ASTContext.cpp revision 19cc4abea06a9b49e0e16a50d335c064cd723572
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclCXX.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/ExternalASTSource.h"
20#include "clang/AST/RecordLayout.h"
21#include "clang/Basic/Builtins.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Support/MemoryBuffer.h"
27using namespace clang;
28
29enum FloatingRank {
30  FloatRank, DoubleRank, LongDoubleRank
31};
32
33ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
34                       TargetInfo &t,
35                       IdentifierTable &idents, SelectorTable &sels,
36                       Builtin::Context &builtins,
37                       bool FreeMem, unsigned size_reserve) :
38  GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
39  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0),
40  SourceMgr(SM), LangOpts(LOpts),
41  LoadedExternalComments(false), FreeMemory(FreeMem), Target(t),
42  Idents(idents), Selectors(sels),
43  BuiltinInfo(builtins), ExternalSource(0), PrintingPolicy(LOpts) {
44  if (size_reserve > 0) Types.reserve(size_reserve);
45  TUDecl = TranslationUnitDecl::Create(*this);
46  InitBuiltinTypes();
47}
48
49ASTContext::~ASTContext() {
50  // Deallocate all the types.
51  while (!Types.empty()) {
52    Types.back()->Destroy(*this);
53    Types.pop_back();
54  }
55
56  {
57    llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
58      I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end();
59    while (I != E) {
60      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
61      delete R;
62    }
63  }
64
65  {
66    llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>::iterator
67      I = ObjCLayouts.begin(), E = ObjCLayouts.end();
68    while (I != E) {
69      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
70      delete R;
71    }
72  }
73
74  // Destroy nested-name-specifiers.
75  for (llvm::FoldingSet<NestedNameSpecifier>::iterator
76         NNS = NestedNameSpecifiers.begin(),
77         NNSEnd = NestedNameSpecifiers.end();
78       NNS != NNSEnd;
79       /* Increment in loop */)
80    (*NNS++).Destroy(*this);
81
82  if (GlobalNestedNameSpecifier)
83    GlobalNestedNameSpecifier->Destroy(*this);
84
85  TUDecl->Destroy(*this);
86}
87
88void
89ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
90  ExternalSource.reset(Source.take());
91}
92
93void ASTContext::PrintStats() const {
94  fprintf(stderr, "*** AST Context Stats:\n");
95  fprintf(stderr, "  %d types total.\n", (int)Types.size());
96
97  unsigned counts[] = {
98#define TYPE(Name, Parent) 0,
99#define ABSTRACT_TYPE(Name, Parent)
100#include "clang/AST/TypeNodes.def"
101    0 // Extra
102  };
103
104  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
105    Type *T = Types[i];
106    counts[(unsigned)T->getTypeClass()]++;
107  }
108
109  unsigned Idx = 0;
110  unsigned TotalBytes = 0;
111#define TYPE(Name, Parent)                                              \
112  if (counts[Idx])                                                      \
113    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
114  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
115  ++Idx;
116#define ABSTRACT_TYPE(Name, Parent)
117#include "clang/AST/TypeNodes.def"
118
119  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
120
121  if (ExternalSource.get()) {
122    fprintf(stderr, "\n");
123    ExternalSource->PrintStats();
124  }
125}
126
127
128void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) {
129  Types.push_back((R = QualType(new (*this,8) BuiltinType(K),0)).getTypePtr());
130}
131
132void ASTContext::InitBuiltinTypes() {
133  assert(VoidTy.isNull() && "Context reinitialized?");
134
135  // C99 6.2.5p19.
136  InitBuiltinType(VoidTy,              BuiltinType::Void);
137
138  // C99 6.2.5p2.
139  InitBuiltinType(BoolTy,              BuiltinType::Bool);
140  // C99 6.2.5p3.
141  if (LangOpts.CharIsSigned)
142    InitBuiltinType(CharTy,            BuiltinType::Char_S);
143  else
144    InitBuiltinType(CharTy,            BuiltinType::Char_U);
145  // C99 6.2.5p4.
146  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
147  InitBuiltinType(ShortTy,             BuiltinType::Short);
148  InitBuiltinType(IntTy,               BuiltinType::Int);
149  InitBuiltinType(LongTy,              BuiltinType::Long);
150  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
151
152  // C99 6.2.5p6.
153  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
154  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
155  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
156  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
157  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
158
159  // C99 6.2.5p10.
160  InitBuiltinType(FloatTy,             BuiltinType::Float);
161  InitBuiltinType(DoubleTy,            BuiltinType::Double);
162  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
163
164  // GNU extension, 128-bit integers.
165  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
166  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
167
168  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
169    InitBuiltinType(WCharTy,           BuiltinType::WChar);
170  else // C99
171    WCharTy = getFromTargetType(Target.getWCharType());
172
173  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
174    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
175  else // C99
176    Char16Ty = getFromTargetType(Target.getChar16Type());
177
178  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
179    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
180  else // C99
181    Char32Ty = getFromTargetType(Target.getChar32Type());
182
183  // Placeholder type for functions.
184  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
185
186  // Placeholder type for type-dependent expressions whose type is
187  // completely unknown. No code should ever check a type against
188  // DependentTy and users should never see it; however, it is here to
189  // help diagnose failures to properly check for type-dependent
190  // expressions.
191  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
192
193  // Placeholder type for C++0x auto declarations whose real type has
194  // not yet been deduced.
195  InitBuiltinType(UndeducedAutoTy, BuiltinType::UndeducedAuto);
196
197  // C99 6.2.5p11.
198  FloatComplexTy      = getComplexType(FloatTy);
199  DoubleComplexTy     = getComplexType(DoubleTy);
200  LongDoubleComplexTy = getComplexType(LongDoubleTy);
201
202  BuiltinVaListType = QualType();
203
204  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
205  ObjCIdTypedefType = QualType();
206  ObjCClassTypedefType = QualType();
207
208  // Builtin types for 'id' and 'Class'.
209  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
210  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
211
212  ObjCConstantStringType = QualType();
213
214  // void * type
215  VoidPtrTy = getPointerType(VoidTy);
216
217  // nullptr type (C++0x 2.14.7)
218  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
219}
220
221namespace {
222  class BeforeInTranslationUnit
223    : std::binary_function<SourceRange, SourceRange, bool> {
224    SourceManager *SourceMgr;
225
226  public:
227    explicit BeforeInTranslationUnit(SourceManager *SM) : SourceMgr(SM) { }
228
229    bool operator()(SourceRange X, SourceRange Y) {
230      return SourceMgr->isBeforeInTranslationUnit(X.getBegin(), Y.getBegin());
231    }
232  };
233}
234
235/// \brief Determine whether the given comment is a Doxygen-style comment.
236///
237/// \param Start the start of the comment text.
238///
239/// \param End the end of the comment text.
240///
241/// \param Member whether we want to check whether this is a member comment
242/// (which requires a < after the Doxygen-comment delimiter). Otherwise,
243/// we only return true when we find a non-member comment.
244static bool
245isDoxygenComment(SourceManager &SourceMgr, SourceRange Comment,
246                 bool Member = false) {
247  const char *BufferStart
248    = SourceMgr.getBufferData(SourceMgr.getFileID(Comment.getBegin())).first;
249  const char *Start = BufferStart + SourceMgr.getFileOffset(Comment.getBegin());
250  const char* End = BufferStart + SourceMgr.getFileOffset(Comment.getEnd());
251
252  if (End - Start < 4)
253    return false;
254
255  assert(Start[0] == '/' && "Not a comment?");
256  if (Start[1] == '*' && !(Start[2] == '!' || Start[2] == '*'))
257    return false;
258  if (Start[1] == '/' && !(Start[2] == '!' || Start[2] == '/'))
259    return false;
260
261  return (Start[3] == '<') == Member;
262}
263
264/// \brief Retrieve the comment associated with the given declaration, if
265/// it has one.
266const char *ASTContext::getCommentForDecl(const Decl *D) {
267  if (!D)
268    return 0;
269
270  // Check whether we have cached a comment string for this declaration
271  // already.
272  llvm::DenseMap<const Decl *, std::string>::iterator Pos
273    = DeclComments.find(D);
274  if (Pos != DeclComments.end())
275    return Pos->second.c_str();
276
277  // If we have an external AST source and have not yet loaded comments from
278  // that source, do so now.
279  if (ExternalSource && !LoadedExternalComments) {
280    std::vector<SourceRange> LoadedComments;
281    ExternalSource->ReadComments(LoadedComments);
282
283    if (!LoadedComments.empty())
284      Comments.insert(Comments.begin(), LoadedComments.begin(),
285                      LoadedComments.end());
286
287    LoadedExternalComments = true;
288  }
289
290  // If there are no comments anywhere, we won't find anything.
291  if (Comments.empty())
292    return 0;
293
294  // If the declaration doesn't map directly to a location in a file, we
295  // can't find the comment.
296  SourceLocation DeclStartLoc = D->getLocStart();
297  if (DeclStartLoc.isInvalid() || !DeclStartLoc.isFileID())
298    return 0;
299
300  // Find the comment that occurs just before this declaration.
301  std::vector<SourceRange>::iterator LastComment
302    = std::lower_bound(Comments.begin(), Comments.end(),
303                       SourceRange(DeclStartLoc),
304                       BeforeInTranslationUnit(&SourceMgr));
305
306  // Decompose the location for the start of the declaration and find the
307  // beginning of the file buffer.
308  std::pair<FileID, unsigned> DeclStartDecomp
309    = SourceMgr.getDecomposedLoc(DeclStartLoc);
310  const char *FileBufferStart
311    = SourceMgr.getBufferData(DeclStartDecomp.first).first;
312
313  // First check whether we have a comment for a member.
314  if (LastComment != Comments.end() &&
315      !isa<TagDecl>(D) && !isa<NamespaceDecl>(D) &&
316      isDoxygenComment(SourceMgr, *LastComment, true)) {
317    std::pair<FileID, unsigned> LastCommentEndDecomp
318      = SourceMgr.getDecomposedLoc(LastComment->getEnd());
319    if (DeclStartDecomp.first == LastCommentEndDecomp.first &&
320        SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second)
321          == SourceMgr.getLineNumber(LastCommentEndDecomp.first,
322                                     LastCommentEndDecomp.second)) {
323      // The Doxygen member comment comes after the declaration starts and
324      // is on the same line and in the same file as the declaration. This
325      // is the comment we want.
326      std::string &Result = DeclComments[D];
327      Result.append(FileBufferStart +
328                      SourceMgr.getFileOffset(LastComment->getBegin()),
329                    FileBufferStart + LastCommentEndDecomp.second + 1);
330      return Result.c_str();
331    }
332  }
333
334  if (LastComment == Comments.begin())
335    return 0;
336  --LastComment;
337
338  // Decompose the end of the comment.
339  std::pair<FileID, unsigned> LastCommentEndDecomp
340    = SourceMgr.getDecomposedLoc(LastComment->getEnd());
341
342  // If the comment and the declaration aren't in the same file, then they
343  // aren't related.
344  if (DeclStartDecomp.first != LastCommentEndDecomp.first)
345    return 0;
346
347  // Check that we actually have a Doxygen comment.
348  if (!isDoxygenComment(SourceMgr, *LastComment))
349    return 0;
350
351  // Compute the starting line for the declaration and for the end of the
352  // comment (this is expensive).
353  unsigned DeclStartLine
354    = SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second);
355  unsigned CommentEndLine
356    = SourceMgr.getLineNumber(LastCommentEndDecomp.first,
357                              LastCommentEndDecomp.second);
358
359  // If the comment does not end on the line prior to the declaration, then
360  // the comment is not associated with the declaration at all.
361  if (CommentEndLine + 1 != DeclStartLine)
362    return 0;
363
364  // We have a comment, but there may be more comments on the previous lines.
365  // Keep looking so long as the comments are still Doxygen comments and are
366  // still adjacent.
367  unsigned ExpectedLine
368    = SourceMgr.getSpellingLineNumber(LastComment->getBegin()) - 1;
369  std::vector<SourceRange>::iterator FirstComment = LastComment;
370  while (FirstComment != Comments.begin()) {
371    // Look at the previous comment
372    --FirstComment;
373    std::pair<FileID, unsigned> Decomp
374      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
375
376    // If this previous comment is in a different file, we're done.
377    if (Decomp.first != DeclStartDecomp.first) {
378      ++FirstComment;
379      break;
380    }
381
382    // If this comment is not a Doxygen comment, we're done.
383    if (!isDoxygenComment(SourceMgr, *FirstComment)) {
384      ++FirstComment;
385      break;
386    }
387
388    // If the line number is not what we expected, we're done.
389    unsigned Line = SourceMgr.getLineNumber(Decomp.first, Decomp.second);
390    if (Line != ExpectedLine) {
391      ++FirstComment;
392      break;
393    }
394
395    // Set the next expected line number.
396    ExpectedLine
397      = SourceMgr.getSpellingLineNumber(FirstComment->getBegin()) - 1;
398  }
399
400  // The iterator range [FirstComment, LastComment] contains all of the
401  // BCPL comments that, together, are associated with this declaration.
402  // Form a single comment block string for this declaration that concatenates
403  // all of these comments.
404  std::string &Result = DeclComments[D];
405  while (FirstComment != LastComment) {
406    std::pair<FileID, unsigned> DecompStart
407      = SourceMgr.getDecomposedLoc(FirstComment->getBegin());
408    std::pair<FileID, unsigned> DecompEnd
409      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
410    Result.append(FileBufferStart + DecompStart.second,
411                  FileBufferStart + DecompEnd.second + 1);
412    ++FirstComment;
413  }
414
415  // Append the last comment line.
416  Result.append(FileBufferStart +
417                  SourceMgr.getFileOffset(LastComment->getBegin()),
418                FileBufferStart + LastCommentEndDecomp.second + 1);
419  return Result.c_str();
420}
421
422//===----------------------------------------------------------------------===//
423//                         Type Sizing and Analysis
424//===----------------------------------------------------------------------===//
425
426/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
427/// scalar floating point type.
428const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
429  const BuiltinType *BT = T->getAsBuiltinType();
430  assert(BT && "Not a floating point type!");
431  switch (BT->getKind()) {
432  default: assert(0 && "Not a floating point type!");
433  case BuiltinType::Float:      return Target.getFloatFormat();
434  case BuiltinType::Double:     return Target.getDoubleFormat();
435  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
436  }
437}
438
439/// getDeclAlign - Return a conservative estimate of the alignment of the
440/// specified decl.  Note that bitfields do not have a valid alignment, so
441/// this method will assert on them.
442unsigned ASTContext::getDeclAlignInBytes(const Decl *D) {
443  unsigned Align = Target.getCharWidth();
444
445  if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
446    Align = std::max(Align, AA->getAlignment());
447
448  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
449    QualType T = VD->getType();
450    if (const ReferenceType* RT = T->getAsReferenceType()) {
451      unsigned AS = RT->getPointeeType().getAddressSpace();
452      Align = Target.getPointerAlign(AS);
453    } else if (!T->isIncompleteType() && !T->isFunctionType()) {
454      // Incomplete or function types default to 1.
455      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
456        T = cast<ArrayType>(T)->getElementType();
457
458      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
459    }
460  }
461
462  return Align / Target.getCharWidth();
463}
464
465/// getTypeSize - Return the size of the specified type, in bits.  This method
466/// does not work on incomplete types.
467std::pair<uint64_t, unsigned>
468ASTContext::getTypeInfo(const Type *T) {
469  uint64_t Width=0;
470  unsigned Align=8;
471  switch (T->getTypeClass()) {
472#define TYPE(Class, Base)
473#define ABSTRACT_TYPE(Class, Base)
474#define NON_CANONICAL_TYPE(Class, Base)
475#define DEPENDENT_TYPE(Class, Base) case Type::Class:
476#include "clang/AST/TypeNodes.def"
477    assert(false && "Should not see dependent types");
478    break;
479
480  case Type::FunctionNoProto:
481  case Type::FunctionProto:
482    // GCC extension: alignof(function) = 32 bits
483    Width = 0;
484    Align = 32;
485    break;
486
487  case Type::IncompleteArray:
488  case Type::VariableArray:
489    Width = 0;
490    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
491    break;
492
493  case Type::ConstantArrayWithExpr:
494  case Type::ConstantArrayWithoutExpr:
495  case Type::ConstantArray: {
496    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
497
498    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
499    Width = EltInfo.first*CAT->getSize().getZExtValue();
500    Align = EltInfo.second;
501    break;
502  }
503  case Type::ExtVector:
504  case Type::Vector: {
505    std::pair<uint64_t, unsigned> EltInfo =
506      getTypeInfo(cast<VectorType>(T)->getElementType());
507    Width = EltInfo.first*cast<VectorType>(T)->getNumElements();
508    Align = Width;
509    // If the alignment is not a power of 2, round up to the next power of 2.
510    // This happens for non-power-of-2 length vectors.
511    // FIXME: this should probably be a target property.
512    Align = 1 << llvm::Log2_32_Ceil(Align);
513    break;
514  }
515
516  case Type::Builtin:
517    switch (cast<BuiltinType>(T)->getKind()) {
518    default: assert(0 && "Unknown builtin type!");
519    case BuiltinType::Void:
520      // GCC extension: alignof(void) = 8 bits.
