ASTContext.cpp revision 27d20a24a1b816cecbd142727d2c81af5a6a111b
15821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
25821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
35821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//                     The LLVM Compiler Infrastructure
45821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
55821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)// This file is distributed under the University of Illinois Open Source
65821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)// License. See LICENSE.TXT for details.
75821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
85821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//===----------------------------------------------------------------------===//
92a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)//
105821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//  This file implements the ASTContext interface.
115821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
125821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//===----------------------------------------------------------------------===//
135821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
145821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "clang/AST/ASTContext.h"
152a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)#include "clang/AST/DeclCXX.h"
165821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "clang/AST/DeclObjC.h"
175821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "clang/AST/DeclTemplate.h"
185821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "clang/AST/TypeLoc.h"
192a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)#include "clang/AST/Expr.h"
205821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "clang/AST/ExternalASTSource.h"
215821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "clang/AST/RecordLayout.h"
225821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "clang/Basic/Builtins.h"
235821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "clang/Basic/SourceManager.h"
245821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "clang/Basic/TargetInfo.h"
255821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/ADT/SmallString.h"
265821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/ADT/StringExtras.h"
275821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/Support/MathExtras.h"
282a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)#include "llvm/Support/raw_ostream.h"
292a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)#include "RecordLayoutBuilder.h"
305821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
315821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)using namespace clang;
322a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
335821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)enum FloatingRank {
345821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  FloatRank, DoubleRank, LongDoubleRank
355821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)};
365821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
375821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
385821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)                       TargetInfo &t,
395821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)                       IdentifierTable &idents, SelectorTable &sels,
402a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)                       Builtin::Context &builtins,
412a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)                       bool FreeMem, unsigned size_reserve) :
425821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
435821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0), jmp_bufDecl(0),
442a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  sigjmp_bufDecl(0), BlockDescriptorType(0), BlockDescriptorExtendedType(0),
455821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  SourceMgr(SM), LangOpts(LOpts),
465821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  LoadedExternalComments(false), FreeMemory(FreeMem), Target(t),
472a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  Idents(idents), Selectors(sels),
485821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  BuiltinInfo(builtins), ExternalSource(0), PrintingPolicy(LOpts) {
495821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  ObjCIdRedefinitionType = QualType();
505821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  ObjCClassRedefinitionType = QualType();
515821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  if (size_reserve > 0) Types.reserve(size_reserve);
525821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  TUDecl = TranslationUnitDecl::Create(*this);
535821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  InitBuiltinTypes();
545821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)}
555821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
565821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)ASTContext::~ASTContext() {
57  // Deallocate all the types.
58  while (!Types.empty()) {
59    Types.back()->Destroy(*this);
60    Types.pop_back();
61  }
62
63  {
64    llvm::FoldingSet<ExtQuals>::iterator
65      I = ExtQualNodes.begin(), E = ExtQualNodes.end();
66    while (I != E)
67      Deallocate(&*I++);
68  }
69
70  {
71    llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
72      I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end();
73    while (I != E) {
74      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
75      delete R;
76    }
77  }
78
79  {
80    llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>::iterator
81      I = ObjCLayouts.begin(), E = ObjCLayouts.end();
82    while (I != E) {
83      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
84      delete R;
85    }
86  }
87
88  // Destroy nested-name-specifiers.
89  for (llvm::FoldingSet<NestedNameSpecifier>::iterator
90         NNS = NestedNameSpecifiers.begin(),
91         NNSEnd = NestedNameSpecifiers.end();
92       NNS != NNSEnd;
93       /* Increment in loop */)
94    (*NNS++).Destroy(*this);
95
96  if (GlobalNestedNameSpecifier)
97    GlobalNestedNameSpecifier->Destroy(*this);
98
99  TUDecl->Destroy(*this);
100}
101
102void
103ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
104  ExternalSource.reset(Source.take());
105}
106
107void ASTContext::PrintStats() const {
108  fprintf(stderr, "*** AST Context Stats:\n");
109  fprintf(stderr, "  %d types total.\n", (int)Types.size());
110
111  unsigned counts[] = {
112#define TYPE(Name, Parent) 0,
113#define ABSTRACT_TYPE(Name, Parent)
114#include "clang/AST/TypeNodes.def"
115    0 // Extra
116  };
117
118  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
119    Type *T = Types[i];
120    counts[(unsigned)T->getTypeClass()]++;
121  }
122
123  unsigned Idx = 0;
124  unsigned TotalBytes = 0;
125#define TYPE(Name, Parent)                                              \
126  if (counts[Idx])                                                      \
127    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
128  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
129  ++Idx;
130#define ABSTRACT_TYPE(Name, Parent)
131#include "clang/AST/TypeNodes.def"
132
133  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
134
135  if (ExternalSource.get()) {
136    fprintf(stderr, "\n");
137    ExternalSource->PrintStats();
138  }
139}
140
141
142void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
143  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
144  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
145  Types.push_back(Ty);
146}
147
148void ASTContext::InitBuiltinTypes() {
149  assert(VoidTy.isNull() && "Context reinitialized?");
150
151  // C99 6.2.5p19.
152  InitBuiltinType(VoidTy,              BuiltinType::Void);
153
154  // C99 6.2.5p2.
155  InitBuiltinType(BoolTy,              BuiltinType::Bool);
156  // C99 6.2.5p3.
157  if (LangOpts.CharIsSigned)
158    InitBuiltinType(CharTy,            BuiltinType::Char_S);
159  else
160    InitBuiltinType(CharTy,            BuiltinType::Char_U);
161  // C99 6.2.5p4.
162  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
163  InitBuiltinType(ShortTy,             BuiltinType::Short);
164  InitBuiltinType(IntTy,               BuiltinType::Int);
165  InitBuiltinType(LongTy,              BuiltinType::Long);
166  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
167
168  // C99 6.2.5p6.
169  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
170  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
171  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
172  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
173  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
174
175  // C99 6.2.5p10.
176  InitBuiltinType(FloatTy,             BuiltinType::Float);
177  InitBuiltinType(DoubleTy,            BuiltinType::Double);
178  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
179
180  // GNU extension, 128-bit integers.
181  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
182  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
183
184  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
185    InitBuiltinType(WCharTy,           BuiltinType::WChar);
186  else // C99
187    WCharTy = getFromTargetType(Target.getWCharType());
188
189  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
190    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
191  else // C99
192    Char16Ty = getFromTargetType(Target.getChar16Type());
193
194  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
195    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
196  else // C99
197    Char32Ty = getFromTargetType(Target.getChar32Type());
198
199  // Placeholder type for functions.
200  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
201
202  // Placeholder type for type-dependent expressions whose type is
203  // completely unknown. No code should ever check a type against
204  // DependentTy and users should never see it; however, it is here to
205  // help diagnose failures to properly check for type-dependent
206  // expressions.
207  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
208
209  // Placeholder type for C++0x auto declarations whose real type has
210  // not yet been deduced.
211  InitBuiltinType(UndeducedAutoTy, BuiltinType::UndeducedAuto);
212
213  // C99 6.2.5p11.
214  FloatComplexTy      = getComplexType(FloatTy);
215  DoubleComplexTy     = getComplexType(DoubleTy);
216  LongDoubleComplexTy = getComplexType(LongDoubleTy);
217
218  BuiltinVaListType = QualType();
219
220  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
221  ObjCIdTypedefType = QualType();
222  ObjCClassTypedefType = QualType();
223
224  // Builtin types for 'id' and 'Class'.
225  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
226  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
227
228  ObjCConstantStringType = QualType();
229
230  // void * type
231  VoidPtrTy = getPointerType(VoidTy);
232
233  // nullptr type (C++0x 2.14.7)
234  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
235}
236
237MemberSpecializationInfo *
238ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
239  assert(Var->isStaticDataMember() && "Not a static data member");
240  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
241    = InstantiatedFromStaticDataMember.find(Var);
242  if (Pos == InstantiatedFromStaticDataMember.end())
243    return 0;
244
245  return Pos->second;
246}
247
248void
249ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
250                                                TemplateSpecializationKind TSK) {
251  assert(Inst->isStaticDataMember() && "Not a static data member");
252  assert(Tmpl->isStaticDataMember() && "Not a static data member");
253  assert(!InstantiatedFromStaticDataMember[Inst] &&
254         "Already noted what static data member was instantiated from");
255  InstantiatedFromStaticDataMember[Inst]
256    = new (*this) MemberSpecializationInfo(Tmpl, TSK);
257}
258
259UnresolvedUsingDecl *
260ASTContext::getInstantiatedFromUnresolvedUsingDecl(UsingDecl *UUD) {
261  llvm::DenseMap<UsingDecl *, UnresolvedUsingDecl *>::iterator Pos
262    = InstantiatedFromUnresolvedUsingDecl.find(UUD);
263  if (Pos == InstantiatedFromUnresolvedUsingDecl.end())
264    return 0;
265
266  return Pos->second;
267}
268
269void
270ASTContext::setInstantiatedFromUnresolvedUsingDecl(UsingDecl *UD,
271                                                   UnresolvedUsingDecl *UUD) {
272  assert(!InstantiatedFromUnresolvedUsingDecl[UD] &&
273         "Already noted what using decl what instantiated from");
274  InstantiatedFromUnresolvedUsingDecl[UD] = UUD;
275}
276
277FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
278  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
279    = InstantiatedFromUnnamedFieldDecl.find(Field);
280  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
281    return 0;
282
283  return Pos->second;
284}
285
286void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
287                                                     FieldDecl *Tmpl) {
288  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
289  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
290  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
291         "Already noted what unnamed field was instantiated from");
292
293  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
294}
295
296namespace {
297  class BeforeInTranslationUnit
298    : std::binary_function<SourceRange, SourceRange, bool> {
299    SourceManager *SourceMgr;
300
301  public:
302    explicit BeforeInTranslationUnit(SourceManager *SM) : SourceMgr(SM) { }
303
304    bool operator()(SourceRange X, SourceRange Y) {
305      return SourceMgr->isBeforeInTranslationUnit(X.getBegin(), Y.getBegin());
306    }
307  };
308}
309
310/// \brief Determine whether the given comment is a Doxygen-style comment.
311///
312/// \param Start the start of the comment text.
313///
314/// \param End the end of the comment text.
315///
316/// \param Member whether we want to check whether this is a member comment
317/// (which requires a < after the Doxygen-comment delimiter). Otherwise,
318/// we only return true when we find a non-member comment.
319static bool
320isDoxygenComment(SourceManager &SourceMgr, SourceRange Comment,
321                 bool Member = false) {
322  const char *BufferStart
323    = SourceMgr.getBufferData(SourceMgr.getFileID(Comment.getBegin())).first;
324  const char *Start = BufferStart + SourceMgr.getFileOffset(Comment.getBegin());
325  const char* End = BufferStart + SourceMgr.getFileOffset(Comment.getEnd());
326
327  if (End - Start < 4)
328    return false;
329
330  assert(Start[0] == '/' && "Not a comment?");
331  if (Start[1] == '*' && !(Start[2] == '!' || Start[2] == '*'))
332    return false;
333  if (Start[1] == '/' && !(Start[2] == '!' || Start[2] == '/'))
334    return false;
335
336  return (Start[3] == '<') == Member;
337}
338
339/// \brief Retrieve the comment associated with the given declaration, if
340/// it has one.
341const char *ASTContext::getCommentForDecl(const Decl *D) {
342  if (!D)
343    return 0;
344
345  // Check whether we have cached a comment string for this declaration
346  // already.
347  llvm::DenseMap<const Decl *, std::string>::iterator Pos
348    = DeclComments.find(D);
349  if (Pos != DeclComments.end())
350    return Pos->second.c_str();
351
352  // If we have an external AST source and have not yet loaded comments from
353  // that source, do so now.
354  if (ExternalSource && !LoadedExternalComments) {
355    std::vector<SourceRange> LoadedComments;
356    ExternalSource->ReadComments(LoadedComments);
357
358    if (!LoadedComments.empty())
359      Comments.insert(Comments.begin(), LoadedComments.begin(),
360                      LoadedComments.end());
361
362    LoadedExternalComments = true;
363  }
364
365  // If there are no comments anywhere, we won't find anything.
366  if (Comments.empty())
367    return 0;
368
369  // If the declaration doesn't map directly to a location in a file, we
370  // can't find the comment.
371  SourceLocation DeclStartLoc = D->getLocStart();
372  if (DeclStartLoc.isInvalid() || !DeclStartLoc.isFileID())
373    return 0;
374
375  // Find the comment that occurs just before this declaration.
376  std::vector<SourceRange>::iterator LastComment
377    = std::lower_bound(Comments.begin(), Comments.end(),
378                       SourceRange(DeclStartLoc),
379                       BeforeInTranslationUnit(&SourceMgr));
380
381  // Decompose the location for the start of the declaration and find the
382  // beginning of the file buffer.
383  std::pair<FileID, unsigned> DeclStartDecomp
384    = SourceMgr.getDecomposedLoc(DeclStartLoc);
385  const char *FileBufferStart
386    = SourceMgr.getBufferData(DeclStartDecomp.first).first;
387
388  // First check whether we have a comment for a member.
389  if (LastComment != Comments.end() &&
390      !isa<TagDecl>(D) && !isa<NamespaceDecl>(D) &&
391      isDoxygenComment(SourceMgr, *LastComment, true)) {
392    std::pair<FileID, unsigned> LastCommentEndDecomp
393      = SourceMgr.getDecomposedLoc(LastComment->getEnd());
394    if (DeclStartDecomp.first == LastCommentEndDecomp.first &&
395        SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second)
396          == SourceMgr.getLineNumber(LastCommentEndDecomp.first,
397                                     LastCommentEndDecomp.second)) {
398      // The Doxygen member comment comes after the declaration starts and
399      // is on the same line and in the same file as the declaration. This
400      // is the comment we want.
401      std::string &Result = DeclComments[D];
402      Result.append(FileBufferStart +
403                      SourceMgr.getFileOffset(LastComment->getBegin()),
404                    FileBufferStart + LastCommentEndDecomp.second + 1);
405      return Result.c_str();
406    }
407  }
408
409  if (LastComment == Comments.begin())
410    return 0;
411  --LastComment;
412
413  // Decompose the end of the comment.
414  std::pair<FileID, unsigned> LastCommentEndDecomp
415    = SourceMgr.getDecomposedLoc(LastComment->getEnd());
416
417  // If the comment and the declaration aren't in the same file, then they
418  // aren't related.
419  if (DeclStartDecomp.first != LastCommentEndDecomp.first)
420    return 0;
421
422  // Check that we actually have a Doxygen comment.
423  if (!isDoxygenComment(SourceMgr, *LastComment))
424    return 0;
425
426  // Compute the starting line for the declaration and for the end of the
427  // comment (this is expensive).
428  unsigned DeclStartLine
429    = SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second);
430  unsigned CommentEndLine
431    = SourceMgr.getLineNumber(LastCommentEndDecomp.first,
432                              LastCommentEndDecomp.second);
433
434  // If the comment does not end on the line prior to the declaration, then
435  // the comment is not associated with the declaration at all.
436  if (CommentEndLine + 1 != DeclStartLine)
437    return 0;
438
439  // We have a comment, but there may be more comments on the previous lines.
440  // Keep looking so long as the comments are still Doxygen comments and are
441  // still adjacent.
442  unsigned ExpectedLine
443    = SourceMgr.getSpellingLineNumber(LastComment->getBegin()) - 1;
444  std::vector<SourceRange>::iterator FirstComment = LastComment;
445  while (FirstComment != Comments.begin()) {
446    // Look at the previous comment
447    --FirstComment;
448    std::pair<FileID, unsigned> Decomp
449      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
450
451    // If this previous comment is in a different file, we're done.
452    if (Decomp.first != DeclStartDecomp.first) {
453      ++FirstComment;
454      break;
455    }
456
457    // If this comment is not a Doxygen comment, we're done.
458    if (!isDoxygenComment(SourceMgr, *FirstComment)) {
459      ++FirstComment;
460      break;
461    }
462
463    // If the line number is not what we expected, we're done.
464    unsigned Line = SourceMgr.getLineNumber(Decomp.first, Decomp.second);
465    if (Line != ExpectedLine) {
466      ++FirstComment;
467      break;
468    }
469
470    // Set the next expected line number.
471    ExpectedLine
472      = SourceMgr.getSpellingLineNumber(FirstComment->getBegin()) - 1;
473  }
474
475  // The iterator range [FirstComment, LastComment] contains all of the
476  // BCPL comments that, together, are associated with this declaration.
477  // Form a single comment block string for this declaration that concatenates
478  // all of these comments.
479  std::string &Result = DeclComments[D];
480  while (FirstComment != LastComment) {
481    std::pair<FileID, unsigned> DecompStart
482      = SourceMgr.getDecomposedLoc(FirstComment->getBegin());
483    std::pair<FileID, unsigned> DecompEnd
484      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
485    Result.append(FileBufferStart + DecompStart.second,
486                  FileBufferStart + DecompEnd.second + 1);
487    ++FirstComment;
488  }
489
490  // Append the last comment line.
491  Result.append(FileBufferStart +
492                  SourceMgr.getFileOffset(LastComment->getBegin()),
493                FileBufferStart + LastCommentEndDecomp.second + 1);
494  return Result.c_str();
495}
496
497//===----------------------------------------------------------------------===//
498//                         Type Sizing and Analysis
499//===----------------------------------------------------------------------===//
500
501/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
502/// scalar floating point type.
503const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
504  const BuiltinType *BT = T->getAs<BuiltinType>();
505  assert(BT && "Not a floating point type!");
506  switch (BT->getKind()) {
507  default: assert(0 && "Not a floating point type!");
508  case BuiltinType::Float:      return Target.getFloatFormat();
509  case BuiltinType::Double:     return Target.getDoubleFormat();
510  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
511  }
512}
513
514/// getDeclAlignInBytes - Return a conservative estimate of the alignment of the
515/// specified decl.  Note that bitfields do not have a valid alignment, so
516/// this method will assert on them.
517unsigned ASTContext::getDeclAlignInBytes(const Decl *D) {
518  unsigned Align = Target.getCharWidth();
519
520  if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
521    Align = std::max(Align, AA->getAlignment());
522
523  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
524    QualType T = VD->getType();
525    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
526      unsigned AS = RT->getPointeeType().getAddressSpace();
527      Align = Target.getPointerAlign(AS);
528    } else if (!T->isIncompleteType() && !T->isFunctionType()) {
529      // Incomplete or function types default to 1.
530      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
531        T = cast<ArrayType>(T)->getElementType();
532
533      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
534    }
535  }
536
537  return Align / Target.getCharWidth();
538}
539
540/// getTypeSize - Return the size of the specified type, in bits.  This method
541/// does not work on incomplete types.
542///
543/// FIXME: Pointers into different addr spaces could have different sizes and
544/// alignment requirements: getPointerInfo should take an AddrSpace, this
545/// should take a QualType, &c.
546std::pair<uint64_t, unsigned>
547ASTContext::getTypeInfo(const Type *T) {
548  uint64_t Width=0;
549  unsigned Align=8;
550  switch (T->getTypeClass()) {
551#define TYPE(Class, Base)
552#define ABSTRACT_TYPE(Class, Base)
553#define NON_CANONICAL_TYPE(Class, Base)
554#define DEPENDENT_TYPE(Class, Base) case Type::Class:
555#include "clang/AST/TypeNodes.def"
556    assert(false && "Should not see dependent types");
557    break;
558
559  case Type::FunctionNoProto:
560  case Type::FunctionProto:
561    // GCC extension: alignof(function) = 32 bits
562    Width = 0;
563    Align = 32;
564    break;
565
566  case Type::IncompleteArray:
567  case Type::VariableArray:
568    Width = 0;
569    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
570    break;
571
572  case Type::ConstantArray: {
573    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
574
575    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
576    Width = EltInfo.first*CAT->getSize().getZExtValue();
577    Align = EltInfo.second;
578    break;
579  }
580  case Type::ExtVector:
581  case Type::Vector: {
582    const VectorType *VT = cast<VectorType>(T);
583    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
584    Width = EltInfo.first*VT->getNumElements();
585    Align = Width;
586    // If the alignment is not a power of 2, round up to the next power of 2.
