ASTContext.cpp revision 2ec09f1dc123e1942ed756e8ee4fef86451eac9e
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclCXX.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/ExternalASTSource.h"
20#include "clang/AST/RecordLayout.h"
21#include "clang/Basic/Builtins.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Support/MemoryBuffer.h"
27#include "RecordLayoutBuilder.h"
28
29using namespace clang;
30
31enum FloatingRank {
32  FloatRank, DoubleRank, LongDoubleRank
33};
34
35ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
36                       TargetInfo &t,
37                       IdentifierTable &idents, SelectorTable &sels,
38                       Builtin::Context &builtins,
39                       bool FreeMem, unsigned size_reserve) :
40  GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
41  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0), jmp_bufDecl(0),
42  sigjmp_bufDecl(0), SourceMgr(SM), LangOpts(LOpts),
43  LoadedExternalComments(false), FreeMemory(FreeMem), Target(t),
44  Idents(idents), Selectors(sels),
45  BuiltinInfo(builtins), ExternalSource(0), PrintingPolicy(LOpts) {
46  if (size_reserve > 0) Types.reserve(size_reserve);
47  TUDecl = TranslationUnitDecl::Create(*this);
48  InitBuiltinTypes();
49}
50
51ASTContext::~ASTContext() {
52  // Deallocate all the types.
53  while (!Types.empty()) {
54    Types.back()->Destroy(*this);
55    Types.pop_back();
56  }
57
58  {
59    llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
60      I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end();
61    while (I != E) {
62      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
63      delete R;
64    }
65  }
66
67  {
68    llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>::iterator
69      I = ObjCLayouts.begin(), E = ObjCLayouts.end();
70    while (I != E) {
71      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
72      delete R;
73    }
74  }
75
76  // Destroy nested-name-specifiers.
77  for (llvm::FoldingSet<NestedNameSpecifier>::iterator
78         NNS = NestedNameSpecifiers.begin(),
79         NNSEnd = NestedNameSpecifiers.end();
80       NNS != NNSEnd;
81       /* Increment in loop */)
82    (*NNS++).Destroy(*this);
83
84  if (GlobalNestedNameSpecifier)
85    GlobalNestedNameSpecifier->Destroy(*this);
86
87  TUDecl->Destroy(*this);
88}
89
90void
91ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
92  ExternalSource.reset(Source.take());
93}
94
95void ASTContext::PrintStats() const {
96  fprintf(stderr, "*** AST Context Stats:\n");
97  fprintf(stderr, "  %d types total.\n", (int)Types.size());
98
99  unsigned counts[] = {
100#define TYPE(Name, Parent) 0,
101#define ABSTRACT_TYPE(Name, Parent)
102#include "clang/AST/TypeNodes.def"
103    0 // Extra
104  };
105
106  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
107    Type *T = Types[i];
108    counts[(unsigned)T->getTypeClass()]++;
109  }
110
111  unsigned Idx = 0;
112  unsigned TotalBytes = 0;
113#define TYPE(Name, Parent)                                              \
114  if (counts[Idx])                                                      \
115    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
116  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
117  ++Idx;
118#define ABSTRACT_TYPE(Name, Parent)
119#include "clang/AST/TypeNodes.def"
120
121  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
122
123  if (ExternalSource.get()) {
124    fprintf(stderr, "\n");
125    ExternalSource->PrintStats();
126  }
127}
128
129
130void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) {
131  Types.push_back((R = QualType(new (*this,8) BuiltinType(K),0)).getTypePtr());
132}
133
134void ASTContext::InitBuiltinTypes() {
135  assert(VoidTy.isNull() && "Context reinitialized?");
136
137  // C99 6.2.5p19.
138  InitBuiltinType(VoidTy,              BuiltinType::Void);
139
140  // C99 6.2.5p2.
141  InitBuiltinType(BoolTy,              BuiltinType::Bool);
142  // C99 6.2.5p3.
143  if (LangOpts.CharIsSigned)
144    InitBuiltinType(CharTy,            BuiltinType::Char_S);
145  else
146    InitBuiltinType(CharTy,            BuiltinType::Char_U);
147  // C99 6.2.5p4.
148  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
149  InitBuiltinType(ShortTy,             BuiltinType::Short);
150  InitBuiltinType(IntTy,               BuiltinType::Int);
151  InitBuiltinType(LongTy,              BuiltinType::Long);
152  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
153
154  // C99 6.2.5p6.
155  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
156  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
157  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
158  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
159  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
160
161  // C99 6.2.5p10.
162  InitBuiltinType(FloatTy,             BuiltinType::Float);
163  InitBuiltinType(DoubleTy,            BuiltinType::Double);
164  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
165
166  // GNU extension, 128-bit integers.
167  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
168  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
169
170  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
171    InitBuiltinType(WCharTy,           BuiltinType::WChar);
172  else // C99
173    WCharTy = getFromTargetType(Target.getWCharType());
174
175  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
176    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
177  else // C99
178    Char16Ty = getFromTargetType(Target.getChar16Type());
179
180  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
181    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
182  else // C99
183    Char32Ty = getFromTargetType(Target.getChar32Type());
184
185  // Placeholder type for functions.
186  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
187
188  // Placeholder type for type-dependent expressions whose type is
189  // completely unknown. No code should ever check a type against
190  // DependentTy and users should never see it; however, it is here to
191  // help diagnose failures to properly check for type-dependent
192  // expressions.
193  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
194
195  // Placeholder type for C++0x auto declarations whose real type has
196  // not yet been deduced.
197  InitBuiltinType(UndeducedAutoTy, BuiltinType::UndeducedAuto);
198
199  // C99 6.2.5p11.
200  FloatComplexTy      = getComplexType(FloatTy);
201  DoubleComplexTy     = getComplexType(DoubleTy);
202  LongDoubleComplexTy = getComplexType(LongDoubleTy);
203
204  BuiltinVaListType = QualType();
205
206  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
207  ObjCIdTypedefType = QualType();
208  ObjCClassTypedefType = QualType();
209
210  // Builtin types for 'id' and 'Class'.
211  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
212  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
213
214  ObjCConstantStringType = QualType();
215
216  // void * type
217  VoidPtrTy = getPointerType(VoidTy);
218
219  // nullptr type (C++0x 2.14.7)
220  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
221}
222
223VarDecl *ASTContext::getInstantiatedFromStaticDataMember(VarDecl *Var) {
224  assert(Var->isStaticDataMember() && "Not a static data member");
225  llvm::DenseMap<VarDecl *, VarDecl *>::iterator Pos
226    = InstantiatedFromStaticDataMember.find(Var);
227  if (Pos == InstantiatedFromStaticDataMember.end())
228    return 0;
229
230  return Pos->second;
231}
232
233void
234ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl) {
235  assert(Inst->isStaticDataMember() && "Not a static data member");
236  assert(Tmpl->isStaticDataMember() && "Not a static data member");
237  assert(!InstantiatedFromStaticDataMember[Inst] &&
238         "Already noted what static data member was instantiated from");
239  InstantiatedFromStaticDataMember[Inst] = Tmpl;
240}
241
242namespace {
243  class BeforeInTranslationUnit
244    : std::binary_function<SourceRange, SourceRange, bool> {
245    SourceManager *SourceMgr;
246
247  public:
248    explicit BeforeInTranslationUnit(SourceManager *SM) : SourceMgr(SM) { }
249
250    bool operator()(SourceRange X, SourceRange Y) {
251      return SourceMgr->isBeforeInTranslationUnit(X.getBegin(), Y.getBegin());
252    }
253  };
254}
255
256/// \brief Determine whether the given comment is a Doxygen-style comment.
257///
258/// \param Start the start of the comment text.
259///
260/// \param End the end of the comment text.
261///
262/// \param Member whether we want to check whether this is a member comment
263/// (which requires a < after the Doxygen-comment delimiter). Otherwise,
264/// we only return true when we find a non-member comment.
265static bool
266isDoxygenComment(SourceManager &SourceMgr, SourceRange Comment,
267                 bool Member = false) {
268  const char *BufferStart
269    = SourceMgr.getBufferData(SourceMgr.getFileID(Comment.getBegin())).first;
270  const char *Start = BufferStart + SourceMgr.getFileOffset(Comment.getBegin());
271  const char* End = BufferStart + SourceMgr.getFileOffset(Comment.getEnd());
272
273  if (End - Start < 4)
274    return false;
275
276  assert(Start[0] == '/' && "Not a comment?");
277  if (Start[1] == '*' && !(Start[2] == '!' || Start[2] == '*'))
278    return false;
279  if (Start[1] == '/' && !(Start[2] == '!' || Start[2] == '/'))
280    return false;
281
282  return (Start[3] == '<') == Member;
283}
284
285/// \brief Retrieve the comment associated with the given declaration, if
286/// it has one.
287const char *ASTContext::getCommentForDecl(const Decl *D) {
288  if (!D)
289    return 0;
290
291  // Check whether we have cached a comment string for this declaration
292  // already.
293  llvm::DenseMap<const Decl *, std::string>::iterator Pos
294    = DeclComments.find(D);
295  if (Pos != DeclComments.end())
296    return Pos->second.c_str();
297
298  // If we have an external AST source and have not yet loaded comments from
299  // that source, do so now.
300  if (ExternalSource && !LoadedExternalComments) {
301    std::vector<SourceRange> LoadedComments;
302    ExternalSource->ReadComments(LoadedComments);
303
304    if (!LoadedComments.empty())
305      Comments.insert(Comments.begin(), LoadedComments.begin(),
306                      LoadedComments.end());
307
308    LoadedExternalComments = true;
309  }
310
311  // If there are no comments anywhere, we won't find anything.
312  if (Comments.empty())
313    return 0;
314
315  // If the declaration doesn't map directly to a location in a file, we
316  // can't find the comment.
317  SourceLocation DeclStartLoc = D->getLocStart();
318  if (DeclStartLoc.isInvalid() || !DeclStartLoc.isFileID())
319    return 0;
320
321  // Find the comment that occurs just before this declaration.
322  std::vector<SourceRange>::iterator LastComment
323    = std::lower_bound(Comments.begin(), Comments.end(),
324                       SourceRange(DeclStartLoc),
325                       BeforeInTranslationUnit(&SourceMgr));
326
327  // Decompose the location for the start of the declaration and find the
328  // beginning of the file buffer.
329  std::pair<FileID, unsigned> DeclStartDecomp
330    = SourceMgr.getDecomposedLoc(DeclStartLoc);
331  const char *FileBufferStart
332    = SourceMgr.getBufferData(DeclStartDecomp.first).first;
333
334  // First check whether we have a comment for a member.
335  if (LastComment != Comments.end() &&
336      !isa<TagDecl>(D) && !isa<NamespaceDecl>(D) &&
337      isDoxygenComment(SourceMgr, *LastComment, true)) {
338    std::pair<FileID, unsigned> LastCommentEndDecomp
339      = SourceMgr.getDecomposedLoc(LastComment->getEnd());
340    if (DeclStartDecomp.first == LastCommentEndDecomp.first &&
341        SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second)
342          == SourceMgr.getLineNumber(LastCommentEndDecomp.first,
343                                     LastCommentEndDecomp.second)) {
344      // The Doxygen member comment comes after the declaration starts and
345      // is on the same line and in the same file as the declaration. This
346      // is the comment we want.
347      std::string &Result = DeclComments[D];
348      Result.append(FileBufferStart +
349                      SourceMgr.getFileOffset(LastComment->getBegin()),
350                    FileBufferStart + LastCommentEndDecomp.second + 1);
351      return Result.c_str();
352    }
353  }
354
355  if (LastComment == Comments.begin())
356    return 0;
357  --LastComment;
358
359  // Decompose the end of the comment.
360  std::pair<FileID, unsigned> LastCommentEndDecomp
361    = SourceMgr.getDecomposedLoc(LastComment->getEnd());
362
363  // If the comment and the declaration aren't in the same file, then they
364  // aren't related.
365  if (DeclStartDecomp.first != LastCommentEndDecomp.first)
366    return 0;
367
368  // Check that we actually have a Doxygen comment.
369  if (!isDoxygenComment(SourceMgr, *LastComment))
370    return 0;
371
372  // Compute the starting line for the declaration and for the end of the
373  // comment (this is expensive).