521      Width = 0;
522      Align = 8;
523      break;
524
525    case BuiltinType::Bool:
526      Width = Target.getBoolWidth();
527      Align = Target.getBoolAlign();
528      break;
529    case BuiltinType::Char_S:
530    case BuiltinType::Char_U:
531    case BuiltinType::UChar:
532    case BuiltinType::SChar:
533      Width = Target.getCharWidth();
534      Align = Target.getCharAlign();
535      break;
536    case BuiltinType::WChar:
537      Width = Target.getWCharWidth();
538      Align = Target.getWCharAlign();
539      break;
540    case BuiltinType::Char16:
541      Width = Target.getChar16Width();
542      Align = Target.getChar16Align();
543      break;
544    case BuiltinType::Char32:
545      Width = Target.getChar32Width();
546      Align = Target.getChar32Align();
547      break;
548    case BuiltinType::UShort:
549    case BuiltinType::Short:
550      Width = Target.getShortWidth();
551      Align = Target.getShortAlign();
552      break;
553    case BuiltinType::UInt:
554    case BuiltinType::Int:
555      Width = Target.getIntWidth();
556      Align = Target.getIntAlign();
557      break;
558    case BuiltinType::ULong:
559    case BuiltinType::Long:
560      Width = Target.getLongWidth();
561      Align = Target.getLongAlign();
562      break;
563    case BuiltinType::ULongLong:
564    case BuiltinType::LongLong:
565      Width = Target.getLongLongWidth();
566      Align = Target.getLongLongAlign();
567      break;
568    case BuiltinType::Int128:
569    case BuiltinType::UInt128:
570      Width = 128;
571      Align = 128; // int128_t is 128-bit aligned on all targets.
572      break;
573    case BuiltinType::Float:
574      Width = Target.getFloatWidth();
575      Align = Target.getFloatAlign();
576      break;
577    case BuiltinType::Double:
578      Width = Target.getDoubleWidth();
579      Align = Target.getDoubleAlign();
580      break;
581    case BuiltinType::LongDouble:
582      Width = Target.getLongDoubleWidth();
583      Align = Target.getLongDoubleAlign();
584      break;
585    case BuiltinType::NullPtr:
586      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
587      Align = Target.getPointerAlign(0); //   == sizeof(void*)
588      break;
589    }
590    break;
591  case Type::FixedWidthInt:
592    // FIXME: This isn't precisely correct; the width/alignment should depend
593    // on the available types for the target
594    Width = cast<FixedWidthIntType>(T)->getWidth();
595    Width = std::max(llvm::NextPowerOf2(Width - 1), (uint64_t)8);
596    Align = Width;
597    break;
598  case Type::ExtQual:
599    // FIXME: Pointers into different addr spaces could have different sizes and
600    // alignment requirements: getPointerInfo should take an AddrSpace.
601    return getTypeInfo(QualType(cast<ExtQualType>(T)->getBaseType(), 0));
602  case Type::ObjCObjectPointer:
603    Width = Target.getPointerWidth(0);
604    Align = Target.getPointerAlign(0);
605    break;
606  case Type::BlockPointer: {
607    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
608    Width = Target.getPointerWidth(AS);
609    Align = Target.getPointerAlign(AS);
610    break;
611  }
612  case Type::Pointer: {
613    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
614    Width = Target.getPointerWidth(AS);
615    Align = Target.getPointerAlign(AS);
616    break;
617  }
618  case Type::LValueReference:
619  case Type::RValueReference:
620    // "When applied to a reference or a reference type, the result is the size
621    // of the referenced type." C++98 5.3.3p2: expr.sizeof.
622    // FIXME: This is wrong for struct layout: a reference in a struct has
623    // pointer size.
624    return getTypeInfo(cast<ReferenceType>(T)->getPointeeType());
625  case Type::MemberPointer: {
626    // FIXME: This is ABI dependent. We use the Itanium C++ ABI.
627    // http://www.codesourcery.com/public/cxx-abi/abi.html#member-pointers
628    // If we ever want to support other ABIs this needs to be abstracted.
629
630    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
631    std::pair<uint64_t, unsigned> PtrDiffInfo =
632      getTypeInfo(getPointerDiffType());
633    Width = PtrDiffInfo.first;
634    if (Pointee->isFunctionType())
635      Width *= 2;
636    Align = PtrDiffInfo.second;
637    break;
638  }
639  case Type::Complex: {
640    // Complex types have the same alignment as their elements, but twice the
641    // size.
642    std::pair<uint64_t, unsigned> EltInfo =
643      getTypeInfo(cast<ComplexType>(T)->getElementType());
644    Width = EltInfo.first*2;
645    Align = EltInfo.second;
646    break;
647  }
648  case Type::ObjCInterface: {
649    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
650    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
651    Width = Layout.getSize();
652    Align = Layout.getAlignment();
653    break;
654  }
655  case Type::Record:
656  case Type::Enum: {
657    const TagType *TT = cast<TagType>(T);
658
659    if (TT->getDecl()->isInvalidDecl()) {
660      Width = 1;
661      Align = 1;
662      break;
663    }
664
665    if (const EnumType *ET = dyn_cast<EnumType>(TT))
666      return getTypeInfo(ET->getDecl()->getIntegerType());
667
668    const RecordType *RT = cast<RecordType>(TT);
669    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
670    Width = Layout.getSize();
671    Align = Layout.getAlignment();
672    break;
673  }
674
675  case Type::Typedef: {
676    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
677    if (const AlignedAttr *Aligned = Typedef->getAttr<AlignedAttr>()) {
678      Align = Aligned->getAlignment();
679      Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
680    } else
681      return getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
682    break;
683  }
684
685  case Type::TypeOfExpr:
686    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
687                         .getTypePtr());
688
689  case Type::TypeOf:
690    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
691
692  case Type::Decltype:
693    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
694                        .getTypePtr());
695
696  case Type::QualifiedName:
697    return getTypeInfo(cast<QualifiedNameType>(T)->getNamedType().getTypePtr());
698
699  case Type::TemplateSpecialization:
700    assert(getCanonicalType(T) != T &&
701           "Cannot request the size of a dependent type");
702    // FIXME: this is likely to be wrong once we support template
703    // aliases, since a template alias could refer to a typedef that
704    // has an __aligned__ attribute on it.
705    return getTypeInfo(getCanonicalType(T));
706  }
707
708  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
709  return std::make_pair(Width, Align);
710}
711
712/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
713/// type for the current target in bits.  This can be different than the ABI
714/// alignment in cases where it is beneficial for performance to overalign
715/// a data type.
716unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
717  unsigned ABIAlign = getTypeAlign(T);
718
719  // Double and long long should be naturally aligned if possible.
720  if (const ComplexType* CT = T->getAsComplexType())
721    T = CT->getElementType().getTypePtr();
722  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
723      T->isSpecificBuiltinType(BuiltinType::LongLong))
724    return std::max(ABIAlign, (unsigned)getTypeSize(T));
725
726  return ABIAlign;
727}
728
729
730/// LayoutField - Field layout.
731void ASTRecordLayout::LayoutField(const FieldDecl *FD, unsigned FieldNo,
732                                  bool IsUnion, unsigned StructPacking,
733                                  ASTContext &Context) {
734  unsigned FieldPacking = StructPacking;
735  uint64_t FieldOffset = IsUnion ? 0 : Size;
736  uint64_t FieldSize;
737  unsigned FieldAlign;
738
739  // FIXME: Should this override struct packing? Probably we want to
740  // take the minimum?
741  if (const PackedAttr *PA = FD->getAttr<PackedAttr>())
742    FieldPacking = PA->getAlignment();
743
744  if (const Expr *BitWidthExpr = FD->getBitWidth()) {
745    // TODO: Need to check this algorithm on other targets!
746    //       (tested on Linux-X86)
747    FieldSize = BitWidthExpr->EvaluateAsInt(Context).getZExtValue();
748
749    std::pair<uint64_t, unsigned> FieldInfo =
750      Context.getTypeInfo(FD->getType());
751    uint64_t TypeSize = FieldInfo.first;
752
753    // Determine the alignment of this bitfield. The packing
754    // attributes define a maximum and the alignment attribute defines
755    // a minimum.
756    // FIXME: What is the right behavior when the specified alignment
757    // is smaller than the specified packing?
758    FieldAlign = FieldInfo.second;
759    if (FieldPacking)
760      FieldAlign = std::min(FieldAlign, FieldPacking);
761    if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
762      FieldAlign = std::max(FieldAlign, AA->getAlignment());
763
764    // Check if we need to add padding to give the field the correct
765    // alignment.
766    if (FieldSize == 0 || (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)
767      FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
768
769    // Padding members don't affect overall alignment
770    if (!FD->getIdentifier())
771      FieldAlign = 1;
772  } else {
773    if (FD->getType()->isIncompleteArrayType()) {
774      // This is a flexible array member; we can't directly
775      // query getTypeInfo about these, so we figure it out here.
776      // Flexible array members don't have any size, but they
777      // have to be aligned appropriately for their element type.
778      FieldSize = 0;
779      const ArrayType* ATy = Context.getAsArrayType(FD->getType());
780      FieldAlign = Context.getTypeAlign(ATy->getElementType());
781    } else if (const ReferenceType *RT = FD->getType()->getAsReferenceType()) {
782      unsigned AS = RT->getPointeeType().getAddressSpace();
783      FieldSize = Context.Target.getPointerWidth(AS);
784      FieldAlign = Context.Target.getPointerAlign(AS);
785    } else {
786      std::pair<uint64_t, unsigned> FieldInfo =
787        Context.getTypeInfo(FD->getType());
788      FieldSize = FieldInfo.first;
789      FieldAlign = FieldInfo.second;
790    }
791
792    // Determine the alignment of this bitfield. The packing
793    // attributes define a maximum and the alignment attribute defines
794    // a minimum. Additionally, the packing alignment must be at least
795    // a byte for non-bitfields.
796    //
797    // FIXME: What is the right behavior when the specified alignment
798    // is smaller than the specified packing?
799    if (FieldPacking)
800      FieldAlign = std::min(FieldAlign, std::max(8U, FieldPacking));
801    if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
802      FieldAlign = std::max(FieldAlign, AA->getAlignment());
803
804    // Round up the current record size to the field's alignment boundary.
805    FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
806  }
807
808  // Place this field at the current location.
809  FieldOffsets[FieldNo] = FieldOffset;
810
811  // Reserve space for this field.
812  if (IsUnion) {
813    Size = std::max(Size, FieldSize);
814  } else {
815    Size = FieldOffset + FieldSize;
816  }
817
818  // Remember the next available offset.
819  NextOffset = Size;
820
821  // Remember max struct/class alignment.
822  Alignment = std::max(Alignment, FieldAlign);
823}
824
825static void CollectLocalObjCIvars(ASTContext *Ctx,
826                                  const ObjCInterfaceDecl *OI,
827                                  llvm::SmallVectorImpl<FieldDecl*> &Fields) {
828  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
829       E = OI->ivar_end(); I != E; ++I) {
830    ObjCIvarDecl *IVDecl = *I;
831    if (!IVDecl->isInvalidDecl())
832      Fields.push_back(cast<FieldDecl>(IVDecl));
833  }
834}
835
836void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
837                             llvm::SmallVectorImpl<FieldDecl*> &Fields) {
838  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
839    CollectObjCIvars(SuperClass, Fields);
840  CollectLocalObjCIvars(this, OI, Fields);
841}
842
843/// ShallowCollectObjCIvars -
844/// Collect all ivars, including those synthesized, in the current class.
845///
846void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
847                                 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars,
848                                 bool CollectSynthesized) {
849  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
850         E = OI->ivar_end(); I != E; ++I) {
851     Ivars.push_back(*I);
852  }
853  if (CollectSynthesized)
854    CollectSynthesizedIvars(OI, Ivars);
855}
856
857void ASTContext::CollectProtocolSynthesizedIvars(const ObjCProtocolDecl *PD,
858                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
859  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
860       E = PD->prop_end(); I != E; ++I)
861    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
862      Ivars.push_back(Ivar);
863
864  // Also look into nested protocols.
865  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
866       E = PD->protocol_end(); P != E; ++P)
867    CollectProtocolSynthesizedIvars(*P, Ivars);
868}
869
870/// CollectSynthesizedIvars -
871/// This routine collect synthesized ivars for the designated class.
872///
873void ASTContext::CollectSynthesizedIvars(const ObjCInterfaceDecl *OI,
874                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
875  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
876       E = OI->prop_end(); I != E; ++I) {
877    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
878      Ivars.push_back(Ivar);
879  }
880  // Also look into interface's protocol list for properties declared
881  // in the protocol and whose ivars are synthesized.
882  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
883       PE = OI->protocol_end(); P != PE; ++P) {
884    ObjCProtocolDecl *PD = (*P);
885    CollectProtocolSynthesizedIvars(PD, Ivars);
886  }
887}
888
889unsigned ASTContext::CountProtocolSynthesizedIvars(const ObjCProtocolDecl *PD) {
890  unsigned count = 0;
891  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
892       E = PD->prop_end(); I != E; ++I)
893    if ((*I)->getPropertyIvarDecl())
894      ++count;
895
896  // Also look into nested protocols.
897  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
898       E = PD->protocol_end(); P != E; ++P)
899    count += CountProtocolSynthesizedIvars(*P);
900  return count;
901}
902
903unsigned ASTContext::CountSynthesizedIvars(const ObjCInterfaceDecl *OI)
904{
905  unsigned count = 0;
906  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
907       E = OI->prop_end(); I != E; ++I) {
908    if ((*I)->getPropertyIvarDecl())
909      ++count;
910  }
911  // Also look into interface's protocol list for properties declared
912  // in the protocol and whose ivars are synthesized.
913  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
914       PE = OI->protocol_end(); P != PE; ++P) {
915    ObjCProtocolDecl *PD = (*P);
916    count += CountProtocolSynthesizedIvars(PD);
917  }
918  return count;
919}
920
921/// getInterfaceLayoutImpl - Get or compute information about the
922/// layout of the given interface.
923///
924/// \param Impl - If given, also include the layout of the interface's
925/// implementation. This may differ by including synthesized ivars.
926const ASTRecordLayout &
927ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
928                          const ObjCImplementationDecl *Impl) {
929  assert(!D->isForwardDecl() && "Invalid interface decl!");
930
931  // Look up this layout, if already laid out, return what we have.
932  ObjCContainerDecl *Key =
933    Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D;
934  if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
935    return *Entry;
936
937  unsigned FieldCount = D->ivar_size();
938  // Add in synthesized ivar count if laying out an implementation.
939  if (Impl) {
940    unsigned SynthCount = CountSynthesizedIvars(D);
941    FieldCount += SynthCount;
942    // If there aren't any sythesized ivars then reuse the interface
943    // entry. Note we can't cache this because we simply free all
944    // entries later; however we shouldn't look up implementations
945    // frequently.
946    if (SynthCount == 0)
947      return getObjCLayout(D, 0);
948  }
949
950  ASTRecordLayout *NewEntry = NULL;
951  if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
952    const ASTRecordLayout &SL = getASTObjCInterfaceLayout(SD);
953    unsigned Alignment = SL.getAlignment();
954
955    // We start laying out ivars not at the end of the superclass
956    // structure, but at the next byte following the last field.
957    uint64_t Size = llvm::RoundUpToAlignment(SL.NextOffset, 8);
958
959    ObjCLayouts[Key] = NewEntry = new ASTRecordLayout(Size, Alignment);
960    NewEntry->InitializeLayout(FieldCount);
961  } else {
962    ObjCLayouts[Key] = NewEntry = new ASTRecordLayout();
963    NewEntry->InitializeLayout(FieldCount);
964  }
965
966  unsigned StructPacking = 0;
967  if (const PackedAttr *PA = D->getAttr<PackedAttr>())
968    StructPacking = PA->getAlignment();
969
970  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
971    NewEntry->SetAlignment(std::max(NewEntry->getAlignment(),
972                                    AA->getAlignment()));
973
974  // Layout each ivar sequentially.
975  unsigned i = 0;
976  llvm::SmallVector<ObjCIvarDecl*, 16> Ivars;
977  ShallowCollectObjCIvars(D, Ivars, Impl);
978  for (unsigned k = 0, e = Ivars.size(); k != e; ++k)
979       NewEntry->LayoutField(Ivars[k], i++, false, StructPacking, *this);
980
981  // Finally, round the size of the total struct up to the alignment of the
982  // struct itself.
983  NewEntry->FinalizeLayout();
984  return *NewEntry;
985}
986
987const ASTRecordLayout &
988ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
989  return getObjCLayout(D, 0);
990}
991
992const ASTRecordLayout &
993ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
994  return getObjCLayout(D->getClassInterface(), D);
995}
996
997/// getASTRecordLayout - Get or compute information about the layout of the
998/// specified record (struct/union/class), which indicates its size and field
999/// position information.
1000const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
1001  D = D->getDefinition(*this);
1002  assert(D && "Cannot get layout of forward declarations!");
1003
1004  // Look up this layout, if already laid out, return what we have.