587    // This happens for non-power-of-2 length vectors.
588    if (VT->getNumElements() & (VT->getNumElements()-1)) {
589      Align = llvm::NextPowerOf2(Align);
590      Width = llvm::RoundUpToAlignment(Width, Align);
591    }
592    break;
593  }
594
595  case Type::Builtin:
596    switch (cast<BuiltinType>(T)->getKind()) {
597    default: assert(0 && "Unknown builtin type!");
598    case BuiltinType::Void:
599      // GCC extension: alignof(void) = 8 bits.
600      Width = 0;
601      Align = 8;
602      break;
603
604    case BuiltinType::Bool:
605      Width = Target.getBoolWidth();
606      Align = Target.getBoolAlign();
607      break;
608    case BuiltinType::Char_S:
609    case BuiltinType::Char_U:
610    case BuiltinType::UChar:
611    case BuiltinType::SChar:
612      Width = Target.getCharWidth();
613      Align = Target.getCharAlign();
614      break;
615    case BuiltinType::WChar:
616      Width = Target.getWCharWidth();
617      Align = Target.getWCharAlign();
618      break;
619    case BuiltinType::Char16:
620      Width = Target.getChar16Width();
621      Align = Target.getChar16Align();
622      break;
623    case BuiltinType::Char32:
624      Width = Target.getChar32Width();
625      Align = Target.getChar32Align();
626      break;
627    case BuiltinType::UShort:
628    case BuiltinType::Short:
629      Width = Target.getShortWidth();
630      Align = Target.getShortAlign();
631      break;
632    case BuiltinType::UInt:
633    case BuiltinType::Int:
634      Width = Target.getIntWidth();
635      Align = Target.getIntAlign();
636      break;
637    case BuiltinType::ULong:
638    case BuiltinType::Long:
639      Width = Target.getLongWidth();
640      Align = Target.getLongAlign();
641      break;
642    case BuiltinType::ULongLong:
643    case BuiltinType::LongLong:
644      Width = Target.getLongLongWidth();
645      Align = Target.getLongLongAlign();
646      break;
647    case BuiltinType::Int128:
648    case BuiltinType::UInt128:
649      Width = 128;
650      Align = 128; // int128_t is 128-bit aligned on all targets.
651      break;
652    case BuiltinType::Float:
653      Width = Target.getFloatWidth();
654      Align = Target.getFloatAlign();
655      break;
656    case BuiltinType::Double:
657      Width = Target.getDoubleWidth();
658      Align = Target.getDoubleAlign();
659      break;
660    case BuiltinType::LongDouble:
661      Width = Target.getLongDoubleWidth();
662      Align = Target.getLongDoubleAlign();
663      break;
664    case BuiltinType::NullPtr:
665      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
666      Align = Target.getPointerAlign(0); //   == sizeof(void*)
667      break;
668    }
669    break;
670  case Type::FixedWidthInt:
671    // FIXME: This isn't precisely correct; the width/alignment should depend
672    // on the available types for the target
673    Width = cast<FixedWidthIntType>(T)->getWidth();
674    Width = std::max(llvm::NextPowerOf2(Width - 1), (uint64_t)8);
675    Align = Width;
676    break;
677  case Type::ObjCObjectPointer:
678    Width = Target.getPointerWidth(0);
679    Align = Target.getPointerAlign(0);
680    break;
681  case Type::BlockPointer: {
682    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
683    Width = Target.getPointerWidth(AS);
684    Align = Target.getPointerAlign(AS);
685    break;
686  }
687  case Type::Pointer: {
688    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
689    Width = Target.getPointerWidth(AS);
690    Align = Target.getPointerAlign(AS);
691    break;
692  }
693  case Type::LValueReference:
694  case Type::RValueReference:
695    // "When applied to a reference or a reference type, the result is the size
696    // of the referenced type." C++98 5.3.3p2: expr.sizeof.
697    // FIXME: This is wrong for struct layout: a reference in a struct has
698    // pointer size.
699    return getTypeInfo(cast<ReferenceType>(T)->getPointeeType());
700  case Type::MemberPointer: {
701    // FIXME: This is ABI dependent. We use the Itanium C++ ABI.
702    // http://www.codesourcery.com/public/cxx-abi/abi.html#member-pointers
703    // If we ever want to support other ABIs this needs to be abstracted.
704
705    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
706    std::pair<uint64_t, unsigned> PtrDiffInfo =
707      getTypeInfo(getPointerDiffType());
708    Width = PtrDiffInfo.first;
709    if (Pointee->isFunctionType())
710      Width *= 2;
711    Align = PtrDiffInfo.second;
712    break;
713  }
714  case Type::Complex: {
715    // Complex types have the same alignment as their elements, but twice the
716    // size.
717    std::pair<uint64_t, unsigned> EltInfo =
718      getTypeInfo(cast<ComplexType>(T)->getElementType());
719    Width = EltInfo.first*2;
720    Align = EltInfo.second;
721    break;
722  }
723  case Type::ObjCInterface: {
724    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
725    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
726    Width = Layout.getSize();
727    Align = Layout.getAlignment();
728    break;
729  }
730  case Type::Record:
731  case Type::Enum: {
732    const TagType *TT = cast<TagType>(T);
733
734    if (TT->getDecl()->isInvalidDecl()) {
735      Width = 1;
736      Align = 1;
737      break;
738    }
739
740    if (const EnumType *ET = dyn_cast<EnumType>(TT))
741      return getTypeInfo(ET->getDecl()->getIntegerType());
742
743    const RecordType *RT = cast<RecordType>(TT);
744    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
745    Width = Layout.getSize();
746    Align = Layout.getAlignment();
747    break;
748  }
749
750  case Type::SubstTemplateTypeParm:
751    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
752                       getReplacementType().getTypePtr());
753
754  case Type::Elaborated:
755    return getTypeInfo(cast<ElaboratedType>(T)->getUnderlyingType()
756                         .getTypePtr());
757
758  case Type::Typedef: {
759    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
760    if (const AlignedAttr *Aligned = Typedef->getAttr<AlignedAttr>()) {
761      Align = Aligned->getAlignment();
762      Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
763    } else
764      return getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
765    break;
766  }
767
768  case Type::TypeOfExpr:
769    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
770                         .getTypePtr());
771
772  case Type::TypeOf:
773    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
774
775  case Type::Decltype:
776    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
777                        .getTypePtr());
778
779  case Type::QualifiedName:
780    return getTypeInfo(cast<QualifiedNameType>(T)->getNamedType().getTypePtr());
781
782  case Type::TemplateSpecialization:
783    assert(getCanonicalType(T) != T &&
784           "Cannot request the size of a dependent type");
785    // FIXME: this is likely to be wrong once we support template
786    // aliases, since a template alias could refer to a typedef that
787    // has an __aligned__ attribute on it.
788    return getTypeInfo(getCanonicalType(T));
789  }
790
791  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
792  return std::make_pair(Width, Align);
793}
794
795/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
796/// type for the current target in bits.  This can be different than the ABI
797/// alignment in cases where it is beneficial for performance to overalign
798/// a data type.
799unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
800  unsigned ABIAlign = getTypeAlign(T);
801
802  // Double and long long should be naturally aligned if possible.
803  if (const ComplexType* CT = T->getAs<ComplexType>())
804    T = CT->getElementType().getTypePtr();
805  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
806      T->isSpecificBuiltinType(BuiltinType::LongLong))
807    return std::max(ABIAlign, (unsigned)getTypeSize(T));
808
809  return ABIAlign;
810}
811
812static void CollectLocalObjCIvars(ASTContext *Ctx,
813                                  const ObjCInterfaceDecl *OI,
814                                  llvm::SmallVectorImpl<FieldDecl*> &Fields) {
815  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
816       E = OI->ivar_end(); I != E; ++I) {
817    ObjCIvarDecl *IVDecl = *I;
818    if (!IVDecl->isInvalidDecl())
819      Fields.push_back(cast<FieldDecl>(IVDecl));
820  }
821}
822
823void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
824                             llvm::SmallVectorImpl<FieldDecl*> &Fields) {
825  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
826    CollectObjCIvars(SuperClass, Fields);
827  CollectLocalObjCIvars(this, OI, Fields);
828}
829
830/// ShallowCollectObjCIvars -
831/// Collect all ivars, including those synthesized, in the current class.
832///
833void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
834                                 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars,
835                                 bool CollectSynthesized) {
836  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
837         E = OI->ivar_end(); I != E; ++I) {
838     Ivars.push_back(*I);
839  }
840  if (CollectSynthesized)
841    CollectSynthesizedIvars(OI, Ivars);
842}
843
844void ASTContext::CollectProtocolSynthesizedIvars(const ObjCProtocolDecl *PD,
845                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
846  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
847       E = PD->prop_end(); I != E; ++I)
848    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
849      Ivars.push_back(Ivar);
850
851  // Also look into nested protocols.
852  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
853       E = PD->protocol_end(); P != E; ++P)
854    CollectProtocolSynthesizedIvars(*P, Ivars);
855}
856
857/// CollectSynthesizedIvars -
858/// This routine collect synthesized ivars for the designated class.
859///
860void ASTContext::CollectSynthesizedIvars(const ObjCInterfaceDecl *OI,
861                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
862  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
863       E = OI->prop_end(); I != E; ++I) {
864    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
865      Ivars.push_back(Ivar);
866  }
867  // Also look into interface's protocol list for properties declared
868  // in the protocol and whose ivars are synthesized.
869  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
870       PE = OI->protocol_end(); P != PE; ++P) {
871    ObjCProtocolDecl *PD = (*P);
872    CollectProtocolSynthesizedIvars(PD, Ivars);
873  }
874}
875
876unsigned ASTContext::CountProtocolSynthesizedIvars(const ObjCProtocolDecl *PD) {
877  unsigned count = 0;
878  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
879       E = PD->prop_end(); I != E; ++I)
880    if ((*I)->getPropertyIvarDecl())
881      ++count;
882
883  // Also look into nested protocols.
884  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
885       E = PD->protocol_end(); P != E; ++P)
886    count += CountProtocolSynthesizedIvars(*P);
887  return count;
888}
889
890unsigned ASTContext::CountSynthesizedIvars(const ObjCInterfaceDecl *OI) {
891  unsigned count = 0;
892  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
893       E = OI->prop_end(); I != E; ++I) {
894    if ((*I)->getPropertyIvarDecl())
895      ++count;
896  }
897  // Also look into interface's protocol list for properties declared
898  // in the protocol and whose ivars are synthesized.
899  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
900       PE = OI->protocol_end(); P != PE; ++P) {
901    ObjCProtocolDecl *PD = (*P);
902    count += CountProtocolSynthesizedIvars(PD);
903  }
904  return count;
905}
906
907/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
908ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
909  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
910    I = ObjCImpls.find(D);
911  if (I != ObjCImpls.end())
912    return cast<ObjCImplementationDecl>(I->second);
913  return 0;
914}
915/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
916ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
917  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
918    I = ObjCImpls.find(D);
919  if (I != ObjCImpls.end())
920    return cast<ObjCCategoryImplDecl>(I->second);
921  return 0;
922}
923
924/// \brief Set the implementation of ObjCInterfaceDecl.
925void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
926                           ObjCImplementationDecl *ImplD) {
927  assert(IFaceD && ImplD && "Passed null params");
928  ObjCImpls[IFaceD] = ImplD;
929}
930/// \brief Set the implementation of ObjCCategoryDecl.
931void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
932                           ObjCCategoryImplDecl *ImplD) {
933  assert(CatD && ImplD && "Passed null params");
934  ObjCImpls[CatD] = ImplD;
935}
936
937/// \brief Allocate an uninitialized DeclaratorInfo.
938///
939/// The caller should initialize the memory held by DeclaratorInfo using
940/// the TypeLoc wrappers.
941///
942/// \param T the type that will be the basis for type source info. This type
943/// should refer to how the declarator was written in source code, not to
944/// what type semantic analysis resolved the declarator to.
945DeclaratorInfo *ASTContext::CreateDeclaratorInfo(QualType T,
946                                                 unsigned DataSize) {
947  if (!DataSize)
948    DataSize = TypeLoc::getFullDataSizeForType(T);
949  else
950    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
951           "incorrect data size provided to CreateDeclaratorInfo!");
952
953  DeclaratorInfo *DInfo =
954    (DeclaratorInfo*)BumpAlloc.Allocate(sizeof(DeclaratorInfo) + DataSize, 8);
955  new (DInfo) DeclaratorInfo(T);
956  return DInfo;
957}
958
959DeclaratorInfo *ASTContext::getTrivialDeclaratorInfo(QualType T,
960                                                     SourceLocation L) {
961  DeclaratorInfo *DI = CreateDeclaratorInfo(T);
962  DI->getTypeLoc().initialize(L);
963  return DI;
964}
965
966/// getInterfaceLayoutImpl - Get or compute information about the
967/// layout of the given interface.
968///
969/// \param Impl - If given, also include the layout of the interface's
970/// implementation. This may differ by including synthesized ivars.
971const ASTRecordLayout &
972ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
973                          const ObjCImplementationDecl *Impl) {
974  assert(!D->isForwardDecl() && "Invalid interface decl!");
975
976  // Look up this layout, if already laid out, return what we have.
977  ObjCContainerDecl *Key =
978    Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D;
979  if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
980    return *Entry;
981
982  // Add in synthesized ivar count if laying out an implementation.
983  if (Impl) {
984    unsigned FieldCount = D->ivar_size();
985    unsigned SynthCount = CountSynthesizedIvars(D);
986    FieldCount += SynthCount;
987    // If there aren't any sythesized ivars then reuse the interface
988    // entry. Note we can't cache this because we simply free all
989    // entries later; however we shouldn't look up implementations
990    // frequently.
991    if (SynthCount == 0)
992      return getObjCLayout(D, 0);
993  }
994
995  const ASTRecordLayout *NewEntry =
996    ASTRecordLayoutBuilder::ComputeLayout(*this, D, Impl);
997  ObjCLayouts[Key] = NewEntry;
998
999  return *NewEntry;
1000}
1001
1002const ASTRecordLayout &
1003ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
1004  return getObjCLayout(D, 0);
1005}
1006
1007const ASTRecordLayout &
1008ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
1009  return getObjCLayout(D->getClassInterface(), D);
1010}
1011
1012/// getASTRecordLayout - Get or compute information about the layout of the
1013/// specified record (struct/union/class), which indicates its size and field
1014/// position information.
1015const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
1016  D = D->getDefinition(*this);
1017  assert(D && "Cannot get layout of forward declarations!");
1018
1019  // Look up this layout, if already laid out, return what we have.
1020  // Note that we can't save a reference to the entry because this function
1021  // is recursive.
1022  const ASTRecordLayout *Entry = ASTRecordLayouts[D];
1023  if (Entry) return *Entry;
1024
1025  const ASTRecordLayout *NewEntry =
1026    ASTRecordLayoutBuilder::ComputeLayout(*this, D);
1027  ASTRecordLayouts[D] = NewEntry;
1028
1029  return *NewEntry;
1030}
1031
1032//===----------------------------------------------------------------------===//
1033//                   Type creation/memoization methods
1034//===----------------------------------------------------------------------===//
1035
1036QualType ASTContext::getExtQualType(const Type *TypeNode, Qualifiers Quals) {
1037  unsigned Fast = Quals.getFastQualifiers();
1038  Quals.removeFastQualifiers();
1039
1040  // Check if we've already instantiated this type.
1041  llvm::FoldingSetNodeID ID;
1042  ExtQuals::Profile(ID, TypeNode, Quals);
1043  void *InsertPos = 0;
1044  if (ExtQuals *EQ = ExtQualNodes.FindNodeOrInsertPos(ID, InsertPos)) {
1045    assert(EQ->getQualifiers() == Quals);
1046    QualType T = QualType(EQ, Fast);
1047    return T;
1048  }
1049
1050  ExtQuals *New = new (*this, TypeAlignment) ExtQuals(*this, TypeNode, Quals);
1051  ExtQualNodes.InsertNode(New, InsertPos);
1052  QualType T = QualType(New, Fast);
1053  return T;
1054}
1055
1056QualType ASTContext::getVolatileType(QualType T) {
1057  QualType CanT = getCanonicalType(T);
1058  if (CanT.isVolatileQualified()) return T;
1059
1060  QualifierCollector Quals;
1061  const Type *TypeNode = Quals.strip(T);
1062  Quals.addVolatile();
1063
1064  return getExtQualType(TypeNode, Quals);
1065}
1066
1067QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
1068  QualType CanT = getCanonicalType(T);
1069  if (CanT.getAddressSpace() == AddressSpace)
1070    return T;
1071
1072  // If we are composing extended qualifiers together, merge together
1073  // into one ExtQuals node.
1074  QualifierCollector Quals;
1075  const Type *TypeNode = Quals.strip(T);
1076
1077  // If this type already has an address space specified, it cannot get
1078  // another one.
1079  assert(!Quals.hasAddressSpace() &&
1080         "Type cannot be in multiple addr spaces!");
1081  Quals.addAddressSpace(AddressSpace);
1082
1083  return getExtQualType(TypeNode, Quals);
1084}
1085
1086QualType ASTContext::getObjCGCQualType(QualType T,
1087                                       Qualifiers::GC GCAttr) {
1088  QualType CanT = getCanonicalType(T);
1089  if (CanT.getObjCGCAttr() == GCAttr)
1090    return T;
1091
1092  if (T->isPointerType()) {
1093    QualType Pointee = T->getAs<PointerType>()->getPointeeType();
1094    if (Pointee->isAnyPointerType()) {
1095      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1096      return getPointerType(ResultType);
1097    }
1098  }
1099
1100  // If we are composing extended qualifiers together, merge together
1101  // into one ExtQuals node.
1102  QualifierCollector Quals;
1103  const Type *TypeNode = Quals.strip(T);
1104
1105  // If this type already has an ObjCGC specified, it cannot get
1106  // another one.
1107  assert(!Quals.hasObjCGCAttr() &&
1108         "Type cannot have multiple ObjCGCs!");
1109  Quals.addObjCGCAttr(GCAttr);
1110
1111  return getExtQualType(TypeNode, Quals);
1112}
1113
1114QualType ASTContext::getNoReturnType(QualType T) {
1115  QualType ResultType;
1116  if (T->isPointerType()) {
1117    QualType Pointee = T->getAs<PointerType>()->getPointeeType();
1118    ResultType = getNoReturnType(Pointee);
1119    ResultType = getPointerType(ResultType);
1120  } else if (T->isBlockPointerType()) {
1121    QualType Pointee = T->getAs<BlockPointerType>()->getPointeeType();
1122    ResultType = getNoReturnType(Pointee);
1123    ResultType = getBlockPointerType(ResultType);
1124  } else {
1125    assert (T->isFunctionType()
1126            && "can't noreturn qualify non-pointer to function or block type");
1127
1128    if (const FunctionNoProtoType *FNPT = T->getAs<FunctionNoProtoType>()) {
1129      ResultType = getFunctionNoProtoType(FNPT->getResultType(), true);
1130    } else {
1131      const FunctionProtoType *F = T->getAs<FunctionProtoType>();
1132      ResultType
1133        = getFunctionType(F->getResultType(), F->arg_type_begin(),
1134                          F->getNumArgs(), F->isVariadic(), F->getTypeQuals(),
1135                          F->hasExceptionSpec(), F->hasAnyExceptionSpec(),
1136                          F->getNumExceptions(), F->exception_begin(), true);
1137    }
1138  }
1139
1140  return getQualifiedType(ResultType, T.getQualifiers());
1141}
1142
1143/// getComplexType - Return the uniqued reference to the type for a complex
1144/// number with the specified element type.
1145QualType ASTContext::getComplexType(QualType T) {
1146  // Unique pointers, to guarantee there is only one pointer of a particular
1147  // structure.
1148  llvm::FoldingSetNodeID ID;
1149  ComplexType::Profile(ID, T);
1150
1151  void *InsertPos = 0;
1152  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1153    return QualType(CT, 0);
1154
1155  // If the pointee type isn't canonical, this won't be a canonical type either,
1156  // so fill in the canonical type field.