374  unsigned DeclStartLine
375    = SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second);
376  unsigned CommentEndLine
377    = SourceMgr.getLineNumber(LastCommentEndDecomp.first,
378                              LastCommentEndDecomp.second);
379
380  // If the comment does not end on the line prior to the declaration, then
381  // the comment is not associated with the declaration at all.
382  if (CommentEndLine + 1 != DeclStartLine)
383    return 0;
384
385  // We have a comment, but there may be more comments on the previous lines.
386  // Keep looking so long as the comments are still Doxygen comments and are
387  // still adjacent.
388  unsigned ExpectedLine
389    = SourceMgr.getSpellingLineNumber(LastComment->getBegin()) - 1;
390  std::vector<SourceRange>::iterator FirstComment = LastComment;
391  while (FirstComment != Comments.begin()) {
392    // Look at the previous comment
393    --FirstComment;
394    std::pair<FileID, unsigned> Decomp
395      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
396
397    // If this previous comment is in a different file, we're done.
398    if (Decomp.first != DeclStartDecomp.first) {
399      ++FirstComment;
400      break;
401    }
402
403    // If this comment is not a Doxygen comment, we're done.
404    if (!isDoxygenComment(SourceMgr, *FirstComment)) {
405      ++FirstComment;
406      break;
407    }
408
409    // If the line number is not what we expected, we're done.
410    unsigned Line = SourceMgr.getLineNumber(Decomp.first, Decomp.second);
411    if (Line != ExpectedLine) {
412      ++FirstComment;
413      break;
414    }
415
416    // Set the next expected line number.
417    ExpectedLine
418      = SourceMgr.getSpellingLineNumber(FirstComment->getBegin()) - 1;
419  }
420
421  // The iterator range [FirstComment, LastComment] contains all of the
422  // BCPL comments that, together, are associated with this declaration.
423  // Form a single comment block string for this declaration that concatenates
424  // all of these comments.
425  std::string &Result = DeclComments[D];
426  while (FirstComment != LastComment) {
427    std::pair<FileID, unsigned> DecompStart
428      = SourceMgr.getDecomposedLoc(FirstComment->getBegin());
429    std::pair<FileID, unsigned> DecompEnd
430      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
431    Result.append(FileBufferStart + DecompStart.second,
432                  FileBufferStart + DecompEnd.second + 1);
433    ++FirstComment;
434  }
435
436  // Append the last comment line.
437  Result.append(FileBufferStart +
438                  SourceMgr.getFileOffset(LastComment->getBegin()),
439                FileBufferStart + LastCommentEndDecomp.second + 1);
440  return Result.c_str();
441}
442
443//===----------------------------------------------------------------------===//
444//                         Type Sizing and Analysis
445//===----------------------------------------------------------------------===//
446
447/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
448/// scalar floating point type.
449const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
450  const BuiltinType *BT = T->getAsBuiltinType();
451  assert(BT && "Not a floating point type!");
452  switch (BT->getKind()) {
453  default: assert(0 && "Not a floating point type!");
454  case BuiltinType::Float:      return Target.getFloatFormat();
455  case BuiltinType::Double:     return Target.getDoubleFormat();
456  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
457  }
458}
459
460/// getDeclAlign - Return a conservative estimate of the alignment of the
461/// specified decl.  Note that bitfields do not have a valid alignment, so
462/// this method will assert on them.
463unsigned ASTContext::getDeclAlignInBytes(const Decl *D) {
464  unsigned Align = Target.getCharWidth();
465
466  if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
467    Align = std::max(Align, AA->getAlignment());
468
469  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
470    QualType T = VD->getType();
471    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
472      unsigned AS = RT->getPointeeType().getAddressSpace();
473      Align = Target.getPointerAlign(AS);
474    } else if (!T->isIncompleteType() && !T->isFunctionType()) {
475      // Incomplete or function types default to 1.
476      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
477        T = cast<ArrayType>(T)->getElementType();
478
479      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
480    }
481  }
482
483  return Align / Target.getCharWidth();
484}
485
486/// getTypeSize - Return the size of the specified type, in bits.  This method
487/// does not work on incomplete types.
488std::pair<uint64_t, unsigned>
489ASTContext::getTypeInfo(const Type *T) {
490  uint64_t Width=0;
491  unsigned Align=8;
492  switch (T->getTypeClass()) {
493#define TYPE(Class, Base)
494#define ABSTRACT_TYPE(Class, Base)
495#define NON_CANONICAL_TYPE(Class, Base)
496#define DEPENDENT_TYPE(Class, Base) case Type::Class:
497#include "clang/AST/TypeNodes.def"
498    assert(false && "Should not see dependent types");
499    break;
500
501  case Type::FunctionNoProto:
502  case Type::FunctionProto:
503    // GCC extension: alignof(function) = 32 bits
504    Width = 0;
505    Align = 32;
506    break;
507
508  case Type::IncompleteArray:
509  case Type::VariableArray:
510    Width = 0;
511    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
512    break;
513
514  case Type::ConstantArrayWithExpr:
515  case Type::ConstantArrayWithoutExpr:
516  case Type::ConstantArray: {
517    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
518
519    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
520    Width = EltInfo.first*CAT->getSize().getZExtValue();
521    Align = EltInfo.second;
522    break;
523  }
524  case Type::ExtVector:
525  case Type::Vector: {
526    std::pair<uint64_t, unsigned> EltInfo =
527      getTypeInfo(cast<VectorType>(T)->getElementType());
528    Width = EltInfo.first*cast<VectorType>(T)->getNumElements();
529    Align = Width;
530    // If the alignment is not a power of 2, round up to the next power of 2.
531    // This happens for non-power-of-2 length vectors.
532    // FIXME: this should probably be a target property.
533    Align = 1 << llvm::Log2_32_Ceil(Align);
534    break;
535  }
536
537  case Type::Builtin:
538    switch (cast<BuiltinType>(T)->getKind()) {
539    default: assert(0 && "Unknown builtin type!");
540    case BuiltinType::Void:
541      // GCC extension: alignof(void) = 8 bits.
542      Width = 0;
543      Align = 8;
544      break;
545
546    case BuiltinType::Bool:
547      Width = Target.getBoolWidth();
548      Align = Target.getBoolAlign();
549      break;
550    case BuiltinType::Char_S:
551    case BuiltinType::Char_U:
552    case BuiltinType::UChar:
553    case BuiltinType::SChar:
554      Width = Target.getCharWidth();
555      Align = Target.getCharAlign();
556      break;
557    case BuiltinType::WChar:
558      Width = Target.getWCharWidth();
559      Align = Target.getWCharAlign();
560      break;
561    case BuiltinType::Char16:
562      Width = Target.getChar16Width();
563      Align = Target.getChar16Align();
564      break;
565    case BuiltinType::Char32:
566      Width = Target.getChar32Width();
567      Align = Target.getChar32Align();
568      break;
569    case BuiltinType::UShort:
570    case BuiltinType::Short:
571      Width = Target.getShortWidth();
572      Align = Target.getShortAlign();
573      break;
574    case BuiltinType::UInt:
575    case BuiltinType::Int:
576      Width = Target.getIntWidth();
577      Align = Target.getIntAlign();
578      break;
579    case BuiltinType::ULong:
580    case BuiltinType::Long:
581      Width = Target.getLongWidth();
582      Align = Target.getLongAlign();
583      break;
584    case BuiltinType::ULongLong:
585    case BuiltinType::LongLong:
586      Width = Target.getLongLongWidth();
587      Align = Target.getLongLongAlign();
588      break;
589    case BuiltinType::Int128:
590    case BuiltinType::UInt128:
591      Width = 128;
592      Align = 128; // int128_t is 128-bit aligned on all targets.
593      break;
594    case BuiltinType::Float:
595      Width = Target.getFloatWidth();
596      Align = Target.getFloatAlign();
597      break;
598    case BuiltinType::Double:
599      Width = Target.getDoubleWidth();
600      Align = Target.getDoubleAlign();
601      break;
602    case BuiltinType::LongDouble:
603      Width = Target.getLongDoubleWidth();
604      Align = Target.getLongDoubleAlign();
605      break;
606    case BuiltinType::NullPtr:
607      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
608      Align = Target.getPointerAlign(0); //   == sizeof(void*)
609      break;
610    }
611    break;
612  case Type::FixedWidthInt:
613    // FIXME: This isn't precisely correct; the width/alignment should depend
614    // on the available types for the target
615    Width = cast<FixedWidthIntType>(T)->getWidth();
616    Width = std::max(llvm::NextPowerOf2(Width - 1), (uint64_t)8);
617    Align = Width;
618    break;
619  case Type::ExtQual:
620    // FIXME: Pointers into different addr spaces could have different sizes and
621    // alignment requirements: getPointerInfo should take an AddrSpace.
622    return getTypeInfo(QualType(cast<ExtQualType>(T)->getBaseType(), 0));
623  case Type::ObjCObjectPointer:
624    Width = Target.getPointerWidth(0);
625    Align = Target.getPointerAlign(0);
626    break;
627  case Type::BlockPointer: {
628    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
629    Width = Target.getPointerWidth(AS);
630    Align = Target.getPointerAlign(AS);
631    break;
632  }
633  case Type::Pointer: {
634    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
635    Width = Target.getPointerWidth(AS);
636    Align = Target.getPointerAlign(AS);
637    break;
638  }
639  case Type::LValueReference:
640  case Type::RValueReference:
641    // "When applied to a reference or a reference type, the result is the size
642    // of the referenced type." C++98 5.3.3p2: expr.sizeof.
643    // FIXME: This is wrong for struct layout: a reference in a struct has
644    // pointer size.
645    return getTypeInfo(cast<ReferenceType>(T)->getPointeeType());
646  case Type::MemberPointer: {
647    // FIXME: This is ABI dependent. We use the Itanium C++ ABI.
648    // http://www.codesourcery.com/public/cxx-abi/abi.html#member-pointers
649    // If we ever want to support other ABIs this needs to be abstracted.
650
651    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
652    std::pair<uint64_t, unsigned> PtrDiffInfo =
653      getTypeInfo(getPointerDiffType());
654    Width = PtrDiffInfo.first;
655    if (Pointee->isFunctionType())
656      Width *= 2;
657    Align = PtrDiffInfo.second;
658    break;
659  }
660  case Type::Complex: {
661    // Complex types have the same alignment as their elements, but twice the
662    // size.
663    std::pair<uint64_t, unsigned> EltInfo =
664      getTypeInfo(cast<ComplexType>(T)->getElementType());
665    Width = EltInfo.first*2;
666    Align = EltInfo.second;
667    break;
668  }
669  case Type::ObjCInterface: {
670    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
671    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
672    Width = Layout.getSize();
673    Align = Layout.getAlignment();
674    break;
675  }
676  case Type::Record:
677  case Type::Enum: {
678    const TagType *TT = cast<TagType>(T);
679
680    if (TT->getDecl()->isInvalidDecl()) {
681      Width = 1;
682      Align = 1;
683      break;
684    }
685
686    if (const EnumType *ET = dyn_cast<EnumType>(TT))
687      return getTypeInfo(ET->getDecl()->getIntegerType());
688
689    const RecordType *RT = cast<RecordType>(TT);
690    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
691    Width = Layout.getSize();
692    Align = Layout.getAlignment();
693    break;
694  }
695
696  case Type::Typedef: {
697    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
698    if (const AlignedAttr *Aligned = Typedef->getAttr<AlignedAttr>()) {
699      Align = Aligned->getAlignment();
700      Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
701    } else
702      return getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
703    break;
704  }
705
706  case Type::TypeOfExpr:
707    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
708                         .getTypePtr());
709
710  case Type::TypeOf:
711    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
712
713  case Type::Decltype:
714    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
715                        .getTypePtr());
716
717  case Type::QualifiedName:
718    return getTypeInfo(cast<QualifiedNameType>(T)->getNamedType().getTypePtr());
719
720  case Type::TemplateSpecialization:
721    assert(getCanonicalType(T) != T &&
722           "Cannot request the size of a dependent type");
723    // FIXME: this is likely to be wrong once we support template
724    // aliases, since a template alias could refer to a typedef that
725    // has an __aligned__ attribute on it.
