
521    return CreateARMCXXABI(*this);
522  case CXXABI_Itanium:
523    return CreateItaniumCXXABI(*this);
524  case CXXABI_Microsoft:
525    return CreateMicrosoftCXXABI(*this);
526  }
527  llvm_unreachable("Invalid CXXABI type!");
528}
529
530static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
531                                             const LangOptions &LOpts) {
532  if (LOpts.FakeAddressSpaceMap) {
533    // The fake address space map must have a distinct entry for each
534    // language-specific address space.
535    static const unsigned FakeAddrSpaceMap[] = {
536      1, // opencl_global
537      2, // opencl_local
538      3, // opencl_constant
539      4, // cuda_device
540      5, // cuda_constant
541      6  // cuda_shared
542    };
543    return &FakeAddrSpaceMap;
544  } else {
545    return &T.getAddressSpaceMap();
546  }
547}
548
549ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
550                       const TargetInfo *t,
551                       IdentifierTable &idents, SelectorTable &sels,
552                       Builtin::Context &builtins,
553                       unsigned size_reserve,
554                       bool DelayInitialization)
555  : FunctionProtoTypes(this_()),
556    TemplateSpecializationTypes(this_()),
557    DependentTemplateSpecializationTypes(this_()),
558    SubstTemplateTemplateParmPacks(this_()),
559    GlobalNestedNameSpecifier(0),
560    Int128Decl(0), UInt128Decl(0),
561    BuiltinVaListDecl(0),
562    ObjCIdDecl(0), ObjCSelDecl(0), ObjCClassDecl(0), ObjCProtocolClassDecl(0),
563    BOOLDecl(0),
564    CFConstantStringTypeDecl(0), ObjCInstanceTypeDecl(0),
565    FILEDecl(0),
566    jmp_bufDecl(0), sigjmp_bufDecl(0), ucontext_tDecl(0),
567    BlockDescriptorType(0), BlockDescriptorExtendedType(0),
568    cudaConfigureCallDecl(0),
569    NullTypeSourceInfo(QualType()),
570    FirstLocalImport(), LastLocalImport(),
571    SourceMgr(SM), LangOpts(LOpts),
572    AddrSpaceMap(0), Target(t), PrintingPolicy(LOpts),
573    Idents(idents), Selectors(sels),
574    BuiltinInfo(builtins),
575    DeclarationNames(*this),
576    ExternalSource(0), Listener(0),
577    Comments(SM), CommentsLoaded(false),
578    CommentCommandTraits(BumpAlloc),
579    LastSDM(0, 0),
580    UniqueBlockByRefTypeID(0)
581{
582  if (size_reserve > 0) Types.reserve(size_reserve);
583  TUDecl = TranslationUnitDecl::Create(*this);
584
585  if (!DelayInitialization) {
586    assert(t && "No target supplied for ASTContext initialization");
587    InitBuiltinTypes(*t);
588  }
589}
590
591ASTContext::~ASTContext() {
592  // Release the DenseMaps associated with DeclContext objects.
593  // FIXME: Is this the ideal solution?
594  ReleaseDeclContextMaps();
595
596  // Call all of the deallocation functions.
597  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
598    Deallocations[I].first(Deallocations[I].second);
599
600  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
601  // because they can contain DenseMaps.
602  for (llvm::DenseMap<const ObjCContainerDecl*,
603       const ASTRecordLayout*>::iterator
604       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
605    // Increment in loop to prevent using deallocated memory.
606    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
607      R->Destroy(*this);
608
609  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
610       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
611    // Increment in loop to prevent using deallocated memory.
612    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
613      R->Destroy(*this);
614  }
615
616  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
617                                                    AEnd = DeclAttrs.end();
618       A != AEnd; ++A)
619    A->second->~AttrVec();
620}
621
622void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
623  Deallocations.push_back(std::make_pair(Callback, Data));
624}
625
626void
627ASTContext::setExternalSource(OwningPtr<ExternalASTSource> &Source) {
628  ExternalSource.reset(Source.take());
629}
630
631void ASTContext::PrintStats() const {
632  llvm::errs() << "\n*** AST Context Stats:\n";
633  llvm::errs() << "  " << Types.size() << " types total.\n";
634
635  unsigned counts[] = {
636#define TYPE(Name, Parent) 0,
637#define ABSTRACT_TYPE(Name, Parent)
638#include "clang/AST/TypeNodes.def"
639    0 // Extra
640  };
641
642  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
643    Type *T = Types[i];
644    counts[(unsigned)T->getTypeClass()]++;
645  }
646
647  unsigned Idx = 0;
648  unsigned TotalBytes = 0;
649#define TYPE(Name, Parent)                                              \
650  if (counts[Idx])                                                      \
651    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
652                 << " types\n";                                         \
653  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
654  ++Idx;
655#define ABSTRACT_TYPE(Name, Parent)
656#include "clang/AST/TypeNodes.def"
657
658  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
659
660  // Implicit special member functions.
661  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
662               << NumImplicitDefaultConstructors
663               << " implicit default constructors created\n";
664  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
665               << NumImplicitCopyConstructors
666               << " implicit copy constructors created\n";
667  if (getLangOpts().CPlusPlus)
668    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
669                 << NumImplicitMoveConstructors
670                 << " implicit move constructors created\n";
671  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
672               << NumImplicitCopyAssignmentOperators
673               << " implicit copy assignment operators created\n";
674  if (getLangOpts().CPlusPlus)
675    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
676                 << NumImplicitMoveAssignmentOperators
677                 << " implicit move assignment operators created\n";
678  llvm::errs() << NumImplicitDestructorsDeclared << "/"
679               << NumImplicitDestructors
680               << " implicit destructors created\n";
681
682  if (ExternalSource.get()) {
683    llvm::errs() << "\n";
684    ExternalSource->PrintStats();
685  }
686
687  BumpAlloc.PrintStats();
688}
689
690TypedefDecl *ASTContext::getInt128Decl() const {
691  if (!Int128Decl) {
692    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(Int128Ty);
693    Int128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
694                                     getTranslationUnitDecl(),
695                                     SourceLocation(),
696                                     SourceLocation(),
697                                     &Idents.get("__int128_t"),
698                                     TInfo);
699  }
700
701  return Int128Decl;
702}
703
704TypedefDecl *ASTContext::getUInt128Decl() const {
705  if (!UInt128Decl) {
706    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(UnsignedInt128Ty);
707    UInt128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
708                                     getTranslationUnitDecl(),
709                                     SourceLocation(),
710                                     SourceLocation(),
711                                     &Idents.get("__uint128_t"),
712                                     TInfo);
713  }
714
715  return UInt128Decl;
716}
717
718void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
719  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
720  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
721  Types.push_back(Ty);
722}
723
724void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
725  assert((!this->Target || this->Target == &Target) &&
726         "Incorrect target reinitialization");
727  assert(VoidTy.isNull() && "Context reinitialized?");
728
729  this->Target = &Target;
730
731  ABI.reset(createCXXABI(Target));
732  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
733
734  // C99 6.2.5p19.
735  InitBuiltinType(VoidTy,              BuiltinType::Void);
736
737  // C99 6.2.5p2.
738  InitBuiltinType(BoolTy,              BuiltinType::Bool);
739  // C99 6.2.5p3.
740  if (LangOpts.CharIsSigned)
741    InitBuiltinType(CharTy,            BuiltinType::Char_S);
742  else
743    InitBuiltinType(CharTy,            BuiltinType::Char_U);
744  // C99 6.2.5p4.
745  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
746  InitBuiltinType(ShortTy,             BuiltinType::Short);
747  InitBuiltinType(IntTy,               BuiltinType::Int);
748  InitBuiltinType(LongTy,              BuiltinType::Long);
749  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
750
751  // C99 6.2.5p6.
752  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
753  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
754  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
755  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
756  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
757
758  // C99 6.2.5p10.
759  InitBuiltinType(FloatTy,             BuiltinType::Float);
760  InitBuiltinType(DoubleTy,            BuiltinType::Double);
761  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
762
763  // GNU extension, 128-bit integers.
764  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
765  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
766
767  if (LangOpts.CPlusPlus && LangOpts.WChar) { // C++ 3.9.1p5
768    if (TargetInfo::isTypeSigned(Target.getWCharType()))
769      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
770    else  // -fshort-wchar makes wchar_t be unsigned.
771      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
772  } else // C99 (or C++ using -fno-wchar)
773    WCharTy = getFromTargetType(Target.getWCharType());
774
775  WIntTy = getFromTargetType(Target.getWIntType());
776
777  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
778    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
779  else // C99
780    Char16Ty = getFromTargetType(Target.getChar16Type());
781
782  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
783    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
784  else // C99
785    Char32Ty = getFromTargetType(Target.getChar32Type());
786
787  // Placeholder type for type-dependent expressions whose type is
788  // completely unknown. No code should ever check a type against
789  // DependentTy and users should never see it; however, it is here to
790  // help diagnose failures to properly check for type-dependent
791  // expressions.
792  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
793
794  // Placeholder type for functions.
795  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
796
797  // Placeholder type for bound members.
798  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
799
800  // Placeholder type for pseudo-objects.
801  InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
802
803  // "any" type; useful for debugger-like clients.
804  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
805
806  // Placeholder type for unbridged ARC casts.
807  InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
808
809  // Placeholder type for builtin functions.
810  InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
811
812  // C99 6.2.5p11.
813  FloatComplexTy      = getComplexType(FloatTy);
814  DoubleComplexTy     = getComplexType(DoubleTy);
815  LongDoubleComplexTy = getComplexType(LongDoubleTy);
816
817  // Builtin types for 'id', 'Class', and 'SEL'.
818  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
819  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
820  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
821
822  // Builtin type for __objc_yes and __objc_no
823  ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
824                       SignedCharTy : BoolTy);
825
826  ObjCConstantStringType = QualType();
827
828  // void * type
829  VoidPtrTy = getPointerType(VoidTy);
830
831  // nullptr type (C++0x 2.14.7)
832  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
833
834  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
835  InitBuiltinType(HalfTy, BuiltinType::Half);
836
837  // Builtin type used to help define __builtin_va_list.
838  VaListTagTy = QualType();
839}
840
841DiagnosticsEngine &ASTContext::getDiagnostics() const {
842  return SourceMgr.getDiagnostics();
843}
844
845AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
846  AttrVec *&Result = DeclAttrs[D];
847  if (!Result) {
848    void *Mem = Allocate(sizeof(AttrVec));
849    Result = new (Mem) AttrVec;
850  }
851
852  return *Result;
853}
854
855/// \brief Erase the attributes corresponding to the given declaration.
856void ASTContext::eraseDeclAttrs(const Decl *D) {
857  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
858  if (Pos != DeclAttrs.end()) {
859    Pos->second->~AttrVec();
860    DeclAttrs.erase(Pos);
861  }
862}
863
864MemberSpecializationInfo *
865ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
866  assert(Var->isStaticDataMember() && "Not a static data member");
867  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
868    = InstantiatedFromStaticDataMember.find(Var);
869  if (Pos == InstantiatedFromStaticDataMember.end())
870    return 0;
871
872  return Pos->second;
873}
874
875void
876ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
877                                                TemplateSpecializationKind TSK,
878                                          SourceLocation PointOfInstantiation) {
879  assert(Inst->isStaticDataMember() && "Not a static data member");
880  assert(Tmpl->isStaticDataMember() && "Not a static data member");
881  assert(!InstantiatedFromStaticDataMember[Inst] &&
882         "Already noted what static data member was instantiated from");
883  InstantiatedFromStaticDataMember[Inst]
884    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
885}
886
887FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
888                                                     const FunctionDecl *FD){
889  assert(FD && "Specialization is 0");
890  llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
891    = ClassScopeSpecializationPattern.find(FD);
892  if (Pos == ClassScopeSpecializationPattern.end())
893    return 0;
894
895  return Pos->second;
896}
897
898void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
899                                        FunctionDecl *Pattern) {
900  assert(FD && "Specialization is 0");
901  assert(Pattern && "Class scope specialization pattern is 0");
902  ClassScopeSpecializationPattern[FD] = Pattern;
903}
904
905NamedDecl *
906ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
907  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
908    = InstantiatedFromUsingDecl.find(UUD);
909  if (Pos == InstantiatedFromUsingDecl.end())
910    return 0;
911
912  return Pos->second;
913}
914
915void
916ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
917  assert((isa<UsingDecl>(Pattern) ||
918          isa<UnresolvedUsingValueDecl>(Pattern) ||
919          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
920         "pattern decl is not a using decl");
921  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
922  InstantiatedFromUsingDecl[Inst] = Pattern;
923}
924
925UsingShadowDecl *
926ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
927  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
928    = InstantiatedFromUsingShadowDecl.find(Inst);
929  if (Pos == InstantiatedFromUsingShadowDecl.end())
930    return 0;
931
932  return Pos->second;
933}
934
935void
936ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
937                                               UsingShadowDecl *Pattern) {
938  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
939  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
940}
941
942FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
943  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
944    = InstantiatedFromUnnamedFieldDecl.find(Field);
945  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
946    return 0;
947
948  return Pos->second;
949}
950
951void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
952                                                     FieldDecl *Tmpl) {
953  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
954  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
955  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
956         "Already noted what unnamed field was instantiated from");
957
958  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
959}
960
961bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
962                                    const FieldDecl *LastFD) const {
963  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
964          FD->getBitWidthValue(*this) == 0);
965}
966
967bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
968                                             const FieldDecl *LastFD) const {
969  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
970          FD->getBitWidthValue(*this) == 0 &&
971          LastFD->getBitWidthValue(*this) != 0);
972}
973
974bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
975                                         const FieldDecl *LastFD) const {
976  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
977          FD->getBitWidthValue(*this) &&
978          LastFD->getBitWidthValue(*this));
979}
980
981bool ASTContext::NonBitfieldFollowsBitfield(const FieldDecl *FD,
982                                         const FieldDecl *LastFD) const {
983  return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
984          LastFD->getBitWidthValue(*this));
985}
986
987bool ASTContext::BitfieldFollowsNonBitfield(const FieldDecl *FD,
988                                             const FieldDecl *LastFD) const {
989  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
990          FD->getBitWidthValue(*this));
991}
992
993ASTContext::overridden_cxx_method_iterator
994ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
995  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
996    = OverriddenMethods.find(Method);
997  if (Pos == OverriddenMethods.end())
998    return 0;
999
1000  return Pos->second.begin();
1001}
1002
1003ASTContext::overridden_cxx_method_iterator
1004ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1005  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1006    = OverriddenMethods.find(Method);
1007  if (Pos == OverriddenMethods.end())
1008    return 0;
1009
1010  return Pos->second.end();
1011}
1012
1013unsigned
1014ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1015  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1016    = OverriddenMethods.find(Method);
1017  if (Pos == OverriddenMethods.end())
1018    return 0;
1019
1020  return Pos->second.size();
1021}
1022
1023void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1024                                     const CXXMethodDecl *Overridden) {
1025  OverriddenMethods[Method].push_back(Overridden);
1026}
1027
1028void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1029  assert(!Import->NextLocalImport && "Import declaration already in the chain");
1030  assert(!Import->isFromASTFile() && "Non-local import declaration");
1031  if (!FirstLocalImport) {
1032    FirstLocalImport = Import;
1033    LastLocalImport = Import;
1034    return;
1035  }
1036
1037  LastLocalImport->NextLocalImport = Import;
1038  LastLocalImport = Import;
1039}
1040
1041//===----------------------------------------------------------------------===//
1042//                         Type Sizing and Analysis
1043//===----------------------------------------------------------------------===//
1044
1045/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1046/// scalar floating point type.
1047const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1048  const BuiltinType *BT = T->getAs<BuiltinType>();
1049  assert(BT && "Not a floating point type!");
1050  switch (BT->getKind()) {
1051  default: llvm_unreachable("Not a floating point type!");
1052  case BuiltinType::Half:       return Target->getHalfFormat();
1053  case BuiltinType::Float:      return Target->getFloatFormat();
1054  case BuiltinType::Double:     return Target->getDoubleFormat();
1055  case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
1056  }
1057}
1058
1059/// getDeclAlign - Return a conservative estimate of the alignment of the
1060/// specified decl.  Note that bitfields do not have a valid alignment, so
1061/// this method will assert on them.
1062/// If @p RefAsPointee, references are treated like their underlying type
1063/// (for alignof), else they're treated like pointers (for CodeGen).
1064CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
1065  unsigned Align = Target->getCharWidth();
1066
1067  bool UseAlignAttrOnly = false;
1068  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1069    Align = AlignFromAttr;
1070
1071    // __attribute__((aligned)) can increase or decrease alignment
1072    // *except* on a struct or struct member, where it only increases
1073    // alignment unless 'packed' is also specified.
1074    //
1075    // It is an error for alignas to decrease alignment, so we can
1076    // ignore that possibility;  Sema should diagnose it.
1077    if (isa<FieldDecl>(D)) {
1078      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1079        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1080    } else {
1081      UseAlignAttrOnly = true;
1082    }
1083  }
1084  else if (isa<FieldDecl>(D))
1085      UseAlignAttrOnly =
1086        D->hasAttr<PackedAttr>() ||
1087        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1088
1089  // If we're using the align attribute only, just ignore everything
1090  // else about the declaration and its type.
1091  if (UseAlignAttrOnly) {
1092    // do nothing
1093
1094  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1095    QualType T = VD->getType();
1096    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
1097      if (RefAsPointee)
1098        T = RT->getPointeeType();
1099      else
1100        T = getPointerType(RT->getPointeeType());
1101    }
1102    if (!T->isIncompleteType() && !T->isFunctionType()) {
1103      // Adjust alignments of declarations with array type by the
1104      // large-array alignment on the target.
1105      unsigned MinWidth = Target->getLargeArrayMinWidth();
1106      const ArrayType *arrayType;
1107      if (MinWidth && (arrayType = getAsArrayType(T))) {
1108        if (isa<VariableArrayType>(arrayType))
1109          Align = std::max(Align, Target->getLargeArrayAlign());
1110        else if (isa<ConstantArrayType>(arrayType) &&
1111                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1112          Align = std::max(Align, Target->getLargeArrayAlign());
1113
1114        // Walk through any array types while we're at it.
1115        T = getBaseElementType(arrayType);
1116      }
1117      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1118    }
1119
1120    // Fields can be subject to extra alignment constraints, like if
1121    // the field is packed, the struct is packed, or the struct has a
1122    // a max-field-alignment constraint (#pragma pack).  So calculate
1123    // the actual alignment of the field within the struct, and then
1124    // (as we're expected to) constrain that by the alignment of the type.
1125    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
1126      // So calculate the alignment of the field.
1127      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
1128
1129      // Start with the record's overall alignment.
1130      unsigned fieldAlign = toBits(layout.getAlignment());
1131
1132      // Use the GCD of that and the offset within the record.
1133      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
1134      if (offset > 0) {
1135        // Alignment is always a power of 2, so the GCD will be a power of 2,
1136        // which means we get to do this crazy thing instead of Euclid's.
1137        uint64_t lowBitOfOffset = offset & (~offset + 1);
1138        if (lowBitOfOffset < fieldAlign)
1139          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
1140      }
1141
1142      Align = std::min(Align, fieldAlign);
1143    }
1144  }
1145
1146  return toCharUnitsFromBits(Align);
1147}
1148
1149// getTypeInfoDataSizeInChars - Return the size of a type, in
1150// chars. If the type is a record, its data size is returned.  This is
1151// the size of the memcpy that's performed when assigning this type
1152// using a trivial copy/move assignment operator.
1153std::pair<CharUnits, CharUnits>
1154ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1155  std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
1156
1157  // In C++, objects can sometimes be allocated into the tail padding
1158  // of a base-class subobject.  We decide whether that's possible
1159  // during class layout, so here we can just trust the layout results.
1160  if (getLangOpts().CPlusPlus) {
1161    if (const RecordType *RT = T->getAs<RecordType>()) {
1162      const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1163      sizeAndAlign.first = layout.getDataSize();
1164    }
1165  }
1166
1167  return sizeAndAlign;
1168}
1169
1170std::pair<CharUnits, CharUnits>
1171ASTContext::getTypeInfoInChars(const Type *T) const {
1172  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
1173  return std::make_pair(toCharUnitsFromBits(Info.first),
1174                        toCharUnitsFromBits(Info.second));
1175}
1176
1177std::pair<CharUnits, CharUnits>
1178ASTContext::getTypeInfoInChars(QualType T) const {
1179  return getTypeInfoInChars(T.getTypePtr());
1180}
1181
1182std::pair<uint64_t, unsigned> ASTContext::getTypeInfo(const Type *T) const {
1183  TypeInfoMap::iterator it = MemoizedTypeInfo.find(T);
1184  if (it != MemoizedTypeInfo.end())
1185    return it->second;
1186
1187  std::pair<uint64_t, unsigned> Info = getTypeInfoImpl(T);
1188  MemoizedTypeInfo.insert(std::make_pair(T, Info));
1189  return Info;
1190}
1191
1192/// getTypeInfoImpl - Return the size of the specified type, in bits.  This
1193/// method does not work on incomplete types.
1194///
1195/// FIXME: Pointers into different addr spaces could have different sizes and
1196/// alignment requirements: getPointerInfo should take an AddrSpace, this
1197/// should take a QualType, &c.
1198std::pair<uint64_t, unsigned>
1199ASTContext::getTypeInfoImpl(const Type *T) const {
1200  uint64_t Width=0;
1201  unsigned Align=8;
1202  switch (T->getTypeClass()) {
1203#define TYPE(Class, Base)
1204#define ABSTRACT_TYPE(Class, Base)
1205#define NON_CANONICAL_TYPE(Class, Base)
1206#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1207#include "clang/AST/TypeNodes.def"
1208    llvm_unreachable("Should not see dependent types");
1209
1210  case Type::FunctionNoProto:
1211  case Type::FunctionProto:
1212    // GCC extension: alignof(function) = 32 bits
1213    Width = 0;
1214    Align = 32;
1215    break;
1216
1217  case Type::IncompleteArray:
1218  case Type::VariableArray:
1219    Width = 0;
1220    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
1221    break;
1222
1223  case Type::ConstantArray: {
1224    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
1225
1226    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
1227    uint64_t Size = CAT->getSize().getZExtValue();
1228    assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) &&
1229           "Overflow in array type bit size evaluation");
1230    Width = EltInfo.first*Size;
1231    Align = EltInfo.second;
1232    Width = llvm::RoundUpToAlignment(Width, Align);
1233    break;
1234  }
1235  case Type::ExtVector:
1236  case Type::Vector: {
1237    const VectorType *VT = cast<VectorType>(T);
1238    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
1239    Width = EltInfo.first*VT->getNumElements();
1240    Align = Width;
1241    // If the alignment is not a power of 2, round up to the next power of 2.
1242    // This happens for non-power-of-2 length vectors.
1243    if (Align & (Align-1)) {
1244      Align = llvm::NextPowerOf2(Align);
1245      Width = llvm::RoundUpToAlignment(Width, Align);
1246    }
1247    // Adjust the alignment based on the target max.
1248    uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1249    if (TargetVectorAlign && TargetVectorAlign < Align)
1250      Align = TargetVectorAlign;
1251    break;
1252  }
1253
1254  case Type::Builtin:
1255    switch (cast<BuiltinType>(T)->getKind()) {
1256    default: llvm_unreachable("Unknown builtin type!");
1257    case BuiltinType::Void:
1258      // GCC extension: alignof(void) = 8 bits.
1259      Width = 0;
1260      Align = 8;
1261      break;
1262
1263    case BuiltinType::Bool:
1264      Width = Target->getBoolWidth();
1265      Align = Target->getBoolAlign();
1266      break;
1267    case BuiltinType::Char_S:
1268    case BuiltinType::Char_U:
1269    case BuiltinType::UChar:
1270    case BuiltinType::SChar:
1271      Width = Target->getCharWidth();
1272      Align = Target->getCharAlign();
1273      break;
1274    case BuiltinType::WChar_S:
1275    case BuiltinType::WChar_U:
1276      Width = Target->getWCharWidth();
1277      Align = Target->getWCharAlign();
1278      break;
1279    case BuiltinType::Char16:
1280      Width = Target->getChar16Width();
1281      Align = Target->getChar16Align();
1282      break;
1283    case BuiltinType::Char32:
1284      Width = Target->getChar32Width();
1285      Align = Target->getChar32Align();
1286      break;
1287    case BuiltinType::UShort:
1288    case BuiltinType::Short:
1289      Width = Target->getShortWidth();
1290      Align = Target->getShortAlign();
1291      break;
1292    case BuiltinType::UInt:
1293    case BuiltinType::Int:
1294      Width = Target->getIntWidth();
1295      Align = Target->getIntAlign();
1296      break;
1297    case BuiltinType::ULong:
1298    case BuiltinType::Long:
1299      Width = Target->getLongWidth();
1300      Align = Target->getLongAlign();
1301      break;
1302    case BuiltinType::ULongLong:
1303    case BuiltinType::LongLong:
1304      Width = Target->getLongLongWidth();
1305      Align = Target->getLongLongAlign();
1306      break;
1307    case BuiltinType::Int128:
1308    case BuiltinType::UInt128:
1309      Width = 128;
1310      Align = 128; // int128_t is 128-bit aligned on all targets.
1311      break;
1312    case BuiltinType::Half:
1313      Width = Target->getHalfWidth();
1314      Align = Target->getHalfAlign();
1315      break;
1316    case BuiltinType::Float:
1317      Width = Target->getFloatWidth();
1318      Align = Target->getFloatAlign();
1319      break;
1320    case BuiltinType::Double:
1321      Width = Target->getDoubleWidth();
1322      Align = Target->getDoubleAlign();
1323      break;
1324    case BuiltinType::LongDouble:
1325      Width = Target->getLongDoubleWidth();
1326      Align = Target->getLongDoubleAlign();
1327      break;
1328    case BuiltinType::NullPtr:
1329      Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
1330      Align = Target->getPointerAlign(0); //   == sizeof(void*)
1331      break;
1332    case BuiltinType::ObjCId:
1333    case BuiltinType::ObjCClass:
1334    case BuiltinType::ObjCSel:
1335      Width = Target->getPointerWidth(0);
1336      Align = Target->getPointerAlign(0);
1337      break;
1338    }
1339    break;
1340  case Type::ObjCObjectPointer:
1341    Width = Target->getPointerWidth(0);
1342    Align = Target->getPointerAlign(0);
1343    break;
1344  case Type::BlockPointer: {
1345    unsigned AS = getTargetAddressSpace(
1346        cast<BlockPointerType>(T)->getPointeeType());
1347    Width = Target->getPointerWidth(AS);
1348    Align = Target->getPointerAlign(AS);
1349    break;
1350  }
1351  case Type::LValueReference:
1352  case Type::RValueReference: {
1353    // alignof and sizeof should never enter this code path here, so we go
1354    // the pointer route.
1355    unsigned AS = getTargetAddressSpace(
1356        cast<ReferenceType>(T)->getPointeeType());
1357    Width = Target->getPointerWidth(AS);
1358    Align = Target->getPointerAlign(AS);
1359    break;
1360  }
1361  case Type::Pointer: {
1362    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
1363    Width = Target->getPointerWidth(AS);
1364    Align = Target->getPointerAlign(AS);
1365    break;
1366  }
1367  case Type::MemberPointer: {
1368    const MemberPointerType *MPT = cast<MemberPointerType>(T);
1369    std::pair<uint64_t, unsigned> PtrDiffInfo =
1370      getTypeInfo(getPointerDiffType());
1371    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
1372    Align = PtrDiffInfo.second;
1373    break;
1374  }
1375  case Type::Complex: {
1376    // Complex types have the same alignment as their elements, but twice the
1377    // size.
