ASTContext.cpp revision 2d44d77fed3200e2eff289f55493317e90d3398c
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExternalASTSource.h"
23#include "clang/AST/ASTMutationListener.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/Mangle.h"
26#include "clang/Basic/Builtins.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/TargetInfo.h"
29#include "llvm/ADT/SmallString.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/Support/MathExtras.h"
32#include "llvm/Support/raw_ostream.h"
33#include "llvm/Support/Capacity.h"
34#include "CXXABI.h"
35#include <map>
36
37using namespace clang;
38
39unsigned ASTContext::NumImplicitDefaultConstructors;
40unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
41unsigned ASTContext::NumImplicitCopyConstructors;
42unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
43unsigned ASTContext::NumImplicitMoveConstructors;
44unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
45unsigned ASTContext::NumImplicitCopyAssignmentOperators;
46unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
47unsigned ASTContext::NumImplicitMoveAssignmentOperators;
48unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
49unsigned ASTContext::NumImplicitDestructors;
50unsigned ASTContext::NumImplicitDestructorsDeclared;
51
52enum FloatingRank {
53  HalfRank, FloatRank, DoubleRank, LongDoubleRank
54};
55
56const RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
57  if (!CommentsLoaded && ExternalSource) {
58    ExternalSource->ReadComments();
59    CommentsLoaded = true;
60  }
61
62  assert(D);
63
64  // TODO: handle comments for function parameters properly.
65  if (isa<ParmVarDecl>(D))
66    return NULL;
67
68  ArrayRef<RawComment> RawComments = Comments.getComments();
69
70  // If there are no comments anywhere, we won't find anything.
71  if (RawComments.empty())
72    return NULL;
73
74  // If the declaration doesn't map directly to a location in a file, we
75  // can't find the comment.
76  SourceLocation DeclLoc = D->getLocation();
77  if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
78    return NULL;
79
80  // Find the comment that occurs just after this declaration.
81  ArrayRef<RawComment>::iterator Comment
82      = std::lower_bound(RawComments.begin(),
83                         RawComments.end(),
84                         RawComment(SourceMgr, SourceRange(DeclLoc)),
85                         BeforeThanCompare<RawComment>(SourceMgr));
86
87  // Decompose the location for the declaration and find the beginning of the
88  // file buffer.
89  std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
90
91  // First check whether we have a trailing comment.
92  if (Comment != RawComments.end() &&
93      Comment->isDocumentation() && Comment->isTrailingComment() &&
94      !isa<TagDecl>(D) && !isa<NamespaceDecl>(D)) {
95    std::pair<FileID, unsigned> CommentBeginDecomp
96      = SourceMgr.getDecomposedLoc(Comment->getSourceRange().getBegin());
97    // Check that Doxygen trailing comment comes after the declaration, starts
98    // on the same line and in the same file as the declaration.
99    if (DeclLocDecomp.first == CommentBeginDecomp.first &&
100        SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
101          == SourceMgr.getLineNumber(CommentBeginDecomp.first,
102                                     CommentBeginDecomp.second)) {
103      return &*Comment;
104    }
105  }
106
107  // The comment just after the declaration was not a trailing comment.
108  // Let's look at the previous comment.
109  if (Comment == RawComments.begin())
110    return NULL;
111  --Comment;
112
113  // Check that we actually have a non-member Doxygen comment.
114  if (!Comment->isDocumentation() || Comment->isTrailingComment())
115    return NULL;
116
117  // Decompose the end of the comment.
118  std::pair<FileID, unsigned> CommentEndDecomp
119    = SourceMgr.getDecomposedLoc(Comment->getSourceRange().getEnd());
120
121  // If the comment and the declaration aren't in the same file, then they
122  // aren't related.
123  if (DeclLocDecomp.first != CommentEndDecomp.first)
124    return NULL;
125
126  // Get the corresponding buffer.
127  bool Invalid = false;
128  const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
129                                               &Invalid).data();
130  if (Invalid)
131    return NULL;
132
133  // Extract text between the comment and declaration.
134  StringRef Text(Buffer + CommentEndDecomp.second,
135                 DeclLocDecomp.second - CommentEndDecomp.second);
136
137  // There should be no other declarations between comment and declaration.
138  if (Text.find_first_of(",;{}") != StringRef::npos)
139    return NULL;
140
141  return &*Comment;
142}
143
144const RawComment *ASTContext::getRawCommentForDecl(const Decl *D) const {
145  // Check whether we have cached a comment string for this declaration
146  // already.
147  llvm::DenseMap<const Decl *, const RawComment *>::iterator Pos
148      = DeclComments.find(D);
149  if (Pos != DeclComments.end())
150      return Pos->second;
151
152  const RawComment *RC = getRawCommentForDeclNoCache(D);
153  DeclComments[D] = RC;
154  return RC;
155}
156
157void
158ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
159                                               TemplateTemplateParmDecl *Parm) {
160  ID.AddInteger(Parm->getDepth());
161  ID.AddInteger(Parm->getPosition());
162  ID.AddBoolean(Parm->isParameterPack());
163
164  TemplateParameterList *Params = Parm->getTemplateParameters();
165  ID.AddInteger(Params->size());
166  for (TemplateParameterList::const_iterator P = Params->begin(),
167                                          PEnd = Params->end();
168       P != PEnd; ++P) {
169    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
170      ID.AddInteger(0);
171      ID.AddBoolean(TTP->isParameterPack());
172      continue;
173    }
174
175    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
176      ID.AddInteger(1);
177      ID.AddBoolean(NTTP->isParameterPack());
178      ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
179      if (NTTP->isExpandedParameterPack()) {
180        ID.AddBoolean(true);
181        ID.AddInteger(NTTP->getNumExpansionTypes());
182        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
183          QualType T = NTTP->getExpansionType(I);
184          ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
185        }
186      } else
187        ID.AddBoolean(false);
188      continue;
189    }
190
191    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
192    ID.AddInteger(2);
193    Profile(ID, TTP);
194  }
195}
196
197TemplateTemplateParmDecl *
198ASTContext::getCanonicalTemplateTemplateParmDecl(
199                                          TemplateTemplateParmDecl *TTP) const {
200  // Check if we already have a canonical template template parameter.
201  llvm::FoldingSetNodeID ID;
202  CanonicalTemplateTemplateParm::Profile(ID, TTP);
203  void *InsertPos = 0;
204  CanonicalTemplateTemplateParm *Canonical
205    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
206  if (Canonical)
207    return Canonical->getParam();
208
209  // Build a canonical template parameter list.
210  TemplateParameterList *Params = TTP->getTemplateParameters();
211  SmallVector<NamedDecl *, 4> CanonParams;
212  CanonParams.reserve(Params->size());
213  for (TemplateParameterList::const_iterator P = Params->begin(),
214                                          PEnd = Params->end();
215       P != PEnd; ++P) {
216    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
217      CanonParams.push_back(
218                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
219                                               SourceLocation(),
220                                               SourceLocation(),
221                                               TTP->getDepth(),
222                                               TTP->getIndex(), 0, false,
223                                               TTP->isParameterPack()));
224    else if (NonTypeTemplateParmDecl *NTTP
225             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
226      QualType T = getCanonicalType(NTTP->getType());
227      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
228      NonTypeTemplateParmDecl *Param;
229      if (NTTP->isExpandedParameterPack()) {
230        SmallVector<QualType, 2> ExpandedTypes;
231        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
232        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
233          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
234          ExpandedTInfos.push_back(
235                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
236        }
237
238        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
239                                                SourceLocation(),
240                                                SourceLocation(),
241                                                NTTP->getDepth(),
242                                                NTTP->getPosition(), 0,
243                                                T,
244                                                TInfo,
245                                                ExpandedTypes.data(),
246                                                ExpandedTypes.size(),
247                                                ExpandedTInfos.data());
248      } else {
249        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
250                                                SourceLocation(),
251                                                SourceLocation(),
252                                                NTTP->getDepth(),
253                                                NTTP->getPosition(), 0,
254                                                T,
255                                                NTTP->isParameterPack(),
256                                                TInfo);
257      }
258      CanonParams.push_back(Param);
259
260    } else
261      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
262                                           cast<TemplateTemplateParmDecl>(*P)));
263  }
264
265  TemplateTemplateParmDecl *CanonTTP
266    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
267                                       SourceLocation(), TTP->getDepth(),
268                                       TTP->getPosition(),
269                                       TTP->isParameterPack(),
270                                       0,
271                         TemplateParameterList::Create(*this, SourceLocation(),
272                                                       SourceLocation(),
273                                                       CanonParams.data(),
274                                                       CanonParams.size(),
275                                                       SourceLocation()));
276
277  // Get the new insert position for the node we care about.
278  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
279  assert(Canonical == 0 && "Shouldn't be in the map!");
280  (void)Canonical;
281
282  // Create the canonical template template parameter entry.
283  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
284  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
285  return CanonTTP;
286}
287
288CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
289  if (!LangOpts.CPlusPlus) return 0;
290
291  switch (T.getCXXABI()) {
292  case CXXABI_ARM:
293    return CreateARMCXXABI(*this);
294  case CXXABI_Itanium:
295    return CreateItaniumCXXABI(*this);
296  case CXXABI_Microsoft:
297    return CreateMicrosoftCXXABI(*this);
298  }
299  llvm_unreachable("Invalid CXXABI type!");
300}
301
302static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
303                                             const LangOptions &LOpts) {
304  if (LOpts.FakeAddressSpaceMap) {
305    // The fake address space map must have a distinct entry for each
306    // language-specific address space.
307    static const unsigned FakeAddrSpaceMap[] = {
308      1, // opencl_global
309      2, // opencl_local
310      3, // opencl_constant
311      4, // cuda_device
312      5, // cuda_constant
313      6  // cuda_shared
314    };
315    return &FakeAddrSpaceMap;
316  } else {
317    return &T.getAddressSpaceMap();
318  }
319}
320
321ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
322                       const TargetInfo *t,
323                       IdentifierTable &idents, SelectorTable &sels,
324                       Builtin::Context &builtins,
325                       unsigned size_reserve,
326                       bool DelayInitialization)
327  : FunctionProtoTypes(this_()),
328    TemplateSpecializationTypes(this_()),
329    DependentTemplateSpecializationTypes(this_()),
330    SubstTemplateTemplateParmPacks(this_()),
331    GlobalNestedNameSpecifier(0),
332    Int128Decl(0), UInt128Decl(0),
333    BuiltinVaListDecl(0),
334    ObjCIdDecl(0), ObjCSelDecl(0), ObjCClassDecl(0), ObjCProtocolClassDecl(0),
335    CFConstantStringTypeDecl(0), ObjCInstanceTypeDecl(0),
336    FILEDecl(0),
337    jmp_bufDecl(0), sigjmp_bufDecl(0), ucontext_tDecl(0),
338    BlockDescriptorType(0), BlockDescriptorExtendedType(0),
339    cudaConfigureCallDecl(0),
340    NullTypeSourceInfo(QualType()),
341    FirstLocalImport(), LastLocalImport(),
342    SourceMgr(SM), LangOpts(LOpts),
343    AddrSpaceMap(0), Target(t), PrintingPolicy(LOpts),
344    Idents(idents), Selectors(sels),
345    BuiltinInfo(builtins),
346    DeclarationNames(*this),
347    ExternalSource(0), Listener(0),
348    Comments(SM), CommentsLoaded(false),
349    LastSDM(0, 0),
350    UniqueBlockByRefTypeID(0)
351{
352  if (size_reserve > 0) Types.reserve(size_reserve);
353  TUDecl = TranslationUnitDecl::Create(*this);
354
355  if (!DelayInitialization) {
356    assert(t && "No target supplied for ASTContext initialization");
357    InitBuiltinTypes(*t);
358  }
359}
360
361ASTContext::~ASTContext() {
362  // Release the DenseMaps associated with DeclContext objects.
363  // FIXME: Is this the ideal solution?
364  ReleaseDeclContextMaps();
365
366  // Call all of the deallocation functions.
367  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
368    Deallocations[I].first(Deallocations[I].second);
369
370  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
371  // because they can contain DenseMaps.
372  for (llvm::DenseMap<const ObjCContainerDecl*,
373       const ASTRecordLayout*>::iterator
374       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
375    // Increment in loop to prevent using deallocated memory.
376    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
377      R->Destroy(*this);
378
379  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
380       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
381    // Increment in loop to prevent using deallocated memory.
382    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
383      R->Destroy(*this);
384  }
385
386  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
387                                                    AEnd = DeclAttrs.end();
388       A != AEnd; ++A)
389    A->second->~AttrVec();
390}
391
392void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
393  Deallocations.push_back(std::make_pair(Callback, Data));
394}
395
396void
397ASTContext::setExternalSource(OwningPtr<ExternalASTSource> &Source) {
398  ExternalSource.reset(Source.take());
399}
400
401void ASTContext::PrintStats() const {
402  llvm::errs() << "\n*** AST Context Stats:\n";
403  llvm::errs() << "  " << Types.size() << " types total.\n";
404
405  unsigned counts[] = {
406#define TYPE(Name, Parent) 0,
407#define ABSTRACT_TYPE(Name, Parent)
408#include "clang/AST/TypeNodes.def"
409    0 // Extra
410  };
411
412  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
413    Type *T = Types[i];
414    counts[(unsigned)T->getTypeClass()]++;
415  }
416
417  unsigned Idx = 0;
418  unsigned TotalBytes = 0;
419#define TYPE(Name, Parent)                                              \
420  if (counts[Idx])                                                      \
421    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
422                 << " types\n";                                         \
423  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
424  ++Idx;
425#define ABSTRACT_TYPE(Name, Parent)
426#include "clang/AST/TypeNodes.def"
427
428  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
429
430  // Implicit special member functions.
431  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
432               << NumImplicitDefaultConstructors
433               << " implicit default constructors created\n";
434  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
435               << NumImplicitCopyConstructors
436               << " implicit copy constructors created\n";
437  if (getLangOpts().CPlusPlus)
438    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
439                 << NumImplicitMoveConstructors
440                 << " implicit move constructors created\n";
441  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
442               << NumImplicitCopyAssignmentOperators
443               << " implicit copy assignment operators created\n";
444  if (getLangOpts().CPlusPlus)
445    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
446                 << NumImplicitMoveAssignmentOperators
447                 << " implicit move assignment operators created\n";
448  llvm::errs() << NumImplicitDestructorsDeclared << "/"
449               << NumImplicitDestructors
450               << " implicit destructors created\n";
451
452  if (ExternalSource.get()) {
453    llvm::errs() << "\n";
454    ExternalSource->PrintStats();
455  }
456
457  BumpAlloc.PrintStats();
458}
459
460TypedefDecl *ASTContext::getInt128Decl() const {
461  if (!Int128Decl) {
462    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(Int128Ty);
463    Int128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
464                                     getTranslationUnitDecl(),
465                                     SourceLocation(),
466                                     SourceLocation(),
467                                     &Idents.get("__int128_t"),
468                                     TInfo);
469  }
470
471  return Int128Decl;
472}
473
474TypedefDecl *ASTContext::getUInt128Decl() const {
475  if (!UInt128Decl) {
476    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(UnsignedInt128Ty);
477    UInt128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
478                                     getTranslationUnitDecl(),
479                                     SourceLocation(),
480                                     SourceLocation(),
481                                     &Idents.get("__uint128_t"),
482                                     TInfo);
483  }
484
485  return UInt128Decl;
486}
487
488void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
489  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
490  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
491  Types.push_back(Ty);
492}
493
494void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
495  assert((!this->Target || this->Target == &Target) &&
496         "Incorrect target reinitialization");
497  assert(VoidTy.isNull() && "Context reinitialized?");
498
499  this->Target = &Target;
500
501  ABI.reset(createCXXABI(Target));
502  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
503
504  // C99 6.2.5p19.
505  InitBuiltinType(VoidTy,              BuiltinType::Void);
506
507  // C99 6.2.5p2.
508  InitBuiltinType(BoolTy,              BuiltinType::Bool);
509  // C99 6.2.5p3.
510  if (LangOpts.CharIsSigned)
511    InitBuiltinType(CharTy,            BuiltinType::Char_S);
512  else
513    InitBuiltinType(CharTy,            BuiltinType::Char_U);
514  // C99 6.2.5p4.
515  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
516  InitBuiltinType(ShortTy,             BuiltinType::Short);
517  InitBuiltinType(IntTy,               BuiltinType::Int);
518  InitBuiltinType(LongTy,              BuiltinType::Long);
519  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
520
521  // C99 6.2.5p6.
522  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
523  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
524  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
525  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
526  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
527
528  // C99 6.2.5p10.
529  InitBuiltinType(FloatTy,             BuiltinType::Float);
530  InitBuiltinType(DoubleTy,            BuiltinType::Double);
531  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
532
533  // GNU extension, 128-bit integers.
534  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
535  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
536
537  if (LangOpts.CPlusPlus) { // C++ 3.9.1p5
538    if (TargetInfo::isTypeSigned(Target.getWCharType()))
539      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
540    else  // -fshort-wchar makes wchar_t be unsigned.
541      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
542  } else // C99
543    WCharTy = getFromTargetType(Target.getWCharType());
544
545  WIntTy = getFromTargetType(Target.getWIntType());
546
547  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
548    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
549  else // C99
550    Char16Ty = getFromTargetType(Target.getChar16Type());
551
552  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
553    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
554  else // C99
555    Char32Ty = getFromTargetType(Target.getChar32Type());
556
557  // Placeholder type for type-dependent expressions whose type is
558  // completely unknown. No code should ever check a type against
559  // DependentTy and users should never see it; however, it is here to
560  // help diagnose failures to properly check for type-dependent
561  // expressions.
562  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
563
564  // Placeholder type for functions.
565  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
566
567  // Placeholder type for bound members.
568  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
569
570  // Placeholder type for pseudo-objects.
571  InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
572
573  // "any" type; useful for debugger-like clients.
574  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
575
576  // Placeholder type for unbridged ARC casts.
577  InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
578
579  // C99 6.2.5p11.
580  FloatComplexTy      = getComplexType(FloatTy);
581  DoubleComplexTy     = getComplexType(DoubleTy);
582  LongDoubleComplexTy = getComplexType(LongDoubleTy);
583
584  // Builtin types for 'id', 'Class', and 'SEL'.
585  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
586  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
587  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
588
589  // Builtin type for __objc_yes and __objc_no
590  ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
591                       SignedCharTy : BoolTy);
592
593  ObjCConstantStringType = QualType();
594
595  // void * type
596  VoidPtrTy = getPointerType(VoidTy);
597
598  // nullptr type (C++0x 2.14.7)
599  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
600
601  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
602  InitBuiltinType(HalfTy, BuiltinType::Half);
603}
604
605DiagnosticsEngine &ASTContext::getDiagnostics() const {
606  return SourceMgr.getDiagnostics();
607}
608
609AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
610  AttrVec *&Result = DeclAttrs[D];
611  if (!Result) {
612    void *Mem = Allocate(sizeof(AttrVec));
613    Result = new (Mem) AttrVec;
614  }
615
616  return *Result;
617}
618
619/// \brief Erase the attributes corresponding to the given declaration.
620void ASTContext::eraseDeclAttrs(const Decl *D) {
621  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
622  if (Pos != DeclAttrs.end()) {
623    Pos->second->~AttrVec();
624    DeclAttrs.erase(Pos);
625  }
626}
627
628MemberSpecializationInfo *
629ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
630  assert(Var->isStaticDataMember() && "Not a static data member");
631  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
632    = InstantiatedFromStaticDataMember.find(Var);
633  if (Pos == InstantiatedFromStaticDataMember.end())
634    return 0;
635
636  return Pos->second;
637}
638
639void
640ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
641                                                TemplateSpecializationKind TSK,
642                                          SourceLocation PointOfInstantiation) {
643  assert(Inst->isStaticDataMember() && "Not a static data member");
644  assert(Tmpl->isStaticDataMember() && "Not a static data member");
645  assert(!InstantiatedFromStaticDataMember[Inst] &&
646         "Already noted what static data member was instantiated from");
647  InstantiatedFromStaticDataMember[Inst]
648    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
649}
650
651FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
652                                                     const FunctionDecl *FD){
653  assert(FD && "Specialization is 0");
654  llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
655    = ClassScopeSpecializationPattern.find(FD);
656  if (Pos == ClassScopeSpecializationPattern.end())
657    return 0;
658
659  return Pos->second;
660}
661
662void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
663                                        FunctionDecl *Pattern) {
664  assert(FD && "Specialization is 0");
665  assert(Pattern && "Class scope specialization pattern is 0");
666  ClassScopeSpecializationPattern[FD] = Pattern;
667}
668
669NamedDecl *
670ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
671  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
672    = InstantiatedFromUsingDecl.find(UUD);
673  if (Pos == InstantiatedFromUsingDecl.end())
674    return 0;
675
676  return Pos->second;
677}
678
679void
680ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
681  assert((isa<UsingDecl>(Pattern) ||
682          isa<UnresolvedUsingValueDecl>(Pattern) ||
683          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
684         "pattern decl is not a using decl");
685  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
686  InstantiatedFromUsingDecl[Inst] = Pattern;
687}
688
689UsingShadowDecl *
690ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
691  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
692    = InstantiatedFromUsingShadowDecl.find(Inst);
693  if (Pos == InstantiatedFromUsingShadowDecl.end())
694    return 0;
695
696  return Pos->second;
697}
698
699void
700ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
701                                               UsingShadowDecl *Pattern) {
702  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
703  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
704}
705
706FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
707  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
708    = InstantiatedFromUnnamedFieldDecl.find(Field);
709  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
710    return 0;
711
712  return Pos->second;
713}
714
715void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
716                                                     FieldDecl *Tmpl) {
717  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
718  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
719  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
720         "Already noted what unnamed field was instantiated from");
721
722  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
723}
724
725bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
726                                    const FieldDecl *LastFD) const {
727  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
728          FD->getBitWidthValue(*this) == 0);
729}
730
731bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
732                                             const FieldDecl *LastFD) const {
733  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
734          FD->getBitWidthValue(*this) == 0 &&
735          LastFD->getBitWidthValue(*this) != 0);
736}
737
738bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
739                                         const FieldDecl *LastFD) const {
740  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
741          FD->getBitWidthValue(*this) &&
742          LastFD->getBitWidthValue(*this));
743}
744
745bool ASTContext::NonBitfieldFollowsBitfield(const FieldDecl *FD,
746                                         const FieldDecl *LastFD) const {
747  return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
748          LastFD->getBitWidthValue(*this));
749}
750
751bool ASTContext::BitfieldFollowsNonBitfield(const FieldDecl *FD,
752                                             const FieldDecl *LastFD) const {
753  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
754          FD->getBitWidthValue(*this));
755}
756
757ASTContext::overridden_cxx_method_iterator
758ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
759  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
760    = OverriddenMethods.find(Method);
761  if (Pos == OverriddenMethods.end())
762    return 0;
763
764  return Pos->second.begin();
765}
766
767ASTContext::overridden_cxx_method_iterator
768ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
769  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
770    = OverriddenMethods.find(Method);
771  if (Pos == OverriddenMethods.end())
772    return 0;
773
774  return Pos->second.end();
775}
776
777unsigned
778ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
779  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
780    = OverriddenMethods.find(Method);
781  if (Pos == OverriddenMethods.end())
782    return 0;
783
784  return Pos->second.size();
785}
786
787void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
788                                     const CXXMethodDecl *Overridden) {
789  OverriddenMethods[Method].push_back(Overridden);
790}
791
792void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
793  assert(!Import->NextLocalImport && "Import declaration already in the chain");
794  assert(!Import->isFromASTFile() && "Non-local import declaration");
795  if (!FirstLocalImport) {
796    FirstLocalImport = Import;
797    LastLocalImport = Import;
798    return;
799  }
800
801  LastLocalImport->NextLocalImport = Import;
802  LastLocalImport = Import;
803}
804
805//===----------------------------------------------------------------------===//
806//                         Type Sizing and Analysis
807//===----------------------------------------------------------------------===//
808
809/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
810/// scalar floating point type.
811const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
812  const BuiltinType *BT = T->getAs<BuiltinType>();
813  assert(BT && "Not a floating point type!");
814  switch (BT->getKind()) {
815  default: llvm_unreachable("Not a floating point type!");
816  case BuiltinType::Half:       return Target->getHalfFormat();
817  case BuiltinType::Float:      return Target->getFloatFormat();
818  case BuiltinType::Double:     return Target->getDoubleFormat();
819  case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
820  }
821}
822
823/// getDeclAlign - Return a conservative estimate of the alignment of the
824/// specified decl.  Note that bitfields do not have a valid alignment, so
825/// this method will assert on them.
826/// If @p RefAsPointee, references are treated like their underlying type
827/// (for alignof), else they're treated like pointers (for CodeGen).
828CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
829  unsigned Align = Target->getCharWidth();
830
831  bool UseAlignAttrOnly = false;
832  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
833    Align = AlignFromAttr;
834
835    // __attribute__((aligned)) can increase or decrease alignment
836    // *except* on a struct or struct member, where it only increases
837    // alignment unless 'packed' is also specified.
838    //
839    // It is an error for alignas to decrease alignment, so we can
840    // ignore that possibility;  Sema should diagnose it.
841    if (isa<FieldDecl>(D)) {
842      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
843        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
844    } else {
845      UseAlignAttrOnly = true;
846    }
847  }
848  else if (isa<FieldDecl>(D))
849      UseAlignAttrOnly =
850        D->hasAttr<PackedAttr>() ||
851        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
852
853  // If we're using the align attribute only, just ignore everything
854  // else about the declaration and its type.
855  if (UseAlignAttrOnly) {
856    // do nothing
857
858  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
859    QualType T = VD->getType();
860    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
861      if (RefAsPointee)
862        T = RT->getPointeeType();
863      else
864        T = getPointerType(RT->getPointeeType());
865    }
866    if (!T->isIncompleteType() && !T->isFunctionType()) {
867      // Adjust alignments of declarations with array type by the
868      // large-array alignment on the target.
869      unsigned MinWidth = Target->getLargeArrayMinWidth();
870      const ArrayType *arrayType;
871      if (MinWidth && (arrayType = getAsArrayType(T))) {
872        if (isa<VariableArrayType>(arrayType))
873          Align = std::max(Align, Target->getLargeArrayAlign());
874        else if (isa<ConstantArrayType>(arrayType) &&
875                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
876          Align = std::max(Align, Target->getLargeArrayAlign());
877
878        // Walk through any array types while we're at it.
879        T = getBaseElementType(arrayType);
880      }
881      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
882    }
883
884    // Fields can be subject to extra alignment constraints, like if
885    // the field is packed, the struct is packed, or the struct has a
886    // a max-field-alignment constraint (#pragma pack).  So calculate
887    // the actual alignment of the field within the struct, and then
888    // (as we're expected to) constrain that by the alignment of the type.
889    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
890      // So calculate the alignment of the field.
891      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
892
893      // Start with the record's overall alignment.
894      unsigned fieldAlign = toBits(layout.getAlignment());
895
896      // Use the GCD of that and the offset within the record.
897      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
898      if (offset > 0) {
899        // Alignment is always a power of 2, so the GCD will be a power of 2,
900        // which means we get to do this crazy thing instead of Euclid's.
901        uint64_t lowBitOfOffset = offset & (~offset + 1);
902        if (lowBitOfOffset < fieldAlign)
903          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
904      }
905
906      Align = std::min(Align, fieldAlign);
907    }
908  }
909
910  return toCharUnitsFromBits(Align);
911}
912
913std::pair<CharUnits, CharUnits>
914ASTContext::getTypeInfoInChars(const Type *T) const {
915  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
916  return std::make_pair(toCharUnitsFromBits(Info.first),
917                        toCharUnitsFromBits(Info.second));
918}
919
920std::pair<CharUnits, CharUnits>
921ASTContext::getTypeInfoInChars(QualType T) const {
922  return getTypeInfoInChars(T.getTypePtr());
923}
924
925std::pair<uint64_t, unsigned> ASTContext::getTypeInfo(const Type *T) const {
926  TypeInfoMap::iterator it = MemoizedTypeInfo.find(T);
927  if (it != MemoizedTypeInfo.end())
928    return it->second;
929
930  std::pair<uint64_t, unsigned> Info = getTypeInfoImpl(T);
931  MemoizedTypeInfo.insert(std::make_pair(T, Info));
932  return Info;
933}
934
935/// getTypeInfoImpl - Return the size of the specified type, in bits.  This
936/// method does not work on incomplete types.
937///
938/// FIXME: Pointers into different addr spaces could have different sizes and
939/// alignment requirements: getPointerInfo should take an AddrSpace, this
940/// should take a QualType, &c.