726    return getTypeInfo(getCanonicalType(T));
727  }
728
729  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
730  return std::make_pair(Width, Align);
731}
732
733/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
734/// type for the current target in bits.  This can be different than the ABI
735/// alignment in cases where it is beneficial for performance to overalign
736/// a data type.
737unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
738  unsigned ABIAlign = getTypeAlign(T);
739
740  // Double and long long should be naturally aligned if possible.
741  if (const ComplexType* CT = T->getAsComplexType())
742    T = CT->getElementType().getTypePtr();
743  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
744      T->isSpecificBuiltinType(BuiltinType::LongLong))
745    return std::max(ABIAlign, (unsigned)getTypeSize(T));
746
747  return ABIAlign;
748}
749
750static void CollectLocalObjCIvars(ASTContext *Ctx,
751                                  const ObjCInterfaceDecl *OI,
752                                  llvm::SmallVectorImpl<FieldDecl*> &Fields) {
753  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
754       E = OI->ivar_end(); I != E; ++I) {
755    ObjCIvarDecl *IVDecl = *I;
756    if (!IVDecl->isInvalidDecl())
757      Fields.push_back(cast<FieldDecl>(IVDecl));
758  }
759}
760
761void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
762                             llvm::SmallVectorImpl<FieldDecl*> &Fields) {
763  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
764    CollectObjCIvars(SuperClass, Fields);
765  CollectLocalObjCIvars(this, OI, Fields);
766}
767
768/// ShallowCollectObjCIvars -
769/// Collect all ivars, including those synthesized, in the current class.
770///
771void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
772                                 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars,
773                                 bool CollectSynthesized) {
774  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
775         E = OI->ivar_end(); I != E; ++I) {
776     Ivars.push_back(*I);
777  }
778  if (CollectSynthesized)
779    CollectSynthesizedIvars(OI, Ivars);
780}
781
782void ASTContext::CollectProtocolSynthesizedIvars(const ObjCProtocolDecl *PD,
783                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
784  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
785       E = PD->prop_end(); I != E; ++I)
786    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
787      Ivars.push_back(Ivar);
788
789  // Also look into nested protocols.
790  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
791       E = PD->protocol_end(); P != E; ++P)
792    CollectProtocolSynthesizedIvars(*P, Ivars);
793}
794
795/// CollectSynthesizedIvars -
796/// This routine collect synthesized ivars for the designated class.
797///
798void ASTContext::CollectSynthesizedIvars(const ObjCInterfaceDecl *OI,
799                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
800  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
801       E = OI->prop_end(); I != E; ++I) {
802    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
803      Ivars.push_back(Ivar);
804  }
805  // Also look into interface's protocol list for properties declared
806  // in the protocol and whose ivars are synthesized.
807  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
808       PE = OI->protocol_end(); P != PE; ++P) {
809    ObjCProtocolDecl *PD = (*P);
810    CollectProtocolSynthesizedIvars(PD, Ivars);
811  }
812}
813
814unsigned ASTContext::CountProtocolSynthesizedIvars(const ObjCProtocolDecl *PD) {
815  unsigned count = 0;
816  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
817       E = PD->prop_end(); I != E; ++I)
818    if ((*I)->getPropertyIvarDecl())
819      ++count;
820
821  // Also look into nested protocols.
822  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
823       E = PD->protocol_end(); P != E; ++P)
824    count += CountProtocolSynthesizedIvars(*P);
825  return count;
826}
827
828unsigned ASTContext::CountSynthesizedIvars(const ObjCInterfaceDecl *OI)
829{
830  unsigned count = 0;
831  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
832       E = OI->prop_end(); I != E; ++I) {
833    if ((*I)->getPropertyIvarDecl())
834      ++count;
835  }
836  // Also look into interface's protocol list for properties declared
837  // in the protocol and whose ivars are synthesized.
838  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
839       PE = OI->protocol_end(); P != PE; ++P) {
840    ObjCProtocolDecl *PD = (*P);
841    count += CountProtocolSynthesizedIvars(PD);
842  }
843  return count;
844}
845
846/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
847ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
848  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
849    I = ObjCImpls.find(D);
850  if (I != ObjCImpls.end())
851    return cast<ObjCImplementationDecl>(I->second);
852  return 0;
853}
854/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
855ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
856  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
857    I = ObjCImpls.find(D);
858  if (I != ObjCImpls.end())
859    return cast<ObjCCategoryImplDecl>(I->second);
860  return 0;
861}
862
863/// \brief Set the implementation of ObjCInterfaceDecl.
864void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
865                           ObjCImplementationDecl *ImplD) {
866  assert(IFaceD && ImplD && "Passed null params");
867  ObjCImpls[IFaceD] = ImplD;
868}
869/// \brief Set the implementation of ObjCCategoryDecl.
870void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
871                           ObjCCategoryImplDecl *ImplD) {
872  assert(CatD && ImplD && "Passed null params");
873  ObjCImpls[CatD] = ImplD;
874}
875
876/// getInterfaceLayoutImpl - Get or compute information about the
877/// layout of the given interface.
878///
879/// \param Impl - If given, also include the layout of the interface's
880/// implementation. This may differ by including synthesized ivars.
881const ASTRecordLayout &
882ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
883                          const ObjCImplementationDecl *Impl) {
884  assert(!D->isForwardDecl() && "Invalid interface decl!");
885
886  // Look up this layout, if already laid out, return what we have.
887  ObjCContainerDecl *Key =
888    Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D;
889  if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
890    return *Entry;
891
892  // Add in synthesized ivar count if laying out an implementation.
893  if (Impl) {
894    unsigned FieldCount = D->ivar_size();
895    unsigned SynthCount = CountSynthesizedIvars(D);
896    FieldCount += SynthCount;
897    // If there aren't any sythesized ivars then reuse the interface
898    // entry. Note we can't cache this because we simply free all
899    // entries later; however we shouldn't look up implementations
900    // frequently.
901    if (SynthCount == 0)
902      return getObjCLayout(D, 0);
903  }
904
905  const ASTRecordLayout *NewEntry =
906    ASTRecordLayoutBuilder::ComputeLayout(*this, D, Impl);
907  ObjCLayouts[Key] = NewEntry;
908
909  return *NewEntry;
910}
911
912const ASTRecordLayout &
913ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
914  return getObjCLayout(D, 0);
915}
916
917const ASTRecordLayout &
918ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
919  return getObjCLayout(D->getClassInterface(), D);
920}
921
922/// getASTRecordLayout - Get or compute information about the layout of the
923/// specified record (struct/union/class), which indicates its size and field
924/// position information.
925const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
926  D = D->getDefinition(*this);
927  assert(D && "Cannot get layout of forward declarations!");
928
929  // Look up this layout, if already laid out, return what we have.
930  // Note that we can't save a reference to the entry because this function
931  // is recursive.
932  const ASTRecordLayout *Entry = ASTRecordLayouts[D];
933  if (Entry) return *Entry;
934
935  const ASTRecordLayout *NewEntry =
936    ASTRecordLayoutBuilder::ComputeLayout(*this, D);
937  ASTRecordLayouts[D] = NewEntry;
938
939  return *NewEntry;
940}
941
942//===----------------------------------------------------------------------===//
943//                   Type creation/memoization methods
944//===----------------------------------------------------------------------===//
945
946QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
947  QualType CanT = getCanonicalType(T);
948  if (CanT.getAddressSpace() == AddressSpace)
949    return T;
950
951  // If we are composing extended qualifiers together, merge together into one
952  // ExtQualType node.
953  unsigned CVRQuals = T.getCVRQualifiers();
954  QualType::GCAttrTypes GCAttr = QualType::GCNone;
955  Type *TypeNode = T.getTypePtr();
956
957  if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
958    // If this type already has an address space specified, it cannot get
959    // another one.
960    assert(EQT->getAddressSpace() == 0 &&
961           "Type cannot be in multiple addr spaces!");
962    GCAttr = EQT->getObjCGCAttr();
963    TypeNode = EQT->getBaseType();
964  }
965
966  // Check if we've already instantiated this type.
967  llvm::FoldingSetNodeID ID;
968  ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
969  void *InsertPos = 0;
970  if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
971    return QualType(EXTQy, CVRQuals);
972
973  // If the base type isn't canonical, this won't be a canonical type either,
974  // so fill in the canonical type field.
975  QualType Canonical;
976  if (!TypeNode->isCanonical()) {
977    Canonical = getAddrSpaceQualType(CanT, AddressSpace);
978
979    // Update InsertPos, the previous call could have invalidated it.
980    ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
981    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
982  }
983  ExtQualType *New =
984    new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
985  ExtQualTypes.InsertNode(New, InsertPos);
986  Types.push_back(New);
987  return QualType(New, CVRQuals);
988}
989
990QualType ASTContext::getObjCGCQualType(QualType T,
991                                       QualType::GCAttrTypes GCAttr) {
992  QualType CanT = getCanonicalType(T);
993  if (CanT.getObjCGCAttr() == GCAttr)
994    return T;
995
996  if (T->isPointerType()) {
997    QualType Pointee = T->getAs<PointerType>()->getPointeeType();
998    if (Pointee->isAnyPointerType()) {
999      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1000      return getPointerType(ResultType);
1001    }
1002  }
1003  // If we are composing extended qualifiers together, merge together into one
1004  // ExtQualType node.
1005  unsigned CVRQuals = T.getCVRQualifiers();
1006  Type *TypeNode = T.getTypePtr();
1007  unsigned AddressSpace = 0;
1008
1009  if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
1010    // If this type already has an ObjCGC specified, it cannot get
1011    // another one.
1012    assert(EQT->getObjCGCAttr() == QualType::GCNone &&
1013           "Type cannot have multiple ObjCGCs!");
1014    AddressSpace = EQT->getAddressSpace();
1015    TypeNode = EQT->getBaseType();
1016  }
1017
1018  // Check if we've already instantiated an gc qual'd type of this type.
1019  llvm::FoldingSetNodeID ID;
1020  ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
1021  void *InsertPos = 0;
1022  if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
1023    return QualType(EXTQy, CVRQuals);
1024
1025  // If the base type isn't canonical, this won't be a canonical type either,
1026  // so fill in the canonical type field.
1027  // FIXME: Isn't this also not canonical if the base type is a array
1028  // or pointer type?  I can't find any documentation for objc_gc, though...
1029  QualType Canonical;
1030  if (!T->isCanonical()) {
1031    Canonical = getObjCGCQualType(CanT, GCAttr);
1032
1033    // Update InsertPos, the previous call could have invalidated it.
1034    ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
1035    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1036  }
1037  ExtQualType *New =
1038    new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
1039  ExtQualTypes.InsertNode(New, InsertPos);
1040  Types.push_back(New);
1041  return QualType(New, CVRQuals);
1042}
1043
1044QualType ASTContext::getNoReturnType(QualType T) {
1045  QualifierSet qs;
1046  qs.strip(T);
1047  if (T->isPointerType()) {
1048    QualType Pointee = T->getAs<PointerType>()->getPointeeType();
1049    QualType ResultType = getNoReturnType(Pointee);
1050    ResultType = getPointerType(ResultType);
1051    ResultType.setCVRQualifiers(T.getCVRQualifiers());
1052    return qs.apply(ResultType, *this);
1053  }
1054  if (T->isBlockPointerType()) {
1055    QualType Pointee = T->getAs<BlockPointerType>()->getPointeeType();
1056    QualType ResultType = getNoReturnType(Pointee);
1057    ResultType = getBlockPointerType(ResultType);
1058    ResultType.setCVRQualifiers(T.getCVRQualifiers());
1059    return qs.apply(ResultType, *this);
1060  }
1061  if (!T->isFunctionType())
1062    assert(0 && "can't noreturn qualify non-pointer to function or block type");
1063
1064  if (const FunctionNoProtoType *F = T->getAsFunctionNoProtoType()) {
1065    return getFunctionNoProtoType(F->getResultType(), true);
1066  }
1067  const FunctionProtoType *F = T->getAsFunctionProtoType();
1068  return getFunctionType(F->getResultType(), F->arg_type_begin(),
1069                         F->getNumArgs(), F->isVariadic(), F->getTypeQuals(),
1070                         F->hasExceptionSpec(), F->hasAnyExceptionSpec(),
1071                         F->getNumExceptions(), F->exception_begin(), true);
1072}
1073
1074/// getComplexType - Return the uniqued reference to the type for a complex
1075/// number with the specified element type.