1378    std::pair<uint64_t, unsigned> EltInfo =
1379      getTypeInfo(cast<ComplexType>(T)->getElementType());
1380    Width = EltInfo.first*2;
1381    Align = EltInfo.second;
1382    break;
1383  }
1384  case Type::ObjCObject:
1385    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1386  case Type::ObjCInterface: {
1387    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1388    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1389    Width = toBits(Layout.getSize());
1390    Align = toBits(Layout.getAlignment());
1391    break;
1392  }
1393  case Type::Record:
1394  case Type::Enum: {
1395    const TagType *TT = cast<TagType>(T);
1396
1397    if (TT->getDecl()->isInvalidDecl()) {
1398      Width = 8;
1399      Align = 8;
1400      break;
1401    }
1402
1403    if (const EnumType *ET = dyn_cast<EnumType>(TT))
1404      return getTypeInfo(ET->getDecl()->getIntegerType());
1405
1406    const RecordType *RT = cast<RecordType>(TT);
1407    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1408    Width = toBits(Layout.getSize());
1409    Align = toBits(Layout.getAlignment());
1410    break;
1411  }
1412
1413  case Type::SubstTemplateTypeParm:
1414    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1415                       getReplacementType().getTypePtr());
1416
1417  case Type::Auto: {
1418    const AutoType *A = cast<AutoType>(T);
1419    assert(A->isDeduced() && "Cannot request the size of a dependent type");
1420    return getTypeInfo(A->getDeducedType().getTypePtr());
1421  }
1422
1423  case Type::Paren:
1424    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1425
1426  case Type::Typedef: {
1427    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1428    std::pair<uint64_t, unsigned> Info
1429      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1430    // If the typedef has an aligned attribute on it, it overrides any computed
1431    // alignment we have.  This violates the GCC documentation (which says that
1432    // attribute(aligned) can only round up) but matches its implementation.
1433    if (unsigned AttrAlign = Typedef->getMaxAlignment())
1434      Align = AttrAlign;
1435    else
1436      Align = Info.second;
1437    Width = Info.first;
1438    break;
1439  }
1440
1441  case Type::TypeOfExpr:
1442    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
1443                         .getTypePtr());
1444
1445  case Type::TypeOf:
1446    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
1447
1448  case Type::Decltype:
1449    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
1450                        .getTypePtr());
1451
1452  case Type::UnaryTransform:
1453    return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
1454
1455  case Type::Elaborated:
1456    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1457
1458  case Type::Attributed:
1459    return getTypeInfo(
1460                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1461
1462  case Type::TemplateSpecialization: {
1463    assert(getCanonicalType(T) != T &&
1464           "Cannot request the size of a dependent type");
1465    const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1466    // A type alias template specialization may refer to a typedef with the
1467    // aligned attribute on it.
1468    if (TST->isTypeAlias())
1469      return getTypeInfo(TST->getAliasedType().getTypePtr());
1470    else
1471      return getTypeInfo(getCanonicalType(T));
1472  }
1473
1474  case Type::Atomic: {
1475    std::pair<uint64_t, unsigned> Info
1476      = getTypeInfo(cast<AtomicType>(T)->getValueType());
1477    Width = Info.first;
1478    Align = Info.second;
1479    if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth() &&
1480        llvm::isPowerOf2_64(Width)) {
1481      // We can potentially perform lock-free atomic operations for this
1482      // type; promote the alignment appropriately.
1483      // FIXME: We could potentially promote the width here as well...
1484      // is that worthwhile?  (Non-struct atomic types generally have
1485      // power-of-two size anyway, but structs might not.  Requires a bit
1486      // of implementation work to make sure we zero out the extra bits.)
1487      Align = static_cast<unsigned>(Width);
1488    }
1489  }
1490
1491  }
1492
1493  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1494  return std::make_pair(Width, Align);
1495}
1496
1497/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1498CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1499  return CharUnits::fromQuantity(BitSize / getCharWidth());
1500}
1501
1502/// toBits - Convert a size in characters to a size in characters.
1503int64_t ASTContext::toBits(CharUnits CharSize) const {
1504  return CharSize.getQuantity() * getCharWidth();
1505}
1506
1507/// getTypeSizeInChars - Return the size of the specified type, in characters.
1508/// This method does not work on incomplete types.
1509CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1510  return toCharUnitsFromBits(getTypeSize(T));
1511}
1512CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1513  return toCharUnitsFromBits(getTypeSize(T));
1514}
1515
1516/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1517/// characters. This method does not work on incomplete types.
1518CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1519  return toCharUnitsFromBits(getTypeAlign(T));
1520}
1521CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1522  return toCharUnitsFromBits(getTypeAlign(T));
1523}
1524
1525/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1526/// type for the current target in bits.  This can be different than the ABI
1527/// alignment in cases where it is beneficial for performance to overalign
1528/// a data type.
1529unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1530  unsigned ABIAlign = getTypeAlign(T);
1531
1532  // Double and long long should be naturally aligned if possible.
1533  if (const ComplexType* CT = T->getAs<ComplexType>())
1534    T = CT->getElementType().getTypePtr();
1535  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1536      T->isSpecificBuiltinType(BuiltinType::LongLong) ||
1537      T->isSpecificBuiltinType(BuiltinType::ULongLong))
1538    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1539
1540  return ABIAlign;
1541}
1542
1543/// DeepCollectObjCIvars -
1544/// This routine first collects all declared, but not synthesized, ivars in
1545/// super class and then collects all ivars, including those synthesized for
1546/// current class. This routine is used for implementation of current class
1547/// when all ivars, declared and synthesized are known.
1548///
1549void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1550                                      bool leafClass,
1551                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1552  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1553    DeepCollectObjCIvars(SuperClass, false, Ivars);
1554  if (!leafClass) {
1555    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1556         E = OI->ivar_end(); I != E; ++I)
1557      Ivars.push_back(*I);
1558  } else {
1559    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1560    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1561         Iv= Iv->getNextIvar())
1562      Ivars.push_back(Iv);
1563  }
1564}
1565
1566/// CollectInheritedProtocols - Collect all protocols in current class and
1567/// those inherited by it.
1568void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1569                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1570  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1571    // We can use protocol_iterator here instead of
1572    // all_referenced_protocol_iterator since we are walking all categories.
1573    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1574         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1575      ObjCProtocolDecl *Proto = (*P);
1576      Protocols.insert(Proto->getCanonicalDecl());
1577      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1578           PE = Proto->protocol_end(); P != PE; ++P) {
1579        Protocols.insert((*P)->getCanonicalDecl());
1580        CollectInheritedProtocols(*P, Protocols);
1581      }
1582    }
1583
1584    // Categories of this Interface.
1585    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
1586         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
1587      CollectInheritedProtocols(CDeclChain, Protocols);
1588    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1589      while (SD) {
1590        CollectInheritedProtocols(SD, Protocols);
1591        SD = SD->getSuperClass();
1592      }
1593  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1594    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1595         PE = OC->protocol_end(); P != PE; ++P) {
1596      ObjCProtocolDecl *Proto = (*P);
1597      Protocols.insert(Proto->getCanonicalDecl());
1598      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1599           PE = Proto->protocol_end(); P != PE; ++P)
1600        CollectInheritedProtocols(*P, Protocols);
1601    }
1602  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1603    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1604         PE = OP->protocol_end(); P != PE; ++P) {
1605      ObjCProtocolDecl *Proto = (*P);
1606      Protocols.insert(Proto->getCanonicalDecl());
1607      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1608           PE = Proto->protocol_end(); P != PE; ++P)
1609        CollectInheritedProtocols(*P, Protocols);
1610    }
1611  }
1612}
1613
1614unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1615  unsigned count = 0;
1616  // Count ivars declared in class extension.
1617  for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
1618       CDecl = CDecl->getNextClassExtension())
1619    count += CDecl->ivar_size();
1620
1621  // Count ivar defined in this class's implementation.  This
1622  // includes synthesized ivars.
1623  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1624    count += ImplDecl->ivar_size();
1625
1626  return count;
1627}
1628
1629bool ASTContext::isSentinelNullExpr(const Expr *E) {
1630  if (!E)
1631    return false;
1632
1633  // nullptr_t is always treated as null.
1634  if (E->getType()->isNullPtrType()) return true;
1635
1636  if (E->getType()->isAnyPointerType() &&
1637      E->IgnoreParenCasts()->isNullPointerConstant(*this,
1638                                                Expr::NPC_ValueDependentIsNull))
1639    return true;
1640
1641  // Unfortunately, __null has type 'int'.
1642  if (isa<GNUNullExpr>(E)) return true;
1643
1644  return false;
1645}
1646
1647/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1648ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1649  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1650    I = ObjCImpls.find(D);
1651  if (I != ObjCImpls.end())
1652    return cast<ObjCImplementationDecl>(I->second);
1653  return 0;
1654}
1655/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1656ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1657  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1658    I = ObjCImpls.find(D);
1659  if (I != ObjCImpls.end())
1660    return cast<ObjCCategoryImplDecl>(I->second);
1661  return 0;
1662}
1663
1664/// \brief Set the implementation of ObjCInterfaceDecl.
1665void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1666                           ObjCImplementationDecl *ImplD) {
1667  assert(IFaceD && ImplD && "Passed null params");
1668  ObjCImpls[IFaceD] = ImplD;
1669}
1670/// \brief Set the implementation of ObjCCategoryDecl.
1671void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1672                           ObjCCategoryImplDecl *ImplD) {
1673  assert(CatD && ImplD && "Passed null params");
1674  ObjCImpls[CatD] = ImplD;
1675}
1676
1677ObjCInterfaceDecl *ASTContext::getObjContainingInterface(NamedDecl *ND) const {
1678  if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1679    return ID;
1680  if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1681    return CD->getClassInterface();
1682  if (ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1683    return IMD->getClassInterface();
1684
1685  return 0;
1686}
1687
1688/// \brief Get the copy initialization expression of VarDecl,or NULL if
1689/// none exists.
1690Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1691  assert(VD && "Passed null params");
1692  assert(VD->hasAttr<BlocksAttr>() &&
1693         "getBlockVarCopyInits - not __block var");
1694  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1695    I = BlockVarCopyInits.find(VD);
1696  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1697}
1698
1699/// \brief Set the copy inialization expression of a block var decl.
1700void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1701  assert(VD && Init && "Passed null params");
1702  assert(VD->hasAttr<BlocksAttr>() &&
1703         "setBlockVarCopyInits - not __block var");
1704  BlockVarCopyInits[VD] = Init;
1705}
1706
1707TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1708                                                 unsigned DataSize) const {
1709  if (!DataSize)
1710    DataSize = TypeLoc::getFullDataSizeForType(T);
1711  else
1712    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1713           "incorrect data size provided to CreateTypeSourceInfo!");
1714
1715  TypeSourceInfo *TInfo =
1716    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1717  new (TInfo) TypeSourceInfo(T);
1718  return TInfo;
1719}
1720
1721TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1722                                                     SourceLocation L) const {
1723  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1724  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1725  return DI;
1726}
1727
1728const ASTRecordLayout &
1729ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1730  return getObjCLayout(D, 0);
1731}
1732
1733const ASTRecordLayout &
1734ASTContext::getASTObjCImplementationLayout(
1735                                        const ObjCImplementationDecl *D) const {
1736  return getObjCLayout(D->getClassInterface(), D);
1737}
1738
1739//===----------------------------------------------------------------------===//
1740//                   Type creation/memoization methods
1741//===----------------------------------------------------------------------===//
1742
1743QualType
1744ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1745  unsigned fastQuals = quals.getFastQualifiers();
1746  quals.removeFastQualifiers();
1747
1748  // Check if we've already instantiated this type.
1749  llvm::FoldingSetNodeID ID;
1750  ExtQuals::Profile(ID, baseType, quals);
1751  void *insertPos = 0;
1752  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1753    assert(eq->getQualifiers() == quals);
1754    return QualType(eq, fastQuals);
1755  }
1756
1757  // If the base type is not canonical, make the appropriate canonical type.
1758  QualType canon;
1759  if (!baseType->isCanonicalUnqualified()) {
1760    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1761    canonSplit.Quals.addConsistentQualifiers(quals);
1762    canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
1763
1764    // Re-find the insert position.
1765    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1766  }
1767
1768  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1769  ExtQualNodes.InsertNode(eq, insertPos);
1770  return QualType(eq, fastQuals);
1771}
1772
1773QualType
1774ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1775  QualType CanT = getCanonicalType(T);
1776  if (CanT.getAddressSpace() == AddressSpace)
1777    return T;
1778
1779  // If we are composing extended qualifiers together, merge together
1780  // into one ExtQuals node.
1781  QualifierCollector Quals;
1782  const Type *TypeNode = Quals.strip(T);
1783
1784  // If this type already has an address space specified, it cannot get
1785  // another one.
1786  assert(!Quals.hasAddressSpace() &&
1787         "Type cannot be in multiple addr spaces!");
1788  Quals.addAddressSpace(AddressSpace);
1789
1790  return getExtQualType(TypeNode, Quals);
1791}
1792
1793QualType ASTContext::getObjCGCQualType(QualType T,
1794                                       Qualifiers::GC GCAttr) const {
1795  QualType CanT = getCanonicalType(T);
1796  if (CanT.getObjCGCAttr() == GCAttr)
1797    return T;
1798
1799  if (const PointerType *ptr = T->getAs<PointerType>()) {
1800    QualType Pointee = ptr->getPointeeType();
1801    if (Pointee->isAnyPointerType()) {
1802      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1803      return getPointerType(ResultType);
1804    }
1805  }
1806
1807  // If we are composing extended qualifiers together, merge together
1808  // into one ExtQuals node.
1809  QualifierCollector Quals;
1810  const Type *TypeNode = Quals.strip(T);
1811
1812  // If this type already has an ObjCGC specified, it cannot get
1813  // another one.
1814  assert(!Quals.hasObjCGCAttr() &&
1815         "Type cannot have multiple ObjCGCs!");
1816  Quals.addObjCGCAttr(GCAttr);
1817
1818  return getExtQualType(TypeNode, Quals);
1819}
1820
1821const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1822                                                   FunctionType::ExtInfo Info) {
1823  if (T->getExtInfo() == Info)
1824    return T;
1825
1826  QualType Result;
1827  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1828    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1829  } else {
1830    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1831    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1832    EPI.ExtInfo = Info;
1833    Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1834                             FPT->getNumArgs(), EPI);
1835  }
1836
1837  return cast<FunctionType>(Result.getTypePtr());
1838}
1839
1840/// getComplexType - Return the uniqued reference to the type for a complex
1841/// number with the specified element type.
1842QualType ASTContext::getComplexType(QualType T) const {
1843  // Unique pointers, to guarantee there is only one pointer of a particular
1844  // structure.
1845  llvm::FoldingSetNodeID ID;
1846  ComplexType::Profile(ID, T);
1847
1848  void *InsertPos = 0;
1849  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1850    return QualType(CT, 0);
1851
1852  // If the pointee type isn't canonical, this won't be a canonical type either,
1853  // so fill in the canonical type field.
1854  QualType Canonical;
1855  if (!T.isCanonical()) {
1856    Canonical = getComplexType(getCanonicalType(T));
1857
1858    // Get the new insert position for the node we care about.
1859    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1860    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1861  }
1862  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1863  Types.push_back(New);
1864  ComplexTypes.InsertNode(New, InsertPos);
1865  return QualType(New, 0);
1866}
1867
1868/// getPointerType - Return the uniqued reference to the type for a pointer to
1869/// the specified type.
1870QualType ASTContext::getPointerType(QualType T) const {
1871  // Unique pointers, to guarantee there is only one pointer of a particular
1872  // structure.
1873  llvm::FoldingSetNodeID ID;
1874  PointerType::Profile(ID, T);
1875
1876  void *InsertPos = 0;
1877  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1878    return QualType(PT, 0);
1879
1880  // If the pointee type isn't canonical, this won't be a canonical type either,
1881  // so fill in the canonical type field.
1882  QualType Canonical;
1883  if (!T.isCanonical()) {
1884    Canonical = getPointerType(getCanonicalType(T));
1885
1886    // Get the new insert position for the node we care about.
1887    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1888    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1889  }
1890  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1891  Types.push_back(New);
1892  PointerTypes.InsertNode(New, InsertPos);
1893  return QualType(New, 0);
1894}
1895
1896/// getBlockPointerType - Return the uniqued reference to the type for
1897/// a pointer to the specified block.
1898QualType ASTContext::getBlockPointerType(QualType T) const {
1899  assert(T->isFunctionType() && "block of function types only");
1900  // Unique pointers, to guarantee there is only one block of a particular
1901  // structure.
1902  llvm::FoldingSetNodeID ID;
1903  BlockPointerType::Profile(ID, T);
1904
1905  void *InsertPos = 0;
1906  if (BlockPointerType *PT =
1907        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1908    return QualType(PT, 0);
1909
1910  // If the block pointee type isn't canonical, this won't be a canonical
1911  // type either so fill in the canonical type field.
1912  QualType Canonical;
1913  if (!T.isCanonical()) {
1914    Canonical = getBlockPointerType(getCanonicalType(T));
1915
1916    // Get the new insert position for the node we care about.
1917    BlockPointerType *NewIP =
1918      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1919    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1920  }
1921  BlockPointerType *New
1922    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1923  Types.push_back(New);
1924  BlockPointerTypes.InsertNode(New, InsertPos);
1925  return QualType(New, 0);
1926}
1927
1928/// getLValueReferenceType - Return the uniqued reference to the type for an
1929/// lvalue reference to the specified type.
1930QualType
1931ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
1932  assert(getCanonicalType(T) != OverloadTy &&
1933         "Unresolved overloaded function type");
1934
1935  // Unique pointers, to guarantee there is only one pointer of a particular
1936  // structure.
1937  llvm::FoldingSetNodeID ID;
1938  ReferenceType::Profile(ID, T, SpelledAsLValue);
1939
1940  void *InsertPos = 0;
1941  if (LValueReferenceType *RT =
1942        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1943    return QualType(RT, 0);
1944
1945  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1946
1947  // If the referencee type isn't canonical, this won't be a canonical type
1948  // either, so fill in the canonical type field.
1949  QualType Canonical;
1950  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1951    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1952    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1953
1954    // Get the new insert position for the node we care about.
1955    LValueReferenceType *NewIP =
1956      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1957    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1958  }
1959
1960  LValueReferenceType *New
1961    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1962                                                     SpelledAsLValue);
1963  Types.push_back(New);
1964  LValueReferenceTypes.InsertNode(New, InsertPos);
1965
1966  return QualType(New, 0);
1967}
1968
1969/// getRValueReferenceType - Return the uniqued reference to the type for an
1970/// rvalue reference to the specified type.
1971QualType ASTContext::getRValueReferenceType(QualType T) const {
1972  // Unique pointers, to guarantee there is only one pointer of a particular
1973  // structure.
1974  llvm::FoldingSetNodeID ID;
1975  ReferenceType::Profile(ID, T, false);
1976
1977  void *InsertPos = 0;
1978  if (RValueReferenceType *RT =
1979        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1980    return QualType(RT, 0);
1981
1982  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1983
1984  // If the referencee type isn't canonical, this won't be a canonical type
1985  // either, so fill in the canonical type field.
1986  QualType Canonical;
1987  if (InnerRef || !T.isCanonical()) {
1988    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1989    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1990
1991    // Get the new insert position for the node we care about.
1992    RValueReferenceType *NewIP =
1993      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1994    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1995  }
1996
1997  RValueReferenceType *New
1998    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1999  Types.push_back(New);
2000  RValueReferenceTypes.InsertNode(New, InsertPos);
2001  return QualType(New, 0);
2002}
2003
2004/// getMemberPointerType - Return the uniqued reference to the type for a
2005/// member pointer to the specified type, in the specified class.
2006QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
2007  // Unique pointers, to guarantee there is only one pointer of a particular
2008  // structure.
2009  llvm::FoldingSetNodeID ID;
2010  MemberPointerType::Profile(ID, T, Cls);
2011
2012  void *InsertPos = 0;
2013  if (MemberPointerType *PT =
2014      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2015    return QualType(PT, 0);
2016
2017  // If the pointee or class type isn't canonical, this won't be a canonical
2018  // type either, so fill in the canonical type field.
2019  QualType Canonical;
2020  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
2021    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
2022
2023    // Get the new insert position for the node we care about.
2024    MemberPointerType *NewIP =
2025      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2026    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2027  }
2028  MemberPointerType *New
2029    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
2030  Types.push_back(New);
2031  MemberPointerTypes.InsertNode(New, InsertPos);
2032  return QualType(New, 0);
2033}
2034
2035/// getConstantArrayType - Return the unique reference to the type for an
2036/// array of the specified element type.
2037QualType ASTContext::getConstantArrayType(QualType EltTy,
2038                                          const llvm::APInt &ArySizeIn,
2039                                          ArrayType::ArraySizeModifier ASM,
2040                                          unsigned IndexTypeQuals) const {
2041  assert((EltTy->isDependentType() ||
2042          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
2043         "Constant array of VLAs is illegal!");
2044
2045  // Convert the array size into a canonical width matching the pointer size for
2046  // the target.
2047  llvm::APInt ArySize(ArySizeIn);
2048  ArySize =
2049    ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
2050
2051  llvm::FoldingSetNodeID ID;
2052  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
2053
2054  void *InsertPos = 0;
2055  if (ConstantArrayType *ATP =
2056      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
2057    return QualType(ATP, 0);
2058
2059  // If the element type isn't canonical or has qualifiers, this won't
2060  // be a canonical type either, so fill in the canonical type field.
2061  QualType Canon;
2062  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2063    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2064    Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
2065                                 ASM, IndexTypeQuals);
2066    Canon = getQualifiedType(Canon, canonSplit.Quals);
2067
2068    // Get the new insert position for the node we care about.
2069    ConstantArrayType *NewIP =
2070      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
2071    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2072  }
2073
2074  ConstantArrayType *New = new(*this,TypeAlignment)
2075    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
2076  ConstantArrayTypes.InsertNode(New, InsertPos);
2077  Types.push_back(New);
2078  return QualType(New, 0);
2079}
2080
2081/// getVariableArrayDecayedType - Turns the given type, which may be
2082/// variably-modified, into the corresponding type with all the known
2083/// sizes replaced with [*].
2084QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
2085  // Vastly most common case.
2086  if (!type->isVariablyModifiedType()) return type;
2087
2088  QualType result;
2089
2090  SplitQualType split = type.getSplitDesugaredType();
2091  const Type *ty = split.Ty;
2092  switch (ty->getTypeClass()) {
2093#define TYPE(Class, Base)
2094#define ABSTRACT_TYPE(Class, Base)
2095#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2096#include "clang/AST/TypeNodes.def"
2097    llvm_unreachable("didn't desugar past all non-canonical types?");
2098
2099  // These types should never be variably-modified.
2100  case Type::Builtin:
2101  case Type::Complex:
2102  case Type::Vector:
2103  case Type::ExtVector:
2104  case Type::DependentSizedExtVector:
2105  case Type::ObjCObject:
2106  case Type::ObjCInterface:
2107  case Type::ObjCObjectPointer:
2108  case Type::Record:
2109  case Type::Enum:
2110  case Type::UnresolvedUsing:
2111  case Type::TypeOfExpr:
2112  case Type::TypeOf:
2113  case Type::Decltype:
2114  case Type::UnaryTransform:
2115  case Type::DependentName:
2116  case Type::InjectedClassName:
2117  case Type::TemplateSpecialization:
2118  case Type::DependentTemplateSpecialization:
2119  case Type::TemplateTypeParm:
2120  case Type::SubstTemplateTypeParmPack:
2121  case Type::Auto:
2122  case Type::PackExpansion:
2123    llvm_unreachable("type should never be variably-modified");
2124
2125  // These types can be variably-modified but should never need to
2126  // further decay.
2127  case Type::FunctionNoProto:
2128  case Type::FunctionProto:
2129  case Type::BlockPointer:
2130  case Type::MemberPointer:
2131    return type;
2132
2133  // These types can be variably-modified.  All these modifications
2134  // preserve structure except as noted by comments.
2135  // TODO: if we ever care about optimizing VLAs, there are no-op
2136  // optimizations available here.
2137  case Type::Pointer:
2138    result = getPointerType(getVariableArrayDecayedType(
2139                              cast<PointerType>(ty)->getPointeeType()));
2140    break;
2141
2142  case Type::LValueReference: {
2143    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
2144    result = getLValueReferenceType(
2145                 getVariableArrayDecayedType(lv->getPointeeType()),
2146                                    lv->isSpelledAsLValue());
2147    break;
2148  }
2149
2150  case Type::RValueReference: {
2151    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
2152    result = getRValueReferenceType(
2153                 getVariableArrayDecayedType(lv->getPointeeType()));
2154    break;
2155  }
2156
2157  case Type::Atomic: {
2158    const AtomicType *at = cast<AtomicType>(ty);
2159    result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
2160    break;
2161  }
2162
2163  case Type::ConstantArray: {
2164    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
2165    result = getConstantArrayType(
2166                 getVariableArrayDecayedType(cat->getElementType()),
2167                                  cat->getSize(),
2168                                  cat->getSizeModifier(),
2169                                  cat->getIndexTypeCVRQualifiers());
2170    break;
2171  }
2172
2173  case Type::DependentSizedArray: {
2174    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
2175    result = getDependentSizedArrayType(
2176                 getVariableArrayDecayedType(dat->getElementType()),
2177                                        dat->getSizeExpr(),
2178                                        dat->getSizeModifier(),
2179                                        dat->getIndexTypeCVRQualifiers(),
2180                                        dat->getBracketsRange());
2181    break;
2182  }
2183
2184  // Turn incomplete types into [*] types.
2185  case Type::IncompleteArray: {
2186    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
2187    result = getVariableArrayType(
2188                 getVariableArrayDecayedType(iat->getElementType()),
2189                                  /*size*/ 0,
2190                                  ArrayType::Normal,
2191                                  iat->getIndexTypeCVRQualifiers(),
2192                                  SourceRange());
2193    break;
2194  }
2195
2196  // Turn VLA types into [*] types.
2197  case Type::VariableArray: {
2198    const VariableArrayType *vat = cast<VariableArrayType>(ty);
2199    result = getVariableArrayType(
2200                 getVariableArrayDecayedType(vat->getElementType()),
2201                                  /*size*/ 0,
2202                                  ArrayType::Star,
2203                                  vat->getIndexTypeCVRQualifiers(),
2204                                  vat->getBracketsRange());
2205    break;
2206  }
2207  }
2208
2209  // Apply the top-level qualifiers from the original.
2210  return getQualifiedType(result, split.Quals);
2211}
2212
2213/// getVariableArrayType - Returns a non-unique reference to the type for a
2214/// variable array of the specified element type.
2215QualType ASTContext::getVariableArrayType(QualType EltTy,
2216                                          Expr *NumElts,
2217                                          ArrayType::ArraySizeModifier ASM,
2218                                          unsigned IndexTypeQuals,
2219                                          SourceRange Brackets) const {
2220  // Since we don't unique expressions, it isn't possible to unique VLA's
2221  // that have an expression provided for their size.
2222  QualType Canon;
2223
2224  // Be sure to pull qualifiers off the element type.
2225  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2226    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2227    Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
2228                                 IndexTypeQuals, Brackets);
2229    Canon = getQualifiedType(Canon, canonSplit.Quals);
2230  }
2231
2232  VariableArrayType *New = new(*this, TypeAlignment)
2233    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
2234
2235  VariableArrayTypes.push_back(New);
2236  Types.push_back(New);
2237  return QualType(New, 0);
2238}
2239
2240/// getDependentSizedArrayType - Returns a non-unique reference to
2241/// the type for a dependently-sized array of the specified element
2242/// type.
2243QualType ASTContext::getDependentSizedArrayType(QualType elementType,
2244                                                Expr *numElements,
2245                                                ArrayType::ArraySizeModifier ASM,
2246                                                unsigned elementTypeQuals,
2247                                                SourceRange brackets) const {
2248  assert((!numElements || numElements->isTypeDependent() ||
2249          numElements->isValueDependent()) &&
2250         "Size must be type- or value-dependent!");
2251
2252  // Dependently-sized array types that do not have a specified number
2253  // of elements will have their sizes deduced from a dependent
2254  // initializer.  We do no canonicalization here at all, which is okay
2255  // because they can't be used in most locations.
2256  if (!numElements) {
2257    DependentSizedArrayType *newType
2258      = new (*this, TypeAlignment)
2259          DependentSizedArrayType(*this, elementType, QualType(),
2260                                  numElements, ASM, elementTypeQuals,
2261                                  brackets);
2262    Types.push_back(newType);
2263    return QualType(newType, 0);
2264  }
2265
2266  // Otherwise, we actually build a new type every time, but we
2267  // also build a canonical type.