1157  QualType Canonical;
1158  if (!T.isCanonical()) {
1159    Canonical = getComplexType(getCanonicalType(T));
1160
1161    // Get the new insert position for the node we care about.
1162    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1163    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1164  }
1165  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1166  Types.push_back(New);
1167  ComplexTypes.InsertNode(New, InsertPos);
1168  return QualType(New, 0);
1169}
1170
1171QualType ASTContext::getFixedWidthIntType(unsigned Width, bool Signed) {
1172  llvm::DenseMap<unsigned, FixedWidthIntType*> &Map = Signed ?
1173     SignedFixedWidthIntTypes : UnsignedFixedWidthIntTypes;
1174  FixedWidthIntType *&Entry = Map[Width];
1175  if (!Entry)
1176    Entry = new FixedWidthIntType(Width, Signed);
1177  return QualType(Entry, 0);
1178}
1179
1180/// getPointerType - Return the uniqued reference to the type for a pointer to
1181/// the specified type.
1182QualType ASTContext::getPointerType(QualType T) {
1183  // Unique pointers, to guarantee there is only one pointer of a particular
1184  // structure.
1185  llvm::FoldingSetNodeID ID;
1186  PointerType::Profile(ID, T);
1187
1188  void *InsertPos = 0;
1189  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1190    return QualType(PT, 0);
1191
1192  // If the pointee type isn't canonical, this won't be a canonical type either,
1193  // so fill in the canonical type field.
1194  QualType Canonical;
1195  if (!T.isCanonical()) {
1196    Canonical = getPointerType(getCanonicalType(T));
1197
1198    // Get the new insert position for the node we care about.
1199    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1200    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1201  }
1202  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1203  Types.push_back(New);
1204  PointerTypes.InsertNode(New, InsertPos);
1205  return QualType(New, 0);
1206}
1207
1208/// getBlockPointerType - Return the uniqued reference to the type for
1209/// a pointer to the specified block.
1210QualType ASTContext::getBlockPointerType(QualType T) {
1211  assert(T->isFunctionType() && "block of function types only");
1212  // Unique pointers, to guarantee there is only one block of a particular
1213  // structure.
1214  llvm::FoldingSetNodeID ID;
1215  BlockPointerType::Profile(ID, T);
1216
1217  void *InsertPos = 0;
1218  if (BlockPointerType *PT =
1219        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1220    return QualType(PT, 0);
1221
1222  // If the block pointee type isn't canonical, this won't be a canonical
1223  // type either so fill in the canonical type field.
1224  QualType Canonical;
1225  if (!T.isCanonical()) {
1226    Canonical = getBlockPointerType(getCanonicalType(T));
1227
1228    // Get the new insert position for the node we care about.
1229    BlockPointerType *NewIP =
1230      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1231    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1232  }
1233  BlockPointerType *New
1234    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1235  Types.push_back(New);
1236  BlockPointerTypes.InsertNode(New, InsertPos);
1237  return QualType(New, 0);
1238}
1239
1240/// getLValueReferenceType - Return the uniqued reference to the type for an
1241/// lvalue reference to the specified type.
1242QualType ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) {
1243  // Unique pointers, to guarantee there is only one pointer of a particular
1244  // structure.
1245  llvm::FoldingSetNodeID ID;
1246  ReferenceType::Profile(ID, T, SpelledAsLValue);
1247
1248  void *InsertPos = 0;
1249  if (LValueReferenceType *RT =
1250        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1251    return QualType(RT, 0);
1252
1253  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1254
1255  // If the referencee type isn't canonical, this won't be a canonical type
1256  // either, so fill in the canonical type field.
1257  QualType Canonical;
1258  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1259    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1260    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1261
1262    // Get the new insert position for the node we care about.
1263    LValueReferenceType *NewIP =
1264      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1265    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1266  }
1267
1268  LValueReferenceType *New
1269    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1270                                                     SpelledAsLValue);
1271  Types.push_back(New);
1272  LValueReferenceTypes.InsertNode(New, InsertPos);
1273
1274  return QualType(New, 0);
1275}
1276
1277/// getRValueReferenceType - Return the uniqued reference to the type for an
1278/// rvalue reference to the specified type.
1279QualType ASTContext::getRValueReferenceType(QualType T) {
1280  // Unique pointers, to guarantee there is only one pointer of a particular
1281  // structure.
1282  llvm::FoldingSetNodeID ID;
1283  ReferenceType::Profile(ID, T, false);
1284
1285  void *InsertPos = 0;
1286  if (RValueReferenceType *RT =
1287        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1288    return QualType(RT, 0);
1289
1290  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1291
1292  // If the referencee type isn't canonical, this won't be a canonical type
1293  // either, so fill in the canonical type field.
1294  QualType Canonical;
1295  if (InnerRef || !T.isCanonical()) {
1296    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1297    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1298
1299    // Get the new insert position for the node we care about.
1300    RValueReferenceType *NewIP =
1301      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1302    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1303  }
1304
1305  RValueReferenceType *New
1306    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1307  Types.push_back(New);
1308  RValueReferenceTypes.InsertNode(New, InsertPos);
1309  return QualType(New, 0);
1310}
1311
1312/// getMemberPointerType - Return the uniqued reference to the type for a
1313/// member pointer to the specified type, in the specified class.
1314QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) {
1315  // Unique pointers, to guarantee there is only one pointer of a particular
1316  // structure.
1317  llvm::FoldingSetNodeID ID;
1318  MemberPointerType::Profile(ID, T, Cls);
1319
1320  void *InsertPos = 0;
1321  if (MemberPointerType *PT =
1322      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1323    return QualType(PT, 0);
1324
1325  // If the pointee or class type isn't canonical, this won't be a canonical
1326  // type either, so fill in the canonical type field.
1327  QualType Canonical;
1328  if (!T.isCanonical()) {
1329    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1330
1331    // Get the new insert position for the node we care about.
1332    MemberPointerType *NewIP =
1333      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1334    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1335  }
1336  MemberPointerType *New
1337    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1338  Types.push_back(New);
1339  MemberPointerTypes.InsertNode(New, InsertPos);
1340  return QualType(New, 0);
1341}
1342
1343/// getConstantArrayType - Return the unique reference to the type for an
1344/// array of the specified element type.
1345QualType ASTContext::getConstantArrayType(QualType EltTy,
1346                                          const llvm::APInt &ArySizeIn,
1347                                          ArrayType::ArraySizeModifier ASM,
1348                                          unsigned EltTypeQuals) {
1349  assert((EltTy->isDependentType() || EltTy->isConstantSizeType()) &&
1350         "Constant array of VLAs is illegal!");
1351
1352  // Convert the array size into a canonical width matching the pointer size for
1353  // the target.
1354  llvm::APInt ArySize(ArySizeIn);
1355  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1356
1357  llvm::FoldingSetNodeID ID;
1358  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1359
1360  void *InsertPos = 0;
1361  if (ConstantArrayType *ATP =
1362      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1363    return QualType(ATP, 0);
1364
1365  // If the element type isn't canonical, this won't be a canonical type either,
1366  // so fill in the canonical type field.
1367  QualType Canonical;
1368  if (!EltTy.isCanonical()) {
1369    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1370                                     ASM, EltTypeQuals);
1371    // Get the new insert position for the node we care about.
1372    ConstantArrayType *NewIP =
1373      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1374    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1375  }
1376
1377  ConstantArrayType *New = new(*this,TypeAlignment)
1378    ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1379  ConstantArrayTypes.InsertNode(New, InsertPos);
1380  Types.push_back(New);
1381  return QualType(New, 0);
1382}
1383
1384/// getVariableArrayType - Returns a non-unique reference to the type for a
1385/// variable array of the specified element type.
1386QualType ASTContext::getVariableArrayType(QualType EltTy,
1387                                          Expr *NumElts,
1388                                          ArrayType::ArraySizeModifier ASM,
1389                                          unsigned EltTypeQuals,
1390                                          SourceRange Brackets) {
1391  // Since we don't unique expressions, it isn't possible to unique VLA's
1392  // that have an expression provided for their size.
1393
1394  VariableArrayType *New = new(*this, TypeAlignment)
1395    VariableArrayType(EltTy, QualType(), NumElts, ASM, EltTypeQuals, Brackets);
1396
1397  VariableArrayTypes.push_back(New);
1398  Types.push_back(New);
1399  return QualType(New, 0);
1400}
1401
1402/// getDependentSizedArrayType - Returns a non-unique reference to
1403/// the type for a dependently-sized array of the specified element
1404/// type.
1405QualType ASTContext::getDependentSizedArrayType(QualType EltTy,
1406                                                Expr *NumElts,
1407                                                ArrayType::ArraySizeModifier ASM,
1408                                                unsigned EltTypeQuals,
1409                                                SourceRange Brackets) {
1410  assert((NumElts->isTypeDependent() || NumElts->isValueDependent()) &&
1411         "Size must be type- or value-dependent!");
1412
1413  llvm::FoldingSetNodeID ID;
1414  DependentSizedArrayType::Profile(ID, *this, getCanonicalType(EltTy), ASM,
1415                                   EltTypeQuals, NumElts);
1416
1417  void *InsertPos = 0;
1418  DependentSizedArrayType *Canon
1419    = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1420  DependentSizedArrayType *New;
1421  if (Canon) {
1422    // We already have a canonical version of this array type; use it as
1423    // the canonical type for a newly-built type.
1424    New = new (*this, TypeAlignment)
1425      DependentSizedArrayType(*this, EltTy, QualType(Canon, 0),
1426                              NumElts, ASM, EltTypeQuals, Brackets);
1427  } else {
1428    QualType CanonEltTy = getCanonicalType(EltTy);
1429    if (CanonEltTy == EltTy) {
1430      New = new (*this, TypeAlignment)
1431        DependentSizedArrayType(*this, EltTy, QualType(),
1432                                NumElts, ASM, EltTypeQuals, Brackets);
1433      DependentSizedArrayTypes.InsertNode(New, InsertPos);
1434    } else {
1435      QualType Canon = getDependentSizedArrayType(CanonEltTy, NumElts,
1436                                                  ASM, EltTypeQuals,
1437                                                  SourceRange());
1438      New = new (*this, TypeAlignment)
1439        DependentSizedArrayType(*this, EltTy, Canon,
1440                                NumElts, ASM, EltTypeQuals, Brackets);
1441    }
1442  }
1443
1444  Types.push_back(New);
1445  return QualType(New, 0);
1446}
1447
1448QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1449                                            ArrayType::ArraySizeModifier ASM,
1450                                            unsigned EltTypeQuals) {
1451  llvm::FoldingSetNodeID ID;
1452  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1453
1454  void *InsertPos = 0;
1455  if (IncompleteArrayType *ATP =
1456       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1457    return QualType(ATP, 0);
1458
1459  // If the element type isn't canonical, this won't be a canonical type
1460  // either, so fill in the canonical type field.
1461  QualType Canonical;
1462
1463  if (!EltTy.isCanonical()) {
1464    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1465                                       ASM, EltTypeQuals);
1466
1467    // Get the new insert position for the node we care about.
1468    IncompleteArrayType *NewIP =
1469      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1470    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1471  }
1472
1473  IncompleteArrayType *New = new (*this, TypeAlignment)
1474    IncompleteArrayType(EltTy, Canonical, ASM, EltTypeQuals);
1475
1476  IncompleteArrayTypes.InsertNode(New, InsertPos);
1477  Types.push_back(New);
1478  return QualType(New, 0);
1479}
1480
1481/// getVectorType - Return the unique reference to a vector type of
1482/// the specified element type and size. VectorType must be a built-in type.
1483QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
1484  BuiltinType *baseType;
1485
1486  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1487  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1488
1489  // Check if we've already instantiated a vector of this type.
1490  llvm::FoldingSetNodeID ID;
1491  VectorType::Profile(ID, vecType, NumElts, Type::Vector);
1492  void *InsertPos = 0;
1493  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1494    return QualType(VTP, 0);
1495
1496  // If the element type isn't canonical, this won't be a canonical type either,
1497  // so fill in the canonical type field.
1498  QualType Canonical;
1499  if (!vecType.isCanonical()) {
1500    Canonical = getVectorType(getCanonicalType(vecType), NumElts);
1501
1502    // Get the new insert position for the node we care about.
1503    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1504    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1505  }
1506  VectorType *New = new (*this, TypeAlignment)
1507    VectorType(vecType, NumElts, Canonical);
1508  VectorTypes.InsertNode(New, InsertPos);
1509  Types.push_back(New);
1510  return QualType(New, 0);
1511}
1512
1513/// getExtVectorType - Return the unique reference to an extended vector type of
1514/// the specified element type and size. VectorType must be a built-in type.
1515QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1516  BuiltinType *baseType;
1517
1518  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1519  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1520
1521  // Check if we've already instantiated a vector of this type.
1522  llvm::FoldingSetNodeID ID;
1523  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector);
1524  void *InsertPos = 0;
1525  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1526    return QualType(VTP, 0);
1527
1528  // If the element type isn't canonical, this won't be a canonical type either,
1529  // so fill in the canonical type field.
1530  QualType Canonical;
1531  if (!vecType.isCanonical()) {
1532    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1533
1534    // Get the new insert position for the node we care about.
1535    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1536    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1537  }
1538  ExtVectorType *New = new (*this, TypeAlignment)
1539    ExtVectorType(vecType, NumElts, Canonical);
1540  VectorTypes.InsertNode(New, InsertPos);
1541  Types.push_back(New);
1542  return QualType(New, 0);
1543}
1544
1545QualType ASTContext::getDependentSizedExtVectorType(QualType vecType,
1546                                                    Expr *SizeExpr,
1547                                                    SourceLocation AttrLoc) {
1548  llvm::FoldingSetNodeID ID;
1549  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1550                                       SizeExpr);
1551
1552  void *InsertPos = 0;
1553  DependentSizedExtVectorType *Canon
1554    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1555  DependentSizedExtVectorType *New;
1556  if (Canon) {
1557    // We already have a canonical version of this array type; use it as
1558    // the canonical type for a newly-built type.
1559    New = new (*this, TypeAlignment)
1560      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
1561                                  SizeExpr, AttrLoc);
1562  } else {
1563    QualType CanonVecTy = getCanonicalType(vecType);
1564    if (CanonVecTy == vecType) {
1565      New = new (*this, TypeAlignment)
1566        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
1567                                    AttrLoc);
1568      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1569    } else {
1570      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1571                                                      SourceLocation());
1572      New = new (*this, TypeAlignment)
1573        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
1574    }
1575  }
1576
1577  Types.push_back(New);
1578  return QualType(New, 0);
1579}
1580
1581/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1582///
1583QualType ASTContext::getFunctionNoProtoType(QualType ResultTy, bool NoReturn) {
1584  // Unique functions, to guarantee there is only one function of a particular
1585  // structure.
1586  llvm::FoldingSetNodeID ID;
1587  FunctionNoProtoType::Profile(ID, ResultTy, NoReturn);
1588
1589  void *InsertPos = 0;
1590  if (FunctionNoProtoType *FT =
1591        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1592    return QualType(FT, 0);
1593
1594  QualType Canonical;
1595  if (!ResultTy.isCanonical()) {
1596    Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy), NoReturn);
1597
1598    // Get the new insert position for the node we care about.
1599    FunctionNoProtoType *NewIP =
1600      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1601    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1602  }
1603
1604  FunctionNoProtoType *New = new (*this, TypeAlignment)
1605    FunctionNoProtoType(ResultTy, Canonical, NoReturn);
1606  Types.push_back(New);
1607  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1608  return QualType(New, 0);
1609}
1610
1611/// getFunctionType - Return a normal function type with a typed argument
1612/// list.  isVariadic indicates whether the argument list includes '...'.
1613QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1614                                     unsigned NumArgs, bool isVariadic,
1615                                     unsigned TypeQuals, bool hasExceptionSpec,
1616                                     bool hasAnyExceptionSpec, unsigned NumExs,
1617                                     const QualType *ExArray, bool NoReturn) {
1618  // Unique functions, to guarantee there is only one function of a particular
1619  // structure.
1620  llvm::FoldingSetNodeID ID;
1621  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1622                             TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1623                             NumExs, ExArray, NoReturn);
1624
1625  void *InsertPos = 0;
1626  if (FunctionProtoType *FTP =
1627        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1628    return QualType(FTP, 0);
1629
1630  // Determine whether the type being created is already canonical or not.
1631  bool isCanonical = !hasExceptionSpec && ResultTy.isCanonical();
1632  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1633    if (!ArgArray[i].isCanonicalAsParam())
1634      isCanonical = false;
1635
1636  // If this type isn't canonical, get the canonical version of it.
1637  // The exception spec is not part of the canonical type.
1638  QualType Canonical;
1639  if (!isCanonical) {
1640    llvm::SmallVector<QualType, 16> CanonicalArgs;
1641    CanonicalArgs.reserve(NumArgs);
1642    for (unsigned i = 0; i != NumArgs; ++i)
1643      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
1644
1645    Canonical = getFunctionType(getCanonicalType(ResultTy),
1646                                CanonicalArgs.data(), NumArgs,
1647                                isVariadic, TypeQuals, false,
1648                                false, 0, 0, NoReturn);
1649
1650    // Get the new insert position for the node we care about.
1651    FunctionProtoType *NewIP =
1652      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1653    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1654  }
1655
1656  // FunctionProtoType objects are allocated with extra bytes after them
1657  // for two variable size arrays (for parameter and exception types) at the
1658  // end of them.
1659  FunctionProtoType *FTP =
1660    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1661                                 NumArgs*sizeof(QualType) +
1662                                 NumExs*sizeof(QualType), TypeAlignment);
1663  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1664                              TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1665                              ExArray, NumExs, Canonical, NoReturn);
1666  Types.push_back(FTP);
1667  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1668  return QualType(FTP, 0);
1669}
1670
1671/// getTypeDeclType - Return the unique reference to the type for the
1672/// specified type declaration.
1673QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) {
1674  assert(Decl && "Passed null for Decl param");
1675  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1676
1677  if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1678    return getTypedefType(Typedef);
1679  else if (isa<TemplateTypeParmDecl>(Decl)) {
1680    assert(false && "Template type parameter types are always available.");
1681  } else if (ObjCInterfaceDecl *ObjCInterface
1682               = dyn_cast<ObjCInterfaceDecl>(Decl))
1683    return getObjCInterfaceType(ObjCInterface);
1684
1685  if (RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1686    if (PrevDecl)
1687      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1688    else
1689      Decl->TypeForDecl = new (*this, TypeAlignment) RecordType(Record);
1690  } else if (EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1691    if (PrevDecl)
1692      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1693    else
1694      Decl->TypeForDecl = new (*this, TypeAlignment) EnumType(Enum);
1695  } else
1696    assert(false && "TypeDecl without a type?");
1697
1698  if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
1699  return QualType(Decl->TypeForDecl, 0);
1700}
1701
1702/// getTypedefType - Return the unique reference to the type for the
1703/// specified typename decl.
1704QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
1705  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1706
1707  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1708  Decl->TypeForDecl = new(*this, TypeAlignment)
1709    TypedefType(Type::Typedef, Decl, Canonical);
1710  Types.push_back(Decl->TypeForDecl);
1711  return QualType(Decl->TypeForDecl, 0);
1712}
1713
1714/// \brief Retrieve a substitution-result type.
1715QualType
1716ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
1717                                         QualType Replacement) {
1718  assert(Replacement.isCanonical()
1719         && "replacement types must always be canonical");
1720
1721  llvm::FoldingSetNodeID ID;
1722  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
1723  void *InsertPos = 0;
1724  SubstTemplateTypeParmType *SubstParm
1725    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1726
1727  if (!SubstParm) {
1728    SubstParm = new (*this, TypeAlignment)
1729      SubstTemplateTypeParmType(Parm, Replacement);
1730    Types.push_back(SubstParm);
1731    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
1732  }
1733
1734  return QualType(SubstParm, 0);
1735}
1736
1737/// \brief Retrieve the template type parameter type for a template
1738/// parameter or parameter pack with the given depth, index, and (optionally)
1739/// name.