1005  const ASTRecordLayout *&Entry = ASTRecordLayouts[D];
1006  if (Entry) return *Entry;
1007
1008  // Allocate and assign into ASTRecordLayouts here.  The "Entry" reference can
1009  // be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
1010  ASTRecordLayout *NewEntry = new ASTRecordLayout();
1011  Entry = NewEntry;
1012
1013  // FIXME: Avoid linear walk through the fields, if possible.
1014  NewEntry->InitializeLayout(std::distance(D->field_begin(), D->field_end()));
1015  bool IsUnion = D->isUnion();
1016
1017  unsigned StructPacking = 0;
1018  if (const PackedAttr *PA = D->getAttr<PackedAttr>())
1019    StructPacking = PA->getAlignment();
1020
1021  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
1022    NewEntry->SetAlignment(std::max(NewEntry->getAlignment(),
1023                                    AA->getAlignment()));
1024
1025  // Layout each field, for now, just sequentially, respecting alignment.  In
1026  // the future, this will need to be tweakable by targets.
1027  unsigned FieldIdx = 0;
1028  for (RecordDecl::field_iterator Field = D->field_begin(),
1029                               FieldEnd = D->field_end();
1030       Field != FieldEnd; (void)++Field, ++FieldIdx)
1031    NewEntry->LayoutField(*Field, FieldIdx, IsUnion, StructPacking, *this);
1032
1033  // Finally, round the size of the total struct up to the alignment of the
1034  // struct itself.
1035  NewEntry->FinalizeLayout(getLangOptions().CPlusPlus);
1036  return *NewEntry;
1037}
1038
1039//===----------------------------------------------------------------------===//
1040//                   Type creation/memoization methods
1041//===----------------------------------------------------------------------===//
1042
1043QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
1044  QualType CanT = getCanonicalType(T);
1045  if (CanT.getAddressSpace() == AddressSpace)
1046    return T;
1047
1048  // If we are composing extended qualifiers together, merge together into one
1049  // ExtQualType node.
1050  unsigned CVRQuals = T.getCVRQualifiers();
1051  QualType::GCAttrTypes GCAttr = QualType::GCNone;
1052  Type *TypeNode = T.getTypePtr();
1053
1054  if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
1055    // If this type already has an address space specified, it cannot get
1056    // another one.
1057    assert(EQT->getAddressSpace() == 0 &&
1058           "Type cannot be in multiple addr spaces!");
1059    GCAttr = EQT->getObjCGCAttr();
1060    TypeNode = EQT->getBaseType();
1061  }
1062
1063  // Check if we've already instantiated this type.
1064  llvm::FoldingSetNodeID ID;
1065  ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
1066  void *InsertPos = 0;
1067  if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
1068    return QualType(EXTQy, CVRQuals);
1069
1070  // If the base type isn't canonical, this won't be a canonical type either,
1071  // so fill in the canonical type field.
1072  QualType Canonical;
1073  if (!TypeNode->isCanonical()) {
1074    Canonical = getAddrSpaceQualType(CanT, AddressSpace);
1075
1076    // Update InsertPos, the previous call could have invalidated it.
1077    ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
1078    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1079  }
1080  ExtQualType *New =
1081    new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
1082  ExtQualTypes.InsertNode(New, InsertPos);
1083  Types.push_back(New);
1084  return QualType(New, CVRQuals);
1085}
1086
1087QualType ASTContext::getObjCGCQualType(QualType T,
1088                                       QualType::GCAttrTypes GCAttr) {
1089  QualType CanT = getCanonicalType(T);
1090  if (CanT.getObjCGCAttr() == GCAttr)
1091    return T;
1092
1093  if (T->isPointerType()) {
1094    QualType Pointee = T->getAsPointerType()->getPointeeType();
1095    if (Pointee->isAnyPointerType()) {
1096      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1097      return getPointerType(ResultType);
1098    }
1099  }
1100  // If we are composing extended qualifiers together, merge together into one
1101  // ExtQualType node.
1102  unsigned CVRQuals = T.getCVRQualifiers();
1103  Type *TypeNode = T.getTypePtr();
1104  unsigned AddressSpace = 0;
1105
1106  if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
1107    // If this type already has an address space specified, it cannot get
1108    // another one.
1109    assert(EQT->getObjCGCAttr() == QualType::GCNone &&
1110           "Type cannot be in multiple addr spaces!");
1111    AddressSpace = EQT->getAddressSpace();
1112    TypeNode = EQT->getBaseType();
1113  }
1114
1115  // Check if we've already instantiated an gc qual'd type of this type.
1116  llvm::FoldingSetNodeID ID;
1117  ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
1118  void *InsertPos = 0;
1119  if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
1120    return QualType(EXTQy, CVRQuals);
1121
1122  // If the base type isn't canonical, this won't be a canonical type either,
1123  // so fill in the canonical type field.
1124  // FIXME: Isn't this also not canonical if the base type is a array
1125  // or pointer type?  I can't find any documentation for objc_gc, though...
1126  QualType Canonical;
1127  if (!T->isCanonical()) {
1128    Canonical = getObjCGCQualType(CanT, GCAttr);
1129
1130    // Update InsertPos, the previous call could have invalidated it.
1131    ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
1132    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1133  }
1134  ExtQualType *New =
1135    new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
1136  ExtQualTypes.InsertNode(New, InsertPos);
1137  Types.push_back(New);
1138  return QualType(New, CVRQuals);
1139}
1140
1141/// getComplexType - Return the uniqued reference to the type for a complex
1142/// number with the specified element type.
1143QualType ASTContext::getComplexType(QualType T) {
1144  // Unique pointers, to guarantee there is only one pointer of a particular
1145  // structure.
1146  llvm::FoldingSetNodeID ID;
1147  ComplexType::Profile(ID, T);
1148
1149  void *InsertPos = 0;
1150  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1151    return QualType(CT, 0);
1152
1153  // If the pointee type isn't canonical, this won't be a canonical type either,
1154  // so fill in the canonical type field.
1155  QualType Canonical;
1156  if (!T->isCanonical()) {
1157    Canonical = getComplexType(getCanonicalType(T));
1158
1159    // Get the new insert position for the node we care about.
1160    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1161    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1162  }
1163  ComplexType *New = new (*this,8) ComplexType(T, Canonical);
1164  Types.push_back(New);
1165  ComplexTypes.InsertNode(New, InsertPos);
1166  return QualType(New, 0);
1167}
1168
1169QualType ASTContext::getFixedWidthIntType(unsigned Width, bool Signed) {
1170  llvm::DenseMap<unsigned, FixedWidthIntType*> &Map = Signed ?
1171     SignedFixedWidthIntTypes : UnsignedFixedWidthIntTypes;
1172  FixedWidthIntType *&Entry = Map[Width];
1173  if (!Entry)
1174    Entry = new FixedWidthIntType(Width, Signed);
1175  return QualType(Entry, 0);
1176}
1177
1178/// getPointerType - Return the uniqued reference to the type for a pointer to
1179/// the specified type.
1180QualType ASTContext::getPointerType(QualType T) {
1181  // Unique pointers, to guarantee there is only one pointer of a particular
1182  // structure.
1183  llvm::FoldingSetNodeID ID;
1184  PointerType::Profile(ID, T);
1185
1186  void *InsertPos = 0;
1187  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1188    return QualType(PT, 0);
1189
1190  // If the pointee type isn't canonical, this won't be a canonical type either,
1191  // so fill in the canonical type field.
1192  QualType Canonical;
1193  if (!T->isCanonical()) {
1194    Canonical = getPointerType(getCanonicalType(T));
1195
1196    // Get the new insert position for the node we care about.
1197    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1198    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1199  }
1200  PointerType *New = new (*this,8) PointerType(T, Canonical);
1201  Types.push_back(New);
1202  PointerTypes.InsertNode(New, InsertPos);
1203  return QualType(New, 0);
1204}
1205
1206/// getBlockPointerType - Return the uniqued reference to the type for
1207/// a pointer to the specified block.
1208QualType ASTContext::getBlockPointerType(QualType T) {
1209  assert(T->isFunctionType() && "block of function types only");
1210  // Unique pointers, to guarantee there is only one block of a particular
1211  // structure.
1212  llvm::FoldingSetNodeID ID;
1213  BlockPointerType::Profile(ID, T);
1214
1215  void *InsertPos = 0;
1216  if (BlockPointerType *PT =
1217        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1218    return QualType(PT, 0);
1219
1220  // If the block pointee type isn't canonical, this won't be a canonical
1221  // type either so fill in the canonical type field.
1222  QualType Canonical;
1223  if (!T->isCanonical()) {
1224    Canonical = getBlockPointerType(getCanonicalType(T));
1225
1226    // Get the new insert position for the node we care about.
1227    BlockPointerType *NewIP =
1228      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1229    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1230  }
1231  BlockPointerType *New = new (*this,8) BlockPointerType(T, Canonical);
1232  Types.push_back(New);
1233  BlockPointerTypes.InsertNode(New, InsertPos);
1234  return QualType(New, 0);
1235}
1236
1237/// getLValueReferenceType - Return the uniqued reference to the type for an
1238/// lvalue reference to the specified type.
1239QualType ASTContext::getLValueReferenceType(QualType T) {
1240  // Unique pointers, to guarantee there is only one pointer of a particular
1241  // structure.
1242  llvm::FoldingSetNodeID ID;
1243  ReferenceType::Profile(ID, T);
1244
1245  void *InsertPos = 0;
1246  if (LValueReferenceType *RT =
1247        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1248    return QualType(RT, 0);
1249
1250  // If the referencee type isn't canonical, this won't be a canonical type
1251  // either, so fill in the canonical type field.
1252  QualType Canonical;
1253  if (!T->isCanonical()) {
1254    Canonical = getLValueReferenceType(getCanonicalType(T));
1255
1256    // Get the new insert position for the node we care about.
1257    LValueReferenceType *NewIP =
1258      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1259    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1260  }
1261
1262  LValueReferenceType *New = new (*this,8) LValueReferenceType(T, Canonical);
1263  Types.push_back(New);
1264  LValueReferenceTypes.InsertNode(New, InsertPos);
1265  return QualType(New, 0);
1266}
1267
1268/// getRValueReferenceType - Return the uniqued reference to the type for an
1269/// rvalue reference to the specified type.
1270QualType ASTContext::getRValueReferenceType(QualType T) {
1271  // Unique pointers, to guarantee there is only one pointer of a particular
1272  // structure.
1273  llvm::FoldingSetNodeID ID;
1274  ReferenceType::Profile(ID, T);
1275
1276  void *InsertPos = 0;
1277  if (RValueReferenceType *RT =
1278        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1279    return QualType(RT, 0);
1280
1281  // If the referencee type isn't canonical, this won't be a canonical type
1282  // either, so fill in the canonical type field.
1283  QualType Canonical;
1284  if (!T->isCanonical()) {
1285    Canonical = getRValueReferenceType(getCanonicalType(T));
1286
1287    // Get the new insert position for the node we care about.
1288    RValueReferenceType *NewIP =
1289      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1290    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1291  }
1292
1293  RValueReferenceType *New = new (*this,8) RValueReferenceType(T, Canonical);
1294  Types.push_back(New);
1295  RValueReferenceTypes.InsertNode(New, InsertPos);
1296  return QualType(New, 0);
1297}
1298
1299/// getMemberPointerType - Return the uniqued reference to the type for a
1300/// member pointer to the specified type, in the specified class.
1301QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls)
1302{
1303  // Unique pointers, to guarantee there is only one pointer of a particular
1304  // structure.
1305  llvm::FoldingSetNodeID ID;
1306  MemberPointerType::Profile(ID, T, Cls);
1307
1308  void *InsertPos = 0;
1309  if (MemberPointerType *PT =
1310      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1311    return QualType(PT, 0);
1312
1313  // If the pointee or class type isn't canonical, this won't be a canonical
1314  // type either, so fill in the canonical type field.
1315  QualType Canonical;
1316  if (!T->isCanonical()) {
1317    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1318
1319    // Get the new insert position for the node we care about.
1320    MemberPointerType *NewIP =
1321      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1322    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1323  }
1324  MemberPointerType *New = new (*this,8) MemberPointerType(T, Cls, Canonical);
1325  Types.push_back(New);
1326  MemberPointerTypes.InsertNode(New, InsertPos);
1327  return QualType(New, 0);
1328}
1329
1330/// getConstantArrayType - Return the unique reference to the type for an
1331/// array of the specified element type.
1332QualType ASTContext::getConstantArrayType(QualType EltTy,
1333                                          const llvm::APInt &ArySizeIn,
1334                                          ArrayType::ArraySizeModifier ASM,
1335                                          unsigned EltTypeQuals) {
1336  assert((EltTy->isDependentType() || EltTy->isConstantSizeType()) &&
1337         "Constant array of VLAs is illegal!");
1338
1339  // Convert the array size into a canonical width matching the pointer size for
1340  // the target.
1341  llvm::APInt ArySize(ArySizeIn);
1342  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1343
1344  llvm::FoldingSetNodeID ID;
1345  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1346
1347  void *InsertPos = 0;
1348  if (ConstantArrayType *ATP =
1349      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1350    return QualType(ATP, 0);
1351
1352  // If the element type isn't canonical, this won't be a canonical type either,
1353  // so fill in the canonical type field.
1354  QualType Canonical;
1355  if (!EltTy->isCanonical()) {
1356    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1357                                     ASM, EltTypeQuals);
1358    // Get the new insert position for the node we care about.
1359    ConstantArrayType *NewIP =
1360      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1361    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1362  }
1363
1364  ConstantArrayType *New =
1365    new(*this,8)ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1366  ConstantArrayTypes.InsertNode(New, InsertPos);
1367  Types.push_back(New);
1368  return QualType(New, 0);
1369}
1370
1371/// getConstantArrayWithExprType - Return a reference to the type for
1372/// an array of the specified element type.
1373QualType
1374ASTContext::getConstantArrayWithExprType(QualType EltTy,
1375                                         const llvm::APInt &ArySizeIn,
1376                                         Expr *ArySizeExpr,
1377                                         ArrayType::ArraySizeModifier ASM,
1378                                         unsigned EltTypeQuals,
1379                                         SourceRange Brackets) {
1380  // Convert the array size into a canonical width matching the pointer
1381  // size for the target.
1382  llvm::APInt ArySize(ArySizeIn);
1383  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1384
1385  // Compute the canonical ConstantArrayType.
1386  QualType Canonical = getConstantArrayType(getCanonicalType(EltTy),
1387                                            ArySize, ASM, EltTypeQuals);
1388  // Since we don't unique expressions, it isn't possible to unique VLA's
1389  // that have an expression provided for their size.
1390  ConstantArrayWithExprType *New =
1391    new(*this,8)ConstantArrayWithExprType(EltTy, Canonical,
1392                                          ArySize, ArySizeExpr,
1393                                          ASM, EltTypeQuals, Brackets);
1394  Types.push_back(New);
1395  return QualType(New, 0);
1396}
1397
1398/// getConstantArrayWithoutExprType - Return a reference to the type for
1399/// an array of the specified element type.
1400QualType
1401ASTContext::getConstantArrayWithoutExprType(QualType EltTy,
1402                                            const llvm::APInt &ArySizeIn,
1403                                            ArrayType::ArraySizeModifier ASM,
1404                                            unsigned EltTypeQuals) {
1405  // Convert the array size into a canonical width matching the pointer
1406  // size for the target.
1407  llvm::APInt ArySize(ArySizeIn);
1408  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1409
1410  // Compute the canonical ConstantArrayType.
1411  QualType Canonical = getConstantArrayType(getCanonicalType(EltTy),
1412                                            ArySize, ASM, EltTypeQuals);
1413  ConstantArrayWithoutExprType *New =
1414    new(*this,8)ConstantArrayWithoutExprType(EltTy, Canonical,
1415                                             ArySize, ASM, EltTypeQuals);
1416  Types.push_back(New);
1417  return QualType(New, 0);
1418}
1419
1420/// getVariableArrayType - Returns a non-unique reference to the type for a
1421/// variable array of the specified element type.
1422QualType ASTContext::getVariableArrayType(QualType EltTy,
1423                                          Expr *NumElts,
1424                                          ArrayType::ArraySizeModifier ASM,
1425                                          unsigned EltTypeQuals,
1426                                          SourceRange Brackets) {
1427  // Since we don't unique expressions, it isn't possible to unique VLA's
1428  // that have an expression provided for their size.
1429
1430  VariableArrayType *New =
1431    new(*this,8)VariableArrayType(EltTy, QualType(),
1432                                  NumElts, ASM, EltTypeQuals, Brackets);
1433
1434  VariableArrayTypes.push_back(New);
1435  Types.push_back(New);
1436  return QualType(New, 0);
1437}
1438
1439/// getDependentSizedArrayType - Returns a non-unique reference to
1440/// the type for a dependently-sized array of the specified element
1441/// type. FIXME: We will need these to be uniqued, or at least
1442/// comparable, at some point.
1443QualType ASTContext::getDependentSizedArrayType(QualType EltTy,
1444                                                Expr *NumElts,
1445                                                ArrayType::ArraySizeModifier ASM,
1446                                                unsigned EltTypeQuals,
1447                                                SourceRange Brackets) {
1448  assert((NumElts->isTypeDependent() || NumElts->isValueDependent()) &&
1449         "Size must be type- or value-dependent!");
1450
1451  // Since we don't unique expressions, it isn't possible to unique
1452  // dependently-sized array types.