2268
2269  SplitQualType canonElementType = getCanonicalType(elementType).split();
2270
2271  void *insertPos = 0;
2272  llvm::FoldingSetNodeID ID;
2273  DependentSizedArrayType::Profile(ID, *this,
2274                                   QualType(canonElementType.Ty, 0),
2275                                   ASM, elementTypeQuals, numElements);
2276
2277  // Look for an existing type with these properties.
2278  DependentSizedArrayType *canonTy =
2279    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2280
2281  // If we don't have one, build one.
2282  if (!canonTy) {
2283    canonTy = new (*this, TypeAlignment)
2284      DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
2285                              QualType(), numElements, ASM, elementTypeQuals,
2286                              brackets);
2287    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
2288    Types.push_back(canonTy);
2289  }
2290
2291  // Apply qualifiers from the element type to the array.
2292  QualType canon = getQualifiedType(QualType(canonTy,0),
2293                                    canonElementType.Quals);
2294
2295  // If we didn't need extra canonicalization for the element type,
2296  // then just use that as our result.
2297  if (QualType(canonElementType.Ty, 0) == elementType)
2298    return canon;
2299
2300  // Otherwise, we need to build a type which follows the spelling
2301  // of the element type.
2302  DependentSizedArrayType *sugaredType
2303    = new (*this, TypeAlignment)
2304        DependentSizedArrayType(*this, elementType, canon, numElements,
2305                                ASM, elementTypeQuals, brackets);
2306  Types.push_back(sugaredType);
2307  return QualType(sugaredType, 0);
2308}
2309
2310QualType ASTContext::getIncompleteArrayType(QualType elementType,
2311                                            ArrayType::ArraySizeModifier ASM,
2312                                            unsigned elementTypeQuals) const {
2313  llvm::FoldingSetNodeID ID;
2314  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
2315
2316  void *insertPos = 0;
2317  if (IncompleteArrayType *iat =
2318       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
2319    return QualType(iat, 0);
2320
2321  // If the element type isn't canonical, this won't be a canonical type
2322  // either, so fill in the canonical type field.  We also have to pull
2323  // qualifiers off the element type.
2324  QualType canon;
2325
2326  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
2327    SplitQualType canonSplit = getCanonicalType(elementType).split();
2328    canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
2329                                   ASM, elementTypeQuals);
2330    canon = getQualifiedType(canon, canonSplit.Quals);
2331
2332    // Get the new insert position for the node we care about.
2333    IncompleteArrayType *existing =
2334      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2335    assert(!existing && "Shouldn't be in the map!"); (void) existing;
2336  }
2337
2338  IncompleteArrayType *newType = new (*this, TypeAlignment)
2339    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
2340
2341  IncompleteArrayTypes.InsertNode(newType, insertPos);
2342  Types.push_back(newType);
2343  return QualType(newType, 0);
2344}
2345
2346/// getVectorType - Return the unique reference to a vector type of
2347/// the specified element type and size. VectorType must be a built-in type.
2348QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
2349                                   VectorType::VectorKind VecKind) const {
2350  assert(vecType->isBuiltinType());
2351
2352  // Check if we've already instantiated a vector of this type.
2353  llvm::FoldingSetNodeID ID;
2354  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
2355
2356  void *InsertPos = 0;
2357  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2358    return QualType(VTP, 0);
2359
2360  // If the element type isn't canonical, this won't be a canonical type either,
2361  // so fill in the canonical type field.
2362  QualType Canonical;
2363  if (!vecType.isCanonical()) {
2364    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
2365
2366    // Get the new insert position for the node we care about.
2367    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2368    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2369  }
2370  VectorType *New = new (*this, TypeAlignment)
2371    VectorType(vecType, NumElts, Canonical, VecKind);
2372  VectorTypes.InsertNode(New, InsertPos);
2373  Types.push_back(New);
2374  return QualType(New, 0);
2375}
2376
2377/// getExtVectorType - Return the unique reference to an extended vector type of
2378/// the specified element type and size. VectorType must be a built-in type.
2379QualType
2380ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2381  assert(vecType->isBuiltinType() || vecType->isDependentType());
2382
2383  // Check if we've already instantiated a vector of this type.
2384  llvm::FoldingSetNodeID ID;
2385  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2386                      VectorType::GenericVector);
2387  void *InsertPos = 0;
2388  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2389    return QualType(VTP, 0);
2390
2391  // If the element type isn't canonical, this won't be a canonical type either,
2392  // so fill in the canonical type field.
2393  QualType Canonical;
2394  if (!vecType.isCanonical()) {
2395    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2396
2397    // Get the new insert position for the node we care about.
2398    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2399    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2400  }
2401  ExtVectorType *New = new (*this, TypeAlignment)
2402    ExtVectorType(vecType, NumElts, Canonical);
2403  VectorTypes.InsertNode(New, InsertPos);
2404  Types.push_back(New);
2405  return QualType(New, 0);
2406}
2407
2408QualType
2409ASTContext::getDependentSizedExtVectorType(QualType vecType,
2410                                           Expr *SizeExpr,
2411                                           SourceLocation AttrLoc) const {
2412  llvm::FoldingSetNodeID ID;
2413  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2414                                       SizeExpr);
2415
2416  void *InsertPos = 0;
2417  DependentSizedExtVectorType *Canon
2418    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2419  DependentSizedExtVectorType *New;
2420  if (Canon) {
2421    // We already have a canonical version of this array type; use it as
2422    // the canonical type for a newly-built type.
2423    New = new (*this, TypeAlignment)
2424      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2425                                  SizeExpr, AttrLoc);
2426  } else {
2427    QualType CanonVecTy = getCanonicalType(vecType);
2428    if (CanonVecTy == vecType) {
2429      New = new (*this, TypeAlignment)
2430        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2431                                    AttrLoc);
2432
2433      DependentSizedExtVectorType *CanonCheck
2434        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2435      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2436      (void)CanonCheck;
2437      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2438    } else {
2439      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2440                                                      SourceLocation());
2441      New = new (*this, TypeAlignment)
2442        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2443    }
2444  }
2445
2446  Types.push_back(New);
2447  return QualType(New, 0);
2448}
2449
2450/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2451///
2452QualType
2453ASTContext::getFunctionNoProtoType(QualType ResultTy,
2454                                   const FunctionType::ExtInfo &Info) const {
2455  const CallingConv DefaultCC = Info.getCC();
2456  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2457                               CC_X86StdCall : DefaultCC;
2458  // Unique functions, to guarantee there is only one function of a particular
2459  // structure.
2460  llvm::FoldingSetNodeID ID;
2461  FunctionNoProtoType::Profile(ID, ResultTy, Info);
2462
2463  void *InsertPos = 0;
2464  if (FunctionNoProtoType *FT =
2465        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2466    return QualType(FT, 0);
2467
2468  QualType Canonical;
2469  if (!ResultTy.isCanonical() ||
2470      getCanonicalCallConv(CallConv) != CallConv) {
2471    Canonical =
2472      getFunctionNoProtoType(getCanonicalType(ResultTy),
2473                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
2474
2475    // Get the new insert position for the node we care about.
2476    FunctionNoProtoType *NewIP =
2477      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2478    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2479  }
2480
2481  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2482  FunctionNoProtoType *New = new (*this, TypeAlignment)
2483    FunctionNoProtoType(ResultTy, Canonical, newInfo);
2484  Types.push_back(New);
2485  FunctionNoProtoTypes.InsertNode(New, InsertPos);
2486  return QualType(New, 0);
2487}
2488
2489/// getFunctionType - Return a normal function type with a typed argument
2490/// list.  isVariadic indicates whether the argument list includes '...'.
2491QualType
2492ASTContext::getFunctionType(QualType ResultTy,
2493                            const QualType *ArgArray, unsigned NumArgs,
2494                            const FunctionProtoType::ExtProtoInfo &EPI) const {
2495  // Unique functions, to guarantee there is only one function of a particular
2496  // structure.
2497  llvm::FoldingSetNodeID ID;
2498  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI, *this);
2499
2500  void *InsertPos = 0;
2501  if (FunctionProtoType *FTP =
2502        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2503    return QualType(FTP, 0);
2504
2505  // Determine whether the type being created is already canonical or not.
2506  bool isCanonical =
2507    EPI.ExceptionSpecType == EST_None && ResultTy.isCanonical() &&
2508    !EPI.HasTrailingReturn;
2509  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2510    if (!ArgArray[i].isCanonicalAsParam())
2511      isCanonical = false;
2512
2513  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2514  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2515                               CC_X86StdCall : DefaultCC;
2516
2517  // If this type isn't canonical, get the canonical version of it.
2518  // The exception spec is not part of the canonical type.
2519  QualType Canonical;
2520  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2521    SmallVector<QualType, 16> CanonicalArgs;
2522    CanonicalArgs.reserve(NumArgs);
2523    for (unsigned i = 0; i != NumArgs; ++i)
2524      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2525
2526    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2527    CanonicalEPI.HasTrailingReturn = false;
2528    CanonicalEPI.ExceptionSpecType = EST_None;
2529    CanonicalEPI.NumExceptions = 0;
2530    CanonicalEPI.ExtInfo
2531      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2532
2533    Canonical = getFunctionType(getCanonicalType(ResultTy),
2534                                CanonicalArgs.data(), NumArgs,
2535                                CanonicalEPI);
2536
2537    // Get the new insert position for the node we care about.
2538    FunctionProtoType *NewIP =
2539      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2540    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2541  }
2542
2543  // FunctionProtoType objects are allocated with extra bytes after
2544  // them for three variable size arrays at the end:
2545  //  - parameter types
2546  //  - exception types
2547  //  - consumed-arguments flags
2548  // Instead of the exception types, there could be a noexcept
2549  // expression, or information used to resolve the exception
2550  // specification.
2551  size_t Size = sizeof(FunctionProtoType) +
2552                NumArgs * sizeof(QualType);
2553  if (EPI.ExceptionSpecType == EST_Dynamic) {
2554    Size += EPI.NumExceptions * sizeof(QualType);
2555  } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2556    Size += sizeof(Expr*);
2557  } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
2558    Size += 2 * sizeof(FunctionDecl*);
2559  } else if (EPI.ExceptionSpecType == EST_Unevaluated) {
2560    Size += sizeof(FunctionDecl*);
2561  }
2562  if (EPI.ConsumedArguments)
2563    Size += NumArgs * sizeof(bool);
2564
2565  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2566  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2567  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2568  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, newEPI);
2569  Types.push_back(FTP);
2570  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2571  return QualType(FTP, 0);
2572}
2573
2574#ifndef NDEBUG
2575static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2576  if (!isa<CXXRecordDecl>(D)) return false;
2577  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2578  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2579    return true;
2580  if (RD->getDescribedClassTemplate() &&
2581      !isa<ClassTemplateSpecializationDecl>(RD))
2582    return true;
2583  return false;
2584}
2585#endif
2586
2587/// getInjectedClassNameType - Return the unique reference to the
2588/// injected class name type for the specified templated declaration.
2589QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2590                                              QualType TST) const {
2591  assert(NeedsInjectedClassNameType(Decl));
2592  if (Decl->TypeForDecl) {
2593    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2594  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
2595    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2596    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2597    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2598  } else {
2599    Type *newType =
2600      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2601    Decl->TypeForDecl = newType;
2602    Types.push_back(newType);
2603  }
2604  return QualType(Decl->TypeForDecl, 0);
2605}
2606
2607/// getTypeDeclType - Return the unique reference to the type for the
2608/// specified type declaration.
2609QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2610  assert(Decl && "Passed null for Decl param");
2611  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2612
2613  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2614    return getTypedefType(Typedef);
2615
2616  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2617         "Template type parameter types are always available.");
2618
2619  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2620    assert(!Record->getPreviousDecl() &&
2621           "struct/union has previous declaration");
2622    assert(!NeedsInjectedClassNameType(Record));
2623    return getRecordType(Record);
2624  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2625    assert(!Enum->getPreviousDecl() &&
2626           "enum has previous declaration");
2627    return getEnumType(Enum);
2628  } else if (const UnresolvedUsingTypenameDecl *Using =
2629               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2630    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2631    Decl->TypeForDecl = newType;
2632    Types.push_back(newType);
2633  } else
2634    llvm_unreachable("TypeDecl without a type?");
2635
2636  return QualType(Decl->TypeForDecl, 0);
2637}
2638
2639/// getTypedefType - Return the unique reference to the type for the
2640/// specified typedef name decl.
2641QualType
2642ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2643                           QualType Canonical) const {
2644  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2645
2646  if (Canonical.isNull())
2647    Canonical = getCanonicalType(Decl->getUnderlyingType());
2648  TypedefType *newType = new(*this, TypeAlignment)
2649    TypedefType(Type::Typedef, Decl, Canonical);
2650  Decl->TypeForDecl = newType;
2651  Types.push_back(newType);
2652  return QualType(newType, 0);
2653}
2654
2655QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2656  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2657
2658  if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
2659    if (PrevDecl->TypeForDecl)
2660      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2661
2662  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2663  Decl->TypeForDecl = newType;
2664  Types.push_back(newType);
2665  return QualType(newType, 0);
2666}
2667
2668QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2669  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2670
2671  if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
2672    if (PrevDecl->TypeForDecl)
2673      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2674
2675  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2676  Decl->TypeForDecl = newType;
2677  Types.push_back(newType);
2678  return QualType(newType, 0);
2679}
2680
2681QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2682                                       QualType modifiedType,
2683                                       QualType equivalentType) {
2684  llvm::FoldingSetNodeID id;
2685  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2686
2687  void *insertPos = 0;
2688  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2689  if (type) return QualType(type, 0);
2690
2691  QualType canon = getCanonicalType(equivalentType);
2692  type = new (*this, TypeAlignment)
2693           AttributedType(canon, attrKind, modifiedType, equivalentType);
2694
2695  Types.push_back(type);
2696  AttributedTypes.InsertNode(type, insertPos);
2697
2698  return QualType(type, 0);
2699}
2700
2701
2702/// \brief Retrieve a substitution-result type.
2703QualType
2704ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2705                                         QualType Replacement) const {
2706  assert(Replacement.isCanonical()
2707         && "replacement types must always be canonical");
2708
2709  llvm::FoldingSetNodeID ID;
2710  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2711  void *InsertPos = 0;
2712  SubstTemplateTypeParmType *SubstParm
2713    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2714
2715  if (!SubstParm) {
2716    SubstParm = new (*this, TypeAlignment)
2717      SubstTemplateTypeParmType(Parm, Replacement);
2718    Types.push_back(SubstParm);
2719    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2720  }
2721
2722  return QualType(SubstParm, 0);
2723}
2724
2725/// \brief Retrieve a
2726QualType ASTContext::getSubstTemplateTypeParmPackType(
2727                                          const TemplateTypeParmType *Parm,
2728                                              const TemplateArgument &ArgPack) {
2729#ifndef NDEBUG
2730  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2731                                    PEnd = ArgPack.pack_end();
2732       P != PEnd; ++P) {
2733    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2734    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2735  }
2736#endif
2737
2738  llvm::FoldingSetNodeID ID;
2739  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2740  void *InsertPos = 0;
2741  if (SubstTemplateTypeParmPackType *SubstParm
2742        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2743    return QualType(SubstParm, 0);
2744
2745  QualType Canon;
2746  if (!Parm->isCanonicalUnqualified()) {
2747    Canon = getCanonicalType(QualType(Parm, 0));
2748    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2749                                             ArgPack);
2750    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2751  }
2752
2753  SubstTemplateTypeParmPackType *SubstParm
2754    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2755                                                               ArgPack);
2756  Types.push_back(SubstParm);
2757  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2758  return QualType(SubstParm, 0);
2759}
2760
2761/// \brief Retrieve the template type parameter type for a template
2762/// parameter or parameter pack with the given depth, index, and (optionally)
2763/// name.
2764QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2765                                             bool ParameterPack,
2766                                             TemplateTypeParmDecl *TTPDecl) const {
2767  llvm::FoldingSetNodeID ID;
2768  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
2769  void *InsertPos = 0;
2770  TemplateTypeParmType *TypeParm
2771    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2772
2773  if (TypeParm)
2774    return QualType(TypeParm, 0);
2775
2776  if (TTPDecl) {
2777    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2778    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
2779
2780    TemplateTypeParmType *TypeCheck
2781      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2782    assert(!TypeCheck && "Template type parameter canonical type broken");
2783    (void)TypeCheck;
2784  } else
2785    TypeParm = new (*this, TypeAlignment)
2786      TemplateTypeParmType(Depth, Index, ParameterPack);
2787
2788  Types.push_back(TypeParm);
2789  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2790
2791  return QualType(TypeParm, 0);
2792}
2793
2794TypeSourceInfo *
2795ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2796                                              SourceLocation NameLoc,
2797                                        const TemplateArgumentListInfo &Args,
2798                                              QualType Underlying) const {
2799  assert(!Name.getAsDependentTemplateName() &&
2800         "No dependent template names here!");
2801  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
2802
2803  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2804  TemplateSpecializationTypeLoc TL
2805    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
2806  TL.setTemplateKeywordLoc(SourceLocation());
2807  TL.setTemplateNameLoc(NameLoc);
2808  TL.setLAngleLoc(Args.getLAngleLoc());
2809  TL.setRAngleLoc(Args.getRAngleLoc());
2810  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2811    TL.setArgLocInfo(i, Args[i].getLocInfo());
2812  return DI;
2813}
2814
2815QualType
2816ASTContext::getTemplateSpecializationType(TemplateName Template,
2817                                          const TemplateArgumentListInfo &Args,
2818                                          QualType Underlying) const {
2819  assert(!Template.getAsDependentTemplateName() &&
2820         "No dependent template names here!");
2821
2822  unsigned NumArgs = Args.size();
2823
2824  SmallVector<TemplateArgument, 4> ArgVec;
2825  ArgVec.reserve(NumArgs);
2826  for (unsigned i = 0; i != NumArgs; ++i)
2827    ArgVec.push_back(Args[i].getArgument());
2828
2829  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2830                                       Underlying);
2831}
2832
2833#ifndef NDEBUG
2834static bool hasAnyPackExpansions(const TemplateArgument *Args,
2835                                 unsigned NumArgs) {
2836  for (unsigned I = 0; I != NumArgs; ++I)
2837    if (Args[I].isPackExpansion())
2838      return true;
2839
2840  return true;
2841}
2842#endif
2843
2844QualType
2845ASTContext::getTemplateSpecializationType(TemplateName Template,
2846                                          const TemplateArgument *Args,
2847                                          unsigned NumArgs,
2848                                          QualType Underlying) const {
2849  assert(!Template.getAsDependentTemplateName() &&
2850         "No dependent template names here!");
2851  // Look through qualified template names.
2852  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2853    Template = TemplateName(QTN->getTemplateDecl());
2854
2855  bool IsTypeAlias =
2856    Template.getAsTemplateDecl() &&
2857    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
2858  QualType CanonType;
2859  if (!Underlying.isNull())
2860    CanonType = getCanonicalType(Underlying);
2861  else {
2862    // We can get here with an alias template when the specialization contains
2863    // a pack expansion that does not match up with a parameter pack.
2864    assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
2865           "Caller must compute aliased type");
2866    IsTypeAlias = false;
2867    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
2868                                                       NumArgs);
2869  }
2870
2871  // Allocate the (non-canonical) template specialization type, but don't
2872  // try to unique it: these types typically have location information that
2873  // we don't unique and don't want to lose.
2874  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
2875                       sizeof(TemplateArgument) * NumArgs +
2876                       (IsTypeAlias? sizeof(QualType) : 0),
2877                       TypeAlignment);
2878  TemplateSpecializationType *Spec
2879    = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
2880                                         IsTypeAlias ? Underlying : QualType());
2881
2882  Types.push_back(Spec);
2883  return QualType(Spec, 0);
2884}
2885
2886QualType
2887ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
2888                                                   const TemplateArgument *Args,
2889                                                   unsigned NumArgs) const {
2890  assert(!Template.getAsDependentTemplateName() &&
2891         "No dependent template names here!");
2892
2893  // Look through qualified template names.
2894  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2895    Template = TemplateName(QTN->getTemplateDecl());
2896
2897  // Build the canonical template specialization type.
2898  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
2899  SmallVector<TemplateArgument, 4> CanonArgs;
2900  CanonArgs.reserve(NumArgs);
2901  for (unsigned I = 0; I != NumArgs; ++I)
2902    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
2903
2904  // Determine whether this canonical template specialization type already
2905  // exists.
2906  llvm::FoldingSetNodeID ID;
2907  TemplateSpecializationType::Profile(ID, CanonTemplate,
2908                                      CanonArgs.data(), NumArgs, *this);
2909
2910  void *InsertPos = 0;
2911  TemplateSpecializationType *Spec
2912    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2913
2914  if (!Spec) {
2915    // Allocate a new canonical template specialization type.
2916    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2917                          sizeof(TemplateArgument) * NumArgs),
2918                         TypeAlignment);
2919    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
2920                                                CanonArgs.data(), NumArgs,
2921                                                QualType(), QualType());
2922    Types.push_back(Spec);
2923    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
2924  }
2925
2926  assert(Spec->isDependentType() &&
2927         "Non-dependent template-id type must have a canonical type");
2928  return QualType(Spec, 0);
2929}
2930
2931QualType
2932ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
2933                              NestedNameSpecifier *NNS,
2934                              QualType NamedType) const {
2935  llvm::FoldingSetNodeID ID;
2936  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
2937
2938  void *InsertPos = 0;
2939  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2940  if (T)
2941    return QualType(T, 0);
2942
2943  QualType Canon = NamedType;
2944  if (!Canon.isCanonical()) {
2945    Canon = getCanonicalType(NamedType);
2946    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2947    assert(!CheckT && "Elaborated canonical type broken");
2948    (void)CheckT;
2949  }
2950
2951  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
2952  Types.push_back(T);
2953  ElaboratedTypes.InsertNode(T, InsertPos);
2954  return QualType(T, 0);
2955}
2956
2957QualType
2958ASTContext::getParenType(QualType InnerType) const {
2959  llvm::FoldingSetNodeID ID;
2960  ParenType::Profile(ID, InnerType);
2961
2962  void *InsertPos = 0;
2963  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2964  if (T)
2965    return QualType(T, 0);
2966
2967  QualType Canon = InnerType;
2968  if (!Canon.isCanonical()) {
2969    Canon = getCanonicalType(InnerType);
2970    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2971    assert(!CheckT && "Paren canonical type broken");
2972    (void)CheckT;
2973  }
2974
2975  T = new (*this) ParenType(InnerType, Canon);
2976  Types.push_back(T);
2977  ParenTypes.InsertNode(T, InsertPos);
2978  return QualType(T, 0);
2979}
2980
2981QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
2982                                          NestedNameSpecifier *NNS,
2983                                          const IdentifierInfo *Name,
2984                                          QualType Canon) const {
2985  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2986
2987  if (Canon.isNull()) {
2988    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2989    ElaboratedTypeKeyword CanonKeyword = Keyword;
2990    if (Keyword == ETK_None)
2991      CanonKeyword = ETK_Typename;
2992
2993    if (CanonNNS != NNS || CanonKeyword != Keyword)
2994      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
2995  }
2996
2997  llvm::FoldingSetNodeID ID;
2998  DependentNameType::Profile(ID, Keyword, NNS, Name);
2999
3000  void *InsertPos = 0;
3001  DependentNameType *T
3002    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
3003  if (T)
3004    return QualType(T, 0);
3005
3006  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
3007  Types.push_back(T);
3008  DependentNameTypes.InsertNode(T, InsertPos);
3009  return QualType(T, 0);
3010}
3011
3012QualType
3013ASTContext::getDependentTemplateSpecializationType(
3014                                 ElaboratedTypeKeyword Keyword,
3015                                 NestedNameSpecifier *NNS,
3016                                 const IdentifierInfo *Name,
3017                                 const TemplateArgumentListInfo &Args) const {
3018  // TODO: avoid this copy
3019  SmallVector<TemplateArgument, 16> ArgCopy;
3020  for (unsigned I = 0, E = Args.size(); I != E; ++I)
3021    ArgCopy.push_back(Args[I].getArgument());
3022  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
3023                                                ArgCopy.size(),
3024                                                ArgCopy.data());
3025}
3026
3027QualType
3028ASTContext::getDependentTemplateSpecializationType(
3029                                 ElaboratedTypeKeyword Keyword,
3030                                 NestedNameSpecifier *NNS,
3031                                 const IdentifierInfo *Name,
3032                                 unsigned NumArgs,
3033                                 const TemplateArgument *Args) const {
3034  assert((!NNS || NNS->isDependent()) &&
3035         "nested-name-specifier must be dependent");
3036
3037  llvm::FoldingSetNodeID ID;
3038  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
3039                                               Name, NumArgs, Args);
3040
3041  void *InsertPos = 0;
3042  DependentTemplateSpecializationType *T
3043    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3044  if (T)
3045    return QualType(T, 0);
3046
3047  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3048
3049  ElaboratedTypeKeyword CanonKeyword = Keyword;
3050  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
3051
3052  bool AnyNonCanonArgs = false;
3053  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
3054  for (unsigned I = 0; I != NumArgs; ++I) {
3055    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
3056    if (!CanonArgs[I].structurallyEquals(Args[I]))
3057      AnyNonCanonArgs = true;
3058  }
3059
3060  QualType Canon;
3061  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
3062    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
3063                                                   Name, NumArgs,
3064                                                   CanonArgs.data());
3065
3066    // Find the insert position again.
3067    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3068  }
3069
3070  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
3071                        sizeof(TemplateArgument) * NumArgs),
3072                       TypeAlignment);
3073  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
3074                                                    Name, NumArgs, Args, Canon);
3075  Types.push_back(T);
3076  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
3077  return QualType(T, 0);
3078}
3079
3080QualType ASTContext::getPackExpansionType(QualType Pattern,
3081                                      llvm::Optional<unsigned> NumExpansions) {
3082  llvm::FoldingSetNodeID ID;
3083  PackExpansionType::Profile(ID, Pattern, NumExpansions);
3084
3085  assert(Pattern->containsUnexpandedParameterPack() &&
3086         "Pack expansions must expand one or more parameter packs");
3087  void *InsertPos = 0;
3088  PackExpansionType *T
3089    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3090  if (T)
3091    return QualType(T, 0);
3092
3093  QualType Canon;
3094  if (!Pattern.isCanonical()) {
3095    Canon = getCanonicalType(Pattern);
3096    // The canonical type might not contain an unexpanded parameter pack, if it
3097    // contains an alias template specialization which ignores one of its
3098    // parameters.
3099    if (Canon->containsUnexpandedParameterPack()) {
3100      Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
3101
3102      // Find the insert position again, in case we inserted an element into
3103      // PackExpansionTypes and invalidated our insert position.
3104      PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3105    }
3106  }
3107
3108  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
3109  Types.push_back(T);
3110  PackExpansionTypes.InsertNode(T, InsertPos);
3111  return QualType(T, 0);
3112}
3113
3114/// CmpProtocolNames - Comparison predicate for sorting protocols
3115/// alphabetically.
3116static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
3117                            const ObjCProtocolDecl *RHS) {
3118  return LHS->getDeclName() < RHS->getDeclName();
3119}
3120
3121static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
3122                                unsigned NumProtocols) {
3123  if (NumProtocols == 0) return true;
3124
3125  if (Protocols[0]->getCanonicalDecl() != Protocols[0])
3126    return false;
3127
3128  for (unsigned i = 1; i != NumProtocols; ++i)
3129    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
3130        Protocols[i]->getCanonicalDecl() != Protocols[i])
3131      return false;
3132  return true;
3133}
3134
3135static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
3136                                   unsigned &NumProtocols) {
3137  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
3138
3139  // Sort protocols, keyed by name.
3140  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
3141
3142  // Canonicalize.
3143  for (unsigned I = 0, N = NumProtocols; I != N; ++I)
3144    Protocols[I] = Protocols[I]->getCanonicalDecl();
3145
3146  // Remove duplicates.
3147  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
3148  NumProtocols = ProtocolsEnd-Protocols;
3149}
3150
3151QualType ASTContext::getObjCObjectType(QualType BaseType,
3152                                       ObjCProtocolDecl * const *Protocols,
3153                                       unsigned NumProtocols) const {
3154  // If the base type is an interface and there aren't any protocols
3155  // to add, then the interface type will do just fine.