1740QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1741                                             bool ParameterPack,
1742                                             IdentifierInfo *Name) {
1743  llvm::FoldingSetNodeID ID;
1744  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
1745  void *InsertPos = 0;
1746  TemplateTypeParmType *TypeParm
1747    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1748
1749  if (TypeParm)
1750    return QualType(TypeParm, 0);
1751
1752  if (Name) {
1753    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
1754    TypeParm = new (*this, TypeAlignment)
1755      TemplateTypeParmType(Depth, Index, ParameterPack, Name, Canon);
1756  } else
1757    TypeParm = new (*this, TypeAlignment)
1758      TemplateTypeParmType(Depth, Index, ParameterPack);
1759
1760  Types.push_back(TypeParm);
1761  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1762
1763  return QualType(TypeParm, 0);
1764}
1765
1766QualType
1767ASTContext::getTemplateSpecializationType(TemplateName Template,
1768                                          const TemplateArgument *Args,
1769                                          unsigned NumArgs,
1770                                          QualType Canon) {
1771  if (!Canon.isNull())
1772    Canon = getCanonicalType(Canon);
1773  else {
1774    // Build the canonical template specialization type.
1775    TemplateName CanonTemplate = getCanonicalTemplateName(Template);
1776    llvm::SmallVector<TemplateArgument, 4> CanonArgs;
1777    CanonArgs.reserve(NumArgs);
1778    for (unsigned I = 0; I != NumArgs; ++I)
1779      CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
1780
1781    // Determine whether this canonical template specialization type already
1782    // exists.
1783    llvm::FoldingSetNodeID ID;
1784    TemplateSpecializationType::Profile(ID, CanonTemplate,
1785                                        CanonArgs.data(), NumArgs, *this);
1786
1787    void *InsertPos = 0;
1788    TemplateSpecializationType *Spec
1789      = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1790
1791    if (!Spec) {
1792      // Allocate a new canonical template specialization type.
1793      void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1794                            sizeof(TemplateArgument) * NumArgs),
1795                           TypeAlignment);
1796      Spec = new (Mem) TemplateSpecializationType(*this, CanonTemplate,
1797                                                  CanonArgs.data(), NumArgs,
1798                                                  Canon);
1799      Types.push_back(Spec);
1800      TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1801    }
1802
1803    if (Canon.isNull())
1804      Canon = QualType(Spec, 0);
1805    assert(Canon->isDependentType() &&
1806           "Non-dependent template-id type must have a canonical type");
1807  }
1808
1809  // Allocate the (non-canonical) template specialization type, but don't
1810  // try to unique it: these types typically have location information that
1811  // we don't unique and don't want to lose.
1812  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1813                        sizeof(TemplateArgument) * NumArgs),
1814                       TypeAlignment);
1815  TemplateSpecializationType *Spec
1816    = new (Mem) TemplateSpecializationType(*this, Template, Args, NumArgs,
1817                                           Canon);
1818
1819  Types.push_back(Spec);
1820  return QualType(Spec, 0);
1821}
1822
1823QualType
1824ASTContext::getQualifiedNameType(NestedNameSpecifier *NNS,
1825                                 QualType NamedType) {
1826  llvm::FoldingSetNodeID ID;
1827  QualifiedNameType::Profile(ID, NNS, NamedType);
1828
1829  void *InsertPos = 0;
1830  QualifiedNameType *T
1831    = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1832  if (T)
1833    return QualType(T, 0);
1834
1835  T = new (*this) QualifiedNameType(NNS, NamedType,
1836                                    getCanonicalType(NamedType));
1837  Types.push_back(T);
1838  QualifiedNameTypes.InsertNode(T, InsertPos);
1839  return QualType(T, 0);
1840}
1841
1842QualType ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1843                                     const IdentifierInfo *Name,
1844                                     QualType Canon) {
1845  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1846
1847  if (Canon.isNull()) {
1848    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1849    if (CanonNNS != NNS)
1850      Canon = getTypenameType(CanonNNS, Name);
1851  }
1852
1853  llvm::FoldingSetNodeID ID;
1854  TypenameType::Profile(ID, NNS, Name);
1855
1856  void *InsertPos = 0;
1857  TypenameType *T
1858    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1859  if (T)
1860    return QualType(T, 0);
1861
1862  T = new (*this) TypenameType(NNS, Name, Canon);
1863  Types.push_back(T);
1864  TypenameTypes.InsertNode(T, InsertPos);
1865  return QualType(T, 0);
1866}
1867
1868QualType
1869ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1870                            const TemplateSpecializationType *TemplateId,
1871                            QualType Canon) {
1872  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1873
1874  if (Canon.isNull()) {
1875    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1876    QualType CanonType = getCanonicalType(QualType(TemplateId, 0));
1877    if (CanonNNS != NNS || CanonType != QualType(TemplateId, 0)) {
1878      const TemplateSpecializationType *CanonTemplateId
1879        = CanonType->getAs<TemplateSpecializationType>();
1880      assert(CanonTemplateId &&
1881             "Canonical type must also be a template specialization type");
1882      Canon = getTypenameType(CanonNNS, CanonTemplateId);
1883    }
1884  }
1885
1886  llvm::FoldingSetNodeID ID;
1887  TypenameType::Profile(ID, NNS, TemplateId);
1888
1889  void *InsertPos = 0;
1890  TypenameType *T
1891    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1892  if (T)
1893    return QualType(T, 0);
1894
1895  T = new (*this) TypenameType(NNS, TemplateId, Canon);
1896  Types.push_back(T);
1897  TypenameTypes.InsertNode(T, InsertPos);
1898  return QualType(T, 0);
1899}
1900
1901QualType
1902ASTContext::getElaboratedType(QualType UnderlyingType,
1903                              ElaboratedType::TagKind Tag) {
1904  llvm::FoldingSetNodeID ID;
1905  ElaboratedType::Profile(ID, UnderlyingType, Tag);
1906
1907  void *InsertPos = 0;
1908  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
1909  if (T)
1910    return QualType(T, 0);
1911
1912  QualType Canon = getCanonicalType(UnderlyingType);
1913
1914  T = new (*this) ElaboratedType(UnderlyingType, Tag, Canon);
1915  Types.push_back(T);
1916  ElaboratedTypes.InsertNode(T, InsertPos);
1917  return QualType(T, 0);
1918}
1919
1920/// CmpProtocolNames - Comparison predicate for sorting protocols
1921/// alphabetically.
1922static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
1923                            const ObjCProtocolDecl *RHS) {
1924  return LHS->getDeclName() < RHS->getDeclName();
1925}
1926
1927static bool areSortedAndUniqued(ObjCProtocolDecl **Protocols,
1928                                unsigned NumProtocols) {
1929  if (NumProtocols == 0) return true;
1930
1931  for (unsigned i = 1; i != NumProtocols; ++i)
1932    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
1933      return false;
1934  return true;
1935}
1936
1937static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
1938                                   unsigned &NumProtocols) {
1939  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
1940
1941  // Sort protocols, keyed by name.
1942  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
1943
1944  // Remove duplicates.
1945  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
1946  NumProtocols = ProtocolsEnd-Protocols;
1947}
1948
1949/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
1950/// the given interface decl and the conforming protocol list.
1951QualType ASTContext::getObjCObjectPointerType(QualType InterfaceT,
1952                                              ObjCProtocolDecl **Protocols,
1953                                              unsigned NumProtocols) {
1954  llvm::FoldingSetNodeID ID;
1955  ObjCObjectPointerType::Profile(ID, InterfaceT, Protocols, NumProtocols);
1956
1957  void *InsertPos = 0;
1958  if (ObjCObjectPointerType *QT =
1959              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1960    return QualType(QT, 0);
1961
1962  // Sort the protocol list alphabetically to canonicalize it.
1963  QualType Canonical;
1964  if (!InterfaceT.isCanonical() ||
1965      !areSortedAndUniqued(Protocols, NumProtocols)) {
1966    if (!areSortedAndUniqued(Protocols, NumProtocols)) {
1967      llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(NumProtocols);
1968      unsigned UniqueCount = NumProtocols;
1969
1970      std::copy(Protocols, Protocols + NumProtocols, Sorted.begin());
1971      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
1972
1973      Canonical = getObjCObjectPointerType(getCanonicalType(InterfaceT),
1974                                           &Sorted[0], UniqueCount);
1975    } else {
1976      Canonical = getObjCObjectPointerType(getCanonicalType(InterfaceT),
1977                                           Protocols, NumProtocols);
1978    }
1979
1980    // Regenerate InsertPos.
1981    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1982  }
1983
1984  // No Match;
1985  ObjCObjectPointerType *QType = new (*this, TypeAlignment)
1986    ObjCObjectPointerType(Canonical, InterfaceT, Protocols, NumProtocols);
1987
1988  Types.push_back(QType);
1989  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
1990  return QualType(QType, 0);
1991}
1992
1993/// getObjCInterfaceType - Return the unique reference to the type for the
1994/// specified ObjC interface decl. The list of protocols is optional.
1995QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
1996                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
1997  llvm::FoldingSetNodeID ID;
1998  ObjCInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
1999
2000  void *InsertPos = 0;
2001  if (ObjCInterfaceType *QT =
2002      ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
2003    return QualType(QT, 0);
2004
2005  // Sort the protocol list alphabetically to canonicalize it.
2006  QualType Canonical;
2007  if (NumProtocols && !areSortedAndUniqued(Protocols, NumProtocols)) {
2008    llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(NumProtocols);
2009    std::copy(Protocols, Protocols + NumProtocols, Sorted.begin());
2010
2011    unsigned UniqueCount = NumProtocols;
2012    SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2013
2014    Canonical = getObjCInterfaceType(Decl, &Sorted[0], UniqueCount);
2015
2016    ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos);
2017  }
2018
2019  ObjCInterfaceType *QType = new (*this, TypeAlignment)
2020    ObjCInterfaceType(Canonical, const_cast<ObjCInterfaceDecl*>(Decl),
2021                      Protocols, NumProtocols);
2022
2023  Types.push_back(QType);
2024  ObjCInterfaceTypes.InsertNode(QType, InsertPos);
2025  return QualType(QType, 0);
2026}
2027
2028/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2029/// TypeOfExprType AST's (since expression's are never shared). For example,
2030/// multiple declarations that refer to "typeof(x)" all contain different
2031/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2032/// on canonical type's (which are always unique).
2033QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
2034  TypeOfExprType *toe;
2035  if (tofExpr->isTypeDependent()) {
2036    llvm::FoldingSetNodeID ID;
2037    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2038
2039    void *InsertPos = 0;
2040    DependentTypeOfExprType *Canon
2041      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2042    if (Canon) {
2043      // We already have a "canonical" version of an identical, dependent
2044      // typeof(expr) type. Use that as our canonical type.
2045      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2046                                          QualType((TypeOfExprType*)Canon, 0));
2047    }
2048    else {
2049      // Build a new, canonical typeof(expr) type.
2050      Canon
2051        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2052      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2053      toe = Canon;
2054    }
2055  } else {
2056    QualType Canonical = getCanonicalType(tofExpr->getType());
2057    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2058  }
2059  Types.push_back(toe);
2060  return QualType(toe, 0);
2061}
2062
2063/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2064/// TypeOfType AST's. The only motivation to unique these nodes would be
2065/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2066/// an issue. This doesn't effect the type checker, since it operates
2067/// on canonical type's (which are always unique).
2068QualType ASTContext::getTypeOfType(QualType tofType) {
2069  QualType Canonical = getCanonicalType(tofType);
2070  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2071  Types.push_back(tot);
2072  return QualType(tot, 0);
2073}
2074
2075/// getDecltypeForExpr - Given an expr, will return the decltype for that
2076/// expression, according to the rules in C++0x [dcl.type.simple]p4
2077static QualType getDecltypeForExpr(const Expr *e, ASTContext &Context) {
2078  if (e->isTypeDependent())
2079    return Context.DependentTy;
2080
2081  // If e is an id expression or a class member access, decltype(e) is defined
2082  // as the type of the entity named by e.
2083  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2084    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2085      return VD->getType();
2086  }
2087  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2088    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2089      return FD->getType();
2090  }
2091  // If e is a function call or an invocation of an overloaded operator,
2092  // (parentheses around e are ignored), decltype(e) is defined as the
2093  // return type of that function.
2094  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2095    return CE->getCallReturnType();
2096
2097  QualType T = e->getType();
2098
2099  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2100  // defined as T&, otherwise decltype(e) is defined as T.
2101  if (e->isLvalue(Context) == Expr::LV_Valid)
2102    T = Context.getLValueReferenceType(T);
2103
2104  return T;
2105}
2106
2107/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2108/// DecltypeType AST's. The only motivation to unique these nodes would be
2109/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2110/// an issue. This doesn't effect the type checker, since it operates
2111/// on canonical type's (which are always unique).
2112QualType ASTContext::getDecltypeType(Expr *e) {
2113  DecltypeType *dt;
2114  if (e->isTypeDependent()) {
2115    llvm::FoldingSetNodeID ID;
2116    DependentDecltypeType::Profile(ID, *this, e);
2117
2118    void *InsertPos = 0;
2119    DependentDecltypeType *Canon
2120      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2121    if (Canon) {
2122      // We already have a "canonical" version of an equivalent, dependent
2123      // decltype type. Use that as our canonical type.
2124      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2125                                       QualType((DecltypeType*)Canon, 0));
2126    }
2127    else {
2128      // Build a new, canonical typeof(expr) type.
2129      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2130      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2131      dt = Canon;
2132    }
2133  } else {
2134    QualType T = getDecltypeForExpr(e, *this);
2135    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2136  }
2137  Types.push_back(dt);
2138  return QualType(dt, 0);
2139}
2140
2141/// getTagDeclType - Return the unique reference to the type for the
2142/// specified TagDecl (struct/union/class/enum) decl.
2143QualType ASTContext::getTagDeclType(const TagDecl *Decl) {
2144  assert (Decl);
2145  // FIXME: What is the design on getTagDeclType when it requires casting
2146  // away const?  mutable?
2147  return getTypeDeclType(const_cast<TagDecl*>(Decl));
2148}
2149
2150/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2151/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2152/// needs to agree with the definition in <stddef.h>.
2153QualType ASTContext::getSizeType() const {
2154  return getFromTargetType(Target.getSizeType());
2155}
2156
2157/// getSignedWCharType - Return the type of "signed wchar_t".
2158/// Used when in C++, as a GCC extension.
2159QualType ASTContext::getSignedWCharType() const {
2160  // FIXME: derive from "Target" ?
2161  return WCharTy;
2162}
2163
2164/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2165/// Used when in C++, as a GCC extension.
2166QualType ASTContext::getUnsignedWCharType() const {
2167  // FIXME: derive from "Target" ?
2168  return UnsignedIntTy;
2169}
2170
2171/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2172/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2173QualType ASTContext::getPointerDiffType() const {
2174  return getFromTargetType(Target.getPtrDiffType(0));
2175}
2176
2177//===----------------------------------------------------------------------===//
2178//                              Type Operators
2179//===----------------------------------------------------------------------===//
2180
2181CanQualType ASTContext::getCanonicalParamType(QualType T) {
2182  // Push qualifiers into arrays, and then discard any remaining
2183  // qualifiers.
2184  T = getCanonicalType(T);
2185  const Type *Ty = T.getTypePtr();
2186
2187  QualType Result;
2188  if (isa<ArrayType>(Ty)) {
2189    Result = getArrayDecayedType(QualType(Ty,0));
2190  } else if (isa<FunctionType>(Ty)) {
2191    Result = getPointerType(QualType(Ty, 0));
2192  } else {
2193    Result = QualType(Ty, 0);
2194  }
2195
2196  return CanQualType::CreateUnsafe(Result);
2197}
2198
2199/// getCanonicalType - Return the canonical (structural) type corresponding to
2200/// the specified potentially non-canonical type.  The non-canonical version
2201/// of a type may have many "decorated" versions of types.  Decorators can
2202/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
2203/// to be free of any of these, allowing two canonical types to be compared
2204/// for exact equality with a simple pointer comparison.
2205CanQualType ASTContext::getCanonicalType(QualType T) {
2206  QualifierCollector Quals;
2207  const Type *Ptr = Quals.strip(T);
2208  QualType CanType = Ptr->getCanonicalTypeInternal();
2209
2210  // The canonical internal type will be the canonical type *except*
2211  // that we push type qualifiers down through array types.
2212
2213  // If there are no new qualifiers to push down, stop here.
2214  if (!Quals.hasQualifiers())
2215    return CanQualType::CreateUnsafe(CanType);
2216
2217  // If the type qualifiers are on an array type, get the canonical
2218  // type of the array with the qualifiers applied to the element
2219  // type.
2220  ArrayType *AT = dyn_cast<ArrayType>(CanType);
2221  if (!AT)
2222    return CanQualType::CreateUnsafe(getQualifiedType(CanType, Quals));
2223
2224  // Get the canonical version of the element with the extra qualifiers on it.
2225  // This can recursively sink qualifiers through multiple levels of arrays.
2226  QualType NewEltTy = getQualifiedType(AT->getElementType(), Quals);
2227  NewEltTy = getCanonicalType(NewEltTy);
2228
2229  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2230    return CanQualType::CreateUnsafe(
2231             getConstantArrayType(NewEltTy, CAT->getSize(),
2232                                  CAT->getSizeModifier(),
2233                                  CAT->getIndexTypeCVRQualifiers()));
2234  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
2235    return CanQualType::CreateUnsafe(
2236             getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
2237                                    IAT->getIndexTypeCVRQualifiers()));
2238
2239  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
2240    return CanQualType::CreateUnsafe(
2241             getDependentSizedArrayType(NewEltTy,
2242                                        DSAT->getSizeExpr() ?
2243                                          DSAT->getSizeExpr()->Retain() : 0,
2244                                        DSAT->getSizeModifier(),
2245                                        DSAT->getIndexTypeCVRQualifiers(),
2246                                        DSAT->getBracketsRange()));
2247
2248  VariableArrayType *VAT = cast<VariableArrayType>(AT);
2249  return CanQualType::CreateUnsafe(getVariableArrayType(NewEltTy,
2250                                                        VAT->getSizeExpr() ?
2251                                              VAT->getSizeExpr()->Retain() : 0,
2252                                                        VAT->getSizeModifier(),
2253                                              VAT->getIndexTypeCVRQualifiers(),
2254                                                     VAT->getBracketsRange()));
2255}
2256
2257TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
2258  // If this template name refers to a template, the canonical
2259  // template name merely stores the template itself.
2260  if (TemplateDecl *Template = Name.getAsTemplateDecl())
2261    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
2262
2263  // If this template name refers to a set of overloaded function templates,
2264  /// the canonical template name merely stores the set of function templates.
2265  if (OverloadedFunctionDecl *Ovl = Name.getAsOverloadedFunctionDecl()) {
2266    OverloadedFunctionDecl *CanonOvl = 0;
2267    for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
2268                                                FEnd = Ovl->function_end();
2269         F != FEnd; ++F) {
2270      Decl *Canon = F->get()->getCanonicalDecl();
2271      if (CanonOvl || Canon != F->get()) {
2272        if (!CanonOvl)
2273          CanonOvl = OverloadedFunctionDecl::Create(*this,
2274                                                    Ovl->getDeclContext(),
2275                                                    Ovl->getDeclName());
2276
2277        CanonOvl->addOverload(
2278                    AnyFunctionDecl::getFromNamedDecl(cast<NamedDecl>(Canon)));
2279      }
2280    }
2281
2282    return TemplateName(CanonOvl? CanonOvl : Ovl);
2283  }
2284
2285  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
2286  assert(DTN && "Non-dependent template names must refer to template decls.");
2287  return DTN->CanonicalTemplateName;
2288}
2289
2290TemplateArgument
2291ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) {
2292  switch (Arg.getKind()) {
2293    case TemplateArgument::Null:
2294      return Arg;
2295
2296    case TemplateArgument::Expression:
2297      // FIXME: Build canonical expression?