1076QualType ASTContext::getComplexType(QualType T) {
1077  // Unique pointers, to guarantee there is only one pointer of a particular
1078  // structure.
1079  llvm::FoldingSetNodeID ID;
1080  ComplexType::Profile(ID, T);
1081
1082  void *InsertPos = 0;
1083  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1084    return QualType(CT, 0);
1085
1086  // If the pointee type isn't canonical, this won't be a canonical type either,
1087  // so fill in the canonical type field.
1088  QualType Canonical;
1089  if (!T->isCanonical()) {
1090    Canonical = getComplexType(getCanonicalType(T));
1091
1092    // Get the new insert position for the node we care about.
1093    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1094    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1095  }
1096  ComplexType *New = new (*this,8) ComplexType(T, Canonical);
1097  Types.push_back(New);
1098  ComplexTypes.InsertNode(New, InsertPos);
1099  return QualType(New, 0);
1100}
1101
1102QualType ASTContext::getFixedWidthIntType(unsigned Width, bool Signed) {
1103  llvm::DenseMap<unsigned, FixedWidthIntType*> &Map = Signed ?
1104     SignedFixedWidthIntTypes : UnsignedFixedWidthIntTypes;
1105  FixedWidthIntType *&Entry = Map[Width];
1106  if (!Entry)
1107    Entry = new FixedWidthIntType(Width, Signed);
1108  return QualType(Entry, 0);
1109}
1110
1111/// getPointerType - Return the uniqued reference to the type for a pointer to
1112/// the specified type.
1113QualType ASTContext::getPointerType(QualType T) {
1114  // Unique pointers, to guarantee there is only one pointer of a particular
1115  // structure.
1116  llvm::FoldingSetNodeID ID;
1117  PointerType::Profile(ID, T);
1118
1119  void *InsertPos = 0;
1120  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1121    return QualType(PT, 0);
1122
1123  // If the pointee type isn't canonical, this won't be a canonical type either,
1124  // so fill in the canonical type field.
1125  QualType Canonical;
1126  if (!T->isCanonical()) {
1127    Canonical = getPointerType(getCanonicalType(T));
1128
1129    // Get the new insert position for the node we care about.
1130    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1131    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1132  }
1133  PointerType *New = new (*this,8) PointerType(T, Canonical);
1134  Types.push_back(New);
1135  PointerTypes.InsertNode(New, InsertPos);
1136  return QualType(New, 0);
1137}
1138
1139/// getBlockPointerType - Return the uniqued reference to the type for
1140/// a pointer to the specified block.
1141QualType ASTContext::getBlockPointerType(QualType T) {
1142  assert(T->isFunctionType() && "block of function types only");
1143  // Unique pointers, to guarantee there is only one block of a particular
1144  // structure.
1145  llvm::FoldingSetNodeID ID;
1146  BlockPointerType::Profile(ID, T);
1147
1148  void *InsertPos = 0;
1149  if (BlockPointerType *PT =
1150        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1151    return QualType(PT, 0);
1152
1153  // If the block pointee type isn't canonical, this won't be a canonical
1154  // type either so fill in the canonical type field.
1155  QualType Canonical;
1156  if (!T->isCanonical()) {
1157    Canonical = getBlockPointerType(getCanonicalType(T));
1158
1159    // Get the new insert position for the node we care about.
1160    BlockPointerType *NewIP =
1161      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1162    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1163  }
1164  BlockPointerType *New = new (*this,8) BlockPointerType(T, Canonical);
1165  Types.push_back(New);
1166  BlockPointerTypes.InsertNode(New, InsertPos);
1167  return QualType(New, 0);
1168}
1169
1170/// getLValueReferenceType - Return the uniqued reference to the type for an
1171/// lvalue reference to the specified type.
1172QualType ASTContext::getLValueReferenceType(QualType T) {
1173  // Unique pointers, to guarantee there is only one pointer of a particular
1174  // structure.
1175  llvm::FoldingSetNodeID ID;
1176  ReferenceType::Profile(ID, T);
1177
1178  void *InsertPos = 0;
1179  if (LValueReferenceType *RT =
1180        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1181    return QualType(RT, 0);
1182
1183  // If the referencee type isn't canonical, this won't be a canonical type
1184  // either, so fill in the canonical type field.
1185  QualType Canonical;
1186  if (!T->isCanonical()) {
1187    Canonical = getLValueReferenceType(getCanonicalType(T));
1188
1189    // Get the new insert position for the node we care about.
1190    LValueReferenceType *NewIP =
1191      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1192    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1193  }
1194
1195  LValueReferenceType *New = new (*this,8) LValueReferenceType(T, Canonical);
1196  Types.push_back(New);
1197  LValueReferenceTypes.InsertNode(New, InsertPos);
1198  return QualType(New, 0);
1199}
1200
1201/// getRValueReferenceType - Return the uniqued reference to the type for an
1202/// rvalue reference to the specified type.
1203QualType ASTContext::getRValueReferenceType(QualType T) {
1204  // Unique pointers, to guarantee there is only one pointer of a particular
1205  // structure.
1206  llvm::FoldingSetNodeID ID;
1207  ReferenceType::Profile(ID, T);
1208
1209  void *InsertPos = 0;
1210  if (RValueReferenceType *RT =
1211        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1212    return QualType(RT, 0);
1213
1214  // If the referencee type isn't canonical, this won't be a canonical type
1215  // either, so fill in the canonical type field.
1216  QualType Canonical;
1217  if (!T->isCanonical()) {
1218    Canonical = getRValueReferenceType(getCanonicalType(T));
1219
1220    // Get the new insert position for the node we care about.
1221    RValueReferenceType *NewIP =
1222      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1223    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1224  }
1225
1226  RValueReferenceType *New = new (*this,8) RValueReferenceType(T, Canonical);
1227  Types.push_back(New);
1228  RValueReferenceTypes.InsertNode(New, InsertPos);
1229  return QualType(New, 0);
1230}
1231
1232/// getMemberPointerType - Return the uniqued reference to the type for a
1233/// member pointer to the specified type, in the specified class.
1234QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls)
1235{
1236  // Unique pointers, to guarantee there is only one pointer of a particular
1237  // structure.
1238  llvm::FoldingSetNodeID ID;
1239  MemberPointerType::Profile(ID, T, Cls);
1240
1241  void *InsertPos = 0;
1242  if (MemberPointerType *PT =
1243      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1244    return QualType(PT, 0);
1245
1246  // If the pointee or class type isn't canonical, this won't be a canonical
1247  // type either, so fill in the canonical type field.
1248  QualType Canonical;
1249  if (!T->isCanonical()) {
1250    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1251
1252    // Get the new insert position for the node we care about.
1253    MemberPointerType *NewIP =
1254      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1255    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1256  }
1257  MemberPointerType *New = new (*this,8) MemberPointerType(T, Cls, Canonical);
1258  Types.push_back(New);
1259  MemberPointerTypes.InsertNode(New, InsertPos);
1260  return QualType(New, 0);
1261}
1262
1263/// getConstantArrayType - Return the unique reference to the type for an
1264/// array of the specified element type.
1265QualType ASTContext::getConstantArrayType(QualType EltTy,
1266                                          const llvm::APInt &ArySizeIn,
1267                                          ArrayType::ArraySizeModifier ASM,
1268                                          unsigned EltTypeQuals) {
1269  assert((EltTy->isDependentType() || EltTy->isConstantSizeType()) &&
1270         "Constant array of VLAs is illegal!");
1271
1272  // Convert the array size into a canonical width matching the pointer size for
1273  // the target.
1274  llvm::APInt ArySize(ArySizeIn);
1275  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1276
1277  llvm::FoldingSetNodeID ID;
1278  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1279
1280  void *InsertPos = 0;
1281  if (ConstantArrayType *ATP =
1282      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1283    return QualType(ATP, 0);
1284
1285  // If the element type isn't canonical, this won't be a canonical type either,
1286  // so fill in the canonical type field.
1287  QualType Canonical;
1288  if (!EltTy->isCanonical()) {
1289    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1290                                     ASM, EltTypeQuals);
1291    // Get the new insert position for the node we care about.
1292    ConstantArrayType *NewIP =
1293      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1294    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1295  }
1296
1297  ConstantArrayType *New =
1298    new(*this,8)ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1299  ConstantArrayTypes.InsertNode(New, InsertPos);
1300  Types.push_back(New);
1301  return QualType(New, 0);
1302}
1303
1304/// getConstantArrayWithExprType - Return a reference to the type for
1305/// an array of the specified element type.
1306QualType
1307ASTContext::getConstantArrayWithExprType(QualType EltTy,
1308                                         const llvm::APInt &ArySizeIn,
1309                                         Expr *ArySizeExpr,
1310                                         ArrayType::ArraySizeModifier ASM,
1311                                         unsigned EltTypeQuals,
1312                                         SourceRange Brackets) {
1313  // Convert the array size into a canonical width matching the pointer
1314  // size for the target.
1315  llvm::APInt ArySize(ArySizeIn);
1316  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1317
1318  // Compute the canonical ConstantArrayType.
1319  QualType Canonical = getConstantArrayType(getCanonicalType(EltTy),
1320                                            ArySize, ASM, EltTypeQuals);
1321  // Since we don't unique expressions, it isn't possible to unique VLA's
1322  // that have an expression provided for their size.
1323  ConstantArrayWithExprType *New =
1324    new(*this,8)ConstantArrayWithExprType(EltTy, Canonical,
1325                                          ArySize, ArySizeExpr,
1326                                          ASM, EltTypeQuals, Brackets);
1327  Types.push_back(New);
1328  return QualType(New, 0);
1329}
1330
1331/// getConstantArrayWithoutExprType - Return a reference to the type for
1332/// an array of the specified element type.
1333QualType
1334ASTContext::getConstantArrayWithoutExprType(QualType EltTy,
1335                                            const llvm::APInt &ArySizeIn,
1336                                            ArrayType::ArraySizeModifier ASM,
1337                                            unsigned EltTypeQuals) {
1338  // Convert the array size into a canonical width matching the pointer
1339  // size for the target.
1340  llvm::APInt ArySize(ArySizeIn);
1341  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1342
1343  // Compute the canonical ConstantArrayType.
1344  QualType Canonical = getConstantArrayType(getCanonicalType(EltTy),
1345                                            ArySize, ASM, EltTypeQuals);
1346  ConstantArrayWithoutExprType *New =
1347    new(*this,8)ConstantArrayWithoutExprType(EltTy, Canonical,
1348                                             ArySize, ASM, EltTypeQuals);
1349  Types.push_back(New);
1350  return QualType(New, 0);
1351}
1352
1353/// getVariableArrayType - Returns a non-unique reference to the type for a
1354/// variable array of the specified element type.
1355QualType ASTContext::getVariableArrayType(QualType EltTy,
1356                                          Expr *NumElts,
1357                                          ArrayType::ArraySizeModifier ASM,
1358                                          unsigned EltTypeQuals,
1359                                          SourceRange Brackets) {
1360  // Since we don't unique expressions, it isn't possible to unique VLA's
1361  // that have an expression provided for their size.
1362
1363  VariableArrayType *New =
1364    new(*this,8)VariableArrayType(EltTy, QualType(),
1365                                  NumElts, ASM, EltTypeQuals, Brackets);
1366
1367  VariableArrayTypes.push_back(New);
1368  Types.push_back(New);
1369  return QualType(New, 0);
1370}
1371
1372/// getDependentSizedArrayType - Returns a non-unique reference to
1373/// the type for a dependently-sized array of the specified element
1374/// type.
1375QualType ASTContext::getDependentSizedArrayType(QualType EltTy,
1376                                                Expr *NumElts,
1377                                                ArrayType::ArraySizeModifier ASM,
1378                                                unsigned EltTypeQuals,
1379                                                SourceRange Brackets) {
1380  assert((NumElts->isTypeDependent() || NumElts->isValueDependent()) &&
1381         "Size must be type- or value-dependent!");
1382
1383  llvm::FoldingSetNodeID ID;
1384  DependentSizedArrayType::Profile(ID, *this, getCanonicalType(EltTy), ASM,
1385                                   EltTypeQuals, NumElts);
1386
1387  void *InsertPos = 0;
1388  DependentSizedArrayType *Canon
1389    = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1390  DependentSizedArrayType *New;
1391  if (Canon) {
1392    // We already have a canonical version of this array type; use it as
1393    // the canonical type for a newly-built type.