3156  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
3157    return BaseType;
3158
3159  // Look in the folding set for an existing type.
3160  llvm::FoldingSetNodeID ID;
3161  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
3162  void *InsertPos = 0;
3163  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
3164    return QualType(QT, 0);
3165
3166  // Build the canonical type, which has the canonical base type and
3167  // a sorted-and-uniqued list of protocols.
3168  QualType Canonical;
3169  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
3170  if (!ProtocolsSorted || !BaseType.isCanonical()) {
3171    if (!ProtocolsSorted) {
3172      SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
3173                                                     Protocols + NumProtocols);
3174      unsigned UniqueCount = NumProtocols;
3175
3176      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
3177      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3178                                    &Sorted[0], UniqueCount);
3179    } else {
3180      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3181                                    Protocols, NumProtocols);
3182    }
3183
3184    // Regenerate InsertPos.
3185    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
3186  }
3187
3188  unsigned Size = sizeof(ObjCObjectTypeImpl);
3189  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
3190  void *Mem = Allocate(Size, TypeAlignment);
3191  ObjCObjectTypeImpl *T =
3192    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
3193
3194  Types.push_back(T);
3195  ObjCObjectTypes.InsertNode(T, InsertPos);
3196  return QualType(T, 0);
3197}
3198
3199/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
3200/// the given object type.
3201QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
3202  llvm::FoldingSetNodeID ID;
3203  ObjCObjectPointerType::Profile(ID, ObjectT);
3204
3205  void *InsertPos = 0;
3206  if (ObjCObjectPointerType *QT =
3207              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3208    return QualType(QT, 0);
3209
3210  // Find the canonical object type.
3211  QualType Canonical;
3212  if (!ObjectT.isCanonical()) {
3213    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
3214
3215    // Regenerate InsertPos.
3216    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3217  }
3218
3219  // No match.
3220  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
3221  ObjCObjectPointerType *QType =
3222    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
3223
3224  Types.push_back(QType);
3225  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
3226  return QualType(QType, 0);
3227}
3228
3229/// getObjCInterfaceType - Return the unique reference to the type for the
3230/// specified ObjC interface decl. The list of protocols is optional.
3231QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
3232                                          ObjCInterfaceDecl *PrevDecl) const {
3233  if (Decl->TypeForDecl)
3234    return QualType(Decl->TypeForDecl, 0);
3235
3236  if (PrevDecl) {
3237    assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
3238    Decl->TypeForDecl = PrevDecl->TypeForDecl;
3239    return QualType(PrevDecl->TypeForDecl, 0);
3240  }
3241
3242  // Prefer the definition, if there is one.
3243  if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
3244    Decl = Def;
3245
3246  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
3247  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
3248  Decl->TypeForDecl = T;
3249  Types.push_back(T);
3250  return QualType(T, 0);
3251}
3252
3253/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
3254/// TypeOfExprType AST's (since expression's are never shared). For example,
3255/// multiple declarations that refer to "typeof(x)" all contain different
3256/// DeclRefExpr's. This doesn't effect the type checker, since it operates
3257/// on canonical type's (which are always unique).
3258QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
3259  TypeOfExprType *toe;
3260  if (tofExpr->isTypeDependent()) {
3261    llvm::FoldingSetNodeID ID;
3262    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
3263
3264    void *InsertPos = 0;
3265    DependentTypeOfExprType *Canon
3266      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
3267    if (Canon) {
3268      // We already have a "canonical" version of an identical, dependent
3269      // typeof(expr) type. Use that as our canonical type.
3270      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
3271                                          QualType((TypeOfExprType*)Canon, 0));
3272    } else {
3273      // Build a new, canonical typeof(expr) type.
3274      Canon
3275        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
3276      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
3277      toe = Canon;
3278    }
3279  } else {
3280    QualType Canonical = getCanonicalType(tofExpr->getType());
3281    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
3282  }
3283  Types.push_back(toe);
3284  return QualType(toe, 0);
3285}
3286
3287/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
3288/// TypeOfType AST's. The only motivation to unique these nodes would be
3289/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
3290/// an issue. This doesn't effect the type checker, since it operates
3291/// on canonical type's (which are always unique).
3292QualType ASTContext::getTypeOfType(QualType tofType) const {
3293  QualType Canonical = getCanonicalType(tofType);
3294  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
3295  Types.push_back(tot);
3296  return QualType(tot, 0);
3297}
3298
3299
3300/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
3301/// DecltypeType AST's. The only motivation to unique these nodes would be
3302/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
3303/// an issue. This doesn't effect the type checker, since it operates
3304/// on canonical types (which are always unique).
3305QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
3306  DecltypeType *dt;
3307
3308  // C++0x [temp.type]p2:
3309  //   If an expression e involves a template parameter, decltype(e) denotes a
3310  //   unique dependent type. Two such decltype-specifiers refer to the same
3311  //   type only if their expressions are equivalent (14.5.6.1).
3312  if (e->isInstantiationDependent()) {
3313    llvm::FoldingSetNodeID ID;
3314    DependentDecltypeType::Profile(ID, *this, e);
3315
3316    void *InsertPos = 0;
3317    DependentDecltypeType *Canon
3318      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
3319    if (Canon) {
3320      // We already have a "canonical" version of an equivalent, dependent
3321      // decltype type. Use that as our canonical type.
3322      dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3323                                       QualType((DecltypeType*)Canon, 0));
3324    } else {
3325      // Build a new, canonical typeof(expr) type.
3326      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
3327      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
3328      dt = Canon;
3329    }
3330  } else {
3331    dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3332                                      getCanonicalType(UnderlyingType));
3333  }
3334  Types.push_back(dt);
3335  return QualType(dt, 0);
3336}
3337
3338/// getUnaryTransformationType - We don't unique these, since the memory
3339/// savings are minimal and these are rare.
3340QualType ASTContext::getUnaryTransformType(QualType BaseType,
3341                                           QualType UnderlyingType,
3342                                           UnaryTransformType::UTTKind Kind)
3343    const {
3344  UnaryTransformType *Ty =
3345    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
3346                                                   Kind,
3347                                 UnderlyingType->isDependentType() ?
3348                                 QualType() : getCanonicalType(UnderlyingType));
3349  Types.push_back(Ty);
3350  return QualType(Ty, 0);
3351}
3352
3353/// getAutoType - We only unique auto types after they've been deduced.
3354QualType ASTContext::getAutoType(QualType DeducedType) const {
3355  void *InsertPos = 0;
3356  if (!DeducedType.isNull()) {
3357    // Look in the folding set for an existing type.
3358    llvm::FoldingSetNodeID ID;
3359    AutoType::Profile(ID, DeducedType);
3360    if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
3361      return QualType(AT, 0);
3362  }
3363
3364  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
3365  Types.push_back(AT);
3366  if (InsertPos)
3367    AutoTypes.InsertNode(AT, InsertPos);
3368  return QualType(AT, 0);
3369}
3370
3371/// getAtomicType - Return the uniqued reference to the atomic type for
3372/// the given value type.
3373QualType ASTContext::getAtomicType(QualType T) const {
3374  // Unique pointers, to guarantee there is only one pointer of a particular
3375  // structure.
3376  llvm::FoldingSetNodeID ID;
3377  AtomicType::Profile(ID, T);
3378
3379  void *InsertPos = 0;
3380  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
3381    return QualType(AT, 0);
3382
3383  // If the atomic value type isn't canonical, this won't be a canonical type
3384  // either, so fill in the canonical type field.
3385  QualType Canonical;
3386  if (!T.isCanonical()) {
3387    Canonical = getAtomicType(getCanonicalType(T));
3388
3389    // Get the new insert position for the node we care about.
3390    AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
3391    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
3392  }
3393  AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
3394  Types.push_back(New);
3395  AtomicTypes.InsertNode(New, InsertPos);
3396  return QualType(New, 0);
3397}
3398
3399/// getAutoDeductType - Get type pattern for deducing against 'auto'.
3400QualType ASTContext::getAutoDeductType() const {
3401  if (AutoDeductTy.isNull())
3402    AutoDeductTy = getAutoType(QualType());
3403  assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern");
3404  return AutoDeductTy;
3405}
3406
3407/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
3408QualType ASTContext::getAutoRRefDeductType() const {
3409  if (AutoRRefDeductTy.isNull())
3410    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3411  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3412  return AutoRRefDeductTy;
3413}
3414
3415/// getTagDeclType - Return the unique reference to the type for the
3416/// specified TagDecl (struct/union/class/enum) decl.
3417QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3418  assert (Decl);
3419  // FIXME: What is the design on getTagDeclType when it requires casting
3420  // away const?  mutable?
3421  return getTypeDeclType(const_cast<TagDecl*>(Decl));
3422}
3423
3424/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3425/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3426/// needs to agree with the definition in <stddef.h>.
3427CanQualType ASTContext::getSizeType() const {
3428  return getFromTargetType(Target->getSizeType());
3429}
3430
3431/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
3432CanQualType ASTContext::getIntMaxType() const {
3433  return getFromTargetType(Target->getIntMaxType());
3434}
3435
3436/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
3437CanQualType ASTContext::getUIntMaxType() const {
3438  return getFromTargetType(Target->getUIntMaxType());
3439}
3440
3441/// getSignedWCharType - Return the type of "signed wchar_t".
3442/// Used when in C++, as a GCC extension.
3443QualType ASTContext::getSignedWCharType() const {
3444  // FIXME: derive from "Target" ?
3445  return WCharTy;
3446}
3447
3448/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3449/// Used when in C++, as a GCC extension.
3450QualType ASTContext::getUnsignedWCharType() const {
3451  // FIXME: derive from "Target" ?
3452  return UnsignedIntTy;
3453}
3454
3455/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3456/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
3457QualType ASTContext::getPointerDiffType() const {
3458  return getFromTargetType(Target->getPtrDiffType(0));
3459}
3460
3461//===----------------------------------------------------------------------===//
3462//                              Type Operators
3463//===----------------------------------------------------------------------===//
3464
3465CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3466  // Push qualifiers into arrays, and then discard any remaining
3467  // qualifiers.
3468  T = getCanonicalType(T);
3469  T = getVariableArrayDecayedType(T);
3470  const Type *Ty = T.getTypePtr();
3471  QualType Result;
3472  if (isa<ArrayType>(Ty)) {
3473    Result = getArrayDecayedType(QualType(Ty,0));
3474  } else if (isa<FunctionType>(Ty)) {
3475    Result = getPointerType(QualType(Ty, 0));
3476  } else {
3477    Result = QualType(Ty, 0);
3478  }
3479
3480  return CanQualType::CreateUnsafe(Result);
3481}
3482
3483QualType ASTContext::getUnqualifiedArrayType(QualType type,
3484                                             Qualifiers &quals) {
3485  SplitQualType splitType = type.getSplitUnqualifiedType();
3486
3487  // FIXME: getSplitUnqualifiedType() actually walks all the way to
3488  // the unqualified desugared type and then drops it on the floor.
3489  // We then have to strip that sugar back off with
3490  // getUnqualifiedDesugaredType(), which is silly.
3491  const ArrayType *AT =
3492    dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
3493
3494  // If we don't have an array, just use the results in splitType.
3495  if (!AT) {
3496    quals = splitType.Quals;
3497    return QualType(splitType.Ty, 0);
3498  }
3499
3500  // Otherwise, recurse on the array's element type.
3501  QualType elementType = AT->getElementType();
3502  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3503
3504  // If that didn't change the element type, AT has no qualifiers, so we
3505  // can just use the results in splitType.
3506  if (elementType == unqualElementType) {
3507    assert(quals.empty()); // from the recursive call
3508    quals = splitType.Quals;
3509    return QualType(splitType.Ty, 0);
3510  }
3511
3512  // Otherwise, add in the qualifiers from the outermost type, then
3513  // build the type back up.
3514  quals.addConsistentQualifiers(splitType.Quals);
3515
3516  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3517    return getConstantArrayType(unqualElementType, CAT->getSize(),
3518                                CAT->getSizeModifier(), 0);
3519  }
3520
3521  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3522    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3523  }
3524
3525  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3526    return getVariableArrayType(unqualElementType,
3527                                VAT->getSizeExpr(),
3528                                VAT->getSizeModifier(),
3529                                VAT->getIndexTypeCVRQualifiers(),
3530                                VAT->getBracketsRange());
3531  }
3532
3533  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
3534  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
3535                                    DSAT->getSizeModifier(), 0,
3536                                    SourceRange());
3537}
3538
3539/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
3540/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
3541/// they point to and return true. If T1 and T2 aren't pointer types
3542/// or pointer-to-member types, or if they are not similar at this
3543/// level, returns false and leaves T1 and T2 unchanged. Top-level
3544/// qualifiers on T1 and T2 are ignored. This function will typically
3545/// be called in a loop that successively "unwraps" pointer and
3546/// pointer-to-member types to compare them at each level.
3547bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3548  const PointerType *T1PtrType = T1->getAs<PointerType>(),
3549                    *T2PtrType = T2->getAs<PointerType>();
3550  if (T1PtrType && T2PtrType) {
3551    T1 = T1PtrType->getPointeeType();
3552    T2 = T2PtrType->getPointeeType();
3553    return true;
3554  }
3555
3556  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3557                          *T2MPType = T2->getAs<MemberPointerType>();
3558  if (T1MPType && T2MPType &&
3559      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3560                             QualType(T2MPType->getClass(), 0))) {
3561    T1 = T1MPType->getPointeeType();
3562    T2 = T2MPType->getPointeeType();
3563    return true;
3564  }
3565
3566  if (getLangOpts().ObjC1) {
3567    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3568                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
3569    if (T1OPType && T2OPType) {
3570      T1 = T1OPType->getPointeeType();
3571      T2 = T2OPType->getPointeeType();
3572      return true;
3573    }
3574  }
3575
3576  // FIXME: Block pointers, too?
3577
3578  return false;
3579}
3580
3581DeclarationNameInfo
3582ASTContext::getNameForTemplate(TemplateName Name,
3583                               SourceLocation NameLoc) const {
3584  switch (Name.getKind()) {
3585  case TemplateName::QualifiedTemplate:
3586  case TemplateName::Template:
3587    // DNInfo work in progress: CHECKME: what about DNLoc?
3588    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3589                               NameLoc);
3590
3591  case TemplateName::OverloadedTemplate: {
3592    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3593    // DNInfo work in progress: CHECKME: what about DNLoc?
3594    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3595  }
3596
3597  case TemplateName::DependentTemplate: {
3598    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3599    DeclarationName DName;
3600    if (DTN->isIdentifier()) {
3601      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3602      return DeclarationNameInfo(DName, NameLoc);
3603    } else {
3604      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3605      // DNInfo work in progress: FIXME: source locations?
3606      DeclarationNameLoc DNLoc;
3607      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3608      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3609      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3610    }
3611  }
3612
3613  case TemplateName::SubstTemplateTemplateParm: {
3614    SubstTemplateTemplateParmStorage *subst
3615      = Name.getAsSubstTemplateTemplateParm();
3616    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3617                               NameLoc);
3618  }
3619
3620  case TemplateName::SubstTemplateTemplateParmPack: {
3621    SubstTemplateTemplateParmPackStorage *subst
3622      = Name.getAsSubstTemplateTemplateParmPack();
3623    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3624                               NameLoc);
3625  }
3626  }
3627
3628  llvm_unreachable("bad template name kind!");
3629}
3630
3631TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3632  switch (Name.getKind()) {
3633  case TemplateName::QualifiedTemplate:
3634  case TemplateName::Template: {
3635    TemplateDecl *Template = Name.getAsTemplateDecl();
3636    if (TemplateTemplateParmDecl *TTP
3637          = dyn_cast<TemplateTemplateParmDecl>(Template))
3638      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3639
3640    // The canonical template name is the canonical template declaration.
3641    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3642  }
3643
3644  case TemplateName::OverloadedTemplate:
3645    llvm_unreachable("cannot canonicalize overloaded template");
3646
3647  case TemplateName::DependentTemplate: {
3648    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3649    assert(DTN && "Non-dependent template names must refer to template decls.");
3650    return DTN->CanonicalTemplateName;
3651  }
3652
3653  case TemplateName::SubstTemplateTemplateParm: {
3654    SubstTemplateTemplateParmStorage *subst
3655      = Name.getAsSubstTemplateTemplateParm();
3656    return getCanonicalTemplateName(subst->getReplacement());
3657  }
3658
3659  case TemplateName::SubstTemplateTemplateParmPack: {
3660    SubstTemplateTemplateParmPackStorage *subst
3661                                  = Name.getAsSubstTemplateTemplateParmPack();
3662    TemplateTemplateParmDecl *canonParameter
3663      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3664    TemplateArgument canonArgPack
3665      = getCanonicalTemplateArgument(subst->getArgumentPack());
3666    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3667  }
3668  }
3669
3670  llvm_unreachable("bad template name!");
3671}
3672
3673bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3674  X = getCanonicalTemplateName(X);
3675  Y = getCanonicalTemplateName(Y);
3676  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3677}
3678
3679TemplateArgument
3680ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3681  switch (Arg.getKind()) {
3682    case TemplateArgument::Null:
3683      return Arg;
3684
3685    case TemplateArgument::Expression:
3686      return Arg;
3687
3688    case TemplateArgument::Declaration: {
3689      ValueDecl *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
3690      return TemplateArgument(D, Arg.isDeclForReferenceParam());
3691    }
3692
3693    case TemplateArgument::NullPtr:
3694      return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
3695                              /*isNullPtr*/true);
3696
3697    case TemplateArgument::Template:
3698      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3699
3700    case TemplateArgument::TemplateExpansion:
3701      return TemplateArgument(getCanonicalTemplateName(
3702                                         Arg.getAsTemplateOrTemplatePattern()),
3703                              Arg.getNumTemplateExpansions());
3704
3705    case TemplateArgument::Integral:
3706      return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
3707
3708    case TemplateArgument::Type:
3709      return TemplateArgument(getCanonicalType(Arg.getAsType()));
3710
3711    case TemplateArgument::Pack: {
3712      if (Arg.pack_size() == 0)
3713        return Arg;
3714
3715      TemplateArgument *CanonArgs
3716        = new (*this) TemplateArgument[Arg.pack_size()];
3717      unsigned Idx = 0;
3718      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
3719                                        AEnd = Arg.pack_end();
3720           A != AEnd; (void)++A, ++Idx)
3721        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
3722
3723      return TemplateArgument(CanonArgs, Arg.pack_size());
3724    }
3725  }
3726
3727  // Silence GCC warning
3728  llvm_unreachable("Unhandled template argument kind");
3729}
3730
3731NestedNameSpecifier *
3732ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
3733  if (!NNS)
3734    return 0;
3735
3736  switch (NNS->getKind()) {
3737  case NestedNameSpecifier::Identifier:
3738    // Canonicalize the prefix but keep the identifier the same.
3739    return NestedNameSpecifier::Create(*this,
3740                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
3741                                       NNS->getAsIdentifier());
3742
3743  case NestedNameSpecifier::Namespace:
3744    // A namespace is canonical; build a nested-name-specifier with
3745    // this namespace and no prefix.
3746    return NestedNameSpecifier::Create(*this, 0,
3747                                 NNS->getAsNamespace()->getOriginalNamespace());
3748
3749  case NestedNameSpecifier::NamespaceAlias:
3750    // A namespace is canonical; build a nested-name-specifier with
3751    // this namespace and no prefix.
3752    return NestedNameSpecifier::Create(*this, 0,
3753                                    NNS->getAsNamespaceAlias()->getNamespace()
3754                                                      ->getOriginalNamespace());
3755
3756  case NestedNameSpecifier::TypeSpec:
3757  case NestedNameSpecifier::TypeSpecWithTemplate: {
3758    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
3759
3760    // If we have some kind of dependent-named type (e.g., "typename T::type"),
3761    // break it apart into its prefix and identifier, then reconsititute those
3762    // as the canonical nested-name-specifier. This is required to canonicalize
3763    // a dependent nested-name-specifier involving typedefs of dependent-name
3764    // types, e.g.,
3765    //   typedef typename T::type T1;
3766    //   typedef typename T1::type T2;
3767    if (const DependentNameType *DNT = T->getAs<DependentNameType>())
3768      return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
3769                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
3770
3771    // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
3772    // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
3773    // first place?
3774    return NestedNameSpecifier::Create(*this, 0, false,
3775                                       const_cast<Type*>(T.getTypePtr()));
3776  }
3777
3778  case NestedNameSpecifier::Global:
3779    // The global specifier is canonical and unique.
3780    return NNS;
3781  }
3782
3783  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
3784}
3785
3786
3787const ArrayType *ASTContext::getAsArrayType(QualType T) const {
3788  // Handle the non-qualified case efficiently.
3789  if (!T.hasLocalQualifiers()) {
3790    // Handle the common positive case fast.
3791    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
3792      return AT;
3793  }
3794
3795  // Handle the common negative case fast.
3796  if (!isa<ArrayType>(T.getCanonicalType()))
3797    return 0;
3798
3799  // Apply any qualifiers from the array type to the element type.  This
3800  // implements C99 6.7.3p8: "If the specification of an array type includes
3801  // any type qualifiers, the element type is so qualified, not the array type."
3802
3803  // If we get here, we either have type qualifiers on the type, or we have
3804  // sugar such as a typedef in the way.  If we have type qualifiers on the type
3805  // we must propagate them down into the element type.
3806
3807  SplitQualType split = T.getSplitDesugaredType();
3808  Qualifiers qs = split.Quals;
3809
3810  // If we have a simple case, just return now.
3811  const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
3812  if (ATy == 0 || qs.empty())
3813    return ATy;
3814
3815  // Otherwise, we have an array and we have qualifiers on it.  Push the
3816  // qualifiers into the array element type and return a new array type.
3817  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
3818
3819  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
3820    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
3821                                                CAT->getSizeModifier(),
3822                                           CAT->getIndexTypeCVRQualifiers()));
3823  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
3824    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
3825                                                  IAT->getSizeModifier(),
3826                                           IAT->getIndexTypeCVRQualifiers()));
3827
3828  if (const DependentSizedArrayType *DSAT
3829        = dyn_cast<DependentSizedArrayType>(ATy))
3830    return cast<ArrayType>(
3831                     getDependentSizedArrayType(NewEltTy,
3832                                                DSAT->getSizeExpr(),
3833                                                DSAT->getSizeModifier(),
3834                                              DSAT->getIndexTypeCVRQualifiers(),
3835                                                DSAT->getBracketsRange()));
3836
3837  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
3838  return cast<ArrayType>(getVariableArrayType(NewEltTy,
3839                                              VAT->getSizeExpr(),
3840                                              VAT->getSizeModifier(),
3841                                              VAT->getIndexTypeCVRQualifiers(),
3842                                              VAT->getBracketsRange()));
3843}
3844
3845QualType ASTContext::getAdjustedParameterType(QualType T) const {
3846  // C99 6.7.5.3p7:
3847  //   A declaration of a parameter as "array of type" shall be
3848  //   adjusted to "qualified pointer to type", where the type
3849  //   qualifiers (if any) are those specified within the [ and ] of
3850  //   the array type derivation.
3851  if (T->isArrayType())
3852    return getArrayDecayedType(T);
3853
3854  // C99 6.7.5.3p8:
3855  //   A declaration of a parameter as "function returning type"
3856  //   shall be adjusted to "pointer to function returning type", as
3857  //   in 6.3.2.1.
3858  if (T->isFunctionType())
3859    return getPointerType(T);
3860
3861  return T;
3862}
3863
3864QualType ASTContext::getSignatureParameterType(QualType T) const {
3865  T = getVariableArrayDecayedType(T);
3866  T = getAdjustedParameterType(T);
3867  return T.getUnqualifiedType();
3868}
3869
3870/// getArrayDecayedType - Return the properly qualified result of decaying the
3871/// specified array type to a pointer.  This operation is non-trivial when
3872/// handling typedefs etc.  The canonical type of "T" must be an array type,
3873/// this returns a pointer to a properly qualified element of the array.
3874///
3875/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
3876QualType ASTContext::getArrayDecayedType(QualType Ty) const {
3877  // Get the element type with 'getAsArrayType' so that we don't lose any
3878  // typedefs in the element type of the array.  This also handles propagation
3879  // of type qualifiers from the array type into the element type if present
3880  // (C99 6.7.3p8).
3881  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
3882  assert(PrettyArrayType && "Not an array type!");
3883
3884  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
3885
3886  // int x[restrict 4] ->  int *restrict
3887  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
3888}
3889
3890QualType ASTContext::getBaseElementType(const ArrayType *array) const {
3891  return getBaseElementType(array->getElementType());
3892}
3893
3894QualType ASTContext::getBaseElementType(QualType type) const {
3895  Qualifiers qs;
3896  while (true) {
3897    SplitQualType split = type.getSplitDesugaredType();
3898    const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
3899    if (!array) break;
3900
3901    type = array->getElementType();
3902    qs.addConsistentQualifiers(split.Quals);
3903  }
3904
3905  return getQualifiedType(type, qs);
3906}
3907
3908/// getConstantArrayElementCount - Returns number of constant array elements.
3909uint64_t
3910ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
3911  uint64_t ElementCount = 1;
3912  do {
3913    ElementCount *= CA->getSize().getZExtValue();
3914    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
3915  } while (CA);
3916  return ElementCount;
3917}
3918
3919/// getFloatingRank - Return a relative rank for floating point types.
3920/// This routine will assert if passed a built-in type that isn't a float.
3921static FloatingRank getFloatingRank(QualType T) {
3922  if (const ComplexType *CT = T->getAs<ComplexType>())
3923    return getFloatingRank(CT->getElementType());
3924
3925  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
3926  switch (T->getAs<BuiltinType>()->getKind()) {
3927  default: llvm_unreachable("getFloatingRank(): not a floating type");
3928  case BuiltinType::Half:       return HalfRank;
3929  case BuiltinType::Float:      return FloatRank;
3930  case BuiltinType::Double:     return DoubleRank;
3931  case BuiltinType::LongDouble: return LongDoubleRank;
3932  }
3933}
3934
3935/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
3936/// point or a complex type (based on typeDomain/typeSize).
3937/// 'typeDomain' is a real floating point or complex type.
3938/// 'typeSize' is a real floating point or complex type.
3939QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
3940                                                       QualType Domain) const {
3941  FloatingRank EltRank = getFloatingRank(Size);
3942  if (Domain->isComplexType()) {
3943    switch (EltRank) {
3944    case HalfRank: llvm_unreachable("Complex half is not supported");
3945    case FloatRank:      return FloatComplexTy;
3946    case DoubleRank:     return DoubleComplexTy;
3947    case LongDoubleRank: return LongDoubleComplexTy;
3948    }
3949  }
3950
3951  assert(Domain->isRealFloatingType() && "Unknown domain!");
3952  switch (EltRank) {
3953  case HalfRank: llvm_unreachable("Half ranks are not valid here");
3954  case FloatRank:      return FloatTy;
3955  case DoubleRank:     return DoubleTy;
3956  case LongDoubleRank: return LongDoubleTy;
3957  }
3958  llvm_unreachable("getFloatingRank(): illegal value for rank");
3959}
3960
3961/// getFloatingTypeOrder - Compare the rank of the two specified floating
3962/// point types, ignoring the domain of the type (i.e. 'double' ==
3963/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3964/// LHS < RHS, return -1.
3965int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
3966  FloatingRank LHSR = getFloatingRank(LHS);
3967  FloatingRank RHSR = getFloatingRank(RHS);
3968
3969  if (LHSR == RHSR)
3970    return 0;
3971  if (LHSR > RHSR)
3972    return 1;
3973  return -1;
3974}
3975
3976/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
3977/// routine will assert if passed a built-in type that isn't an integer or enum,
3978/// or if it is not canonicalized.