941std::pair<uint64_t, unsigned>
942ASTContext::getTypeInfoImpl(const Type *T) const {
943  uint64_t Width=0;
944  unsigned Align=8;
945  switch (T->getTypeClass()) {
946#define TYPE(Class, Base)
947#define ABSTRACT_TYPE(Class, Base)
948#define NON_CANONICAL_TYPE(Class, Base)
949#define DEPENDENT_TYPE(Class, Base) case Type::Class:
950#include "clang/AST/TypeNodes.def"
951    llvm_unreachable("Should not see dependent types");
952
953  case Type::FunctionNoProto:
954  case Type::FunctionProto:
955    // GCC extension: alignof(function) = 32 bits
956    Width = 0;
957    Align = 32;
958    break;
959
960  case Type::IncompleteArray:
961  case Type::VariableArray:
962    Width = 0;
963    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
964    break;
965
966  case Type::ConstantArray: {
967    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
968
969    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
970    uint64_t Size = CAT->getSize().getZExtValue();
971    assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) &&
972           "Overflow in array type bit size evaluation");
973    Width = EltInfo.first*Size;
974    Align = EltInfo.second;
975    Width = llvm::RoundUpToAlignment(Width, Align);
976    break;
977  }
978  case Type::ExtVector:
979  case Type::Vector: {
980    const VectorType *VT = cast<VectorType>(T);
981    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
982    Width = EltInfo.first*VT->getNumElements();
983    Align = Width;
984    // If the alignment is not a power of 2, round up to the next power of 2.
985    // This happens for non-power-of-2 length vectors.
986    if (Align & (Align-1)) {
987      Align = llvm::NextPowerOf2(Align);
988      Width = llvm::RoundUpToAlignment(Width, Align);
989    }
990    break;
991  }
992
993  case Type::Builtin:
994    switch (cast<BuiltinType>(T)->getKind()) {
995    default: llvm_unreachable("Unknown builtin type!");
996    case BuiltinType::Void:
997      // GCC extension: alignof(void) = 8 bits.
998      Width = 0;
999      Align = 8;
1000      break;
1001
1002    case BuiltinType::Bool:
1003      Width = Target->getBoolWidth();
1004      Align = Target->getBoolAlign();
1005      break;
1006    case BuiltinType::Char_S:
1007    case BuiltinType::Char_U:
1008    case BuiltinType::UChar:
1009    case BuiltinType::SChar:
1010      Width = Target->getCharWidth();
1011      Align = Target->getCharAlign();
1012      break;
1013    case BuiltinType::WChar_S:
1014    case BuiltinType::WChar_U:
1015      Width = Target->getWCharWidth();
1016      Align = Target->getWCharAlign();
1017      break;
1018    case BuiltinType::Char16:
1019      Width = Target->getChar16Width();
1020      Align = Target->getChar16Align();
1021      break;
1022    case BuiltinType::Char32:
1023      Width = Target->getChar32Width();
1024      Align = Target->getChar32Align();
1025      break;
1026    case BuiltinType::UShort:
1027    case BuiltinType::Short:
1028      Width = Target->getShortWidth();
1029      Align = Target->getShortAlign();
1030      break;
1031    case BuiltinType::UInt:
1032    case BuiltinType::Int:
1033      Width = Target->getIntWidth();
1034      Align = Target->getIntAlign();
1035      break;
1036    case BuiltinType::ULong:
1037    case BuiltinType::Long:
1038      Width = Target->getLongWidth();
1039      Align = Target->getLongAlign();
1040      break;
1041    case BuiltinType::ULongLong:
1042    case BuiltinType::LongLong:
1043      Width = Target->getLongLongWidth();
1044      Align = Target->getLongLongAlign();
1045      break;
1046    case BuiltinType::Int128:
1047    case BuiltinType::UInt128:
1048      Width = 128;
1049      Align = 128; // int128_t is 128-bit aligned on all targets.
1050      break;
1051    case BuiltinType::Half:
1052      Width = Target->getHalfWidth();
1053      Align = Target->getHalfAlign();
1054      break;
1055    case BuiltinType::Float:
1056      Width = Target->getFloatWidth();
1057      Align = Target->getFloatAlign();
1058      break;
1059    case BuiltinType::Double:
1060      Width = Target->getDoubleWidth();
1061      Align = Target->getDoubleAlign();
1062      break;
1063    case BuiltinType::LongDouble:
1064      Width = Target->getLongDoubleWidth();
1065      Align = Target->getLongDoubleAlign();
1066      break;
1067    case BuiltinType::NullPtr:
1068      Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
1069      Align = Target->getPointerAlign(0); //   == sizeof(void*)
1070      break;
1071    case BuiltinType::ObjCId:
1072    case BuiltinType::ObjCClass:
1073    case BuiltinType::ObjCSel:
1074      Width = Target->getPointerWidth(0);
1075      Align = Target->getPointerAlign(0);
1076      break;
1077    }
1078    break;
1079  case Type::ObjCObjectPointer:
1080    Width = Target->getPointerWidth(0);
1081    Align = Target->getPointerAlign(0);
1082    break;
1083  case Type::BlockPointer: {
1084    unsigned AS = getTargetAddressSpace(
1085        cast<BlockPointerType>(T)->getPointeeType());
1086    Width = Target->getPointerWidth(AS);
1087    Align = Target->getPointerAlign(AS);
1088    break;
1089  }
1090  case Type::LValueReference:
1091  case Type::RValueReference: {
1092    // alignof and sizeof should never enter this code path here, so we go
1093    // the pointer route.
1094    unsigned AS = getTargetAddressSpace(
1095        cast<ReferenceType>(T)->getPointeeType());
1096    Width = Target->getPointerWidth(AS);
1097    Align = Target->getPointerAlign(AS);
1098    break;
1099  }
1100  case Type::Pointer: {
1101    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
1102    Width = Target->getPointerWidth(AS);
1103    Align = Target->getPointerAlign(AS);
1104    break;
1105  }
1106  case Type::MemberPointer: {
1107    const MemberPointerType *MPT = cast<MemberPointerType>(T);
1108    std::pair<uint64_t, unsigned> PtrDiffInfo =
1109      getTypeInfo(getPointerDiffType());
1110    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
1111    Align = PtrDiffInfo.second;
1112    break;
1113  }
1114  case Type::Complex: {
1115    // Complex types have the same alignment as their elements, but twice the
1116    // size.
1117    std::pair<uint64_t, unsigned> EltInfo =
1118      getTypeInfo(cast<ComplexType>(T)->getElementType());
1119    Width = EltInfo.first*2;
1120    Align = EltInfo.second;
1121    break;
1122  }
1123  case Type::ObjCObject:
1124    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1125  case Type::ObjCInterface: {
1126    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1127    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1128    Width = toBits(Layout.getSize());
1129    Align = toBits(Layout.getAlignment());
1130    break;
1131  }
1132  case Type::Record:
1133  case Type::Enum: {
1134    const TagType *TT = cast<TagType>(T);
1135
1136    if (TT->getDecl()->isInvalidDecl()) {
1137      Width = 8;
1138      Align = 8;
1139      break;
1140    }
1141
1142    if (const EnumType *ET = dyn_cast<EnumType>(TT))
1143      return getTypeInfo(ET->getDecl()->getIntegerType());
1144
1145    const RecordType *RT = cast<RecordType>(TT);
1146    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1147    Width = toBits(Layout.getSize());
1148    Align = toBits(Layout.getAlignment());
1149    break;
1150  }
1151
1152  case Type::SubstTemplateTypeParm:
1153    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1154                       getReplacementType().getTypePtr());
1155
1156  case Type::Auto: {
1157    const AutoType *A = cast<AutoType>(T);
1158    assert(A->isDeduced() && "Cannot request the size of a dependent type");
1159    return getTypeInfo(A->getDeducedType().getTypePtr());
1160  }
1161
1162  case Type::Paren:
1163    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1164
1165  case Type::Typedef: {
1166    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1167    std::pair<uint64_t, unsigned> Info
1168      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1169    // If the typedef has an aligned attribute on it, it overrides any computed
1170    // alignment we have.  This violates the GCC documentation (which says that
1171    // attribute(aligned) can only round up) but matches its implementation.
1172    if (unsigned AttrAlign = Typedef->getMaxAlignment())
1173      Align = AttrAlign;
1174    else
1175      Align = Info.second;
1176    Width = Info.first;
1177    break;
1178  }
1179
1180  case Type::TypeOfExpr:
1181    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
1182                         .getTypePtr());
1183
1184  case Type::TypeOf:
1185    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
1186
1187  case Type::Decltype:
1188    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
1189                        .getTypePtr());
1190
1191  case Type::UnaryTransform:
1192    return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
1193
1194  case Type::Elaborated:
1195    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1196
1197  case Type::Attributed:
1198    return getTypeInfo(
1199                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1200
1201  case Type::TemplateSpecialization: {
1202    assert(getCanonicalType(T) != T &&
1203           "Cannot request the size of a dependent type");
1204    const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1205    // A type alias template specialization may refer to a typedef with the
1206    // aligned attribute on it.
1207    if (TST->isTypeAlias())
1208      return getTypeInfo(TST->getAliasedType().getTypePtr());
1209    else
1210      return getTypeInfo(getCanonicalType(T));
1211  }
1212
1213  case Type::Atomic: {
1214    std::pair<uint64_t, unsigned> Info
1215      = getTypeInfo(cast<AtomicType>(T)->getValueType());
1216    Width = Info.first;
1217    Align = Info.second;
1218    if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth() &&
1219        llvm::isPowerOf2_64(Width)) {
1220      // We can potentially perform lock-free atomic operations for this
1221      // type; promote the alignment appropriately.
1222      // FIXME: We could potentially promote the width here as well...
1223      // is that worthwhile?  (Non-struct atomic types generally have
1224      // power-of-two size anyway, but structs might not.  Requires a bit
1225      // of implementation work to make sure we zero out the extra bits.)
1226      Align = static_cast<unsigned>(Width);
1227    }
1228  }
1229
1230  }
1231
1232  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1233  return std::make_pair(Width, Align);
1234}
1235
1236/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1237CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1238  return CharUnits::fromQuantity(BitSize / getCharWidth());
1239}
1240
1241/// toBits - Convert a size in characters to a size in characters.
1242int64_t ASTContext::toBits(CharUnits CharSize) const {
1243  return CharSize.getQuantity() * getCharWidth();
1244}
1245
1246/// getTypeSizeInChars - Return the size of the specified type, in characters.
1247/// This method does not work on incomplete types.
1248CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1249  return toCharUnitsFromBits(getTypeSize(T));
1250}
1251CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1252  return toCharUnitsFromBits(getTypeSize(T));
1253}
1254
1255/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1256/// characters. This method does not work on incomplete types.
1257CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1258  return toCharUnitsFromBits(getTypeAlign(T));
1259}
1260CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1261  return toCharUnitsFromBits(getTypeAlign(T));
1262}
1263
1264/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1265/// type for the current target in bits.  This can be different than the ABI
1266/// alignment in cases where it is beneficial for performance to overalign
1267/// a data type.
1268unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1269  unsigned ABIAlign = getTypeAlign(T);
1270
1271  // Double and long long should be naturally aligned if possible.
1272  if (const ComplexType* CT = T->getAs<ComplexType>())
1273    T = CT->getElementType().getTypePtr();
1274  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1275      T->isSpecificBuiltinType(BuiltinType::LongLong) ||
1276      T->isSpecificBuiltinType(BuiltinType::ULongLong))
1277    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1278
1279  return ABIAlign;
1280}
1281
1282/// DeepCollectObjCIvars -
1283/// This routine first collects all declared, but not synthesized, ivars in
1284/// super class and then collects all ivars, including those synthesized for
1285/// current class. This routine is used for implementation of current class
1286/// when all ivars, declared and synthesized are known.
1287///
1288void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1289                                      bool leafClass,
1290                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1291  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1292    DeepCollectObjCIvars(SuperClass, false, Ivars);
1293  if (!leafClass) {
1294    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1295         E = OI->ivar_end(); I != E; ++I)
1296      Ivars.push_back(*I);
1297  } else {
1298    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1299    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1300         Iv= Iv->getNextIvar())
1301      Ivars.push_back(Iv);
1302  }
1303}
1304
1305/// CollectInheritedProtocols - Collect all protocols in current class and
1306/// those inherited by it.
1307void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1308                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1309  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1310    // We can use protocol_iterator here instead of
1311    // all_referenced_protocol_iterator since we are walking all categories.
1312    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1313         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1314      ObjCProtocolDecl *Proto = (*P);
1315      Protocols.insert(Proto->getCanonicalDecl());
1316      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1317           PE = Proto->protocol_end(); P != PE; ++P) {
1318        Protocols.insert((*P)->getCanonicalDecl());
1319        CollectInheritedProtocols(*P, Protocols);
1320      }
1321    }
1322
1323    // Categories of this Interface.
1324    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
1325         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
1326      CollectInheritedProtocols(CDeclChain, Protocols);
1327    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1328      while (SD) {
1329        CollectInheritedProtocols(SD, Protocols);
1330        SD = SD->getSuperClass();
1331      }
1332  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1333    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1334         PE = OC->protocol_end(); P != PE; ++P) {
1335      ObjCProtocolDecl *Proto = (*P);
1336      Protocols.insert(Proto->getCanonicalDecl());
1337      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1338           PE = Proto->protocol_end(); P != PE; ++P)
1339        CollectInheritedProtocols(*P, Protocols);
1340    }
1341  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1342    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1343         PE = OP->protocol_end(); P != PE; ++P) {
1344      ObjCProtocolDecl *Proto = (*P);
1345      Protocols.insert(Proto->getCanonicalDecl());
1346      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1347           PE = Proto->protocol_end(); P != PE; ++P)
1348        CollectInheritedProtocols(*P, Protocols);
1349    }
1350  }
1351}
1352
1353unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1354  unsigned count = 0;
1355  // Count ivars declared in class extension.
1356  for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
1357       CDecl = CDecl->getNextClassExtension())
1358    count += CDecl->ivar_size();
1359
1360  // Count ivar defined in this class's implementation.  This
1361  // includes synthesized ivars.
1362  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1363    count += ImplDecl->ivar_size();
1364
1365  return count;
1366}
1367
1368bool ASTContext::isSentinelNullExpr(const Expr *E) {
1369  if (!E)
1370    return false;
1371
1372  // nullptr_t is always treated as null.
1373  if (E->getType()->isNullPtrType()) return true;
1374
1375  if (E->getType()->isAnyPointerType() &&
1376      E->IgnoreParenCasts()->isNullPointerConstant(*this,
1377                                                Expr::NPC_ValueDependentIsNull))
1378    return true;
1379
1380  // Unfortunately, __null has type 'int'.
1381  if (isa<GNUNullExpr>(E)) return true;
1382
1383  return false;
1384}
1385
1386/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1387ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1388  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1389    I = ObjCImpls.find(D);
1390  if (I != ObjCImpls.end())
1391    return cast<ObjCImplementationDecl>(I->second);
1392  return 0;
1393}
1394/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1395ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1396  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1397    I = ObjCImpls.find(D);
1398  if (I != ObjCImpls.end())
1399    return cast<ObjCCategoryImplDecl>(I->second);
1400  return 0;
1401}
1402
1403/// \brief Set the implementation of ObjCInterfaceDecl.
1404void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1405                           ObjCImplementationDecl *ImplD) {
1406  assert(IFaceD && ImplD && "Passed null params");
1407  ObjCImpls[IFaceD] = ImplD;
1408}
1409/// \brief Set the implementation of ObjCCategoryDecl.
1410void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1411                           ObjCCategoryImplDecl *ImplD) {
1412  assert(CatD && ImplD && "Passed null params");
1413  ObjCImpls[CatD] = ImplD;
1414}
1415
1416ObjCInterfaceDecl *ASTContext::getObjContainingInterface(NamedDecl *ND) const {
1417  if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1418    return ID;
1419  if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1420    return CD->getClassInterface();
1421  if (ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1422    return IMD->getClassInterface();
1423
1424  return 0;
1425}
1426
1427/// \brief Get the copy initialization expression of VarDecl,or NULL if
1428/// none exists.
1429Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1430  assert(VD && "Passed null params");
1431  assert(VD->hasAttr<BlocksAttr>() &&
1432         "getBlockVarCopyInits - not __block var");
1433  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1434    I = BlockVarCopyInits.find(VD);
1435  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1436}
1437
1438/// \brief Set the copy inialization expression of a block var decl.
1439void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1440  assert(VD && Init && "Passed null params");
1441  assert(VD->hasAttr<BlocksAttr>() &&
1442         "setBlockVarCopyInits - not __block var");
1443  BlockVarCopyInits[VD] = Init;
1444}
1445
1446TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1447                                                 unsigned DataSize) const {
1448  if (!DataSize)
1449    DataSize = TypeLoc::getFullDataSizeForType(T);
1450  else
1451    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1452           "incorrect data size provided to CreateTypeSourceInfo!");
1453
1454  TypeSourceInfo *TInfo =
1455    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1456  new (TInfo) TypeSourceInfo(T);
1457  return TInfo;
1458}
1459
1460TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1461                                                     SourceLocation L) const {
1462  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1463  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1464  return DI;
1465}
1466
1467const ASTRecordLayout &
1468ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1469  return getObjCLayout(D, 0);
1470}
1471
1472const ASTRecordLayout &
1473ASTContext::getASTObjCImplementationLayout(
1474                                        const ObjCImplementationDecl *D) const {
1475  return getObjCLayout(D->getClassInterface(), D);
1476}
1477
1478//===----------------------------------------------------------------------===//
1479//                   Type creation/memoization methods
1480//===----------------------------------------------------------------------===//
1481
1482QualType
1483ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1484  unsigned fastQuals = quals.getFastQualifiers();
1485  quals.removeFastQualifiers();
1486
1487  // Check if we've already instantiated this type.
1488  llvm::FoldingSetNodeID ID;
1489  ExtQuals::Profile(ID, baseType, quals);
1490  void *insertPos = 0;
1491  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1492    assert(eq->getQualifiers() == quals);
1493    return QualType(eq, fastQuals);
1494  }
1495
1496  // If the base type is not canonical, make the appropriate canonical type.
1497  QualType canon;
1498  if (!baseType->isCanonicalUnqualified()) {
1499    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1500    canonSplit.Quals.addConsistentQualifiers(quals);
1501    canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
1502
1503    // Re-find the insert position.
1504    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1505  }
1506
1507  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1508  ExtQualNodes.InsertNode(eq, insertPos);
1509  return QualType(eq, fastQuals);
1510}
1511
1512QualType
1513ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1514  QualType CanT = getCanonicalType(T);
1515  if (CanT.getAddressSpace() == AddressSpace)
1516    return T;
1517
1518  // If we are composing extended qualifiers together, merge together
1519  // into one ExtQuals node.
1520  QualifierCollector Quals;
1521  const Type *TypeNode = Quals.strip(T);
1522
1523  // If this type already has an address space specified, it cannot get
1524  // another one.
1525  assert(!Quals.hasAddressSpace() &&
1526         "Type cannot be in multiple addr spaces!");
1527  Quals.addAddressSpace(AddressSpace);
1528
1529  return getExtQualType(TypeNode, Quals);
1530}
1531
1532QualType ASTContext::getObjCGCQualType(QualType T,
1533                                       Qualifiers::GC GCAttr) const {
1534  QualType CanT = getCanonicalType(T);
1535  if (CanT.getObjCGCAttr() == GCAttr)
1536    return T;
1537
1538  if (const PointerType *ptr = T->getAs<PointerType>()) {
1539    QualType Pointee = ptr->getPointeeType();
1540    if (Pointee->isAnyPointerType()) {
1541      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1542      return getPointerType(ResultType);
1543    }
1544  }
1545
1546  // If we are composing extended qualifiers together, merge together
1547  // into one ExtQuals node.
1548  QualifierCollector Quals;
1549  const Type *TypeNode = Quals.strip(T);
1550
1551  // If this type already has an ObjCGC specified, it cannot get
1552  // another one.
1553  assert(!Quals.hasObjCGCAttr() &&
1554         "Type cannot have multiple ObjCGCs!");
1555  Quals.addObjCGCAttr(GCAttr);
1556
1557  return getExtQualType(TypeNode, Quals);
1558}
1559
1560const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1561                                                   FunctionType::ExtInfo Info) {
1562  if (T->getExtInfo() == Info)
1563    return T;
1564
1565  QualType Result;
1566  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1567    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1568  } else {
1569    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1570    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1571    EPI.ExtInfo = Info;
1572    Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1573                             FPT->getNumArgs(), EPI);
1574  }
1575
1576  return cast<FunctionType>(Result.getTypePtr());
1577}
1578
1579/// getComplexType - Return the uniqued reference to the type for a complex
1580/// number with the specified element type.
1581QualType ASTContext::getComplexType(QualType T) const {
1582  // Unique pointers, to guarantee there is only one pointer of a particular
1583  // structure.
1584  llvm::FoldingSetNodeID ID;
1585  ComplexType::Profile(ID, T);
1586
1587  void *InsertPos = 0;
1588  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1589    return QualType(CT, 0);
1590
1591  // If the pointee type isn't canonical, this won't be a canonical type either,
1592  // so fill in the canonical type field.
1593  QualType Canonical;
1594  if (!T.isCanonical()) {
1595    Canonical = getComplexType(getCanonicalType(T));
1596
1597    // Get the new insert position for the node we care about.
1598    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1599    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1600  }
1601  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1602  Types.push_back(New);
1603  ComplexTypes.InsertNode(New, InsertPos);
1604  return QualType(New, 0);
1605}
1606
1607/// getPointerType - Return the uniqued reference to the type for a pointer to
1608/// the specified type.
1609QualType ASTContext::getPointerType(QualType T) const {
1610  // Unique pointers, to guarantee there is only one pointer of a particular
1611  // structure.
1612  llvm::FoldingSetNodeID ID;
1613  PointerType::Profile(ID, T);
1614
1615  void *InsertPos = 0;
1616  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1617    return QualType(PT, 0);
1618
1619  // If the pointee type isn't canonical, this won't be a canonical type either,
1620  // so fill in the canonical type field.
1621  QualType Canonical;
1622  if (!T.isCanonical()) {
1623    Canonical = getPointerType(getCanonicalType(T));
1624
1625    // Get the new insert position for the node we care about.
1626    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1627    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1628  }
1629  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1630  Types.push_back(New);
1631  PointerTypes.InsertNode(New, InsertPos);
1632  return QualType(New, 0);
1633}
1634
1635/// getBlockPointerType - Return the uniqued reference to the type for
1636/// a pointer to the specified block.
1637QualType ASTContext::getBlockPointerType(QualType T) const {
1638  assert(T->isFunctionType() && "block of function types only");
1639  // Unique pointers, to guarantee there is only one block of a particular
1640  // structure.
1641  llvm::FoldingSetNodeID ID;
1642  BlockPointerType::Profile(ID, T);
1643
1644  void *InsertPos = 0;
1645  if (BlockPointerType *PT =
1646        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1647    return QualType(PT, 0);
1648
1649  // If the block pointee type isn't canonical, this won't be a canonical
1650  // type either so fill in the canonical type field.
1651  QualType Canonical;
1652  if (!T.isCanonical()) {
1653    Canonical = getBlockPointerType(getCanonicalType(T));
1654
1655    // Get the new insert position for the node we care about.
1656    BlockPointerType *NewIP =
1657      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1658    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1659  }
1660  BlockPointerType *New
1661    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1662  Types.push_back(New);
1663  BlockPointerTypes.InsertNode(New, InsertPos);
1664  return QualType(New, 0);
1665}
1666
1667/// getLValueReferenceType - Return the uniqued reference to the type for an
1668/// lvalue reference to the specified type.
1669QualType
1670ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
1671  assert(getCanonicalType(T) != OverloadTy &&
1672         "Unresolved overloaded function type");
1673
1674  // Unique pointers, to guarantee there is only one pointer of a particular
1675  // structure.
1676  llvm::FoldingSetNodeID ID;
1677  ReferenceType::Profile(ID, T, SpelledAsLValue);
1678
1679  void *InsertPos = 0;
1680  if (LValueReferenceType *RT =
1681        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1682    return QualType(RT, 0);
1683
1684  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1685
1686  // If the referencee type isn't canonical, this won't be a canonical type
1687  // either, so fill in the canonical type field.
1688  QualType Canonical;
1689  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1690    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1691    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1692
1693    // Get the new insert position for the node we care about.
1694    LValueReferenceType *NewIP =
1695      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1696    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1697  }
1698
1699  LValueReferenceType *New
1700    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1701                                                     SpelledAsLValue);
1702  Types.push_back(New);
1703  LValueReferenceTypes.InsertNode(New, InsertPos);
1704
1705  return QualType(New, 0);
1706}
1707
1708/// getRValueReferenceType - Return the uniqued reference to the type for an
1709/// rvalue reference to the specified type.
1710QualType ASTContext::getRValueReferenceType(QualType T) const {
1711  // Unique pointers, to guarantee there is only one pointer of a particular
1712  // structure.
1713  llvm::FoldingSetNodeID ID;
1714  ReferenceType::Profile(ID, T, false);
1715
1716  void *InsertPos = 0;
1717  if (RValueReferenceType *RT =
1718        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1719    return QualType(RT, 0);
1720
1721  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1722
1723  // If the referencee type isn't canonical, this won't be a canonical type
1724  // either, so fill in the canonical type field.
1725  QualType Canonical;
1726  if (InnerRef || !T.isCanonical()) {
1727    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1728    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1729
1730    // Get the new insert position for the node we care about.
1731    RValueReferenceType *NewIP =
1732      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1733    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1734  }
1735
1736  RValueReferenceType *New
1737    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1738  Types.push_back(New);
1739  RValueReferenceTypes.InsertNode(New, InsertPos);
1740  return QualType(New, 0);
1741}
1742
1743/// getMemberPointerType - Return the uniqued reference to the type for a
1744/// member pointer to the specified type, in the specified class.
1745QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
1746  // Unique pointers, to guarantee there is only one pointer of a particular
1747  // structure.
1748  llvm::FoldingSetNodeID ID;
1749  MemberPointerType::Profile(ID, T, Cls);
1750
1751  void *InsertPos = 0;
1752  if (MemberPointerType *PT =
1753      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1754    return QualType(PT, 0);
1755
1756  // If the pointee or class type isn't canonical, this won't be a canonical
1757  // type either, so fill in the canonical type field.
1758  QualType Canonical;
1759  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1760    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1761
1762    // Get the new insert position for the node we care about.
1763    MemberPointerType *NewIP =
1764      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1765    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1766  }
1767  MemberPointerType *New
1768    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1769  Types.push_back(New);
1770  MemberPointerTypes.InsertNode(New, InsertPos);
1771  return QualType(New, 0);
1772}
1773
1774/// getConstantArrayType - Return the unique reference to the type for an
1775/// array of the specified element type.
1776QualType ASTContext::getConstantArrayType(QualType EltTy,
1777                                          const llvm::APInt &ArySizeIn,
1778                                          ArrayType::ArraySizeModifier ASM,
1779                                          unsigned IndexTypeQuals) const {
1780  assert((EltTy->isDependentType() ||
1781          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1782         "Constant array of VLAs is illegal!");
1783
1784  // Convert the array size into a canonical width matching the pointer size for
1785  // the target.
1786  llvm::APInt ArySize(ArySizeIn);
1787  ArySize =
1788    ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
1789
1790  llvm::FoldingSetNodeID ID;
1791  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
1792
1793  void *InsertPos = 0;
1794  if (ConstantArrayType *ATP =
1795      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1796    return QualType(ATP, 0);
1797
1798  // If the element type isn't canonical or has qualifiers, this won't
1799  // be a canonical type either, so fill in the canonical type field.
1800  QualType Canon;
1801  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1802    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1803    Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
1804                                 ASM, IndexTypeQuals);
1805    Canon = getQualifiedType(Canon, canonSplit.Quals);
1806
1807    // Get the new insert position for the node we care about.
1808    ConstantArrayType *NewIP =
1809      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1810    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1811  }
1812
1813  ConstantArrayType *New = new(*this,TypeAlignment)
1814    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
1815  ConstantArrayTypes.InsertNode(New, InsertPos);
1816  Types.push_back(New);
1817  return QualType(New, 0);
1818}
1819
1820/// getVariableArrayDecayedType - Turns the given type, which may be
1821/// variably-modified, into the corresponding type with all the known
1822/// sizes replaced with [*].
1823QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
1824  // Vastly most common case.
1825  if (!type->isVariablyModifiedType()) return type;
1826
1827  QualType result;
1828
1829  SplitQualType split = type.getSplitDesugaredType();
1830  const Type *ty = split.Ty;
1831  switch (ty->getTypeClass()) {
1832#define TYPE(Class, Base)
1833#define ABSTRACT_TYPE(Class, Base)
1834#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1835#include "clang/AST/TypeNodes.def"
1836    llvm_unreachable("didn't desugar past all non-canonical types?");
1837
1838  // These types should never be variably-modified.