1453
1454  DependentSizedArrayType *New =
1455    new (*this,8) DependentSizedArrayType(EltTy, QualType(),
1456                                          NumElts, ASM, EltTypeQuals,
1457                                          Brackets);
1458
1459  DependentSizedArrayTypes.push_back(New);
1460  Types.push_back(New);
1461  return QualType(New, 0);
1462}
1463
1464QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1465                                            ArrayType::ArraySizeModifier ASM,
1466                                            unsigned EltTypeQuals) {
1467  llvm::FoldingSetNodeID ID;
1468  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1469
1470  void *InsertPos = 0;
1471  if (IncompleteArrayType *ATP =
1472       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1473    return QualType(ATP, 0);
1474
1475  // If the element type isn't canonical, this won't be a canonical type
1476  // either, so fill in the canonical type field.
1477  QualType Canonical;
1478
1479  if (!EltTy->isCanonical()) {
1480    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1481                                       ASM, EltTypeQuals);
1482
1483    // Get the new insert position for the node we care about.
1484    IncompleteArrayType *NewIP =
1485      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1486    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1487  }
1488
1489  IncompleteArrayType *New
1490    = new (*this,8) IncompleteArrayType(EltTy, Canonical,
1491                                        ASM, EltTypeQuals);
1492
1493  IncompleteArrayTypes.InsertNode(New, InsertPos);
1494  Types.push_back(New);
1495  return QualType(New, 0);
1496}
1497
1498/// getVectorType - Return the unique reference to a vector type of
1499/// the specified element type and size. VectorType must be a built-in type.
1500QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
1501  BuiltinType *baseType;
1502
1503  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1504  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1505
1506  // Check if we've already instantiated a vector of this type.
1507  llvm::FoldingSetNodeID ID;
1508  VectorType::Profile(ID, vecType, NumElts, Type::Vector);
1509  void *InsertPos = 0;
1510  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1511    return QualType(VTP, 0);
1512
1513  // If the element type isn't canonical, this won't be a canonical type either,
1514  // so fill in the canonical type field.
1515  QualType Canonical;
1516  if (!vecType->isCanonical()) {
1517    Canonical = getVectorType(getCanonicalType(vecType), NumElts);
1518
1519    // Get the new insert position for the node we care about.
1520    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1521    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1522  }
1523  VectorType *New = new (*this,8) VectorType(vecType, NumElts, Canonical);
1524  VectorTypes.InsertNode(New, InsertPos);
1525  Types.push_back(New);
1526  return QualType(New, 0);
1527}
1528
1529/// getExtVectorType - Return the unique reference to an extended vector type of
1530/// the specified element type and size. VectorType must be a built-in type.
1531QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1532  BuiltinType *baseType;
1533
1534  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1535  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1536
1537  // Check if we've already instantiated a vector of this type.
1538  llvm::FoldingSetNodeID ID;
1539  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector);
1540  void *InsertPos = 0;
1541  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1542    return QualType(VTP, 0);
1543
1544  // If the element type isn't canonical, this won't be a canonical type either,
1545  // so fill in the canonical type field.
1546  QualType Canonical;
1547  if (!vecType->isCanonical()) {
1548    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1549
1550    // Get the new insert position for the node we care about.
1551    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1552    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1553  }
1554  ExtVectorType *New = new (*this,8) ExtVectorType(vecType, NumElts, Canonical);
1555  VectorTypes.InsertNode(New, InsertPos);
1556  Types.push_back(New);
1557  return QualType(New, 0);
1558}
1559
1560QualType ASTContext::getDependentSizedExtVectorType(QualType vecType,
1561                                                    Expr *SizeExpr,
1562                                                    SourceLocation AttrLoc) {
1563  DependentSizedExtVectorType *New =
1564      new (*this,8) DependentSizedExtVectorType(vecType, QualType(),
1565                                                SizeExpr, AttrLoc);
1566
1567  DependentSizedExtVectorTypes.push_back(New);
1568  Types.push_back(New);
1569  return QualType(New, 0);
1570}
1571
1572/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1573///
1574QualType ASTContext::getFunctionNoProtoType(QualType ResultTy) {
1575  // Unique functions, to guarantee there is only one function of a particular
1576  // structure.
1577  llvm::FoldingSetNodeID ID;
1578  FunctionNoProtoType::Profile(ID, ResultTy);
1579
1580  void *InsertPos = 0;
1581  if (FunctionNoProtoType *FT =
1582        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1583    return QualType(FT, 0);
1584
1585  QualType Canonical;
1586  if (!ResultTy->isCanonical()) {
1587    Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy));
1588
1589    // Get the new insert position for the node we care about.
1590    FunctionNoProtoType *NewIP =
1591      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1592    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1593  }
1594
1595  FunctionNoProtoType *New =new(*this,8)FunctionNoProtoType(ResultTy,Canonical);
1596  Types.push_back(New);
1597  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1598  return QualType(New, 0);
1599}
1600
1601/// getFunctionType - Return a normal function type with a typed argument
1602/// list.  isVariadic indicates whether the argument list includes '...'.
1603QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1604                                     unsigned NumArgs, bool isVariadic,
1605                                     unsigned TypeQuals, bool hasExceptionSpec,
1606                                     bool hasAnyExceptionSpec, unsigned NumExs,
1607                                     const QualType *ExArray) {
1608  // Unique functions, to guarantee there is only one function of a particular
1609  // structure.
1610  llvm::FoldingSetNodeID ID;
1611  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1612                             TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1613                             NumExs, ExArray);
1614
1615  void *InsertPos = 0;
1616  if (FunctionProtoType *FTP =
1617        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1618    return QualType(FTP, 0);
1619
1620  // Determine whether the type being created is already canonical or not.
1621  bool isCanonical = ResultTy->isCanonical();
1622  if (hasExceptionSpec)
1623    isCanonical = false;
1624  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1625    if (!ArgArray[i]->isCanonical())
1626      isCanonical = false;
1627
1628  // If this type isn't canonical, get the canonical version of it.
1629  // The exception spec is not part of the canonical type.
1630  QualType Canonical;
1631  if (!isCanonical) {
1632    llvm::SmallVector<QualType, 16> CanonicalArgs;
1633    CanonicalArgs.reserve(NumArgs);
1634    for (unsigned i = 0; i != NumArgs; ++i)
1635      CanonicalArgs.push_back(getCanonicalType(ArgArray[i]));
1636
1637    Canonical = getFunctionType(getCanonicalType(ResultTy),
1638                                CanonicalArgs.data(), NumArgs,
1639                                isVariadic, TypeQuals);
1640
1641    // Get the new insert position for the node we care about.
1642    FunctionProtoType *NewIP =
1643      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1644    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1645  }
1646
1647  // FunctionProtoType objects are allocated with extra bytes after them
1648  // for two variable size arrays (for parameter and exception types) at the
1649  // end of them.
1650  FunctionProtoType *FTP =
1651    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1652                                 NumArgs*sizeof(QualType) +
1653                                 NumExs*sizeof(QualType), 8);
1654  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1655                              TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1656                              ExArray, NumExs, Canonical);
1657  Types.push_back(FTP);
1658  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1659  return QualType(FTP, 0);
1660}
1661
1662/// getTypeDeclType - Return the unique reference to the type for the
1663/// specified type declaration.
1664QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) {
1665  assert(Decl && "Passed null for Decl param");
1666  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1667
1668  if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1669    return getTypedefType(Typedef);
1670  else if (isa<TemplateTypeParmDecl>(Decl)) {
1671    assert(false && "Template type parameter types are always available.");
1672  } else if (ObjCInterfaceDecl *ObjCInterface = dyn_cast<ObjCInterfaceDecl>(Decl))
1673    return getObjCInterfaceType(ObjCInterface);
1674
1675  if (RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1676    if (PrevDecl)
1677      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1678    else
1679      Decl->TypeForDecl = new (*this,8) RecordType(Record);
1680  }
1681  else if (EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1682    if (PrevDecl)
1683      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1684    else
1685      Decl->TypeForDecl = new (*this,8) EnumType(Enum);
1686  }
1687  else
1688    assert(false && "TypeDecl without a type?");
1689
1690  if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
1691  return QualType(Decl->TypeForDecl, 0);
1692}
1693
1694/// getTypedefType - Return the unique reference to the type for the
1695/// specified typename decl.
1696QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
1697  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1698
1699  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1700  Decl->TypeForDecl = new(*this,8) TypedefType(Type::Typedef, Decl, Canonical);
1701  Types.push_back(Decl->TypeForDecl);
1702  return QualType(Decl->TypeForDecl, 0);
1703}
1704
1705/// \brief Retrieve the template type parameter type for a template
1706/// parameter or parameter pack with the given depth, index, and (optionally)
1707/// name.
1708QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1709                                             bool ParameterPack,
1710                                             IdentifierInfo *Name) {
1711  llvm::FoldingSetNodeID ID;
1712  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
1713  void *InsertPos = 0;
1714  TemplateTypeParmType *TypeParm
1715    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1716
1717  if (TypeParm)
1718    return QualType(TypeParm, 0);
1719
1720  if (Name) {
1721    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
1722    TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index, ParameterPack,
1723                                                   Name, Canon);
1724  } else
1725    TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index, ParameterPack);
1726
1727  Types.push_back(TypeParm);
1728  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1729
1730  return QualType(TypeParm, 0);
1731}
1732
1733QualType
1734ASTContext::getTemplateSpecializationType(TemplateName Template,
1735                                          const TemplateArgument *Args,
1736                                          unsigned NumArgs,
1737                                          QualType Canon) {
1738  if (!Canon.isNull())
1739    Canon = getCanonicalType(Canon);
1740
1741  llvm::FoldingSetNodeID ID;
1742  TemplateSpecializationType::Profile(ID, Template, Args, NumArgs);
1743
1744  void *InsertPos = 0;
1745  TemplateSpecializationType *Spec
1746    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1747
1748  if (Spec)
1749    return QualType(Spec, 0);
1750
1751  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1752                        sizeof(TemplateArgument) * NumArgs),
1753                       8);
1754  Spec = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, Canon);
1755  Types.push_back(Spec);
1756  TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1757
1758  return QualType(Spec, 0);
1759}
1760
1761QualType
1762ASTContext::getQualifiedNameType(NestedNameSpecifier *NNS,
1763                                 QualType NamedType) {
1764  llvm::FoldingSetNodeID ID;
1765  QualifiedNameType::Profile(ID, NNS, NamedType);
1766
1767  void *InsertPos = 0;
1768  QualifiedNameType *T
1769    = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1770  if (T)
1771    return QualType(T, 0);
1772
1773  T = new (*this) QualifiedNameType(NNS, NamedType,
1774                                    getCanonicalType(NamedType));
1775  Types.push_back(T);
1776  QualifiedNameTypes.InsertNode(T, InsertPos);
1777  return QualType(T, 0);
1778}
1779
1780QualType ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1781                                     const IdentifierInfo *Name,
1782                                     QualType Canon) {
1783  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1784
1785  if (Canon.isNull()) {
1786    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1787    if (CanonNNS != NNS)
1788      Canon = getTypenameType(CanonNNS, Name);
1789  }
1790
1791  llvm::FoldingSetNodeID ID;
1792  TypenameType::Profile(ID, NNS, Name);
1793
1794  void *InsertPos = 0;
1795  TypenameType *T
1796    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1797  if (T)
1798    return QualType(T, 0);
1799
1800  T = new (*this) TypenameType(NNS, Name, Canon);
1801  Types.push_back(T);
1802  TypenameTypes.InsertNode(T, InsertPos);
1803  return QualType(T, 0);
1804}
1805
1806QualType
1807ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1808                            const TemplateSpecializationType *TemplateId,
1809                            QualType Canon) {
1810  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1811
1812  if (Canon.isNull()) {
1813    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1814    QualType CanonType = getCanonicalType(QualType(TemplateId, 0));
1815    if (CanonNNS != NNS || CanonType != QualType(TemplateId, 0)) {
1816      const TemplateSpecializationType *CanonTemplateId
1817        = CanonType->getAsTemplateSpecializationType();
1818      assert(CanonTemplateId &&
1819             "Canonical type must also be a template specialization type");
1820      Canon = getTypenameType(CanonNNS, CanonTemplateId);
1821    }
1822  }
1823
1824  llvm::FoldingSetNodeID ID;
1825  TypenameType::Profile(ID, NNS, TemplateId);
1826
1827  void *InsertPos = 0;
1828  TypenameType *T
1829    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1830  if (T)
1831    return QualType(T, 0);
1832
1833  T = new (*this) TypenameType(NNS, TemplateId, Canon);
1834  Types.push_back(T);
1835  TypenameTypes.InsertNode(T, InsertPos);
1836  return QualType(T, 0);
1837}
1838
1839/// CmpProtocolNames - Comparison predicate for sorting protocols
1840/// alphabetically.
1841static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
1842                            const ObjCProtocolDecl *RHS) {
1843  return LHS->getDeclName() < RHS->getDeclName();
1844}
1845
1846static void SortAndUniqueProtocols(ObjCProtocolDecl **&Protocols,
1847                                   unsigned &NumProtocols) {
1848  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
1849
1850  // Sort protocols, keyed by name.
1851  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
1852
1853  // Remove duplicates.
1854  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
1855  NumProtocols = ProtocolsEnd-Protocols;
1856}
1857
1858/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
1859/// the given interface decl and the conforming protocol list.
1860QualType ASTContext::getObjCObjectPointerType(QualType InterfaceT,
1861                                              ObjCProtocolDecl **Protocols,
1862                                              unsigned NumProtocols) {
1863  if (InterfaceT.isNull())
1864    InterfaceT = ObjCBuiltinIdTy;
1865
1866  // Sort the protocol list alphabetically to canonicalize it.
1867  if (NumProtocols)
1868    SortAndUniqueProtocols(Protocols, NumProtocols);
1869
1870  llvm::FoldingSetNodeID ID;
1871  ObjCObjectPointerType::Profile(ID, InterfaceT, Protocols, NumProtocols);
1872
1873  void *InsertPos = 0;
1874  if (ObjCObjectPointerType *QT =
1875              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1876    return QualType(QT, 0);
1877
1878  // No Match;
1879  ObjCObjectPointerType *QType =
1880    new (*this,8) ObjCObjectPointerType(InterfaceT, Protocols, NumProtocols);
1881
1882  Types.push_back(QType);
1883  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
1884  return QualType(QType, 0);
1885}
1886
1887/// getObjCInterfaceType - Return the unique reference to the type for the
1888/// specified ObjC interface decl. The list of protocols is optional.
1889QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
1890                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
1891  if (NumProtocols)
1892    // Sort the protocol list alphabetically to canonicalize it.
1893    SortAndUniqueProtocols(Protocols, NumProtocols);
1894
1895  llvm::FoldingSetNodeID ID;
1896  ObjCInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
1897
1898  void *InsertPos = 0;
1899  if (ObjCInterfaceType *QT =
1900      ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
1901    return QualType(QT, 0);
1902
1903  // No Match;
1904  ObjCInterfaceType *QType =
1905    new (*this,8) ObjCInterfaceType(const_cast<ObjCInterfaceDecl*>(Decl),
1906                                    Protocols, NumProtocols);
1907  Types.push_back(QType);
1908  ObjCInterfaceTypes.InsertNode(QType, InsertPos);
1909  return QualType(QType, 0);
1910}
1911
1912/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
1913/// TypeOfExprType AST's (since expression's are never shared). For example,
1914/// multiple declarations that refer to "typeof(x)" all contain different
1915/// DeclRefExpr's. This doesn't effect the type checker, since it operates
1916/// on canonical type's (which are always unique).
1917QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
1918  TypeOfExprType *toe;
1919  if (tofExpr->isTypeDependent())
1920    toe = new (*this, 8) TypeOfExprType(tofExpr);
1921  else {
1922    QualType Canonical = getCanonicalType(tofExpr->getType());
1923    toe = new (*this,8) TypeOfExprType(tofExpr, Canonical);
1924  }
1925  Types.push_back(toe);
1926  return QualType(toe, 0);
1927}
1928
1929/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
1930/// TypeOfType AST's. The only motivation to unique these nodes would be
1931/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
1932/// an issue. This doesn't effect the type checker, since it operates
1933/// on canonical type's (which are always unique).
1934QualType ASTContext::getTypeOfType(QualType tofType) {
1935  QualType Canonical = getCanonicalType(tofType);
1936  TypeOfType *tot = new (*this,8) TypeOfType(tofType, Canonical);
1937  Types.push_back(tot);
1938  return QualType(tot, 0);
1939}
1940
1941/// getDecltypeForExpr - Given an expr, will return the decltype for that
1942/// expression, according to the rules in C++0x [dcl.type.simple]p4
1943static QualType getDecltypeForExpr(const Expr *e, ASTContext &Context) {
1944  if (e->isTypeDependent())
1945    return Context.DependentTy;
1946
1947  // If e is an id expression or a class member access, decltype(e) is defined
1948  // as the type of the entity named by e.
1949  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
1950    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
1951      return VD->getType();
1952  }
1953  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
1954    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
1955      return FD->getType();
1956  }
1957  // If e is a function call or an invocation of an overloaded operator,
1958  // (parentheses around e are ignored), decltype(e) is defined as the
1959  // return type of that function.