2298      return Arg;
2299
2300    case TemplateArgument::Declaration:
2301      return TemplateArgument(SourceLocation(),
2302                              Arg.getAsDecl()->getCanonicalDecl());
2303
2304    case TemplateArgument::Integral:
2305      return TemplateArgument(SourceLocation(),
2306                              *Arg.getAsIntegral(),
2307                              getCanonicalType(Arg.getIntegralType()));
2308
2309    case TemplateArgument::Type:
2310      return TemplateArgument(SourceLocation(),
2311                              getCanonicalType(Arg.getAsType()));
2312
2313    case TemplateArgument::Pack: {
2314      // FIXME: Allocate in ASTContext
2315      TemplateArgument *CanonArgs = new TemplateArgument[Arg.pack_size()];
2316      unsigned Idx = 0;
2317      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
2318                                        AEnd = Arg.pack_end();
2319           A != AEnd; (void)++A, ++Idx)
2320        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
2321
2322      TemplateArgument Result;
2323      Result.setArgumentPack(CanonArgs, Arg.pack_size(), false);
2324      return Result;
2325    }
2326  }
2327
2328  // Silence GCC warning
2329  assert(false && "Unhandled template argument kind");
2330  return TemplateArgument();
2331}
2332
2333NestedNameSpecifier *
2334ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
2335  if (!NNS)
2336    return 0;
2337
2338  switch (NNS->getKind()) {
2339  case NestedNameSpecifier::Identifier:
2340    // Canonicalize the prefix but keep the identifier the same.
2341    return NestedNameSpecifier::Create(*this,
2342                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
2343                                       NNS->getAsIdentifier());
2344
2345  case NestedNameSpecifier::Namespace:
2346    // A namespace is canonical; build a nested-name-specifier with
2347    // this namespace and no prefix.
2348    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
2349
2350  case NestedNameSpecifier::TypeSpec:
2351  case NestedNameSpecifier::TypeSpecWithTemplate: {
2352    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
2353    return NestedNameSpecifier::Create(*this, 0,
2354                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
2355                                       T.getTypePtr());
2356  }
2357
2358  case NestedNameSpecifier::Global:
2359    // The global specifier is canonical and unique.
2360    return NNS;
2361  }
2362
2363  // Required to silence a GCC warning
2364  return 0;
2365}
2366
2367
2368const ArrayType *ASTContext::getAsArrayType(QualType T) {
2369  // Handle the non-qualified case efficiently.
2370  if (!T.hasQualifiers()) {
2371    // Handle the common positive case fast.
2372    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
2373      return AT;
2374  }
2375
2376  // Handle the common negative case fast.
2377  QualType CType = T->getCanonicalTypeInternal();
2378  if (!isa<ArrayType>(CType))
2379    return 0;
2380
2381  // Apply any qualifiers from the array type to the element type.  This
2382  // implements C99 6.7.3p8: "If the specification of an array type includes
2383  // any type qualifiers, the element type is so qualified, not the array type."
2384
2385  // If we get here, we either have type qualifiers on the type, or we have
2386  // sugar such as a typedef in the way.  If we have type qualifiers on the type
2387  // we must propagate them down into the element type.
2388
2389  QualifierCollector Qs;
2390  const Type *Ty = Qs.strip(T.getDesugaredType());
2391
2392  // If we have a simple case, just return now.
2393  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
2394  if (ATy == 0 || Qs.empty())
2395    return ATy;
2396
2397  // Otherwise, we have an array and we have qualifiers on it.  Push the
2398  // qualifiers into the array element type and return a new array type.
2399  // Get the canonical version of the element with the extra qualifiers on it.
2400  // This can recursively sink qualifiers through multiple levels of arrays.
2401  QualType NewEltTy = getQualifiedType(ATy->getElementType(), Qs);
2402
2403  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
2404    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
2405                                                CAT->getSizeModifier(),
2406                                           CAT->getIndexTypeCVRQualifiers()));
2407  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
2408    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
2409                                                  IAT->getSizeModifier(),
2410                                           IAT->getIndexTypeCVRQualifiers()));
2411
2412  if (const DependentSizedArrayType *DSAT
2413        = dyn_cast<DependentSizedArrayType>(ATy))
2414    return cast<ArrayType>(
2415                     getDependentSizedArrayType(NewEltTy,
2416                                                DSAT->getSizeExpr() ?
2417                                              DSAT->getSizeExpr()->Retain() : 0,
2418                                                DSAT->getSizeModifier(),
2419                                              DSAT->getIndexTypeCVRQualifiers(),
2420                                                DSAT->getBracketsRange()));
2421
2422  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
2423  return cast<ArrayType>(getVariableArrayType(NewEltTy,
2424                                              VAT->getSizeExpr() ?
2425                                              VAT->getSizeExpr()->Retain() : 0,
2426                                              VAT->getSizeModifier(),
2427                                              VAT->getIndexTypeCVRQualifiers(),
2428                                              VAT->getBracketsRange()));
2429}
2430
2431
2432/// getArrayDecayedType - Return the properly qualified result of decaying the
2433/// specified array type to a pointer.  This operation is non-trivial when
2434/// handling typedefs etc.  The canonical type of "T" must be an array type,
2435/// this returns a pointer to a properly qualified element of the array.
2436///
2437/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2438QualType ASTContext::getArrayDecayedType(QualType Ty) {
2439  // Get the element type with 'getAsArrayType' so that we don't lose any
2440  // typedefs in the element type of the array.  This also handles propagation
2441  // of type qualifiers from the array type into the element type if present
2442  // (C99 6.7.3p8).
2443  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
2444  assert(PrettyArrayType && "Not an array type!");
2445
2446  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
2447
2448  // int x[restrict 4] ->  int *restrict
2449  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
2450}
2451
2452QualType ASTContext::getBaseElementType(QualType QT) {
2453  QualifierCollector Qs;
2454  while (true) {
2455    const Type *UT = Qs.strip(QT);
2456    if (const ArrayType *AT = getAsArrayType(QualType(UT,0))) {
2457      QT = AT->getElementType();
2458    } else {
2459      return Qs.apply(QT);
2460    }
2461  }
2462}
2463
2464QualType ASTContext::getBaseElementType(const ArrayType *AT) {
2465  QualType ElemTy = AT->getElementType();
2466
2467  if (const ArrayType *AT = getAsArrayType(ElemTy))
2468    return getBaseElementType(AT);
2469
2470  return ElemTy;
2471}
2472
2473/// getConstantArrayElementCount - Returns number of constant array elements.
2474uint64_t
2475ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
2476  uint64_t ElementCount = 1;
2477  do {
2478    ElementCount *= CA->getSize().getZExtValue();
2479    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
2480  } while (CA);
2481  return ElementCount;
2482}
2483
2484/// getFloatingRank - Return a relative rank for floating point types.
2485/// This routine will assert if passed a built-in type that isn't a float.
2486static FloatingRank getFloatingRank(QualType T) {
2487  if (const ComplexType *CT = T->getAs<ComplexType>())
2488    return getFloatingRank(CT->getElementType());
2489
2490  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
2491  switch (T->getAs<BuiltinType>()->getKind()) {
2492  default: assert(0 && "getFloatingRank(): not a floating type");
2493  case BuiltinType::Float:      return FloatRank;
2494  case BuiltinType::Double:     return DoubleRank;
2495  case BuiltinType::LongDouble: return LongDoubleRank;
2496  }
2497}
2498
2499/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
2500/// point or a complex type (based on typeDomain/typeSize).
2501/// 'typeDomain' is a real floating point or complex type.
2502/// 'typeSize' is a real floating point or complex type.
2503QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
2504                                                       QualType Domain) const {
2505  FloatingRank EltRank = getFloatingRank(Size);
2506  if (Domain->isComplexType()) {
2507    switch (EltRank) {
2508    default: assert(0 && "getFloatingRank(): illegal value for rank");
2509    case FloatRank:      return FloatComplexTy;
2510    case DoubleRank:     return DoubleComplexTy;
2511    case LongDoubleRank: return LongDoubleComplexTy;
2512    }
2513  }
2514
2515  assert(Domain->isRealFloatingType() && "Unknown domain!");
2516  switch (EltRank) {
2517  default: assert(0 && "getFloatingRank(): illegal value for rank");
2518  case FloatRank:      return FloatTy;
2519  case DoubleRank:     return DoubleTy;
2520  case LongDoubleRank: return LongDoubleTy;
2521  }
2522}
2523
2524/// getFloatingTypeOrder - Compare the rank of the two specified floating
2525/// point types, ignoring the domain of the type (i.e. 'double' ==
2526/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2527/// LHS < RHS, return -1.
2528int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
2529  FloatingRank LHSR = getFloatingRank(LHS);
2530  FloatingRank RHSR = getFloatingRank(RHS);
2531
2532  if (LHSR == RHSR)
2533    return 0;
2534  if (LHSR > RHSR)
2535    return 1;
2536  return -1;
2537}
2538
2539/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
2540/// routine will assert if passed a built-in type that isn't an integer or enum,
2541/// or if it is not canonicalized.
2542unsigned ASTContext::getIntegerRank(Type *T) {
2543  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
2544  if (EnumType* ET = dyn_cast<EnumType>(T))
2545    T = ET->getDecl()->getIntegerType().getTypePtr();
2546
2547  if (T->isSpecificBuiltinType(BuiltinType::WChar))
2548    T = getFromTargetType(Target.getWCharType()).getTypePtr();
2549
2550  if (T->isSpecificBuiltinType(BuiltinType::Char16))
2551    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
2552
2553  if (T->isSpecificBuiltinType(BuiltinType::Char32))
2554    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
2555
2556  // There are two things which impact the integer rank: the width, and
2557  // the ordering of builtins.  The builtin ordering is encoded in the
2558  // bottom three bits; the width is encoded in the bits above that.
2559  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T))
2560    return FWIT->getWidth() << 3;
2561
2562  switch (cast<BuiltinType>(T)->getKind()) {
2563  default: assert(0 && "getIntegerRank(): not a built-in integer");
2564  case BuiltinType::Bool:
2565    return 1 + (getIntWidth(BoolTy) << 3);
2566  case BuiltinType::Char_S:
2567  case BuiltinType::Char_U:
2568  case BuiltinType::SChar:
2569  case BuiltinType::UChar:
2570    return 2 + (getIntWidth(CharTy) << 3);
2571  case BuiltinType::Short:
2572  case BuiltinType::UShort:
2573    return 3 + (getIntWidth(ShortTy) << 3);
2574  case BuiltinType::Int:
2575  case BuiltinType::UInt:
2576    return 4 + (getIntWidth(IntTy) << 3);
2577  case BuiltinType::Long:
2578  case BuiltinType::ULong:
2579    return 5 + (getIntWidth(LongTy) << 3);
2580  case BuiltinType::LongLong:
2581  case BuiltinType::ULongLong:
2582    return 6 + (getIntWidth(LongLongTy) << 3);
2583  case BuiltinType::Int128:
2584  case BuiltinType::UInt128:
2585    return 7 + (getIntWidth(Int128Ty) << 3);
2586  }
2587}
2588
2589/// \brief Whether this is a promotable bitfield reference according
2590/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
2591///
2592/// \returns the type this bit-field will promote to, or NULL if no
2593/// promotion occurs.
2594QualType ASTContext::isPromotableBitField(Expr *E) {
2595  FieldDecl *Field = E->getBitField();
2596  if (!Field)
2597    return QualType();
2598
2599  QualType FT = Field->getType();
2600
2601  llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
2602  uint64_t BitWidth = BitWidthAP.getZExtValue();
2603  uint64_t IntSize = getTypeSize(IntTy);
2604  // GCC extension compatibility: if the bit-field size is less than or equal
2605  // to the size of int, it gets promoted no matter what its type is.
2606  // For instance, unsigned long bf : 4 gets promoted to signed int.
2607  if (BitWidth < IntSize)
2608    return IntTy;
2609
2610  if (BitWidth == IntSize)
2611    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
2612
2613  // Types bigger than int are not subject to promotions, and therefore act
2614  // like the base type.
2615  // FIXME: This doesn't quite match what gcc does, but what gcc does here
2616  // is ridiculous.
2617  return QualType();
2618}
2619
2620/// getPromotedIntegerType - Returns the type that Promotable will
2621/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
2622/// integer type.
2623QualType ASTContext::getPromotedIntegerType(QualType Promotable) {
2624  assert(!Promotable.isNull());
2625  assert(Promotable->isPromotableIntegerType());
2626  if (Promotable->isSignedIntegerType())
2627    return IntTy;
2628  uint64_t PromotableSize = getTypeSize(Promotable);
2629  uint64_t IntSize = getTypeSize(IntTy);
2630  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
2631  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
2632}
2633
2634/// getIntegerTypeOrder - Returns the highest ranked integer type:
2635/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2636/// LHS < RHS, return -1.
2637int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
2638  Type *LHSC = getCanonicalType(LHS).getTypePtr();
2639  Type *RHSC = getCanonicalType(RHS).getTypePtr();
2640  if (LHSC == RHSC) return 0;
2641
2642  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
2643  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
2644
2645  unsigned LHSRank = getIntegerRank(LHSC);
2646  unsigned RHSRank = getIntegerRank(RHSC);
2647
2648  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
2649    if (LHSRank == RHSRank) return 0;
2650    return LHSRank > RHSRank ? 1 : -1;
2651  }
2652
2653  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
2654  if (LHSUnsigned) {
2655    // If the unsigned [LHS] type is larger, return it.
2656    if (LHSRank >= RHSRank)
2657      return 1;
2658
2659    // If the signed type can represent all values of the unsigned type, it
2660    // wins.  Because we are dealing with 2's complement and types that are
2661    // powers of two larger than each other, this is always safe.
2662    return -1;
2663  }
2664
2665  // If the unsigned [RHS] type is larger, return it.
2666  if (RHSRank >= LHSRank)
2667    return -1;
2668
2669  // If the signed type can represent all values of the unsigned type, it
2670  // wins.  Because we are dealing with 2's complement and types that are
2671  // powers of two larger than each other, this is always safe.
2672  return 1;
2673}
2674
2675// getCFConstantStringType - Return the type used for constant CFStrings.
2676QualType ASTContext::getCFConstantStringType() {
2677  if (!CFConstantStringTypeDecl) {
2678    CFConstantStringTypeDecl =
2679      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2680                         &Idents.get("NSConstantString"));
2681    QualType FieldTypes[4];
2682
2683    // const int *isa;
2684    FieldTypes[0] = getPointerType(IntTy.withConst());
2685    // int flags;
2686    FieldTypes[1] = IntTy;
2687    // const char *str;
2688    FieldTypes[2] = getPointerType(CharTy.withConst());
2689    // long length;
2690    FieldTypes[3] = LongTy;
2691
2692    // Create fields
2693    for (unsigned i = 0; i < 4; ++i) {
2694      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
2695                                           SourceLocation(), 0,
2696                                           FieldTypes[i], /*DInfo=*/0,
2697                                           /*BitWidth=*/0,
2698                                           /*Mutable=*/false);
2699      CFConstantStringTypeDecl->addDecl(Field);
2700    }
2701
2702    CFConstantStringTypeDecl->completeDefinition(*this);
2703  }
2704
2705  return getTagDeclType(CFConstantStringTypeDecl);
2706}
2707
2708void ASTContext::setCFConstantStringType(QualType T) {
2709  const RecordType *Rec = T->getAs<RecordType>();
2710  assert(Rec && "Invalid CFConstantStringType");
2711  CFConstantStringTypeDecl = Rec->getDecl();
2712}
2713
2714QualType ASTContext::getObjCFastEnumerationStateType() {
2715  if (!ObjCFastEnumerationStateTypeDecl) {
2716    ObjCFastEnumerationStateTypeDecl =
2717      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2718                         &Idents.get("__objcFastEnumerationState"));
2719
2720    QualType FieldTypes[] = {
2721      UnsignedLongTy,
2722      getPointerType(ObjCIdTypedefType),
2723      getPointerType(UnsignedLongTy),
2724      getConstantArrayType(UnsignedLongTy,
2725                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2726    };
2727
2728    for (size_t i = 0; i < 4; ++i) {
2729      FieldDecl *Field = FieldDecl::Create(*this,
2730                                           ObjCFastEnumerationStateTypeDecl,
2731                                           SourceLocation(), 0,
2732                                           FieldTypes[i], /*DInfo=*/0,
2733                                           /*BitWidth=*/0,
2734                                           /*Mutable=*/false);
2735      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
2736    }
2737
2738    ObjCFastEnumerationStateTypeDecl->completeDefinition(*this);
2739  }
2740
2741  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
2742}
2743
2744QualType ASTContext::getBlockDescriptorType() {
2745  if (BlockDescriptorType)
2746    return getTagDeclType(BlockDescriptorType);
2747
2748  RecordDecl *T;
2749  // FIXME: Needs the FlagAppleBlock bit.
2750  T = RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2751                         &Idents.get("__block_descriptor"));
2752
2753  QualType FieldTypes[] = {
2754    UnsignedLongTy,
2755    UnsignedLongTy,
2756  };
2757
2758  const char *FieldNames[] = {
2759    "reserved",
2760    "Size"
2761  };
2762
2763  for (size_t i = 0; i < 2; ++i) {
2764    FieldDecl *Field = FieldDecl::Create(*this,
2765                                         T,
2766                                         SourceLocation(),
2767                                         &Idents.get(FieldNames[i]),
2768                                         FieldTypes[i], /*DInfo=*/0,
2769                                         /*BitWidth=*/0,
2770                                         /*Mutable=*/false);
2771    T->addDecl(Field);
2772  }
2773
2774  T->completeDefinition(*this);
2775
2776  BlockDescriptorType = T;
2777
2778  return getTagDeclType(BlockDescriptorType);
2779}
2780
2781void ASTContext::setBlockDescriptorType(QualType T) {
2782  const RecordType *Rec = T->getAs<RecordType>();
2783  assert(Rec && "Invalid BlockDescriptorType");
2784  BlockDescriptorType = Rec->getDecl();
2785}
2786
2787QualType ASTContext::getBlockDescriptorExtendedType() {
2788  if (BlockDescriptorExtendedType)
2789    return getTagDeclType(BlockDescriptorExtendedType);
2790
2791  RecordDecl *T;
2792  // FIXME: Needs the FlagAppleBlock bit.
2793  T = RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2794                         &Idents.get("__block_descriptor_withcopydispose"));
2795
2796  QualType FieldTypes[] = {
2797    UnsignedLongTy,
2798    UnsignedLongTy,
2799    getPointerType(VoidPtrTy),
2800    getPointerType(VoidPtrTy)
2801  };
2802
2803  const char *FieldNames[] = {
2804    "reserved",
2805    "Size",
2806    "CopyFuncPtr",
2807    "DestroyFuncPtr"
2808  };
2809
2810  for (size_t i = 0; i < 4; ++i) {
2811    FieldDecl *Field = FieldDecl::Create(*this,
2812                                         T,
2813                                         SourceLocation(),
2814                                         &Idents.get(FieldNames[i]),
2815                                         FieldTypes[i], /*DInfo=*/0,
2816                                         /*BitWidth=*/0,
2817                                         /*Mutable=*/false);
2818    T->addDecl(Field);
2819  }
2820
2821  T->completeDefinition(*this);
2822
2823  BlockDescriptorExtendedType = T;
2824
2825  return getTagDeclType(BlockDescriptorExtendedType);
2826}
2827
2828void ASTContext::setBlockDescriptorExtendedType(QualType T) {
2829  const RecordType *Rec = T->getAs<RecordType>();
2830  assert(Rec && "Invalid BlockDescriptorType");
2831  BlockDescriptorExtendedType = Rec->getDecl();
2832}
2833
2834bool ASTContext::BlockRequiresCopying(QualType Ty) {
2835  if (Ty->isBlockPointerType())
2836    return true;
2837  if (isObjCNSObjectType(Ty))
2838    return true;
2839  if (Ty->isObjCObjectPointerType())
2840    return true;
2841  return false;
2842}
2843
2844QualType ASTContext::BuildByRefType(const char *DeclName, QualType Ty) {
2845  //  type = struct __Block_byref_1_X {
2846  //    void *__isa;
2847  //    struct __Block_byref_1_X *__forwarding;
2848  //    unsigned int __flags;
2849  //    unsigned int __size;
2850  //    void *__copy_helper;		// as needed
2851  //    void *__destroy_help		// as needed
2852  //    int X;
2853  //  } *
2854
2855  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
2856
2857  // FIXME: Move up
2858  static unsigned int UniqueBlockByRefTypeID = 0;
2859  llvm::SmallString<36> Name;
2860  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
2861                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
2862  RecordDecl *T;
2863  T = RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2864                         &Idents.get(Name.str()));
2865  T->startDefinition();
2866  QualType Int32Ty = IntTy;
2867  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
2868  QualType FieldTypes[] = {
2869    getPointerType(VoidPtrTy),
2870    getPointerType(getTagDeclType(T)),
2871    Int32Ty,
2872    Int32Ty,
2873    getPointerType(VoidPtrTy),
2874    getPointerType(VoidPtrTy),
2875    Ty
2876  };
2877
2878  const char *FieldNames[] = {
2879    "__isa",
2880    "__forwarding",
2881    "__flags",
2882    "__size",
2883    "__copy_helper",
2884    "__destroy_helper",
2885    DeclName,
2886  };
2887
2888  for (size_t i = 0; i < 7; ++i) {
2889    if (!HasCopyAndDispose && i >=4 && i <= 5)
2890      continue;
2891    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
2892                                         &Idents.get(FieldNames[i]),
2893                                         FieldTypes[i], /*DInfo=*/0,
2894                                         /*BitWidth=*/0, /*Mutable=*/false);
2895    T->addDecl(Field);
2896  }
2897
2898  T->completeDefinition(*this);
2899
2900  return getPointerType(getTagDeclType(T));
2901}
2902
2903
2904QualType ASTContext::getBlockParmType(
2905  bool BlockHasCopyDispose,
2906  llvm::SmallVector<const Expr *, 8> &BlockDeclRefDecls) {
2907  // FIXME: Move up
2908  static unsigned int UniqueBlockParmTypeID = 0;
2909  llvm::SmallString<36> Name;
2910  llvm::raw_svector_ostream(Name) << "__block_literal_"
2911                                  << ++UniqueBlockParmTypeID;
2912  RecordDecl *T;
2913  T = RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2914                         &Idents.get(Name.str()));
2915  QualType FieldTypes[] = {
2916    getPointerType(VoidPtrTy),
2917    IntTy,
2918    IntTy,
2919    getPointerType(VoidPtrTy),
2920    (BlockHasCopyDispose ?