1394    New = new (*this,8) DependentSizedArrayType(*this, EltTy,
1395                                                QualType(Canon, 0),
1396                                                NumElts, ASM, EltTypeQuals,
1397                                                Brackets);
1398  } else {
1399    QualType CanonEltTy = getCanonicalType(EltTy);
1400    if (CanonEltTy == EltTy) {
1401      New = new (*this,8) DependentSizedArrayType(*this, EltTy, QualType(),
1402                                                  NumElts, ASM, EltTypeQuals,
1403                                                  Brackets);
1404      DependentSizedArrayTypes.InsertNode(New, InsertPos);
1405    } else {
1406      QualType Canon = getDependentSizedArrayType(CanonEltTy, NumElts,
1407                                                  ASM, EltTypeQuals,
1408                                                  SourceRange());
1409      New = new (*this,8) DependentSizedArrayType(*this, EltTy, Canon,
1410                                                  NumElts, ASM, EltTypeQuals,
1411                                                  Brackets);
1412    }
1413  }
1414
1415  Types.push_back(New);
1416  return QualType(New, 0);
1417}
1418
1419QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1420                                            ArrayType::ArraySizeModifier ASM,
1421                                            unsigned EltTypeQuals) {
1422  llvm::FoldingSetNodeID ID;
1423  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1424
1425  void *InsertPos = 0;
1426  if (IncompleteArrayType *ATP =
1427       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1428    return QualType(ATP, 0);
1429
1430  // If the element type isn't canonical, this won't be a canonical type
1431  // either, so fill in the canonical type field.
1432  QualType Canonical;
1433
1434  if (!EltTy->isCanonical()) {
1435    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1436                                       ASM, EltTypeQuals);
1437
1438    // Get the new insert position for the node we care about.
1439    IncompleteArrayType *NewIP =
1440      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1441    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1442  }
1443
1444  IncompleteArrayType *New
1445    = new (*this,8) IncompleteArrayType(EltTy, Canonical,
1446                                        ASM, EltTypeQuals);
1447
1448  IncompleteArrayTypes.InsertNode(New, InsertPos);
1449  Types.push_back(New);
1450  return QualType(New, 0);
1451}
1452
1453/// getVectorType - Return the unique reference to a vector type of
1454/// the specified element type and size. VectorType must be a built-in type.
1455QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
1456  BuiltinType *baseType;
1457
1458  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1459  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1460
1461  // Check if we've already instantiated a vector of this type.
1462  llvm::FoldingSetNodeID ID;
1463  VectorType::Profile(ID, vecType, NumElts, Type::Vector);
1464  void *InsertPos = 0;
1465  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1466    return QualType(VTP, 0);
1467
1468  // If the element type isn't canonical, this won't be a canonical type either,
1469  // so fill in the canonical type field.
1470  QualType Canonical;
1471  if (!vecType->isCanonical()) {
1472    Canonical = getVectorType(getCanonicalType(vecType), NumElts);
1473
1474    // Get the new insert position for the node we care about.
1475    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1476    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1477  }
1478  VectorType *New = new (*this,8) VectorType(vecType, NumElts, Canonical);
1479  VectorTypes.InsertNode(New, InsertPos);
1480  Types.push_back(New);
1481  return QualType(New, 0);
1482}
1483
1484/// getExtVectorType - Return the unique reference to an extended vector type of
1485/// the specified element type and size. VectorType must be a built-in type.
1486QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1487  BuiltinType *baseType;
1488
1489  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1490  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1491
1492  // Check if we've already instantiated a vector of this type.
1493  llvm::FoldingSetNodeID ID;
1494  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector);
1495  void *InsertPos = 0;
1496  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1497    return QualType(VTP, 0);
1498
1499  // If the element type isn't canonical, this won't be a canonical type either,
1500  // so fill in the canonical type field.
1501  QualType Canonical;
1502  if (!vecType->isCanonical()) {
1503    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1504
1505    // Get the new insert position for the node we care about.
1506    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1507    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1508  }
1509  ExtVectorType *New = new (*this,8) ExtVectorType(vecType, NumElts, Canonical);
1510  VectorTypes.InsertNode(New, InsertPos);
1511  Types.push_back(New);
1512  return QualType(New, 0);
1513}
1514
1515QualType ASTContext::getDependentSizedExtVectorType(QualType vecType,
1516                                                    Expr *SizeExpr,
1517                                                    SourceLocation AttrLoc) {
1518  llvm::FoldingSetNodeID ID;
1519  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1520                                       SizeExpr);
1521
1522  void *InsertPos = 0;
1523  DependentSizedExtVectorType *Canon
1524    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1525  DependentSizedExtVectorType *New;
1526  if (Canon) {
1527    // We already have a canonical version of this array type; use it as
1528    // the canonical type for a newly-built type.
1529    New = new (*this,8) DependentSizedExtVectorType(*this, vecType,
1530                                                    QualType(Canon, 0),
1531                                                    SizeExpr, AttrLoc);
1532  } else {
1533    QualType CanonVecTy = getCanonicalType(vecType);
1534    if (CanonVecTy == vecType) {
1535      New = new (*this,8) DependentSizedExtVectorType(*this, vecType,
1536                                                      QualType(), SizeExpr,
1537                                                      AttrLoc);
1538      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1539    } else {
1540      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1541                                                      SourceLocation());
1542      New = new (*this,8) DependentSizedExtVectorType(*this, vecType, Canon,
1543                                                      SizeExpr, AttrLoc);
1544    }
1545  }
1546
1547  Types.push_back(New);
1548  return QualType(New, 0);
1549}
1550
1551/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1552///
1553QualType ASTContext::getFunctionNoProtoType(QualType ResultTy, bool NoReturn) {
1554  // Unique functions, to guarantee there is only one function of a particular
1555  // structure.
1556  llvm::FoldingSetNodeID ID;
1557  FunctionNoProtoType::Profile(ID, ResultTy, NoReturn);
1558
1559  void *InsertPos = 0;
1560  if (FunctionNoProtoType *FT =
1561        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1562    return QualType(FT, 0);
1563
1564  QualType Canonical;
1565  if (!ResultTy->isCanonical()) {
1566    Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy), NoReturn);
1567
1568    // Get the new insert position for the node we care about.
1569    FunctionNoProtoType *NewIP =
1570      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1571    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1572  }
1573
1574  FunctionNoProtoType *New
1575    = new (*this,8) FunctionNoProtoType(ResultTy, Canonical, NoReturn);
1576  Types.push_back(New);
1577  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1578  return QualType(New, 0);
1579}
1580
1581/// getFunctionType - Return a normal function type with a typed argument
1582/// list.  isVariadic indicates whether the argument list includes '...'.
1583QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1584                                     unsigned NumArgs, bool isVariadic,
1585                                     unsigned TypeQuals, bool hasExceptionSpec,
1586                                     bool hasAnyExceptionSpec, unsigned NumExs,
1587                                     const QualType *ExArray, bool NoReturn) {
1588  // Unique functions, to guarantee there is only one function of a particular
1589  // structure.
1590  llvm::FoldingSetNodeID ID;
1591  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1592                             TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1593                             NumExs, ExArray, NoReturn);
1594
1595  void *InsertPos = 0;
1596  if (FunctionProtoType *FTP =
1597        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1598    return QualType(FTP, 0);
1599
1600  // Determine whether the type being created is already canonical or not.
1601  bool isCanonical = ResultTy->isCanonical();
1602  if (hasExceptionSpec)
1603    isCanonical = false;
1604  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1605    if (!ArgArray[i]->isCanonical())
1606      isCanonical = false;
1607
1608  // If this type isn't canonical, get the canonical version of it.
1609  // The exception spec is not part of the canonical type.
1610  QualType Canonical;
1611  if (!isCanonical) {
1612    llvm::SmallVector<QualType, 16> CanonicalArgs;
1613    CanonicalArgs.reserve(NumArgs);
1614    for (unsigned i = 0; i != NumArgs; ++i)
1615      CanonicalArgs.push_back(getCanonicalType(ArgArray[i]));
1616
1617    Canonical = getFunctionType(getCanonicalType(ResultTy),
1618                                CanonicalArgs.data(), NumArgs,
1619                                isVariadic, TypeQuals, NoReturn);
1620
1621    // Get the new insert position for the node we care about.
1622    FunctionProtoType *NewIP =
1623      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1624    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1625  }
1626
1627  // FunctionProtoType objects are allocated with extra bytes after them
1628  // for two variable size arrays (for parameter and exception types) at the
1629  // end of them.
1630  FunctionProtoType *FTP =
1631    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1632                                 NumArgs*sizeof(QualType) +
1633                                 NumExs*sizeof(QualType), 8);
1634  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1635                              TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1636                              ExArray, NumExs, Canonical, NoReturn);
1637  Types.push_back(FTP);
1638  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1639  return QualType(FTP, 0);
1640}
1641
1642/// getTypeDeclType - Return the unique reference to the type for the
1643/// specified type declaration.
1644QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) {
1645  assert(Decl && "Passed null for Decl param");
1646  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1647
1648  if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1649    return getTypedefType(Typedef);
1650  else if (isa<TemplateTypeParmDecl>(Decl)) {
1651    assert(false && "Template type parameter types are always available.");
1652  } else if (ObjCInterfaceDecl *ObjCInterface
1653               = dyn_cast<ObjCInterfaceDecl>(Decl))
1654    return getObjCInterfaceType(ObjCInterface);
1655
1656  if (RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1657    if (PrevDecl)
1658      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1659    else
1660      Decl->TypeForDecl = new (*this,8) RecordType(Record);
1661  } else if (EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1662    if (PrevDecl)
1663      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1664    else
1665      Decl->TypeForDecl = new (*this,8) EnumType(Enum);
1666  } else
1667    assert(false && "TypeDecl without a type?");
1668
1669  if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
1670  return QualType(Decl->TypeForDecl, 0);
1671}
1672
1673/// getTypedefType - Return the unique reference to the type for the
1674/// specified typename decl.
1675QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
1676  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1677
1678  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1679  Decl->TypeForDecl = new(*this,8) TypedefType(Type::Typedef, Decl, Canonical);
1680  Types.push_back(Decl->TypeForDecl);
1681  return QualType(Decl->TypeForDecl, 0);
1682}
1683
1684/// \brief Retrieve the template type parameter type for a template
1685/// parameter or parameter pack with the given depth, index, and (optionally)
1686/// name.
1687QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1688                                             bool ParameterPack,
1689                                             IdentifierInfo *Name) {
1690  llvm::FoldingSetNodeID ID;
1691  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
1692  void *InsertPos = 0;
1693  TemplateTypeParmType *TypeParm
1694    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1695
1696  if (TypeParm)
1697    return QualType(TypeParm, 0);
1698
1699  if (Name) {
1700    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
1701    TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index, ParameterPack,
1702                                                   Name, Canon);
1703  } else
1704    TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index, ParameterPack);
1705
1706  Types.push_back(TypeParm);
1707  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1708
1709  return QualType(TypeParm, 0);
1710}
1711
1712QualType
1713ASTContext::getTemplateSpecializationType(TemplateName Template,
1714                                          const TemplateArgument *Args,
1715                                          unsigned NumArgs,
1716                                          QualType Canon) {
1717  if (!Canon.isNull())
1718    Canon = getCanonicalType(Canon);
1719  else {
1720    // Build the canonical template specialization type.
1721    TemplateName CanonTemplate = getCanonicalTemplateName(Template);
1722    llvm::SmallVector<TemplateArgument, 4> CanonArgs;
1723    CanonArgs.reserve(NumArgs);
1724    for (unsigned I = 0; I != NumArgs; ++I)
1725      CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
1726
1727    // Determine whether this canonical template specialization type already
1728    // exists.