1960  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
1961    return CE->getCallReturnType();
1962
1963  QualType T = e->getType();
1964
1965  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
1966  // defined as T&, otherwise decltype(e) is defined as T.
1967  if (e->isLvalue(Context) == Expr::LV_Valid)
1968    T = Context.getLValueReferenceType(T);
1969
1970  return T;
1971}
1972
1973/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
1974/// DecltypeType AST's. The only motivation to unique these nodes would be
1975/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
1976/// an issue. This doesn't effect the type checker, since it operates
1977/// on canonical type's (which are always unique).
1978QualType ASTContext::getDecltypeType(Expr *e) {
1979  DecltypeType *dt;
1980  if (e->isTypeDependent()) // FIXME: canonicalize the expression
1981    dt = new (*this, 8) DecltypeType(e, DependentTy);
1982  else {
1983    QualType T = getDecltypeForExpr(e, *this);
1984    dt = new (*this, 8) DecltypeType(e, T, getCanonicalType(T));
1985  }
1986  Types.push_back(dt);
1987  return QualType(dt, 0);
1988}
1989
1990/// getTagDeclType - Return the unique reference to the type for the
1991/// specified TagDecl (struct/union/class/enum) decl.
1992QualType ASTContext::getTagDeclType(TagDecl *Decl) {
1993  assert (Decl);
1994  return getTypeDeclType(Decl);
1995}
1996
1997/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
1998/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
1999/// needs to agree with the definition in <stddef.h>.
2000QualType ASTContext::getSizeType() const {
2001  return getFromTargetType(Target.getSizeType());
2002}
2003
2004/// getSignedWCharType - Return the type of "signed wchar_t".
2005/// Used when in C++, as a GCC extension.
2006QualType ASTContext::getSignedWCharType() const {
2007  // FIXME: derive from "Target" ?
2008  return WCharTy;
2009}
2010
2011/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2012/// Used when in C++, as a GCC extension.
2013QualType ASTContext::getUnsignedWCharType() const {
2014  // FIXME: derive from "Target" ?
2015  return UnsignedIntTy;
2016}
2017
2018/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2019/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2020QualType ASTContext::getPointerDiffType() const {
2021  return getFromTargetType(Target.getPtrDiffType(0));
2022}
2023
2024//===----------------------------------------------------------------------===//
2025//                              Type Operators
2026//===----------------------------------------------------------------------===//
2027
2028/// getCanonicalType - Return the canonical (structural) type corresponding to
2029/// the specified potentially non-canonical type.  The non-canonical version
2030/// of a type may have many "decorated" versions of types.  Decorators can
2031/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
2032/// to be free of any of these, allowing two canonical types to be compared
2033/// for exact equality with a simple pointer comparison.
2034QualType ASTContext::getCanonicalType(QualType T) {
2035  QualType CanType = T.getTypePtr()->getCanonicalTypeInternal();
2036
2037  // If the result has type qualifiers, make sure to canonicalize them as well.
2038  unsigned TypeQuals = T.getCVRQualifiers() | CanType.getCVRQualifiers();
2039  if (TypeQuals == 0) return CanType;
2040
2041  // If the type qualifiers are on an array type, get the canonical type of the
2042  // array with the qualifiers applied to the element type.
2043  ArrayType *AT = dyn_cast<ArrayType>(CanType);
2044  if (!AT)
2045    return CanType.getQualifiedType(TypeQuals);
2046
2047  // Get the canonical version of the element with the extra qualifiers on it.
2048  // This can recursively sink qualifiers through multiple levels of arrays.
2049  QualType NewEltTy=AT->getElementType().getWithAdditionalQualifiers(TypeQuals);
2050  NewEltTy = getCanonicalType(NewEltTy);
2051
2052  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2053    return getConstantArrayType(NewEltTy, CAT->getSize(),CAT->getSizeModifier(),
2054                                CAT->getIndexTypeQualifier());
2055  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
2056    return getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
2057                                  IAT->getIndexTypeQualifier());
2058
2059  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
2060    return getDependentSizedArrayType(NewEltTy,
2061                                      DSAT->getSizeExpr(),
2062                                      DSAT->getSizeModifier(),
2063                                      DSAT->getIndexTypeQualifier(),
2064                                      DSAT->getBracketsRange());
2065
2066  VariableArrayType *VAT = cast<VariableArrayType>(AT);
2067  return getVariableArrayType(NewEltTy,
2068                              VAT->getSizeExpr(),
2069                              VAT->getSizeModifier(),
2070                              VAT->getIndexTypeQualifier(),
2071                              VAT->getBracketsRange());
2072}
2073
2074TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
2075  // If this template name refers to a template, the canonical
2076  // template name merely stores the template itself.
2077  if (TemplateDecl *Template = Name.getAsTemplateDecl())
2078    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
2079
2080  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
2081  assert(DTN && "Non-dependent template names must refer to template decls.");
2082  return DTN->CanonicalTemplateName;
2083}
2084
2085NestedNameSpecifier *
2086ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
2087  if (!NNS)
2088    return 0;
2089
2090  switch (NNS->getKind()) {
2091  case NestedNameSpecifier::Identifier:
2092    // Canonicalize the prefix but keep the identifier the same.
2093    return NestedNameSpecifier::Create(*this,
2094                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
2095                                       NNS->getAsIdentifier());
2096
2097  case NestedNameSpecifier::Namespace:
2098    // A namespace is canonical; build a nested-name-specifier with
2099    // this namespace and no prefix.
2100    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
2101
2102  case NestedNameSpecifier::TypeSpec:
2103  case NestedNameSpecifier::TypeSpecWithTemplate: {
2104    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
2105    NestedNameSpecifier *Prefix = 0;
2106
2107    // FIXME: This isn't the right check!
2108    if (T->isDependentType())
2109      Prefix = getCanonicalNestedNameSpecifier(NNS->getPrefix());
2110
2111    return NestedNameSpecifier::Create(*this, Prefix,
2112                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
2113                                       T.getTypePtr());
2114  }
2115
2116  case NestedNameSpecifier::Global:
2117    // The global specifier is canonical and unique.
2118    return NNS;
2119  }
2120
2121  // Required to silence a GCC warning
2122  return 0;
2123}
2124
2125
2126const ArrayType *ASTContext::getAsArrayType(QualType T) {
2127  // Handle the non-qualified case efficiently.
2128  if (T.getCVRQualifiers() == 0) {
2129    // Handle the common positive case fast.
2130    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
2131      return AT;
2132  }
2133
2134  // Handle the common negative case fast, ignoring CVR qualifiers.
2135  QualType CType = T->getCanonicalTypeInternal();
2136
2137  // Make sure to look through type qualifiers (like ExtQuals) for the negative
2138  // test.
2139  if (!isa<ArrayType>(CType) &&
2140      !isa<ArrayType>(CType.getUnqualifiedType()))
2141    return 0;
2142
2143  // Apply any CVR qualifiers from the array type to the element type.  This
2144  // implements C99 6.7.3p8: "If the specification of an array type includes
2145  // any type qualifiers, the element type is so qualified, not the array type."
2146
2147  // If we get here, we either have type qualifiers on the type, or we have
2148  // sugar such as a typedef in the way.  If we have type qualifiers on the type
2149  // we must propagate them down into the elemeng type.
2150  unsigned CVRQuals = T.getCVRQualifiers();
2151  unsigned AddrSpace = 0;
2152  Type *Ty = T.getTypePtr();
2153
2154  // Rip through ExtQualType's and typedefs to get to a concrete type.
2155  while (1) {
2156    if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(Ty)) {
2157      AddrSpace = EXTQT->getAddressSpace();
2158      Ty = EXTQT->getBaseType();
2159    } else {
2160      T = Ty->getDesugaredType();
2161      if (T.getTypePtr() == Ty && T.getCVRQualifiers() == 0)
2162        break;
2163      CVRQuals |= T.getCVRQualifiers();
2164      Ty = T.getTypePtr();
2165    }
2166  }
2167
2168  // If we have a simple case, just return now.
2169  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
2170  if (ATy == 0 || (AddrSpace == 0 && CVRQuals == 0))
2171    return ATy;
2172
2173  // Otherwise, we have an array and we have qualifiers on it.  Push the
2174  // qualifiers into the array element type and return a new array type.
2175  // Get the canonical version of the element with the extra qualifiers on it.
2176  // This can recursively sink qualifiers through multiple levels of arrays.
2177  QualType NewEltTy = ATy->getElementType();
2178  if (AddrSpace)
2179    NewEltTy = getAddrSpaceQualType(NewEltTy, AddrSpace);
2180  NewEltTy = NewEltTy.getWithAdditionalQualifiers(CVRQuals);
2181
2182  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
2183    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
2184                                                CAT->getSizeModifier(),
2185                                                CAT->getIndexTypeQualifier()));
2186  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
2187    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
2188                                                  IAT->getSizeModifier(),
2189                                                  IAT->getIndexTypeQualifier()));
2190
2191  if (const DependentSizedArrayType *DSAT
2192        = dyn_cast<DependentSizedArrayType>(ATy))
2193    return cast<ArrayType>(
2194                     getDependentSizedArrayType(NewEltTy,
2195                                                DSAT->getSizeExpr(),
2196                                                DSAT->getSizeModifier(),
2197                                                DSAT->getIndexTypeQualifier(),
2198                                                DSAT->getBracketsRange()));
2199
2200  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
2201  return cast<ArrayType>(getVariableArrayType(NewEltTy,
2202                                              VAT->getSizeExpr(),
2203                                              VAT->getSizeModifier(),
2204                                              VAT->getIndexTypeQualifier(),
2205                                              VAT->getBracketsRange()));
2206}
2207
2208
2209/// getArrayDecayedType - Return the properly qualified result of decaying the
2210/// specified array type to a pointer.  This operation is non-trivial when
2211/// handling typedefs etc.  The canonical type of "T" must be an array type,
2212/// this returns a pointer to a properly qualified element of the array.
2213///
2214/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2215QualType ASTContext::getArrayDecayedType(QualType Ty) {
2216  // Get the element type with 'getAsArrayType' so that we don't lose any
2217  // typedefs in the element type of the array.  This also handles propagation
2218  // of type qualifiers from the array type into the element type if present
2219  // (C99 6.7.3p8).
2220  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
2221  assert(PrettyArrayType && "Not an array type!");
2222
2223  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
2224
2225  // int x[restrict 4] ->  int *restrict
2226  return PtrTy.getQualifiedType(PrettyArrayType->getIndexTypeQualifier());
2227}
2228
2229QualType ASTContext::getBaseElementType(const VariableArrayType *VAT) {
2230  QualType ElemTy = VAT->getElementType();
2231
2232  if (const VariableArrayType *VAT = getAsVariableArrayType(ElemTy))
2233    return getBaseElementType(VAT);
2234
2235  return ElemTy;
2236}
2237
2238/// getFloatingRank - Return a relative rank for floating point types.
2239/// This routine will assert if passed a built-in type that isn't a float.
2240static FloatingRank getFloatingRank(QualType T) {
2241  if (const ComplexType *CT = T->getAsComplexType())
2242    return getFloatingRank(CT->getElementType());
2243
2244  assert(T->getAsBuiltinType() && "getFloatingRank(): not a floating type");
2245  switch (T->getAsBuiltinType()->getKind()) {
2246  default: assert(0 && "getFloatingRank(): not a floating type");
2247  case BuiltinType::Float:      return FloatRank;
2248  case BuiltinType::Double:     return DoubleRank;
2249  case BuiltinType::LongDouble: return LongDoubleRank;
2250  }
2251}
2252
2253/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
2254/// point or a complex type (based on typeDomain/typeSize).
2255/// 'typeDomain' is a real floating point or complex type.
2256/// 'typeSize' is a real floating point or complex type.
2257QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
2258                                                       QualType Domain) const {
2259  FloatingRank EltRank = getFloatingRank(Size);
2260  if (Domain->isComplexType()) {
2261    switch (EltRank) {
2262    default: assert(0 && "getFloatingRank(): illegal value for rank");
2263    case FloatRank:      return FloatComplexTy;
2264    case DoubleRank:     return DoubleComplexTy;
2265    case LongDoubleRank: return LongDoubleComplexTy;
2266    }
2267  }
2268
2269  assert(Domain->isRealFloatingType() && "Unknown domain!");
2270  switch (EltRank) {
2271  default: assert(0 && "getFloatingRank(): illegal value for rank");
2272  case FloatRank:      return FloatTy;
2273  case DoubleRank:     return DoubleTy;
2274  case LongDoubleRank: return LongDoubleTy;
2275  }
2276}
2277
2278/// getFloatingTypeOrder - Compare the rank of the two specified floating
2279/// point types, ignoring the domain of the type (i.e. 'double' ==
2280/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2281/// LHS < RHS, return -1.
2282int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
2283  FloatingRank LHSR = getFloatingRank(LHS);
2284  FloatingRank RHSR = getFloatingRank(RHS);
2285
2286  if (LHSR == RHSR)
2287    return 0;
2288  if (LHSR > RHSR)
2289    return 1;
2290  return -1;
2291}
2292
2293/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
2294/// routine will assert if passed a built-in type that isn't an integer or enum,
2295/// or if it is not canonicalized.
2296unsigned ASTContext::getIntegerRank(Type *T) {
2297  assert(T->isCanonical() && "T should be canonicalized");
2298  if (EnumType* ET = dyn_cast<EnumType>(T))
2299    T = ET->getDecl()->getIntegerType().getTypePtr();
2300
2301  if (T->isSpecificBuiltinType(BuiltinType::WChar))
2302    T = getFromTargetType(Target.getWCharType()).getTypePtr();
2303
2304  if (T->isSpecificBuiltinType(BuiltinType::Char16))
2305    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
2306
2307  if (T->isSpecificBuiltinType(BuiltinType::Char32))
2308    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
2309
2310  // There are two things which impact the integer rank: the width, and
2311  // the ordering of builtins.  The builtin ordering is encoded in the
2312  // bottom three bits; the width is encoded in the bits above that.
2313  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T))
2314    return FWIT->getWidth() << 3;
2315
2316  switch (cast<BuiltinType>(T)->getKind()) {
2317  default: assert(0 && "getIntegerRank(): not a built-in integer");
2318  case BuiltinType::Bool:
2319    return 1 + (getIntWidth(BoolTy) << 3);
2320  case BuiltinType::Char_S:
2321  case BuiltinType::Char_U:
2322  case BuiltinType::SChar:
2323  case BuiltinType::UChar:
2324    return 2 + (getIntWidth(CharTy) << 3);
2325  case BuiltinType::Short:
2326  case BuiltinType::UShort:
2327    return 3 + (getIntWidth(ShortTy) << 3);
2328  case BuiltinType::Int:
2329  case BuiltinType::UInt:
2330    return 4 + (getIntWidth(IntTy) << 3);
2331  case BuiltinType::Long:
2332  case BuiltinType::ULong:
2333    return 5 + (getIntWidth(LongTy) << 3);
2334  case BuiltinType::LongLong:
2335  case BuiltinType::ULongLong:
2336    return 6 + (getIntWidth(LongLongTy) << 3);
2337  case BuiltinType::Int128:
2338  case BuiltinType::UInt128:
2339    return 7 + (getIntWidth(Int128Ty) << 3);
2340  }
2341}
2342
2343/// getIntegerTypeOrder - Returns the highest ranked integer type:
2344/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2345/// LHS < RHS, return -1.
2346int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
2347  Type *LHSC = getCanonicalType(LHS).getTypePtr();
2348  Type *RHSC = getCanonicalType(RHS).getTypePtr();
2349  if (LHSC == RHSC) return 0;
2350
2351  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
2352  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
2353
2354  unsigned LHSRank = getIntegerRank(LHSC);
2355  unsigned RHSRank = getIntegerRank(RHSC);
2356
2357  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
2358    if (LHSRank == RHSRank) return 0;
2359    return LHSRank > RHSRank ? 1 : -1;
2360  }
2361
2362  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
2363  if (LHSUnsigned) {
2364    // If the unsigned [LHS] type is larger, return it.
2365    if (LHSRank >= RHSRank)
2366      return 1;
2367
2368    // If the signed type can represent all values of the unsigned type, it
2369    // wins.  Because we are dealing with 2's complement and types that are
2370    // powers of two larger than each other, this is always safe.
2371    return -1;
2372  }
2373
2374  // If the unsigned [RHS] type is larger, return it.
2375  if (RHSRank >= LHSRank)
2376    return -1;
2377
2378  // If the signed type can represent all values of the unsigned type, it
2379  // wins.  Because we are dealing with 2's complement and types that are
2380  // powers of two larger than each other, this is always safe.
2381  return 1;
2382}
2383
2384// getCFConstantStringType - Return the type used for constant CFStrings.