2921     getPointerType(getBlockDescriptorExtendedType()) :
2922     getPointerType(getBlockDescriptorType()))
2923  };
2924
2925  const char *FieldNames[] = {
2926    "__isa",
2927    "__flags",
2928    "__reserved",
2929    "__FuncPtr",
2930    "__descriptor"
2931  };
2932
2933  for (size_t i = 0; i < 5; ++i) {
2934    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
2935                                         &Idents.get(FieldNames[i]),
2936                                         FieldTypes[i], /*DInfo=*/0,
2937                                         /*BitWidth=*/0, /*Mutable=*/false);
2938    T->addDecl(Field);
2939  }
2940
2941  for (size_t i = 0; i < BlockDeclRefDecls.size(); ++i) {
2942    const Expr *E = BlockDeclRefDecls[i];
2943    const BlockDeclRefExpr *BDRE = dyn_cast<BlockDeclRefExpr>(E);
2944    clang::IdentifierInfo *Name = 0;
2945    if (BDRE) {
2946      const ValueDecl *D = BDRE->getDecl();
2947      Name = &Idents.get(D->getName());
2948    }
2949    QualType FieldType = E->getType();
2950
2951    if (BDRE && BDRE->isByRef())
2952      FieldType = BuildByRefType(BDRE->getDecl()->getNameAsCString(),
2953                                 FieldType);
2954
2955    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
2956                                         Name, FieldType, /*DInfo=*/0,
2957                                         /*BitWidth=*/0, /*Mutable=*/false);
2958    T->addDecl(Field);
2959  }
2960
2961  T->completeDefinition(*this);
2962
2963  return getPointerType(getTagDeclType(T));
2964}
2965
2966void ASTContext::setObjCFastEnumerationStateType(QualType T) {
2967  const RecordType *Rec = T->getAs<RecordType>();
2968  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
2969  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
2970}
2971
2972// This returns true if a type has been typedefed to BOOL:
2973// typedef <type> BOOL;
2974static bool isTypeTypedefedAsBOOL(QualType T) {
2975  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
2976    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
2977      return II->isStr("BOOL");
2978
2979  return false;
2980}
2981
2982/// getObjCEncodingTypeSize returns size of type for objective-c encoding
2983/// purpose.
2984int ASTContext::getObjCEncodingTypeSize(QualType type) {
2985  uint64_t sz = getTypeSize(type);
2986
2987  // Make all integer and enum types at least as large as an int
2988  if (sz > 0 && type->isIntegralType())
2989    sz = std::max(sz, getTypeSize(IntTy));
2990  // Treat arrays as pointers, since that's how they're passed in.
2991  else if (type->isArrayType())
2992    sz = getTypeSize(VoidPtrTy);
2993  return sz / getTypeSize(CharTy);
2994}
2995
2996/// getObjCEncodingForMethodDecl - Return the encoded type for this method
2997/// declaration.
2998void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
2999                                              std::string& S) {
3000  // FIXME: This is not very efficient.
3001  // Encode type qualifer, 'in', 'inout', etc. for the return type.
3002  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
3003  // Encode result type.
3004  getObjCEncodingForType(Decl->getResultType(), S);
3005  // Compute size of all parameters.
3006  // Start with computing size of a pointer in number of bytes.
3007  // FIXME: There might(should) be a better way of doing this computation!
3008  SourceLocation Loc;
3009  int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
3010  // The first two arguments (self and _cmd) are pointers; account for
3011  // their size.
3012  int ParmOffset = 2 * PtrSize;
3013  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3014       E = Decl->param_end(); PI != E; ++PI) {
3015    QualType PType = (*PI)->getType();
3016    int sz = getObjCEncodingTypeSize(PType);
3017    assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type");
3018    ParmOffset += sz;
3019  }
3020  S += llvm::utostr(ParmOffset);
3021  S += "@0:";
3022  S += llvm::utostr(PtrSize);
3023
3024  // Argument types.
3025  ParmOffset = 2 * PtrSize;
3026  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3027       E = Decl->param_end(); PI != E; ++PI) {
3028    ParmVarDecl *PVDecl = *PI;
3029    QualType PType = PVDecl->getOriginalType();
3030    if (const ArrayType *AT =
3031          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3032      // Use array's original type only if it has known number of
3033      // elements.
3034      if (!isa<ConstantArrayType>(AT))
3035        PType = PVDecl->getType();
3036    } else if (PType->isFunctionType())
3037      PType = PVDecl->getType();
3038    // Process argument qualifiers for user supplied arguments; such as,
3039    // 'in', 'inout', etc.
3040    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
3041    getObjCEncodingForType(PType, S);
3042    S += llvm::utostr(ParmOffset);
3043    ParmOffset += getObjCEncodingTypeSize(PType);
3044  }
3045}
3046
3047/// getObjCEncodingForPropertyDecl - Return the encoded type for this
3048/// property declaration. If non-NULL, Container must be either an
3049/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
3050/// NULL when getting encodings for protocol properties.
3051/// Property attributes are stored as a comma-delimited C string. The simple
3052/// attributes readonly and bycopy are encoded as single characters. The
3053/// parametrized attributes, getter=name, setter=name, and ivar=name, are
3054/// encoded as single characters, followed by an identifier. Property types
3055/// are also encoded as a parametrized attribute. The characters used to encode
3056/// these attributes are defined by the following enumeration:
3057/// @code
3058/// enum PropertyAttributes {
3059/// kPropertyReadOnly = 'R',   // property is read-only.
3060/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
3061/// kPropertyByref = '&',  // property is a reference to the value last assigned
3062/// kPropertyDynamic = 'D',    // property is dynamic
3063/// kPropertyGetter = 'G',     // followed by getter selector name
3064/// kPropertySetter = 'S',     // followed by setter selector name
3065/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
3066/// kPropertyType = 't'              // followed by old-style type encoding.
3067/// kPropertyWeak = 'W'              // 'weak' property
3068/// kPropertyStrong = 'P'            // property GC'able
3069/// kPropertyNonAtomic = 'N'         // property non-atomic
3070/// };
3071/// @endcode
3072void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
3073                                                const Decl *Container,
3074                                                std::string& S) {
3075  // Collect information from the property implementation decl(s).
3076  bool Dynamic = false;
3077  ObjCPropertyImplDecl *SynthesizePID = 0;
3078
3079  // FIXME: Duplicated code due to poor abstraction.
3080  if (Container) {
3081    if (const ObjCCategoryImplDecl *CID =
3082        dyn_cast<ObjCCategoryImplDecl>(Container)) {
3083      for (ObjCCategoryImplDecl::propimpl_iterator
3084             i = CID->propimpl_begin(), e = CID->propimpl_end();
3085           i != e; ++i) {
3086        ObjCPropertyImplDecl *PID = *i;
3087        if (PID->getPropertyDecl() == PD) {
3088          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3089            Dynamic = true;
3090          } else {
3091            SynthesizePID = PID;
3092          }
3093        }
3094      }
3095    } else {
3096      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
3097      for (ObjCCategoryImplDecl::propimpl_iterator
3098             i = OID->propimpl_begin(), e = OID->propimpl_end();
3099           i != e; ++i) {
3100        ObjCPropertyImplDecl *PID = *i;
3101        if (PID->getPropertyDecl() == PD) {
3102          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3103            Dynamic = true;
3104          } else {
3105            SynthesizePID = PID;
3106          }
3107        }
3108      }
3109    }
3110  }
3111
3112  // FIXME: This is not very efficient.
3113  S = "T";
3114
3115  // Encode result type.
3116  // GCC has some special rules regarding encoding of properties which
3117  // closely resembles encoding of ivars.
3118  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
3119                             true /* outermost type */,
3120                             true /* encoding for property */);
3121
3122  if (PD->isReadOnly()) {
3123    S += ",R";
3124  } else {
3125    switch (PD->getSetterKind()) {
3126    case ObjCPropertyDecl::Assign: break;
3127    case ObjCPropertyDecl::Copy:   S += ",C"; break;
3128    case ObjCPropertyDecl::Retain: S += ",&"; break;
3129    }
3130  }
3131
3132  // It really isn't clear at all what this means, since properties
3133  // are "dynamic by default".
3134  if (Dynamic)
3135    S += ",D";
3136
3137  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
3138    S += ",N";
3139
3140  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
3141    S += ",G";
3142    S += PD->getGetterName().getAsString();
3143  }
3144
3145  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
3146    S += ",S";
3147    S += PD->getSetterName().getAsString();
3148  }
3149
3150  if (SynthesizePID) {
3151    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
3152    S += ",V";
3153    S += OID->getNameAsString();
3154  }
3155
3156  // FIXME: OBJCGC: weak & strong
3157}
3158
3159/// getLegacyIntegralTypeEncoding -
3160/// Another legacy compatibility encoding: 32-bit longs are encoded as
3161/// 'l' or 'L' , but not always.  For typedefs, we need to use
3162/// 'i' or 'I' instead if encoding a struct field, or a pointer!
3163///
3164void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
3165  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
3166    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
3167      if (BT->getKind() == BuiltinType::ULong &&
3168          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3169        PointeeTy = UnsignedIntTy;
3170      else
3171        if (BT->getKind() == BuiltinType::Long &&
3172            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3173          PointeeTy = IntTy;
3174    }
3175  }
3176}
3177
3178void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
3179                                        const FieldDecl *Field) {
3180  // We follow the behavior of gcc, expanding structures which are
3181  // directly pointed to, and expanding embedded structures. Note that
3182  // these rules are sufficient to prevent recursive encoding of the
3183  // same type.
3184  getObjCEncodingForTypeImpl(T, S, true, true, Field,
3185                             true /* outermost type */);
3186}
3187
3188static void EncodeBitField(const ASTContext *Context, std::string& S,
3189                           const FieldDecl *FD) {
3190  const Expr *E = FD->getBitWidth();
3191  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
3192  ASTContext *Ctx = const_cast<ASTContext*>(Context);
3193  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
3194  S += 'b';
3195  S += llvm::utostr(N);
3196}
3197
3198// FIXME: Use SmallString for accumulating string.
3199void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
3200                                            bool ExpandPointedToStructures,
3201                                            bool ExpandStructures,
3202                                            const FieldDecl *FD,
3203                                            bool OutermostType,
3204                                            bool EncodingProperty) {
3205  if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
3206    if (FD && FD->isBitField())
3207      return EncodeBitField(this, S, FD);
3208    char encoding;
3209    switch (BT->getKind()) {
3210    default: assert(0 && "Unhandled builtin type kind");
3211    case BuiltinType::Void:       encoding = 'v'; break;
3212    case BuiltinType::Bool:       encoding = 'B'; break;
3213    case BuiltinType::Char_U:
3214    case BuiltinType::UChar:      encoding = 'C'; break;
3215    case BuiltinType::UShort:     encoding = 'S'; break;
3216    case BuiltinType::UInt:       encoding = 'I'; break;
3217    case BuiltinType::ULong:
3218        encoding =
3219          (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q';
3220        break;
3221    case BuiltinType::UInt128:    encoding = 'T'; break;
3222    case BuiltinType::ULongLong:  encoding = 'Q'; break;
3223    case BuiltinType::Char_S:
3224    case BuiltinType::SChar:      encoding = 'c'; break;
3225    case BuiltinType::Short:      encoding = 's'; break;
3226    case BuiltinType::Int:        encoding = 'i'; break;
3227    case BuiltinType::Long:
3228      encoding =
3229        (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q';
3230      break;
3231    case BuiltinType::LongLong:   encoding = 'q'; break;
3232    case BuiltinType::Int128:     encoding = 't'; break;
3233    case BuiltinType::Float:      encoding = 'f'; break;
3234    case BuiltinType::Double:     encoding = 'd'; break;
3235    case BuiltinType::LongDouble: encoding = 'd'; break;
3236    }
3237
3238    S += encoding;
3239    return;
3240  }
3241
3242  if (const ComplexType *CT = T->getAs<ComplexType>()) {
3243    S += 'j';
3244    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
3245                               false);
3246    return;
3247  }
3248
3249  if (const PointerType *PT = T->getAs<PointerType>()) {
3250    QualType PointeeTy = PT->getPointeeType();
3251    bool isReadOnly = false;
3252    // For historical/compatibility reasons, the read-only qualifier of the
3253    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
3254    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
3255    // Also, do not emit the 'r' for anything but the outermost type!
3256    if (isa<TypedefType>(T.getTypePtr())) {
3257      if (OutermostType && T.isConstQualified()) {
3258        isReadOnly = true;
3259        S += 'r';
3260      }
3261    } else if (OutermostType) {
3262      QualType P = PointeeTy;
3263      while (P->getAs<PointerType>())
3264        P = P->getAs<PointerType>()->getPointeeType();
3265      if (P.isConstQualified()) {
3266        isReadOnly = true;
3267        S += 'r';
3268      }
3269    }
3270    if (isReadOnly) {
3271      // Another legacy compatibility encoding. Some ObjC qualifier and type
3272      // combinations need to be rearranged.
3273      // Rewrite "in const" from "nr" to "rn"
3274      const char * s = S.c_str();
3275      int len = S.length();
3276      if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
3277        std::string replace = "rn";
3278        S.replace(S.end()-2, S.end(), replace);
3279      }
3280    }
3281    if (isObjCSelType(PointeeTy)) {
3282      S += ':';
3283      return;
3284    }
3285
3286    if (PointeeTy->isCharType()) {
3287      // char pointer types should be encoded as '*' unless it is a
3288      // type that has been typedef'd to 'BOOL'.
3289      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
3290        S += '*';
3291        return;
3292      }
3293    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
3294      // GCC binary compat: Need to convert "struct objc_class *" to "#".
3295      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
3296        S += '#';
3297        return;
3298      }
3299      // GCC binary compat: Need to convert "struct objc_object *" to "@".
3300      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
3301        S += '@';
3302        return;
3303      }
3304      // fall through...
3305    }
3306    S += '^';
3307    getLegacyIntegralTypeEncoding(PointeeTy);
3308
3309    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
3310                               NULL);
3311    return;
3312  }
3313
3314  if (const ArrayType *AT =
3315      // Ignore type qualifiers etc.
3316        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
3317    if (isa<IncompleteArrayType>(AT)) {
3318      // Incomplete arrays are encoded as a pointer to the array element.
3319      S += '^';
3320
3321      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3322                                 false, ExpandStructures, FD);
3323    } else {
3324      S += '[';
3325
3326      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
3327        S += llvm::utostr(CAT->getSize().getZExtValue());
3328      else {
3329        //Variable length arrays are encoded as a regular array with 0 elements.
3330        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
3331        S += '0';
3332      }
3333
3334      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3335                                 false, ExpandStructures, FD);
3336      S += ']';
3337    }
3338    return;
3339  }
3340
3341  if (T->getAs<FunctionType>()) {
3342    S += '?';
3343    return;
3344  }
3345
3346  if (const RecordType *RTy = T->getAs<RecordType>()) {
3347    RecordDecl *RDecl = RTy->getDecl();
3348    S += RDecl->isUnion() ? '(' : '{';
3349    // Anonymous structures print as '?'
3350    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
3351      S += II->getName();
3352    } else {
3353      S += '?';
3354    }
3355    if (ExpandStructures) {
3356      S += '=';
3357      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
3358                                   FieldEnd = RDecl->field_end();
3359           Field != FieldEnd; ++Field) {
3360        if (FD) {
3361          S += '"';
3362          S += Field->getNameAsString();
3363          S += '"';
3364        }
3365
3366        // Special case bit-fields.
3367        if (Field->isBitField()) {
3368          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
3369                                     (*Field));
3370        } else {
3371          QualType qt = Field->getType();
3372          getLegacyIntegralTypeEncoding(qt);
3373          getObjCEncodingForTypeImpl(qt, S, false, true,
3374                                     FD);
3375        }
3376      }
3377    }
3378    S += RDecl->isUnion() ? ')' : '}';
3379    return;
3380  }
3381
3382  if (T->isEnumeralType()) {
3383    if (FD && FD->isBitField())
3384      EncodeBitField(this, S, FD);
3385    else
3386      S += 'i';
3387    return;
3388  }
3389
3390  if (T->isBlockPointerType()) {
3391    S += "@?"; // Unlike a pointer-to-function, which is "^?".
3392    return;
3393  }
3394
3395  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
3396    // @encode(class_name)
3397    ObjCInterfaceDecl *OI = OIT->getDecl();
3398    S += '{';
3399    const IdentifierInfo *II = OI->getIdentifier();
3400    S += II->getName();
3401    S += '=';
3402    llvm::SmallVector<FieldDecl*, 32> RecFields;
3403    CollectObjCIvars(OI, RecFields);
3404    for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
3405      if (RecFields[i]->isBitField())
3406        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3407                                   RecFields[i]);
3408      else
3409        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3410                                   FD);
3411    }
3412    S += '}';
3413    return;
3414  }
3415
3416  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
3417    if (OPT->isObjCIdType()) {
3418      S += '@';
3419      return;
3420    }
3421
3422    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
3423      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
3424      // Since this is a binary compatibility issue, need to consult with runtime
3425      // folks. Fortunately, this is a *very* obsure construct.
3426      S += '#';
3427      return;
3428    }
3429
3430    if (OPT->isObjCQualifiedIdType()) {
3431      getObjCEncodingForTypeImpl(getObjCIdType(), S,
3432                                 ExpandPointedToStructures,
3433                                 ExpandStructures, FD);
3434      if (FD || EncodingProperty) {
3435        // Note that we do extended encoding of protocol qualifer list
3436        // Only when doing ivar or property encoding.
3437        S += '"';
3438        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3439             E = OPT->qual_end(); I != E; ++I) {
3440          S += '<';
3441          S += (*I)->getNameAsString();
3442          S += '>';
3443        }
3444        S += '"';
3445      }
3446      return;
3447    }
3448
3449    QualType PointeeTy = OPT->getPointeeType();
3450    if (!EncodingProperty &&
3451        isa<TypedefType>(PointeeTy.getTypePtr())) {
3452      // Another historical/compatibility reason.