1839  case Type::Builtin:
1840  case Type::Complex:
1841  case Type::Vector:
1842  case Type::ExtVector:
1843  case Type::DependentSizedExtVector:
1844  case Type::ObjCObject:
1845  case Type::ObjCInterface:
1846  case Type::ObjCObjectPointer:
1847  case Type::Record:
1848  case Type::Enum:
1849  case Type::UnresolvedUsing:
1850  case Type::TypeOfExpr:
1851  case Type::TypeOf:
1852  case Type::Decltype:
1853  case Type::UnaryTransform:
1854  case Type::DependentName:
1855  case Type::InjectedClassName:
1856  case Type::TemplateSpecialization:
1857  case Type::DependentTemplateSpecialization:
1858  case Type::TemplateTypeParm:
1859  case Type::SubstTemplateTypeParmPack:
1860  case Type::Auto:
1861  case Type::PackExpansion:
1862    llvm_unreachable("type should never be variably-modified");
1863
1864  // These types can be variably-modified but should never need to
1865  // further decay.
1866  case Type::FunctionNoProto:
1867  case Type::FunctionProto:
1868  case Type::BlockPointer:
1869  case Type::MemberPointer:
1870    return type;
1871
1872  // These types can be variably-modified.  All these modifications
1873  // preserve structure except as noted by comments.
1874  // TODO: if we ever care about optimizing VLAs, there are no-op
1875  // optimizations available here.
1876  case Type::Pointer:
1877    result = getPointerType(getVariableArrayDecayedType(
1878                              cast<PointerType>(ty)->getPointeeType()));
1879    break;
1880
1881  case Type::LValueReference: {
1882    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
1883    result = getLValueReferenceType(
1884                 getVariableArrayDecayedType(lv->getPointeeType()),
1885                                    lv->isSpelledAsLValue());
1886    break;
1887  }
1888
1889  case Type::RValueReference: {
1890    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
1891    result = getRValueReferenceType(
1892                 getVariableArrayDecayedType(lv->getPointeeType()));
1893    break;
1894  }
1895
1896  case Type::Atomic: {
1897    const AtomicType *at = cast<AtomicType>(ty);
1898    result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
1899    break;
1900  }
1901
1902  case Type::ConstantArray: {
1903    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
1904    result = getConstantArrayType(
1905                 getVariableArrayDecayedType(cat->getElementType()),
1906                                  cat->getSize(),
1907                                  cat->getSizeModifier(),
1908                                  cat->getIndexTypeCVRQualifiers());
1909    break;
1910  }
1911
1912  case Type::DependentSizedArray: {
1913    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
1914    result = getDependentSizedArrayType(
1915                 getVariableArrayDecayedType(dat->getElementType()),
1916                                        dat->getSizeExpr(),
1917                                        dat->getSizeModifier(),
1918                                        dat->getIndexTypeCVRQualifiers(),
1919                                        dat->getBracketsRange());
1920    break;
1921  }
1922
1923  // Turn incomplete types into [*] types.
1924  case Type::IncompleteArray: {
1925    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
1926    result = getVariableArrayType(
1927                 getVariableArrayDecayedType(iat->getElementType()),
1928                                  /*size*/ 0,
1929                                  ArrayType::Normal,
1930                                  iat->getIndexTypeCVRQualifiers(),
1931                                  SourceRange());
1932    break;
1933  }
1934
1935  // Turn VLA types into [*] types.
1936  case Type::VariableArray: {
1937    const VariableArrayType *vat = cast<VariableArrayType>(ty);
1938    result = getVariableArrayType(
1939                 getVariableArrayDecayedType(vat->getElementType()),
1940                                  /*size*/ 0,
1941                                  ArrayType::Star,
1942                                  vat->getIndexTypeCVRQualifiers(),
1943                                  vat->getBracketsRange());
1944    break;
1945  }
1946  }
1947
1948  // Apply the top-level qualifiers from the original.
1949  return getQualifiedType(result, split.Quals);
1950}
1951
1952/// getVariableArrayType - Returns a non-unique reference to the type for a
1953/// variable array of the specified element type.
1954QualType ASTContext::getVariableArrayType(QualType EltTy,
1955                                          Expr *NumElts,
1956                                          ArrayType::ArraySizeModifier ASM,
1957                                          unsigned IndexTypeQuals,
1958                                          SourceRange Brackets) const {
1959  // Since we don't unique expressions, it isn't possible to unique VLA's
1960  // that have an expression provided for their size.
1961  QualType Canon;
1962
1963  // Be sure to pull qualifiers off the element type.
1964  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1965    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1966    Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
1967                                 IndexTypeQuals, Brackets);
1968    Canon = getQualifiedType(Canon, canonSplit.Quals);
1969  }
1970
1971  VariableArrayType *New = new(*this, TypeAlignment)
1972    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
1973
1974  VariableArrayTypes.push_back(New);
1975  Types.push_back(New);
1976  return QualType(New, 0);
1977}
1978
1979/// getDependentSizedArrayType - Returns a non-unique reference to
1980/// the type for a dependently-sized array of the specified element
1981/// type.
1982QualType ASTContext::getDependentSizedArrayType(QualType elementType,
1983                                                Expr *numElements,
1984                                                ArrayType::ArraySizeModifier ASM,
1985                                                unsigned elementTypeQuals,
1986                                                SourceRange brackets) const {
1987  assert((!numElements || numElements->isTypeDependent() ||
1988          numElements->isValueDependent()) &&
1989         "Size must be type- or value-dependent!");
1990
1991  // Dependently-sized array types that do not have a specified number
1992  // of elements will have their sizes deduced from a dependent
1993  // initializer.  We do no canonicalization here at all, which is okay
1994  // because they can't be used in most locations.
1995  if (!numElements) {
1996    DependentSizedArrayType *newType
1997      = new (*this, TypeAlignment)
1998          DependentSizedArrayType(*this, elementType, QualType(),
1999                                  numElements, ASM, elementTypeQuals,
2000                                  brackets);
2001    Types.push_back(newType);
2002    return QualType(newType, 0);
2003  }
2004
2005  // Otherwise, we actually build a new type every time, but we
2006  // also build a canonical type.
2007
2008  SplitQualType canonElementType = getCanonicalType(elementType).split();
2009
2010  void *insertPos = 0;
2011  llvm::FoldingSetNodeID ID;
2012  DependentSizedArrayType::Profile(ID, *this,
2013                                   QualType(canonElementType.Ty, 0),
2014                                   ASM, elementTypeQuals, numElements);
2015
2016  // Look for an existing type with these properties.
2017  DependentSizedArrayType *canonTy =
2018    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2019
2020  // If we don't have one, build one.
2021  if (!canonTy) {
2022    canonTy = new (*this, TypeAlignment)
2023      DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
2024                              QualType(), numElements, ASM, elementTypeQuals,
2025                              brackets);
2026    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
2027    Types.push_back(canonTy);
2028  }
2029
2030  // Apply qualifiers from the element type to the array.
2031  QualType canon = getQualifiedType(QualType(canonTy,0),
2032                                    canonElementType.Quals);
2033
2034  // If we didn't need extra canonicalization for the element type,
2035  // then just use that as our result.
2036  if (QualType(canonElementType.Ty, 0) == elementType)
2037    return canon;
2038
2039  // Otherwise, we need to build a type which follows the spelling
2040  // of the element type.
2041  DependentSizedArrayType *sugaredType
2042    = new (*this, TypeAlignment)
2043        DependentSizedArrayType(*this, elementType, canon, numElements,
2044                                ASM, elementTypeQuals, brackets);
2045  Types.push_back(sugaredType);
2046  return QualType(sugaredType, 0);
2047}
2048
2049QualType ASTContext::getIncompleteArrayType(QualType elementType,
2050                                            ArrayType::ArraySizeModifier ASM,
2051                                            unsigned elementTypeQuals) const {
2052  llvm::FoldingSetNodeID ID;
2053  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
2054
2055  void *insertPos = 0;
2056  if (IncompleteArrayType *iat =
2057       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
2058    return QualType(iat, 0);
2059
2060  // If the element type isn't canonical, this won't be a canonical type
2061  // either, so fill in the canonical type field.  We also have to pull
2062  // qualifiers off the element type.
2063  QualType canon;
2064
2065  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
2066    SplitQualType canonSplit = getCanonicalType(elementType).split();
2067    canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
2068                                   ASM, elementTypeQuals);
2069    canon = getQualifiedType(canon, canonSplit.Quals);
2070
2071    // Get the new insert position for the node we care about.
2072    IncompleteArrayType *existing =
2073      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2074    assert(!existing && "Shouldn't be in the map!"); (void) existing;
2075  }
2076
2077  IncompleteArrayType *newType = new (*this, TypeAlignment)
2078    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
2079
2080  IncompleteArrayTypes.InsertNode(newType, insertPos);
2081  Types.push_back(newType);
2082  return QualType(newType, 0);
2083}
2084
2085/// getVectorType - Return the unique reference to a vector type of
2086/// the specified element type and size. VectorType must be a built-in type.
2087QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
2088                                   VectorType::VectorKind VecKind) const {
2089  assert(vecType->isBuiltinType());
2090
2091  // Check if we've already instantiated a vector of this type.
2092  llvm::FoldingSetNodeID ID;
2093  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
2094
2095  void *InsertPos = 0;
2096  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2097    return QualType(VTP, 0);
2098
2099  // If the element type isn't canonical, this won't be a canonical type either,
2100  // so fill in the canonical type field.
2101  QualType Canonical;
2102  if (!vecType.isCanonical()) {
2103    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
2104
2105    // Get the new insert position for the node we care about.
2106    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2107    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2108  }
2109  VectorType *New = new (*this, TypeAlignment)
2110    VectorType(vecType, NumElts, Canonical, VecKind);
2111  VectorTypes.InsertNode(New, InsertPos);
2112  Types.push_back(New);
2113  return QualType(New, 0);
2114}
2115
2116/// getExtVectorType - Return the unique reference to an extended vector type of
2117/// the specified element type and size. VectorType must be a built-in type.
2118QualType
2119ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2120  assert(vecType->isBuiltinType() || vecType->isDependentType());
2121
2122  // Check if we've already instantiated a vector of this type.
2123  llvm::FoldingSetNodeID ID;
2124  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2125                      VectorType::GenericVector);
2126  void *InsertPos = 0;
2127  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2128    return QualType(VTP, 0);
2129
2130  // If the element type isn't canonical, this won't be a canonical type either,
2131  // so fill in the canonical type field.
2132  QualType Canonical;
2133  if (!vecType.isCanonical()) {
2134    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2135
2136    // Get the new insert position for the node we care about.
2137    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2138    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2139  }
2140  ExtVectorType *New = new (*this, TypeAlignment)
2141    ExtVectorType(vecType, NumElts, Canonical);
2142  VectorTypes.InsertNode(New, InsertPos);
2143  Types.push_back(New);
2144  return QualType(New, 0);
2145}
2146
2147QualType
2148ASTContext::getDependentSizedExtVectorType(QualType vecType,
2149                                           Expr *SizeExpr,
2150                                           SourceLocation AttrLoc) const {
2151  llvm::FoldingSetNodeID ID;
2152  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2153                                       SizeExpr);
2154
2155  void *InsertPos = 0;
2156  DependentSizedExtVectorType *Canon
2157    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2158  DependentSizedExtVectorType *New;
2159  if (Canon) {
2160    // We already have a canonical version of this array type; use it as
2161    // the canonical type for a newly-built type.
2162    New = new (*this, TypeAlignment)
2163      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2164                                  SizeExpr, AttrLoc);
2165  } else {
2166    QualType CanonVecTy = getCanonicalType(vecType);
2167    if (CanonVecTy == vecType) {
2168      New = new (*this, TypeAlignment)
2169        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2170                                    AttrLoc);
2171
2172      DependentSizedExtVectorType *CanonCheck
2173        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2174      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2175      (void)CanonCheck;
2176      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2177    } else {
2178      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2179                                                      SourceLocation());
2180      New = new (*this, TypeAlignment)
2181        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2182    }
2183  }
2184
2185  Types.push_back(New);
2186  return QualType(New, 0);
2187}
2188
2189/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2190///
2191QualType
2192ASTContext::getFunctionNoProtoType(QualType ResultTy,
2193                                   const FunctionType::ExtInfo &Info) const {
2194  const CallingConv DefaultCC = Info.getCC();
2195  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2196                               CC_X86StdCall : DefaultCC;
2197  // Unique functions, to guarantee there is only one function of a particular
2198  // structure.
2199  llvm::FoldingSetNodeID ID;
2200  FunctionNoProtoType::Profile(ID, ResultTy, Info);
2201
2202  void *InsertPos = 0;
2203  if (FunctionNoProtoType *FT =
2204        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2205    return QualType(FT, 0);
2206
2207  QualType Canonical;
2208  if (!ResultTy.isCanonical() ||
2209      getCanonicalCallConv(CallConv) != CallConv) {
2210    Canonical =
2211      getFunctionNoProtoType(getCanonicalType(ResultTy),
2212                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
2213
2214    // Get the new insert position for the node we care about.
2215    FunctionNoProtoType *NewIP =
2216      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2217    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2218  }
2219
2220  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2221  FunctionNoProtoType *New = new (*this, TypeAlignment)
2222    FunctionNoProtoType(ResultTy, Canonical, newInfo);
2223  Types.push_back(New);
2224  FunctionNoProtoTypes.InsertNode(New, InsertPos);
2225  return QualType(New, 0);
2226}
2227
2228/// getFunctionType - Return a normal function type with a typed argument
2229/// list.  isVariadic indicates whether the argument list includes '...'.
2230QualType
2231ASTContext::getFunctionType(QualType ResultTy,
2232                            const QualType *ArgArray, unsigned NumArgs,
2233                            const FunctionProtoType::ExtProtoInfo &EPI) const {
2234  // Unique functions, to guarantee there is only one function of a particular
2235  // structure.
2236  llvm::FoldingSetNodeID ID;
2237  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI, *this);
2238
2239  void *InsertPos = 0;
2240  if (FunctionProtoType *FTP =
2241        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2242    return QualType(FTP, 0);
2243
2244  // Determine whether the type being created is already canonical or not.
2245  bool isCanonical =
2246    EPI.ExceptionSpecType == EST_None && ResultTy.isCanonical() &&
2247    !EPI.HasTrailingReturn;
2248  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2249    if (!ArgArray[i].isCanonicalAsParam())
2250      isCanonical = false;
2251
2252  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2253  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2254                               CC_X86StdCall : DefaultCC;
2255
2256  // If this type isn't canonical, get the canonical version of it.
2257  // The exception spec is not part of the canonical type.
2258  QualType Canonical;
2259  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2260    SmallVector<QualType, 16> CanonicalArgs;
2261    CanonicalArgs.reserve(NumArgs);
2262    for (unsigned i = 0; i != NumArgs; ++i)
2263      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2264
2265    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2266    CanonicalEPI.HasTrailingReturn = false;
2267    CanonicalEPI.ExceptionSpecType = EST_None;
2268    CanonicalEPI.NumExceptions = 0;
2269    CanonicalEPI.ExtInfo
2270      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2271
2272    Canonical = getFunctionType(getCanonicalType(ResultTy),
2273                                CanonicalArgs.data(), NumArgs,
2274                                CanonicalEPI);
2275
2276    // Get the new insert position for the node we care about.
2277    FunctionProtoType *NewIP =
2278      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2279    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2280  }
2281
2282  // FunctionProtoType objects are allocated with extra bytes after
2283  // them for three variable size arrays at the end:
2284  //  - parameter types
2285  //  - exception types
2286  //  - consumed-arguments flags
2287  // Instead of the exception types, there could be a noexcept
2288  // expression.
2289  size_t Size = sizeof(FunctionProtoType) +
2290                NumArgs * sizeof(QualType);
2291  if (EPI.ExceptionSpecType == EST_Dynamic)
2292    Size += EPI.NumExceptions * sizeof(QualType);
2293  else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2294    Size += sizeof(Expr*);
2295  } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
2296    Size += 2 * sizeof(FunctionDecl*);
2297  }
2298  if (EPI.ConsumedArguments)
2299    Size += NumArgs * sizeof(bool);
2300
2301  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2302  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2303  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2304  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, newEPI);
2305  Types.push_back(FTP);
2306  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2307  return QualType(FTP, 0);
2308}
2309
2310#ifndef NDEBUG
2311static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2312  if (!isa<CXXRecordDecl>(D)) return false;
2313  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2314  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2315    return true;
2316  if (RD->getDescribedClassTemplate() &&
2317      !isa<ClassTemplateSpecializationDecl>(RD))
2318    return true;
2319  return false;
2320}
2321#endif
2322
2323/// getInjectedClassNameType - Return the unique reference to the
2324/// injected class name type for the specified templated declaration.
2325QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2326                                              QualType TST) const {
2327  assert(NeedsInjectedClassNameType(Decl));
2328  if (Decl->TypeForDecl) {
2329    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2330  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
2331    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2332    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2333    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2334  } else {
2335    Type *newType =
2336      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2337    Decl->TypeForDecl = newType;
2338    Types.push_back(newType);
2339  }
2340  return QualType(Decl->TypeForDecl, 0);
2341}
2342
2343/// getTypeDeclType - Return the unique reference to the type for the
2344/// specified type declaration.
2345QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2346  assert(Decl && "Passed null for Decl param");
2347  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2348
2349  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2350    return getTypedefType(Typedef);
2351
2352  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2353         "Template type parameter types are always available.");
2354
2355  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2356    assert(!Record->getPreviousDecl() &&
2357           "struct/union has previous declaration");
2358    assert(!NeedsInjectedClassNameType(Record));
2359    return getRecordType(Record);
2360  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2361    assert(!Enum->getPreviousDecl() &&
2362           "enum has previous declaration");
2363    return getEnumType(Enum);
2364  } else if (const UnresolvedUsingTypenameDecl *Using =
2365               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2366    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2367    Decl->TypeForDecl = newType;
2368    Types.push_back(newType);
2369  } else
2370    llvm_unreachable("TypeDecl without a type?");
2371
2372  return QualType(Decl->TypeForDecl, 0);
2373}
2374
2375/// getTypedefType - Return the unique reference to the type for the
2376/// specified typedef name decl.
2377QualType
2378ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2379                           QualType Canonical) const {
2380  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2381
2382  if (Canonical.isNull())
2383    Canonical = getCanonicalType(Decl->getUnderlyingType());
2384  TypedefType *newType = new(*this, TypeAlignment)
2385    TypedefType(Type::Typedef, Decl, Canonical);
2386  Decl->TypeForDecl = newType;
2387  Types.push_back(newType);
2388  return QualType(newType, 0);
2389}
2390
2391QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2392  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2393
2394  if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
2395    if (PrevDecl->TypeForDecl)
2396      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2397
2398  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2399  Decl->TypeForDecl = newType;
2400  Types.push_back(newType);
2401  return QualType(newType, 0);
2402}
2403
2404QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2405  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2406
2407  if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
2408    if (PrevDecl->TypeForDecl)
2409      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2410
2411  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2412  Decl->TypeForDecl = newType;
2413  Types.push_back(newType);
2414  return QualType(newType, 0);
2415}
2416
2417QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2418                                       QualType modifiedType,
2419                                       QualType equivalentType) {
2420  llvm::FoldingSetNodeID id;
2421  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2422
2423  void *insertPos = 0;
2424  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2425  if (type) return QualType(type, 0);
2426
2427  QualType canon = getCanonicalType(equivalentType);
2428  type = new (*this, TypeAlignment)
2429           AttributedType(canon, attrKind, modifiedType, equivalentType);
2430
2431  Types.push_back(type);
2432  AttributedTypes.InsertNode(type, insertPos);
2433
2434  return QualType(type, 0);
2435}
2436
2437
2438/// \brief Retrieve a substitution-result type.
2439QualType
2440ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2441                                         QualType Replacement) const {
2442  assert(Replacement.isCanonical()
2443         && "replacement types must always be canonical");
2444
2445  llvm::FoldingSetNodeID ID;
2446  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2447  void *InsertPos = 0;
2448  SubstTemplateTypeParmType *SubstParm
2449    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2450
2451  if (!SubstParm) {
2452    SubstParm = new (*this, TypeAlignment)
2453      SubstTemplateTypeParmType(Parm, Replacement);
2454    Types.push_back(SubstParm);
2455    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2456  }
2457
2458  return QualType(SubstParm, 0);
2459}
2460
2461/// \brief Retrieve a
2462QualType ASTContext::getSubstTemplateTypeParmPackType(
2463                                          const TemplateTypeParmType *Parm,
2464                                              const TemplateArgument &ArgPack) {
2465#ifndef NDEBUG
2466  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2467                                    PEnd = ArgPack.pack_end();
2468       P != PEnd; ++P) {
2469    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2470    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2471  }
2472#endif
2473
2474  llvm::FoldingSetNodeID ID;
2475  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2476  void *InsertPos = 0;
2477  if (SubstTemplateTypeParmPackType *SubstParm
2478        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2479    return QualType(SubstParm, 0);
2480
2481  QualType Canon;
2482  if (!Parm->isCanonicalUnqualified()) {
2483    Canon = getCanonicalType(QualType(Parm, 0));
2484    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2485                                             ArgPack);
2486    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2487  }
2488
2489  SubstTemplateTypeParmPackType *SubstParm
2490    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2491                                                               ArgPack);
2492  Types.push_back(SubstParm);
2493  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2494  return QualType(SubstParm, 0);
2495}
2496
2497/// \brief Retrieve the template type parameter type for a template
2498/// parameter or parameter pack with the given depth, index, and (optionally)
2499/// name.
2500QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2501                                             bool ParameterPack,
2502                                             TemplateTypeParmDecl *TTPDecl) const {
2503  llvm::FoldingSetNodeID ID;
2504  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
2505  void *InsertPos = 0;
2506  TemplateTypeParmType *TypeParm
2507    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2508
2509  if (TypeParm)
2510    return QualType(TypeParm, 0);
2511
2512  if (TTPDecl) {
2513    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2514    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
2515
2516    TemplateTypeParmType *TypeCheck
2517      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2518    assert(!TypeCheck && "Template type parameter canonical type broken");
2519    (void)TypeCheck;
2520  } else
2521    TypeParm = new (*this, TypeAlignment)
2522      TemplateTypeParmType(Depth, Index, ParameterPack);
2523
2524  Types.push_back(TypeParm);
2525  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2526
2527  return QualType(TypeParm, 0);
2528}
2529
2530TypeSourceInfo *
2531ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2532                                              SourceLocation NameLoc,
2533                                        const TemplateArgumentListInfo &Args,
2534                                              QualType Underlying) const {
2535  assert(!Name.getAsDependentTemplateName() &&
2536         "No dependent template names here!");
2537  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
2538
2539  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2540  TemplateSpecializationTypeLoc TL
2541    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
2542  TL.setTemplateKeywordLoc(SourceLocation());
2543  TL.setTemplateNameLoc(NameLoc);
2544  TL.setLAngleLoc(Args.getLAngleLoc());
2545  TL.setRAngleLoc(Args.getRAngleLoc());
2546  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2547    TL.setArgLocInfo(i, Args[i].getLocInfo());
2548  return DI;
2549}
2550
2551QualType
2552ASTContext::getTemplateSpecializationType(TemplateName Template,
2553                                          const TemplateArgumentListInfo &Args,
2554                                          QualType Underlying) const {
2555  assert(!Template.getAsDependentTemplateName() &&
2556         "No dependent template names here!");
2557
2558  unsigned NumArgs = Args.size();
2559
2560  SmallVector<TemplateArgument, 4> ArgVec;
2561  ArgVec.reserve(NumArgs);
2562  for (unsigned i = 0; i != NumArgs; ++i)
2563    ArgVec.push_back(Args[i].getArgument());
2564
2565  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2566                                       Underlying);
2567}
2568
2569#ifndef NDEBUG
2570static bool hasAnyPackExpansions(const TemplateArgument *Args,
2571                                 unsigned NumArgs) {
2572  for (unsigned I = 0; I != NumArgs; ++I)
2573    if (Args[I].isPackExpansion())
2574      return true;
2575
2576  return true;
2577}
2578#endif
2579
2580QualType
2581ASTContext::getTemplateSpecializationType(TemplateName Template,
2582                                          const TemplateArgument *Args,
2583                                          unsigned NumArgs,
2584                                          QualType Underlying) const {
2585  assert(!Template.getAsDependentTemplateName() &&
2586         "No dependent template names here!");
2587  // Look through qualified template names.
2588  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2589    Template = TemplateName(QTN->getTemplateDecl());
2590
2591  bool IsTypeAlias =
2592    Template.getAsTemplateDecl() &&
2593    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
2594  QualType CanonType;
2595  if (!Underlying.isNull())
2596    CanonType = getCanonicalType(Underlying);
2597  else {
2598    // We can get here with an alias template when the specialization contains
2599    // a pack expansion that does not match up with a parameter pack.
2600    assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
2601           "Caller must compute aliased type");
2602    IsTypeAlias = false;
2603    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
2604                                                       NumArgs);
2605  }
2606
2607  // Allocate the (non-canonical) template specialization type, but don't
2608  // try to unique it: these types typically have location information that
2609  // we don't unique and don't want to lose.
2610  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
2611                       sizeof(TemplateArgument) * NumArgs +
2612                       (IsTypeAlias? sizeof(QualType) : 0),
2613                       TypeAlignment);
2614  TemplateSpecializationType *Spec
2615    = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
2616                                         IsTypeAlias ? Underlying : QualType());
2617
2618  Types.push_back(Spec);
2619  return QualType(Spec, 0);
2620}
2621
2622QualType
2623ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
2624                                                   const TemplateArgument *Args,
2625                                                   unsigned NumArgs) const {
2626  assert(!Template.getAsDependentTemplateName() &&
2627         "No dependent template names here!");
2628
2629  // Look through qualified template names.
2630  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2631    Template = TemplateName(QTN->getTemplateDecl());
2632
2633  // Build the canonical template specialization type.
2634  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
2635  SmallVector<TemplateArgument, 4> CanonArgs;
2636  CanonArgs.reserve(NumArgs);
2637  for (unsigned I = 0; I != NumArgs; ++I)
2638    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
2639
2640  // Determine whether this canonical template specialization type already
2641  // exists.
2642  llvm::FoldingSetNodeID ID;
2643  TemplateSpecializationType::Profile(ID, CanonTemplate,
2644                                      CanonArgs.data(), NumArgs, *this);
2645
2646  void *InsertPos = 0;
2647  TemplateSpecializationType *Spec
2648    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2649
2650  if (!Spec) {
2651    // Allocate a new canonical template specialization type.
2652    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2653                          sizeof(TemplateArgument) * NumArgs),
2654                         TypeAlignment);
2655    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
2656                                                CanonArgs.data(), NumArgs,
2657                                                QualType(), QualType());
2658    Types.push_back(Spec);
2659    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
2660  }
2661
2662  assert(Spec->isDependentType() &&
2663         "Non-dependent template-id type must have a canonical type");
2664  return QualType(Spec, 0);
2665}
2666
2667QualType
2668ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
2669                              NestedNameSpecifier *NNS,
2670                              QualType NamedType) const {
2671  llvm::FoldingSetNodeID ID;
2672  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
2673
2674  void *InsertPos = 0;
2675  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2676  if (T)
2677    return QualType(T, 0);
2678
2679  QualType Canon = NamedType;
2680  if (!Canon.isCanonical()) {
2681    Canon = getCanonicalType(NamedType);
2682    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2683    assert(!CheckT && "Elaborated canonical type broken");
2684    (void)CheckT;
2685  }
2686
2687  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
2688  Types.push_back(T);
2689  ElaboratedTypes.InsertNode(T, InsertPos);
2690  return QualType(T, 0);
2691}
2692
2693QualType
2694ASTContext::getParenType(QualType InnerType) const {
2695  llvm::FoldingSetNodeID ID;
2696  ParenType::Profile(ID, InnerType);
2697
2698  void *InsertPos = 0;
2699  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2700  if (T)
2701    return QualType(T, 0);
2702
2703  QualType Canon = InnerType;
2704  if (!Canon.isCanonical()) {
2705    Canon = getCanonicalType(InnerType);
2706    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2707    assert(!CheckT && "Paren canonical type broken");
2708    (void)CheckT;
2709  }
2710
2711  T = new (*this) ParenType(InnerType, Canon);
2712  Types.push_back(T);
2713  ParenTypes.InsertNode(T, InsertPos);
2714  return QualType(T, 0);
2715}
2716
2717QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
2718                                          NestedNameSpecifier *NNS,
2719                                          const IdentifierInfo *Name,
2720                                          QualType Canon) const {
2721  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2722
2723  if (Canon.isNull()) {
2724    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2725    ElaboratedTypeKeyword CanonKeyword = Keyword;
2726    if (Keyword == ETK_None)
2727      CanonKeyword = ETK_Typename;
2728
2729    if (CanonNNS != NNS || CanonKeyword != Keyword)
2730      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
2731  }
2732
2733  llvm::FoldingSetNodeID ID;
2734  DependentNameType::Profile(ID, Keyword, NNS, Name);
2735
2736  void *InsertPos = 0;
2737  DependentNameType *T
2738    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2739  if (T)
2740    return QualType(T, 0);
2741
2742  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
2743  Types.push_back(T);
2744  DependentNameTypes.InsertNode(T, InsertPos);
2745  return QualType(T, 0);
2746}
2747
2748QualType
2749ASTContext::getDependentTemplateSpecializationType(
2750                                 ElaboratedTypeKeyword Keyword,
2751                                 NestedNameSpecifier *NNS,
2752                                 const IdentifierInfo *Name,
2753                                 const TemplateArgumentListInfo &Args) const {
2754  // TODO: avoid this copy
2755  SmallVector<TemplateArgument, 16> ArgCopy;
2756  for (unsigned I = 0, E = Args.size(); I != E; ++I)
2757    ArgCopy.push_back(Args[I].getArgument());
2758  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
2759                                                ArgCopy.size(),
2760                                                ArgCopy.data());
2761}
2762
2763QualType
2764ASTContext::getDependentTemplateSpecializationType(
2765                                 ElaboratedTypeKeyword Keyword,
2766                                 NestedNameSpecifier *NNS,
2767                                 const IdentifierInfo *Name,
2768                                 unsigned NumArgs,
2769                                 const TemplateArgument *Args) const {
2770  assert((!NNS || NNS->isDependent()) &&
2771         "nested-name-specifier must be dependent");
2772
2773  llvm::FoldingSetNodeID ID;
2774  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
2775                                               Name, NumArgs, Args);
2776
2777  void *InsertPos = 0;
2778  DependentTemplateSpecializationType *T
2779    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2780  if (T)
2781    return QualType(T, 0);
2782
2783  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2784
2785  ElaboratedTypeKeyword CanonKeyword = Keyword;
2786  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
2787
2788  bool AnyNonCanonArgs = false;
2789  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
2790  for (unsigned I = 0; I != NumArgs; ++I) {
2791    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
2792    if (!CanonArgs[I].structurallyEquals(Args[I]))
2793      AnyNonCanonArgs = true;
2794  }
2795
2796  QualType Canon;
2797  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
2798    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
2799                                                   Name, NumArgs,
2800                                                   CanonArgs.data());
2801
2802    // Find the insert position again.