2385QualType ASTContext::getCFConstantStringType() {
2386  if (!CFConstantStringTypeDecl) {
2387    CFConstantStringTypeDecl =
2388      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2389                         &Idents.get("NSConstantString"));
2390    QualType FieldTypes[4];
2391
2392    // const int *isa;
2393    FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const));
2394    // int flags;
2395    FieldTypes[1] = IntTy;
2396    // const char *str;
2397    FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const));
2398    // long length;
2399    FieldTypes[3] = LongTy;
2400
2401    // Create fields
2402    for (unsigned i = 0; i < 4; ++i) {
2403      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
2404                                           SourceLocation(), 0,
2405                                           FieldTypes[i], /*BitWidth=*/0,
2406                                           /*Mutable=*/false);
2407      CFConstantStringTypeDecl->addDecl(Field);
2408    }
2409
2410    CFConstantStringTypeDecl->completeDefinition(*this);
2411  }
2412
2413  return getTagDeclType(CFConstantStringTypeDecl);
2414}
2415
2416void ASTContext::setCFConstantStringType(QualType T) {
2417  const RecordType *Rec = T->getAsRecordType();
2418  assert(Rec && "Invalid CFConstantStringType");
2419  CFConstantStringTypeDecl = Rec->getDecl();
2420}
2421
2422QualType ASTContext::getObjCFastEnumerationStateType()
2423{
2424  if (!ObjCFastEnumerationStateTypeDecl) {
2425    ObjCFastEnumerationStateTypeDecl =
2426      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2427                         &Idents.get("__objcFastEnumerationState"));
2428
2429    QualType FieldTypes[] = {
2430      UnsignedLongTy,
2431      getPointerType(ObjCIdTypedefType),
2432      getPointerType(UnsignedLongTy),
2433      getConstantArrayType(UnsignedLongTy,
2434                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2435    };
2436
2437    for (size_t i = 0; i < 4; ++i) {
2438      FieldDecl *Field = FieldDecl::Create(*this,
2439                                           ObjCFastEnumerationStateTypeDecl,
2440                                           SourceLocation(), 0,
2441                                           FieldTypes[i], /*BitWidth=*/0,
2442                                           /*Mutable=*/false);
2443      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
2444    }
2445
2446    ObjCFastEnumerationStateTypeDecl->completeDefinition(*this);
2447  }
2448
2449  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
2450}
2451
2452void ASTContext::setObjCFastEnumerationStateType(QualType T) {
2453  const RecordType *Rec = T->getAsRecordType();
2454  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
2455  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
2456}
2457
2458// This returns true if a type has been typedefed to BOOL:
2459// typedef <type> BOOL;
2460static bool isTypeTypedefedAsBOOL(QualType T) {
2461  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
2462    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
2463      return II->isStr("BOOL");
2464
2465  return false;
2466}
2467
2468/// getObjCEncodingTypeSize returns size of type for objective-c encoding
2469/// purpose.
2470int ASTContext::getObjCEncodingTypeSize(QualType type) {
2471  uint64_t sz = getTypeSize(type);
2472
2473  // Make all integer and enum types at least as large as an int
2474  if (sz > 0 && type->isIntegralType())
2475    sz = std::max(sz, getTypeSize(IntTy));
2476  // Treat arrays as pointers, since that's how they're passed in.
2477  else if (type->isArrayType())
2478    sz = getTypeSize(VoidPtrTy);
2479  return sz / getTypeSize(CharTy);
2480}
2481
2482/// getObjCEncodingForMethodDecl - Return the encoded type for this method
2483/// declaration.
2484void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
2485                                              std::string& S) {
2486  // FIXME: This is not very efficient.
2487  // Encode type qualifer, 'in', 'inout', etc. for the return type.
2488  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
2489  // Encode result type.
2490  getObjCEncodingForType(Decl->getResultType(), S);
2491  // Compute size of all parameters.
2492  // Start with computing size of a pointer in number of bytes.
2493  // FIXME: There might(should) be a better way of doing this computation!
2494  SourceLocation Loc;
2495  int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
2496  // The first two arguments (self and _cmd) are pointers; account for
2497  // their size.
2498  int ParmOffset = 2 * PtrSize;
2499  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
2500       E = Decl->param_end(); PI != E; ++PI) {
2501    QualType PType = (*PI)->getType();
2502    int sz = getObjCEncodingTypeSize(PType);
2503    assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type");
2504    ParmOffset += sz;
2505  }
2506  S += llvm::utostr(ParmOffset);
2507  S += "@0:";
2508  S += llvm::utostr(PtrSize);
2509
2510  // Argument types.
2511  ParmOffset = 2 * PtrSize;
2512  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
2513       E = Decl->param_end(); PI != E; ++PI) {
2514    ParmVarDecl *PVDecl = *PI;
2515    QualType PType = PVDecl->getOriginalType();
2516    if (const ArrayType *AT =
2517          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
2518      // Use array's original type only if it has known number of
2519      // elements.
2520      if (!isa<ConstantArrayType>(AT))
2521        PType = PVDecl->getType();
2522    } else if (PType->isFunctionType())
2523      PType = PVDecl->getType();
2524    // Process argument qualifiers for user supplied arguments; such as,
2525    // 'in', 'inout', etc.
2526    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
2527    getObjCEncodingForType(PType, S);
2528    S += llvm::utostr(ParmOffset);
2529    ParmOffset += getObjCEncodingTypeSize(PType);
2530  }
2531}
2532
2533/// getObjCEncodingForPropertyDecl - Return the encoded type for this
2534/// property declaration. If non-NULL, Container must be either an
2535/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
2536/// NULL when getting encodings for protocol properties.
2537/// Property attributes are stored as a comma-delimited C string. The simple
2538/// attributes readonly and bycopy are encoded as single characters. The
2539/// parametrized attributes, getter=name, setter=name, and ivar=name, are
2540/// encoded as single characters, followed by an identifier. Property types
2541/// are also encoded as a parametrized attribute. The characters used to encode
2542/// these attributes are defined by the following enumeration:
2543/// @code
2544/// enum PropertyAttributes {
2545/// kPropertyReadOnly = 'R',   // property is read-only.
2546/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
2547/// kPropertyByref = '&',  // property is a reference to the value last assigned
2548/// kPropertyDynamic = 'D',    // property is dynamic
2549/// kPropertyGetter = 'G',     // followed by getter selector name
2550/// kPropertySetter = 'S',     // followed by setter selector name
2551/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
2552/// kPropertyType = 't'              // followed by old-style type encoding.
2553/// kPropertyWeak = 'W'              // 'weak' property
2554/// kPropertyStrong = 'P'            // property GC'able
2555/// kPropertyNonAtomic = 'N'         // property non-atomic
2556/// };
2557/// @endcode
2558void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
2559                                                const Decl *Container,
2560                                                std::string& S) {
2561  // Collect information from the property implementation decl(s).
2562  bool Dynamic = false;
2563  ObjCPropertyImplDecl *SynthesizePID = 0;
2564
2565  // FIXME: Duplicated code due to poor abstraction.
2566  if (Container) {
2567    if (const ObjCCategoryImplDecl *CID =
2568        dyn_cast<ObjCCategoryImplDecl>(Container)) {
2569      for (ObjCCategoryImplDecl::propimpl_iterator
2570             i = CID->propimpl_begin(), e = CID->propimpl_end();
2571           i != e; ++i) {
2572        ObjCPropertyImplDecl *PID = *i;
2573        if (PID->getPropertyDecl() == PD) {
2574          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
2575            Dynamic = true;
2576          } else {
2577            SynthesizePID = PID;
2578          }
2579        }
2580      }
2581    } else {
2582      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
2583      for (ObjCCategoryImplDecl::propimpl_iterator
2584             i = OID->propimpl_begin(), e = OID->propimpl_end();
2585           i != e; ++i) {
2586        ObjCPropertyImplDecl *PID = *i;
2587        if (PID->getPropertyDecl() == PD) {
2588          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
2589            Dynamic = true;
2590          } else {
2591            SynthesizePID = PID;
2592          }
2593        }
2594      }
2595    }
2596  }
2597
2598  // FIXME: This is not very efficient.
2599  S = "T";
2600
2601  // Encode result type.
2602  // GCC has some special rules regarding encoding of properties which
2603  // closely resembles encoding of ivars.
2604  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
2605                             true /* outermost type */,
2606                             true /* encoding for property */);
2607
2608  if (PD->isReadOnly()) {
2609    S += ",R";
2610  } else {
2611    switch (PD->getSetterKind()) {
2612    case ObjCPropertyDecl::Assign: break;
2613    case ObjCPropertyDecl::Copy:   S += ",C"; break;
2614    case ObjCPropertyDecl::Retain: S += ",&"; break;
2615    }
2616  }
2617
2618  // It really isn't clear at all what this means, since properties
2619  // are "dynamic by default".
2620  if (Dynamic)
2621    S += ",D";
2622
2623  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
2624    S += ",N";
2625
2626  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
2627    S += ",G";
2628    S += PD->getGetterName().getAsString();
2629  }
2630
2631  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
2632    S += ",S";
2633    S += PD->getSetterName().getAsString();
2634  }
2635
2636  if (SynthesizePID) {
2637    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
2638    S += ",V";
2639    S += OID->getNameAsString();
2640  }
2641
2642  // FIXME: OBJCGC: weak & strong
2643}
2644
2645/// getLegacyIntegralTypeEncoding -
2646/// Another legacy compatibility encoding: 32-bit longs are encoded as
2647/// 'l' or 'L' , but not always.  For typedefs, we need to use
2648/// 'i' or 'I' instead if encoding a struct field, or a pointer!
2649///
2650void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
2651  if (dyn_cast<TypedefType>(PointeeTy.getTypePtr())) {
2652    if (const BuiltinType *BT = PointeeTy->getAsBuiltinType()) {
2653      if (BT->getKind() == BuiltinType::ULong &&
2654          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
2655        PointeeTy = UnsignedIntTy;
2656      else
2657        if (BT->getKind() == BuiltinType::Long &&
2658            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
2659          PointeeTy = IntTy;
2660    }
2661  }
2662}
2663
2664void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
2665                                        const FieldDecl *Field) {
2666  // We follow the behavior of gcc, expanding structures which are
2667  // directly pointed to, and expanding embedded structures. Note that
2668  // these rules are sufficient to prevent recursive encoding of the
2669  // same type.
2670  getObjCEncodingForTypeImpl(T, S, true, true, Field,
2671                             true /* outermost type */);
2672}
2673
2674static void EncodeBitField(const ASTContext *Context, std::string& S,
2675                           const FieldDecl *FD) {
2676  const Expr *E = FD->getBitWidth();
2677  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
2678  ASTContext *Ctx = const_cast<ASTContext*>(Context);
2679  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
2680  S += 'b';
2681  S += llvm::utostr(N);
2682}
2683
2684void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
2685                                            bool ExpandPointedToStructures,
2686                                            bool ExpandStructures,
2687                                            const FieldDecl *FD,
2688                                            bool OutermostType,
2689                                            bool EncodingProperty) {
2690  if (const BuiltinType *BT = T->getAsBuiltinType()) {
2691    if (FD && FD->isBitField())
2692      return EncodeBitField(this, S, FD);
2693    char encoding;
2694    switch (BT->getKind()) {
2695    default: assert(0 && "Unhandled builtin type kind");
2696    case BuiltinType::Void:       encoding = 'v'; break;
2697    case BuiltinType::Bool:       encoding = 'B'; break;
2698    case BuiltinType::Char_U:
2699    case BuiltinType::UChar:      encoding = 'C'; break;
2700    case BuiltinType::UShort:     encoding = 'S'; break;
2701    case BuiltinType::UInt:       encoding = 'I'; break;
2702    case BuiltinType::ULong:
2703        encoding =
2704          (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q';
2705        break;
2706    case BuiltinType::UInt128:    encoding = 'T'; break;
2707    case BuiltinType::ULongLong:  encoding = 'Q'; break;
2708    case BuiltinType::Char_S:
2709    case BuiltinType::SChar:      encoding = 'c'; break;
2710    case BuiltinType::Short:      encoding = 's'; break;
2711    case BuiltinType::Int:        encoding = 'i'; break;
2712    case BuiltinType::Long:
2713      encoding =
2714        (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q';
2715      break;
2716    case BuiltinType::LongLong:   encoding = 'q'; break;
2717    case BuiltinType::Int128:     encoding = 't'; break;
2718    case BuiltinType::Float:      encoding = 'f'; break;
2719    case BuiltinType::Double:     encoding = 'd'; break;
2720    case BuiltinType::LongDouble: encoding = 'd'; break;
2721    }
2722
2723    S += encoding;
2724    return;
2725  }
2726
2727  if (const ComplexType *CT = T->getAsComplexType()) {
2728    S += 'j';
2729    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
2730                               false);
2731    return;
2732  }
2733
2734  if (const PointerType *PT = T->getAsPointerType()) {
2735    QualType PointeeTy = PT->getPointeeType();
2736    bool isReadOnly = false;
2737    // For historical/compatibility reasons, the read-only qualifier of the
2738    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
2739    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
2740    // Also, do not emit the 'r' for anything but the outermost type!
2741    if (dyn_cast<TypedefType>(T.getTypePtr())) {
2742      if (OutermostType && T.isConstQualified()) {
2743        isReadOnly = true;
2744        S += 'r';
2745      }
2746    }
2747    else if (OutermostType) {
2748      QualType P = PointeeTy;
2749      while (P->getAsPointerType())
2750        P = P->getAsPointerType()->getPointeeType();
2751      if (P.isConstQualified()) {
2752        isReadOnly = true;
2753        S += 'r';
2754      }
2755    }
2756    if (isReadOnly) {
2757      // Another legacy compatibility encoding. Some ObjC qualifier and type
2758      // combinations need to be rearranged.
2759      // Rewrite "in const" from "nr" to "rn"
2760      const char * s = S.c_str();
2761      int len = S.length();
2762      if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
2763        std::string replace = "rn";
2764        S.replace(S.end()-2, S.end(), replace);
2765      }
2766    }
2767    if (isObjCSelType(PointeeTy)) {
2768      S += ':';
2769      return;
2770    }
2771
2772    if (PointeeTy->isCharType()) {
2773      // char pointer types should be encoded as '*' unless it is a
2774      // type that has been typedef'd to 'BOOL'.
2775      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
2776        S += '*';
2777        return;
2778      }
2779    }
2780
2781    S += '^';
2782    getLegacyIntegralTypeEncoding(PointeeTy);
2783
2784    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
2785                               NULL);
2786    return;
2787  }
2788
2789  if (const ArrayType *AT =
2790      // Ignore type qualifiers etc.
2791        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
2792    if (isa<IncompleteArrayType>(AT)) {
2793      // Incomplete arrays are encoded as a pointer to the array element.
2794      S += '^';
2795
2796      getObjCEncodingForTypeImpl(AT->getElementType(), S,
2797                                 false, ExpandStructures, FD);
2798    } else {
2799      S += '[';
2800
2801      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2802        S += llvm::utostr(CAT->getSize().getZExtValue());
2803      else {
2804        //Variable length arrays are encoded as a regular array with 0 elements.
2805        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
2806        S += '0';
2807      }
2808
2809      getObjCEncodingForTypeImpl(AT->getElementType(), S,
2810                                 false, ExpandStructures, FD);
2811      S += ']';
2812    }
2813    return;
2814  }
2815
2816  if (T->getAsFunctionType()) {
2817    S += '?';
2818    return;
2819  }
2820
2821  if (const RecordType *RTy = T->getAsRecordType()) {
2822    RecordDecl *RDecl = RTy->getDecl();
2823    S += RDecl->isUnion() ? '(' : '{';
2824    // Anonymous structures print as '?'
2825    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
2826      S += II->getName();
2827    } else {
2828      S += '?';
2829    }
2830    if (ExpandStructures) {
2831      S += '=';
2832      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
2833                                   FieldEnd = RDecl->field_end();
2834           Field != FieldEnd; ++Field) {
2835        if (FD) {
2836          S += '"';
2837          S += Field->getNameAsString();
2838          S += '"';
2839        }
2840
2841        // Special case bit-fields.
2842        if (Field->isBitField()) {
2843          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
2844                                     (*Field));
2845        } else {
2846          QualType qt = Field->getType();
2847          getLegacyIntegralTypeEncoding(qt);
2848          getObjCEncodingForTypeImpl(qt, S, false, true,
2849                                     FD);
2850        }
2851      }
2852    }
2853    S += RDecl->isUnion() ? ')' : '}';
2854    return;
2855  }
2856
2857  if (T->isEnumeralType()) {
2858    if (FD && FD->isBitField())
2859      EncodeBitField(this, S, FD);
2860    else
2861      S += 'i';
2862    return;
2863  }
2864
2865  if (T->isBlockPointerType()) {
2866    S += "@?"; // Unlike a pointer-to-function, which is "^?".
2867    return;
2868  }
2869
2870  if (T->isObjCInterfaceType()) {
2871    // @encode(class_name)
2872    ObjCInterfaceDecl *OI = T->getAsObjCInterfaceType()->getDecl();
2873    S += '{';
2874    const IdentifierInfo *II = OI->getIdentifier();
2875    S += II->getName();
2876    S += '=';
2877    llvm::SmallVector<FieldDecl*, 32> RecFields;
2878    CollectObjCIvars(OI, RecFields);
2879    for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
2880      if (RecFields[i]->isBitField())
2881        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
2882                                   RecFields[i]);
2883      else
2884        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
2885                                   FD);
2886    }
2887    S += '}';
2888    return;
2889  }
2890
2891  if (const ObjCObjectPointerType *OPT = T->getAsObjCObjectPointerType()) {
2892    if (OPT->isObjCIdType()) {
2893      S += '@';
2894      return;
2895    }
2896
2897    if (OPT->isObjCClassType()) {
2898      S += '#';
2899      return;
2900    }
2901
2902    if (OPT->isObjCQualifiedIdType()) {
2903      getObjCEncodingForTypeImpl(getObjCIdType(), S,
2904                                 ExpandPointedToStructures,
2905                                 ExpandStructures, FD);
2906      if (FD || EncodingProperty) {
2907        // Note that we do extended encoding of protocol qualifer list
2908        // Only when doing ivar or property encoding.