3979unsigned ASTContext::getIntegerRank(const Type *T) const {
3980  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
3981
3982  switch (cast<BuiltinType>(T)->getKind()) {
3983  default: llvm_unreachable("getIntegerRank(): not a built-in integer");
3984  case BuiltinType::Bool:
3985    return 1 + (getIntWidth(BoolTy) << 3);
3986  case BuiltinType::Char_S:
3987  case BuiltinType::Char_U:
3988  case BuiltinType::SChar:
3989  case BuiltinType::UChar:
3990    return 2 + (getIntWidth(CharTy) << 3);
3991  case BuiltinType::Short:
3992  case BuiltinType::UShort:
3993    return 3 + (getIntWidth(ShortTy) << 3);
3994  case BuiltinType::Int:
3995  case BuiltinType::UInt:
3996    return 4 + (getIntWidth(IntTy) << 3);
3997  case BuiltinType::Long:
3998  case BuiltinType::ULong:
3999    return 5 + (getIntWidth(LongTy) << 3);
4000  case BuiltinType::LongLong:
4001  case BuiltinType::ULongLong:
4002    return 6 + (getIntWidth(LongLongTy) << 3);
4003  case BuiltinType::Int128:
4004  case BuiltinType::UInt128:
4005    return 7 + (getIntWidth(Int128Ty) << 3);
4006  }
4007}
4008
4009/// \brief Whether this is a promotable bitfield reference according
4010/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
4011///
4012/// \returns the type this bit-field will promote to, or NULL if no
4013/// promotion occurs.
4014QualType ASTContext::isPromotableBitField(Expr *E) const {
4015  if (E->isTypeDependent() || E->isValueDependent())
4016    return QualType();
4017
4018  FieldDecl *Field = E->getBitField();
4019  if (!Field)
4020    return QualType();
4021
4022  QualType FT = Field->getType();
4023
4024  uint64_t BitWidth = Field->getBitWidthValue(*this);
4025  uint64_t IntSize = getTypeSize(IntTy);
4026  // GCC extension compatibility: if the bit-field size is less than or equal
4027  // to the size of int, it gets promoted no matter what its type is.
4028  // For instance, unsigned long bf : 4 gets promoted to signed int.
4029  if (BitWidth < IntSize)
4030    return IntTy;
4031
4032  if (BitWidth == IntSize)
4033    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
4034
4035  // Types bigger than int are not subject to promotions, and therefore act
4036  // like the base type.
4037  // FIXME: This doesn't quite match what gcc does, but what gcc does here
4038  // is ridiculous.
4039  return QualType();
4040}
4041
4042/// getPromotedIntegerType - Returns the type that Promotable will
4043/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
4044/// integer type.
4045QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
4046  assert(!Promotable.isNull());
4047  assert(Promotable->isPromotableIntegerType());
4048  if (const EnumType *ET = Promotable->getAs<EnumType>())
4049    return ET->getDecl()->getPromotionType();
4050
4051  if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
4052    // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
4053    // (3.9.1) can be converted to a prvalue of the first of the following
4054    // types that can represent all the values of its underlying type:
4055    // int, unsigned int, long int, unsigned long int, long long int, or
4056    // unsigned long long int [...]
4057    // FIXME: Is there some better way to compute this?
4058    if (BT->getKind() == BuiltinType::WChar_S ||
4059        BT->getKind() == BuiltinType::WChar_U ||
4060        BT->getKind() == BuiltinType::Char16 ||
4061        BT->getKind() == BuiltinType::Char32) {
4062      bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
4063      uint64_t FromSize = getTypeSize(BT);
4064      QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
4065                                  LongLongTy, UnsignedLongLongTy };
4066      for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
4067        uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
4068        if (FromSize < ToSize ||
4069            (FromSize == ToSize &&
4070             FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
4071          return PromoteTypes[Idx];
4072      }
4073      llvm_unreachable("char type should fit into long long");
4074    }
4075  }
4076
4077  // At this point, we should have a signed or unsigned integer type.
4078  if (Promotable->isSignedIntegerType())
4079    return IntTy;
4080  uint64_t PromotableSize = getTypeSize(Promotable);
4081  uint64_t IntSize = getTypeSize(IntTy);
4082  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
4083  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
4084}
4085
4086/// \brief Recurses in pointer/array types until it finds an objc retainable
4087/// type and returns its ownership.
4088Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
4089  while (!T.isNull()) {
4090    if (T.getObjCLifetime() != Qualifiers::OCL_None)
4091      return T.getObjCLifetime();
4092    if (T->isArrayType())
4093      T = getBaseElementType(T);
4094    else if (const PointerType *PT = T->getAs<PointerType>())
4095      T = PT->getPointeeType();
4096    else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4097      T = RT->getPointeeType();
4098    else
4099      break;
4100  }
4101
4102  return Qualifiers::OCL_None;
4103}
4104
4105/// getIntegerTypeOrder - Returns the highest ranked integer type:
4106/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4107/// LHS < RHS, return -1.
4108int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
4109  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
4110  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
4111  if (LHSC == RHSC) return 0;
4112
4113  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
4114  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
4115
4116  unsigned LHSRank = getIntegerRank(LHSC);
4117  unsigned RHSRank = getIntegerRank(RHSC);
4118
4119  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
4120    if (LHSRank == RHSRank) return 0;
4121    return LHSRank > RHSRank ? 1 : -1;
4122  }
4123
4124  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
4125  if (LHSUnsigned) {
4126    // If the unsigned [LHS] type is larger, return it.
4127    if (LHSRank >= RHSRank)
4128      return 1;
4129
4130    // If the signed type can represent all values of the unsigned type, it
4131    // wins.  Because we are dealing with 2's complement and types that are
4132    // powers of two larger than each other, this is always safe.
4133    return -1;
4134  }
4135
4136  // If the unsigned [RHS] type is larger, return it.
4137  if (RHSRank >= LHSRank)
4138    return -1;
4139
4140  // If the signed type can represent all values of the unsigned type, it
4141  // wins.  Because we are dealing with 2's complement and types that are
4142  // powers of two larger than each other, this is always safe.
4143  return 1;
4144}
4145
4146static RecordDecl *
4147CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
4148                 DeclContext *DC, IdentifierInfo *Id) {
4149  SourceLocation Loc;
4150  if (Ctx.getLangOpts().CPlusPlus)
4151    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4152  else
4153    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4154}
4155
4156// getCFConstantStringType - Return the type used for constant CFStrings.
4157QualType ASTContext::getCFConstantStringType() const {
4158  if (!CFConstantStringTypeDecl) {
4159    CFConstantStringTypeDecl =
4160      CreateRecordDecl(*this, TTK_Struct, TUDecl,
4161                       &Idents.get("NSConstantString"));
4162    CFConstantStringTypeDecl->startDefinition();
4163
4164    QualType FieldTypes[4];
4165
4166    // const int *isa;
4167    FieldTypes[0] = getPointerType(IntTy.withConst());
4168    // int flags;
4169    FieldTypes[1] = IntTy;
4170    // const char *str;
4171    FieldTypes[2] = getPointerType(CharTy.withConst());
4172    // long length;
4173    FieldTypes[3] = LongTy;
4174
4175    // Create fields
4176    for (unsigned i = 0; i < 4; ++i) {
4177      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
4178                                           SourceLocation(),
4179                                           SourceLocation(), 0,
4180                                           FieldTypes[i], /*TInfo=*/0,
4181                                           /*BitWidth=*/0,
4182                                           /*Mutable=*/false,
4183                                           ICIS_NoInit);
4184      Field->setAccess(AS_public);
4185      CFConstantStringTypeDecl->addDecl(Field);
4186    }
4187
4188    CFConstantStringTypeDecl->completeDefinition();
4189  }
4190
4191  return getTagDeclType(CFConstantStringTypeDecl);
4192}
4193
4194void ASTContext::setCFConstantStringType(QualType T) {
4195  const RecordType *Rec = T->getAs<RecordType>();
4196  assert(Rec && "Invalid CFConstantStringType");
4197  CFConstantStringTypeDecl = Rec->getDecl();
4198}
4199
4200QualType ASTContext::getBlockDescriptorType() const {
4201  if (BlockDescriptorType)
4202    return getTagDeclType(BlockDescriptorType);
4203
4204  RecordDecl *T;
4205  // FIXME: Needs the FlagAppleBlock bit.
4206  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4207                       &Idents.get("__block_descriptor"));
4208  T->startDefinition();
4209
4210  QualType FieldTypes[] = {
4211    UnsignedLongTy,
4212    UnsignedLongTy,
4213  };
4214
4215  const char *FieldNames[] = {
4216    "reserved",
4217    "Size"
4218  };
4219
4220  for (size_t i = 0; i < 2; ++i) {
4221    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4222                                         SourceLocation(),
4223                                         &Idents.get(FieldNames[i]),
4224                                         FieldTypes[i], /*TInfo=*/0,
4225                                         /*BitWidth=*/0,
4226                                         /*Mutable=*/false,
4227                                         ICIS_NoInit);
4228    Field->setAccess(AS_public);
4229    T->addDecl(Field);
4230  }
4231
4232  T->completeDefinition();
4233
4234  BlockDescriptorType = T;
4235
4236  return getTagDeclType(BlockDescriptorType);
4237}
4238
4239QualType ASTContext::getBlockDescriptorExtendedType() const {
4240  if (BlockDescriptorExtendedType)
4241    return getTagDeclType(BlockDescriptorExtendedType);
4242
4243  RecordDecl *T;
4244  // FIXME: Needs the FlagAppleBlock bit.
4245  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4246                       &Idents.get("__block_descriptor_withcopydispose"));
4247  T->startDefinition();
4248
4249  QualType FieldTypes[] = {
4250    UnsignedLongTy,
4251    UnsignedLongTy,
4252    getPointerType(VoidPtrTy),
4253    getPointerType(VoidPtrTy)
4254  };
4255
4256  const char *FieldNames[] = {
4257    "reserved",
4258    "Size",
4259    "CopyFuncPtr",
4260    "DestroyFuncPtr"
4261  };
4262
4263  for (size_t i = 0; i < 4; ++i) {
4264    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4265                                         SourceLocation(),
4266                                         &Idents.get(FieldNames[i]),
4267                                         FieldTypes[i], /*TInfo=*/0,
4268                                         /*BitWidth=*/0,
4269                                         /*Mutable=*/false,
4270                                         ICIS_NoInit);
4271    Field->setAccess(AS_public);
4272    T->addDecl(Field);
4273  }
4274
4275  T->completeDefinition();
4276
4277  BlockDescriptorExtendedType = T;
4278
4279  return getTagDeclType(BlockDescriptorExtendedType);
4280}
4281
4282bool ASTContext::BlockRequiresCopying(QualType Ty) const {
4283  if (Ty->isObjCRetainableType())
4284    return true;
4285  if (getLangOpts().CPlusPlus) {
4286    if (const RecordType *RT = Ty->getAs<RecordType>()) {
4287      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4288      return RD->hasConstCopyConstructor();
4289
4290    }
4291  }
4292  return false;
4293}
4294
4295QualType
4296ASTContext::BuildByRefType(StringRef DeclName, QualType Ty) const {
4297  //  type = struct __Block_byref_1_X {
4298  //    void *__isa;
4299  //    struct __Block_byref_1_X *__forwarding;
4300  //    unsigned int __flags;
4301  //    unsigned int __size;
4302  //    void *__copy_helper;            // as needed
4303  //    void *__destroy_help            // as needed
4304  //    int X;
4305  //  } *
4306
4307  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
4308
4309  // FIXME: Move up
4310  SmallString<36> Name;
4311  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
4312                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
4313  RecordDecl *T;
4314  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get(Name.str()));
4315  T->startDefinition();
4316  QualType Int32Ty = IntTy;
4317  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
4318  QualType FieldTypes[] = {
4319    getPointerType(VoidPtrTy),
4320    getPointerType(getTagDeclType(T)),
4321    Int32Ty,
4322    Int32Ty,
4323    getPointerType(VoidPtrTy),
4324    getPointerType(VoidPtrTy),
4325    Ty
4326  };
4327
4328  StringRef FieldNames[] = {
4329    "__isa",
4330    "__forwarding",
4331    "__flags",
4332    "__size",
4333    "__copy_helper",
4334    "__destroy_helper",
4335    DeclName,
4336  };
4337
4338  for (size_t i = 0; i < 7; ++i) {
4339    if (!HasCopyAndDispose && i >=4 && i <= 5)
4340      continue;
4341    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4342                                         SourceLocation(),
4343                                         &Idents.get(FieldNames[i]),
4344                                         FieldTypes[i], /*TInfo=*/0,
4345                                         /*BitWidth=*/0, /*Mutable=*/false,
4346                                         ICIS_NoInit);
4347    Field->setAccess(AS_public);
4348    T->addDecl(Field);
4349  }
4350
4351  T->completeDefinition();
4352
4353  return getPointerType(getTagDeclType(T));
4354}
4355
4356TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
4357  if (!ObjCInstanceTypeDecl)
4358    ObjCInstanceTypeDecl = TypedefDecl::Create(*this,
4359                                               getTranslationUnitDecl(),
4360                                               SourceLocation(),
4361                                               SourceLocation(),
4362                                               &Idents.get("instancetype"),
4363                                     getTrivialTypeSourceInfo(getObjCIdType()));
4364  return ObjCInstanceTypeDecl;
4365}
4366
4367// This returns true if a type has been typedefed to BOOL:
4368// typedef <type> BOOL;
4369static bool isTypeTypedefedAsBOOL(QualType T) {
4370  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
4371    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
4372      return II->isStr("BOOL");
4373
4374  return false;
4375}
4376
4377/// getObjCEncodingTypeSize returns size of type for objective-c encoding
4378/// purpose.
4379CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
4380  if (!type->isIncompleteArrayType() && type->isIncompleteType())
4381    return CharUnits::Zero();
4382
4383  CharUnits sz = getTypeSizeInChars(type);
4384
4385  // Make all integer and enum types at least as large as an int
4386  if (sz.isPositive() && type->isIntegralOrEnumerationType())
4387    sz = std::max(sz, getTypeSizeInChars(IntTy));
4388  // Treat arrays as pointers, since that's how they're passed in.
4389  else if (type->isArrayType())
4390    sz = getTypeSizeInChars(VoidPtrTy);
4391  return sz;
4392}
4393
4394static inline
4395std::string charUnitsToString(const CharUnits &CU) {
4396  return llvm::itostr(CU.getQuantity());
4397}
4398
4399/// getObjCEncodingForBlock - Return the encoded type for this block
4400/// declaration.
4401std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4402  std::string S;
4403
4404  const BlockDecl *Decl = Expr->getBlockDecl();
4405  QualType BlockTy =
4406      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4407  // Encode result type.
4408  getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
4409  // Compute size of all parameters.
4410  // Start with computing size of a pointer in number of bytes.
4411  // FIXME: There might(should) be a better way of doing this computation!
4412  SourceLocation Loc;
4413  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4414  CharUnits ParmOffset = PtrSize;
4415  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
4416       E = Decl->param_end(); PI != E; ++PI) {
4417    QualType PType = (*PI)->getType();
4418    CharUnits sz = getObjCEncodingTypeSize(PType);
4419    if (sz.isZero())
4420      continue;
4421    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4422    ParmOffset += sz;
4423  }
4424  // Size of the argument frame
4425  S += charUnitsToString(ParmOffset);
4426  // Block pointer and offset.
4427  S += "@?0";
4428
4429  // Argument types.
4430  ParmOffset = PtrSize;
4431  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
4432       Decl->param_end(); PI != E; ++PI) {
4433    ParmVarDecl *PVDecl = *PI;
4434    QualType PType = PVDecl->getOriginalType();
4435    if (const ArrayType *AT =
4436          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4437      // Use array's original type only if it has known number of
4438      // elements.
4439      if (!isa<ConstantArrayType>(AT))
4440        PType = PVDecl->getType();
4441    } else if (PType->isFunctionType())
4442      PType = PVDecl->getType();
4443    getObjCEncodingForType(PType, S);
4444    S += charUnitsToString(ParmOffset);
4445    ParmOffset += getObjCEncodingTypeSize(PType);
4446  }
4447
4448  return S;
4449}
4450
4451bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4452                                                std::string& S) {
4453  // Encode result type.
4454  getObjCEncodingForType(Decl->getResultType(), S);
4455  CharUnits ParmOffset;
4456  // Compute size of all parameters.
4457  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4458       E = Decl->param_end(); PI != E; ++PI) {
4459    QualType PType = (*PI)->getType();
4460    CharUnits sz = getObjCEncodingTypeSize(PType);
4461    if (sz.isZero())
4462      continue;
4463
4464    assert (sz.isPositive() &&
4465        "getObjCEncodingForFunctionDecl - Incomplete param type");
4466    ParmOffset += sz;
4467  }
4468  S += charUnitsToString(ParmOffset);
4469  ParmOffset = CharUnits::Zero();
4470
4471  // Argument types.
4472  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4473       E = Decl->param_end(); PI != E; ++PI) {
4474    ParmVarDecl *PVDecl = *PI;
4475    QualType PType = PVDecl->getOriginalType();
4476    if (const ArrayType *AT =
4477          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4478      // Use array's original type only if it has known number of
4479      // elements.
4480      if (!isa<ConstantArrayType>(AT))
4481        PType = PVDecl->getType();
4482    } else if (PType->isFunctionType())
4483      PType = PVDecl->getType();
4484    getObjCEncodingForType(PType, S);
4485    S += charUnitsToString(ParmOffset);
4486    ParmOffset += getObjCEncodingTypeSize(PType);
4487  }
4488
4489  return false;
4490}
4491
4492/// getObjCEncodingForMethodParameter - Return the encoded type for a single
4493/// method parameter or return type. If Extended, include class names and
4494/// block object types.
4495void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
4496                                                   QualType T, std::string& S,
4497                                                   bool Extended) const {
4498  // Encode type qualifer, 'in', 'inout', etc. for the parameter.
4499  getObjCEncodingForTypeQualifier(QT, S);
4500  // Encode parameter type.
4501  getObjCEncodingForTypeImpl(T, S, true, true, 0,
4502                             true     /*OutermostType*/,
4503                             false    /*EncodingProperty*/,
4504                             false    /*StructField*/,
4505                             Extended /*EncodeBlockParameters*/,
4506                             Extended /*EncodeClassNames*/);
4507}
4508
4509/// getObjCEncodingForMethodDecl - Return the encoded type for this method
4510/// declaration.
4511bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4512                                              std::string& S,
4513                                              bool Extended) const {
4514  // FIXME: This is not very efficient.
4515  // Encode return type.
4516  getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
4517                                    Decl->getResultType(), S, Extended);
4518  // Compute size of all parameters.
4519  // Start with computing size of a pointer in number of bytes.
4520  // FIXME: There might(should) be a better way of doing this computation!
4521  SourceLocation Loc;
4522  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4523  // The first two arguments (self and _cmd) are pointers; account for
4524  // their size.
4525  CharUnits ParmOffset = 2 * PtrSize;
4526  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4527       E = Decl->sel_param_end(); PI != E; ++PI) {
4528    QualType PType = (*PI)->getType();
4529    CharUnits sz = getObjCEncodingTypeSize(PType);
4530    if (sz.isZero())
4531      continue;
4532
4533    assert (sz.isPositive() &&
4534        "getObjCEncodingForMethodDecl - Incomplete param type");
4535    ParmOffset += sz;
4536  }
4537  S += charUnitsToString(ParmOffset);
4538  S += "@0:";
4539  S += charUnitsToString(PtrSize);
4540
4541  // Argument types.
4542  ParmOffset = 2 * PtrSize;
4543  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4544       E = Decl->sel_param_end(); PI != E; ++PI) {
4545    const ParmVarDecl *PVDecl = *PI;
4546    QualType PType = PVDecl->getOriginalType();
4547    if (const ArrayType *AT =
4548          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4549      // Use array's original type only if it has known number of
4550      // elements.
4551      if (!isa<ConstantArrayType>(AT))
4552        PType = PVDecl->getType();
4553    } else if (PType->isFunctionType())
4554      PType = PVDecl->getType();
4555    getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
4556                                      PType, S, Extended);
4557    S += charUnitsToString(ParmOffset);
4558    ParmOffset += getObjCEncodingTypeSize(PType);
4559  }
4560
4561  return false;
4562}
4563
4564/// getObjCEncodingForPropertyDecl - Return the encoded type for this
4565/// property declaration. If non-NULL, Container must be either an
4566/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4567/// NULL when getting encodings for protocol properties.
4568/// Property attributes are stored as a comma-delimited C string. The simple
4569/// attributes readonly and bycopy are encoded as single characters. The
4570/// parametrized attributes, getter=name, setter=name, and ivar=name, are
4571/// encoded as single characters, followed by an identifier. Property types
4572/// are also encoded as a parametrized attribute. The characters used to encode
4573/// these attributes are defined by the following enumeration:
4574/// @code
4575/// enum PropertyAttributes {
4576/// kPropertyReadOnly = 'R',   // property is read-only.
4577/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4578/// kPropertyByref = '&',  // property is a reference to the value last assigned
4579/// kPropertyDynamic = 'D',    // property is dynamic
4580/// kPropertyGetter = 'G',     // followed by getter selector name
4581/// kPropertySetter = 'S',     // followed by setter selector name
4582/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4583/// kPropertyType = 'T'              // followed by old-style type encoding.
4584/// kPropertyWeak = 'W'              // 'weak' property
4585/// kPropertyStrong = 'P'            // property GC'able
4586/// kPropertyNonAtomic = 'N'         // property non-atomic
4587/// };
4588/// @endcode
4589void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4590                                                const Decl *Container,
4591                                                std::string& S) const {
4592  // Collect information from the property implementation decl(s).
4593  bool Dynamic = false;
4594  ObjCPropertyImplDecl *SynthesizePID = 0;
4595
4596  // FIXME: Duplicated code due to poor abstraction.
4597  if (Container) {
4598    if (const ObjCCategoryImplDecl *CID =
4599        dyn_cast<ObjCCategoryImplDecl>(Container)) {
4600      for (ObjCCategoryImplDecl::propimpl_iterator
4601             i = CID->propimpl_begin(), e = CID->propimpl_end();
4602           i != e; ++i) {
4603        ObjCPropertyImplDecl *PID = *i;
4604        if (PID->getPropertyDecl() == PD) {
4605          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4606            Dynamic = true;
4607          } else {
4608            SynthesizePID = PID;
4609          }
4610        }
4611      }
4612    } else {
4613      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4614      for (ObjCCategoryImplDecl::propimpl_iterator
4615             i = OID->propimpl_begin(), e = OID->propimpl_end();
4616           i != e; ++i) {
4617        ObjCPropertyImplDecl *PID = *i;
4618        if (PID->getPropertyDecl() == PD) {
4619          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4620            Dynamic = true;
4621          } else {
4622            SynthesizePID = PID;
4623          }
4624        }
4625      }
4626    }
4627  }
4628
4629  // FIXME: This is not very efficient.
4630  S = "T";
4631
4632  // Encode result type.
4633  // GCC has some special rules regarding encoding of properties which
4634  // closely resembles encoding of ivars.
4635  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4636                             true /* outermost type */,
4637                             true /* encoding for property */);
4638
4639  if (PD->isReadOnly()) {
4640    S += ",R";
4641  } else {
4642    switch (PD->getSetterKind()) {
4643    case ObjCPropertyDecl::Assign: break;
4644    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4645    case ObjCPropertyDecl::Retain: S += ",&"; break;
4646    case ObjCPropertyDecl::Weak:   S += ",W"; break;
4647    }
4648  }
4649
4650  // It really isn't clear at all what this means, since properties
4651  // are "dynamic by default".
4652  if (Dynamic)
4653    S += ",D";
4654
4655  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4656    S += ",N";
4657
4658  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4659    S += ",G";
4660    S += PD->getGetterName().getAsString();
4661  }
4662
4663  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4664    S += ",S";
4665    S += PD->getSetterName().getAsString();
4666  }
4667
4668  if (SynthesizePID) {
4669    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4670    S += ",V";
4671    S += OID->getNameAsString();
4672  }
4673
4674  // FIXME: OBJCGC: weak & strong
4675}
4676
4677/// getLegacyIntegralTypeEncoding -
4678/// Another legacy compatibility encoding: 32-bit longs are encoded as
4679/// 'l' or 'L' , but not always.  For typedefs, we need to use
4680/// 'i' or 'I' instead if encoding a struct field, or a pointer!
4681///
4682void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4683  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4684    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4685      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4686        PointeeTy = UnsignedIntTy;
4687      else
4688        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4689          PointeeTy = IntTy;
4690    }
4691  }
4692}
4693
4694void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
4695                                        const FieldDecl *Field) const {
4696  // We follow the behavior of gcc, expanding structures which are
4697  // directly pointed to, and expanding embedded structures. Note that
4698  // these rules are sufficient to prevent recursive encoding of the
4699  // same type.
4700  getObjCEncodingForTypeImpl(T, S, true, true, Field,
4701                             true /* outermost type */);
4702}
4703
4704static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
4705    switch (T->getAs<BuiltinType>()->getKind()) {
4706    default: llvm_unreachable("Unhandled builtin type kind");
4707    case BuiltinType::Void:       return 'v';
4708    case BuiltinType::Bool:       return 'B';
4709    case BuiltinType::Char_U:
4710    case BuiltinType::UChar:      return 'C';
4711    case BuiltinType::UShort:     return 'S';
4712    case BuiltinType::UInt:       return 'I';
4713    case BuiltinType::ULong:
4714        return C->getIntWidth(T) == 32 ? 'L' : 'Q';
4715    case BuiltinType::UInt128:    return 'T';
4716    case BuiltinType::ULongLong:  return 'Q';
4717    case BuiltinType::Char_S:
4718    case BuiltinType::SChar:      return 'c';
4719    case BuiltinType::Short:      return 's';
4720    case BuiltinType::WChar_S:
4721    case BuiltinType::WChar_U:
4722    case BuiltinType::Int:        return 'i';
4723    case BuiltinType::Long:
4724      return C->getIntWidth(T) == 32 ? 'l' : 'q';
4725    case BuiltinType::LongLong:   return 'q';
4726    case BuiltinType::Int128:     return 't';
4727    case BuiltinType::Float:      return 'f';
4728    case BuiltinType::Double:     return 'd';
4729    case BuiltinType::LongDouble: return 'D';
4730    }
4731}
4732
4733static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
4734  EnumDecl *Enum = ET->getDecl();
4735
4736  // The encoding of an non-fixed enum type is always 'i', regardless of size.
4737  if (!Enum->isFixed())
4738    return 'i';
4739
4740  // The encoding of a fixed enum type matches its fixed underlying type.
4741  return ObjCEncodingForPrimitiveKind(C, Enum->getIntegerType());
4742}
4743
4744static void EncodeBitField(const ASTContext *Ctx, std::string& S,
4745                           QualType T, const FieldDecl *FD) {
4746  assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
4747  S += 'b';
4748  // The NeXT runtime encodes bit fields as b followed by the number of bits.
4749  // The GNU runtime requires more information; bitfields are encoded as b,
4750  // then the offset (in bits) of the first element, then the type of the
4751  // bitfield, then the size in bits.  For example, in this structure:
4752  //
4753  // struct
4754  // {
4755  //    int integer;
4756  //    int flags:2;
4757  // };
4758  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
4759  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
4760  // information is not especially sensible, but we're stuck with it for
4761  // compatibility with GCC, although providing it breaks anything that
4762  // actually uses runtime introspection and wants to work on both runtimes...
4763  if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
4764    const RecordDecl *RD = FD->getParent();
4765    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
4766    S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
4767    if (const EnumType *ET = T->getAs<EnumType>())
4768      S += ObjCEncodingForEnumType(Ctx, ET);
4769    else
4770      S += ObjCEncodingForPrimitiveKind(Ctx, T);
4771  }
4772  S += llvm::utostr(FD->getBitWidthValue(*Ctx));
4773}
4774
4775// FIXME: Use SmallString for accumulating string.
4776void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
4777                                            bool ExpandPointedToStructures,
4778                                            bool ExpandStructures,
4779                                            const FieldDecl *FD,
4780                                            bool OutermostType,
4781                                            bool EncodingProperty,
4782                                            bool StructField,
4783                                            bool EncodeBlockParameters,
4784                                            bool EncodeClassNames) const {
4785  if (T->getAs<BuiltinType>()) {
4786    if (FD && FD->isBitField())
4787      return EncodeBitField(this, S, T, FD);
4788    S += ObjCEncodingForPrimitiveKind(this, T);
4789    return;
4790  }
4791
4792  if (const ComplexType *CT = T->getAs<ComplexType>()) {
4793    S += 'j';
4794    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
4795                               false);
4796    return;
4797  }
4798
4799  // encoding for pointer or r3eference types.