2803    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2804  }
2805
2806  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
2807                        sizeof(TemplateArgument) * NumArgs),
2808                       TypeAlignment);
2809  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
2810                                                    Name, NumArgs, Args, Canon);
2811  Types.push_back(T);
2812  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
2813  return QualType(T, 0);
2814}
2815
2816QualType ASTContext::getPackExpansionType(QualType Pattern,
2817                                      llvm::Optional<unsigned> NumExpansions) {
2818  llvm::FoldingSetNodeID ID;
2819  PackExpansionType::Profile(ID, Pattern, NumExpansions);
2820
2821  assert(Pattern->containsUnexpandedParameterPack() &&
2822         "Pack expansions must expand one or more parameter packs");
2823  void *InsertPos = 0;
2824  PackExpansionType *T
2825    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2826  if (T)
2827    return QualType(T, 0);
2828
2829  QualType Canon;
2830  if (!Pattern.isCanonical()) {
2831    Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
2832
2833    // Find the insert position again.
2834    PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2835  }
2836
2837  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
2838  Types.push_back(T);
2839  PackExpansionTypes.InsertNode(T, InsertPos);
2840  return QualType(T, 0);
2841}
2842
2843/// CmpProtocolNames - Comparison predicate for sorting protocols
2844/// alphabetically.
2845static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2846                            const ObjCProtocolDecl *RHS) {
2847  return LHS->getDeclName() < RHS->getDeclName();
2848}
2849
2850static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
2851                                unsigned NumProtocols) {
2852  if (NumProtocols == 0) return true;
2853
2854  if (Protocols[0]->getCanonicalDecl() != Protocols[0])
2855    return false;
2856
2857  for (unsigned i = 1; i != NumProtocols; ++i)
2858    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
2859        Protocols[i]->getCanonicalDecl() != Protocols[i])
2860      return false;
2861  return true;
2862}
2863
2864static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2865                                   unsigned &NumProtocols) {
2866  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2867
2868  // Sort protocols, keyed by name.
2869  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2870
2871  // Canonicalize.
2872  for (unsigned I = 0, N = NumProtocols; I != N; ++I)
2873    Protocols[I] = Protocols[I]->getCanonicalDecl();
2874
2875  // Remove duplicates.
2876  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2877  NumProtocols = ProtocolsEnd-Protocols;
2878}
2879
2880QualType ASTContext::getObjCObjectType(QualType BaseType,
2881                                       ObjCProtocolDecl * const *Protocols,
2882                                       unsigned NumProtocols) const {
2883  // If the base type is an interface and there aren't any protocols
2884  // to add, then the interface type will do just fine.
2885  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
2886    return BaseType;
2887
2888  // Look in the folding set for an existing type.
2889  llvm::FoldingSetNodeID ID;
2890  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
2891  void *InsertPos = 0;
2892  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
2893    return QualType(QT, 0);
2894
2895  // Build the canonical type, which has the canonical base type and
2896  // a sorted-and-uniqued list of protocols.
2897  QualType Canonical;
2898  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
2899  if (!ProtocolsSorted || !BaseType.isCanonical()) {
2900    if (!ProtocolsSorted) {
2901      SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
2902                                                     Protocols + NumProtocols);
2903      unsigned UniqueCount = NumProtocols;
2904
2905      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2906      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2907                                    &Sorted[0], UniqueCount);
2908    } else {
2909      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2910                                    Protocols, NumProtocols);
2911    }
2912
2913    // Regenerate InsertPos.
2914    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
2915  }
2916
2917  unsigned Size = sizeof(ObjCObjectTypeImpl);
2918  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
2919  void *Mem = Allocate(Size, TypeAlignment);
2920  ObjCObjectTypeImpl *T =
2921    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
2922
2923  Types.push_back(T);
2924  ObjCObjectTypes.InsertNode(T, InsertPos);
2925  return QualType(T, 0);
2926}
2927
2928/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2929/// the given object type.
2930QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
2931  llvm::FoldingSetNodeID ID;
2932  ObjCObjectPointerType::Profile(ID, ObjectT);
2933
2934  void *InsertPos = 0;
2935  if (ObjCObjectPointerType *QT =
2936              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2937    return QualType(QT, 0);
2938
2939  // Find the canonical object type.
2940  QualType Canonical;
2941  if (!ObjectT.isCanonical()) {
2942    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
2943
2944    // Regenerate InsertPos.
2945    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2946  }
2947
2948  // No match.
2949  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
2950  ObjCObjectPointerType *QType =
2951    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
2952
2953  Types.push_back(QType);
2954  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2955  return QualType(QType, 0);
2956}
2957
2958/// getObjCInterfaceType - Return the unique reference to the type for the
2959/// specified ObjC interface decl. The list of protocols is optional.
2960QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
2961                                          ObjCInterfaceDecl *PrevDecl) const {
2962  if (Decl->TypeForDecl)
2963    return QualType(Decl->TypeForDecl, 0);
2964
2965  if (PrevDecl) {
2966    assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
2967    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2968    return QualType(PrevDecl->TypeForDecl, 0);
2969  }
2970
2971  // Prefer the definition, if there is one.
2972  if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
2973    Decl = Def;
2974
2975  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
2976  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
2977  Decl->TypeForDecl = T;
2978  Types.push_back(T);
2979  return QualType(T, 0);
2980}
2981
2982/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2983/// TypeOfExprType AST's (since expression's are never shared). For example,
2984/// multiple declarations that refer to "typeof(x)" all contain different
2985/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2986/// on canonical type's (which are always unique).
2987QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
2988  TypeOfExprType *toe;
2989  if (tofExpr->isTypeDependent()) {
2990    llvm::FoldingSetNodeID ID;
2991    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2992
2993    void *InsertPos = 0;
2994    DependentTypeOfExprType *Canon
2995      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2996    if (Canon) {
2997      // We already have a "canonical" version of an identical, dependent
2998      // typeof(expr) type. Use that as our canonical type.
2999      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
3000                                          QualType((TypeOfExprType*)Canon, 0));
3001    } else {
3002      // Build a new, canonical typeof(expr) type.
3003      Canon
3004        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
3005      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
3006      toe = Canon;
3007    }
3008  } else {
3009    QualType Canonical = getCanonicalType(tofExpr->getType());
3010    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
3011  }
3012  Types.push_back(toe);
3013  return QualType(toe, 0);
3014}
3015
3016/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
3017/// TypeOfType AST's. The only motivation to unique these nodes would be
3018/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
3019/// an issue. This doesn't effect the type checker, since it operates
3020/// on canonical type's (which are always unique).
3021QualType ASTContext::getTypeOfType(QualType tofType) const {
3022  QualType Canonical = getCanonicalType(tofType);
3023  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
3024  Types.push_back(tot);
3025  return QualType(tot, 0);
3026}
3027
3028
3029/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
3030/// DecltypeType AST's. The only motivation to unique these nodes would be
3031/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
3032/// an issue. This doesn't effect the type checker, since it operates
3033/// on canonical types (which are always unique).
3034QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
3035  DecltypeType *dt;
3036
3037  // C++0x [temp.type]p2:
3038  //   If an expression e involves a template parameter, decltype(e) denotes a
3039  //   unique dependent type. Two such decltype-specifiers refer to the same
3040  //   type only if their expressions are equivalent (14.5.6.1).
3041  if (e->isInstantiationDependent()) {
3042    llvm::FoldingSetNodeID ID;
3043    DependentDecltypeType::Profile(ID, *this, e);
3044
3045    void *InsertPos = 0;
3046    DependentDecltypeType *Canon
3047      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
3048    if (Canon) {
3049      // We already have a "canonical" version of an equivalent, dependent
3050      // decltype type. Use that as our canonical type.
3051      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
3052                                       QualType((DecltypeType*)Canon, 0));
3053    } else {
3054      // Build a new, canonical typeof(expr) type.
3055      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
3056      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
3057      dt = Canon;
3058    }
3059  } else {
3060    dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3061                                      getCanonicalType(UnderlyingType));
3062  }
3063  Types.push_back(dt);
3064  return QualType(dt, 0);
3065}
3066
3067/// getUnaryTransformationType - We don't unique these, since the memory
3068/// savings are minimal and these are rare.
3069QualType ASTContext::getUnaryTransformType(QualType BaseType,
3070                                           QualType UnderlyingType,
3071                                           UnaryTransformType::UTTKind Kind)
3072    const {
3073  UnaryTransformType *Ty =
3074    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
3075                                                   Kind,
3076                                 UnderlyingType->isDependentType() ?
3077                                 QualType() : getCanonicalType(UnderlyingType));
3078  Types.push_back(Ty);
3079  return QualType(Ty, 0);
3080}
3081
3082/// getAutoType - We only unique auto types after they've been deduced.
3083QualType ASTContext::getAutoType(QualType DeducedType) const {
3084  void *InsertPos = 0;
3085  if (!DeducedType.isNull()) {
3086    // Look in the folding set for an existing type.
3087    llvm::FoldingSetNodeID ID;
3088    AutoType::Profile(ID, DeducedType);
3089    if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
3090      return QualType(AT, 0);
3091  }
3092
3093  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
3094  Types.push_back(AT);
3095  if (InsertPos)
3096    AutoTypes.InsertNode(AT, InsertPos);
3097  return QualType(AT, 0);
3098}
3099
3100/// getAtomicType - Return the uniqued reference to the atomic type for
3101/// the given value type.
3102QualType ASTContext::getAtomicType(QualType T) const {
3103  // Unique pointers, to guarantee there is only one pointer of a particular
3104  // structure.
3105  llvm::FoldingSetNodeID ID;
3106  AtomicType::Profile(ID, T);
3107
3108  void *InsertPos = 0;
3109  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
3110    return QualType(AT, 0);
3111
3112  // If the atomic value type isn't canonical, this won't be a canonical type
3113  // either, so fill in the canonical type field.
3114  QualType Canonical;
3115  if (!T.isCanonical()) {
3116    Canonical = getAtomicType(getCanonicalType(T));
3117
3118    // Get the new insert position for the node we care about.
3119    AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
3120    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
3121  }
3122  AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
3123  Types.push_back(New);
3124  AtomicTypes.InsertNode(New, InsertPos);
3125  return QualType(New, 0);
3126}
3127
3128/// getAutoDeductType - Get type pattern for deducing against 'auto'.
3129QualType ASTContext::getAutoDeductType() const {
3130  if (AutoDeductTy.isNull())
3131    AutoDeductTy = getAutoType(QualType());
3132  assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern");
3133  return AutoDeductTy;
3134}
3135
3136/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
3137QualType ASTContext::getAutoRRefDeductType() const {
3138  if (AutoRRefDeductTy.isNull())
3139    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3140  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3141  return AutoRRefDeductTy;
3142}
3143
3144/// getTagDeclType - Return the unique reference to the type for the
3145/// specified TagDecl (struct/union/class/enum) decl.
3146QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3147  assert (Decl);
3148  // FIXME: What is the design on getTagDeclType when it requires casting
3149  // away const?  mutable?
3150  return getTypeDeclType(const_cast<TagDecl*>(Decl));
3151}
3152
3153/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3154/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3155/// needs to agree with the definition in <stddef.h>.
3156CanQualType ASTContext::getSizeType() const {
3157  return getFromTargetType(Target->getSizeType());
3158}
3159
3160/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
3161CanQualType ASTContext::getIntMaxType() const {
3162  return getFromTargetType(Target->getIntMaxType());
3163}
3164
3165/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
3166CanQualType ASTContext::getUIntMaxType() const {
3167  return getFromTargetType(Target->getUIntMaxType());
3168}
3169
3170/// getSignedWCharType - Return the type of "signed wchar_t".
3171/// Used when in C++, as a GCC extension.
3172QualType ASTContext::getSignedWCharType() const {
3173  // FIXME: derive from "Target" ?
3174  return WCharTy;
3175}
3176
3177/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3178/// Used when in C++, as a GCC extension.
3179QualType ASTContext::getUnsignedWCharType() const {
3180  // FIXME: derive from "Target" ?
3181  return UnsignedIntTy;
3182}
3183
3184/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3185/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
3186QualType ASTContext::getPointerDiffType() const {
3187  return getFromTargetType(Target->getPtrDiffType(0));
3188}
3189
3190//===----------------------------------------------------------------------===//
3191//                              Type Operators
3192//===----------------------------------------------------------------------===//
3193
3194CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3195  // Push qualifiers into arrays, and then discard any remaining
3196  // qualifiers.
3197  T = getCanonicalType(T);
3198  T = getVariableArrayDecayedType(T);
3199  const Type *Ty = T.getTypePtr();
3200  QualType Result;
3201  if (isa<ArrayType>(Ty)) {
3202    Result = getArrayDecayedType(QualType(Ty,0));
3203  } else if (isa<FunctionType>(Ty)) {
3204    Result = getPointerType(QualType(Ty, 0));
3205  } else {
3206    Result = QualType(Ty, 0);
3207  }
3208
3209  return CanQualType::CreateUnsafe(Result);
3210}
3211
3212QualType ASTContext::getUnqualifiedArrayType(QualType type,
3213                                             Qualifiers &quals) {
3214  SplitQualType splitType = type.getSplitUnqualifiedType();
3215
3216  // FIXME: getSplitUnqualifiedType() actually walks all the way to
3217  // the unqualified desugared type and then drops it on the floor.
3218  // We then have to strip that sugar back off with
3219  // getUnqualifiedDesugaredType(), which is silly.
3220  const ArrayType *AT =
3221    dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
3222
3223  // If we don't have an array, just use the results in splitType.
3224  if (!AT) {
3225    quals = splitType.Quals;
3226    return QualType(splitType.Ty, 0);
3227  }
3228
3229  // Otherwise, recurse on the array's element type.
3230  QualType elementType = AT->getElementType();
3231  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3232
3233  // If that didn't change the element type, AT has no qualifiers, so we
3234  // can just use the results in splitType.
3235  if (elementType == unqualElementType) {
3236    assert(quals.empty()); // from the recursive call
3237    quals = splitType.Quals;
3238    return QualType(splitType.Ty, 0);
3239  }
3240
3241  // Otherwise, add in the qualifiers from the outermost type, then
3242  // build the type back up.
3243  quals.addConsistentQualifiers(splitType.Quals);
3244
3245  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3246    return getConstantArrayType(unqualElementType, CAT->getSize(),
3247                                CAT->getSizeModifier(), 0);
3248  }
3249
3250  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3251    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3252  }
3253
3254  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3255    return getVariableArrayType(unqualElementType,
3256                                VAT->getSizeExpr(),
3257                                VAT->getSizeModifier(),
3258                                VAT->getIndexTypeCVRQualifiers(),
3259                                VAT->getBracketsRange());
3260  }
3261
3262  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
3263  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
3264                                    DSAT->getSizeModifier(), 0,
3265                                    SourceRange());
3266}
3267
3268/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
3269/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
3270/// they point to and return true. If T1 and T2 aren't pointer types
3271/// or pointer-to-member types, or if they are not similar at this
3272/// level, returns false and leaves T1 and T2 unchanged. Top-level
3273/// qualifiers on T1 and T2 are ignored. This function will typically
3274/// be called in a loop that successively "unwraps" pointer and
3275/// pointer-to-member types to compare them at each level.
3276bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3277  const PointerType *T1PtrType = T1->getAs<PointerType>(),
3278                    *T2PtrType = T2->getAs<PointerType>();
3279  if (T1PtrType && T2PtrType) {
3280    T1 = T1PtrType->getPointeeType();
3281    T2 = T2PtrType->getPointeeType();
3282    return true;
3283  }
3284
3285  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3286                          *T2MPType = T2->getAs<MemberPointerType>();
3287  if (T1MPType && T2MPType &&
3288      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3289                             QualType(T2MPType->getClass(), 0))) {
3290    T1 = T1MPType->getPointeeType();
3291    T2 = T2MPType->getPointeeType();
3292    return true;
3293  }
3294
3295  if (getLangOpts().ObjC1) {
3296    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3297                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
3298    if (T1OPType && T2OPType) {
3299      T1 = T1OPType->getPointeeType();
3300      T2 = T2OPType->getPointeeType();
3301      return true;
3302    }
3303  }
3304
3305  // FIXME: Block pointers, too?
3306
3307  return false;
3308}
3309
3310DeclarationNameInfo
3311ASTContext::getNameForTemplate(TemplateName Name,
3312                               SourceLocation NameLoc) const {
3313  switch (Name.getKind()) {
3314  case TemplateName::QualifiedTemplate:
3315  case TemplateName::Template:
3316    // DNInfo work in progress: CHECKME: what about DNLoc?
3317    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3318                               NameLoc);
3319
3320  case TemplateName::OverloadedTemplate: {
3321    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3322    // DNInfo work in progress: CHECKME: what about DNLoc?
3323    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3324  }
3325
3326  case TemplateName::DependentTemplate: {
3327    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3328    DeclarationName DName;
3329    if (DTN->isIdentifier()) {
3330      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3331      return DeclarationNameInfo(DName, NameLoc);
3332    } else {
3333      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3334      // DNInfo work in progress: FIXME: source locations?
3335      DeclarationNameLoc DNLoc;
3336      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3337      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3338      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3339    }
3340  }
3341
3342  case TemplateName::SubstTemplateTemplateParm: {
3343    SubstTemplateTemplateParmStorage *subst
3344      = Name.getAsSubstTemplateTemplateParm();
3345    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3346                               NameLoc);
3347  }
3348
3349  case TemplateName::SubstTemplateTemplateParmPack: {
3350    SubstTemplateTemplateParmPackStorage *subst
3351      = Name.getAsSubstTemplateTemplateParmPack();
3352    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3353                               NameLoc);
3354  }
3355  }
3356
3357  llvm_unreachable("bad template name kind!");
3358}
3359
3360TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3361  switch (Name.getKind()) {
3362  case TemplateName::QualifiedTemplate:
3363  case TemplateName::Template: {
3364    TemplateDecl *Template = Name.getAsTemplateDecl();
3365    if (TemplateTemplateParmDecl *TTP
3366          = dyn_cast<TemplateTemplateParmDecl>(Template))
3367      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3368
3369    // The canonical template name is the canonical template declaration.
3370    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3371  }
3372
3373  case TemplateName::OverloadedTemplate:
3374    llvm_unreachable("cannot canonicalize overloaded template");
3375
3376  case TemplateName::DependentTemplate: {
3377    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3378    assert(DTN && "Non-dependent template names must refer to template decls.");
3379    return DTN->CanonicalTemplateName;
3380  }
3381
3382  case TemplateName::SubstTemplateTemplateParm: {
3383    SubstTemplateTemplateParmStorage *subst
3384      = Name.getAsSubstTemplateTemplateParm();
3385    return getCanonicalTemplateName(subst->getReplacement());
3386  }
3387
3388  case TemplateName::SubstTemplateTemplateParmPack: {
3389    SubstTemplateTemplateParmPackStorage *subst
3390                                  = Name.getAsSubstTemplateTemplateParmPack();
3391    TemplateTemplateParmDecl *canonParameter
3392      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3393    TemplateArgument canonArgPack
3394      = getCanonicalTemplateArgument(subst->getArgumentPack());
3395    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3396  }
3397  }
3398
3399  llvm_unreachable("bad template name!");
3400}
3401
3402bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3403  X = getCanonicalTemplateName(X);
3404  Y = getCanonicalTemplateName(Y);
3405  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3406}
3407
3408TemplateArgument
3409ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3410  switch (Arg.getKind()) {
3411    case TemplateArgument::Null:
3412      return Arg;
3413
3414    case TemplateArgument::Expression:
3415      return Arg;
3416
3417    case TemplateArgument::Declaration: {
3418      if (Decl *D = Arg.getAsDecl())
3419          return TemplateArgument(D->getCanonicalDecl());
3420      return TemplateArgument((Decl*)0);
3421    }
3422
3423    case TemplateArgument::Template:
3424      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3425
3426    case TemplateArgument::TemplateExpansion:
3427      return TemplateArgument(getCanonicalTemplateName(
3428                                         Arg.getAsTemplateOrTemplatePattern()),
3429                              Arg.getNumTemplateExpansions());
3430
3431    case TemplateArgument::Integral:
3432      return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
3433
3434    case TemplateArgument::Type:
3435      return TemplateArgument(getCanonicalType(Arg.getAsType()));
3436
3437    case TemplateArgument::Pack: {
3438      if (Arg.pack_size() == 0)
3439        return Arg;
3440
3441      TemplateArgument *CanonArgs
3442        = new (*this) TemplateArgument[Arg.pack_size()];
3443      unsigned Idx = 0;
3444      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
3445                                        AEnd = Arg.pack_end();
3446           A != AEnd; (void)++A, ++Idx)
3447        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
3448
3449      return TemplateArgument(CanonArgs, Arg.pack_size());
3450    }
3451  }
3452
3453  // Silence GCC warning
3454  llvm_unreachable("Unhandled template argument kind");
3455}
3456
3457NestedNameSpecifier *
3458ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
3459  if (!NNS)
3460    return 0;
3461
3462  switch (NNS->getKind()) {
3463  case NestedNameSpecifier::Identifier:
3464    // Canonicalize the prefix but keep the identifier the same.
3465    return NestedNameSpecifier::Create(*this,
3466                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
3467                                       NNS->getAsIdentifier());
3468
3469  case NestedNameSpecifier::Namespace:
3470    // A namespace is canonical; build a nested-name-specifier with
3471    // this namespace and no prefix.
3472    return NestedNameSpecifier::Create(*this, 0,
3473                                 NNS->getAsNamespace()->getOriginalNamespace());
3474
3475  case NestedNameSpecifier::NamespaceAlias:
3476    // A namespace is canonical; build a nested-name-specifier with
3477    // this namespace and no prefix.
3478    return NestedNameSpecifier::Create(*this, 0,
3479                                    NNS->getAsNamespaceAlias()->getNamespace()
3480                                                      ->getOriginalNamespace());
3481
3482  case NestedNameSpecifier::TypeSpec:
3483  case NestedNameSpecifier::TypeSpecWithTemplate: {
3484    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
3485
3486    // If we have some kind of dependent-named type (e.g., "typename T::type"),
3487    // break it apart into its prefix and identifier, then reconsititute those
3488    // as the canonical nested-name-specifier. This is required to canonicalize
3489    // a dependent nested-name-specifier involving typedefs of dependent-name
3490    // types, e.g.,
3491    //   typedef typename T::type T1;
3492    //   typedef typename T1::type T2;
3493    if (const DependentNameType *DNT = T->getAs<DependentNameType>())
3494      return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
3495                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
3496
3497    // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
3498    // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
3499    // first place?
3500    return NestedNameSpecifier::Create(*this, 0, false,
3501                                       const_cast<Type*>(T.getTypePtr()));
3502  }
3503
3504  case NestedNameSpecifier::Global:
3505    // The global specifier is canonical and unique.
3506    return NNS;
3507  }
3508
3509  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
3510}
3511
3512
3513const ArrayType *ASTContext::getAsArrayType(QualType T) const {
3514  // Handle the non-qualified case efficiently.
3515  if (!T.hasLocalQualifiers()) {
3516    // Handle the common positive case fast.
3517    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
3518      return AT;
3519  }
3520
3521  // Handle the common negative case fast.
3522  if (!isa<ArrayType>(T.getCanonicalType()))
3523    return 0;
3524
3525  // Apply any qualifiers from the array type to the element type.  This
3526  // implements C99 6.7.3p8: "If the specification of an array type includes
3527  // any type qualifiers, the element type is so qualified, not the array type."
3528
3529  // If we get here, we either have type qualifiers on the type, or we have
3530  // sugar such as a typedef in the way.  If we have type qualifiers on the type
3531  // we must propagate them down into the element type.
3532
3533  SplitQualType split = T.getSplitDesugaredType();
3534  Qualifiers qs = split.Quals;
3535
3536  // If we have a simple case, just return now.
3537  const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
3538  if (ATy == 0 || qs.empty())
3539    return ATy;
3540
3541  // Otherwise, we have an array and we have qualifiers on it.  Push the
3542  // qualifiers into the array element type and return a new array type.
3543  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
3544
3545  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
3546    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
3547                                                CAT->getSizeModifier(),
3548                                           CAT->getIndexTypeCVRQualifiers()));
3549  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
3550    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
3551                                                  IAT->getSizeModifier(),
3552                                           IAT->getIndexTypeCVRQualifiers()));
3553
3554  if (const DependentSizedArrayType *DSAT
3555        = dyn_cast<DependentSizedArrayType>(ATy))
3556    return cast<ArrayType>(
3557                     getDependentSizedArrayType(NewEltTy,
3558                                                DSAT->getSizeExpr(),
3559                                                DSAT->getSizeModifier(),
3560                                              DSAT->getIndexTypeCVRQualifiers(),
3561                                                DSAT->getBracketsRange()));
3562
3563  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
3564  return cast<ArrayType>(getVariableArrayType(NewEltTy,
3565                                              VAT->getSizeExpr(),
3566                                              VAT->getSizeModifier(),
3567                                              VAT->getIndexTypeCVRQualifiers(),
3568                                              VAT->getBracketsRange()));
3569}
3570
3571QualType ASTContext::getAdjustedParameterType(QualType T) const {
3572  // C99 6.7.5.3p7:
3573  //   A declaration of a parameter as "array of type" shall be
3574  //   adjusted to "qualified pointer to type", where the type
3575  //   qualifiers (if any) are those specified within the [ and ] of
3576  //   the array type derivation.
3577  if (T->isArrayType())
3578    return getArrayDecayedType(T);
3579
3580  // C99 6.7.5.3p8:
3581  //   A declaration of a parameter as "function returning type"
3582  //   shall be adjusted to "pointer to function returning type", as
3583  //   in 6.3.2.1.
3584  if (T->isFunctionType())
3585    return getPointerType(T);
3586
3587  return T;
3588}
3589
3590QualType ASTContext::getSignatureParameterType(QualType T) const {
3591  T = getVariableArrayDecayedType(T);
3592  T = getAdjustedParameterType(T);
3593  return T.getUnqualifiedType();
3594}
3595
3596/// getArrayDecayedType - Return the properly qualified result of decaying the
3597/// specified array type to a pointer.  This operation is non-trivial when
3598/// handling typedefs etc.  The canonical type of "T" must be an array type,
3599/// this returns a pointer to a properly qualified element of the array.
3600///
3601/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
3602QualType ASTContext::getArrayDecayedType(QualType Ty) const {
3603  // Get the element type with 'getAsArrayType' so that we don't lose any
3604  // typedefs in the element type of the array.  This also handles propagation
3605  // of type qualifiers from the array type into the element type if present
3606  // (C99 6.7.3p8).