2909        const ObjCObjectPointerType *QIDT = T->getAsObjCQualifiedIdType();
2910        S += '"';
2911        for (ObjCObjectPointerType::qual_iterator I = QIDT->qual_begin(),
2912             E = QIDT->qual_end(); I != E; ++I) {
2913          S += '<';
2914          S += (*I)->getNameAsString();
2915          S += '>';
2916        }
2917        S += '"';
2918      }
2919      return;
2920    }
2921
2922    QualType PointeeTy = OPT->getPointeeType();
2923    if (!EncodingProperty &&
2924        isa<TypedefType>(PointeeTy.getTypePtr())) {
2925      // Another historical/compatibility reason.
2926      // We encode the underlying type which comes out as
2927      // {...};
2928      S += '^';
2929      getObjCEncodingForTypeImpl(PointeeTy, S,
2930                                 false, ExpandPointedToStructures,
2931                                 NULL);
2932      return;
2933    }
2934
2935    S += '@';
2936    if (FD || EncodingProperty) {
2937      const ObjCInterfaceType *OIT = OPT->getInterfaceType();
2938      ObjCInterfaceDecl *OI = OIT->getDecl();
2939      S += '"';
2940      S += OI->getNameAsCString();
2941      for (ObjCInterfaceType::qual_iterator I = OIT->qual_begin(),
2942           E = OIT->qual_end(); I != E; ++I) {
2943        S += '<';
2944        S += (*I)->getNameAsString();
2945        S += '>';
2946      }
2947      S += '"';
2948    }
2949    return;
2950  }
2951
2952  assert(0 && "@encode for type not implemented!");
2953}
2954
2955void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
2956                                                 std::string& S) const {
2957  if (QT & Decl::OBJC_TQ_In)
2958    S += 'n';
2959  if (QT & Decl::OBJC_TQ_Inout)
2960    S += 'N';
2961  if (QT & Decl::OBJC_TQ_Out)
2962    S += 'o';
2963  if (QT & Decl::OBJC_TQ_Bycopy)
2964    S += 'O';
2965  if (QT & Decl::OBJC_TQ_Byref)
2966    S += 'R';
2967  if (QT & Decl::OBJC_TQ_Oneway)
2968    S += 'V';
2969}
2970
2971void ASTContext::setBuiltinVaListType(QualType T) {
2972  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
2973
2974  BuiltinVaListType = T;
2975}
2976
2977void ASTContext::setObjCIdType(QualType T) {
2978  ObjCIdTypedefType = T;
2979}
2980
2981void ASTContext::setObjCSelType(QualType T) {
2982  ObjCSelType = T;
2983
2984  const TypedefType *TT = T->getAsTypedefType();
2985  if (!TT)
2986    return;
2987  TypedefDecl *TD = TT->getDecl();
2988
2989  // typedef struct objc_selector *SEL;
2990  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
2991  if (!ptr)
2992    return;
2993  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
2994  if (!rec)
2995    return;
2996  SelStructType = rec;
2997}
2998
2999void ASTContext::setObjCProtoType(QualType QT) {
3000  ObjCProtoType = QT;
3001}
3002
3003void ASTContext::setObjCClassType(QualType T) {
3004  ObjCClassTypedefType = T;
3005}
3006
3007void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
3008  assert(ObjCConstantStringType.isNull() &&
3009         "'NSConstantString' type already set!");
3010
3011  ObjCConstantStringType = getObjCInterfaceType(Decl);
3012}
3013
3014/// \brief Retrieve the template name that represents a qualified
3015/// template name such as \c std::vector.
3016TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
3017                                                  bool TemplateKeyword,
3018                                                  TemplateDecl *Template) {
3019  llvm::FoldingSetNodeID ID;
3020  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
3021
3022  void *InsertPos = 0;
3023  QualifiedTemplateName *QTN =
3024    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3025  if (!QTN) {
3026    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
3027    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
3028  }
3029
3030  return TemplateName(QTN);
3031}
3032
3033/// \brief Retrieve the template name that represents a dependent
3034/// template name such as \c MetaFun::template apply.
3035TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3036                                                  const IdentifierInfo *Name) {
3037  assert(NNS->isDependent() && "Nested name specifier must be dependent");
3038
3039  llvm::FoldingSetNodeID ID;
3040  DependentTemplateName::Profile(ID, NNS, Name);
3041
3042  void *InsertPos = 0;
3043  DependentTemplateName *QTN =
3044    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3045
3046  if (QTN)
3047    return TemplateName(QTN);
3048
3049  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3050  if (CanonNNS == NNS) {
3051    QTN = new (*this,4) DependentTemplateName(NNS, Name);
3052  } else {
3053    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
3054    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
3055  }
3056
3057  DependentTemplateNames.InsertNode(QTN, InsertPos);
3058  return TemplateName(QTN);
3059}
3060
3061/// getFromTargetType - Given one of the integer types provided by
3062/// TargetInfo, produce the corresponding type. The unsigned @p Type
3063/// is actually a value of type @c TargetInfo::IntType.
3064QualType ASTContext::getFromTargetType(unsigned Type) const {
3065  switch (Type) {
3066  case TargetInfo::NoInt: return QualType();
3067  case TargetInfo::SignedShort: return ShortTy;
3068  case TargetInfo::UnsignedShort: return UnsignedShortTy;
3069  case TargetInfo::SignedInt: return IntTy;
3070  case TargetInfo::UnsignedInt: return UnsignedIntTy;
3071  case TargetInfo::SignedLong: return LongTy;
3072  case TargetInfo::UnsignedLong: return UnsignedLongTy;
3073  case TargetInfo::SignedLongLong: return LongLongTy;
3074  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
3075  }
3076
3077  assert(false && "Unhandled TargetInfo::IntType value");
3078  return QualType();
3079}
3080
3081//===----------------------------------------------------------------------===//
3082//                        Type Predicates.
3083//===----------------------------------------------------------------------===//
3084
3085/// isObjCNSObjectType - Return true if this is an NSObject object using
3086/// NSObject attribute on a c-style pointer type.
3087/// FIXME - Make it work directly on types.
3088/// FIXME: Move to Type.
3089///
3090bool ASTContext::isObjCNSObjectType(QualType Ty) const {
3091  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
3092    if (TypedefDecl *TD = TDT->getDecl())
3093      if (TD->getAttr<ObjCNSObjectAttr>())
3094        return true;
3095  }
3096  return false;
3097}
3098
3099/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
3100/// garbage collection attribute.
3101///
3102QualType::GCAttrTypes ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
3103  QualType::GCAttrTypes GCAttrs = QualType::GCNone;
3104  if (getLangOptions().ObjC1 &&
3105      getLangOptions().getGCMode() != LangOptions::NonGC) {
3106    GCAttrs = Ty.getObjCGCAttr();
3107    // Default behavious under objective-c's gc is for objective-c pointers
3108    // (or pointers to them) be treated as though they were declared
3109    // as __strong.
3110    if (GCAttrs == QualType::GCNone) {
3111      if (Ty->isObjCObjectPointerType())
3112        GCAttrs = QualType::Strong;
3113      else if (Ty->isPointerType())
3114        return getObjCGCAttrKind(Ty->getAsPointerType()->getPointeeType());
3115    }
3116    // Non-pointers have none gc'able attribute regardless of the attribute
3117    // set on them.
3118    else if (!Ty->isAnyPointerType() && !Ty->isBlockPointerType())
3119      return QualType::GCNone;
3120  }
3121  return GCAttrs;
3122}
3123
3124//===----------------------------------------------------------------------===//
3125//                        Type Compatibility Testing
3126//===----------------------------------------------------------------------===//
3127
3128/// areCompatVectorTypes - Return true if the two specified vector types are
3129/// compatible.
3130static bool areCompatVectorTypes(const VectorType *LHS,
3131                                 const VectorType *RHS) {
3132  assert(LHS->isCanonical() && RHS->isCanonical());
3133  return LHS->getElementType() == RHS->getElementType() &&
3134         LHS->getNumElements() == RHS->getNumElements();
3135}
3136
3137/// canAssignObjCInterfaces - Return true if the two interface types are
3138/// compatible for assignment from RHS to LHS.  This handles validation of any
3139/// protocol qualifiers on the LHS or RHS.
3140///
3141/// FIXME: Move the following to ObjCObjectPointerType/ObjCInterfaceType.
3142bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
3143                                         const ObjCObjectPointerType *RHSOPT) {
3144  // If either type represents the built-in 'id' or 'Class' types, return true.
3145  if (LHSOPT->isObjCBuiltinType() || RHSOPT->isObjCBuiltinType())
3146    return true;
3147
3148  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
3149  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
3150  if (!LHS || !RHS) {
3151    // We have qualified builtin types.
3152    // Both the right and left sides have qualifiers.
3153    for (ObjCObjectPointerType::qual_iterator I = LHSOPT->qual_begin(),
3154         E = LHSOPT->qual_end(); I != E; ++I) {
3155      bool RHSImplementsProtocol = false;
3156
3157      // when comparing an id<P> on lhs with a static type on rhs,
3158      // see if static class implements all of id's protocols, directly or
3159      // through its super class and categories.
3160      for (ObjCObjectPointerType::qual_iterator J = RHSOPT->qual_begin(),
3161           E = RHSOPT->qual_end(); J != E; ++J) {
3162        if ((*J)->lookupProtocolNamed((*I)->getIdentifier())) {
3163          RHSImplementsProtocol = true;
3164          break;
3165        }
3166      }
3167      if (!RHSImplementsProtocol)
3168        return false;
3169    }
3170    // The RHS implements all protocols listed on the LHS.
3171    return true;
3172  }
3173  return canAssignObjCInterfaces(LHS, RHS);
3174}
3175
3176bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
3177                                         const ObjCInterfaceType *RHS) {
3178  // Verify that the base decls are compatible: the RHS must be a subclass of
3179  // the LHS.
3180  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
3181    return false;
3182
3183  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
3184  // protocol qualified at all, then we are good.
3185  if (LHS->getNumProtocols() == 0)
3186    return true;
3187
3188  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
3189  // isn't a superset.
3190  if (RHS->getNumProtocols() == 0)
3191    return true;  // FIXME: should return false!
3192
3193  for (ObjCInterfaceType::qual_iterator LHSPI = LHS->qual_begin(),
3194                                        LHSPE = LHS->qual_end();
3195       LHSPI != LHSPE; LHSPI++) {
3196    bool RHSImplementsProtocol = false;
3197
3198    // If the RHS doesn't implement the protocol on the left, the types
3199    // are incompatible.
3200    for (ObjCInterfaceType::qual_iterator RHSPI = RHS->qual_begin(),
3201                                                  RHSPE = RHS->qual_end();
3202         RHSPI != RHSPE; RHSPI++) {
3203      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
3204        RHSImplementsProtocol = true;
3205        break;
3206      }
3207    }
3208    // FIXME: For better diagnostics, consider passing back the protocol name.
3209    if (!RHSImplementsProtocol)
3210      return false;
3211  }
3212  // The RHS implements all protocols listed on the LHS.
3213  return true;
3214}
3215
3216bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
3217  // get the "pointed to" types
3218  const ObjCObjectPointerType *LHSOPT = LHS->getAsObjCObjectPointerType();
3219  const ObjCObjectPointerType *RHSOPT = RHS->getAsObjCObjectPointerType();
3220
3221  if (!LHSOPT || !RHSOPT)
3222    return false;
3223
3224  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
3225         canAssignObjCInterfaces(RHSOPT, LHSOPT);
3226}
3227
3228/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
3229/// both shall have the identically qualified version of a compatible type.
3230/// C99 6.2.7p1: Two types have compatible types if their types are the
3231/// same. See 6.7.[2,3,5] for additional rules.
3232bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
3233  return !mergeTypes(LHS, RHS).isNull();
3234}
3235
3236QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
3237  const FunctionType *lbase = lhs->getAsFunctionType();
3238  const FunctionType *rbase = rhs->getAsFunctionType();
3239  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
3240  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
3241  bool allLTypes = true;
3242  bool allRTypes = true;
3243
3244  // Check return type
3245  QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
3246  if (retType.isNull()) return QualType();
3247  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
3248    allLTypes = false;
3249  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
3250    allRTypes = false;
3251
3252  if (lproto && rproto) { // two C99 style function prototypes
3253    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
3254           "C++ shouldn't be here");
3255    unsigned lproto_nargs = lproto->getNumArgs();
3256    unsigned rproto_nargs = rproto->getNumArgs();
3257
3258    // Compatible functions must have the same number of arguments
3259    if (lproto_nargs != rproto_nargs)
3260      return QualType();
3261
3262    // Variadic and non-variadic functions aren't compatible
3263    if (lproto->isVariadic() != rproto->isVariadic())
3264      return QualType();
3265
3266    if (lproto->getTypeQuals() != rproto->getTypeQuals())
3267      return QualType();
3268
3269    // Check argument compatibility
3270    llvm::SmallVector<QualType, 10> types;
3271    for (unsigned i = 0; i < lproto_nargs; i++) {
3272      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
3273      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
3274      QualType argtype = mergeTypes(largtype, rargtype);
3275      if (argtype.isNull()) return QualType();
3276      types.push_back(argtype);
3277      if (getCanonicalType(argtype) != getCanonicalType(largtype))
3278        allLTypes = false;
3279      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
3280        allRTypes = false;
3281    }
3282    if (allLTypes) return lhs;
3283    if (allRTypes) return rhs;
3284    return getFunctionType(retType, types.begin(), types.size(),
3285                           lproto->isVariadic(), lproto->getTypeQuals());
3286  }
3287
3288  if (lproto) allRTypes = false;
3289  if (rproto) allLTypes = false;
3290
3291  const FunctionProtoType *proto = lproto ? lproto : rproto;
3292  if (proto) {
3293    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
3294    if (proto->isVariadic()) return QualType();
3295    // Check that the types are compatible with the types that
3296    // would result from default argument promotions (C99 6.7.5.3p15).
3297    // The only types actually affected are promotable integer
3298    // types and floats, which would be passed as a different
3299    // type depending on whether the prototype is visible.
3300    unsigned proto_nargs = proto->getNumArgs();
3301    for (unsigned i = 0; i < proto_nargs; ++i) {
3302      QualType argTy = proto->getArgType(i);
3303      if (argTy->isPromotableIntegerType() ||
3304          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
3305        return QualType();
3306    }
3307
3308    if (allLTypes) return lhs;
3309    if (allRTypes) return rhs;
3310    return getFunctionType(retType, proto->arg_type_begin(),
3311                           proto->getNumArgs(), lproto->isVariadic(),
3312                           lproto->getTypeQuals());
3313  }
3314
3315  if (allLTypes) return lhs;
3316  if (allRTypes) return rhs;
3317  return getFunctionNoProtoType(retType);
3318}
3319
3320QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
3321  // C++ [expr]: If an expression initially has the type "reference to T", the
3322  // type is adjusted to "T" prior to any further analysis, the expression
3323  // designates the object or function denoted by the reference, and the
3324  // expression is an lvalue unless the reference is an rvalue reference and
3325  // the expression is a function call (possibly inside parentheses).
3326  // FIXME: C++ shouldn't be going through here!  The rules are different
3327  // enough that they should be handled separately.
3328  // FIXME: Merging of lvalue and rvalue references is incorrect. C++ *really*
3329  // shouldn't be going through here!
3330  if (const ReferenceType *RT = LHS->getAsReferenceType())
3331    LHS = RT->getPointeeType();
3332  if (const ReferenceType *RT = RHS->getAsReferenceType())
3333    RHS = RT->getPointeeType();
3334
3335  QualType LHSCan = getCanonicalType(LHS),
3336           RHSCan = getCanonicalType(RHS);
3337
3338  // If two types are identical, they are compatible.
3339  if (LHSCan == RHSCan)
3340    return LHS;
3341
3342  // If the qualifiers are different, the types aren't compatible
3343  // Note that we handle extended qualifiers later, in the
3344  // case for ExtQualType.
3345  if (LHSCan.getCVRQualifiers() != RHSCan.getCVRQualifiers())
3346    return QualType();
3347
3348  Type::TypeClass LHSClass = LHSCan->getTypeClass();
3349  Type::TypeClass RHSClass = RHSCan->getTypeClass();
3350
3351  // We want to consider the two function types to be the same for these
3352  // comparisons, just force one to the other.
3353  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
3354  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
3355
3356  // Strip off objc_gc attributes off the top level so they can be merged.
3357  // This is a complete mess, but the attribute itself doesn't make much sense.