3453      // We encode the underlying type which comes out as
3454      // {...};
3455      S += '^';
3456      getObjCEncodingForTypeImpl(PointeeTy, S,
3457                                 false, ExpandPointedToStructures,
3458                                 NULL);
3459      return;
3460    }
3461
3462    S += '@';
3463    if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
3464      S += '"';
3465      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
3466      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3467           E = OPT->qual_end(); I != E; ++I) {
3468        S += '<';
3469        S += (*I)->getNameAsString();
3470        S += '>';
3471      }
3472      S += '"';
3473    }
3474    return;
3475  }
3476
3477  assert(0 && "@encode for type not implemented!");
3478}
3479
3480void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
3481                                                 std::string& S) const {
3482  if (QT & Decl::OBJC_TQ_In)
3483    S += 'n';
3484  if (QT & Decl::OBJC_TQ_Inout)
3485    S += 'N';
3486  if (QT & Decl::OBJC_TQ_Out)
3487    S += 'o';
3488  if (QT & Decl::OBJC_TQ_Bycopy)
3489    S += 'O';
3490  if (QT & Decl::OBJC_TQ_Byref)
3491    S += 'R';
3492  if (QT & Decl::OBJC_TQ_Oneway)
3493    S += 'V';
3494}
3495
3496void ASTContext::setBuiltinVaListType(QualType T) {
3497  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
3498
3499  BuiltinVaListType = T;
3500}
3501
3502void ASTContext::setObjCIdType(QualType T) {
3503  ObjCIdTypedefType = T;
3504}
3505
3506void ASTContext::setObjCSelType(QualType T) {
3507  ObjCSelType = T;
3508
3509  const TypedefType *TT = T->getAs<TypedefType>();
3510  if (!TT)
3511    return;
3512  TypedefDecl *TD = TT->getDecl();
3513
3514  // typedef struct objc_selector *SEL;
3515  const PointerType *ptr = TD->getUnderlyingType()->getAs<PointerType>();
3516  if (!ptr)
3517    return;
3518  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
3519  if (!rec)
3520    return;
3521  SelStructType = rec;
3522}
3523
3524void ASTContext::setObjCProtoType(QualType QT) {
3525  ObjCProtoType = QT;
3526}
3527
3528void ASTContext::setObjCClassType(QualType T) {
3529  ObjCClassTypedefType = T;
3530}
3531
3532void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
3533  assert(ObjCConstantStringType.isNull() &&
3534         "'NSConstantString' type already set!");
3535
3536  ObjCConstantStringType = getObjCInterfaceType(Decl);
3537}
3538
3539/// \brief Retrieve the template name that represents a qualified
3540/// template name such as \c std::vector.
3541TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
3542                                                  bool TemplateKeyword,
3543                                                  TemplateDecl *Template) {
3544  llvm::FoldingSetNodeID ID;
3545  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
3546
3547  void *InsertPos = 0;
3548  QualifiedTemplateName *QTN =
3549    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3550  if (!QTN) {
3551    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
3552    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
3553  }
3554
3555  return TemplateName(QTN);
3556}
3557
3558/// \brief Retrieve the template name that represents a qualified
3559/// template name such as \c std::vector.
3560TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
3561                                                  bool TemplateKeyword,
3562                                            OverloadedFunctionDecl *Template) {
3563  llvm::FoldingSetNodeID ID;
3564  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
3565
3566  void *InsertPos = 0;
3567  QualifiedTemplateName *QTN =
3568  QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3569  if (!QTN) {
3570    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
3571    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
3572  }
3573
3574  return TemplateName(QTN);
3575}
3576
3577/// \brief Retrieve the template name that represents a dependent
3578/// template name such as \c MetaFun::template apply.
3579TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3580                                                  const IdentifierInfo *Name) {
3581  assert((!NNS || NNS->isDependent()) &&
3582         "Nested name specifier must be dependent");
3583
3584  llvm::FoldingSetNodeID ID;
3585  DependentTemplateName::Profile(ID, NNS, Name);
3586
3587  void *InsertPos = 0;
3588  DependentTemplateName *QTN =
3589    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3590
3591  if (QTN)
3592    return TemplateName(QTN);
3593
3594  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3595  if (CanonNNS == NNS) {
3596    QTN = new (*this,4) DependentTemplateName(NNS, Name);
3597  } else {
3598    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
3599    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
3600  }
3601
3602  DependentTemplateNames.InsertNode(QTN, InsertPos);
3603  return TemplateName(QTN);
3604}
3605
3606/// getFromTargetType - Given one of the integer types provided by
3607/// TargetInfo, produce the corresponding type. The unsigned @p Type
3608/// is actually a value of type @c TargetInfo::IntType.
3609CanQualType ASTContext::getFromTargetType(unsigned Type) const {
3610  switch (Type) {
3611  case TargetInfo::NoInt: return CanQualType();
3612  case TargetInfo::SignedShort: return ShortTy;
3613  case TargetInfo::UnsignedShort: return UnsignedShortTy;
3614  case TargetInfo::SignedInt: return IntTy;
3615  case TargetInfo::UnsignedInt: return UnsignedIntTy;
3616  case TargetInfo::SignedLong: return LongTy;
3617  case TargetInfo::UnsignedLong: return UnsignedLongTy;
3618  case TargetInfo::SignedLongLong: return LongLongTy;
3619  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
3620  }
3621
3622  assert(false && "Unhandled TargetInfo::IntType value");
3623  return CanQualType();
3624}
3625
3626//===----------------------------------------------------------------------===//
3627//                        Type Predicates.
3628//===----------------------------------------------------------------------===//
3629
3630/// isObjCNSObjectType - Return true if this is an NSObject object using
3631/// NSObject attribute on a c-style pointer type.
3632/// FIXME - Make it work directly on types.
3633/// FIXME: Move to Type.
3634///
3635bool ASTContext::isObjCNSObjectType(QualType Ty) const {
3636  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
3637    if (TypedefDecl *TD = TDT->getDecl())
3638      if (TD->getAttr<ObjCNSObjectAttr>())
3639        return true;
3640  }
3641  return false;
3642}
3643
3644/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
3645/// garbage collection attribute.
3646///
3647Qualifiers::GC ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
3648  Qualifiers::GC GCAttrs = Qualifiers::GCNone;
3649  if (getLangOptions().ObjC1 &&
3650      getLangOptions().getGCMode() != LangOptions::NonGC) {
3651    GCAttrs = Ty.getObjCGCAttr();
3652    // Default behavious under objective-c's gc is for objective-c pointers
3653    // (or pointers to them) be treated as though they were declared
3654    // as __strong.
3655    if (GCAttrs == Qualifiers::GCNone) {
3656      if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
3657        GCAttrs = Qualifiers::Strong;
3658      else if (Ty->isPointerType())
3659        return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
3660    }
3661    // Non-pointers have none gc'able attribute regardless of the attribute
3662    // set on them.
3663    else if (!Ty->isAnyPointerType() && !Ty->isBlockPointerType())
3664      return Qualifiers::GCNone;
3665  }
3666  return GCAttrs;
3667}
3668
3669//===----------------------------------------------------------------------===//
3670//                        Type Compatibility Testing
3671//===----------------------------------------------------------------------===//
3672
3673/// areCompatVectorTypes - Return true if the two specified vector types are
3674/// compatible.
3675static bool areCompatVectorTypes(const VectorType *LHS,
3676                                 const VectorType *RHS) {
3677  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
3678  return LHS->getElementType() == RHS->getElementType() &&
3679         LHS->getNumElements() == RHS->getNumElements();
3680}
3681
3682//===----------------------------------------------------------------------===//
3683// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
3684//===----------------------------------------------------------------------===//
3685
3686/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
3687/// inheritance hierarchy of 'rProto'.
3688bool ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
3689                                                ObjCProtocolDecl *rProto) {
3690  if (lProto == rProto)
3691    return true;
3692  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
3693       E = rProto->protocol_end(); PI != E; ++PI)
3694    if (ProtocolCompatibleWithProtocol(lProto, *PI))
3695      return true;
3696  return false;
3697}
3698
3699/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
3700/// return true if lhs's protocols conform to rhs's protocol; false
3701/// otherwise.
3702bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
3703  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
3704    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
3705  return false;
3706}
3707
3708/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
3709/// ObjCQualifiedIDType.
3710bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
3711                                                   bool compare) {
3712  // Allow id<P..> and an 'id' or void* type in all cases.
3713  if (lhs->isVoidPointerType() ||
3714      lhs->isObjCIdType() || lhs->isObjCClassType())
3715    return true;
3716  else if (rhs->isVoidPointerType() ||
3717           rhs->isObjCIdType() || rhs->isObjCClassType())
3718    return true;
3719
3720  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
3721    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
3722
3723    if (!rhsOPT) return false;
3724
3725    if (rhsOPT->qual_empty()) {
3726      // If the RHS is a unqualified interface pointer "NSString*",
3727      // make sure we check the class hierarchy.
3728      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
3729        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3730             E = lhsQID->qual_end(); I != E; ++I) {
3731          // when comparing an id<P> on lhs with a static type on rhs,
3732          // see if static class implements all of id's protocols, directly or
3733          // through its super class and categories.
3734          if (!rhsID->ClassImplementsProtocol(*I, true))
3735            return false;
3736        }
3737      }
3738      // If there are no qualifiers and no interface, we have an 'id'.
3739      return true;
3740    }
3741    // Both the right and left sides have qualifiers.
3742    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3743         E = lhsQID->qual_end(); I != E; ++I) {
3744      ObjCProtocolDecl *lhsProto = *I;
3745      bool match = false;
3746
3747      // when comparing an id<P> on lhs with a static type on rhs,
3748      // see if static class implements all of id's protocols, directly or
3749      // through its super class and categories.
3750      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
3751           E = rhsOPT->qual_end(); J != E; ++J) {
3752        ObjCProtocolDecl *rhsProto = *J;
3753        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
3754            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
3755          match = true;
3756          break;
3757        }
3758      }
3759      // If the RHS is a qualified interface pointer "NSString<P>*",
3760      // make sure we check the class hierarchy.
3761      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
3762        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3763             E = lhsQID->qual_end(); I != E; ++I) {
3764          // when comparing an id<P> on lhs with a static type on rhs,
3765          // see if static class implements all of id's protocols, directly or
3766          // through its super class and categories.
3767          if (rhsID->ClassImplementsProtocol(*I, true)) {
3768            match = true;
3769            break;
3770          }
3771        }
3772      }
3773      if (!match)
3774        return false;
3775    }
3776
3777    return true;
3778  }
3779
3780  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
3781  assert(rhsQID && "One of the LHS/RHS should be id<x>");
3782
3783  if (const ObjCObjectPointerType *lhsOPT =
3784        lhs->getAsObjCInterfacePointerType()) {
3785    if (lhsOPT->qual_empty()) {
3786      bool match = false;
3787      if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
3788        for (ObjCObjectPointerType::qual_iterator I = rhsQID->qual_begin(),
3789             E = rhsQID->qual_end(); I != E; ++I) {
3790          // when comparing an id<P> on lhs with a static type on rhs,
3791          // see if static class implements all of id's protocols, directly or
3792          // through its super class and categories.
3793          if (lhsID->ClassImplementsProtocol(*I, true)) {
3794            match = true;
3795            break;
3796          }
3797        }
3798        if (!match)
3799          return false;
3800      }
3801      return true;
3802    }
3803    // Both the right and left sides have qualifiers.
3804    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
3805         E = lhsOPT->qual_end(); I != E; ++I) {
3806      ObjCProtocolDecl *lhsProto = *I;
3807      bool match = false;
3808
3809      // when comparing an id<P> on lhs with a static type on rhs,
3810      // see if static class implements all of id's protocols, directly or
3811      // through its super class and categories.
3812      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
3813           E = rhsQID->qual_end(); J != E; ++J) {
3814        ObjCProtocolDecl *rhsProto = *J;
3815        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
3816            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
3817          match = true;
3818          break;
3819        }
3820      }
3821      if (!match)
3822        return false;
3823    }
3824    return true;
3825  }
3826  return false;
3827}
3828
3829/// canAssignObjCInterfaces - Return true if the two interface types are
3830/// compatible for assignment from RHS to LHS.  This handles validation of any
3831/// protocol qualifiers on the LHS or RHS.
3832///
3833bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
3834                                         const ObjCObjectPointerType *RHSOPT) {
3835  // If either type represents the built-in 'id' or 'Class' types, return true.
3836  if (LHSOPT->isObjCBuiltinType() || RHSOPT->isObjCBuiltinType())
3837    return true;
3838
3839  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
3840    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
3841                                             QualType(RHSOPT,0),
3842                                             false);
3843
3844  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
3845  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
3846  if (LHS && RHS) // We have 2 user-defined types.
3847    return canAssignObjCInterfaces(LHS, RHS);
3848
3849  return false;
3850}
3851
3852/// areCommonBaseCompatible - Returns common base class of the two classes if
3853/// one found. Note that this is O'2 algorithm. But it will be called as the
3854/// last type comparison in a ?-exp of ObjC pointer types before a
3855/// warning is issued. So, its invokation is extremely rare.
3856QualType ASTContext::areCommonBaseCompatible(
3857                                          const ObjCObjectPointerType *LHSOPT,
3858                                          const ObjCObjectPointerType *RHSOPT) {
3859  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
3860  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
3861  if (!LHS || !RHS)
3862    return QualType();
3863
3864  while (const ObjCInterfaceDecl *LHSIDecl = LHS->getDecl()->getSuperClass()) {
3865    QualType LHSTy = getObjCInterfaceType(LHSIDecl);
3866    LHS = LHSTy->getAs<ObjCInterfaceType>();
3867    if (canAssignObjCInterfaces(LHS, RHS))
3868      return getObjCObjectPointerType(LHSTy);
3869  }
3870
3871  return QualType();
3872}
3873
3874bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
3875                                         const ObjCInterfaceType *RHS) {
3876  // Verify that the base decls are compatible: the RHS must be a subclass of
3877  // the LHS.
3878  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
3879    return false;
3880
3881  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
3882  // protocol qualified at all, then we are good.
3883  if (LHS->getNumProtocols() == 0)
3884    return true;
3885
3886  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
3887  // isn't a superset.
3888  if (RHS->getNumProtocols() == 0)
3889    return true;  // FIXME: should return false!
3890
3891  for (ObjCInterfaceType::qual_iterator LHSPI = LHS->qual_begin(),
3892                                        LHSPE = LHS->qual_end();
3893       LHSPI != LHSPE; LHSPI++) {
3894    bool RHSImplementsProtocol = false;
3895
3896    // If the RHS doesn't implement the protocol on the left, the types
3897    // are incompatible.
3898    for (ObjCInterfaceType::qual_iterator RHSPI = RHS->qual_begin(),
3899                                          RHSPE = RHS->qual_end();
3900         RHSPI != RHSPE; RHSPI++) {
3901      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
3902        RHSImplementsProtocol = true;
3903        break;
3904      }
3905    }
3906    // FIXME: For better diagnostics, consider passing back the protocol name.
3907    if (!RHSImplementsProtocol)
3908      return false;
3909  }
3910  // The RHS implements all protocols listed on the LHS.
3911  return true;
3912}
3913
3914bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
3915  // get the "pointed to" types
3916  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
3917  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
3918
3919  if (!LHSOPT || !RHSOPT)
3920    return false;
3921
3922  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
3923         canAssignObjCInterfaces(RHSOPT, LHSOPT);
3924}
3925
3926/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
3927/// both shall have the identically qualified version of a compatible type.
3928/// C99 6.2.7p1: Two types have compatible types if their types are the
3929/// same. See 6.7.[2,3,5] for additional rules.
3930bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
3931  return !mergeTypes(LHS, RHS).isNull();
3932}
3933
3934QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
3935  const FunctionType *lbase = lhs->getAs<FunctionType>();
3936  const FunctionType *rbase = rhs->getAs<FunctionType>();
3937  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
3938  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
3939  bool allLTypes = true;
3940  bool allRTypes = true;
3941
3942  // Check return type
3943  QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
3944  if (retType.isNull()) return QualType();
3945  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
3946    allLTypes = false;
3947  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
3948    allRTypes = false;
3949  // FIXME: double check this
3950  bool NoReturn = lbase->getNoReturnAttr() || rbase->getNoReturnAttr();
3951  if (NoReturn != lbase->getNoReturnAttr())
3952    allLTypes = false;
3953  if (NoReturn != rbase->getNoReturnAttr())
3954    allRTypes = false;
3955
3956  if (lproto && rproto) { // two C99 style function prototypes
3957    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
3958           "C++ shouldn't be here");
3959    unsigned lproto_nargs = lproto->getNumArgs();
3960    unsigned rproto_nargs = rproto->getNumArgs();
3961
3962    // Compatible functions must have the same number of arguments
3963    if (lproto_nargs != rproto_nargs)
3964      return QualType();
3965
3966    // Variadic and non-variadic functions aren't compatible
3967    if (lproto->isVariadic() != rproto->isVariadic())
3968      return QualType();
3969
3970    if (lproto->getTypeQuals() != rproto->getTypeQuals())
3971      return QualType();
3972
3973    // Check argument compatibility
3974    llvm::SmallVector<QualType, 10> types;
3975    for (unsigned i = 0; i < lproto_nargs; i++) {
3976      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
3977      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
3978      QualType argtype = mergeTypes(largtype, rargtype);
3979      if (argtype.isNull()) return QualType();
3980      types.push_back(argtype);
3981      if (getCanonicalType(argtype) != getCanonicalType(largtype))
3982        allLTypes = false;
3983      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
3984        allRTypes = false;
3985    }
3986    if (allLTypes) return lhs;
3987    if (allRTypes) return rhs;
3988    return getFunctionType(retType, types.begin(), types.size(),
3989                           lproto->isVariadic(), lproto->getTypeQuals(),
3990                           NoReturn);
3991  }
3992
3993  if (lproto) allRTypes = false;
3994  if (rproto) allLTypes = false;
3995
3996  const FunctionProtoType *proto = lproto ? lproto : rproto;
3997  if (proto) {
3998    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
3999    if (proto->isVariadic()) return QualType();
4000    // Check that the types are compatible with the types that
4001    // would result from default argument promotions (C99 6.7.5.3p15).
4002    // The only types actually affected are promotable integer
4003    // types and floats, which would be passed as a different
4004    // type depending on whether the prototype is visible.
4005    unsigned proto_nargs = proto->getNumArgs();
4006    for (unsigned i = 0; i < proto_nargs; ++i) {
4007      QualType argTy = proto->getArgType(i);
4008      if (argTy->isPromotableIntegerType() ||
4009          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
4010        return QualType();
4011    }
4012
4013    if (allLTypes) return lhs;
4014    if (allRTypes) return rhs;
4015    return getFunctionType(retType, proto->arg_type_begin(),
4016                           proto->getNumArgs(), proto->isVariadic(),
4017                           proto->getTypeQuals(), NoReturn);
4018  }
4019
4020  if (allLTypes) return lhs;
4021  if (allRTypes) return rhs;
4022  return getFunctionNoProtoType(retType, NoReturn);
4023}
4024
4025QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
4026  // C++ [expr]: If an expression initially has the type "reference to T", the
4027  // type is adjusted to "T" prior to any further analysis, the expression
4028  // designates the object or function denoted by the reference, and the
4029  // expression is an lvalue unless the reference is an rvalue reference and
4030  // the expression is a function call (possibly inside parentheses).
4031  // FIXME: C++ shouldn't be going through here!  The rules are different
4032  // enough that they should be handled separately.
4033  // FIXME: Merging of lvalue and rvalue references is incorrect. C++ *really*
4034  // shouldn't be going through here!
4035  if (const ReferenceType *RT = LHS->getAs<ReferenceType>())
4036    LHS = RT->getPointeeType();
4037  if (const ReferenceType *RT = RHS->getAs<ReferenceType>())
4038    RHS = RT->getPointeeType();
4039
4040  QualType LHSCan = getCanonicalType(LHS),
4041           RHSCan = getCanonicalType(RHS);
4042
4043  // If two types are identical, they are compatible.
4044  if (LHSCan == RHSCan)
4045    return LHS;
4046
4047  // If the qualifiers are different, the types aren't compatible... mostly.