3607  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
3608  assert(PrettyArrayType && "Not an array type!");
3609
3610  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
3611
3612  // int x[restrict 4] ->  int *restrict
3613  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
3614}
3615
3616QualType ASTContext::getBaseElementType(const ArrayType *array) const {
3617  return getBaseElementType(array->getElementType());
3618}
3619
3620QualType ASTContext::getBaseElementType(QualType type) const {
3621  Qualifiers qs;
3622  while (true) {
3623    SplitQualType split = type.getSplitDesugaredType();
3624    const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
3625    if (!array) break;
3626
3627    type = array->getElementType();
3628    qs.addConsistentQualifiers(split.Quals);
3629  }
3630
3631  return getQualifiedType(type, qs);
3632}
3633
3634/// getConstantArrayElementCount - Returns number of constant array elements.
3635uint64_t
3636ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
3637  uint64_t ElementCount = 1;
3638  do {
3639    ElementCount *= CA->getSize().getZExtValue();
3640    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
3641  } while (CA);
3642  return ElementCount;
3643}
3644
3645/// getFloatingRank - Return a relative rank for floating point types.
3646/// This routine will assert if passed a built-in type that isn't a float.
3647static FloatingRank getFloatingRank(QualType T) {
3648  if (const ComplexType *CT = T->getAs<ComplexType>())
3649    return getFloatingRank(CT->getElementType());
3650
3651  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
3652  switch (T->getAs<BuiltinType>()->getKind()) {
3653  default: llvm_unreachable("getFloatingRank(): not a floating type");
3654  case BuiltinType::Half:       return HalfRank;
3655  case BuiltinType::Float:      return FloatRank;
3656  case BuiltinType::Double:     return DoubleRank;
3657  case BuiltinType::LongDouble: return LongDoubleRank;
3658  }
3659}
3660
3661/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
3662/// point or a complex type (based on typeDomain/typeSize).
3663/// 'typeDomain' is a real floating point or complex type.
3664/// 'typeSize' is a real floating point or complex type.
3665QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
3666                                                       QualType Domain) const {
3667  FloatingRank EltRank = getFloatingRank(Size);
3668  if (Domain->isComplexType()) {
3669    switch (EltRank) {
3670    case HalfRank: llvm_unreachable("Complex half is not supported");
3671    case FloatRank:      return FloatComplexTy;
3672    case DoubleRank:     return DoubleComplexTy;
3673    case LongDoubleRank: return LongDoubleComplexTy;
3674    }
3675  }
3676
3677  assert(Domain->isRealFloatingType() && "Unknown domain!");
3678  switch (EltRank) {
3679  case HalfRank: llvm_unreachable("Half ranks are not valid here");
3680  case FloatRank:      return FloatTy;
3681  case DoubleRank:     return DoubleTy;
3682  case LongDoubleRank: return LongDoubleTy;
3683  }
3684  llvm_unreachable("getFloatingRank(): illegal value for rank");
3685}
3686
3687/// getFloatingTypeOrder - Compare the rank of the two specified floating
3688/// point types, ignoring the domain of the type (i.e. 'double' ==
3689/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3690/// LHS < RHS, return -1.
3691int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
3692  FloatingRank LHSR = getFloatingRank(LHS);
3693  FloatingRank RHSR = getFloatingRank(RHS);
3694
3695  if (LHSR == RHSR)
3696    return 0;
3697  if (LHSR > RHSR)
3698    return 1;
3699  return -1;
3700}
3701
3702/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
3703/// routine will assert if passed a built-in type that isn't an integer or enum,
3704/// or if it is not canonicalized.
3705unsigned ASTContext::getIntegerRank(const Type *T) const {
3706  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
3707
3708  switch (cast<BuiltinType>(T)->getKind()) {
3709  default: llvm_unreachable("getIntegerRank(): not a built-in integer");
3710  case BuiltinType::Bool:
3711    return 1 + (getIntWidth(BoolTy) << 3);
3712  case BuiltinType::Char_S:
3713  case BuiltinType::Char_U:
3714  case BuiltinType::SChar:
3715  case BuiltinType::UChar:
3716    return 2 + (getIntWidth(CharTy) << 3);
3717  case BuiltinType::Short:
3718  case BuiltinType::UShort:
3719    return 3 + (getIntWidth(ShortTy) << 3);
3720  case BuiltinType::Int:
3721  case BuiltinType::UInt:
3722    return 4 + (getIntWidth(IntTy) << 3);
3723  case BuiltinType::Long:
3724  case BuiltinType::ULong:
3725    return 5 + (getIntWidth(LongTy) << 3);
3726  case BuiltinType::LongLong:
3727  case BuiltinType::ULongLong:
3728    return 6 + (getIntWidth(LongLongTy) << 3);
3729  case BuiltinType::Int128:
3730  case BuiltinType::UInt128:
3731    return 7 + (getIntWidth(Int128Ty) << 3);
3732  }
3733}
3734
3735/// \brief Whether this is a promotable bitfield reference according
3736/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
3737///
3738/// \returns the type this bit-field will promote to, or NULL if no
3739/// promotion occurs.
3740QualType ASTContext::isPromotableBitField(Expr *E) const {
3741  if (E->isTypeDependent() || E->isValueDependent())
3742    return QualType();
3743
3744  FieldDecl *Field = E->getBitField();
3745  if (!Field)
3746    return QualType();
3747
3748  QualType FT = Field->getType();
3749
3750  uint64_t BitWidth = Field->getBitWidthValue(*this);
3751  uint64_t IntSize = getTypeSize(IntTy);
3752  // GCC extension compatibility: if the bit-field size is less than or equal
3753  // to the size of int, it gets promoted no matter what its type is.
3754  // For instance, unsigned long bf : 4 gets promoted to signed int.
3755  if (BitWidth < IntSize)
3756    return IntTy;
3757
3758  if (BitWidth == IntSize)
3759    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
3760
3761  // Types bigger than int are not subject to promotions, and therefore act
3762  // like the base type.
3763  // FIXME: This doesn't quite match what gcc does, but what gcc does here
3764  // is ridiculous.
3765  return QualType();
3766}
3767
3768/// getPromotedIntegerType - Returns the type that Promotable will
3769/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
3770/// integer type.
3771QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
3772  assert(!Promotable.isNull());
3773  assert(Promotable->isPromotableIntegerType());
3774  if (const EnumType *ET = Promotable->getAs<EnumType>())
3775    return ET->getDecl()->getPromotionType();
3776
3777  if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
3778    // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
3779    // (3.9.1) can be converted to a prvalue of the first of the following
3780    // types that can represent all the values of its underlying type:
3781    // int, unsigned int, long int, unsigned long int, long long int, or
3782    // unsigned long long int [...]
3783    // FIXME: Is there some better way to compute this?
3784    if (BT->getKind() == BuiltinType::WChar_S ||
3785        BT->getKind() == BuiltinType::WChar_U ||
3786        BT->getKind() == BuiltinType::Char16 ||
3787        BT->getKind() == BuiltinType::Char32) {
3788      bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
3789      uint64_t FromSize = getTypeSize(BT);
3790      QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
3791                                  LongLongTy, UnsignedLongLongTy };
3792      for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
3793        uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
3794        if (FromSize < ToSize ||
3795            (FromSize == ToSize &&
3796             FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
3797          return PromoteTypes[Idx];
3798      }
3799      llvm_unreachable("char type should fit into long long");
3800    }
3801  }
3802
3803  // At this point, we should have a signed or unsigned integer type.
3804  if (Promotable->isSignedIntegerType())
3805    return IntTy;
3806  uint64_t PromotableSize = getTypeSize(Promotable);
3807  uint64_t IntSize = getTypeSize(IntTy);
3808  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
3809  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
3810}
3811
3812/// \brief Recurses in pointer/array types until it finds an objc retainable
3813/// type and returns its ownership.
3814Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
3815  while (!T.isNull()) {
3816    if (T.getObjCLifetime() != Qualifiers::OCL_None)
3817      return T.getObjCLifetime();
3818    if (T->isArrayType())
3819      T = getBaseElementType(T);
3820    else if (const PointerType *PT = T->getAs<PointerType>())
3821      T = PT->getPointeeType();
3822    else if (const ReferenceType *RT = T->getAs<ReferenceType>())
3823      T = RT->getPointeeType();
3824    else
3825      break;
3826  }
3827
3828  return Qualifiers::OCL_None;
3829}
3830
3831/// getIntegerTypeOrder - Returns the highest ranked integer type:
3832/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3833/// LHS < RHS, return -1.
3834int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
3835  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
3836  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
3837  if (LHSC == RHSC) return 0;
3838
3839  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
3840  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
3841
3842  unsigned LHSRank = getIntegerRank(LHSC);
3843  unsigned RHSRank = getIntegerRank(RHSC);
3844
3845  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
3846    if (LHSRank == RHSRank) return 0;
3847    return LHSRank > RHSRank ? 1 : -1;
3848  }
3849
3850  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
3851  if (LHSUnsigned) {
3852    // If the unsigned [LHS] type is larger, return it.
3853    if (LHSRank >= RHSRank)
3854      return 1;
3855
3856    // If the signed type can represent all values of the unsigned type, it
3857    // wins.  Because we are dealing with 2's complement and types that are
3858    // powers of two larger than each other, this is always safe.
3859    return -1;
3860  }
3861
3862  // If the unsigned [RHS] type is larger, return it.
3863  if (RHSRank >= LHSRank)
3864    return -1;
3865
3866  // If the signed type can represent all values of the unsigned type, it
3867  // wins.  Because we are dealing with 2's complement and types that are
3868  // powers of two larger than each other, this is always safe.
3869  return 1;
3870}
3871
3872static RecordDecl *
3873CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
3874                 DeclContext *DC, IdentifierInfo *Id) {
3875  SourceLocation Loc;
3876  if (Ctx.getLangOpts().CPlusPlus)
3877    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3878  else
3879    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3880}
3881
3882// getCFConstantStringType - Return the type used for constant CFStrings.
3883QualType ASTContext::getCFConstantStringType() const {
3884  if (!CFConstantStringTypeDecl) {
3885    CFConstantStringTypeDecl =
3886      CreateRecordDecl(*this, TTK_Struct, TUDecl,
3887                       &Idents.get("NSConstantString"));
3888    CFConstantStringTypeDecl->startDefinition();
3889
3890    QualType FieldTypes[4];
3891
3892    // const int *isa;
3893    FieldTypes[0] = getPointerType(IntTy.withConst());
3894    // int flags;
3895    FieldTypes[1] = IntTy;
3896    // const char *str;
3897    FieldTypes[2] = getPointerType(CharTy.withConst());
3898    // long length;
3899    FieldTypes[3] = LongTy;
3900
3901    // Create fields
3902    for (unsigned i = 0; i < 4; ++i) {
3903      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
3904                                           SourceLocation(),
3905                                           SourceLocation(), 0,
3906                                           FieldTypes[i], /*TInfo=*/0,
3907                                           /*BitWidth=*/0,
3908                                           /*Mutable=*/false,
3909                                           ICIS_NoInit);
3910      Field->setAccess(AS_public);
3911      CFConstantStringTypeDecl->addDecl(Field);
3912    }
3913
3914    CFConstantStringTypeDecl->completeDefinition();
3915  }
3916
3917  return getTagDeclType(CFConstantStringTypeDecl);
3918}
3919
3920void ASTContext::setCFConstantStringType(QualType T) {
3921  const RecordType *Rec = T->getAs<RecordType>();
3922  assert(Rec && "Invalid CFConstantStringType");
3923  CFConstantStringTypeDecl = Rec->getDecl();
3924}
3925
3926QualType ASTContext::getBlockDescriptorType() const {
3927  if (BlockDescriptorType)
3928    return getTagDeclType(BlockDescriptorType);
3929
3930  RecordDecl *T;
3931  // FIXME: Needs the FlagAppleBlock bit.
3932  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
3933                       &Idents.get("__block_descriptor"));
3934  T->startDefinition();
3935
3936  QualType FieldTypes[] = {
3937    UnsignedLongTy,
3938    UnsignedLongTy,
3939  };
3940
3941  const char *FieldNames[] = {
3942    "reserved",
3943    "Size"
3944  };
3945
3946  for (size_t i = 0; i < 2; ++i) {
3947    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3948                                         SourceLocation(),
3949                                         &Idents.get(FieldNames[i]),
3950                                         FieldTypes[i], /*TInfo=*/0,
3951                                         /*BitWidth=*/0,
3952                                         /*Mutable=*/false,
3953                                         ICIS_NoInit);
3954    Field->setAccess(AS_public);
3955    T->addDecl(Field);
3956  }
3957
3958  T->completeDefinition();
3959
3960  BlockDescriptorType = T;
3961
3962  return getTagDeclType(BlockDescriptorType);
3963}
3964
3965QualType ASTContext::getBlockDescriptorExtendedType() const {
3966  if (BlockDescriptorExtendedType)
3967    return getTagDeclType(BlockDescriptorExtendedType);
3968
3969  RecordDecl *T;
3970  // FIXME: Needs the FlagAppleBlock bit.
3971  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
3972                       &Idents.get("__block_descriptor_withcopydispose"));
3973  T->startDefinition();
3974
3975  QualType FieldTypes[] = {
3976    UnsignedLongTy,
3977    UnsignedLongTy,
3978    getPointerType(VoidPtrTy),
3979    getPointerType(VoidPtrTy)
3980  };
3981
3982  const char *FieldNames[] = {
3983    "reserved",
3984    "Size",
3985    "CopyFuncPtr",
3986    "DestroyFuncPtr"
3987  };
3988
3989  for (size_t i = 0; i < 4; ++i) {
3990    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3991                                         SourceLocation(),
3992                                         &Idents.get(FieldNames[i]),
3993                                         FieldTypes[i], /*TInfo=*/0,
3994                                         /*BitWidth=*/0,
3995                                         /*Mutable=*/false,
3996                                         ICIS_NoInit);
3997    Field->setAccess(AS_public);
3998    T->addDecl(Field);
3999  }
4000
4001  T->completeDefinition();
4002
4003  BlockDescriptorExtendedType = T;
4004
4005  return getTagDeclType(BlockDescriptorExtendedType);
4006}
4007
4008bool ASTContext::BlockRequiresCopying(QualType Ty) const {
4009  if (Ty->isObjCRetainableType())
4010    return true;
4011  if (getLangOpts().CPlusPlus) {
4012    if (const RecordType *RT = Ty->getAs<RecordType>()) {
4013      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4014      return RD->hasConstCopyConstructor();
4015
4016    }
4017  }
4018  return false;
4019}
4020
4021QualType
4022ASTContext::BuildByRefType(StringRef DeclName, QualType Ty) const {
4023  //  type = struct __Block_byref_1_X {
4024  //    void *__isa;
4025  //    struct __Block_byref_1_X *__forwarding;
4026  //    unsigned int __flags;
4027  //    unsigned int __size;
4028  //    void *__copy_helper;            // as needed
4029  //    void *__destroy_help            // as needed
4030  //    int X;
4031  //  } *
4032
4033  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
4034
4035  // FIXME: Move up
4036  SmallString<36> Name;
4037  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
4038                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
4039  RecordDecl *T;
4040  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get(Name.str()));
4041  T->startDefinition();
4042  QualType Int32Ty = IntTy;
4043  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
4044  QualType FieldTypes[] = {
4045    getPointerType(VoidPtrTy),
4046    getPointerType(getTagDeclType(T)),
4047    Int32Ty,
4048    Int32Ty,
4049    getPointerType(VoidPtrTy),
4050    getPointerType(VoidPtrTy),
4051    Ty
4052  };
4053
4054  StringRef FieldNames[] = {
4055    "__isa",
4056    "__forwarding",
4057    "__flags",
4058    "__size",
4059    "__copy_helper",
4060    "__destroy_helper",
4061    DeclName,
4062  };
4063
4064  for (size_t i = 0; i < 7; ++i) {
4065    if (!HasCopyAndDispose && i >=4 && i <= 5)
4066      continue;
4067    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4068                                         SourceLocation(),
4069                                         &Idents.get(FieldNames[i]),
4070                                         FieldTypes[i], /*TInfo=*/0,
4071                                         /*BitWidth=*/0, /*Mutable=*/false,
4072                                         ICIS_NoInit);
4073    Field->setAccess(AS_public);
4074    T->addDecl(Field);
4075  }
4076
4077  T->completeDefinition();
4078
4079  return getPointerType(getTagDeclType(T));
4080}
4081
4082TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
4083  if (!ObjCInstanceTypeDecl)
4084    ObjCInstanceTypeDecl = TypedefDecl::Create(*this,
4085                                               getTranslationUnitDecl(),
4086                                               SourceLocation(),
4087                                               SourceLocation(),
4088                                               &Idents.get("instancetype"),
4089                                     getTrivialTypeSourceInfo(getObjCIdType()));
4090  return ObjCInstanceTypeDecl;
4091}
4092
4093// This returns true if a type has been typedefed to BOOL:
4094// typedef <type> BOOL;
4095static bool isTypeTypedefedAsBOOL(QualType T) {
4096  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
4097    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
4098      return II->isStr("BOOL");
4099
4100  return false;
4101}
4102
4103/// getObjCEncodingTypeSize returns size of type for objective-c encoding
4104/// purpose.
4105CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
4106  if (!type->isIncompleteArrayType() && type->isIncompleteType())
4107    return CharUnits::Zero();
4108
4109  CharUnits sz = getTypeSizeInChars(type);
4110
4111  // Make all integer and enum types at least as large as an int
4112  if (sz.isPositive() && type->isIntegralOrEnumerationType())
4113    sz = std::max(sz, getTypeSizeInChars(IntTy));
4114  // Treat arrays as pointers, since that's how they're passed in.
4115  else if (type->isArrayType())
4116    sz = getTypeSizeInChars(VoidPtrTy);
4117  return sz;
4118}
4119
4120static inline
4121std::string charUnitsToString(const CharUnits &CU) {
4122  return llvm::itostr(CU.getQuantity());
4123}
4124
4125/// getObjCEncodingForBlock - Return the encoded type for this block
4126/// declaration.
4127std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4128  std::string S;
4129
4130  const BlockDecl *Decl = Expr->getBlockDecl();
4131  QualType BlockTy =
4132      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4133  // Encode result type.
4134  getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
4135  // Compute size of all parameters.
4136  // Start with computing size of a pointer in number of bytes.
4137  // FIXME: There might(should) be a better way of doing this computation!
4138  SourceLocation Loc;
4139  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4140  CharUnits ParmOffset = PtrSize;
4141  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
4142       E = Decl->param_end(); PI != E; ++PI) {
4143    QualType PType = (*PI)->getType();
4144    CharUnits sz = getObjCEncodingTypeSize(PType);
4145    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4146    ParmOffset += sz;
4147  }
4148  // Size of the argument frame
4149  S += charUnitsToString(ParmOffset);
4150  // Block pointer and offset.
4151  S += "@?0";
4152
4153  // Argument types.
4154  ParmOffset = PtrSize;
4155  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
4156       Decl->param_end(); PI != E; ++PI) {
4157    ParmVarDecl *PVDecl = *PI;
4158    QualType PType = PVDecl->getOriginalType();
4159    if (const ArrayType *AT =
4160          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4161      // Use array's original type only if it has known number of
4162      // elements.
4163      if (!isa<ConstantArrayType>(AT))
4164        PType = PVDecl->getType();
4165    } else if (PType->isFunctionType())
4166      PType = PVDecl->getType();
4167    getObjCEncodingForType(PType, S);
4168    S += charUnitsToString(ParmOffset);
4169    ParmOffset += getObjCEncodingTypeSize(PType);
4170  }
4171
4172  return S;
4173}
4174
4175bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4176                                                std::string& S) {
4177  // Encode result type.
4178  getObjCEncodingForType(Decl->getResultType(), S);
4179  CharUnits ParmOffset;
4180  // Compute size of all parameters.
4181  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4182       E = Decl->param_end(); PI != E; ++PI) {
4183    QualType PType = (*PI)->getType();
4184    CharUnits sz = getObjCEncodingTypeSize(PType);
4185    if (sz.isZero())
4186      return true;
4187
4188    assert (sz.isPositive() &&
4189        "getObjCEncodingForFunctionDecl - Incomplete param type");
4190    ParmOffset += sz;
4191  }
4192  S += charUnitsToString(ParmOffset);
4193  ParmOffset = CharUnits::Zero();
4194
4195  // Argument types.
4196  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4197       E = Decl->param_end(); PI != E; ++PI) {
4198    ParmVarDecl *PVDecl = *PI;
4199    QualType PType = PVDecl->getOriginalType();
4200    if (const ArrayType *AT =
4201          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4202      // Use array's original type only if it has known number of
4203      // elements.
4204      if (!isa<ConstantArrayType>(AT))
4205        PType = PVDecl->getType();
4206    } else if (PType->isFunctionType())
4207      PType = PVDecl->getType();
4208    getObjCEncodingForType(PType, S);
4209    S += charUnitsToString(ParmOffset);
4210    ParmOffset += getObjCEncodingTypeSize(PType);
4211  }
4212
4213  return false;
4214}
4215
4216/// getObjCEncodingForMethodParameter - Return the encoded type for a single
4217/// method parameter or return type. If Extended, include class names and
4218/// block object types.
4219void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
4220                                                   QualType T, std::string& S,
4221                                                   bool Extended) const {
4222  // Encode type qualifer, 'in', 'inout', etc. for the parameter.
4223  getObjCEncodingForTypeQualifier(QT, S);
4224  // Encode parameter type.
4225  getObjCEncodingForTypeImpl(T, S, true, true, 0,
4226                             true     /*OutermostType*/,
4227                             false    /*EncodingProperty*/,
4228                             false    /*StructField*/,
4229                             Extended /*EncodeBlockParameters*/,
4230                             Extended /*EncodeClassNames*/);
4231}
4232
4233/// getObjCEncodingForMethodDecl - Return the encoded type for this method
4234/// declaration.
4235bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4236                                              std::string& S,
4237                                              bool Extended) const {
4238  // FIXME: This is not very efficient.
4239  // Encode return type.
4240  getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
4241                                    Decl->getResultType(), S, Extended);
4242  // Compute size of all parameters.
4243  // Start with computing size of a pointer in number of bytes.
4244  // FIXME: There might(should) be a better way of doing this computation!
4245  SourceLocation Loc;
4246  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4247  // The first two arguments (self and _cmd) are pointers; account for
4248  // their size.
4249  CharUnits ParmOffset = 2 * PtrSize;
4250  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4251       E = Decl->sel_param_end(); PI != E; ++PI) {
4252    QualType PType = (*PI)->getType();
4253    CharUnits sz = getObjCEncodingTypeSize(PType);
4254    if (sz.isZero())
4255      return true;
4256
4257    assert (sz.isPositive() &&
4258        "getObjCEncodingForMethodDecl - Incomplete param type");
4259    ParmOffset += sz;
4260  }
4261  S += charUnitsToString(ParmOffset);
4262  S += "@0:";
4263  S += charUnitsToString(PtrSize);
4264
4265  // Argument types.
4266  ParmOffset = 2 * PtrSize;
4267  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4268       E = Decl->sel_param_end(); PI != E; ++PI) {
4269    const ParmVarDecl *PVDecl = *PI;
4270    QualType PType = PVDecl->getOriginalType();
4271    if (const ArrayType *AT =
4272          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4273      // Use array's original type only if it has known number of
4274      // elements.
4275      if (!isa<ConstantArrayType>(AT))
4276        PType = PVDecl->getType();
4277    } else if (PType->isFunctionType())
4278      PType = PVDecl->getType();
4279    getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
4280                                      PType, S, Extended);
4281    S += charUnitsToString(ParmOffset);
4282    ParmOffset += getObjCEncodingTypeSize(PType);
4283  }
4284
4285  return false;
4286}
4287
4288/// getObjCEncodingForPropertyDecl - Return the encoded type for this
4289/// property declaration. If non-NULL, Container must be either an
4290/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4291/// NULL when getting encodings for protocol properties.
4292/// Property attributes are stored as a comma-delimited C string. The simple
4293/// attributes readonly and bycopy are encoded as single characters. The
4294/// parametrized attributes, getter=name, setter=name, and ivar=name, are
4295/// encoded as single characters, followed by an identifier. Property types
4296/// are also encoded as a parametrized attribute. The characters used to encode
4297/// these attributes are defined by the following enumeration:
4298/// @code
4299/// enum PropertyAttributes {
4300/// kPropertyReadOnly = 'R',   // property is read-only.
4301/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4302/// kPropertyByref = '&',  // property is a reference to the value last assigned
4303/// kPropertyDynamic = 'D',    // property is dynamic
4304/// kPropertyGetter = 'G',     // followed by getter selector name
4305/// kPropertySetter = 'S',     // followed by setter selector name
4306/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4307/// kPropertyType = 'T'              // followed by old-style type encoding.
4308/// kPropertyWeak = 'W'              // 'weak' property
4309/// kPropertyStrong = 'P'            // property GC'able
4310/// kPropertyNonAtomic = 'N'         // property non-atomic
4311/// };
4312/// @endcode
4313void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4314                                                const Decl *Container,
4315                                                std::string& S) const {
4316  // Collect information from the property implementation decl(s).
4317  bool Dynamic = false;
4318  ObjCPropertyImplDecl *SynthesizePID = 0;
4319
4320  // FIXME: Duplicated code due to poor abstraction.
4321  if (Container) {
4322    if (const ObjCCategoryImplDecl *CID =
4323        dyn_cast<ObjCCategoryImplDecl>(Container)) {
4324      for (ObjCCategoryImplDecl::propimpl_iterator
4325             i = CID->propimpl_begin(), e = CID->propimpl_end();
4326           i != e; ++i) {
4327        ObjCPropertyImplDecl *PID = *i;
4328        if (PID->getPropertyDecl() == PD) {
4329          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4330            Dynamic = true;
4331          } else {
4332            SynthesizePID = PID;
4333          }
4334        }
4335      }
4336    } else {
4337      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4338      for (ObjCCategoryImplDecl::propimpl_iterator
4339             i = OID->propimpl_begin(), e = OID->propimpl_end();
4340           i != e; ++i) {
4341        ObjCPropertyImplDecl *PID = *i;
4342        if (PID->getPropertyDecl() == PD) {
4343          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4344            Dynamic = true;
4345          } else {
4346            SynthesizePID = PID;
4347          }
4348        }
4349      }
4350    }
4351  }
4352
4353  // FIXME: This is not very efficient.
4354  S = "T";
4355
4356  // Encode result type.
4357  // GCC has some special rules regarding encoding of properties which
4358  // closely resembles encoding of ivars.
4359  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4360                             true /* outermost type */,
4361                             true /* encoding for property */);
4362
4363  if (PD->isReadOnly()) {
4364    S += ",R";
4365  } else {
4366    switch (PD->getSetterKind()) {
4367    case ObjCPropertyDecl::Assign: break;
4368    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4369    case ObjCPropertyDecl::Retain: S += ",&"; break;
4370    case ObjCPropertyDecl::Weak:   S += ",W"; break;
4371    }
4372  }
4373
4374  // It really isn't clear at all what this means, since properties
4375  // are "dynamic by default".
4376  if (Dynamic)
4377    S += ",D";
4378
4379  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4380    S += ",N";
4381
4382  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4383    S += ",G";
4384    S += PD->getGetterName().getAsString();
4385  }
4386
4387  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4388    S += ",S";
4389    S += PD->getSetterName().getAsString();
4390  }
4391
4392  if (SynthesizePID) {
4393    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4394    S += ",V";
4395    S += OID->getNameAsString();
4396  }
4397
4398  // FIXME: OBJCGC: weak & strong
4399}
4400
4401/// getLegacyIntegralTypeEncoding -
4402/// Another legacy compatibility encoding: 32-bit longs are encoded as
4403/// 'l' or 'L' , but not always.  For typedefs, we need to use
4404/// 'i' or 'I' instead if encoding a struct field, or a pointer!
4405///
4406void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4407  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4408    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4409      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4410        PointeeTy = UnsignedIntTy;
4411      else
4412        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4413          PointeeTy = IntTy;
4414    }
4415  }
4416}
4417
4418void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
4419                                        const FieldDecl *Field) const {
4420  // We follow the behavior of gcc, expanding structures which are
4421  // directly pointed to, and expanding embedded structures. Note that
4422  // these rules are sufficient to prevent recursive encoding of the
4423  // same type.