3358  if (RHSClass == Type::ExtQual) {
3359    QualType::GCAttrTypes GCAttr = RHSCan.getObjCGCAttr();
3360    if (GCAttr != QualType::GCNone) {
3361      QualType::GCAttrTypes GCLHSAttr = LHSCan.getObjCGCAttr();
3362      // __weak attribute must appear on both declarations.
3363      // __strong attribue is redundant if other decl is an objective-c
3364      // object pointer (or decorated with __strong attribute); otherwise
3365      // issue error.
3366      if ((GCAttr == QualType::Weak && GCLHSAttr != GCAttr) ||
3367          (GCAttr == QualType::Strong && GCLHSAttr != GCAttr &&
3368           !LHSCan->isObjCObjectPointerType()))
3369        return QualType();
3370
3371      RHS = QualType(cast<ExtQualType>(RHS.getDesugaredType())->getBaseType(),
3372                     RHS.getCVRQualifiers());
3373      QualType Result = mergeTypes(LHS, RHS);
3374      if (!Result.isNull()) {
3375        if (Result.getObjCGCAttr() == QualType::GCNone)
3376          Result = getObjCGCQualType(Result, GCAttr);
3377        else if (Result.getObjCGCAttr() != GCAttr)
3378          Result = QualType();
3379      }
3380      return Result;
3381    }
3382  }
3383  if (LHSClass == Type::ExtQual) {
3384    QualType::GCAttrTypes GCAttr = LHSCan.getObjCGCAttr();
3385    if (GCAttr != QualType::GCNone) {
3386      QualType::GCAttrTypes GCRHSAttr = RHSCan.getObjCGCAttr();
3387      // __weak attribute must appear on both declarations. __strong
3388      // __strong attribue is redundant if other decl is an objective-c
3389      // object pointer (or decorated with __strong attribute); otherwise
3390      // issue error.
3391      if ((GCAttr == QualType::Weak && GCRHSAttr != GCAttr) ||
3392          (GCAttr == QualType::Strong && GCRHSAttr != GCAttr &&
3393           !RHSCan->isObjCObjectPointerType()))
3394        return QualType();
3395
3396      LHS = QualType(cast<ExtQualType>(LHS.getDesugaredType())->getBaseType(),
3397                     LHS.getCVRQualifiers());
3398      QualType Result = mergeTypes(LHS, RHS);
3399      if (!Result.isNull()) {
3400        if (Result.getObjCGCAttr() == QualType::GCNone)
3401          Result = getObjCGCQualType(Result, GCAttr);
3402        else if (Result.getObjCGCAttr() != GCAttr)
3403          Result = QualType();
3404      }
3405      return Result;
3406    }
3407  }
3408
3409  // Same as above for arrays
3410  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
3411    LHSClass = Type::ConstantArray;
3412  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
3413    RHSClass = Type::ConstantArray;
3414
3415  // Canonicalize ExtVector -> Vector.
3416  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
3417  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
3418
3419  // If the canonical type classes don't match.
3420  if (LHSClass != RHSClass) {
3421    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
3422    // a signed integer type, or an unsigned integer type.
3423    if (const EnumType* ETy = LHS->getAsEnumType()) {
3424      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
3425        return RHS;
3426    }
3427    if (const EnumType* ETy = RHS->getAsEnumType()) {
3428      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
3429        return LHS;
3430    }
3431
3432    return QualType();
3433  }
3434
3435  // The canonical type classes match.
3436  switch (LHSClass) {
3437#define TYPE(Class, Base)
3438#define ABSTRACT_TYPE(Class, Base)
3439#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3440#define DEPENDENT_TYPE(Class, Base) case Type::Class:
3441#include "clang/AST/TypeNodes.def"
3442    assert(false && "Non-canonical and dependent types shouldn't get here");
3443    return QualType();
3444
3445  case Type::LValueReference:
3446  case Type::RValueReference:
3447  case Type::MemberPointer:
3448    assert(false && "C++ should never be in mergeTypes");
3449    return QualType();
3450
3451  case Type::IncompleteArray:
3452  case Type::VariableArray:
3453  case Type::FunctionProto:
3454  case Type::ExtVector:
3455    assert(false && "Types are eliminated above");
3456    return QualType();
3457
3458  case Type::Pointer:
3459  {
3460    // Merge two pointer types, while trying to preserve typedef info
3461    QualType LHSPointee = LHS->getAsPointerType()->getPointeeType();
3462    QualType RHSPointee = RHS->getAsPointerType()->getPointeeType();
3463    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
3464    if (ResultType.isNull()) return QualType();
3465    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
3466      return LHS;
3467    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
3468      return RHS;
3469    return getPointerType(ResultType);
3470  }
3471  case Type::BlockPointer:
3472  {
3473    // Merge two block pointer types, while trying to preserve typedef info
3474    QualType LHSPointee = LHS->getAsBlockPointerType()->getPointeeType();
3475    QualType RHSPointee = RHS->getAsBlockPointerType()->getPointeeType();
3476    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
3477    if (ResultType.isNull()) return QualType();
3478    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
3479      return LHS;
3480    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
3481      return RHS;
3482    return getBlockPointerType(ResultType);
3483  }
3484  case Type::ConstantArray:
3485  {
3486    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
3487    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
3488    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
3489      return QualType();
3490
3491    QualType LHSElem = getAsArrayType(LHS)->getElementType();
3492    QualType RHSElem = getAsArrayType(RHS)->getElementType();
3493    QualType ResultType = mergeTypes(LHSElem, RHSElem);
3494    if (ResultType.isNull()) return QualType();
3495    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
3496      return LHS;
3497    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
3498      return RHS;
3499    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
3500                                          ArrayType::ArraySizeModifier(), 0);
3501    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
3502                                          ArrayType::ArraySizeModifier(), 0);
3503    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
3504    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
3505    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
3506      return LHS;
3507    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
3508      return RHS;
3509    if (LVAT) {
3510      // FIXME: This isn't correct! But tricky to implement because
3511      // the array's size has to be the size of LHS, but the type
3512      // has to be different.
3513      return LHS;
3514    }
3515    if (RVAT) {
3516      // FIXME: This isn't correct! But tricky to implement because
3517      // the array's size has to be the size of RHS, but the type
3518      // has to be different.
3519      return RHS;
3520    }
3521    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
3522    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
3523    return getIncompleteArrayType(ResultType,
3524                                  ArrayType::ArraySizeModifier(), 0);
3525  }
3526  case Type::FunctionNoProto:
3527    return mergeFunctionTypes(LHS, RHS);
3528  case Type::Record:
3529  case Type::Enum:
3530    return QualType();
3531  case Type::Builtin:
3532    // Only exactly equal builtin types are compatible, which is tested above.
3533    return QualType();
3534  case Type::Complex:
3535    // Distinct complex types are incompatible.
3536    return QualType();
3537  case Type::Vector:
3538    // FIXME: The merged type should be an ExtVector!
3539    if (areCompatVectorTypes(LHS->getAsVectorType(), RHS->getAsVectorType()))
3540      return LHS;
3541    return QualType();
3542  case Type::ObjCInterface: {
3543    // Check if the interfaces are assignment compatible.
3544    // FIXME: This should be type compatibility, e.g. whether
3545    // "LHS x; RHS x;" at global scope is legal.
3546    const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
3547    const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
3548    if (LHSIface && RHSIface &&
3549        canAssignObjCInterfaces(LHSIface, RHSIface))
3550      return LHS;
3551
3552    return QualType();
3553  }
3554  case Type::ObjCObjectPointer: {
3555    // FIXME: Incorporate tests from Sema::ObjCQualifiedIdTypesAreCompatible().
3556    if (LHS->isObjCQualifiedIdType() && RHS->isObjCQualifiedIdType())
3557      return QualType();
3558
3559    if (canAssignObjCInterfaces(LHS->getAsObjCObjectPointerType(),
3560                                RHS->getAsObjCObjectPointerType()))
3561      return LHS;
3562
3563    return QualType();
3564  }
3565  case Type::FixedWidthInt:
3566    // Distinct fixed-width integers are not compatible.
3567    return QualType();
3568  case Type::ExtQual:
3569    // FIXME: ExtQual types can be compatible even if they're not
3570    // identical!
3571    return QualType();
3572    // First attempt at an implementation, but I'm not really sure it's
3573    // right...
3574#if 0
3575    ExtQualType* LQual = cast<ExtQualType>(LHSCan);
3576    ExtQualType* RQual = cast<ExtQualType>(RHSCan);
3577    if (LQual->getAddressSpace() != RQual->getAddressSpace() ||
3578        LQual->getObjCGCAttr() != RQual->getObjCGCAttr())
3579      return QualType();
3580    QualType LHSBase, RHSBase, ResultType, ResCanUnqual;
3581    LHSBase = QualType(LQual->getBaseType(), 0);
3582    RHSBase = QualType(RQual->getBaseType(), 0);
3583    ResultType = mergeTypes(LHSBase, RHSBase);
3584    if (ResultType.isNull()) return QualType();
3585    ResCanUnqual = getCanonicalType(ResultType).getUnqualifiedType();
3586    if (LHSCan.getUnqualifiedType() == ResCanUnqual)
3587      return LHS;
3588    if (RHSCan.getUnqualifiedType() == ResCanUnqual)
3589      return RHS;
3590    ResultType = getAddrSpaceQualType(ResultType, LQual->getAddressSpace());
3591    ResultType = getObjCGCQualType(ResultType, LQual->getObjCGCAttr());
3592    ResultType.setCVRQualifiers(LHSCan.getCVRQualifiers());
3593    return ResultType;
3594#endif
3595
3596  case Type::TemplateSpecialization:
3597    assert(false && "Dependent types have no size");
3598    break;
3599  }
3600
3601  return QualType();
3602}
3603
3604//===----------------------------------------------------------------------===//
3605//                         Integer Predicates
3606//===----------------------------------------------------------------------===//
3607
3608unsigned ASTContext::getIntWidth(QualType T) {
3609  if (T == BoolTy)
3610    return 1;
3611  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T)) {
3612    return FWIT->getWidth();
3613  }
3614  // For builtin types, just use the standard type sizing method
3615  return (unsigned)getTypeSize(T);
3616}
3617
3618QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
3619  assert(T->isSignedIntegerType() && "Unexpected type");
3620  if (const EnumType* ETy = T->getAsEnumType())
3621    T = ETy->getDecl()->getIntegerType();
3622  const BuiltinType* BTy = T->getAsBuiltinType();
3623  assert (BTy && "Unexpected signed integer type");
3624  switch (BTy->getKind()) {
3625  case BuiltinType::Char_S:
3626  case BuiltinType::SChar:
3627    return UnsignedCharTy;
3628  case BuiltinType::Short:
3629    return UnsignedShortTy;
3630  case BuiltinType::Int:
3631    return UnsignedIntTy;
3632  case BuiltinType::Long:
3633    return UnsignedLongTy;
3634  case BuiltinType::LongLong:
3635    return UnsignedLongLongTy;
3636  case BuiltinType::Int128:
3637    return UnsignedInt128Ty;
3638  default:
3639    assert(0 && "Unexpected signed integer type");
3640    return QualType();
3641  }
3642}
3643
3644ExternalASTSource::~ExternalASTSource() { }
3645
3646void ExternalASTSource::PrintStats() { }
3647
3648
3649//===----------------------------------------------------------------------===//
3650//                          Builtin Type Computation
3651//===----------------------------------------------------------------------===//
3652
3653/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
3654/// pointer over the consumed characters.  This returns the resultant type.
3655static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context,
3656                                  ASTContext::GetBuiltinTypeError &Error,
3657                                  bool AllowTypeModifiers = true) {
3658  // Modifiers.
3659  int HowLong = 0;
3660  bool Signed = false, Unsigned = false;
3661
3662  // Read the modifiers first.
3663  bool Done = false;
3664  while (!Done) {
3665    switch (*Str++) {
3666    default: Done = true; --Str; break;
3667    case 'S':
3668      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
3669      assert(!Signed && "Can't use 'S' modifier multiple times!");
3670      Signed = true;
3671      break;
3672    case 'U':
3673      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
3674      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
3675      Unsigned = true;
3676      break;
3677    case 'L':
3678      assert(HowLong <= 2 && "Can't have LLLL modifier");
3679      ++HowLong;
3680      break;
3681    }
3682  }
3683
3684  QualType Type;
3685
3686  // Read the base type.
3687  switch (*Str++) {
3688  default: assert(0 && "Unknown builtin type letter!");
3689  case 'v':
3690    assert(HowLong == 0 && !Signed && !Unsigned &&
3691           "Bad modifiers used with 'v'!");
3692    Type = Context.VoidTy;
3693    break;
3694  case 'f':
3695    assert(HowLong == 0 && !Signed && !Unsigned &&
3696           "Bad modifiers used with 'f'!");
3697    Type = Context.FloatTy;
3698    break;
3699  case 'd':
3700    assert(HowLong < 2 && !Signed && !Unsigned &&
3701           "Bad modifiers used with 'd'!");
3702    if (HowLong)
3703      Type = Context.LongDoubleTy;
3704    else
3705      Type = Context.DoubleTy;
3706    break;
3707  case 's':
3708    assert(HowLong == 0 && "Bad modifiers used with 's'!");
3709    if (Unsigned)
3710      Type = Context.UnsignedShortTy;
3711    else
3712      Type = Context.ShortTy;
3713    break;
3714  case 'i':
3715    if (HowLong == 3)
3716      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
3717    else if (HowLong == 2)
3718      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
3719    else if (HowLong == 1)
3720      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
3721    else
3722      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
3723    break;
3724  case 'c':
3725    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
3726    if (Signed)
3727      Type = Context.SignedCharTy;
3728    else if (Unsigned)
3729      Type = Context.UnsignedCharTy;
3730    else
3731      Type = Context.CharTy;
3732    break;
3733  case 'b': // boolean
3734    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
3735    Type = Context.BoolTy;
3736    break;
3737  case 'z':  // size_t.
3738    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
3739    Type = Context.getSizeType();
3740    break;
3741  case 'F':
3742    Type = Context.getCFConstantStringType();
3743    break;
3744  case 'a':
3745    Type = Context.getBuiltinVaListType();
3746    assert(!Type.isNull() && "builtin va list type not initialized!");
3747    break;
3748  case 'A':
3749    // This is a "reference" to a va_list; however, what exactly
3750    // this means depends on how va_list is defined. There are two
3751    // different kinds of va_list: ones passed by value, and ones
3752    // passed by reference.  An example of a by-value va_list is
3753    // x86, where va_list is a char*. An example of by-ref va_list
3754    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
3755    // we want this argument to be a char*&; for x86-64, we want
3756    // it to be a __va_list_tag*.
3757    Type = Context.getBuiltinVaListType();
3758    assert(!Type.isNull() && "builtin va list type not initialized!");
3759    if (Type->isArrayType()) {
3760      Type = Context.getArrayDecayedType(Type);
3761    } else {
3762      Type = Context.getLValueReferenceType(Type);
3763    }
3764    break;
3765  case 'V': {
3766    char *End;
3767
3768    unsigned NumElements = strtoul(Str, &End, 10);
3769    assert(End != Str && "Missing vector size");
3770
3771    Str = End;
3772
3773    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
3774    Type = Context.getVectorType(ElementType, NumElements);
3775    break;
3776  }
3777  case 'P': {
3778    Type = Context.getFILEType();
3779    if (Type.isNull()) {
3780      Error = ASTContext::GE_Missing_FILE;
3781      return QualType();
3782    } else {
3783      break;
3784    }
3785  }
3786  }
3787
3788  if (!AllowTypeModifiers)
3789    return Type;
3790
3791  Done = false;
3792  while (!Done) {
3793    switch (*Str++) {
3794      default: Done = true; --Str; break;
3795      case '*':
3796        Type = Context.getPointerType(Type);
3797        break;
3798      case '&':
3799        Type = Context.getLValueReferenceType(Type);
3800        break;
3801      // FIXME: There's no way to have a built-in with an rvalue ref arg.
3802      case 'C':
3803        Type = Type.getQualifiedType(QualType::Const);
3804        break;
3805    }
3806  }
3807
3808  return Type;
3809}
3810
3811/// GetBuiltinType - Return the type for the specified builtin.
3812QualType ASTContext::GetBuiltinType(unsigned id,
3813                                    GetBuiltinTypeError &Error) {
3814  const char *TypeStr = BuiltinInfo.GetTypeString(id);
3815
3816  llvm::SmallVector<QualType, 8> ArgTypes;
3817
3818  Error = GE_None;
3819  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error);
3820  if (Error != GE_None)
3821    return QualType();
3822  while (TypeStr[0] && TypeStr[0] != '.') {
3823    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error);
3824    if (Error != GE_None)
3825      return QualType();
3826
3827    // Do array -> pointer decay.  The builtin should use the decayed type.
3828    if (Ty->isArrayType())
3829      Ty = getArrayDecayedType(Ty);
3830
3831    ArgTypes.push_back(Ty);
3832  }
3833
3834  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
3835         "'.' should only occur at end of builtin type list!");
3836
3837  // handle untyped/variadic arguments "T c99Style();" or "T cppStyle(...);".
3838  if (ArgTypes.size() == 0 && TypeStr[0] == '.')
3839    return getFunctionNoProtoType(ResType);
3840  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(),
3841                         TypeStr[0] == '.', 0);
3842}
3843