4048  Qualifiers LQuals = LHSCan.getQualifiers();
4049  Qualifiers RQuals = RHSCan.getQualifiers();
4050  if (LQuals != RQuals) {
4051    // If any of these qualifiers are different, we have a type
4052    // mismatch.
4053    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
4054        LQuals.getAddressSpace() != RQuals.getAddressSpace())
4055      return QualType();
4056
4057    // Exactly one GC qualifier difference is allowed: __strong is
4058    // okay if the other type has no GC qualifier but is an Objective
4059    // C object pointer (i.e. implicitly strong by default).  We fix
4060    // this by pretending that the unqualified type was actually
4061    // qualified __strong.
4062    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
4063    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
4064    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
4065
4066    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
4067      return QualType();
4068
4069    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
4070      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
4071    }
4072    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
4073      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
4074    }
4075    return QualType();
4076  }
4077
4078  // Okay, qualifiers are equal.
4079
4080  Type::TypeClass LHSClass = LHSCan->getTypeClass();
4081  Type::TypeClass RHSClass = RHSCan->getTypeClass();
4082
4083  // We want to consider the two function types to be the same for these
4084  // comparisons, just force one to the other.
4085  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
4086  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
4087
4088  // Same as above for arrays
4089  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
4090    LHSClass = Type::ConstantArray;
4091  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
4092    RHSClass = Type::ConstantArray;
4093
4094  // Canonicalize ExtVector -> Vector.
4095  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
4096  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
4097
4098  // If the canonical type classes don't match.
4099  if (LHSClass != RHSClass) {
4100    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
4101    // a signed integer type, or an unsigned integer type.
4102    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
4103      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
4104        return RHS;
4105    }
4106    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
4107      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
4108        return LHS;
4109    }
4110
4111    return QualType();
4112  }
4113
4114  // The canonical type classes match.
4115  switch (LHSClass) {
4116#define TYPE(Class, Base)
4117#define ABSTRACT_TYPE(Class, Base)
4118#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
4119#define DEPENDENT_TYPE(Class, Base) case Type::Class:
4120#include "clang/AST/TypeNodes.def"
4121    assert(false && "Non-canonical and dependent types shouldn't get here");
4122    return QualType();
4123
4124  case Type::LValueReference:
4125  case Type::RValueReference:
4126  case Type::MemberPointer:
4127    assert(false && "C++ should never be in mergeTypes");
4128    return QualType();
4129
4130  case Type::IncompleteArray:
4131  case Type::VariableArray:
4132  case Type::FunctionProto:
4133  case Type::ExtVector:
4134    assert(false && "Types are eliminated above");
4135    return QualType();
4136
4137  case Type::Pointer:
4138  {
4139    // Merge two pointer types, while trying to preserve typedef info
4140    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
4141    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
4142    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
4143    if (ResultType.isNull()) return QualType();
4144    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4145      return LHS;
4146    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4147      return RHS;
4148    return getPointerType(ResultType);
4149  }
4150  case Type::BlockPointer:
4151  {
4152    // Merge two block pointer types, while trying to preserve typedef info
4153    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
4154    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
4155    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
4156    if (ResultType.isNull()) return QualType();
4157    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4158      return LHS;
4159    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4160      return RHS;
4161    return getBlockPointerType(ResultType);
4162  }
4163  case Type::ConstantArray:
4164  {
4165    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
4166    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
4167    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
4168      return QualType();
4169
4170    QualType LHSElem = getAsArrayType(LHS)->getElementType();
4171    QualType RHSElem = getAsArrayType(RHS)->getElementType();
4172    QualType ResultType = mergeTypes(LHSElem, RHSElem);
4173    if (ResultType.isNull()) return QualType();
4174    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4175      return LHS;
4176    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4177      return RHS;
4178    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
4179                                          ArrayType::ArraySizeModifier(), 0);
4180    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
4181                                          ArrayType::ArraySizeModifier(), 0);
4182    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
4183    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
4184    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4185      return LHS;
4186    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4187      return RHS;
4188    if (LVAT) {
4189      // FIXME: This isn't correct! But tricky to implement because
4190      // the array's size has to be the size of LHS, but the type
4191      // has to be different.
4192      return LHS;
4193    }
4194    if (RVAT) {
4195      // FIXME: This isn't correct! But tricky to implement because
4196      // the array's size has to be the size of RHS, but the type
4197      // has to be different.
4198      return RHS;
4199    }
4200    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
4201    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
4202    return getIncompleteArrayType(ResultType,
4203                                  ArrayType::ArraySizeModifier(), 0);
4204  }
4205  case Type::FunctionNoProto:
4206    return mergeFunctionTypes(LHS, RHS);
4207  case Type::Record:
4208  case Type::Enum:
4209    return QualType();
4210  case Type::Builtin:
4211    // Only exactly equal builtin types are compatible, which is tested above.
4212    return QualType();
4213  case Type::Complex:
4214    // Distinct complex types are incompatible.
4215    return QualType();
4216  case Type::Vector:
4217    // FIXME: The merged type should be an ExtVector!
4218    if (areCompatVectorTypes(LHS->getAs<VectorType>(), RHS->getAs<VectorType>()))
4219      return LHS;
4220    return QualType();
4221  case Type::ObjCInterface: {
4222    // Check if the interfaces are assignment compatible.
4223    // FIXME: This should be type compatibility, e.g. whether
4224    // "LHS x; RHS x;" at global scope is legal.
4225    const ObjCInterfaceType* LHSIface = LHS->getAs<ObjCInterfaceType>();
4226    const ObjCInterfaceType* RHSIface = RHS->getAs<ObjCInterfaceType>();
4227    if (LHSIface && RHSIface &&
4228        canAssignObjCInterfaces(LHSIface, RHSIface))
4229      return LHS;
4230
4231    return QualType();
4232  }
4233  case Type::ObjCObjectPointer: {
4234    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
4235                                RHS->getAs<ObjCObjectPointerType>()))
4236      return LHS;
4237
4238    return QualType();
4239  }
4240  case Type::FixedWidthInt:
4241    // Distinct fixed-width integers are not compatible.
4242    return QualType();
4243  case Type::TemplateSpecialization:
4244    assert(false && "Dependent types have no size");
4245    break;
4246  }
4247
4248  return QualType();
4249}
4250
4251//===----------------------------------------------------------------------===//
4252//                         Integer Predicates
4253//===----------------------------------------------------------------------===//
4254
4255unsigned ASTContext::getIntWidth(QualType T) {
4256  if (T == BoolTy)
4257    return 1;
4258  if (FixedWidthIntType *FWIT = dyn_cast<FixedWidthIntType>(T)) {
4259    return FWIT->getWidth();
4260  }
4261  // For builtin types, just use the standard type sizing method
4262  return (unsigned)getTypeSize(T);
4263}
4264
4265QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
4266  assert(T->isSignedIntegerType() && "Unexpected type");
4267
4268  // Turn <4 x signed int> -> <4 x unsigned int>
4269  if (const VectorType *VTy = T->getAs<VectorType>())
4270    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
4271                         VTy->getNumElements());
4272
4273  // For enums, we return the unsigned version of the base type.
4274  if (const EnumType *ETy = T->getAs<EnumType>())
4275    T = ETy->getDecl()->getIntegerType();
4276
4277  const BuiltinType *BTy = T->getAs<BuiltinType>();
4278  assert(BTy && "Unexpected signed integer type");
4279  switch (BTy->getKind()) {
4280  case BuiltinType::Char_S:
4281  case BuiltinType::SChar:
4282    return UnsignedCharTy;
4283  case BuiltinType::Short:
4284    return UnsignedShortTy;
4285  case BuiltinType::Int:
4286    return UnsignedIntTy;
4287  case BuiltinType::Long:
4288    return UnsignedLongTy;
4289  case BuiltinType::LongLong:
4290    return UnsignedLongLongTy;
4291  case BuiltinType::Int128:
4292    return UnsignedInt128Ty;
4293  default:
4294    assert(0 && "Unexpected signed integer type");
4295    return QualType();
4296  }
4297}
4298
4299ExternalASTSource::~ExternalASTSource() { }
4300
4301void ExternalASTSource::PrintStats() { }
4302
4303
4304//===----------------------------------------------------------------------===//
4305//                          Builtin Type Computation
4306//===----------------------------------------------------------------------===//
4307
4308/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
4309/// pointer over the consumed characters.  This returns the resultant type.
4310static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context,
4311                                  ASTContext::GetBuiltinTypeError &Error,
4312                                  bool AllowTypeModifiers = true) {
4313  // Modifiers.
4314  int HowLong = 0;
4315  bool Signed = false, Unsigned = false;
4316
4317  // Read the modifiers first.
4318  bool Done = false;
4319  while (!Done) {
4320    switch (*Str++) {
4321    default: Done = true; --Str; break;
4322    case 'S':
4323      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
4324      assert(!Signed && "Can't use 'S' modifier multiple times!");
4325      Signed = true;
4326      break;
4327    case 'U':
4328      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
4329      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
4330      Unsigned = true;
4331      break;
4332    case 'L':
4333      assert(HowLong <= 2 && "Can't have LLLL modifier");
4334      ++HowLong;
4335      break;
4336    }
4337  }
4338
4339  QualType Type;
4340
4341  // Read the base type.
4342  switch (*Str++) {
4343  default: assert(0 && "Unknown builtin type letter!");
4344  case 'v':
4345    assert(HowLong == 0 && !Signed && !Unsigned &&
4346           "Bad modifiers used with 'v'!");
4347    Type = Context.VoidTy;
4348    break;
4349  case 'f':
4350    assert(HowLong == 0 && !Signed && !Unsigned &&
4351           "Bad modifiers used with 'f'!");
4352    Type = Context.FloatTy;
4353    break;
4354  case 'd':
4355    assert(HowLong < 2 && !Signed && !Unsigned &&
4356           "Bad modifiers used with 'd'!");
4357    if (HowLong)
4358      Type = Context.LongDoubleTy;
4359    else
4360      Type = Context.DoubleTy;
4361    break;
4362  case 's':
4363    assert(HowLong == 0 && "Bad modifiers used with 's'!");
4364    if (Unsigned)
4365      Type = Context.UnsignedShortTy;
4366    else
4367      Type = Context.ShortTy;
4368    break;
4369  case 'i':
4370    if (HowLong == 3)
4371      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
4372    else if (HowLong == 2)
4373      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
4374    else if (HowLong == 1)
4375      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
4376    else
4377      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
4378    break;
4379  case 'c':
4380    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
4381    if (Signed)
4382      Type = Context.SignedCharTy;
4383    else if (Unsigned)
4384      Type = Context.UnsignedCharTy;
4385    else
4386      Type = Context.CharTy;
4387    break;
4388  case 'b': // boolean
4389    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
4390    Type = Context.BoolTy;
4391    break;
4392  case 'z':  // size_t.
4393    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
4394    Type = Context.getSizeType();
4395    break;
4396  case 'F':
4397    Type = Context.getCFConstantStringType();
4398    break;
4399  case 'a':
4400    Type = Context.getBuiltinVaListType();
4401    assert(!Type.isNull() && "builtin va list type not initialized!");
4402    break;
4403  case 'A':
4404    // This is a "reference" to a va_list; however, what exactly
4405    // this means depends on how va_list is defined. There are two
4406    // different kinds of va_list: ones passed by value, and ones
4407    // passed by reference.  An example of a by-value va_list is
4408    // x86, where va_list is a char*. An example of by-ref va_list
4409    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
4410    // we want this argument to be a char*&; for x86-64, we want
4411    // it to be a __va_list_tag*.
4412    Type = Context.getBuiltinVaListType();
4413    assert(!Type.isNull() && "builtin va list type not initialized!");
4414    if (Type->isArrayType()) {
4415      Type = Context.getArrayDecayedType(Type);
4416    } else {
4417      Type = Context.getLValueReferenceType(Type);
4418    }
4419    break;
4420  case 'V': {
4421    char *End;
4422    unsigned NumElements = strtoul(Str, &End, 10);
4423    assert(End != Str && "Missing vector size");
4424
4425    Str = End;
4426
4427    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4428    Type = Context.getVectorType(ElementType, NumElements);
4429    break;
4430  }
4431  case 'X': {
4432    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4433    Type = Context.getComplexType(ElementType);
4434    break;
4435  }
4436  case 'P':
4437    Type = Context.getFILEType();
4438    if (Type.isNull()) {
4439      Error = ASTContext::GE_Missing_stdio;
4440      return QualType();
4441    }
4442    break;
4443  case 'J':
4444    if (Signed)
4445      Type = Context.getsigjmp_bufType();
4446    else
4447      Type = Context.getjmp_bufType();
4448
4449    if (Type.isNull()) {
4450      Error = ASTContext::GE_Missing_setjmp;
4451      return QualType();
4452    }
4453    break;
4454  }
4455
4456  if (!AllowTypeModifiers)
4457    return Type;
4458
4459  Done = false;
4460  while (!Done) {
4461    switch (*Str++) {
4462      default: Done = true; --Str; break;
4463      case '*':
4464        Type = Context.getPointerType(Type);
4465        break;
4466      case '&':
4467        Type = Context.getLValueReferenceType(Type);
4468        break;
4469      // FIXME: There's no way to have a built-in with an rvalue ref arg.
4470      case 'C':
4471        Type = Type.withConst();
4472        break;
4473    }
4474  }
4475
4476  return Type;
4477}
4478
4479/// GetBuiltinType - Return the type for the specified builtin.
4480QualType ASTContext::GetBuiltinType(unsigned id,
4481                                    GetBuiltinTypeError &Error) {
4482  const char *TypeStr = BuiltinInfo.GetTypeString(id);
4483
4484  llvm::SmallVector<QualType, 8> ArgTypes;
4485
4486  Error = GE_None;
4487  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error);
4488  if (Error != GE_None)
4489    return QualType();
4490  while (TypeStr[0] && TypeStr[0] != '.') {
4491    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error);
4492    if (Error != GE_None)
4493      return QualType();
4494
4495    // Do array -> pointer decay.  The builtin should use the decayed type.
4496    if (Ty->isArrayType())
4497      Ty = getArrayDecayedType(Ty);
4498
4499    ArgTypes.push_back(Ty);
4500  }
4501
4502  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
4503         "'.' should only occur at end of builtin type list!");
4504
4505  // handle untyped/variadic arguments "T c99Style();" or "T cppStyle(...);".
4506  if (ArgTypes.size() == 0 && TypeStr[0] == '.')
4507    return getFunctionNoProtoType(ResType);
4508  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(),
4509                         TypeStr[0] == '.', 0);
4510}
4511
4512QualType
4513ASTContext::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
4514  // Perform the usual unary conversions. We do this early so that
4515  // integral promotions to "int" can allow us to exit early, in the
4516  // lhs == rhs check. Also, for conversion purposes, we ignore any
4517  // qualifiers.  For example, "const float" and "float" are
4518  // equivalent.
4519  if (lhs->isPromotableIntegerType())
4520    lhs = getPromotedIntegerType(lhs);
4521  else
4522    lhs = lhs.getUnqualifiedType();
4523  if (rhs->isPromotableIntegerType())
4524    rhs = getPromotedIntegerType(rhs);
4525  else
4526    rhs = rhs.getUnqualifiedType();
4527
4528  // If both types are identical, no conversion is needed.
4529  if (lhs == rhs)
4530    return lhs;
4531
4532  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
4533  // The caller can deal with this (e.g. pointer + int).
4534  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
4535    return lhs;
4536
4537  // At this point, we have two different arithmetic types.
4538
4539  // Handle complex types first (C99 6.3.1.8p1).
4540  if (lhs->isComplexType() || rhs->isComplexType()) {
4541    // if we have an integer operand, the result is the complex type.
4542    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
4543      // convert the rhs to the lhs complex type.
4544      return lhs;
4545    }
4546    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
4547      // convert the lhs to the rhs complex type.
4548      return rhs;
4549    }
4550    // This handles complex/complex, complex/float, or float/complex.
4551    // When both operands are complex, the shorter operand is converted to the
4552    // type of the longer, and that is the type of the result. This corresponds
4553    // to what is done when combining two real floating-point operands.
4554    // The fun begins when size promotion occur across type domains.
4555    // From H&S 6.3.4: When one operand is complex and the other is a real
4556    // floating-point type, the less precise type is converted, within it's
4557    // real or complex domain, to the precision of the other type. For example,
4558    // when combining a "long double" with a "double _Complex", the
4559    // "double _Complex" is promoted to "long double _Complex".
4560    int result = getFloatingTypeOrder(lhs, rhs);
4561
4562    if (result > 0) { // The left side is bigger, convert rhs.
4563      rhs = getFloatingTypeOfSizeWithinDomain(lhs, rhs);
4564    } else if (result < 0) { // The right side is bigger, convert lhs.
4565      lhs = getFloatingTypeOfSizeWithinDomain(rhs, lhs);
4566    }
4567    // At this point, lhs and rhs have the same rank/size. Now, make sure the
4568    // domains match. This is a requirement for our implementation, C99
4569    // does not require this promotion.
4570    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
4571      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
4572        return rhs;
4573      } else { // handle "_Complex double, double".
4574        return lhs;
4575      }
4576    }
4577    return lhs; // The domain/size match exactly.
4578  }
4579  // Now handle "real" floating types (i.e. float, double, long double).
4580  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
4581    // if we have an integer operand, the result is the real floating type.
4582    if (rhs->isIntegerType()) {
4583      // convert rhs to the lhs floating point type.
4584      return lhs;
4585    }
4586    if (rhs->isComplexIntegerType()) {
4587      // convert rhs to the complex floating point type.
4588      return getComplexType(lhs);
4589    }
4590    if (lhs->isIntegerType()) {
4591      // convert lhs to the rhs floating point type.
4592      return rhs;
4593    }
4594    if (lhs->isComplexIntegerType()) {
4595      // convert lhs to the complex floating point type.
4596      return getComplexType(rhs);
4597    }
4598    // We have two real floating types, float/complex combos were handled above.
4599    // Convert the smaller operand to the bigger result.
4600    int result = getFloatingTypeOrder(lhs, rhs);
4601    if (result > 0) // convert the rhs
4602      return lhs;
4603    assert(result < 0 && "illegal float comparison");
4604    return rhs;   // convert the lhs
4605  }
4606  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
4607    // Handle GCC complex int extension.
4608    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
4609    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
4610
4611    if (lhsComplexInt && rhsComplexInt) {
4612      if (getIntegerTypeOrder(lhsComplexInt->getElementType(),
4613                              rhsComplexInt->getElementType()) >= 0)
4614        return lhs; // convert the rhs
4615      return rhs;
4616    } else if (lhsComplexInt && rhs->isIntegerType()) {
4617      // convert the rhs to the lhs complex type.
4618      return lhs;
4619    } else if (rhsComplexInt && lhs->isIntegerType()) {
4620      // convert the lhs to the rhs complex type.
4621      return rhs;
4622    }
4623  }
4624  // Finally, we have two differing integer types.
4625  // The rules for this case are in C99 6.3.1.8
4626  int compare = getIntegerTypeOrder(lhs, rhs);
4627  bool lhsSigned = lhs->isSignedIntegerType(),
4628       rhsSigned = rhs->isSignedIntegerType();
4629  QualType destType;
4630  if (lhsSigned == rhsSigned) {
4631    // Same signedness; use the higher-ranked type
4632    destType = compare >= 0 ? lhs : rhs;
4633  } else if (compare != (lhsSigned ? 1 : -1)) {
4634    // The unsigned type has greater than or equal rank to the
4635    // signed type, so use the unsigned type
4636    destType = lhsSigned ? rhs : lhs;
4637  } else if (getIntWidth(lhs) != getIntWidth(rhs)) {
4638    // The two types are different widths; if we are here, that
4639    // means the signed type is larger than the unsigned type, so
4640    // use the signed type.
4641    destType = lhsSigned ? lhs : rhs;
4642  } else {
4643    // The signed type is higher-ranked than the unsigned type,
4644    // but isn't actually any bigger (like unsigned int and long
4645    // on most 32-bit systems).  Use the unsigned type corresponding
4646    // to the signed type.
4647    destType = getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
4648  }
4649  return destType;
4650}
4651