4424  getObjCEncodingForTypeImpl(T, S, true, true, Field,
4425                             true /* outermost type */);
4426}
4427
4428static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
4429    switch (T->getAs<BuiltinType>()->getKind()) {
4430    default: llvm_unreachable("Unhandled builtin type kind");
4431    case BuiltinType::Void:       return 'v';
4432    case BuiltinType::Bool:       return 'B';
4433    case BuiltinType::Char_U:
4434    case BuiltinType::UChar:      return 'C';
4435    case BuiltinType::UShort:     return 'S';
4436    case BuiltinType::UInt:       return 'I';
4437    case BuiltinType::ULong:
4438        return C->getIntWidth(T) == 32 ? 'L' : 'Q';
4439    case BuiltinType::UInt128:    return 'T';
4440    case BuiltinType::ULongLong:  return 'Q';
4441    case BuiltinType::Char_S:
4442    case BuiltinType::SChar:      return 'c';
4443    case BuiltinType::Short:      return 's';
4444    case BuiltinType::WChar_S:
4445    case BuiltinType::WChar_U:
4446    case BuiltinType::Int:        return 'i';
4447    case BuiltinType::Long:
4448      return C->getIntWidth(T) == 32 ? 'l' : 'q';
4449    case BuiltinType::LongLong:   return 'q';
4450    case BuiltinType::Int128:     return 't';
4451    case BuiltinType::Float:      return 'f';
4452    case BuiltinType::Double:     return 'd';
4453    case BuiltinType::LongDouble: return 'D';
4454    }
4455}
4456
4457static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
4458  EnumDecl *Enum = ET->getDecl();
4459
4460  // The encoding of an non-fixed enum type is always 'i', regardless of size.
4461  if (!Enum->isFixed())
4462    return 'i';
4463
4464  // The encoding of a fixed enum type matches its fixed underlying type.
4465  return ObjCEncodingForPrimitiveKind(C, Enum->getIntegerType());
4466}
4467
4468static void EncodeBitField(const ASTContext *Ctx, std::string& S,
4469                           QualType T, const FieldDecl *FD) {
4470  assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
4471  S += 'b';
4472  // The NeXT runtime encodes bit fields as b followed by the number of bits.
4473  // The GNU runtime requires more information; bitfields are encoded as b,
4474  // then the offset (in bits) of the first element, then the type of the
4475  // bitfield, then the size in bits.  For example, in this structure:
4476  //
4477  // struct
4478  // {
4479  //    int integer;
4480  //    int flags:2;
4481  // };
4482  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
4483  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
4484  // information is not especially sensible, but we're stuck with it for
4485  // compatibility with GCC, although providing it breaks anything that
4486  // actually uses runtime introspection and wants to work on both runtimes...
4487  if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
4488    const RecordDecl *RD = FD->getParent();
4489    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
4490    S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
4491    if (const EnumType *ET = T->getAs<EnumType>())
4492      S += ObjCEncodingForEnumType(Ctx, ET);
4493    else
4494      S += ObjCEncodingForPrimitiveKind(Ctx, T);
4495  }
4496  S += llvm::utostr(FD->getBitWidthValue(*Ctx));
4497}
4498
4499// FIXME: Use SmallString for accumulating string.
4500void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
4501                                            bool ExpandPointedToStructures,
4502                                            bool ExpandStructures,
4503                                            const FieldDecl *FD,
4504                                            bool OutermostType,
4505                                            bool EncodingProperty,
4506                                            bool StructField,
4507                                            bool EncodeBlockParameters,
4508                                            bool EncodeClassNames) const {
4509  if (T->getAs<BuiltinType>()) {
4510    if (FD && FD->isBitField())
4511      return EncodeBitField(this, S, T, FD);
4512    S += ObjCEncodingForPrimitiveKind(this, T);
4513    return;
4514  }
4515
4516  if (const ComplexType *CT = T->getAs<ComplexType>()) {
4517    S += 'j';
4518    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
4519                               false);
4520    return;
4521  }
4522
4523  // encoding for pointer or r3eference types.
4524  QualType PointeeTy;
4525  if (const PointerType *PT = T->getAs<PointerType>()) {
4526    if (PT->isObjCSelType()) {
4527      S += ':';
4528      return;
4529    }
4530    PointeeTy = PT->getPointeeType();
4531  }
4532  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4533    PointeeTy = RT->getPointeeType();
4534  if (!PointeeTy.isNull()) {
4535    bool isReadOnly = false;
4536    // For historical/compatibility reasons, the read-only qualifier of the
4537    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
4538    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
4539    // Also, do not emit the 'r' for anything but the outermost type!
4540    if (isa<TypedefType>(T.getTypePtr())) {
4541      if (OutermostType && T.isConstQualified()) {
4542        isReadOnly = true;
4543        S += 'r';
4544      }
4545    } else if (OutermostType) {
4546      QualType P = PointeeTy;
4547      while (P->getAs<PointerType>())
4548        P = P->getAs<PointerType>()->getPointeeType();
4549      if (P.isConstQualified()) {
4550        isReadOnly = true;
4551        S += 'r';
4552      }
4553    }
4554    if (isReadOnly) {
4555      // Another legacy compatibility encoding. Some ObjC qualifier and type
4556      // combinations need to be rearranged.
4557      // Rewrite "in const" from "nr" to "rn"
4558      if (StringRef(S).endswith("nr"))
4559        S.replace(S.end()-2, S.end(), "rn");
4560    }
4561
4562    if (PointeeTy->isCharType()) {
4563      // char pointer types should be encoded as '*' unless it is a
4564      // type that has been typedef'd to 'BOOL'.
4565      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
4566        S += '*';
4567        return;
4568      }
4569    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
4570      // GCC binary compat: Need to convert "struct objc_class *" to "#".
4571      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
4572        S += '#';
4573        return;
4574      }
4575      // GCC binary compat: Need to convert "struct objc_object *" to "@".
4576      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
4577        S += '@';
4578        return;
4579      }
4580      // fall through...
4581    }
4582    S += '^';
4583    getLegacyIntegralTypeEncoding(PointeeTy);
4584
4585    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
4586                               NULL);
4587    return;
4588  }
4589
4590  if (const ArrayType *AT =
4591      // Ignore type qualifiers etc.
4592        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
4593    if (isa<IncompleteArrayType>(AT) && !StructField) {
4594      // Incomplete arrays are encoded as a pointer to the array element.
4595      S += '^';
4596
4597      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4598                                 false, ExpandStructures, FD);
4599    } else {
4600      S += '[';
4601
4602      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
4603        if (getTypeSize(CAT->getElementType()) == 0)
4604          S += '0';
4605        else
4606          S += llvm::utostr(CAT->getSize().getZExtValue());
4607      } else {
4608        //Variable length arrays are encoded as a regular array with 0 elements.
4609        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
4610               "Unknown array type!");
4611        S += '0';
4612      }
4613
4614      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4615                                 false, ExpandStructures, FD);
4616      S += ']';
4617    }
4618    return;
4619  }
4620
4621  if (T->getAs<FunctionType>()) {
4622    S += '?';
4623    return;
4624  }
4625
4626  if (const RecordType *RTy = T->getAs<RecordType>()) {
4627    RecordDecl *RDecl = RTy->getDecl();
4628    S += RDecl->isUnion() ? '(' : '{';
4629    // Anonymous structures print as '?'
4630    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
4631      S += II->getName();
4632      if (ClassTemplateSpecializationDecl *Spec
4633          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
4634        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
4635        std::string TemplateArgsStr
4636          = TemplateSpecializationType::PrintTemplateArgumentList(
4637                                            TemplateArgs.data(),
4638                                            TemplateArgs.size(),
4639                                            (*this).getPrintingPolicy());
4640
4641        S += TemplateArgsStr;
4642      }
4643    } else {
4644      S += '?';
4645    }
4646    if (ExpandStructures) {
4647      S += '=';
4648      if (!RDecl->isUnion()) {
4649        getObjCEncodingForStructureImpl(RDecl, S, FD);
4650      } else {
4651        for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4652                                     FieldEnd = RDecl->field_end();
4653             Field != FieldEnd; ++Field) {
4654          if (FD) {
4655            S += '"';
4656            S += Field->getNameAsString();
4657            S += '"';
4658          }
4659
4660          // Special case bit-fields.
4661          if (Field->isBitField()) {
4662            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
4663                                       *Field);
4664          } else {
4665            QualType qt = Field->getType();
4666            getLegacyIntegralTypeEncoding(qt);
4667            getObjCEncodingForTypeImpl(qt, S, false, true,
4668                                       FD, /*OutermostType*/false,
4669                                       /*EncodingProperty*/false,
4670                                       /*StructField*/true);
4671          }
4672        }
4673      }
4674    }
4675    S += RDecl->isUnion() ? ')' : '}';
4676    return;
4677  }
4678
4679  if (const EnumType *ET = T->getAs<EnumType>()) {
4680    if (FD && FD->isBitField())
4681      EncodeBitField(this, S, T, FD);
4682    else
4683      S += ObjCEncodingForEnumType(this, ET);
4684    return;
4685  }
4686
4687  if (const BlockPointerType *BT = T->getAs<BlockPointerType>()) {
4688    S += "@?"; // Unlike a pointer-to-function, which is "^?".
4689    if (EncodeBlockParameters) {
4690      const FunctionType *FT = BT->getPointeeType()->getAs<FunctionType>();
4691
4692      S += '<';
4693      // Block return type
4694      getObjCEncodingForTypeImpl(FT->getResultType(), S,
4695                                 ExpandPointedToStructures, ExpandStructures,
4696                                 FD,
4697                                 false /* OutermostType */,
4698                                 EncodingProperty,
4699                                 false /* StructField */,
4700                                 EncodeBlockParameters,
4701                                 EncodeClassNames);
4702      // Block self
4703      S += "@?";
4704      // Block parameters
4705      if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
4706        for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
4707               E = FPT->arg_type_end(); I && (I != E); ++I) {
4708          getObjCEncodingForTypeImpl(*I, S,
4709                                     ExpandPointedToStructures,
4710                                     ExpandStructures,
4711                                     FD,
4712                                     false /* OutermostType */,
4713                                     EncodingProperty,
4714                                     false /* StructField */,
4715                                     EncodeBlockParameters,
4716                                     EncodeClassNames);
4717        }
4718      }
4719      S += '>';
4720    }
4721    return;
4722  }
4723
4724  // Ignore protocol qualifiers when mangling at this level.
4725  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
4726    T = OT->getBaseType();
4727
4728  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
4729    // @encode(class_name)
4730    ObjCInterfaceDecl *OI = OIT->getDecl();
4731    S += '{';
4732    const IdentifierInfo *II = OI->getIdentifier();
4733    S += II->getName();
4734    S += '=';
4735    SmallVector<const ObjCIvarDecl*, 32> Ivars;
4736    DeepCollectObjCIvars(OI, true, Ivars);
4737    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
4738      const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
4739      if (Field->isBitField())
4740        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
4741      else
4742        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
4743    }
4744    S += '}';
4745    return;
4746  }
4747
4748  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
4749    if (OPT->isObjCIdType()) {
4750      S += '@';
4751      return;
4752    }
4753
4754    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
4755      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
4756      // Since this is a binary compatibility issue, need to consult with runtime
4757      // folks. Fortunately, this is a *very* obsure construct.
4758      S += '#';
4759      return;
4760    }
4761
4762    if (OPT->isObjCQualifiedIdType()) {
4763      getObjCEncodingForTypeImpl(getObjCIdType(), S,
4764                                 ExpandPointedToStructures,
4765                                 ExpandStructures, FD);
4766      if (FD || EncodingProperty || EncodeClassNames) {
4767        // Note that we do extended encoding of protocol qualifer list
4768        // Only when doing ivar or property encoding.
4769        S += '"';
4770        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4771             E = OPT->qual_end(); I != E; ++I) {
4772          S += '<';
4773          S += (*I)->getNameAsString();
4774          S += '>';
4775        }
4776        S += '"';
4777      }
4778      return;
4779    }
4780
4781    QualType PointeeTy = OPT->getPointeeType();
4782    if (!EncodingProperty &&
4783        isa<TypedefType>(PointeeTy.getTypePtr())) {
4784      // Another historical/compatibility reason.
4785      // We encode the underlying type which comes out as
4786      // {...};
4787      S += '^';
4788      getObjCEncodingForTypeImpl(PointeeTy, S,
4789                                 false, ExpandPointedToStructures,
4790                                 NULL);
4791      return;
4792    }
4793
4794    S += '@';
4795    if (OPT->getInterfaceDecl() &&
4796        (FD || EncodingProperty || EncodeClassNames)) {
4797      S += '"';
4798      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
4799      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4800           E = OPT->qual_end(); I != E; ++I) {
4801        S += '<';
4802        S += (*I)->getNameAsString();
4803        S += '>';
4804      }
4805      S += '"';
4806    }
4807    return;
4808  }
4809
4810  // gcc just blithely ignores member pointers.
4811  // TODO: maybe there should be a mangling for these
4812  if (T->getAs<MemberPointerType>())
4813    return;
4814
4815  if (T->isVectorType()) {
4816    // This matches gcc's encoding, even though technically it is
4817    // insufficient.
4818    // FIXME. We should do a better job than gcc.
4819    return;
4820  }
4821
4822  llvm_unreachable("@encode for type not implemented!");
4823}
4824
4825void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
4826                                                 std::string &S,
4827                                                 const FieldDecl *FD,
4828                                                 bool includeVBases) const {
4829  assert(RDecl && "Expected non-null RecordDecl");
4830  assert(!RDecl->isUnion() && "Should not be called for unions");
4831  if (!RDecl->getDefinition())
4832    return;
4833
4834  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
4835  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
4836  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
4837
4838  if (CXXRec) {
4839    for (CXXRecordDecl::base_class_iterator
4840           BI = CXXRec->bases_begin(),
4841           BE = CXXRec->bases_end(); BI != BE; ++BI) {
4842      if (!BI->isVirtual()) {
4843        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4844        if (base->isEmpty())
4845          continue;
4846        uint64_t offs = layout.getBaseClassOffsetInBits(base);
4847        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4848                                  std::make_pair(offs, base));
4849      }
4850    }
4851  }
4852
4853  unsigned i = 0;
4854  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4855                               FieldEnd = RDecl->field_end();
4856       Field != FieldEnd; ++Field, ++i) {
4857    uint64_t offs = layout.getFieldOffset(i);
4858    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4859                              std::make_pair(offs, *Field));
4860  }
4861
4862  if (CXXRec && includeVBases) {
4863    for (CXXRecordDecl::base_class_iterator
4864           BI = CXXRec->vbases_begin(),
4865           BE = CXXRec->vbases_end(); BI != BE; ++BI) {
4866      CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4867      if (base->isEmpty())
4868        continue;
4869      uint64_t offs = layout.getVBaseClassOffsetInBits(base);
4870      if (FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
4871        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
4872                                  std::make_pair(offs, base));
4873    }
4874  }
4875
4876  CharUnits size;
4877  if (CXXRec) {
4878    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
4879  } else {
4880    size = layout.getSize();
4881  }
4882
4883  uint64_t CurOffs = 0;
4884  std::multimap<uint64_t, NamedDecl *>::iterator
4885    CurLayObj = FieldOrBaseOffsets.begin();
4886
4887  if (CXXRec && CXXRec->isDynamicClass() &&
4888      (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
4889    if (FD) {
4890      S += "\"_vptr$";
4891      std::string recname = CXXRec->getNameAsString();
4892      if (recname.empty()) recname = "?";
4893      S += recname;
4894      S += '"';
4895    }
4896    S += "^^?";
4897    CurOffs += getTypeSize(VoidPtrTy);
4898  }
4899
4900  if (!RDecl->hasFlexibleArrayMember()) {
4901    // Mark the end of the structure.
4902    uint64_t offs = toBits(size);
4903    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4904                              std::make_pair(offs, (NamedDecl*)0));
4905  }
4906
4907  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
4908    assert(CurOffs <= CurLayObj->first);
4909
4910    if (CurOffs < CurLayObj->first) {
4911      uint64_t padding = CurLayObj->first - CurOffs;
4912      // FIXME: There doesn't seem to be a way to indicate in the encoding that
4913      // packing/alignment of members is different that normal, in which case
4914      // the encoding will be out-of-sync with the real layout.
4915      // If the runtime switches to just consider the size of types without
4916      // taking into account alignment, we could make padding explicit in the
4917      // encoding (e.g. using arrays of chars). The encoding strings would be
4918      // longer then though.
4919      CurOffs += padding;
4920    }
4921
4922    NamedDecl *dcl = CurLayObj->second;
4923    if (dcl == 0)
4924      break; // reached end of structure.
4925
4926    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
4927      // We expand the bases without their virtual bases since those are going
4928      // in the initial structure. Note that this differs from gcc which
4929      // expands virtual bases each time one is encountered in the hierarchy,
4930      // making the encoding type bigger than it really is.
4931      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
4932      assert(!base->isEmpty());
4933      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
4934    } else {
4935      FieldDecl *field = cast<FieldDecl>(dcl);
4936      if (FD) {
4937        S += '"';
4938        S += field->getNameAsString();
4939        S += '"';
4940      }
4941
4942      if (field->isBitField()) {
4943        EncodeBitField(this, S, field->getType(), field);
4944        CurOffs += field->getBitWidthValue(*this);
4945      } else {
4946        QualType qt = field->getType();
4947        getLegacyIntegralTypeEncoding(qt);
4948        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
4949                                   /*OutermostType*/false,
4950                                   /*EncodingProperty*/false,
4951                                   /*StructField*/true);
4952        CurOffs += getTypeSize(field->getType());
4953      }
4954    }
4955  }
4956}
4957
4958void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
4959                                                 std::string& S) const {
4960  if (QT & Decl::OBJC_TQ_In)
4961    S += 'n';
4962  if (QT & Decl::OBJC_TQ_Inout)
4963    S += 'N';
4964  if (QT & Decl::OBJC_TQ_Out)
4965    S += 'o';
4966  if (QT & Decl::OBJC_TQ_Bycopy)
4967    S += 'O';
4968  if (QT & Decl::OBJC_TQ_Byref)
4969    S += 'R';
4970  if (QT & Decl::OBJC_TQ_Oneway)
4971    S += 'V';
4972}
4973
4974TypedefDecl *ASTContext::getObjCIdDecl() const {
4975  if (!ObjCIdDecl) {
4976    QualType T = getObjCObjectType(ObjCBuiltinIdTy, 0, 0);
4977    T = getObjCObjectPointerType(T);
4978    TypeSourceInfo *IdInfo = getTrivialTypeSourceInfo(T);
4979    ObjCIdDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
4980                                     getTranslationUnitDecl(),
4981                                     SourceLocation(), SourceLocation(),
4982                                     &Idents.get("id"), IdInfo);
4983  }
4984
4985  return ObjCIdDecl;
4986}
4987
4988TypedefDecl *ASTContext::getObjCSelDecl() const {
4989  if (!ObjCSelDecl) {
4990    QualType SelT = getPointerType(ObjCBuiltinSelTy);
4991    TypeSourceInfo *SelInfo = getTrivialTypeSourceInfo(SelT);
4992    ObjCSelDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
4993                                      getTranslationUnitDecl(),
4994                                      SourceLocation(), SourceLocation(),
4995                                      &Idents.get("SEL"), SelInfo);
4996  }
4997  return ObjCSelDecl;
4998}
4999
5000TypedefDecl *ASTContext::getObjCClassDecl() const {
5001  if (!ObjCClassDecl) {
5002    QualType T = getObjCObjectType(ObjCBuiltinClassTy, 0, 0);
5003    T = getObjCObjectPointerType(T);
5004    TypeSourceInfo *ClassInfo = getTrivialTypeSourceInfo(T);
5005    ObjCClassDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5006                                        getTranslationUnitDecl(),
5007                                        SourceLocation(), SourceLocation(),
5008                                        &Idents.get("Class"), ClassInfo);
5009  }
5010
5011  return ObjCClassDecl;
5012}
5013
5014ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
5015  if (!ObjCProtocolClassDecl) {
5016    ObjCProtocolClassDecl
5017      = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
5018                                  SourceLocation(),
5019                                  &Idents.get("Protocol"),
5020                                  /*PrevDecl=*/0,
5021                                  SourceLocation(), true);
5022  }
5023
5024  return ObjCProtocolClassDecl;
5025}
5026
5027//===----------------------------------------------------------------------===//
5028// __builtin_va_list Construction Functions
5029//===----------------------------------------------------------------------===//
5030
5031static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
5032  // typedef char* __builtin_va_list;
5033  QualType CharPtrType = Context->getPointerType(Context->CharTy);
5034  TypeSourceInfo *TInfo
5035    = Context->getTrivialTypeSourceInfo(CharPtrType);
5036
5037  TypedefDecl *VaListTypeDecl
5038    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5039                          Context->getTranslationUnitDecl(),
5040                          SourceLocation(), SourceLocation(),
5041                          &Context->Idents.get("__builtin_va_list"),
5042                          TInfo);
5043  return VaListTypeDecl;
5044}
5045
5046static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
5047  // typedef void* __builtin_va_list;
5048  QualType VoidPtrType = Context->getPointerType(Context->VoidTy);
5049  TypeSourceInfo *TInfo
5050    = Context->getTrivialTypeSourceInfo(VoidPtrType);
5051
5052  TypedefDecl *VaListTypeDecl
5053    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5054                          Context->getTranslationUnitDecl(),
5055                          SourceLocation(), SourceLocation(),
5056                          &Context->Idents.get("__builtin_va_list"),
5057                          TInfo);
5058  return VaListTypeDecl;
5059}
5060
5061static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
5062  // typedef struct __va_list_tag {
5063  RecordDecl *VaListTagDecl;
5064
5065  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5066                                   Context->getTranslationUnitDecl(),
5067                                   &Context->Idents.get("__va_list_tag"));
5068  VaListTagDecl->startDefinition();
5069
5070  const size_t NumFields = 5;
5071  QualType FieldTypes[NumFields];
5072  const char *FieldNames[NumFields];
5073
5074  //   unsigned char gpr;
5075  FieldTypes[0] = Context->UnsignedCharTy;
5076  FieldNames[0] = "gpr";
5077
5078  //   unsigned char fpr;
5079  FieldTypes[1] = Context->UnsignedCharTy;
5080  FieldNames[1] = "fpr";
5081
5082  //   unsigned short reserved;
5083  FieldTypes[2] = Context->UnsignedShortTy;
5084  FieldNames[2] = "reserved";
5085
5086  //   void* overflow_arg_area;
5087  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5088  FieldNames[3] = "overflow_arg_area";
5089
5090  //   void* reg_save_area;
5091  FieldTypes[4] = Context->getPointerType(Context->VoidTy);
5092  FieldNames[4] = "reg_save_area";
5093
5094  // Create fields
5095  for (unsigned i = 0; i < NumFields; ++i) {
5096    FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
5097                                         SourceLocation(),
5098                                         SourceLocation(),
5099                                         &Context->Idents.get(FieldNames[i]),
5100                                         FieldTypes[i], /*TInfo=*/0,
5101                                         /*BitWidth=*/0,
5102                                         /*Mutable=*/false,
5103                                         ICIS_NoInit);
5104    Field->setAccess(AS_public);
5105    VaListTagDecl->addDecl(Field);
5106  }
5107  VaListTagDecl->completeDefinition();
5108  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5109
5110  // } __va_list_tag;
5111  TypedefDecl *VaListTagTypedefDecl
5112    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5113                          Context->getTranslationUnitDecl(),
5114                          SourceLocation(), SourceLocation(),
5115                          &Context->Idents.get("__va_list_tag"),
5116                          Context->getTrivialTypeSourceInfo(VaListTagType));
5117  QualType VaListTagTypedefType =
5118    Context->getTypedefType(VaListTagTypedefDecl);
5119
5120  // typedef __va_list_tag __builtin_va_list[1];
5121  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5122  QualType VaListTagArrayType
5123    = Context->getConstantArrayType(VaListTagTypedefType,
5124                                    Size, ArrayType::Normal, 0);
5125  TypeSourceInfo *TInfo
5126    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5127  TypedefDecl *VaListTypedefDecl
5128    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5129                          Context->getTranslationUnitDecl(),
5130                          SourceLocation(), SourceLocation(),
5131                          &Context->Idents.get("__builtin_va_list"),
5132                          TInfo);
5133
5134  return VaListTypedefDecl;
5135}
5136
5137static TypedefDecl *
5138CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
5139  // typedef struct __va_list_tag {
5140  RecordDecl *VaListTagDecl;
5141  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5142                                   Context->getTranslationUnitDecl(),
5143                                   &Context->Idents.get("__va_list_tag"));
5144  VaListTagDecl->startDefinition();
5145
5146  const size_t NumFields = 4;
5147  QualType FieldTypes[NumFields];
5148  const char *FieldNames[NumFields];
5149
5150  //   unsigned gp_offset;
5151  FieldTypes[0] = Context->UnsignedIntTy;
5152  FieldNames[0] = "gp_offset";
5153
5154  //   unsigned fp_offset;
5155  FieldTypes[1] = Context->UnsignedIntTy;
5156  FieldNames[1] = "fp_offset";
5157
5158  //   void* overflow_arg_area;
5159  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5160  FieldNames[2] = "overflow_arg_area";
5161
5162  //   void* reg_save_area;
5163  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5164  FieldNames[3] = "reg_save_area";
5165
5166  // Create fields
5167  for (unsigned i = 0; i < NumFields; ++i) {
5168    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5169                                         VaListTagDecl,
5170                                         SourceLocation(),
5171                                         SourceLocation(),
5172                                         &Context->Idents.get(FieldNames[i]),
5173                                         FieldTypes[i], /*TInfo=*/0,
5174                                         /*BitWidth=*/0,
5175                                         /*Mutable=*/false,
5176                                         ICIS_NoInit);
5177    Field->setAccess(AS_public);
5178    VaListTagDecl->addDecl(Field);
5179  }
5180  VaListTagDecl->completeDefinition();
5181  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5182
5183  // } __va_list_tag;
5184  TypedefDecl *VaListTagTypedefDecl
5185    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5186                          Context->getTranslationUnitDecl(),
5187                          SourceLocation(), SourceLocation(),
5188                          &Context->Idents.get("__va_list_tag"),
5189                          Context->getTrivialTypeSourceInfo(VaListTagType));
5190  QualType VaListTagTypedefType =
5191    Context->getTypedefType(VaListTagTypedefDecl);
5192
5193  // typedef __va_list_tag __builtin_va_list[1];
5194  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5195  QualType VaListTagArrayType
5196    = Context->getConstantArrayType(VaListTagTypedefType,
5197                                      Size, ArrayType::Normal,0);
5198  TypeSourceInfo *TInfo
5199    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5200  TypedefDecl *VaListTypedefDecl
5201    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5202                          Context->getTranslationUnitDecl(),
5203                          SourceLocation(), SourceLocation(),
5204                          &Context->Idents.get("__builtin_va_list"),
5205                          TInfo);
5206
5207  return VaListTypedefDecl;
5208}
5209
5210static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
5211  // typedef int __builtin_va_list[4];
5212  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
5213  QualType IntArrayType
5214    = Context->getConstantArrayType(Context->IntTy,
5215				    Size, ArrayType::Normal, 0);
5216  TypedefDecl *VaListTypedefDecl
5217    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5218                          Context->getTranslationUnitDecl(),
5219                          SourceLocation(), SourceLocation(),
5220                          &Context->Idents.get("__builtin_va_list"),
5221                          Context->getTrivialTypeSourceInfo(IntArrayType));
5222
5223  return VaListTypedefDecl;
5224}
5225
5226static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
5227                                     TargetInfo::BuiltinVaListKind Kind) {
5228  switch (Kind) {
5229  case TargetInfo::CharPtrBuiltinVaList:
5230    return CreateCharPtrBuiltinVaListDecl(Context);
5231  case TargetInfo::VoidPtrBuiltinVaList:
5232    return CreateVoidPtrBuiltinVaListDecl(Context);
5233  case TargetInfo::PowerABIBuiltinVaList:
5234    return CreatePowerABIBuiltinVaListDecl(Context);
5235  case TargetInfo::X86_64ABIBuiltinVaList:
5236    return CreateX86_64ABIBuiltinVaListDecl(Context);
5237  case TargetInfo::PNaClABIBuiltinVaList:
5238    return CreatePNaClABIBuiltinVaListDecl(Context);
5239  }
5240
5241  llvm_unreachable("Unhandled __builtin_va_list type kind");
5242}
5243
5244TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
5245  if (!BuiltinVaListDecl)
5246    BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
5247
5248  return BuiltinVaListDecl;
5249}
5250
5251void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
5252  assert(ObjCConstantStringType.isNull() &&
5253         "'NSConstantString' type already set!");
5254
5255  ObjCConstantStringType = getObjCInterfaceType(Decl);
5256}
5257
5258/// \brief Retrieve the template name that corresponds to a non-empty
5259/// lookup.
5260TemplateName
5261ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
5262                                      UnresolvedSetIterator End) const {
5263  unsigned size = End - Begin;
5264  assert(size > 1 && "set is not overloaded!");
5265
5266  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
5267                          size * sizeof(FunctionTemplateDecl*));
5268  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
5269
5270  NamedDecl **Storage = OT->getStorage();
5271  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
5272    NamedDecl *D = *I;
5273    assert(isa<FunctionTemplateDecl>(D) ||
5274           (isa<UsingShadowDecl>(D) &&
5275            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
5276    *Storage++ = D;
5277  }
5278
5279  return TemplateName(OT);
5280}
5281
5282/// \brief Retrieve the template name that represents a qualified
5283/// template name such as \c std::vector.