4800  QualType PointeeTy;
4801  if (const PointerType *PT = T->getAs<PointerType>()) {
4802    if (PT->isObjCSelType()) {
4803      S += ':';
4804      return;
4805    }
4806    PointeeTy = PT->getPointeeType();
4807  }
4808  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4809    PointeeTy = RT->getPointeeType();
4810  if (!PointeeTy.isNull()) {
4811    bool isReadOnly = false;
4812    // For historical/compatibility reasons, the read-only qualifier of the
4813    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
4814    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
4815    // Also, do not emit the 'r' for anything but the outermost type!
4816    if (isa<TypedefType>(T.getTypePtr())) {
4817      if (OutermostType && T.isConstQualified()) {
4818        isReadOnly = true;
4819        S += 'r';
4820      }
4821    } else if (OutermostType) {
4822      QualType P = PointeeTy;
4823      while (P->getAs<PointerType>())
4824        P = P->getAs<PointerType>()->getPointeeType();
4825      if (P.isConstQualified()) {
4826        isReadOnly = true;
4827        S += 'r';
4828      }
4829    }
4830    if (isReadOnly) {
4831      // Another legacy compatibility encoding. Some ObjC qualifier and type
4832      // combinations need to be rearranged.
4833      // Rewrite "in const" from "nr" to "rn"
4834      if (StringRef(S).endswith("nr"))
4835        S.replace(S.end()-2, S.end(), "rn");
4836    }
4837
4838    if (PointeeTy->isCharType()) {
4839      // char pointer types should be encoded as '*' unless it is a
4840      // type that has been typedef'd to 'BOOL'.
4841      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
4842        S += '*';
4843        return;
4844      }
4845    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
4846      // GCC binary compat: Need to convert "struct objc_class *" to "#".
4847      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
4848        S += '#';
4849        return;
4850      }
4851      // GCC binary compat: Need to convert "struct objc_object *" to "@".
4852      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
4853        S += '@';
4854        return;
4855      }
4856      // fall through...
4857    }
4858    S += '^';
4859    getLegacyIntegralTypeEncoding(PointeeTy);
4860
4861    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
4862                               NULL);
4863    return;
4864  }
4865
4866  if (const ArrayType *AT =
4867      // Ignore type qualifiers etc.
4868        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
4869    if (isa<IncompleteArrayType>(AT) && !StructField) {
4870      // Incomplete arrays are encoded as a pointer to the array element.
4871      S += '^';
4872
4873      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4874                                 false, ExpandStructures, FD);
4875    } else {
4876      S += '[';
4877
4878      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
4879        if (getTypeSize(CAT->getElementType()) == 0)
4880          S += '0';
4881        else
4882          S += llvm::utostr(CAT->getSize().getZExtValue());
4883      } else {
4884        //Variable length arrays are encoded as a regular array with 0 elements.
4885        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
4886               "Unknown array type!");
4887        S += '0';
4888      }
4889
4890      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4891                                 false, ExpandStructures, FD);
4892      S += ']';
4893    }
4894    return;
4895  }
4896
4897  if (T->getAs<FunctionType>()) {
4898    S += '?';
4899    return;
4900  }
4901
4902  if (const RecordType *RTy = T->getAs<RecordType>()) {
4903    RecordDecl *RDecl = RTy->getDecl();
4904    S += RDecl->isUnion() ? '(' : '{';
4905    // Anonymous structures print as '?'
4906    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
4907      S += II->getName();
4908      if (ClassTemplateSpecializationDecl *Spec
4909          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
4910        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
4911        std::string TemplateArgsStr
4912          = TemplateSpecializationType::PrintTemplateArgumentList(
4913                                            TemplateArgs.data(),
4914                                            TemplateArgs.size(),
4915                                            (*this).getPrintingPolicy());
4916
4917        S += TemplateArgsStr;
4918      }
4919    } else {
4920      S += '?';
4921    }
4922    if (ExpandStructures) {
4923      S += '=';
4924      if (!RDecl->isUnion()) {
4925        getObjCEncodingForStructureImpl(RDecl, S, FD);
4926      } else {
4927        for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4928                                     FieldEnd = RDecl->field_end();
4929             Field != FieldEnd; ++Field) {
4930          if (FD) {
4931            S += '"';
4932            S += Field->getNameAsString();
4933            S += '"';
4934          }
4935
4936          // Special case bit-fields.
4937          if (Field->isBitField()) {
4938            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
4939                                       *Field);
4940          } else {
4941            QualType qt = Field->getType();
4942            getLegacyIntegralTypeEncoding(qt);
4943            getObjCEncodingForTypeImpl(qt, S, false, true,
4944                                       FD, /*OutermostType*/false,
4945                                       /*EncodingProperty*/false,
4946                                       /*StructField*/true);
4947          }
4948        }
4949      }
4950    }
4951    S += RDecl->isUnion() ? ')' : '}';
4952    return;
4953  }
4954
4955  if (const EnumType *ET = T->getAs<EnumType>()) {
4956    if (FD && FD->isBitField())
4957      EncodeBitField(this, S, T, FD);
4958    else
4959      S += ObjCEncodingForEnumType(this, ET);
4960    return;
4961  }
4962
4963  if (const BlockPointerType *BT = T->getAs<BlockPointerType>()) {
4964    S += "@?"; // Unlike a pointer-to-function, which is "^?".
4965    if (EncodeBlockParameters) {
4966      const FunctionType *FT = BT->getPointeeType()->getAs<FunctionType>();
4967
4968      S += '<';
4969      // Block return type
4970      getObjCEncodingForTypeImpl(FT->getResultType(), S,
4971                                 ExpandPointedToStructures, ExpandStructures,
4972                                 FD,
4973                                 false /* OutermostType */,
4974                                 EncodingProperty,
4975                                 false /* StructField */,
4976                                 EncodeBlockParameters,
4977                                 EncodeClassNames);
4978      // Block self
4979      S += "@?";
4980      // Block parameters
4981      if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
4982        for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
4983               E = FPT->arg_type_end(); I && (I != E); ++I) {
4984          getObjCEncodingForTypeImpl(*I, S,
4985                                     ExpandPointedToStructures,
4986                                     ExpandStructures,
4987                                     FD,
4988                                     false /* OutermostType */,
4989                                     EncodingProperty,
4990                                     false /* StructField */,
4991                                     EncodeBlockParameters,
4992                                     EncodeClassNames);
4993        }
4994      }
4995      S += '>';
4996    }
4997    return;
4998  }
4999
5000  // Ignore protocol qualifiers when mangling at this level.
5001  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
5002    T = OT->getBaseType();
5003
5004  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
5005    // @encode(class_name)
5006    ObjCInterfaceDecl *OI = OIT->getDecl();
5007    S += '{';
5008    const IdentifierInfo *II = OI->getIdentifier();
5009    S += II->getName();
5010    S += '=';
5011    SmallVector<const ObjCIvarDecl*, 32> Ivars;
5012    DeepCollectObjCIvars(OI, true, Ivars);
5013    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
5014      const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
5015      if (Field->isBitField())
5016        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
5017      else
5018        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
5019    }
5020    S += '}';
5021    return;
5022  }
5023
5024  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
5025    if (OPT->isObjCIdType()) {
5026      S += '@';
5027      return;
5028    }
5029
5030    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
5031      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
5032      // Since this is a binary compatibility issue, need to consult with runtime
5033      // folks. Fortunately, this is a *very* obsure construct.
5034      S += '#';
5035      return;
5036    }
5037
5038    if (OPT->isObjCQualifiedIdType()) {
5039      getObjCEncodingForTypeImpl(getObjCIdType(), S,
5040                                 ExpandPointedToStructures,
5041                                 ExpandStructures, FD);
5042      if (FD || EncodingProperty || EncodeClassNames) {
5043        // Note that we do extended encoding of protocol qualifer list
5044        // Only when doing ivar or property encoding.
5045        S += '"';
5046        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5047             E = OPT->qual_end(); I != E; ++I) {
5048          S += '<';
5049          S += (*I)->getNameAsString();
5050          S += '>';
5051        }
5052        S += '"';
5053      }
5054      return;
5055    }
5056
5057    QualType PointeeTy = OPT->getPointeeType();
5058    if (!EncodingProperty &&
5059        isa<TypedefType>(PointeeTy.getTypePtr())) {
5060      // Another historical/compatibility reason.
5061      // We encode the underlying type which comes out as
5062      // {...};
5063      S += '^';
5064      getObjCEncodingForTypeImpl(PointeeTy, S,
5065                                 false, ExpandPointedToStructures,
5066                                 NULL);
5067      return;
5068    }
5069
5070    S += '@';
5071    if (OPT->getInterfaceDecl() &&
5072        (FD || EncodingProperty || EncodeClassNames)) {
5073      S += '"';
5074      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
5075      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5076           E = OPT->qual_end(); I != E; ++I) {
5077        S += '<';
5078        S += (*I)->getNameAsString();
5079        S += '>';
5080      }
5081      S += '"';
5082    }
5083    return;
5084  }
5085
5086  // gcc just blithely ignores member pointers.
5087  // TODO: maybe there should be a mangling for these
5088  if (T->getAs<MemberPointerType>())
5089    return;
5090
5091  if (T->isVectorType()) {
5092    // This matches gcc's encoding, even though technically it is
5093    // insufficient.
5094    // FIXME. We should do a better job than gcc.
5095    return;
5096  }
5097
5098  llvm_unreachable("@encode for type not implemented!");
5099}
5100
5101void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
5102                                                 std::string &S,
5103                                                 const FieldDecl *FD,
5104                                                 bool includeVBases) const {
5105  assert(RDecl && "Expected non-null RecordDecl");
5106  assert(!RDecl->isUnion() && "Should not be called for unions");
5107  if (!RDecl->getDefinition())
5108    return;
5109
5110  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
5111  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
5112  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
5113
5114  if (CXXRec) {
5115    for (CXXRecordDecl::base_class_iterator
5116           BI = CXXRec->bases_begin(),
5117           BE = CXXRec->bases_end(); BI != BE; ++BI) {
5118      if (!BI->isVirtual()) {
5119        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5120        if (base->isEmpty())
5121          continue;
5122        uint64_t offs = toBits(layout.getBaseClassOffset(base));
5123        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5124                                  std::make_pair(offs, base));
5125      }
5126    }
5127  }
5128
5129  unsigned i = 0;
5130  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
5131                               FieldEnd = RDecl->field_end();
5132       Field != FieldEnd; ++Field, ++i) {
5133    uint64_t offs = layout.getFieldOffset(i);
5134    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5135                              std::make_pair(offs, *Field));
5136  }
5137
5138  if (CXXRec && includeVBases) {
5139    for (CXXRecordDecl::base_class_iterator
5140           BI = CXXRec->vbases_begin(),
5141           BE = CXXRec->vbases_end(); BI != BE; ++BI) {
5142      CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5143      if (base->isEmpty())
5144        continue;
5145      uint64_t offs = toBits(layout.getVBaseClassOffset(base));
5146      if (FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
5147        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
5148                                  std::make_pair(offs, base));
5149    }
5150  }
5151
5152  CharUnits size;
5153  if (CXXRec) {
5154    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
5155  } else {
5156    size = layout.getSize();
5157  }
5158
5159  uint64_t CurOffs = 0;
5160  std::multimap<uint64_t, NamedDecl *>::iterator
5161    CurLayObj = FieldOrBaseOffsets.begin();
5162
5163  if (CXXRec && CXXRec->isDynamicClass() &&
5164      (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
5165    if (FD) {
5166      S += "\"_vptr$";
5167      std::string recname = CXXRec->getNameAsString();
5168      if (recname.empty()) recname = "?";
5169      S += recname;
5170      S += '"';
5171    }
5172    S += "^^?";
5173    CurOffs += getTypeSize(VoidPtrTy);
5174  }
5175
5176  if (!RDecl->hasFlexibleArrayMember()) {
5177    // Mark the end of the structure.
5178    uint64_t offs = toBits(size);
5179    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5180                              std::make_pair(offs, (NamedDecl*)0));
5181  }
5182
5183  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
5184    assert(CurOffs <= CurLayObj->first);
5185
5186    if (CurOffs < CurLayObj->first) {
5187      uint64_t padding = CurLayObj->first - CurOffs;
5188      // FIXME: There doesn't seem to be a way to indicate in the encoding that
5189      // packing/alignment of members is different that normal, in which case
5190      // the encoding will be out-of-sync with the real layout.
5191      // If the runtime switches to just consider the size of types without
5192      // taking into account alignment, we could make padding explicit in the
5193      // encoding (e.g. using arrays of chars). The encoding strings would be
5194      // longer then though.
5195      CurOffs += padding;
5196    }
5197
5198    NamedDecl *dcl = CurLayObj->second;
5199    if (dcl == 0)
5200      break; // reached end of structure.
5201
5202    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
5203      // We expand the bases without their virtual bases since those are going
5204      // in the initial structure. Note that this differs from gcc which
5205      // expands virtual bases each time one is encountered in the hierarchy,
5206      // making the encoding type bigger than it really is.
5207      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
5208      assert(!base->isEmpty());
5209      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
5210    } else {
5211      FieldDecl *field = cast<FieldDecl>(dcl);
5212      if (FD) {
5213        S += '"';
5214        S += field->getNameAsString();
5215        S += '"';
5216      }
5217
5218      if (field->isBitField()) {
5219        EncodeBitField(this, S, field->getType(), field);
5220        CurOffs += field->getBitWidthValue(*this);
5221      } else {
5222        QualType qt = field->getType();
5223        getLegacyIntegralTypeEncoding(qt);
5224        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
5225                                   /*OutermostType*/false,
5226                                   /*EncodingProperty*/false,
5227                                   /*StructField*/true);
5228        CurOffs += getTypeSize(field->getType());
5229      }
5230    }
5231  }
5232}
5233
5234void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
5235                                                 std::string& S) const {
5236  if (QT & Decl::OBJC_TQ_In)
5237    S += 'n';
5238  if (QT & Decl::OBJC_TQ_Inout)
5239    S += 'N';
5240  if (QT & Decl::OBJC_TQ_Out)
5241    S += 'o';
5242  if (QT & Decl::OBJC_TQ_Bycopy)
5243    S += 'O';
5244  if (QT & Decl::OBJC_TQ_Byref)
5245    S += 'R';
5246  if (QT & Decl::OBJC_TQ_Oneway)
5247    S += 'V';
5248}
5249
5250TypedefDecl *ASTContext::getObjCIdDecl() const {
5251  if (!ObjCIdDecl) {
5252    QualType T = getObjCObjectType(ObjCBuiltinIdTy, 0, 0);
5253    T = getObjCObjectPointerType(T);
5254    TypeSourceInfo *IdInfo = getTrivialTypeSourceInfo(T);
5255    ObjCIdDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5256                                     getTranslationUnitDecl(),
5257                                     SourceLocation(), SourceLocation(),
5258                                     &Idents.get("id"), IdInfo);
5259  }
5260
5261  return ObjCIdDecl;
5262}
5263
5264TypedefDecl *ASTContext::getObjCSelDecl() const {
5265  if (!ObjCSelDecl) {
5266    QualType SelT = getPointerType(ObjCBuiltinSelTy);
5267    TypeSourceInfo *SelInfo = getTrivialTypeSourceInfo(SelT);
5268    ObjCSelDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5269                                      getTranslationUnitDecl(),
5270                                      SourceLocation(), SourceLocation(),
5271                                      &Idents.get("SEL"), SelInfo);
5272  }
5273  return ObjCSelDecl;
5274}
5275
5276TypedefDecl *ASTContext::getObjCClassDecl() const {
5277  if (!ObjCClassDecl) {
5278    QualType T = getObjCObjectType(ObjCBuiltinClassTy, 0, 0);
5279    T = getObjCObjectPointerType(T);
5280    TypeSourceInfo *ClassInfo = getTrivialTypeSourceInfo(T);
5281    ObjCClassDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5282                                        getTranslationUnitDecl(),
5283                                        SourceLocation(), SourceLocation(),
5284                                        &Idents.get("Class"), ClassInfo);
5285  }
5286
5287  return ObjCClassDecl;
5288}
5289
5290ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
5291  if (!ObjCProtocolClassDecl) {
5292    ObjCProtocolClassDecl
5293      = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
5294                                  SourceLocation(),
5295                                  &Idents.get("Protocol"),
5296                                  /*PrevDecl=*/0,
5297                                  SourceLocation(), true);
5298  }
5299
5300  return ObjCProtocolClassDecl;
5301}
5302
5303//===----------------------------------------------------------------------===//
5304// __builtin_va_list Construction Functions
5305//===----------------------------------------------------------------------===//
5306
5307static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
5308  // typedef char* __builtin_va_list;
5309  QualType CharPtrType = Context->getPointerType(Context->CharTy);
5310  TypeSourceInfo *TInfo
5311    = Context->getTrivialTypeSourceInfo(CharPtrType);
5312
5313  TypedefDecl *VaListTypeDecl
5314    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5315                          Context->getTranslationUnitDecl(),
5316                          SourceLocation(), SourceLocation(),
5317                          &Context->Idents.get("__builtin_va_list"),
5318                          TInfo);
5319  return VaListTypeDecl;
5320}
5321
5322static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
5323  // typedef void* __builtin_va_list;
5324  QualType VoidPtrType = Context->getPointerType(Context->VoidTy);
5325  TypeSourceInfo *TInfo
5326    = Context->getTrivialTypeSourceInfo(VoidPtrType);
5327
5328  TypedefDecl *VaListTypeDecl
5329    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5330                          Context->getTranslationUnitDecl(),
5331                          SourceLocation(), SourceLocation(),
5332                          &Context->Idents.get("__builtin_va_list"),
5333                          TInfo);
5334  return VaListTypeDecl;
5335}
5336
5337static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
5338  // typedef struct __va_list_tag {
5339  RecordDecl *VaListTagDecl;
5340
5341  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5342                                   Context->getTranslationUnitDecl(),
5343                                   &Context->Idents.get("__va_list_tag"));
5344  VaListTagDecl->startDefinition();
5345
5346  const size_t NumFields = 5;
5347  QualType FieldTypes[NumFields];
5348  const char *FieldNames[NumFields];
5349
5350  //   unsigned char gpr;
5351  FieldTypes[0] = Context->UnsignedCharTy;
5352  FieldNames[0] = "gpr";
5353
5354  //   unsigned char fpr;
5355  FieldTypes[1] = Context->UnsignedCharTy;
5356  FieldNames[1] = "fpr";
5357
5358  //   unsigned short reserved;
5359  FieldTypes[2] = Context->UnsignedShortTy;
5360  FieldNames[2] = "reserved";
5361
5362  //   void* overflow_arg_area;
5363  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5364  FieldNames[3] = "overflow_arg_area";
5365
5366  //   void* reg_save_area;
5367  FieldTypes[4] = Context->getPointerType(Context->VoidTy);
5368  FieldNames[4] = "reg_save_area";
5369
5370  // Create fields
5371  for (unsigned i = 0; i < NumFields; ++i) {
5372    FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
5373                                         SourceLocation(),
5374                                         SourceLocation(),
5375                                         &Context->Idents.get(FieldNames[i]),
5376                                         FieldTypes[i], /*TInfo=*/0,
5377                                         /*BitWidth=*/0,
5378                                         /*Mutable=*/false,
5379                                         ICIS_NoInit);
5380    Field->setAccess(AS_public);
5381    VaListTagDecl->addDecl(Field);
5382  }
5383  VaListTagDecl->completeDefinition();
5384  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5385  Context->VaListTagTy = VaListTagType;
5386
5387  // } __va_list_tag;
5388  TypedefDecl *VaListTagTypedefDecl
5389    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5390                          Context->getTranslationUnitDecl(),
5391                          SourceLocation(), SourceLocation(),
5392                          &Context->Idents.get("__va_list_tag"),
5393                          Context->getTrivialTypeSourceInfo(VaListTagType));
5394  QualType VaListTagTypedefType =
5395    Context->getTypedefType(VaListTagTypedefDecl);
5396
5397  // typedef __va_list_tag __builtin_va_list[1];
5398  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5399  QualType VaListTagArrayType
5400    = Context->getConstantArrayType(VaListTagTypedefType,
5401                                    Size, ArrayType::Normal, 0);
5402  TypeSourceInfo *TInfo
5403    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5404  TypedefDecl *VaListTypedefDecl
5405    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5406                          Context->getTranslationUnitDecl(),
5407                          SourceLocation(), SourceLocation(),
5408                          &Context->Idents.get("__builtin_va_list"),
5409                          TInfo);
5410
5411  return VaListTypedefDecl;
5412}
5413
5414static TypedefDecl *
5415CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
5416  // typedef struct __va_list_tag {
5417  RecordDecl *VaListTagDecl;
5418  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5419                                   Context->getTranslationUnitDecl(),
5420                                   &Context->Idents.get("__va_list_tag"));
5421  VaListTagDecl->startDefinition();
5422
5423  const size_t NumFields = 4;
5424  QualType FieldTypes[NumFields];
5425  const char *FieldNames[NumFields];
5426
5427  //   unsigned gp_offset;
5428  FieldTypes[0] = Context->UnsignedIntTy;
5429  FieldNames[0] = "gp_offset";
5430
5431  //   unsigned fp_offset;
5432  FieldTypes[1] = Context->UnsignedIntTy;
5433  FieldNames[1] = "fp_offset";
5434
5435  //   void* overflow_arg_area;
5436  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5437  FieldNames[2] = "overflow_arg_area";
5438
5439  //   void* reg_save_area;
5440  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5441  FieldNames[3] = "reg_save_area";
5442
5443  // Create fields
5444  for (unsigned i = 0; i < NumFields; ++i) {
5445    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5446                                         VaListTagDecl,
5447                                         SourceLocation(),
5448                                         SourceLocation(),
5449                                         &Context->Idents.get(FieldNames[i]),
5450                                         FieldTypes[i], /*TInfo=*/0,
5451                                         /*BitWidth=*/0,
5452                                         /*Mutable=*/false,
5453                                         ICIS_NoInit);
5454    Field->setAccess(AS_public);
5455    VaListTagDecl->addDecl(Field);
5456  }
5457  VaListTagDecl->completeDefinition();
5458  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5459  Context->VaListTagTy = VaListTagType;
5460
5461  // } __va_list_tag;
5462  TypedefDecl *VaListTagTypedefDecl
5463    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5464                          Context->getTranslationUnitDecl(),
5465                          SourceLocation(), SourceLocation(),
5466                          &Context->Idents.get("__va_list_tag"),
5467                          Context->getTrivialTypeSourceInfo(VaListTagType));
5468  QualType VaListTagTypedefType =
5469    Context->getTypedefType(VaListTagTypedefDecl);
5470
5471  // typedef __va_list_tag __builtin_va_list[1];
5472  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5473  QualType VaListTagArrayType
5474    = Context->getConstantArrayType(VaListTagTypedefType,
5475                                      Size, ArrayType::Normal,0);
5476  TypeSourceInfo *TInfo
5477    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5478  TypedefDecl *VaListTypedefDecl
5479    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5480                          Context->getTranslationUnitDecl(),
5481                          SourceLocation(), SourceLocation(),
5482                          &Context->Idents.get("__builtin_va_list"),
5483                          TInfo);
5484
5485  return VaListTypedefDecl;
5486}
5487
5488static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
5489  // typedef int __builtin_va_list[4];
5490  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
5491  QualType IntArrayType
5492    = Context->getConstantArrayType(Context->IntTy,
5493				    Size, ArrayType::Normal, 0);
5494  TypedefDecl *VaListTypedefDecl
5495    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5496                          Context->getTranslationUnitDecl(),
5497                          SourceLocation(), SourceLocation(),
5498                          &Context->Idents.get("__builtin_va_list"),
5499                          Context->getTrivialTypeSourceInfo(IntArrayType));
5500
5501  return VaListTypedefDecl;
5502}
5503
5504static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
5505                                     TargetInfo::BuiltinVaListKind Kind) {
5506  switch (Kind) {
5507  case TargetInfo::CharPtrBuiltinVaList:
5508    return CreateCharPtrBuiltinVaListDecl(Context);
5509  case TargetInfo::VoidPtrBuiltinVaList:
5510    return CreateVoidPtrBuiltinVaListDecl(Context);
5511  case TargetInfo::PowerABIBuiltinVaList:
5512    return CreatePowerABIBuiltinVaListDecl(Context);
5513  case TargetInfo::X86_64ABIBuiltinVaList:
5514    return CreateX86_64ABIBuiltinVaListDecl(Context);
5515  case TargetInfo::PNaClABIBuiltinVaList:
5516    return CreatePNaClABIBuiltinVaListDecl(Context);
5517  }
5518
5519  llvm_unreachable("Unhandled __builtin_va_list type kind");
5520}
5521
5522TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
5523  if (!BuiltinVaListDecl)
5524    BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
5525
5526  return BuiltinVaListDecl;
5527}
5528
5529QualType ASTContext::getVaListTagType() const {
5530  // Force the creation of VaListTagTy by building the __builtin_va_list
5531  // declaration.
5532  if (VaListTagTy.isNull())
5533    (void) getBuiltinVaListDecl();
5534
5535  return VaListTagTy;
5536}
5537
5538void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
5539  assert(ObjCConstantStringType.isNull() &&
5540         "'NSConstantString' type already set!");
5541
5542  ObjCConstantStringType = getObjCInterfaceType(Decl);
5543}
5544
5545/// \brief Retrieve the template name that corresponds to a non-empty
5546/// lookup.
5547TemplateName
5548ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
5549                                      UnresolvedSetIterator End) const {
5550  unsigned size = End - Begin;
5551  assert(size > 1 && "set is not overloaded!");
5552
5553  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
5554                          size * sizeof(FunctionTemplateDecl*));
5555  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
5556
5557  NamedDecl **Storage = OT->getStorage();
5558  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
5559    NamedDecl *D = *I;
5560    assert(isa<FunctionTemplateDecl>(D) ||
5561           (isa<UsingShadowDecl>(D) &&
5562            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
5563    *Storage++ = D;
5564  }
5565
5566  return TemplateName(OT);
5567}
5568
5569/// \brief Retrieve the template name that represents a qualified
5570/// template name such as \c std::vector.
5571TemplateName
5572ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
5573                                     bool TemplateKeyword,
5574                                     TemplateDecl *Template) const {
5575  assert(NNS && "Missing nested-name-specifier in qualified template name");
5576
5577  // FIXME: Canonicalization?
5578  llvm::FoldingSetNodeID ID;
5579  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
5580
5581  void *InsertPos = 0;
5582  QualifiedTemplateName *QTN =
5583    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5584  if (!QTN) {
5585    QTN = new (*this, llvm::alignOf<QualifiedTemplateName>())
5586        QualifiedTemplateName(NNS, TemplateKeyword, Template);
5587    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
5588  }
5589
5590  return TemplateName(QTN);
5591}
5592
5593/// \brief Retrieve the template name that represents a dependent
5594/// template name such as \c MetaFun::template apply.
5595TemplateName
5596ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5597                                     const IdentifierInfo *Name) const {
5598  assert((!NNS || NNS->isDependent()) &&
5599         "Nested name specifier must be dependent");
5600
5601  llvm::FoldingSetNodeID ID;
5602  DependentTemplateName::Profile(ID, NNS, Name);
5603
5604  void *InsertPos = 0;
5605  DependentTemplateName *QTN =
5606    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5607
5608  if (QTN)
5609    return TemplateName(QTN);
5610
5611  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5612  if (CanonNNS == NNS) {
5613    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
5614        DependentTemplateName(NNS, Name);
5615  } else {
5616    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
5617    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
5618        DependentTemplateName(NNS, Name, Canon);
5619    DependentTemplateName *CheckQTN =
5620      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5621    assert(!CheckQTN && "Dependent type name canonicalization broken");
5622    (void)CheckQTN;
5623  }
5624
5625  DependentTemplateNames.InsertNode(QTN, InsertPos);
5626  return TemplateName(QTN);
5627}
5628
5629/// \brief Retrieve the template name that represents a dependent
5630/// template name such as \c MetaFun::template operator+.