1729    llvm::FoldingSetNodeID ID;
1730    TemplateSpecializationType::Profile(ID, CanonTemplate,
1731                                        CanonArgs.data(), NumArgs, *this);
1732
1733    void *InsertPos = 0;
1734    TemplateSpecializationType *Spec
1735      = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1736
1737    if (!Spec) {
1738      // Allocate a new canonical template specialization type.
1739      void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1740                            sizeof(TemplateArgument) * NumArgs),
1741                           8);
1742      Spec = new (Mem) TemplateSpecializationType(*this, CanonTemplate,
1743                                                  CanonArgs.data(), NumArgs,
1744                                                  Canon);
1745      Types.push_back(Spec);
1746      TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1747    }
1748
1749    if (Canon.isNull())
1750      Canon = QualType(Spec, 0);
1751    assert(Canon->isDependentType() &&
1752           "Non-dependent template-id type must have a canonical type");
1753  }
1754
1755  // Allocate the (non-canonical) template specialization type, but don't
1756  // try to unique it: these types typically have location information that
1757  // we don't unique and don't want to lose.
1758  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1759                        sizeof(TemplateArgument) * NumArgs),
1760                       8);
1761  TemplateSpecializationType *Spec
1762    = new (Mem) TemplateSpecializationType(*this, Template, Args, NumArgs,
1763                                           Canon);
1764
1765  Types.push_back(Spec);
1766  return QualType(Spec, 0);
1767}
1768
1769QualType
1770ASTContext::getQualifiedNameType(NestedNameSpecifier *NNS,
1771                                 QualType NamedType) {
1772  llvm::FoldingSetNodeID ID;
1773  QualifiedNameType::Profile(ID, NNS, NamedType);
1774
1775  void *InsertPos = 0;
1776  QualifiedNameType *T
1777    = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1778  if (T)
1779    return QualType(T, 0);
1780
1781  T = new (*this) QualifiedNameType(NNS, NamedType,
1782                                    getCanonicalType(NamedType));
1783  Types.push_back(T);
1784  QualifiedNameTypes.InsertNode(T, InsertPos);
1785  return QualType(T, 0);
1786}
1787
1788QualType ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1789                                     const IdentifierInfo *Name,
1790                                     QualType Canon) {
1791  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1792
1793  if (Canon.isNull()) {
1794    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1795    if (CanonNNS != NNS)
1796      Canon = getTypenameType(CanonNNS, Name);
1797  }
1798
1799  llvm::FoldingSetNodeID ID;
1800  TypenameType::Profile(ID, NNS, Name);
1801
1802  void *InsertPos = 0;
1803  TypenameType *T
1804    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1805  if (T)
1806    return QualType(T, 0);
1807
1808  T = new (*this) TypenameType(NNS, Name, Canon);
1809  Types.push_back(T);
1810  TypenameTypes.InsertNode(T, InsertPos);
1811  return QualType(T, 0);
1812}
1813
1814QualType
1815ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1816                            const TemplateSpecializationType *TemplateId,
1817                            QualType Canon) {
1818  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1819
1820  if (Canon.isNull()) {
1821    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1822    QualType CanonType = getCanonicalType(QualType(TemplateId, 0));
1823    if (CanonNNS != NNS || CanonType != QualType(TemplateId, 0)) {
1824      const TemplateSpecializationType *CanonTemplateId
1825        = CanonType->getAsTemplateSpecializationType();
1826      assert(CanonTemplateId &&
1827             "Canonical type must also be a template specialization type");
1828      Canon = getTypenameType(CanonNNS, CanonTemplateId);
1829    }
1830  }
1831
1832  llvm::FoldingSetNodeID ID;
1833  TypenameType::Profile(ID, NNS, TemplateId);
1834
1835  void *InsertPos = 0;
1836  TypenameType *T
1837    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1838  if (T)
1839    return QualType(T, 0);
1840
1841  T = new (*this) TypenameType(NNS, TemplateId, Canon);
1842  Types.push_back(T);
1843  TypenameTypes.InsertNode(T, InsertPos);
1844  return QualType(T, 0);
1845}
1846
1847/// CmpProtocolNames - Comparison predicate for sorting protocols
1848/// alphabetically.
1849static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
1850                            const ObjCProtocolDecl *RHS) {
1851  return LHS->getDeclName() < RHS->getDeclName();
1852}
1853
1854static void SortAndUniqueProtocols(ObjCProtocolDecl **&Protocols,
1855                                   unsigned &NumProtocols) {
1856  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
1857
1858  // Sort protocols, keyed by name.
1859  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
1860
1861  // Remove duplicates.
1862  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
1863  NumProtocols = ProtocolsEnd-Protocols;
1864}
1865
1866/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
1867/// the given interface decl and the conforming protocol list.
1868QualType ASTContext::getObjCObjectPointerType(QualType InterfaceT,
1869                                              ObjCProtocolDecl **Protocols,
1870                                              unsigned NumProtocols) {
1871  // Sort the protocol list alphabetically to canonicalize it.
1872  if (NumProtocols)
1873    SortAndUniqueProtocols(Protocols, NumProtocols);
1874
1875  llvm::FoldingSetNodeID ID;
1876  ObjCObjectPointerType::Profile(ID, InterfaceT, Protocols, NumProtocols);
1877
1878  void *InsertPos = 0;
1879  if (ObjCObjectPointerType *QT =
1880              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1881    return QualType(QT, 0);
1882
1883  // No Match;
1884  ObjCObjectPointerType *QType =
1885    new (*this,8) ObjCObjectPointerType(InterfaceT, Protocols, NumProtocols);
1886
1887  Types.push_back(QType);
1888  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
1889  return QualType(QType, 0);
1890}
1891
1892/// getObjCInterfaceType - Return the unique reference to the type for the
1893/// specified ObjC interface decl. The list of protocols is optional.
1894QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
1895                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
1896  if (NumProtocols)
1897    // Sort the protocol list alphabetically to canonicalize it.
1898    SortAndUniqueProtocols(Protocols, NumProtocols);
1899
1900  llvm::FoldingSetNodeID ID;
1901  ObjCInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
1902
1903  void *InsertPos = 0;
1904  if (ObjCInterfaceType *QT =
1905      ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
1906    return QualType(QT, 0);
1907
1908  // No Match;
1909  ObjCInterfaceType *QType =
1910    new (*this,8) ObjCInterfaceType(const_cast<ObjCInterfaceDecl*>(Decl),
1911                                    Protocols, NumProtocols);
1912  Types.push_back(QType);
1913  ObjCInterfaceTypes.InsertNode(QType, InsertPos);
1914  return QualType(QType, 0);
1915}
1916
1917/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
1918/// TypeOfExprType AST's (since expression's are never shared). For example,
1919/// multiple declarations that refer to "typeof(x)" all contain different
1920/// DeclRefExpr's. This doesn't effect the type checker, since it operates
1921/// on canonical type's (which are always unique).
1922QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
1923  TypeOfExprType *toe;
1924  if (tofExpr->isTypeDependent()) {
1925    llvm::FoldingSetNodeID ID;
1926    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
1927
1928    void *InsertPos = 0;
1929    DependentTypeOfExprType *Canon
1930      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
1931    if (Canon) {
1932      // We already have a "canonical" version of an identical, dependent
1933      // typeof(expr) type. Use that as our canonical type.
1934      toe = new (*this, 8) TypeOfExprType(tofExpr,
1935                                          QualType((TypeOfExprType*)Canon, 0));
1936    }
1937    else {
1938      // Build a new, canonical typeof(expr) type.
1939      Canon = new (*this, 8) DependentTypeOfExprType(*this, tofExpr);
1940      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
1941      toe = Canon;
1942    }
1943  } else {
1944    QualType Canonical = getCanonicalType(tofExpr->getType());
1945    toe = new (*this,8) TypeOfExprType(tofExpr, Canonical);
1946  }
1947  Types.push_back(toe);
1948  return QualType(toe, 0);
1949}
1950
1951/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
1952/// TypeOfType AST's. The only motivation to unique these nodes would be
1953/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
1954/// an issue. This doesn't effect the type checker, since it operates
1955/// on canonical type's (which are always unique).
1956QualType ASTContext::getTypeOfType(QualType tofType) {
1957  QualType Canonical = getCanonicalType(tofType);
1958  TypeOfType *tot = new (*this,8) TypeOfType(tofType, Canonical);
1959  Types.push_back(tot);
1960  return QualType(tot, 0);
1961}
1962
1963/// getDecltypeForExpr - Given an expr, will return the decltype for that
1964/// expression, according to the rules in C++0x [dcl.type.simple]p4
1965static QualType getDecltypeForExpr(const Expr *e, ASTContext &Context) {
1966  if (e->isTypeDependent())
1967    return Context.DependentTy;
1968
1969  // If e is an id expression or a class member access, decltype(e) is defined
1970  // as the type of the entity named by e.
1971  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
1972    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
1973      return VD->getType();
1974  }
1975  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
1976    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
1977      return FD->getType();
1978  }
1979  // If e is a function call or an invocation of an overloaded operator,
1980  // (parentheses around e are ignored), decltype(e) is defined as the
1981  // return type of that function.
1982  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
1983    return CE->getCallReturnType();
1984
1985  QualType T = e->getType();
1986
1987  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
1988  // defined as T&, otherwise decltype(e) is defined as T.
1989  if (e->isLvalue(Context) == Expr::LV_Valid)
1990    T = Context.getLValueReferenceType(T);
1991
1992  return T;
1993}
1994
1995/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
1996/// DecltypeType AST's. The only motivation to unique these nodes would be
1997/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
1998/// an issue. This doesn't effect the type checker, since it operates
1999/// on canonical type's (which are always unique).
2000QualType ASTContext::getDecltypeType(Expr *e) {
2001  DecltypeType *dt;
2002  if (e->isTypeDependent()) {
2003    llvm::FoldingSetNodeID ID;
2004    DependentDecltypeType::Profile(ID, *this, e);
2005
2006    void *InsertPos = 0;
2007    DependentDecltypeType *Canon
2008      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2009    if (Canon) {
2010      // We already have a "canonical" version of an equivalent, dependent
2011      // decltype type. Use that as our canonical type.
2012      dt = new (*this, 8) DecltypeType(e, DependentTy,
2013                                       QualType((DecltypeType*)Canon, 0));
2014    }
2015    else {
2016      // Build a new, canonical typeof(expr) type.
2017      Canon = new (*this, 8) DependentDecltypeType(*this, e);
2018      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2019      dt = Canon;
2020    }
2021  } else {
2022    QualType T = getDecltypeForExpr(e, *this);
2023    dt = new (*this, 8) DecltypeType(e, T, getCanonicalType(T));
2024  }
2025  Types.push_back(dt);
2026  return QualType(dt, 0);
2027}
2028
2029/// getTagDeclType - Return the unique reference to the type for the
2030/// specified TagDecl (struct/union/class/enum) decl.
2031QualType ASTContext::getTagDeclType(TagDecl *Decl) {
2032  assert (Decl);
2033  return getTypeDeclType(Decl);
2034}
2035
2036/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2037/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2038/// needs to agree with the definition in <stddef.h>.
2039QualType ASTContext::getSizeType() const {
2040  return getFromTargetType(Target.getSizeType());
2041}
2042
2043/// getSignedWCharType - Return the type of "signed wchar_t".
2044/// Used when in C++, as a GCC extension.
2045QualType ASTContext::getSignedWCharType() const {
2046  // FIXME: derive from "Target" ?
2047  return WCharTy;
2048}
2049
2050/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2051/// Used when in C++, as a GCC extension.
2052QualType ASTContext::getUnsignedWCharType() const {
2053  // FIXME: derive from "Target" ?
2054  return UnsignedIntTy;
2055}
2056
2057/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2058/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2059QualType ASTContext::getPointerDiffType() const {
2060  return getFromTargetType(Target.getPtrDiffType(0));
2061}
2062
2063//===----------------------------------------------------------------------===//
2064//                              Type Operators
2065//===----------------------------------------------------------------------===//
2066
2067/// getCanonicalType - Return the canonical (structural) type corresponding to
2068/// the specified potentially non-canonical type.  The non-canonical version
2069/// of a type may have many "decorated" versions of types.  Decorators can
2070/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
2071/// to be free of any of these, allowing two canonical types to be compared
2072/// for exact equality with a simple pointer comparison.