5284TemplateName
5285ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
5286                                     bool TemplateKeyword,
5287                                     TemplateDecl *Template) const {
5288  assert(NNS && "Missing nested-name-specifier in qualified template name");
5289
5290  // FIXME: Canonicalization?
5291  llvm::FoldingSetNodeID ID;
5292  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
5293
5294  void *InsertPos = 0;
5295  QualifiedTemplateName *QTN =
5296    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5297  if (!QTN) {
5298    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
5299    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
5300  }
5301
5302  return TemplateName(QTN);
5303}
5304
5305/// \brief Retrieve the template name that represents a dependent
5306/// template name such as \c MetaFun::template apply.
5307TemplateName
5308ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5309                                     const IdentifierInfo *Name) const {
5310  assert((!NNS || NNS->isDependent()) &&
5311         "Nested name specifier must be dependent");
5312
5313  llvm::FoldingSetNodeID ID;
5314  DependentTemplateName::Profile(ID, NNS, Name);
5315
5316  void *InsertPos = 0;
5317  DependentTemplateName *QTN =
5318    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5319
5320  if (QTN)
5321    return TemplateName(QTN);
5322
5323  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5324  if (CanonNNS == NNS) {
5325    QTN = new (*this,4) DependentTemplateName(NNS, Name);
5326  } else {
5327    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
5328    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
5329    DependentTemplateName *CheckQTN =
5330      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5331    assert(!CheckQTN && "Dependent type name canonicalization broken");
5332    (void)CheckQTN;
5333  }
5334
5335  DependentTemplateNames.InsertNode(QTN, InsertPos);
5336  return TemplateName(QTN);
5337}
5338
5339/// \brief Retrieve the template name that represents a dependent
5340/// template name such as \c MetaFun::template operator+.
5341TemplateName
5342ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5343                                     OverloadedOperatorKind Operator) const {
5344  assert((!NNS || NNS->isDependent()) &&
5345         "Nested name specifier must be dependent");
5346
5347  llvm::FoldingSetNodeID ID;
5348  DependentTemplateName::Profile(ID, NNS, Operator);
5349
5350  void *InsertPos = 0;
5351  DependentTemplateName *QTN
5352    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5353
5354  if (QTN)
5355    return TemplateName(QTN);
5356
5357  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5358  if (CanonNNS == NNS) {
5359    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
5360  } else {
5361    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
5362    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
5363
5364    DependentTemplateName *CheckQTN
5365      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5366    assert(!CheckQTN && "Dependent template name canonicalization broken");
5367    (void)CheckQTN;
5368  }
5369
5370  DependentTemplateNames.InsertNode(QTN, InsertPos);
5371  return TemplateName(QTN);
5372}
5373
5374TemplateName
5375ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
5376                                         TemplateName replacement) const {
5377  llvm::FoldingSetNodeID ID;
5378  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
5379
5380  void *insertPos = 0;
5381  SubstTemplateTemplateParmStorage *subst
5382    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
5383
5384  if (!subst) {
5385    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
5386    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
5387  }
5388
5389  return TemplateName(subst);
5390}
5391
5392TemplateName
5393ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
5394                                       const TemplateArgument &ArgPack) const {
5395  ASTContext &Self = const_cast<ASTContext &>(*this);
5396  llvm::FoldingSetNodeID ID;
5397  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
5398
5399  void *InsertPos = 0;
5400  SubstTemplateTemplateParmPackStorage *Subst
5401    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
5402
5403  if (!Subst) {
5404    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
5405                                                           ArgPack.pack_size(),
5406                                                         ArgPack.pack_begin());
5407    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
5408  }
5409
5410  return TemplateName(Subst);
5411}
5412
5413/// getFromTargetType - Given one of the integer types provided by
5414/// TargetInfo, produce the corresponding type. The unsigned @p Type
5415/// is actually a value of type @c TargetInfo::IntType.
5416CanQualType ASTContext::getFromTargetType(unsigned Type) const {
5417  switch (Type) {
5418  case TargetInfo::NoInt: return CanQualType();
5419  case TargetInfo::SignedShort: return ShortTy;
5420  case TargetInfo::UnsignedShort: return UnsignedShortTy;
5421  case TargetInfo::SignedInt: return IntTy;
5422  case TargetInfo::UnsignedInt: return UnsignedIntTy;
5423  case TargetInfo::SignedLong: return LongTy;
5424  case TargetInfo::UnsignedLong: return UnsignedLongTy;
5425  case TargetInfo::SignedLongLong: return LongLongTy;
5426  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
5427  }
5428
5429  llvm_unreachable("Unhandled TargetInfo::IntType value");
5430}
5431
5432//===----------------------------------------------------------------------===//
5433//                        Type Predicates.
5434//===----------------------------------------------------------------------===//
5435
5436/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
5437/// garbage collection attribute.
5438///
5439Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
5440  if (getLangOpts().getGC() == LangOptions::NonGC)
5441    return Qualifiers::GCNone;
5442
5443  assert(getLangOpts().ObjC1);
5444  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
5445
5446  // Default behaviour under objective-C's gc is for ObjC pointers
5447  // (or pointers to them) be treated as though they were declared
5448  // as __strong.
5449  if (GCAttrs == Qualifiers::GCNone) {
5450    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
5451      return Qualifiers::Strong;
5452    else if (Ty->isPointerType())
5453      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
5454  } else {
5455    // It's not valid to set GC attributes on anything that isn't a
5456    // pointer.
5457#ifndef NDEBUG
5458    QualType CT = Ty->getCanonicalTypeInternal();
5459    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
5460      CT = AT->getElementType();
5461    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
5462#endif
5463  }
5464  return GCAttrs;
5465}
5466
5467//===----------------------------------------------------------------------===//
5468//                        Type Compatibility Testing
5469//===----------------------------------------------------------------------===//
5470
5471/// areCompatVectorTypes - Return true if the two specified vector types are
5472/// compatible.
5473static bool areCompatVectorTypes(const VectorType *LHS,
5474                                 const VectorType *RHS) {
5475  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
5476  return LHS->getElementType() == RHS->getElementType() &&
5477         LHS->getNumElements() == RHS->getNumElements();
5478}
5479
5480bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
5481                                          QualType SecondVec) {
5482  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
5483  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
5484
5485  if (hasSameUnqualifiedType(FirstVec, SecondVec))
5486    return true;
5487
5488  // Treat Neon vector types and most AltiVec vector types as if they are the
5489  // equivalent GCC vector types.
5490  const VectorType *First = FirstVec->getAs<VectorType>();
5491  const VectorType *Second = SecondVec->getAs<VectorType>();
5492  if (First->getNumElements() == Second->getNumElements() &&
5493      hasSameType(First->getElementType(), Second->getElementType()) &&
5494      First->getVectorKind() != VectorType::AltiVecPixel &&
5495      First->getVectorKind() != VectorType::AltiVecBool &&
5496      Second->getVectorKind() != VectorType::AltiVecPixel &&
5497      Second->getVectorKind() != VectorType::AltiVecBool)
5498    return true;
5499
5500  return false;
5501}
5502
5503//===----------------------------------------------------------------------===//
5504// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
5505//===----------------------------------------------------------------------===//
5506
5507/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
5508/// inheritance hierarchy of 'rProto'.
5509bool
5510ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
5511                                           ObjCProtocolDecl *rProto) const {
5512  if (declaresSameEntity(lProto, rProto))
5513    return true;
5514  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
5515       E = rProto->protocol_end(); PI != E; ++PI)
5516    if (ProtocolCompatibleWithProtocol(lProto, *PI))
5517      return true;
5518  return false;
5519}
5520
5521/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
5522/// return true if lhs's protocols conform to rhs's protocol; false
5523/// otherwise.
5524bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
5525  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
5526    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
5527  return false;
5528}
5529
5530/// ObjCQualifiedClassTypesAreCompatible - compare  Class<p,...> and
5531/// Class<p1, ...>.
5532bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
5533                                                      QualType rhs) {
5534  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
5535  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5536  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
5537
5538  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5539       E = lhsQID->qual_end(); I != E; ++I) {
5540    bool match = false;
5541    ObjCProtocolDecl *lhsProto = *I;
5542    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5543         E = rhsOPT->qual_end(); J != E; ++J) {
5544      ObjCProtocolDecl *rhsProto = *J;
5545      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
5546        match = true;
5547        break;
5548      }
5549    }
5550    if (!match)
5551      return false;
5552  }
5553  return true;
5554}
5555
5556/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
5557/// ObjCQualifiedIDType.
5558bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
5559                                                   bool compare) {
5560  // Allow id<P..> and an 'id' or void* type in all cases.
5561  if (lhs->isVoidPointerType() ||
5562      lhs->isObjCIdType() || lhs->isObjCClassType())
5563    return true;
5564  else if (rhs->isVoidPointerType() ||
5565           rhs->isObjCIdType() || rhs->isObjCClassType())
5566    return true;
5567
5568  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
5569    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5570
5571    if (!rhsOPT) return false;
5572
5573    if (rhsOPT->qual_empty()) {
5574      // If the RHS is a unqualified interface pointer "NSString*",
5575      // make sure we check the class hierarchy.
5576      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5577        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5578             E = lhsQID->qual_end(); I != E; ++I) {
5579          // when comparing an id<P> on lhs with a static type on rhs,
5580          // see if static class implements all of id's protocols, directly or
5581          // through its super class and categories.
5582          if (!rhsID->ClassImplementsProtocol(*I, true))
5583            return false;
5584        }
5585      }
5586      // If there are no qualifiers and no interface, we have an 'id'.
5587      return true;
5588    }
5589    // Both the right and left sides have qualifiers.
5590    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5591         E = lhsQID->qual_end(); I != E; ++I) {
5592      ObjCProtocolDecl *lhsProto = *I;
5593      bool match = false;
5594
5595      // when comparing an id<P> on lhs with a static type on rhs,
5596      // see if static class implements all of id's protocols, directly or
5597      // through its super class and categories.
5598      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5599           E = rhsOPT->qual_end(); J != E; ++J) {
5600        ObjCProtocolDecl *rhsProto = *J;
5601        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5602            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5603          match = true;
5604          break;
5605        }
5606      }
5607      // If the RHS is a qualified interface pointer "NSString<P>*",
5608      // make sure we check the class hierarchy.
5609      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5610        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5611             E = lhsQID->qual_end(); I != E; ++I) {
5612          // when comparing an id<P> on lhs with a static type on rhs,
5613          // see if static class implements all of id's protocols, directly or
5614          // through its super class and categories.
5615          if (rhsID->ClassImplementsProtocol(*I, true)) {
5616            match = true;
5617            break;
5618          }
5619        }
5620      }
5621      if (!match)
5622        return false;
5623    }
5624
5625    return true;
5626  }
5627
5628  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
5629  assert(rhsQID && "One of the LHS/RHS should be id<x>");
5630
5631  if (const ObjCObjectPointerType *lhsOPT =
5632        lhs->getAsObjCInterfacePointerType()) {
5633    // If both the right and left sides have qualifiers.
5634    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
5635         E = lhsOPT->qual_end(); I != E; ++I) {
5636      ObjCProtocolDecl *lhsProto = *I;
5637      bool match = false;
5638
5639      // when comparing an id<P> on rhs with a static type on lhs,
5640      // see if static class implements all of id's protocols, directly or
5641      // through its super class and categories.
5642      // First, lhs protocols in the qualifier list must be found, direct
5643      // or indirect in rhs's qualifier list or it is a mismatch.
5644      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5645           E = rhsQID->qual_end(); J != E; ++J) {
5646        ObjCProtocolDecl *rhsProto = *J;
5647        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5648            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5649          match = true;
5650          break;
5651        }
5652      }
5653      if (!match)
5654        return false;
5655    }
5656
5657    // Static class's protocols, or its super class or category protocols
5658    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
5659    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
5660      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5661      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
5662      // This is rather dubious but matches gcc's behavior. If lhs has
5663      // no type qualifier and its class has no static protocol(s)
5664      // assume that it is mismatch.
5665      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
5666        return false;
5667      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5668           LHSInheritedProtocols.begin(),
5669           E = LHSInheritedProtocols.end(); I != E; ++I) {
5670        bool match = false;
5671        ObjCProtocolDecl *lhsProto = (*I);
5672        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5673             E = rhsQID->qual_end(); J != E; ++J) {
5674          ObjCProtocolDecl *rhsProto = *J;
5675          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5676              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5677            match = true;
5678            break;
5679          }
5680        }
5681        if (!match)
5682          return false;
5683      }
5684    }
5685    return true;
5686  }
5687  return false;
5688}
5689
5690/// canAssignObjCInterfaces - Return true if the two interface types are
5691/// compatible for assignment from RHS to LHS.  This handles validation of any
5692/// protocol qualifiers on the LHS or RHS.
5693///
5694bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
5695                                         const ObjCObjectPointerType *RHSOPT) {
5696  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5697  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5698
5699  // If either type represents the built-in 'id' or 'Class' types, return true.
5700  if (LHS->isObjCUnqualifiedIdOrClass() ||
5701      RHS->isObjCUnqualifiedIdOrClass())
5702    return true;
5703
5704  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
5705    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5706                                             QualType(RHSOPT,0),
5707                                             false);
5708
5709  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
5710    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
5711                                                QualType(RHSOPT,0));
5712
5713  // If we have 2 user-defined types, fall into that path.
5714  if (LHS->getInterface() && RHS->getInterface())
5715    return canAssignObjCInterfaces(LHS, RHS);
5716
5717  return false;
5718}
5719
5720/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
5721/// for providing type-safety for objective-c pointers used to pass/return
5722/// arguments in block literals. When passed as arguments, passing 'A*' where
5723/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
5724/// not OK. For the return type, the opposite is not OK.
5725bool ASTContext::canAssignObjCInterfacesInBlockPointer(
5726                                         const ObjCObjectPointerType *LHSOPT,
5727                                         const ObjCObjectPointerType *RHSOPT,
5728                                         bool BlockReturnType) {
5729  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
5730    return true;
5731
5732  if (LHSOPT->isObjCBuiltinType()) {
5733    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
5734  }
5735
5736  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
5737    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5738                                             QualType(RHSOPT,0),
5739                                             false);
5740
5741  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
5742  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
5743  if (LHS && RHS)  { // We have 2 user-defined types.
5744    if (LHS != RHS) {
5745      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
5746        return BlockReturnType;
5747      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
5748        return !BlockReturnType;
5749    }
5750    else
5751      return true;
5752  }
5753  return false;
5754}
5755
5756/// getIntersectionOfProtocols - This routine finds the intersection of set
5757/// of protocols inherited from two distinct objective-c pointer objects.
5758/// It is used to build composite qualifier list of the composite type of
5759/// the conditional expression involving two objective-c pointer objects.
5760static
5761void getIntersectionOfProtocols(ASTContext &Context,
5762                                const ObjCObjectPointerType *LHSOPT,
5763                                const ObjCObjectPointerType *RHSOPT,
5764      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
5765
5766  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5767  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5768  assert(LHS->getInterface() && "LHS must have an interface base");
5769  assert(RHS->getInterface() && "RHS must have an interface base");
5770
5771  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
5772  unsigned LHSNumProtocols = LHS->getNumProtocols();
5773  if (LHSNumProtocols > 0)
5774    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
5775  else {
5776    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5777    Context.CollectInheritedProtocols(LHS->getInterface(),
5778                                      LHSInheritedProtocols);
5779    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
5780                                LHSInheritedProtocols.end());
5781  }
5782
5783  unsigned RHSNumProtocols = RHS->getNumProtocols();
5784  if (RHSNumProtocols > 0) {
5785    ObjCProtocolDecl **RHSProtocols =
5786      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
5787    for (unsigned i = 0; i < RHSNumProtocols; ++i)
5788      if (InheritedProtocolSet.count(RHSProtocols[i]))
5789        IntersectionOfProtocols.push_back(RHSProtocols[i]);
5790  } else {
5791    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
5792    Context.CollectInheritedProtocols(RHS->getInterface(),
5793                                      RHSInheritedProtocols);
5794    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5795         RHSInheritedProtocols.begin(),
5796         E = RHSInheritedProtocols.end(); I != E; ++I)
5797      if (InheritedProtocolSet.count((*I)))
5798        IntersectionOfProtocols.push_back((*I));
5799  }
5800}
5801
5802/// areCommonBaseCompatible - Returns common base class of the two classes if
5803/// one found. Note that this is O'2 algorithm. But it will be called as the
5804/// last type comparison in a ?-exp of ObjC pointer types before a
5805/// warning is issued. So, its invokation is extremely rare.
5806QualType ASTContext::areCommonBaseCompatible(
5807                                          const ObjCObjectPointerType *Lptr,
5808                                          const ObjCObjectPointerType *Rptr) {
5809  const ObjCObjectType *LHS = Lptr->getObjectType();
5810  const ObjCObjectType *RHS = Rptr->getObjectType();
5811  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
5812  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
5813  if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
5814    return QualType();
5815
5816  do {
5817    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
5818    if (canAssignObjCInterfaces(LHS, RHS)) {
5819      SmallVector<ObjCProtocolDecl *, 8> Protocols;
5820      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
5821
5822      QualType Result = QualType(LHS, 0);
5823      if (!Protocols.empty())
5824        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
5825      Result = getObjCObjectPointerType(Result);
5826      return Result;
5827    }
5828  } while ((LDecl = LDecl->getSuperClass()));
5829
5830  return QualType();
5831}
5832
5833bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
5834                                         const ObjCObjectType *RHS) {
5835  assert(LHS->getInterface() && "LHS is not an interface type");
5836  assert(RHS->getInterface() && "RHS is not an interface type");
5837
5838  // Verify that the base decls are compatible: the RHS must be a subclass of
5839  // the LHS.
5840  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
5841    return false;
5842
5843  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
5844  // protocol qualified at all, then we are good.
5845  if (LHS->getNumProtocols() == 0)
5846    return true;
5847
5848  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
5849  // more detailed analysis is required.
5850  if (RHS->getNumProtocols() == 0) {
5851    // OK, if LHS is a superclass of RHS *and*
5852    // this superclass is assignment compatible with LHS.
5853    // false otherwise.
5854    bool IsSuperClass =
5855      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
5856    if (IsSuperClass) {
5857      // OK if conversion of LHS to SuperClass results in narrowing of types
5858      // ; i.e., SuperClass may implement at least one of the protocols
5859      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
5860      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
5861      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
5862      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
5863      // If super class has no protocols, it is not a match.
5864      if (SuperClassInheritedProtocols.empty())
5865        return false;
5866
5867      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5868           LHSPE = LHS->qual_end();
5869           LHSPI != LHSPE; LHSPI++) {
5870        bool SuperImplementsProtocol = false;
5871        ObjCProtocolDecl *LHSProto = (*LHSPI);
5872
5873        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5874             SuperClassInheritedProtocols.begin(),
5875             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
5876          ObjCProtocolDecl *SuperClassProto = (*I);
5877          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
5878            SuperImplementsProtocol = true;
5879            break;
5880          }
5881        }
5882        if (!SuperImplementsProtocol)
5883          return false;
5884      }
5885      return true;
5886    }
5887    return false;
5888  }
5889
5890  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5891                                     LHSPE = LHS->qual_end();
5892       LHSPI != LHSPE; LHSPI++) {
5893    bool RHSImplementsProtocol = false;
5894
5895    // If the RHS doesn't implement the protocol on the left, the types
5896    // are incompatible.
5897    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
5898                                       RHSPE = RHS->qual_end();
5899         RHSPI != RHSPE; RHSPI++) {
5900      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
5901        RHSImplementsProtocol = true;
5902        break;
5903      }
5904    }
5905    // FIXME: For better diagnostics, consider passing back the protocol name.
5906    if (!RHSImplementsProtocol)
5907      return false;
5908  }
5909  // The RHS implements all protocols listed on the LHS.
5910  return true;
5911}
5912
5913bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
5914  // get the "pointed to" types
5915  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
5916  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
5917
5918  if (!LHSOPT || !RHSOPT)
5919    return false;
5920
5921  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
5922         canAssignObjCInterfaces(RHSOPT, LHSOPT);
5923}
5924
5925bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
5926  return canAssignObjCInterfaces(
5927                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
5928                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
5929}
5930
5931/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
5932/// both shall have the identically qualified version of a compatible type.
5933/// C99 6.2.7p1: Two types have compatible types if their types are the
5934/// same. See 6.7.[2,3,5] for additional rules.
5935bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
5936                                    bool CompareUnqualified) {
5937  if (getLangOpts().CPlusPlus)
5938    return hasSameType(LHS, RHS);
5939
5940  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
5941}
5942
5943bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
5944  return typesAreCompatible(LHS, RHS);
5945}
5946
5947bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
5948  return !mergeTypes(LHS, RHS, true).isNull();
5949}
5950
5951/// mergeTransparentUnionType - if T is a transparent union type and a member
5952/// of T is compatible with SubType, return the merged type, else return
5953/// QualType()
5954QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
5955                                               bool OfBlockPointer,
5956                                               bool Unqualified) {
5957  if (const RecordType *UT = T->getAsUnionType()) {
5958    RecordDecl *UD = UT->getDecl();
5959    if (UD->hasAttr<TransparentUnionAttr>()) {
5960      for (RecordDecl::field_iterator it = UD->field_begin(),
5961           itend = UD->field_end(); it != itend; ++it) {
5962        QualType ET = it->getType().getUnqualifiedType();
5963        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
5964        if (!MT.isNull())
5965          return MT;
5966      }
5967    }
5968  }
5969
5970  return QualType();
5971}
5972
5973/// mergeFunctionArgumentTypes - merge two types which appear as function
5974/// argument types
5975QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
5976                                                bool OfBlockPointer,
5977                                                bool Unqualified) {
5978  // GNU extension: two types are compatible if they appear as a function
5979  // argument, one of the types is a transparent union type and the other
5980  // type is compatible with a union member
5981  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
5982                                              Unqualified);
5983  if (!lmerge.isNull())
5984    return lmerge;
5985
5986  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
5987                                              Unqualified);
5988  if (!rmerge.isNull())
5989    return rmerge;
5990
5991  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
5992}
5993
5994QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
5995                                        bool OfBlockPointer,
5996                                        bool Unqualified) {
5997  const FunctionType *lbase = lhs->getAs<FunctionType>();
5998  const FunctionType *rbase = rhs->getAs<FunctionType>();
5999  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
6000  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
6001  bool allLTypes = true;
6002  bool allRTypes = true;
6003
6004  // Check return type
6005  QualType retType;
6006  if (OfBlockPointer) {
6007    QualType RHS = rbase->getResultType();
6008    QualType LHS = lbase->getResultType();
6009    bool UnqualifiedResult = Unqualified;
6010    if (!UnqualifiedResult)
6011      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
6012    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
6013  }
6014  else
6015    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
6016                         Unqualified);
6017  if (retType.isNull()) return QualType();
6018
6019  if (Unqualified)
6020    retType = retType.getUnqualifiedType();
6021
6022  CanQualType LRetType = getCanonicalType(lbase->getResultType());
6023  CanQualType RRetType = getCanonicalType(rbase->getResultType());
6024  if (Unqualified) {
6025    LRetType = LRetType.getUnqualifiedType();
6026    RRetType = RRetType.getUnqualifiedType();
6027  }
6028
6029  if (getCanonicalType(retType) != LRetType)
6030    allLTypes = false;
6031  if (getCanonicalType(retType) != RRetType)
6032    allRTypes = false;
6033
6034  // FIXME: double check this
6035  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
6036  //                           rbase->getRegParmAttr() != 0 &&
6037  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
6038  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
6039  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
6040
6041  // Compatible functions must have compatible calling conventions
6042  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
6043    return QualType();
6044
6045  // Regparm is part of the calling convention.
6046  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
6047    return QualType();
6048  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
6049    return QualType();
6050
6051  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
6052    return QualType();
6053
6054  // functypes which return are preferred over those that do not.
6055  if (lbaseInfo.getNoReturn() && !rbaseInfo.getNoReturn())
6056    allLTypes = false;
6057  else if (!lbaseInfo.getNoReturn() && rbaseInfo.getNoReturn())
6058    allRTypes = false;
6059  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
6060  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
6061
6062  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
6063
6064  if (lproto && rproto) { // two C99 style function prototypes
6065    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
6066           "C++ shouldn't be here");
6067    unsigned lproto_nargs = lproto->getNumArgs();
6068    unsigned rproto_nargs = rproto->getNumArgs();
6069
6070    // Compatible functions must have the same number of arguments
6071    if (lproto_nargs != rproto_nargs)
6072      return QualType();
6073
6074    // Variadic and non-variadic functions aren't compatible
6075    if (lproto->isVariadic() != rproto->isVariadic())
6076      return QualType();
6077
6078    if (lproto->getTypeQuals() != rproto->getTypeQuals())
6079      return QualType();
6080
6081    if (LangOpts.ObjCAutoRefCount &&
6082        !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
6083      return QualType();
6084
6085    // Check argument compatibility
6086    SmallVector<QualType, 10> types;
6087    for (unsigned i = 0; i < lproto_nargs; i++) {
6088      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
6089      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
6090      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
6091                                                    OfBlockPointer,
6092                                                    Unqualified);
6093      if (argtype.isNull()) return QualType();
6094
6095      if (Unqualified)
6096        argtype = argtype.getUnqualifiedType();
6097
6098      types.push_back(argtype);
6099      if (Unqualified) {
6100        largtype = largtype.getUnqualifiedType();
6101        rargtype = rargtype.getUnqualifiedType();
6102      }
6103
6104      if (getCanonicalType(argtype) != getCanonicalType(largtype))
6105        allLTypes = false;
6106      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
6107        allRTypes = false;
6108    }
6109
6110    if (allLTypes) return lhs;
6111    if (allRTypes) return rhs;
6112
6113    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
6114    EPI.ExtInfo = einfo;
6115    return getFunctionType(retType, types.begin(), types.size(), EPI);
6116  }
6117
6118  if (lproto) allRTypes = false;
6119  if (rproto) allLTypes = false;
6120
6121  const FunctionProtoType *proto = lproto ? lproto : rproto;
6122  if (proto) {
6123    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
6124    if (proto->isVariadic()) return QualType();
6125    // Check that the types are compatible with the types that
6126    // would result from default argument promotions (C99 6.7.5.3p15).
6127    // The only types actually affected are promotable integer
6128    // types and floats, which would be passed as a different
6129    // type depending on whether the prototype is visible.
6130    unsigned proto_nargs = proto->getNumArgs();
6131    for (unsigned i = 0; i < proto_nargs; ++i) {
6132      QualType argTy = proto->getArgType(i);
6133
6134      // Look at the promotion type of enum types, since that is the type used
6135      // to pass enum values.
6136      if (const EnumType *Enum = argTy->getAs<EnumType>())
6137        argTy = Enum->getDecl()->getPromotionType();
6138
6139      if (argTy->isPromotableIntegerType() ||
6140          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
6141        return QualType();
6142    }
6143
6144    if (allLTypes) return lhs;
6145    if (allRTypes) return rhs;
6146
6147    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
6148    EPI.ExtInfo = einfo;
6149    return getFunctionType(retType, proto->arg_type_begin(),
6150                           proto->getNumArgs(), EPI);
6151  }
6152
6153  if (allLTypes) return lhs;
6154  if (allRTypes) return rhs;
6155  return getFunctionNoProtoType(retType, einfo);
6156}
6157
6158QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
6159                                bool OfBlockPointer,
6160                                bool Unqualified, bool BlockReturnType) {
6161  // C++ [expr]: If an expression initially has the type "reference to T", the
6162  // type is adjusted to "T" prior to any further analysis, the expression
6163  // designates the object or function denoted by the reference, and the
6164  // expression is an lvalue unless the reference is an rvalue reference and
6165  // the expression is a function call (possibly inside parentheses).
6166  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
6167  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
6168
6169  if (Unqualified) {
6170    LHS = LHS.getUnqualifiedType();
6171    RHS = RHS.getUnqualifiedType();
6172  }
6173
6174  QualType LHSCan = getCanonicalType(LHS),
6175           RHSCan = getCanonicalType(RHS);
6176
6177  // If two types are identical, they are compatible.
6178  if (LHSCan == RHSCan)
6179    return LHS;
6180
6181  // If the qualifiers are different, the types aren't compatible... mostly.
6182  Qualifiers LQuals = LHSCan.getLocalQualifiers();
6183  Qualifiers RQuals = RHSCan.getLocalQualifiers();
6184  if (LQuals != RQuals) {
6185    // If any of these qualifiers are different, we have a type
6186    // mismatch.
6187    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
6188        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
6189        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
6190      return QualType();
6191
6192    // Exactly one GC qualifier difference is allowed: __strong is
6193    // okay if the other type has no GC qualifier but is an Objective
6194    // C object pointer (i.e. implicitly strong by default).  We fix
6195    // this by pretending that the unqualified type was actually
6196    // qualified __strong.