5631TemplateName
5632ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5633                                     OverloadedOperatorKind Operator) const {
5634  assert((!NNS || NNS->isDependent()) &&
5635         "Nested name specifier must be dependent");
5636
5637  llvm::FoldingSetNodeID ID;
5638  DependentTemplateName::Profile(ID, NNS, Operator);
5639
5640  void *InsertPos = 0;
5641  DependentTemplateName *QTN
5642    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5643
5644  if (QTN)
5645    return TemplateName(QTN);
5646
5647  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5648  if (CanonNNS == NNS) {
5649    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
5650        DependentTemplateName(NNS, Operator);
5651  } else {
5652    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
5653    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
5654        DependentTemplateName(NNS, Operator, Canon);
5655
5656    DependentTemplateName *CheckQTN
5657      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5658    assert(!CheckQTN && "Dependent template name canonicalization broken");
5659    (void)CheckQTN;
5660  }
5661
5662  DependentTemplateNames.InsertNode(QTN, InsertPos);
5663  return TemplateName(QTN);
5664}
5665
5666TemplateName
5667ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
5668                                         TemplateName replacement) const {
5669  llvm::FoldingSetNodeID ID;
5670  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
5671
5672  void *insertPos = 0;
5673  SubstTemplateTemplateParmStorage *subst
5674    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
5675
5676  if (!subst) {
5677    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
5678    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
5679  }
5680
5681  return TemplateName(subst);
5682}
5683
5684TemplateName
5685ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
5686                                       const TemplateArgument &ArgPack) const {
5687  ASTContext &Self = const_cast<ASTContext &>(*this);
5688  llvm::FoldingSetNodeID ID;
5689  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
5690
5691  void *InsertPos = 0;
5692  SubstTemplateTemplateParmPackStorage *Subst
5693    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
5694
5695  if (!Subst) {
5696    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
5697                                                           ArgPack.pack_size(),
5698                                                         ArgPack.pack_begin());
5699    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
5700  }
5701
5702  return TemplateName(Subst);
5703}
5704
5705/// getFromTargetType - Given one of the integer types provided by
5706/// TargetInfo, produce the corresponding type. The unsigned @p Type
5707/// is actually a value of type @c TargetInfo::IntType.
5708CanQualType ASTContext::getFromTargetType(unsigned Type) const {
5709  switch (Type) {
5710  case TargetInfo::NoInt: return CanQualType();
5711  case TargetInfo::SignedShort: return ShortTy;
5712  case TargetInfo::UnsignedShort: return UnsignedShortTy;
5713  case TargetInfo::SignedInt: return IntTy;
5714  case TargetInfo::UnsignedInt: return UnsignedIntTy;
5715  case TargetInfo::SignedLong: return LongTy;
5716  case TargetInfo::UnsignedLong: return UnsignedLongTy;
5717  case TargetInfo::SignedLongLong: return LongLongTy;
5718  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
5719  }
5720
5721  llvm_unreachable("Unhandled TargetInfo::IntType value");
5722}
5723
5724//===----------------------------------------------------------------------===//
5725//                        Type Predicates.
5726//===----------------------------------------------------------------------===//
5727
5728/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
5729/// garbage collection attribute.
5730///
5731Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
5732  if (getLangOpts().getGC() == LangOptions::NonGC)
5733    return Qualifiers::GCNone;
5734
5735  assert(getLangOpts().ObjC1);
5736  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
5737
5738  // Default behaviour under objective-C's gc is for ObjC pointers
5739  // (or pointers to them) be treated as though they were declared
5740  // as __strong.
5741  if (GCAttrs == Qualifiers::GCNone) {
5742    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
5743      return Qualifiers::Strong;
5744    else if (Ty->isPointerType())
5745      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
5746  } else {
5747    // It's not valid to set GC attributes on anything that isn't a
5748    // pointer.
5749#ifndef NDEBUG
5750    QualType CT = Ty->getCanonicalTypeInternal();
5751    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
5752      CT = AT->getElementType();
5753    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
5754#endif
5755  }
5756  return GCAttrs;
5757}
5758
5759//===----------------------------------------------------------------------===//
5760//                        Type Compatibility Testing
5761//===----------------------------------------------------------------------===//
5762
5763/// areCompatVectorTypes - Return true if the two specified vector types are
5764/// compatible.
5765static bool areCompatVectorTypes(const VectorType *LHS,
5766                                 const VectorType *RHS) {
5767  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
5768  return LHS->getElementType() == RHS->getElementType() &&
5769         LHS->getNumElements() == RHS->getNumElements();
5770}
5771
5772bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
5773                                          QualType SecondVec) {
5774  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
5775  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
5776
5777  if (hasSameUnqualifiedType(FirstVec, SecondVec))
5778    return true;
5779
5780  // Treat Neon vector types and most AltiVec vector types as if they are the
5781  // equivalent GCC vector types.
5782  const VectorType *First = FirstVec->getAs<VectorType>();
5783  const VectorType *Second = SecondVec->getAs<VectorType>();
5784  if (First->getNumElements() == Second->getNumElements() &&
5785      hasSameType(First->getElementType(), Second->getElementType()) &&
5786      First->getVectorKind() != VectorType::AltiVecPixel &&
5787      First->getVectorKind() != VectorType::AltiVecBool &&
5788      Second->getVectorKind() != VectorType::AltiVecPixel &&
5789      Second->getVectorKind() != VectorType::AltiVecBool)
5790    return true;
5791
5792  return false;
5793}
5794
5795//===----------------------------------------------------------------------===//
5796// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
5797//===----------------------------------------------------------------------===//
5798
5799/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
5800/// inheritance hierarchy of 'rProto'.
5801bool
5802ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
5803                                           ObjCProtocolDecl *rProto) const {
5804  if (declaresSameEntity(lProto, rProto))
5805    return true;
5806  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
5807       E = rProto->protocol_end(); PI != E; ++PI)
5808    if (ProtocolCompatibleWithProtocol(lProto, *PI))
5809      return true;
5810  return false;
5811}
5812
5813/// QualifiedIdConformsQualifiedId - compare id<pr,...> with id<pr1,...>
5814/// return true if lhs's protocols conform to rhs's protocol; false
5815/// otherwise.
5816bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
5817  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
5818    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
5819  return false;
5820}
5821
5822/// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
5823/// Class<pr1, ...>.
5824bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
5825                                                      QualType rhs) {
5826  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
5827  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5828  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
5829
5830  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5831       E = lhsQID->qual_end(); I != E; ++I) {
5832    bool match = false;
5833    ObjCProtocolDecl *lhsProto = *I;
5834    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5835         E = rhsOPT->qual_end(); J != E; ++J) {
5836      ObjCProtocolDecl *rhsProto = *J;
5837      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
5838        match = true;
5839        break;
5840      }
5841    }
5842    if (!match)
5843      return false;
5844  }
5845  return true;
5846}
5847
5848/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
5849/// ObjCQualifiedIDType.
5850bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
5851                                                   bool compare) {
5852  // Allow id<P..> and an 'id' or void* type in all cases.
5853  if (lhs->isVoidPointerType() ||
5854      lhs->isObjCIdType() || lhs->isObjCClassType())
5855    return true;
5856  else if (rhs->isVoidPointerType() ||
5857           rhs->isObjCIdType() || rhs->isObjCClassType())
5858    return true;
5859
5860  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
5861    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5862
5863    if (!rhsOPT) return false;
5864
5865    if (rhsOPT->qual_empty()) {
5866      // If the RHS is a unqualified interface pointer "NSString*",
5867      // make sure we check the class hierarchy.
5868      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5869        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5870             E = lhsQID->qual_end(); I != E; ++I) {
5871          // when comparing an id<P> on lhs with a static type on rhs,
5872          // see if static class implements all of id's protocols, directly or
5873          // through its super class and categories.
5874          if (!rhsID->ClassImplementsProtocol(*I, true))
5875            return false;
5876        }
5877      }
5878      // If there are no qualifiers and no interface, we have an 'id'.
5879      return true;
5880    }
5881    // Both the right and left sides have qualifiers.
5882    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5883         E = lhsQID->qual_end(); I != E; ++I) {
5884      ObjCProtocolDecl *lhsProto = *I;
5885      bool match = false;
5886
5887      // when comparing an id<P> on lhs with a static type on rhs,
5888      // see if static class implements all of id's protocols, directly or
5889      // through its super class and categories.
5890      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5891           E = rhsOPT->qual_end(); J != E; ++J) {
5892        ObjCProtocolDecl *rhsProto = *J;
5893        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5894            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5895          match = true;
5896          break;
5897        }
5898      }
5899      // If the RHS is a qualified interface pointer "NSString<P>*",
5900      // make sure we check the class hierarchy.
5901      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5902        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5903             E = lhsQID->qual_end(); I != E; ++I) {
5904          // when comparing an id<P> on lhs with a static type on rhs,
5905          // see if static class implements all of id's protocols, directly or
5906          // through its super class and categories.
5907          if (rhsID->ClassImplementsProtocol(*I, true)) {
5908            match = true;
5909            break;
5910          }
5911        }
5912      }
5913      if (!match)
5914        return false;
5915    }
5916
5917    return true;
5918  }
5919
5920  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
5921  assert(rhsQID && "One of the LHS/RHS should be id<x>");
5922
5923  if (const ObjCObjectPointerType *lhsOPT =
5924        lhs->getAsObjCInterfacePointerType()) {
5925    // If both the right and left sides have qualifiers.
5926    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
5927         E = lhsOPT->qual_end(); I != E; ++I) {
5928      ObjCProtocolDecl *lhsProto = *I;
5929      bool match = false;
5930
5931      // when comparing an id<P> on rhs with a static type on lhs,
5932      // see if static class implements all of id's protocols, directly or
5933      // through its super class and categories.
5934      // First, lhs protocols in the qualifier list must be found, direct
5935      // or indirect in rhs's qualifier list or it is a mismatch.
5936      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5937           E = rhsQID->qual_end(); J != E; ++J) {
5938        ObjCProtocolDecl *rhsProto = *J;
5939        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5940            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5941          match = true;
5942          break;
5943        }
5944      }
5945      if (!match)
5946        return false;
5947    }
5948
5949    // Static class's protocols, or its super class or category protocols
5950    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
5951    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
5952      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5953      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
5954      // This is rather dubious but matches gcc's behavior. If lhs has
5955      // no type qualifier and its class has no static protocol(s)
5956      // assume that it is mismatch.
5957      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
5958        return false;
5959      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5960           LHSInheritedProtocols.begin(),
5961           E = LHSInheritedProtocols.end(); I != E; ++I) {
5962        bool match = false;
5963        ObjCProtocolDecl *lhsProto = (*I);
5964        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5965             E = rhsQID->qual_end(); J != E; ++J) {
5966          ObjCProtocolDecl *rhsProto = *J;
5967          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5968              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5969            match = true;
5970            break;
5971          }
5972        }
5973        if (!match)
5974          return false;
5975      }
5976    }
5977    return true;
5978  }
5979  return false;
5980}
5981
5982/// canAssignObjCInterfaces - Return true if the two interface types are
5983/// compatible for assignment from RHS to LHS.  This handles validation of any
5984/// protocol qualifiers on the LHS or RHS.
5985///
5986bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
5987                                         const ObjCObjectPointerType *RHSOPT) {
5988  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5989  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5990
5991  // If either type represents the built-in 'id' or 'Class' types, return true.
5992  if (LHS->isObjCUnqualifiedIdOrClass() ||
5993      RHS->isObjCUnqualifiedIdOrClass())
5994    return true;
5995
5996  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
5997    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5998                                             QualType(RHSOPT,0),
5999                                             false);
6000
6001  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
6002    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
6003                                                QualType(RHSOPT,0));
6004
6005  // If we have 2 user-defined types, fall into that path.
6006  if (LHS->getInterface() && RHS->getInterface())
6007    return canAssignObjCInterfaces(LHS, RHS);
6008
6009  return false;
6010}
6011
6012/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
6013/// for providing type-safety for objective-c pointers used to pass/return
6014/// arguments in block literals. When passed as arguments, passing 'A*' where
6015/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
6016/// not OK. For the return type, the opposite is not OK.
6017bool ASTContext::canAssignObjCInterfacesInBlockPointer(
6018                                         const ObjCObjectPointerType *LHSOPT,
6019                                         const ObjCObjectPointerType *RHSOPT,
6020                                         bool BlockReturnType) {
6021  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
6022    return true;
6023
6024  if (LHSOPT->isObjCBuiltinType()) {
6025    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
6026  }
6027
6028  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
6029    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6030                                             QualType(RHSOPT,0),
6031                                             false);
6032
6033  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
6034  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
6035  if (LHS && RHS)  { // We have 2 user-defined types.
6036    if (LHS != RHS) {
6037      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
6038        return BlockReturnType;
6039      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
6040        return !BlockReturnType;
6041    }
6042    else
6043      return true;
6044  }
6045  return false;
6046}
6047
6048/// getIntersectionOfProtocols - This routine finds the intersection of set
6049/// of protocols inherited from two distinct objective-c pointer objects.
6050/// It is used to build composite qualifier list of the composite type of
6051/// the conditional expression involving two objective-c pointer objects.
6052static
6053void getIntersectionOfProtocols(ASTContext &Context,
6054                                const ObjCObjectPointerType *LHSOPT,
6055                                const ObjCObjectPointerType *RHSOPT,
6056      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
6057
6058  const ObjCObjectType* LHS = LHSOPT->getObjectType();
6059  const ObjCObjectType* RHS = RHSOPT->getObjectType();
6060  assert(LHS->getInterface() && "LHS must have an interface base");
6061  assert(RHS->getInterface() && "RHS must have an interface base");
6062
6063  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
6064  unsigned LHSNumProtocols = LHS->getNumProtocols();
6065  if (LHSNumProtocols > 0)
6066    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
6067  else {
6068    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6069    Context.CollectInheritedProtocols(LHS->getInterface(),
6070                                      LHSInheritedProtocols);
6071    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
6072                                LHSInheritedProtocols.end());
6073  }
6074
6075  unsigned RHSNumProtocols = RHS->getNumProtocols();
6076  if (RHSNumProtocols > 0) {
6077    ObjCProtocolDecl **RHSProtocols =
6078      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
6079    for (unsigned i = 0; i < RHSNumProtocols; ++i)
6080      if (InheritedProtocolSet.count(RHSProtocols[i]))
6081        IntersectionOfProtocols.push_back(RHSProtocols[i]);
6082  } else {
6083    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
6084    Context.CollectInheritedProtocols(RHS->getInterface(),
6085                                      RHSInheritedProtocols);
6086    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6087         RHSInheritedProtocols.begin(),
6088         E = RHSInheritedProtocols.end(); I != E; ++I)
6089      if (InheritedProtocolSet.count((*I)))
6090        IntersectionOfProtocols.push_back((*I));
6091  }
6092}
6093
6094/// areCommonBaseCompatible - Returns common base class of the two classes if
6095/// one found. Note that this is O'2 algorithm. But it will be called as the
6096/// last type comparison in a ?-exp of ObjC pointer types before a
6097/// warning is issued. So, its invokation is extremely rare.
6098QualType ASTContext::areCommonBaseCompatible(
6099                                          const ObjCObjectPointerType *Lptr,
6100                                          const ObjCObjectPointerType *Rptr) {
6101  const ObjCObjectType *LHS = Lptr->getObjectType();
6102  const ObjCObjectType *RHS = Rptr->getObjectType();
6103  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
6104  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
6105  if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
6106    return QualType();
6107
6108  do {
6109    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
6110    if (canAssignObjCInterfaces(LHS, RHS)) {
6111      SmallVector<ObjCProtocolDecl *, 8> Protocols;
6112      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
6113
6114      QualType Result = QualType(LHS, 0);
6115      if (!Protocols.empty())
6116        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
6117      Result = getObjCObjectPointerType(Result);
6118      return Result;
6119    }
6120  } while ((LDecl = LDecl->getSuperClass()));
6121
6122  return QualType();
6123}
6124
6125bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
6126                                         const ObjCObjectType *RHS) {
6127  assert(LHS->getInterface() && "LHS is not an interface type");
6128  assert(RHS->getInterface() && "RHS is not an interface type");
6129
6130  // Verify that the base decls are compatible: the RHS must be a subclass of
6131  // the LHS.
6132  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
6133    return false;
6134
6135  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
6136  // protocol qualified at all, then we are good.
6137  if (LHS->getNumProtocols() == 0)
6138    return true;
6139
6140  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
6141  // more detailed analysis is required.
6142  if (RHS->getNumProtocols() == 0) {
6143    // OK, if LHS is a superclass of RHS *and*
6144    // this superclass is assignment compatible with LHS.
6145    // false otherwise.
6146    bool IsSuperClass =
6147      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
6148    if (IsSuperClass) {
6149      // OK if conversion of LHS to SuperClass results in narrowing of types
6150      // ; i.e., SuperClass may implement at least one of the protocols
6151      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
6152      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
6153      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
6154      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
6155      // If super class has no protocols, it is not a match.
6156      if (SuperClassInheritedProtocols.empty())
6157        return false;
6158
6159      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6160           LHSPE = LHS->qual_end();
6161           LHSPI != LHSPE; LHSPI++) {
6162        bool SuperImplementsProtocol = false;
6163        ObjCProtocolDecl *LHSProto = (*LHSPI);
6164
6165        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6166             SuperClassInheritedProtocols.begin(),
6167             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
6168          ObjCProtocolDecl *SuperClassProto = (*I);
6169          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
6170            SuperImplementsProtocol = true;
6171            break;
6172          }
6173        }
6174        if (!SuperImplementsProtocol)
6175          return false;
6176      }
6177      return true;
6178    }
6179    return false;
6180  }
6181
6182  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6183                                     LHSPE = LHS->qual_end();
6184       LHSPI != LHSPE; LHSPI++) {
6185    bool RHSImplementsProtocol = false;
6186
6187    // If the RHS doesn't implement the protocol on the left, the types
6188    // are incompatible.
6189    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
6190                                       RHSPE = RHS->qual_end();
6191         RHSPI != RHSPE; RHSPI++) {
6192      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
6193        RHSImplementsProtocol = true;
6194        break;
6195      }
6196    }
6197    // FIXME: For better diagnostics, consider passing back the protocol name.
6198    if (!RHSImplementsProtocol)
6199      return false;
6200  }
6201  // The RHS implements all protocols listed on the LHS.
6202  return true;
6203}
6204
6205bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
6206  // get the "pointed to" types
6207  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
6208  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
6209
6210  if (!LHSOPT || !RHSOPT)
6211    return false;
6212
6213  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
6214         canAssignObjCInterfaces(RHSOPT, LHSOPT);
6215}
6216
6217bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
6218  return canAssignObjCInterfaces(
6219                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
6220                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
6221}
6222
6223/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
6224/// both shall have the identically qualified version of a compatible type.
6225/// C99 6.2.7p1: Two types have compatible types if their types are the
6226/// same. See 6.7.[2,3,5] for additional rules.
6227bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
6228                                    bool CompareUnqualified) {
6229  if (getLangOpts().CPlusPlus)
6230    return hasSameType(LHS, RHS);
6231
6232  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
6233}
6234
6235bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
6236  return typesAreCompatible(LHS, RHS);
6237}
6238
6239bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
6240  return !mergeTypes(LHS, RHS, true).isNull();
6241}
6242
6243/// mergeTransparentUnionType - if T is a transparent union type and a member
6244/// of T is compatible with SubType, return the merged type, else return
6245/// QualType()
6246QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
6247                                               bool OfBlockPointer,
6248                                               bool Unqualified) {
6249  if (const RecordType *UT = T->getAsUnionType()) {
6250    RecordDecl *UD = UT->getDecl();
6251    if (UD->hasAttr<TransparentUnionAttr>()) {
6252      for (RecordDecl::field_iterator it = UD->field_begin(),
6253           itend = UD->field_end(); it != itend; ++it) {
6254        QualType ET = it->getType().getUnqualifiedType();
6255        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
6256        if (!MT.isNull())
6257          return MT;
6258      }
6259    }
6260  }
6261
6262  return QualType();
6263}
6264
6265/// mergeFunctionArgumentTypes - merge two types which appear as function
6266/// argument types
6267QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
6268                                                bool OfBlockPointer,
6269                                                bool Unqualified) {
6270  // GNU extension: two types are compatible if they appear as a function
6271  // argument, one of the types is a transparent union type and the other
6272  // type is compatible with a union member
6273  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
6274                                              Unqualified);
6275  if (!lmerge.isNull())
6276    return lmerge;
6277
6278  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
6279                                              Unqualified);
6280  if (!rmerge.isNull())
6281    return rmerge;
6282
6283  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
6284}
6285
6286QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
6287                                        bool OfBlockPointer,
6288                                        bool Unqualified) {
6289  const FunctionType *lbase = lhs->getAs<FunctionType>();
6290  const FunctionType *rbase = rhs->getAs<FunctionType>();
6291  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
6292  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
6293  bool allLTypes = true;
6294  bool allRTypes = true;
6295
6296  // Check return type
6297  QualType retType;
6298  if (OfBlockPointer) {
6299    QualType RHS = rbase->getResultType();
6300    QualType LHS = lbase->getResultType();
6301    bool UnqualifiedResult = Unqualified;
6302    if (!UnqualifiedResult)
6303      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
6304    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
6305  }
6306  else
6307    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
6308                         Unqualified);
6309  if (retType.isNull()) return QualType();
6310
6311  if (Unqualified)
6312    retType = retType.getUnqualifiedType();
6313
6314  CanQualType LRetType = getCanonicalType(lbase->getResultType());
6315  CanQualType RRetType = getCanonicalType(rbase->getResultType());
6316  if (Unqualified) {
6317    LRetType = LRetType.getUnqualifiedType();
6318    RRetType = RRetType.getUnqualifiedType();
6319  }
6320
6321  if (getCanonicalType(retType) != LRetType)
6322    allLTypes = false;
6323  if (getCanonicalType(retType) != RRetType)
6324    allRTypes = false;
6325
6326  // FIXME: double check this
6327  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
6328  //                           rbase->getRegParmAttr() != 0 &&
6329  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
6330  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
6331  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
6332
6333  // Compatible functions must have compatible calling conventions
6334  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
6335    return QualType();
6336
6337  // Regparm is part of the calling convention.
6338  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
6339    return QualType();
6340  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
6341    return QualType();
6342
6343  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
6344    return QualType();
6345
6346  // functypes which return are preferred over those that do not.
6347  if (lbaseInfo.getNoReturn() && !rbaseInfo.getNoReturn())
6348    allLTypes = false;
6349  else if (!lbaseInfo.getNoReturn() && rbaseInfo.getNoReturn())
6350    allRTypes = false;
6351  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
6352  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
6353
6354  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
6355
6356  if (lproto && rproto) { // two C99 style function prototypes
6357    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
6358           "C++ shouldn't be here");
6359    unsigned lproto_nargs = lproto->getNumArgs();
6360    unsigned rproto_nargs = rproto->getNumArgs();
6361
6362    // Compatible functions must have the same number of arguments
6363    if (lproto_nargs != rproto_nargs)
6364      return QualType();
6365
6366    // Variadic and non-variadic functions aren't compatible
6367    if (lproto->isVariadic() != rproto->isVariadic())
6368      return QualType();
6369
6370    if (lproto->getTypeQuals() != rproto->getTypeQuals())
6371      return QualType();
6372
6373    if (LangOpts.ObjCAutoRefCount &&
6374        !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
6375      return QualType();
6376
6377    // Check argument compatibility
6378    SmallVector<QualType, 10> types;
6379    for (unsigned i = 0; i < lproto_nargs; i++) {
6380      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
6381      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
6382      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
6383                                                    OfBlockPointer,
6384                                                    Unqualified);
6385      if (argtype.isNull()) return QualType();
6386
6387      if (Unqualified)
6388        argtype = argtype.getUnqualifiedType();
6389
6390      types.push_back(argtype);
6391      if (Unqualified) {
6392        largtype = largtype.getUnqualifiedType();
6393        rargtype = rargtype.getUnqualifiedType();
6394      }
6395
6396      if (getCanonicalType(argtype) != getCanonicalType(largtype))
6397        allLTypes = false;
6398      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
6399        allRTypes = false;
6400    }
6401
6402    if (allLTypes) return lhs;
6403    if (allRTypes) return rhs;
6404
6405    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
6406    EPI.ExtInfo = einfo;
6407    return getFunctionType(retType, types.begin(), types.size(), EPI);
6408  }
6409
6410  if (lproto) allRTypes = false;
6411  if (rproto) allLTypes = false;
6412
6413  const FunctionProtoType *proto = lproto ? lproto : rproto;
6414  if (proto) {
6415    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
6416    if (proto->isVariadic()) return QualType();
6417    // Check that the types are compatible with the types that
6418    // would result from default argument promotions (C99 6.7.5.3p15).
6419    // The only types actually affected are promotable integer
6420    // types and floats, which would be passed as a different
6421    // type depending on whether the prototype is visible.
6422    unsigned proto_nargs = proto->getNumArgs();
6423    for (unsigned i = 0; i < proto_nargs; ++i) {
6424      QualType argTy = proto->getArgType(i);
6425
6426      // Look at the converted type of enum types, since that is the type used
6427      // to pass enum values.
6428      if (const EnumType *Enum = argTy->getAs<EnumType>()) {
6429        argTy = Enum->getDecl()->getIntegerType();
6430        if (argTy.isNull())
6431          return QualType();
6432      }
6433
6434      if (argTy->isPromotableIntegerType() ||
6435          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
6436        return QualType();
6437    }
6438
6439    if (allLTypes) return lhs;
6440    if (allRTypes) return rhs;
6441
6442    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
6443    EPI.ExtInfo = einfo;
6444    return getFunctionType(retType, proto->arg_type_begin(),
6445                           proto->getNumArgs(), EPI);
6446  }
6447
6448  if (allLTypes) return lhs;
6449  if (allRTypes) return rhs;
6450  return getFunctionNoProtoType(retType, einfo);
6451}
6452
6453QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
6454                                bool OfBlockPointer,
6455                                bool Unqualified, bool BlockReturnType) {
6456  // C++ [expr]: If an expression initially has the type "reference to T", the
6457  // type is adjusted to "T" prior to any further analysis, the expression
6458  // designates the object or function denoted by the reference, and the
6459  // expression is an lvalue unless the reference is an rvalue reference and
6460  // the expression is a function call (possibly inside parentheses).
6461  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
6462  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
6463
6464  if (Unqualified) {
6465    LHS = LHS.getUnqualifiedType();
6466    RHS = RHS.getUnqualifiedType();
6467  }
6468
6469  QualType LHSCan = getCanonicalType(LHS),
6470           RHSCan = getCanonicalType(RHS);
6471
6472  // If two types are identical, they are compatible.
6473  if (LHSCan == RHSCan)
6474    return LHS;
6475
6476  // If the qualifiers are different, the types aren't compatible... mostly.
6477  Qualifiers LQuals = LHSCan.getLocalQualifiers();
6478  Qualifiers RQuals = RHSCan.getLocalQualifiers();
6479  if (LQuals != RQuals) {
6480    // If any of these qualifiers are different, we have a type
6481    // mismatch.
6482    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
6483        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
6484        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
6485      return QualType();
6486
6487    // Exactly one GC qualifier difference is allowed: __strong is
6488    // okay if the other type has no GC qualifier but is an Objective
6489    // C object pointer (i.e. implicitly strong by default).  We fix
6490    // this by pretending that the unqualified type was actually
6491    // qualified __strong.
6492    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
6493    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
6494    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
6495
6496    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
6497      return QualType();
6498
6499    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
6500      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
6501    }
6502    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
6503      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
6504    }
6505    return QualType();
6506  }
6507
6508  // Okay, qualifiers are equal.
6509
6510  Type::TypeClass LHSClass = LHSCan->getTypeClass();
6511  Type::TypeClass RHSClass = RHSCan->getTypeClass();
6512
6513  // We want to consider the two function types to be the same for these
6514  // comparisons, just force one to the other.
6515  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
6516  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
6517
6518  // Same as above for arrays
6519  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
6520    LHSClass = Type::ConstantArray;
6521  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
6522    RHSClass = Type::ConstantArray;
6523
6524  // ObjCInterfaces are just specialized ObjCObjects.
6525  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
6526  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
6527
6528  // Canonicalize ExtVector -> Vector.
6529  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
6530  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
6531
6532  // If the canonical type classes don't match.