2073QualType ASTContext::getCanonicalType(QualType T) {
2074  QualType CanType = T.getTypePtr()->getCanonicalTypeInternal();
2075
2076  // If the result has type qualifiers, make sure to canonicalize them as well.
2077  unsigned TypeQuals = T.getCVRQualifiers() | CanType.getCVRQualifiers();
2078  if (TypeQuals == 0) return CanType;
2079
2080  // If the type qualifiers are on an array type, get the canonical type of the
2081  // array with the qualifiers applied to the element type.
2082  ArrayType *AT = dyn_cast<ArrayType>(CanType);
2083  if (!AT)
2084    return CanType.getQualifiedType(TypeQuals);
2085
2086  // Get the canonical version of the element with the extra qualifiers on it.
2087  // This can recursively sink qualifiers through multiple levels of arrays.
2088  QualType NewEltTy=AT->getElementType().getWithAdditionalQualifiers(TypeQuals);
2089  NewEltTy = getCanonicalType(NewEltTy);
2090
2091  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2092    return getConstantArrayType(NewEltTy, CAT->getSize(),CAT->getSizeModifier(),
2093                                CAT->getIndexTypeQualifier());
2094  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
2095    return getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
2096                                  IAT->getIndexTypeQualifier());
2097
2098  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
2099    return getDependentSizedArrayType(NewEltTy,
2100                                      DSAT->getSizeExpr(),
2101                                      DSAT->getSizeModifier(),
2102                                      DSAT->getIndexTypeQualifier(),
2103                                      DSAT->getBracketsRange());
2104
2105  VariableArrayType *VAT = cast<VariableArrayType>(AT);
2106  return getVariableArrayType(NewEltTy,
2107                              VAT->getSizeExpr(),
2108                              VAT->getSizeModifier(),
2109                              VAT->getIndexTypeQualifier(),
2110                              VAT->getBracketsRange());
2111}
2112
2113TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
2114  // If this template name refers to a template, the canonical
2115  // template name merely stores the template itself.
2116  if (TemplateDecl *Template = Name.getAsTemplateDecl())
2117    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
2118
2119  // If this template name refers to a set of overloaded function templates,
2120  /// the canonical template name merely stores the set of function templates.
2121  if (OverloadedFunctionDecl *Ovl = Name.getAsOverloadedFunctionDecl())
2122    // FIXME: Can't really canonicalize a set of overloaded functions, can we?
2123    return TemplateName(Ovl);
2124
2125  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
2126  assert(DTN && "Non-dependent template names must refer to template decls.");
2127  return DTN->CanonicalTemplateName;
2128}
2129
2130TemplateArgument
2131ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) {
2132  switch (Arg.getKind()) {
2133    case TemplateArgument::Null:
2134      return Arg;
2135
2136    case TemplateArgument::Expression:
2137      // FIXME: Build canonical expression?
2138      return Arg;
2139
2140    case TemplateArgument::Declaration:
2141      return TemplateArgument(SourceLocation(),
2142                              Arg.getAsDecl()->getCanonicalDecl());
2143
2144    case TemplateArgument::Integral:
2145      return TemplateArgument(SourceLocation(),
2146                              *Arg.getAsIntegral(),
2147                              getCanonicalType(Arg.getIntegralType()));
2148
2149    case TemplateArgument::Type:
2150      return TemplateArgument(SourceLocation(),
2151                              getCanonicalType(Arg.getAsType()));
2152
2153    case TemplateArgument::Pack: {
2154      // FIXME: Allocate in ASTContext
2155      TemplateArgument *CanonArgs = new TemplateArgument[Arg.pack_size()];
2156      unsigned Idx = 0;
2157      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
2158                                        AEnd = Arg.pack_end();
2159           A != AEnd; (void)++A, ++Idx)
2160        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
2161
2162      TemplateArgument Result;
2163      Result.setArgumentPack(CanonArgs, Arg.pack_size(), false);
2164      return Result;
2165    }
2166  }
2167
2168  // Silence GCC warning
2169  assert(false && "Unhandled template argument kind");
2170  return TemplateArgument();
2171}
2172
2173NestedNameSpecifier *
2174ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
2175  if (!NNS)
2176    return 0;
2177
2178  switch (NNS->getKind()) {
2179  case NestedNameSpecifier::Identifier:
2180    // Canonicalize the prefix but keep the identifier the same.
2181    return NestedNameSpecifier::Create(*this,
2182                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
2183                                       NNS->getAsIdentifier());
2184
2185  case NestedNameSpecifier::Namespace:
2186    // A namespace is canonical; build a nested-name-specifier with
2187    // this namespace and no prefix.
2188    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
2189
2190  case NestedNameSpecifier::TypeSpec:
2191  case NestedNameSpecifier::TypeSpecWithTemplate: {
2192    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
2193    NestedNameSpecifier *Prefix = 0;
2194
2195    // FIXME: This isn't the right check!
2196    if (T->isDependentType())
2197      Prefix = getCanonicalNestedNameSpecifier(NNS->getPrefix());
2198
2199    return NestedNameSpecifier::Create(*this, Prefix,
2200                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
2201                                       T.getTypePtr());
2202  }
2203
2204  case NestedNameSpecifier::Global:
2205    // The global specifier is canonical and unique.
2206    return NNS;
2207  }
2208
2209  // Required to silence a GCC warning
2210  return 0;
2211}
2212
2213
2214const ArrayType *ASTContext::getAsArrayType(QualType T) {
2215  // Handle the non-qualified case efficiently.
2216  if (T.getCVRQualifiers() == 0) {
2217    // Handle the common positive case fast.
2218    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
2219      return AT;
2220  }
2221
2222  // Handle the common negative case fast, ignoring CVR qualifiers.
2223  QualType CType = T->getCanonicalTypeInternal();
2224
2225  // Make sure to look through type qualifiers (like ExtQuals) for the negative
2226  // test.
2227  if (!isa<ArrayType>(CType) &&
2228      !isa<ArrayType>(CType.getUnqualifiedType()))
2229    return 0;
2230
2231  // Apply any CVR qualifiers from the array type to the element type.  This
2232  // implements C99 6.7.3p8: "If the specification of an array type includes
2233  // any type qualifiers, the element type is so qualified, not the array type."
2234
2235  // If we get here, we either have type qualifiers on the type, or we have
2236  // sugar such as a typedef in the way.  If we have type qualifiers on the type
2237  // we must propagate them down into the elemeng type.
2238  unsigned CVRQuals = T.getCVRQualifiers();
2239  unsigned AddrSpace = 0;
2240  Type *Ty = T.getTypePtr();
2241
2242  // Rip through ExtQualType's and typedefs to get to a concrete type.
2243  while (1) {
2244    if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(Ty)) {
2245      AddrSpace = EXTQT->getAddressSpace();
2246      Ty = EXTQT->getBaseType();
2247    } else {
2248      T = Ty->getDesugaredType();
2249      if (T.getTypePtr() == Ty && T.getCVRQualifiers() == 0)
2250        break;
2251      CVRQuals |= T.getCVRQualifiers();
2252      Ty = T.getTypePtr();
2253    }
2254  }
2255
2256  // If we have a simple case, just return now.
2257  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
2258  if (ATy == 0 || (AddrSpace == 0 && CVRQuals == 0))
2259    return ATy;
2260
2261  // Otherwise, we have an array and we have qualifiers on it.  Push the
2262  // qualifiers into the array element type and return a new array type.
2263  // Get the canonical version of the element with the extra qualifiers on it.
2264  // This can recursively sink qualifiers through multiple levels of arrays.
2265  QualType NewEltTy = ATy->getElementType();
2266  if (AddrSpace)
2267    NewEltTy = getAddrSpaceQualType(NewEltTy, AddrSpace);
2268  NewEltTy = NewEltTy.getWithAdditionalQualifiers(CVRQuals);
2269
2270  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
2271    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
2272                                                CAT->getSizeModifier(),
2273                                                CAT->getIndexTypeQualifier()));
2274  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
2275    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
2276                                                  IAT->getSizeModifier(),
2277                                                  IAT->getIndexTypeQualifier()));
2278
2279  if (const DependentSizedArrayType *DSAT
2280        = dyn_cast<DependentSizedArrayType>(ATy))
2281    return cast<ArrayType>(
2282                     getDependentSizedArrayType(NewEltTy,
2283                                                DSAT->getSizeExpr(),
2284                                                DSAT->getSizeModifier(),
2285                                                DSAT->getIndexTypeQualifier(),
2286                                                DSAT->getBracketsRange()));
2287
2288  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
2289  return cast<ArrayType>(getVariableArrayType(NewEltTy,
2290                                              VAT->getSizeExpr(),
2291                                              VAT->getSizeModifier(),
2292                                              VAT->getIndexTypeQualifier(),
2293                                              VAT->getBracketsRange()));
2294}
2295
2296
2297/// getArrayDecayedType - Return the properly qualified result of decaying the
2298/// specified array type to a pointer.  This operation is non-trivial when
2299/// handling typedefs etc.  The canonical type of "T" must be an array type,
2300/// this returns a pointer to a properly qualified element of the array.
2301///
2302/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2303QualType ASTContext::getArrayDecayedType(QualType Ty) {
2304  // Get the element type with 'getAsArrayType' so that we don't lose any
2305  // typedefs in the element type of the array.  This also handles propagation
2306  // of type qualifiers from the array type into the element type if present
2307  // (C99 6.7.3p8).
2308  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
2309  assert(PrettyArrayType && "Not an array type!");
2310
2311  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
2312
2313  // int x[restrict 4] ->  int *restrict
2314  return PtrTy.getQualifiedType(PrettyArrayType->getIndexTypeQualifier());
2315}
2316
2317QualType ASTContext::getBaseElementType(QualType QT) {
2318  QualifierSet qualifiers;
2319  while (true) {
2320    const Type *UT = qualifiers.strip(QT);
2321    if (const ArrayType *AT = getAsArrayType(QualType(UT,0))) {
2322      QT = AT->getElementType();
2323    } else {
2324      return qualifiers.apply(QT, *this);
2325    }
2326  }
2327}
2328
2329QualType ASTContext::getBaseElementType(const VariableArrayType *VAT) {
2330  QualType ElemTy = VAT->getElementType();
2331
2332  if (const VariableArrayType *VAT = getAsVariableArrayType(ElemTy))
2333    return getBaseElementType(VAT);
2334
2335  return ElemTy;
2336}
2337
2338/// getFloatingRank - Return a relative rank for floating point types.
2339/// This routine will assert if passed a built-in type that isn't a float.
2340static FloatingRank getFloatingRank(QualType T) {
2341  if (const ComplexType *CT = T->getAsComplexType())
2342    return getFloatingRank(CT->getElementType());
2343
2344  assert(T->getAsBuiltinType() && "getFloatingRank(): not a floating type");
2345  switch (T->getAsBuiltinType()->getKind()) {
2346  default: assert(0 && "getFloatingRank(): not a floating type");
2347  case BuiltinType::Float:      return FloatRank;
2348  case BuiltinType::Double:     return DoubleRank;
2349  case BuiltinType::LongDouble: return LongDoubleRank;
2350  }
2351}
2352
2353/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
2354/// point or a complex type (based on typeDomain/typeSize).
2355/// 'typeDomain' is a real floating point or complex type.
2356/// 'typeSize' is a real floating point or complex type.
2357QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
2358                                                       QualType Domain) const {
2359  FloatingRank EltRank = getFloatingRank(Size);
2360  if (Domain->isComplexType()) {
2361    switch (EltRank) {
2362    default: assert(0 && "getFloatingRank(): illegal value for rank");
2363    case FloatRank:      return FloatComplexTy;
2364    case DoubleRank:     return DoubleComplexTy;
2365    case LongDoubleRank: return LongDoubleComplexTy;
2366    }
2367  }
2368
2369  assert(Domain->isRealFloatingType() && "Unknown domain!");
2370  switch (EltRank) {
2371  default: assert(0 && "getFloatingRank(): illegal value for rank");
2372  case FloatRank:      return FloatTy;
2373  case DoubleRank:     return DoubleTy;
2374  case LongDoubleRank: return LongDoubleTy;
2375  }
2376}
2377
2378/// getFloatingTypeOrder - Compare the rank of the two specified floating
2379/// point types, ignoring the domain of the type (i.e. 'double' ==
2380/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2381/// LHS < RHS, return -1.