6197    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
6198    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
6199    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
6200
6201    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
6202      return QualType();
6203
6204    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
6205      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
6206    }
6207    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
6208      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
6209    }
6210    return QualType();
6211  }
6212
6213  // Okay, qualifiers are equal.
6214
6215  Type::TypeClass LHSClass = LHSCan->getTypeClass();
6216  Type::TypeClass RHSClass = RHSCan->getTypeClass();
6217
6218  // We want to consider the two function types to be the same for these
6219  // comparisons, just force one to the other.
6220  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
6221  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
6222
6223  // Same as above for arrays
6224  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
6225    LHSClass = Type::ConstantArray;
6226  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
6227    RHSClass = Type::ConstantArray;
6228
6229  // ObjCInterfaces are just specialized ObjCObjects.
6230  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
6231  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
6232
6233  // Canonicalize ExtVector -> Vector.
6234  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
6235  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
6236
6237  // If the canonical type classes don't match.
6238  if (LHSClass != RHSClass) {
6239    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
6240    // a signed integer type, or an unsigned integer type.
6241    // Compatibility is based on the underlying type, not the promotion
6242    // type.
6243    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
6244      QualType TINT = ETy->getDecl()->getIntegerType();
6245      if (!TINT.isNull() && hasSameType(TINT, RHSCan.getUnqualifiedType()))
6246        return RHS;
6247    }
6248    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
6249      QualType TINT = ETy->getDecl()->getIntegerType();
6250      if (!TINT.isNull() && hasSameType(TINT, LHSCan.getUnqualifiedType()))
6251        return LHS;
6252    }
6253    // allow block pointer type to match an 'id' type.
6254    if (OfBlockPointer && !BlockReturnType) {
6255       if (LHS->isObjCIdType() && RHS->isBlockPointerType())
6256         return LHS;
6257      if (RHS->isObjCIdType() && LHS->isBlockPointerType())
6258        return RHS;
6259    }
6260
6261    return QualType();
6262  }
6263
6264  // The canonical type classes match.
6265  switch (LHSClass) {
6266#define TYPE(Class, Base)
6267#define ABSTRACT_TYPE(Class, Base)
6268#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
6269#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
6270#define DEPENDENT_TYPE(Class, Base) case Type::Class:
6271#include "clang/AST/TypeNodes.def"
6272    llvm_unreachable("Non-canonical and dependent types shouldn't get here");
6273
6274  case Type::LValueReference:
6275  case Type::RValueReference:
6276  case Type::MemberPointer:
6277    llvm_unreachable("C++ should never be in mergeTypes");
6278
6279  case Type::ObjCInterface:
6280  case Type::IncompleteArray:
6281  case Type::VariableArray:
6282  case Type::FunctionProto:
6283  case Type::ExtVector:
6284    llvm_unreachable("Types are eliminated above");
6285
6286  case Type::Pointer:
6287  {
6288    // Merge two pointer types, while trying to preserve typedef info
6289    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
6290    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
6291    if (Unqualified) {
6292      LHSPointee = LHSPointee.getUnqualifiedType();
6293      RHSPointee = RHSPointee.getUnqualifiedType();
6294    }
6295    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
6296                                     Unqualified);
6297    if (ResultType.isNull()) return QualType();
6298    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
6299      return LHS;
6300    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
6301      return RHS;
6302    return getPointerType(ResultType);
6303  }
6304  case Type::BlockPointer:
6305  {
6306    // Merge two block pointer types, while trying to preserve typedef info
6307    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
6308    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
6309    if (Unqualified) {
6310      LHSPointee = LHSPointee.getUnqualifiedType();
6311      RHSPointee = RHSPointee.getUnqualifiedType();
6312    }
6313    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
6314                                     Unqualified);
6315    if (ResultType.isNull()) return QualType();
6316    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
6317      return LHS;
6318    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
6319      return RHS;
6320    return getBlockPointerType(ResultType);
6321  }
6322  case Type::Atomic:
6323  {
6324    // Merge two pointer types, while trying to preserve typedef info
6325    QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
6326    QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
6327    if (Unqualified) {
6328      LHSValue = LHSValue.getUnqualifiedType();
6329      RHSValue = RHSValue.getUnqualifiedType();
6330    }
6331    QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
6332                                     Unqualified);
6333    if (ResultType.isNull()) return QualType();
6334    if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
6335      return LHS;
6336    if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
6337      return RHS;
6338    return getAtomicType(ResultType);
6339  }
6340  case Type::ConstantArray:
6341  {
6342    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
6343    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
6344    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
6345      return QualType();
6346
6347    QualType LHSElem = getAsArrayType(LHS)->getElementType();
6348    QualType RHSElem = getAsArrayType(RHS)->getElementType();
6349    if (Unqualified) {
6350      LHSElem = LHSElem.getUnqualifiedType();
6351      RHSElem = RHSElem.getUnqualifiedType();
6352    }
6353
6354    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
6355    if (ResultType.isNull()) return QualType();
6356    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6357      return LHS;
6358    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6359      return RHS;
6360    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
6361                                          ArrayType::ArraySizeModifier(), 0);
6362    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
6363                                          ArrayType::ArraySizeModifier(), 0);
6364    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
6365    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
6366    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6367      return LHS;
6368    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6369      return RHS;
6370    if (LVAT) {
6371      // FIXME: This isn't correct! But tricky to implement because
6372      // the array's size has to be the size of LHS, but the type
6373      // has to be different.
6374      return LHS;
6375    }
6376    if (RVAT) {
6377      // FIXME: This isn't correct! But tricky to implement because
6378      // the array's size has to be the size of RHS, but the type
6379      // has to be different.
6380      return RHS;
6381    }
6382    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
6383    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
6384    return getIncompleteArrayType(ResultType,
6385                                  ArrayType::ArraySizeModifier(), 0);
6386  }
6387  case Type::FunctionNoProto:
6388    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
6389  case Type::Record:
6390  case Type::Enum:
6391    return QualType();
6392  case Type::Builtin:
6393    // Only exactly equal builtin types are compatible, which is tested above.
6394    return QualType();
6395  case Type::Complex:
6396    // Distinct complex types are incompatible.
6397    return QualType();
6398  case Type::Vector:
6399    // FIXME: The merged type should be an ExtVector!
6400    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
6401                             RHSCan->getAs<VectorType>()))
6402      return LHS;
6403    return QualType();
6404  case Type::ObjCObject: {
6405    // Check if the types are assignment compatible.
6406    // FIXME: This should be type compatibility, e.g. whether
6407    // "LHS x; RHS x;" at global scope is legal.
6408    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
6409    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
6410    if (canAssignObjCInterfaces(LHSIface, RHSIface))
6411      return LHS;
6412
6413    return QualType();
6414  }
6415  case Type::ObjCObjectPointer: {
6416    if (OfBlockPointer) {
6417      if (canAssignObjCInterfacesInBlockPointer(
6418                                          LHS->getAs<ObjCObjectPointerType>(),
6419                                          RHS->getAs<ObjCObjectPointerType>(),
6420                                          BlockReturnType))
6421        return LHS;
6422      return QualType();
6423    }
6424    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
6425                                RHS->getAs<ObjCObjectPointerType>()))
6426      return LHS;
6427
6428    return QualType();
6429  }
6430  }
6431
6432  llvm_unreachable("Invalid Type::Class!");
6433}
6434
6435bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
6436                   const FunctionProtoType *FromFunctionType,
6437                   const FunctionProtoType *ToFunctionType) {
6438  if (FromFunctionType->hasAnyConsumedArgs() !=
6439      ToFunctionType->hasAnyConsumedArgs())
6440    return false;
6441  FunctionProtoType::ExtProtoInfo FromEPI =
6442    FromFunctionType->getExtProtoInfo();
6443  FunctionProtoType::ExtProtoInfo ToEPI =
6444    ToFunctionType->getExtProtoInfo();
6445  if (FromEPI.ConsumedArguments && ToEPI.ConsumedArguments)
6446    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
6447         ArgIdx != NumArgs; ++ArgIdx)  {
6448      if (FromEPI.ConsumedArguments[ArgIdx] !=
6449          ToEPI.ConsumedArguments[ArgIdx])
6450        return false;
6451    }
6452  return true;
6453}
6454
6455/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
6456/// 'RHS' attributes and returns the merged version; including for function
6457/// return types.
6458QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
6459  QualType LHSCan = getCanonicalType(LHS),
6460  RHSCan = getCanonicalType(RHS);
6461  // If two types are identical, they are compatible.
6462  if (LHSCan == RHSCan)
6463    return LHS;
6464  if (RHSCan->isFunctionType()) {
6465    if (!LHSCan->isFunctionType())
6466      return QualType();
6467    QualType OldReturnType =
6468      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
6469    QualType NewReturnType =
6470      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
6471    QualType ResReturnType =
6472      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
6473    if (ResReturnType.isNull())
6474      return QualType();
6475    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
6476      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
6477      // In either case, use OldReturnType to build the new function type.
6478      const FunctionType *F = LHS->getAs<FunctionType>();
6479      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
6480        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6481        EPI.ExtInfo = getFunctionExtInfo(LHS);
6482        QualType ResultType
6483          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
6484                            FPT->getNumArgs(), EPI);
6485        return ResultType;
6486      }
6487    }
6488    return QualType();
6489  }
6490
6491  // If the qualifiers are different, the types can still be merged.
6492  Qualifiers LQuals = LHSCan.getLocalQualifiers();
6493  Qualifiers RQuals = RHSCan.getLocalQualifiers();
6494  if (LQuals != RQuals) {
6495    // If any of these qualifiers are different, we have a type mismatch.
6496    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
6497        LQuals.getAddressSpace() != RQuals.getAddressSpace())
6498      return QualType();
6499
6500    // Exactly one GC qualifier difference is allowed: __strong is
6501    // okay if the other type has no GC qualifier but is an Objective
6502    // C object pointer (i.e. implicitly strong by default).  We fix
6503    // this by pretending that the unqualified type was actually
6504    // qualified __strong.
6505    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
6506    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
6507    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
6508
6509    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
6510      return QualType();
6511
6512    if (GC_L == Qualifiers::Strong)
6513      return LHS;
6514    if (GC_R == Qualifiers::Strong)
6515      return RHS;
6516    return QualType();
6517  }
6518
6519  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
6520    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6521    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6522    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
6523    if (ResQT == LHSBaseQT)
6524      return LHS;
6525    if (ResQT == RHSBaseQT)
6526      return RHS;
6527  }
6528  return QualType();
6529}
6530
6531//===----------------------------------------------------------------------===//
6532//                         Integer Predicates
6533//===----------------------------------------------------------------------===//
6534
6535unsigned ASTContext::getIntWidth(QualType T) const {
6536  if (const EnumType *ET = dyn_cast<EnumType>(T))
6537    T = ET->getDecl()->getIntegerType();
6538  if (T->isBooleanType())
6539    return 1;
6540  // For builtin types, just use the standard type sizing method
6541  return (unsigned)getTypeSize(T);
6542}
6543
6544QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
6545  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
6546
6547  // Turn <4 x signed int> -> <4 x unsigned int>
6548  if (const VectorType *VTy = T->getAs<VectorType>())
6549    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
6550                         VTy->getNumElements(), VTy->getVectorKind());
6551
6552  // For enums, we return the unsigned version of the base type.
6553  if (const EnumType *ETy = T->getAs<EnumType>())
6554    T = ETy->getDecl()->getIntegerType();
6555
6556  const BuiltinType *BTy = T->getAs<BuiltinType>();
6557  assert(BTy && "Unexpected signed integer type");
6558  switch (BTy->getKind()) {
6559  case BuiltinType::Char_S:
6560  case BuiltinType::SChar:
6561    return UnsignedCharTy;
6562  case BuiltinType::Short:
6563    return UnsignedShortTy;
6564  case BuiltinType::Int:
6565    return UnsignedIntTy;
6566  case BuiltinType::Long:
6567    return UnsignedLongTy;
6568  case BuiltinType::LongLong:
6569    return UnsignedLongLongTy;
6570  case BuiltinType::Int128:
6571    return UnsignedInt128Ty;
6572  default:
6573    llvm_unreachable("Unexpected signed integer type");
6574  }
6575}
6576
6577ASTMutationListener::~ASTMutationListener() { }
6578
6579
6580//===----------------------------------------------------------------------===//
6581//                          Builtin Type Computation
6582//===----------------------------------------------------------------------===//
6583
6584/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
6585/// pointer over the consumed characters.  This returns the resultant type.  If
6586/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
6587/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
6588/// a vector of "i*".
6589///
6590/// RequiresICE is filled in on return to indicate whether the value is required
6591/// to be an Integer Constant Expression.
6592static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
6593                                  ASTContext::GetBuiltinTypeError &Error,
6594                                  bool &RequiresICE,
6595                                  bool AllowTypeModifiers) {
6596  // Modifiers.
6597  int HowLong = 0;
6598  bool Signed = false, Unsigned = false;
6599  RequiresICE = false;
6600
6601  // Read the prefixed modifiers first.
6602  bool Done = false;
6603  while (!Done) {
6604    switch (*Str++) {
6605    default: Done = true; --Str; break;
6606    case 'I':
6607      RequiresICE = true;
6608      break;
6609    case 'S':
6610      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
6611      assert(!Signed && "Can't use 'S' modifier multiple times!");
6612      Signed = true;
6613      break;
6614    case 'U':
6615      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
6616      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
6617      Unsigned = true;
6618      break;
6619    case 'L':
6620      assert(HowLong <= 2 && "Can't have LLLL modifier");
6621      ++HowLong;
6622      break;
6623    }
6624  }
6625
6626  QualType Type;
6627
6628  // Read the base type.
6629  switch (*Str++) {
6630  default: llvm_unreachable("Unknown builtin type letter!");
6631  case 'v':
6632    assert(HowLong == 0 && !Signed && !Unsigned &&
6633           "Bad modifiers used with 'v'!");
6634    Type = Context.VoidTy;
6635    break;
6636  case 'f':
6637    assert(HowLong == 0 && !Signed && !Unsigned &&
6638           "Bad modifiers used with 'f'!");
6639    Type = Context.FloatTy;
6640    break;
6641  case 'd':
6642    assert(HowLong < 2 && !Signed && !Unsigned &&
6643           "Bad modifiers used with 'd'!");
6644    if (HowLong)
6645      Type = Context.LongDoubleTy;
6646    else
6647      Type = Context.DoubleTy;
6648    break;
6649  case 's':
6650    assert(HowLong == 0 && "Bad modifiers used with 's'!");
6651    if (Unsigned)
6652      Type = Context.UnsignedShortTy;
6653    else
6654      Type = Context.ShortTy;
6655    break;
6656  case 'i':
6657    if (HowLong == 3)
6658      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
6659    else if (HowLong == 2)
6660      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
6661    else if (HowLong == 1)
6662      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
6663    else
6664      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
6665    break;
6666  case 'c':
6667    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
6668    if (Signed)
6669      Type = Context.SignedCharTy;
6670    else if (Unsigned)
6671      Type = Context.UnsignedCharTy;
6672    else
6673      Type = Context.CharTy;
6674    break;
6675  case 'b': // boolean
6676    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
6677    Type = Context.BoolTy;
6678    break;
6679  case 'z':  // size_t.
6680    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
6681    Type = Context.getSizeType();
6682    break;
6683  case 'F':
6684    Type = Context.getCFConstantStringType();
6685    break;
6686  case 'G':
6687    Type = Context.getObjCIdType();
6688    break;
6689  case 'H':
6690    Type = Context.getObjCSelType();
6691    break;
6692  case 'a':
6693    Type = Context.getBuiltinVaListType();
6694    assert(!Type.isNull() && "builtin va list type not initialized!");
6695    break;
6696  case 'A':
6697    // This is a "reference" to a va_list; however, what exactly
6698    // this means depends on how va_list is defined. There are two
6699    // different kinds of va_list: ones passed by value, and ones
6700    // passed by reference.  An example of a by-value va_list is
6701    // x86, where va_list is a char*. An example of by-ref va_list
6702    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
6703    // we want this argument to be a char*&; for x86-64, we want
6704    // it to be a __va_list_tag*.
6705    Type = Context.getBuiltinVaListType();
6706    assert(!Type.isNull() && "builtin va list type not initialized!");
6707    if (Type->isArrayType())
6708      Type = Context.getArrayDecayedType(Type);
6709    else
6710      Type = Context.getLValueReferenceType(Type);
6711    break;
6712  case 'V': {
6713    char *End;
6714    unsigned NumElements = strtoul(Str, &End, 10);
6715    assert(End != Str && "Missing vector size");
6716    Str = End;
6717
6718    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
6719                                             RequiresICE, false);
6720    assert(!RequiresICE && "Can't require vector ICE");
6721
6722    // TODO: No way to make AltiVec vectors in builtins yet.
6723    Type = Context.getVectorType(ElementType, NumElements,
6724                                 VectorType::GenericVector);
6725    break;
6726  }
6727  case 'E': {
6728    char *End;
6729
6730    unsigned NumElements = strtoul(Str, &End, 10);
6731    assert(End != Str && "Missing vector size");
6732
6733    Str = End;
6734
6735    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
6736                                             false);
6737    Type = Context.getExtVectorType(ElementType, NumElements);
6738    break;
6739  }
6740  case 'X': {
6741    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
6742                                             false);
6743    assert(!RequiresICE && "Can't require complex ICE");
6744    Type = Context.getComplexType(ElementType);
6745    break;
6746  }
6747  case 'Y' : {
6748    Type = Context.getPointerDiffType();
6749    break;
6750  }
6751  case 'P':
6752    Type = Context.getFILEType();
6753    if (Type.isNull()) {
6754      Error = ASTContext::GE_Missing_stdio;
6755      return QualType();
6756    }
6757    break;
6758  case 'J':
6759    if (Signed)
6760      Type = Context.getsigjmp_bufType();
6761    else
6762      Type = Context.getjmp_bufType();
6763
6764    if (Type.isNull()) {
6765      Error = ASTContext::GE_Missing_setjmp;
6766      return QualType();
6767    }
6768    break;
6769  case 'K':
6770    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
6771    Type = Context.getucontext_tType();
6772
6773    if (Type.isNull()) {
6774      Error = ASTContext::GE_Missing_ucontext;
6775      return QualType();
6776    }
6777    break;
6778  }
6779
6780  // If there are modifiers and if we're allowed to parse them, go for it.
6781  Done = !AllowTypeModifiers;
6782  while (!Done) {
6783    switch (char c = *Str++) {
6784    default: Done = true; --Str; break;
6785    case '*':
6786    case '&': {
6787      // Both pointers and references can have their pointee types
6788      // qualified with an address space.
6789      char *End;
6790      unsigned AddrSpace = strtoul(Str, &End, 10);
6791      if (End != Str && AddrSpace != 0) {
6792        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
6793        Str = End;
6794      }
6795      if (c == '*')
6796        Type = Context.getPointerType(Type);
6797      else
6798        Type = Context.getLValueReferenceType(Type);
6799      break;
6800    }
6801    // FIXME: There's no way to have a built-in with an rvalue ref arg.
6802    case 'C':
6803      Type = Type.withConst();
6804      break;
6805    case 'D':
6806      Type = Context.getVolatileType(Type);
6807      break;
6808    case 'R':
6809      Type = Type.withRestrict();
6810      break;
6811    }
6812  }
6813
6814  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
6815         "Integer constant 'I' type must be an integer");
6816
6817  return Type;
6818}
6819
6820/// GetBuiltinType - Return the type for the specified builtin.
6821QualType ASTContext::GetBuiltinType(unsigned Id,
6822                                    GetBuiltinTypeError &Error,
6823                                    unsigned *IntegerConstantArgs) const {
6824  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
6825
6826  SmallVector<QualType, 8> ArgTypes;
6827
6828  bool RequiresICE = false;
6829  Error = GE_None;
6830  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
6831                                       RequiresICE, true);
6832  if (Error != GE_None)
6833    return QualType();
6834
6835  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
6836
6837  while (TypeStr[0] && TypeStr[0] != '.') {
6838    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
6839    if (Error != GE_None)
6840      return QualType();
6841
6842    // If this argument is required to be an IntegerConstantExpression and the
6843    // caller cares, fill in the bitmask we return.
6844    if (RequiresICE && IntegerConstantArgs)
6845      *IntegerConstantArgs |= 1 << ArgTypes.size();
6846
6847    // Do array -> pointer decay.  The builtin should use the decayed type.
6848    if (Ty->isArrayType())
6849      Ty = getArrayDecayedType(Ty);
6850
6851    ArgTypes.push_back(Ty);
6852  }
6853
6854  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
6855         "'.' should only occur at end of builtin type list!");
6856
6857  FunctionType::ExtInfo EI;
6858  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
6859
6860  bool Variadic = (TypeStr[0] == '.');
6861
6862  // We really shouldn't be making a no-proto type here, especially in C++.
6863  if (ArgTypes.empty() && Variadic)
6864    return getFunctionNoProtoType(ResType, EI);
6865
6866  FunctionProtoType::ExtProtoInfo EPI;
6867  EPI.ExtInfo = EI;
6868  EPI.Variadic = Variadic;
6869
6870  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
6871}
6872
6873GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
6874  GVALinkage External = GVA_StrongExternal;
6875
6876  Linkage L = FD->getLinkage();
6877  switch (L) {
6878  case NoLinkage:
6879  case InternalLinkage:
6880  case UniqueExternalLinkage:
6881    return GVA_Internal;
6882
6883  case ExternalLinkage:
6884    switch (FD->getTemplateSpecializationKind()) {
6885    case TSK_Undeclared:
6886    case TSK_ExplicitSpecialization:
6887      External = GVA_StrongExternal;
6888      break;
6889
6890    case TSK_ExplicitInstantiationDefinition:
6891      return GVA_ExplicitTemplateInstantiation;
6892
6893    case TSK_ExplicitInstantiationDeclaration:
6894    case TSK_ImplicitInstantiation:
6895      External = GVA_TemplateInstantiation;
6896      break;
6897    }
6898  }
6899
6900  if (!FD->isInlined())
6901    return External;
6902
6903  if (!getLangOpts().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
6904    // GNU or C99 inline semantics. Determine whether this symbol should be
6905    // externally visible.
6906    if (FD->isInlineDefinitionExternallyVisible())
6907      return External;
6908
6909    // C99 inline semantics, where the symbol is not externally visible.
6910    return GVA_C99Inline;
6911  }
6912
6913  // C++0x [temp.explicit]p9:
6914  //   [ Note: The intent is that an inline function that is the subject of
6915  //   an explicit instantiation declaration will still be implicitly
6916  //   instantiated when used so that the body can be considered for
6917  //   inlining, but that no out-of-line copy of the inline function would be
6918  //   generated in the translation unit. -- end note ]
6919  if (FD->getTemplateSpecializationKind()
6920                                       == TSK_ExplicitInstantiationDeclaration)
6921    return GVA_C99Inline;
6922
6923  return GVA_CXXInline;
6924}
6925
6926GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
6927  // If this is a static data member, compute the kind of template
6928  // specialization. Otherwise, this variable is not part of a
6929  // template.
6930  TemplateSpecializationKind TSK = TSK_Undeclared;
6931  if (VD->isStaticDataMember())
6932    TSK = VD->getTemplateSpecializationKind();
6933
6934  Linkage L = VD->getLinkage();
6935  if (L == ExternalLinkage && getLangOpts().CPlusPlus &&
6936      VD->getType()->getLinkage() == UniqueExternalLinkage)
6937    L = UniqueExternalLinkage;
6938
6939  switch (L) {
6940  case NoLinkage:
6941  case InternalLinkage:
6942  case UniqueExternalLinkage:
6943    return GVA_Internal;
6944
6945  case ExternalLinkage:
6946    switch (TSK) {
6947    case TSK_Undeclared:
6948    case TSK_ExplicitSpecialization:
6949      return GVA_StrongExternal;
6950
6951    case TSK_ExplicitInstantiationDeclaration:
6952      llvm_unreachable("Variable should not be instantiated");
6953      // Fall through to treat this like any other instantiation.
6954
6955    case TSK_ExplicitInstantiationDefinition:
6956      return GVA_ExplicitTemplateInstantiation;
6957
6958    case TSK_ImplicitInstantiation:
6959      return GVA_TemplateInstantiation;
6960    }
6961  }
6962
6963  llvm_unreachable("Invalid Linkage!");
6964}
6965
6966bool ASTContext::DeclMustBeEmitted(const Decl *D) {
6967  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
6968    if (!VD->isFileVarDecl())
6969      return false;
6970  } else if (!isa<FunctionDecl>(D))
6971    return false;
6972
6973  // Weak references don't produce any output by themselves.
6974  if (D->hasAttr<WeakRefAttr>())
6975    return false;
6976
6977  // Aliases and used decls are required.
6978  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
6979    return true;
6980
6981  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6982    // Forward declarations aren't required.
6983    if (!FD->doesThisDeclarationHaveABody())
6984      return FD->doesDeclarationForceExternallyVisibleDefinition();
6985
6986    // Constructors and destructors are required.
6987    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
6988      return true;
6989
6990    // The key function for a class is required.
6991    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
6992      const CXXRecordDecl *RD = MD->getParent();
6993      if (MD->isOutOfLine() && RD->isDynamicClass()) {
6994        const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
6995        if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
6996          return true;
6997      }
6998    }
6999
7000    GVALinkage Linkage = GetGVALinkageForFunction(FD);
7001
7002    // static, static inline, always_inline, and extern inline functions can
7003    // always be deferred.  Normal inline functions can be deferred in C99/C++.
7004    // Implicit template instantiations can also be deferred in C++.
7005    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
7006        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
7007      return false;
7008    return true;
7009  }
7010
7011  const VarDecl *VD = cast<VarDecl>(D);
7012  assert(VD->isFileVarDecl() && "Expected file scoped var");
7013
7014  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
7015    return false;
7016
7017  // Structs that have non-trivial constructors or destructors are required.
7018
7019  // FIXME: Handle references.
7020  // FIXME: Be more selective about which constructors we care about.
7021  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
7022    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
7023      if (RD->hasDefinition() && !(RD->hasTrivialDefaultConstructor() &&
7024                                   RD->hasTrivialCopyConstructor() &&
7025                                   RD->hasTrivialMoveConstructor() &&
7026                                   RD->hasTrivialDestructor()))
7027        return true;
7028    }
7029  }
7030
7031  GVALinkage L = GetGVALinkageForVariable(VD);
7032  if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
7033    if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
7034      return false;
7035  }
7036
7037  return true;
7038}
7039
7040CallingConv ASTContext::getDefaultMethodCallConv() {
7041  // Pass through to the C++ ABI object
7042  return ABI->getDefaultMethodCallConv();
7043}
7044
7045bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
7046  // Pass through to the C++ ABI object
7047  return ABI->isNearlyEmpty(RD);
7048}
7049
7050MangleContext *ASTContext::createMangleContext() {
7051  switch (Target->getCXXABI()) {
7052  case CXXABI_ARM:
7053  case CXXABI_Itanium:
7054    return createItaniumMangleContext(*this, getDiagnostics());
7055  case CXXABI_Microsoft:
7056    return createMicrosoftMangleContext(*this, getDiagnostics());
7057  }
7058  llvm_unreachable("Unsupported ABI");
7059}
7060
7061CXXABI::~CXXABI() {}
7062
7063size_t ASTContext::getSideTableAllocatedMemory() const {
7064  return ASTRecordLayouts.getMemorySize()
7065    + llvm::capacity_in_bytes(ObjCLayouts)
7066    + llvm::capacity_in_bytes(KeyFunctions)
7067    + llvm::capacity_in_bytes(ObjCImpls)
7068    + llvm::capacity_in_bytes(BlockVarCopyInits)
7069    + llvm::capacity_in_bytes(DeclAttrs)
7070    + llvm::capacity_in_bytes(InstantiatedFromStaticDataMember)
7071    + llvm::capacity_in_bytes(InstantiatedFromUsingDecl)
7072    + llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl)
7073    + llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl)
7074    + llvm::capacity_in_bytes(OverriddenMethods)
7075    + llvm::capacity_in_bytes(Types)
7076    + llvm::capacity_in_bytes(VariableArrayTypes)
7077    + llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
7078}
7079
7080unsigned ASTContext::getLambdaManglingNumber(CXXMethodDecl *CallOperator) {
7081  CXXRecordDecl *Lambda = CallOperator->getParent();
7082  return LambdaMangleContexts[Lambda->getDeclContext()]
7083           .getManglingNumber(CallOperator);
7084}
7085
7086
7087void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
7088  ParamIndices[D] = index;
7089}
7090
7091unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
7092  ParameterIndexTable::const_iterator I = ParamIndices.find(D);
7093  assert(I != ParamIndices.end() &&
7094         "ParmIndices lacks entry set by ParmVarDecl");
7095  return I->second;
7096}
7097