6533  if (LHSClass != RHSClass) {
6534    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
6535    // a signed integer type, or an unsigned integer type.
6536    // Compatibility is based on the underlying type, not the promotion
6537    // type.
6538    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
6539      QualType TINT = ETy->getDecl()->getIntegerType();
6540      if (!TINT.isNull() && hasSameType(TINT, RHSCan.getUnqualifiedType()))
6541        return RHS;
6542    }
6543    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
6544      QualType TINT = ETy->getDecl()->getIntegerType();
6545      if (!TINT.isNull() && hasSameType(TINT, LHSCan.getUnqualifiedType()))
6546        return LHS;
6547    }
6548    // allow block pointer type to match an 'id' type.
6549    if (OfBlockPointer && !BlockReturnType) {
6550       if (LHS->isObjCIdType() && RHS->isBlockPointerType())
6551         return LHS;
6552      if (RHS->isObjCIdType() && LHS->isBlockPointerType())
6553        return RHS;
6554    }
6555
6556    return QualType();
6557  }
6558
6559  // The canonical type classes match.
6560  switch (LHSClass) {
6561#define TYPE(Class, Base)
6562#define ABSTRACT_TYPE(Class, Base)
6563#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
6564#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
6565#define DEPENDENT_TYPE(Class, Base) case Type::Class:
6566#include "clang/AST/TypeNodes.def"
6567    llvm_unreachable("Non-canonical and dependent types shouldn't get here");
6568
6569  case Type::LValueReference:
6570  case Type::RValueReference:
6571  case Type::MemberPointer:
6572    llvm_unreachable("C++ should never be in mergeTypes");
6573
6574  case Type::ObjCInterface:
6575  case Type::IncompleteArray:
6576  case Type::VariableArray:
6577  case Type::FunctionProto:
6578  case Type::ExtVector:
6579    llvm_unreachable("Types are eliminated above");
6580
6581  case Type::Pointer:
6582  {
6583    // Merge two pointer types, while trying to preserve typedef info
6584    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
6585    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
6586    if (Unqualified) {
6587      LHSPointee = LHSPointee.getUnqualifiedType();
6588      RHSPointee = RHSPointee.getUnqualifiedType();
6589    }
6590    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
6591                                     Unqualified);
6592    if (ResultType.isNull()) return QualType();
6593    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
6594      return LHS;
6595    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
6596      return RHS;
6597    return getPointerType(ResultType);
6598  }
6599  case Type::BlockPointer:
6600  {
6601    // Merge two block pointer types, while trying to preserve typedef info
6602    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
6603    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
6604    if (Unqualified) {
6605      LHSPointee = LHSPointee.getUnqualifiedType();
6606      RHSPointee = RHSPointee.getUnqualifiedType();
6607    }
6608    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
6609                                     Unqualified);
6610    if (ResultType.isNull()) return QualType();
6611    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
6612      return LHS;
6613    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
6614      return RHS;
6615    return getBlockPointerType(ResultType);
6616  }
6617  case Type::Atomic:
6618  {
6619    // Merge two pointer types, while trying to preserve typedef info
6620    QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
6621    QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
6622    if (Unqualified) {
6623      LHSValue = LHSValue.getUnqualifiedType();
6624      RHSValue = RHSValue.getUnqualifiedType();
6625    }
6626    QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
6627                                     Unqualified);
6628    if (ResultType.isNull()) return QualType();
6629    if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
6630      return LHS;
6631    if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
6632      return RHS;
6633    return getAtomicType(ResultType);
6634  }
6635  case Type::ConstantArray:
6636  {
6637    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
6638    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
6639    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
6640      return QualType();
6641
6642    QualType LHSElem = getAsArrayType(LHS)->getElementType();
6643    QualType RHSElem = getAsArrayType(RHS)->getElementType();
6644    if (Unqualified) {
6645      LHSElem = LHSElem.getUnqualifiedType();
6646      RHSElem = RHSElem.getUnqualifiedType();
6647    }
6648
6649    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
6650    if (ResultType.isNull()) return QualType();
6651    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6652      return LHS;
6653    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6654      return RHS;
6655    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
6656                                          ArrayType::ArraySizeModifier(), 0);
6657    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
6658                                          ArrayType::ArraySizeModifier(), 0);
6659    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
6660    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
6661    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6662      return LHS;
6663    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6664      return RHS;
6665    if (LVAT) {
6666      // FIXME: This isn't correct! But tricky to implement because
6667      // the array's size has to be the size of LHS, but the type
6668      // has to be different.
6669      return LHS;
6670    }
6671    if (RVAT) {
6672      // FIXME: This isn't correct! But tricky to implement because
6673      // the array's size has to be the size of RHS, but the type
6674      // has to be different.
6675      return RHS;
6676    }
6677    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
6678    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
6679    return getIncompleteArrayType(ResultType,
6680                                  ArrayType::ArraySizeModifier(), 0);
6681  }
6682  case Type::FunctionNoProto:
6683    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
6684  case Type::Record:
6685  case Type::Enum:
6686    return QualType();
6687  case Type::Builtin:
6688    // Only exactly equal builtin types are compatible, which is tested above.
6689    return QualType();
6690  case Type::Complex:
6691    // Distinct complex types are incompatible.
6692    return QualType();
6693  case Type::Vector:
6694    // FIXME: The merged type should be an ExtVector!
6695    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
6696                             RHSCan->getAs<VectorType>()))
6697      return LHS;
6698    return QualType();
6699  case Type::ObjCObject: {
6700    // Check if the types are assignment compatible.
6701    // FIXME: This should be type compatibility, e.g. whether
6702    // "LHS x; RHS x;" at global scope is legal.
6703    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
6704    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
6705    if (canAssignObjCInterfaces(LHSIface, RHSIface))
6706      return LHS;
6707
6708    return QualType();
6709  }
6710  case Type::ObjCObjectPointer: {
6711    if (OfBlockPointer) {
6712      if (canAssignObjCInterfacesInBlockPointer(
6713                                          LHS->getAs<ObjCObjectPointerType>(),
6714                                          RHS->getAs<ObjCObjectPointerType>(),
6715                                          BlockReturnType))
6716        return LHS;
6717      return QualType();
6718    }
6719    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
6720                                RHS->getAs<ObjCObjectPointerType>()))
6721      return LHS;
6722
6723    return QualType();
6724  }
6725  }
6726
6727  llvm_unreachable("Invalid Type::Class!");
6728}
6729
6730bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
6731                   const FunctionProtoType *FromFunctionType,
6732                   const FunctionProtoType *ToFunctionType) {
6733  if (FromFunctionType->hasAnyConsumedArgs() !=
6734      ToFunctionType->hasAnyConsumedArgs())
6735    return false;
6736  FunctionProtoType::ExtProtoInfo FromEPI =
6737    FromFunctionType->getExtProtoInfo();
6738  FunctionProtoType::ExtProtoInfo ToEPI =
6739    ToFunctionType->getExtProtoInfo();
6740  if (FromEPI.ConsumedArguments && ToEPI.ConsumedArguments)
6741    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
6742         ArgIdx != NumArgs; ++ArgIdx)  {
6743      if (FromEPI.ConsumedArguments[ArgIdx] !=
6744          ToEPI.ConsumedArguments[ArgIdx])
6745        return false;
6746    }
6747  return true;
6748}
6749
6750/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
6751/// 'RHS' attributes and returns the merged version; including for function
6752/// return types.
6753QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
6754  QualType LHSCan = getCanonicalType(LHS),
6755  RHSCan = getCanonicalType(RHS);
6756  // If two types are identical, they are compatible.
6757  if (LHSCan == RHSCan)
6758    return LHS;
6759  if (RHSCan->isFunctionType()) {
6760    if (!LHSCan->isFunctionType())
6761      return QualType();
6762    QualType OldReturnType =
6763      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
6764    QualType NewReturnType =
6765      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
6766    QualType ResReturnType =
6767      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
6768    if (ResReturnType.isNull())
6769      return QualType();
6770    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
6771      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
6772      // In either case, use OldReturnType to build the new function type.
6773      const FunctionType *F = LHS->getAs<FunctionType>();
6774      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
6775        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6776        EPI.ExtInfo = getFunctionExtInfo(LHS);
6777        QualType ResultType
6778          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
6779                            FPT->getNumArgs(), EPI);
6780        return ResultType;
6781      }
6782    }
6783    return QualType();
6784  }
6785
6786  // If the qualifiers are different, the types can still be merged.
6787  Qualifiers LQuals = LHSCan.getLocalQualifiers();
6788  Qualifiers RQuals = RHSCan.getLocalQualifiers();
6789  if (LQuals != RQuals) {
6790    // If any of these qualifiers are different, we have a type mismatch.
6791    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
6792        LQuals.getAddressSpace() != RQuals.getAddressSpace())
6793      return QualType();
6794
6795    // Exactly one GC qualifier difference is allowed: __strong is
6796    // okay if the other type has no GC qualifier but is an Objective
6797    // C object pointer (i.e. implicitly strong by default).  We fix
6798    // this by pretending that the unqualified type was actually
6799    // qualified __strong.
6800    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
6801    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
6802    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
6803
6804    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
6805      return QualType();
6806
6807    if (GC_L == Qualifiers::Strong)
6808      return LHS;
6809    if (GC_R == Qualifiers::Strong)
6810      return RHS;
6811    return QualType();
6812  }
6813
6814  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
6815    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6816    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6817    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
6818    if (ResQT == LHSBaseQT)
6819      return LHS;
6820    if (ResQT == RHSBaseQT)
6821      return RHS;
6822  }
6823  return QualType();
6824}
6825
6826//===----------------------------------------------------------------------===//
6827//                         Integer Predicates
6828//===----------------------------------------------------------------------===//
6829
6830unsigned ASTContext::getIntWidth(QualType T) const {
6831  if (const EnumType *ET = dyn_cast<EnumType>(T))
6832    T = ET->getDecl()->getIntegerType();
6833  if (T->isBooleanType())
6834    return 1;
6835  // For builtin types, just use the standard type sizing method
6836  return (unsigned)getTypeSize(T);
6837}
6838
6839QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
6840  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
6841
6842  // Turn <4 x signed int> -> <4 x unsigned int>
6843  if (const VectorType *VTy = T->getAs<VectorType>())
6844    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
6845                         VTy->getNumElements(), VTy->getVectorKind());
6846
6847  // For enums, we return the unsigned version of the base type.
6848  if (const EnumType *ETy = T->getAs<EnumType>())
6849    T = ETy->getDecl()->getIntegerType();
6850
6851  const BuiltinType *BTy = T->getAs<BuiltinType>();
6852  assert(BTy && "Unexpected signed integer type");
6853  switch (BTy->getKind()) {
6854  case BuiltinType::Char_S:
6855  case BuiltinType::SChar:
6856    return UnsignedCharTy;
6857  case BuiltinType::Short:
6858    return UnsignedShortTy;
6859  case BuiltinType::Int:
6860    return UnsignedIntTy;
6861  case BuiltinType::Long:
6862    return UnsignedLongTy;
6863  case BuiltinType::LongLong:
6864    return UnsignedLongLongTy;
6865  case BuiltinType::Int128:
6866    return UnsignedInt128Ty;
6867  default:
6868    llvm_unreachable("Unexpected signed integer type");
6869  }
6870}
6871
6872ASTMutationListener::~ASTMutationListener() { }
6873
6874
6875//===----------------------------------------------------------------------===//
6876//                          Builtin Type Computation
6877//===----------------------------------------------------------------------===//
6878
6879/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
6880/// pointer over the consumed characters.  This returns the resultant type.  If
6881/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
6882/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
6883/// a vector of "i*".
6884///
6885/// RequiresICE is filled in on return to indicate whether the value is required
6886/// to be an Integer Constant Expression.
6887static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
6888                                  ASTContext::GetBuiltinTypeError &Error,
6889                                  bool &RequiresICE,
6890                                  bool AllowTypeModifiers) {
6891  // Modifiers.
6892  int HowLong = 0;
6893  bool Signed = false, Unsigned = false;
6894  RequiresICE = false;
6895
6896  // Read the prefixed modifiers first.
6897  bool Done = false;
6898  while (!Done) {
6899    switch (*Str++) {
6900    default: Done = true; --Str; break;
6901    case 'I':
6902      RequiresICE = true;
6903      break;
6904    case 'S':
6905      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
6906      assert(!Signed && "Can't use 'S' modifier multiple times!");
6907      Signed = true;
6908      break;
6909    case 'U':
6910      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
6911      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
6912      Unsigned = true;
6913      break;
6914    case 'L':
6915      assert(HowLong <= 2 && "Can't have LLLL modifier");
6916      ++HowLong;
6917      break;
6918    }
6919  }
6920
6921  QualType Type;
6922
6923  // Read the base type.
6924  switch (*Str++) {
6925  default: llvm_unreachable("Unknown builtin type letter!");
6926  case 'v':
6927    assert(HowLong == 0 && !Signed && !Unsigned &&
6928           "Bad modifiers used with 'v'!");
6929    Type = Context.VoidTy;
6930    break;
6931  case 'f':
6932    assert(HowLong == 0 && !Signed && !Unsigned &&
6933           "Bad modifiers used with 'f'!");
6934    Type = Context.FloatTy;
6935    break;
6936  case 'd':
6937    assert(HowLong < 2 && !Signed && !Unsigned &&
6938           "Bad modifiers used with 'd'!");
6939    if (HowLong)
6940      Type = Context.LongDoubleTy;
6941    else
6942      Type = Context.DoubleTy;
6943    break;
6944  case 's':
6945    assert(HowLong == 0 && "Bad modifiers used with 's'!");
6946    if (Unsigned)
6947      Type = Context.UnsignedShortTy;
6948    else
6949      Type = Context.ShortTy;
6950    break;
6951  case 'i':
6952    if (HowLong == 3)
6953      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
6954    else if (HowLong == 2)
6955      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
6956    else if (HowLong == 1)
6957      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
6958    else
6959      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
6960    break;
6961  case 'c':
6962    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
6963    if (Signed)
6964      Type = Context.SignedCharTy;
6965    else if (Unsigned)
6966      Type = Context.UnsignedCharTy;
6967    else
6968      Type = Context.CharTy;
6969    break;
6970  case 'b': // boolean
6971    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
6972    Type = Context.BoolTy;
6973    break;
6974  case 'z':  // size_t.
6975    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
6976    Type = Context.getSizeType();
6977    break;
6978  case 'F':
6979    Type = Context.getCFConstantStringType();
6980    break;
6981  case 'G':
6982    Type = Context.getObjCIdType();
6983    break;
6984  case 'H':
6985    Type = Context.getObjCSelType();
6986    break;
6987  case 'a':
6988    Type = Context.getBuiltinVaListType();
6989    assert(!Type.isNull() && "builtin va list type not initialized!");
6990    break;
6991  case 'A':
6992    // This is a "reference" to a va_list; however, what exactly
6993    // this means depends on how va_list is defined. There are two
6994    // different kinds of va_list: ones passed by value, and ones
6995    // passed by reference.  An example of a by-value va_list is
6996    // x86, where va_list is a char*. An example of by-ref va_list
6997    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
6998    // we want this argument to be a char*&; for x86-64, we want
6999    // it to be a __va_list_tag*.
7000    Type = Context.getBuiltinVaListType();
7001    assert(!Type.isNull() && "builtin va list type not initialized!");
7002    if (Type->isArrayType())
7003      Type = Context.getArrayDecayedType(Type);
7004    else
7005      Type = Context.getLValueReferenceType(Type);
7006    break;
7007  case 'V': {
7008    char *End;
7009    unsigned NumElements = strtoul(Str, &End, 10);
7010    assert(End != Str && "Missing vector size");
7011    Str = End;
7012
7013    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
7014                                             RequiresICE, false);
7015    assert(!RequiresICE && "Can't require vector ICE");
7016
7017    // TODO: No way to make AltiVec vectors in builtins yet.
7018    Type = Context.getVectorType(ElementType, NumElements,
7019                                 VectorType::GenericVector);
7020    break;
7021  }
7022  case 'E': {
7023    char *End;
7024
7025    unsigned NumElements = strtoul(Str, &End, 10);
7026    assert(End != Str && "Missing vector size");
7027
7028    Str = End;
7029
7030    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7031                                             false);
7032    Type = Context.getExtVectorType(ElementType, NumElements);
7033    break;
7034  }
7035  case 'X': {
7036    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7037                                             false);
7038    assert(!RequiresICE && "Can't require complex ICE");
7039    Type = Context.getComplexType(ElementType);
7040    break;
7041  }
7042  case 'Y' : {
7043    Type = Context.getPointerDiffType();
7044    break;
7045  }
7046  case 'P':
7047    Type = Context.getFILEType();
7048    if (Type.isNull()) {
7049      Error = ASTContext::GE_Missing_stdio;
7050      return QualType();
7051    }
7052    break;
7053  case 'J':
7054    if (Signed)
7055      Type = Context.getsigjmp_bufType();
7056    else
7057      Type = Context.getjmp_bufType();
7058
7059    if (Type.isNull()) {
7060      Error = ASTContext::GE_Missing_setjmp;
7061      return QualType();
7062    }
7063    break;
7064  case 'K':
7065    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
7066    Type = Context.getucontext_tType();
7067
7068    if (Type.isNull()) {
7069      Error = ASTContext::GE_Missing_ucontext;
7070      return QualType();
7071    }
7072    break;
7073  }
7074
7075  // If there are modifiers and if we're allowed to parse them, go for it.
7076  Done = !AllowTypeModifiers;
7077  while (!Done) {
7078    switch (char c = *Str++) {
7079    default: Done = true; --Str; break;
7080    case '*':
7081    case '&': {
7082      // Both pointers and references can have their pointee types
7083      // qualified with an address space.
7084      char *End;
7085      unsigned AddrSpace = strtoul(Str, &End, 10);
7086      if (End != Str && AddrSpace != 0) {
7087        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
7088        Str = End;
7089      }
7090      if (c == '*')
7091        Type = Context.getPointerType(Type);
7092      else
7093        Type = Context.getLValueReferenceType(Type);
7094      break;
7095    }
7096    // FIXME: There's no way to have a built-in with an rvalue ref arg.
7097    case 'C':
7098      Type = Type.withConst();
7099      break;
7100    case 'D':
7101      Type = Context.getVolatileType(Type);
7102      break;
7103    case 'R':
7104      Type = Type.withRestrict();
7105      break;
7106    }
7107  }
7108
7109  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
7110         "Integer constant 'I' type must be an integer");
7111
7112  return Type;
7113}
7114
7115/// GetBuiltinType - Return the type for the specified builtin.
7116QualType ASTContext::GetBuiltinType(unsigned Id,
7117                                    GetBuiltinTypeError &Error,
7118                                    unsigned *IntegerConstantArgs) const {
7119  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
7120
7121  SmallVector<QualType, 8> ArgTypes;
7122
7123  bool RequiresICE = false;
7124  Error = GE_None;
7125  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
7126                                       RequiresICE, true);
7127  if (Error != GE_None)
7128    return QualType();
7129
7130  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
7131
7132  while (TypeStr[0] && TypeStr[0] != '.') {
7133    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
7134    if (Error != GE_None)
7135      return QualType();
7136
7137    // If this argument is required to be an IntegerConstantExpression and the
7138    // caller cares, fill in the bitmask we return.
7139    if (RequiresICE && IntegerConstantArgs)
7140      *IntegerConstantArgs |= 1 << ArgTypes.size();
7141
7142    // Do array -> pointer decay.  The builtin should use the decayed type.
7143    if (Ty->isArrayType())
7144      Ty = getArrayDecayedType(Ty);
7145
7146    ArgTypes.push_back(Ty);
7147  }
7148
7149  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
7150         "'.' should only occur at end of builtin type list!");
7151
7152  FunctionType::ExtInfo EI;
7153  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
7154
7155  bool Variadic = (TypeStr[0] == '.');
7156
7157  // We really shouldn't be making a no-proto type here, especially in C++.
7158  if (ArgTypes.empty() && Variadic)
7159    return getFunctionNoProtoType(ResType, EI);
7160
7161  FunctionProtoType::ExtProtoInfo EPI;
7162  EPI.ExtInfo = EI;
7163  EPI.Variadic = Variadic;
7164
7165  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
7166}
7167
7168GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
7169  GVALinkage External = GVA_StrongExternal;
7170
7171  Linkage L = FD->getLinkage();
7172  switch (L) {
7173  case NoLinkage:
7174  case InternalLinkage:
7175  case UniqueExternalLinkage:
7176    return GVA_Internal;
7177
7178  case ExternalLinkage:
7179    switch (FD->getTemplateSpecializationKind()) {
7180    case TSK_Undeclared:
7181    case TSK_ExplicitSpecialization:
7182      External = GVA_StrongExternal;
7183      break;
7184
7185    case TSK_ExplicitInstantiationDefinition:
7186      return GVA_ExplicitTemplateInstantiation;
7187
7188    case TSK_ExplicitInstantiationDeclaration:
7189    case TSK_ImplicitInstantiation:
7190      External = GVA_TemplateInstantiation;
7191      break;
7192    }
7193  }
7194
7195  if (!FD->isInlined())
7196    return External;
7197
7198  if (!getLangOpts().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
7199    // GNU or C99 inline semantics. Determine whether this symbol should be
7200    // externally visible.
7201    if (FD->isInlineDefinitionExternallyVisible())
7202      return External;
7203
7204    // C99 inline semantics, where the symbol is not externally visible.
7205    return GVA_C99Inline;
7206  }
7207
7208  // C++0x [temp.explicit]p9:
7209  //   [ Note: The intent is that an inline function that is the subject of
7210  //   an explicit instantiation declaration will still be implicitly
7211  //   instantiated when used so that the body can be considered for
7212  //   inlining, but that no out-of-line copy of the inline function would be
7213  //   generated in the translation unit. -- end note ]
7214  if (FD->getTemplateSpecializationKind()
7215                                       == TSK_ExplicitInstantiationDeclaration)
7216    return GVA_C99Inline;
7217
7218  return GVA_CXXInline;
7219}
7220
7221GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
7222  // If this is a static data member, compute the kind of template
7223  // specialization. Otherwise, this variable is not part of a
7224  // template.
7225  TemplateSpecializationKind TSK = TSK_Undeclared;
7226  if (VD->isStaticDataMember())
7227    TSK = VD->getTemplateSpecializationKind();
7228
7229  Linkage L = VD->getLinkage();
7230  if (L == ExternalLinkage && getLangOpts().CPlusPlus &&
7231      VD->getType()->getLinkage() == UniqueExternalLinkage)
7232    L = UniqueExternalLinkage;
7233
7234  switch (L) {
7235  case NoLinkage:
7236  case InternalLinkage:
7237  case UniqueExternalLinkage:
7238    return GVA_Internal;
7239
7240  case ExternalLinkage:
7241    switch (TSK) {
7242    case TSK_Undeclared:
7243    case TSK_ExplicitSpecialization:
7244      return GVA_StrongExternal;
7245
7246    case TSK_ExplicitInstantiationDeclaration:
7247      llvm_unreachable("Variable should not be instantiated");
7248      // Fall through to treat this like any other instantiation.
7249
7250    case TSK_ExplicitInstantiationDefinition:
7251      return GVA_ExplicitTemplateInstantiation;
7252
7253    case TSK_ImplicitInstantiation:
7254      return GVA_TemplateInstantiation;
7255    }
7256  }
7257
7258  llvm_unreachable("Invalid Linkage!");
7259}
7260
7261bool ASTContext::DeclMustBeEmitted(const Decl *D) {
7262  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7263    if (!VD->isFileVarDecl())
7264      return false;
7265  } else if (!isa<FunctionDecl>(D))
7266    return false;
7267
7268  // Weak references don't produce any output by themselves.
7269  if (D->hasAttr<WeakRefAttr>())
7270    return false;
7271
7272  // Aliases and used decls are required.
7273  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
7274    return true;
7275
7276  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7277    // Forward declarations aren't required.
7278    if (!FD->doesThisDeclarationHaveABody())
7279      return FD->doesDeclarationForceExternallyVisibleDefinition();
7280
7281    // Constructors and destructors are required.
7282    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
7283      return true;
7284
7285    // The key function for a class is required.
7286    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
7287      const CXXRecordDecl *RD = MD->getParent();
7288      if (MD->isOutOfLine() && RD->isDynamicClass()) {
7289        const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
7290        if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
7291          return true;
7292      }
7293    }
7294
7295    GVALinkage Linkage = GetGVALinkageForFunction(FD);
7296
7297    // static, static inline, always_inline, and extern inline functions can
7298    // always be deferred.  Normal inline functions can be deferred in C99/C++.
7299    // Implicit template instantiations can also be deferred in C++.
7300    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
7301        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
7302      return false;
7303    return true;
7304  }
7305
7306  const VarDecl *VD = cast<VarDecl>(D);
7307  assert(VD->isFileVarDecl() && "Expected file scoped var");
7308
7309  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
7310    return false;
7311
7312  // Structs that have non-trivial constructors or destructors are required.
7313
7314  // FIXME: Handle references.
7315  // FIXME: Be more selective about which constructors we care about.
7316  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
7317    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
7318      if (RD->hasDefinition() && !(RD->hasTrivialDefaultConstructor() &&
7319                                   RD->hasTrivialCopyConstructor() &&
7320                                   RD->hasTrivialMoveConstructor() &&
7321                                   RD->hasTrivialDestructor()))
7322        return true;
7323    }
7324  }
7325
7326  GVALinkage L = GetGVALinkageForVariable(VD);
7327  if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
7328    if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
7329      return false;
7330  }
7331
7332  return true;
7333}
7334
7335CallingConv ASTContext::getDefaultCXXMethodCallConv(bool isVariadic) {
7336  // Pass through to the C++ ABI object
7337  return ABI->getDefaultMethodCallConv(isVariadic);
7338}
7339
7340CallingConv ASTContext::getCanonicalCallConv(CallingConv CC) const {
7341  if (CC == CC_C && !LangOpts.MRTD && getTargetInfo().getCXXABI() != CXXABI_Microsoft)
7342    return CC_Default;
7343  return CC;
7344}
7345
7346bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
7347  // Pass through to the C++ ABI object
7348  return ABI->isNearlyEmpty(RD);
7349}
7350
7351MangleContext *ASTContext::createMangleContext() {
7352  switch (Target->getCXXABI()) {
7353  case CXXABI_ARM:
7354  case CXXABI_Itanium:
7355    return createItaniumMangleContext(*this, getDiagnostics());
7356  case CXXABI_Microsoft:
7357    return createMicrosoftMangleContext(*this, getDiagnostics());
7358  }
7359  llvm_unreachable("Unsupported ABI");
7360}
7361
7362CXXABI::~CXXABI() {}
7363
7364size_t ASTContext::getSideTableAllocatedMemory() const {
7365  return ASTRecordLayouts.getMemorySize()
7366    + llvm::capacity_in_bytes(ObjCLayouts)
7367    + llvm::capacity_in_bytes(KeyFunctions)
7368    + llvm::capacity_in_bytes(ObjCImpls)
7369    + llvm::capacity_in_bytes(BlockVarCopyInits)
7370    + llvm::capacity_in_bytes(DeclAttrs)
7371    + llvm::capacity_in_bytes(InstantiatedFromStaticDataMember)
7372    + llvm::capacity_in_bytes(InstantiatedFromUsingDecl)
7373    + llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl)
7374    + llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl)
7375    + llvm::capacity_in_bytes(OverriddenMethods)
7376    + llvm::capacity_in_bytes(Types)
7377    + llvm::capacity_in_bytes(VariableArrayTypes)
7378    + llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
7379}
7380
7381unsigned ASTContext::getLambdaManglingNumber(CXXMethodDecl *CallOperator) {
7382  CXXRecordDecl *Lambda = CallOperator->getParent();
7383  return LambdaMangleContexts[Lambda->getDeclContext()]
7384           .getManglingNumber(CallOperator);
7385}
7386
7387
7388void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
7389  ParamIndices[D] = index;
7390}
7391
7392unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
7393  ParameterIndexTable::const_iterator I = ParamIndices.find(D);
7394  assert(I != ParamIndices.end() &&
7395         "ParmIndices lacks entry set by ParmVarDecl");
7396  return I->second;
7397}
7398