2382int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
2383  FloatingRank LHSR = getFloatingRank(LHS);
2384  FloatingRank RHSR = getFloatingRank(RHS);
2385
2386  if (LHSR == RHSR)
2387    return 0;
2388  if (LHSR > RHSR)
2389    return 1;
2390  return -1;
2391}
2392
2393/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
2394/// routine will assert if passed a built-in type that isn't an integer or enum,
2395/// or if it is not canonicalized.
2396unsigned ASTContext::getIntegerRank(Type *T) {
2397  assert(T->isCanonical() && "T should be canonicalized");
2398  if (EnumType* ET = dyn_cast<EnumType>(T))
2399    T = ET->getDecl()->getIntegerType().getTypePtr();
2400
2401  if (T->isSpecificBuiltinType(BuiltinType::WChar))
2402    T = getFromTargetType(Target.getWCharType()).getTypePtr();
2403
2404  if (T->isSpecificBuiltinType(BuiltinType::Char16))
2405    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
2406
2407  if (T->isSpecificBuiltinType(BuiltinType::Char32))
2408    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
2409
2410  // There are two things which impact the integer rank: the width, and
2411  // the ordering of builtins.  The builtin ordering is encoded in the
2412  // bottom three bits; the width is encoded in the bits above that.
2413  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T))
2414    return FWIT->getWidth() << 3;
2415
2416  switch (cast<BuiltinType>(T)->getKind()) {
2417  default: assert(0 && "getIntegerRank(): not a built-in integer");
2418  case BuiltinType::Bool:
2419    return 1 + (getIntWidth(BoolTy) << 3);
2420  case BuiltinType::Char_S:
2421  case BuiltinType::Char_U:
2422  case BuiltinType::SChar:
2423  case BuiltinType::UChar:
2424    return 2 + (getIntWidth(CharTy) << 3);
2425  case BuiltinType::Short:
2426  case BuiltinType::UShort:
2427    return 3 + (getIntWidth(ShortTy) << 3);
2428  case BuiltinType::Int:
2429  case BuiltinType::UInt:
2430    return 4 + (getIntWidth(IntTy) << 3);
2431  case BuiltinType::Long:
2432  case BuiltinType::ULong:
2433    return 5 + (getIntWidth(LongTy) << 3);
2434  case BuiltinType::LongLong:
2435  case BuiltinType::ULongLong:
2436    return 6 + (getIntWidth(LongLongTy) << 3);
2437  case BuiltinType::Int128:
2438  case BuiltinType::UInt128:
2439    return 7 + (getIntWidth(Int128Ty) << 3);
2440  }
2441}
2442
2443/// getIntegerTypeOrder - Returns the highest ranked integer type:
2444/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2445/// LHS < RHS, return -1.
2446int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
2447  Type *LHSC = getCanonicalType(LHS).getTypePtr();
2448  Type *RHSC = getCanonicalType(RHS).getTypePtr();
2449  if (LHSC == RHSC) return 0;
2450
2451  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
2452  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
2453
2454  unsigned LHSRank = getIntegerRank(LHSC);
2455  unsigned RHSRank = getIntegerRank(RHSC);
2456
2457  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
2458    if (LHSRank == RHSRank) return 0;
2459    return LHSRank > RHSRank ? 1 : -1;
2460  }
2461
2462  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
2463  if (LHSUnsigned) {
2464    // If the unsigned [LHS] type is larger, return it.
2465    if (LHSRank >= RHSRank)
2466      return 1;
2467
2468    // If the signed type can represent all values of the unsigned type, it
2469    // wins.  Because we are dealing with 2's complement and types that are
2470    // powers of two larger than each other, this is always safe.
2471    return -1;
2472  }
2473
2474  // If the unsigned [RHS] type is larger, return it.
2475  if (RHSRank >= LHSRank)
2476    return -1;
2477
2478  // If the signed type can represent all values of the unsigned type, it
2479  // wins.  Because we are dealing with 2's complement and types that are
2480  // powers of two larger than each other, this is always safe.
2481  return 1;
2482}
2483
2484// getCFConstantStringType - Return the type used for constant CFStrings.
2485QualType ASTContext::getCFConstantStringType() {
2486  if (!CFConstantStringTypeDecl) {
2487    CFConstantStringTypeDecl =
2488      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2489                         &Idents.get("NSConstantString"));
2490    QualType FieldTypes[4];
2491
2492    // const int *isa;
2493    FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const));
2494    // int flags;
2495    FieldTypes[1] = IntTy;
2496    // const char *str;
2497    FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const));
2498    // long length;
2499    FieldTypes[3] = LongTy;
2500
2501    // Create fields
2502    for (unsigned i = 0; i < 4; ++i) {
2503      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
2504                                           SourceLocation(), 0,
2505                                           FieldTypes[i], /*BitWidth=*/0,
2506                                           /*Mutable=*/false);
2507      CFConstantStringTypeDecl->addDecl(Field);
2508    }
2509
2510    CFConstantStringTypeDecl->completeDefinition(*this);
2511  }
2512
2513  return getTagDeclType(CFConstantStringTypeDecl);
2514}
2515
2516void ASTContext::setCFConstantStringType(QualType T) {
2517  const RecordType *Rec = T->getAs<RecordType>();
2518  assert(Rec && "Invalid CFConstantStringType");
2519  CFConstantStringTypeDecl = Rec->getDecl();
2520}
2521
2522QualType ASTContext::getObjCFastEnumerationStateType()
2523{
2524  if (!ObjCFastEnumerationStateTypeDecl) {
2525    ObjCFastEnumerationStateTypeDecl =
2526      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2527                         &Idents.get("__objcFastEnumerationState"));
2528
2529    QualType FieldTypes[] = {
2530      UnsignedLongTy,
2531      getPointerType(ObjCIdTypedefType),
2532      getPointerType(UnsignedLongTy),
2533      getConstantArrayType(UnsignedLongTy,
2534                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2535    };
2536
2537    for (size_t i = 0; i < 4; ++i) {
2538      FieldDecl *Field = FieldDecl::Create(*this,
2539                                           ObjCFastEnumerationStateTypeDecl,
2540                                           SourceLocation(), 0,
2541                                           FieldTypes[i], /*BitWidth=*/0,
2542                                           /*Mutable=*/false);
2543      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
2544    }
2545
2546    ObjCFastEnumerationStateTypeDecl->completeDefinition(*this);
2547  }
2548
2549  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
2550}
2551
2552void ASTContext::setObjCFastEnumerationStateType(QualType T) {
2553  const RecordType *Rec = T->getAs<RecordType>();
2554  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
2555  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
2556}
2557
2558// This returns true if a type has been typedefed to BOOL:
2559// typedef <type> BOOL;
2560static bool isTypeTypedefedAsBOOL(QualType T) {
2561  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
2562    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
2563      return II->isStr("BOOL");
2564
2565  return false;
2566}
2567
2568/// getObjCEncodingTypeSize returns size of type for objective-c encoding
2569/// purpose.
2570int ASTContext::getObjCEncodingTypeSize(QualType type) {
2571  uint64_t sz = getTypeSize(type);
2572
2573  // Make all integer and enum types at least as large as an int
2574  if (sz > 0 && type->isIntegralType())
2575    sz = std::max(sz, getTypeSize(IntTy));
2576  // Treat arrays as pointers, since that's how they're passed in.
2577  else if (type->isArrayType())
2578    sz = getTypeSize(VoidPtrTy);
2579  return sz / getTypeSize(CharTy);
2580}
2581
2582/// getObjCEncodingForMethodDecl - Return the encoded type for this method
2583/// declaration.
2584void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
2585                                              std::string& S) {
2586  // FIXME: This is not very efficient.
2587  // Encode type qualifer, 'in', 'inout', etc. for the return type.
2588  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
2589  // Encode result type.
2590  getObjCEncodingForType(Decl->getResultType(), S);
2591  // Compute size of all parameters.
2592  // Start with computing size of a pointer in number of bytes.
2593  // FIXME: There might(should) be a better way of doing this computation!
2594  SourceLocation Loc;
2595  int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
2596  // The first two arguments (self and _cmd) are pointers; account for
2597  // their size.
2598  int ParmOffset = 2 * PtrSize;
2599  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
2600       E = Decl->param_end(); PI != E; ++PI) {
2601    QualType PType = (*PI)->getType();
2602    int sz = getObjCEncodingTypeSize(PType);
2603    assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type");
2604    ParmOffset += sz;
2605  }
2606  S += llvm::utostr(ParmOffset);
2607  S += "@0:";
2608  S += llvm::utostr(PtrSize);
2609
2610  // Argument types.
2611  ParmOffset = 2 * PtrSize;
2612  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
2613       E = Decl->param_end(); PI != E; ++PI) {
2614    ParmVarDecl *PVDecl = *PI;
2615    QualType PType = PVDecl->getOriginalType();
2616    if (const ArrayType *AT =
2617          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
2618      // Use array's original type only if it has known number of
2619      // elements.
2620      if (!isa<ConstantArrayType>(AT))
2621        PType = PVDecl->getType();
2622    } else if (PType->isFunctionType())
2623      PType = PVDecl->getType();
2624    // Process argument qualifiers for user supplied arguments; such as,
2625    // 'in', 'inout', etc.
2626    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
2627    getObjCEncodingForType(PType, S);
2628    S += llvm::utostr(ParmOffset);
2629    ParmOffset += getObjCEncodingTypeSize(PType);
2630  }
2631}
2632
2633/// getObjCEncodingForPropertyDecl - Return the encoded type for this
2634/// property declaration. If non-NULL, Container must be either an
2635/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
2636/// NULL when getting encodings for protocol properties.
2637/// Property attributes are stored as a comma-delimited C string. The simple
2638/// attributes readonly and bycopy are encoded as single characters. The
2639/// parametrized attributes, getter=name, setter=name, and ivar=name, are
2640/// encoded as single characters, followed by an identifier. Property types
2641/// are also encoded as a parametrized attribute. The characters used to encode
2642/// these attributes are defined by the following enumeration:
2643/// @code
2644/// enum PropertyAttributes {
2645/// kPropertyReadOnly = 'R',   // property is read-only.
2646/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
2647/// kPropertyByref = '&',  // property is a reference to the value last assigned
2648/// kPropertyDynamic = 'D',    // property is dynamic
2649/// kPropertyGetter = 'G',     // followed by getter selector name
2650/// kPropertySetter = 'S',     // followed by setter selector name
2651/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
2652/// kPropertyType = 't'              // followed by old-style type encoding.
2653/// kPropertyWeak = 'W'              // 'weak' property
2654/// kPropertyStrong = 'P'            // property GC'able
2655/// kPropertyNonAtomic = 'N'         // property non-atomic
2656/// };
2657/// @endcode
2658void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
2659                                                const Decl *Container,
2660                                                std::string& S) {
2661  // Collect information from the property implementation decl(s).
2662  bool Dynamic = false;
2663  ObjCPropertyImplDecl *SynthesizePID = 0;
2664
2665  // FIXME: Duplicated code due to poor abstraction.
2666  if (Container) {
2667    if (const ObjCCategoryImplDecl *CID =
2668        dyn_cast<ObjCCategoryImplDecl>(Container)) {
2669      for (ObjCCategoryImplDecl::propimpl_iterator
2670             i = CID->propimpl_begin(), e = CID->propimpl_end();
2671           i != e; ++i) {
2672        ObjCPropertyImplDecl *PID = *i;
2673        if (PID->getPropertyDecl() == PD) {
2674          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
2675            Dynamic = true;
2676          } else {
2677            SynthesizePID = PID;
2678          }
2679        }
2680      }
2681    } else {
2682      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
2683      for (ObjCCategoryImplDecl::propimpl_iterator
2684             i = OID->propimpl_begin(), e = OID->propimpl_end();
2685           i != e; ++i) {
2686        ObjCPropertyImplDecl *PID = *i;
2687        if (PID->getPropertyDecl() == PD) {
2688          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
2689            Dynamic = true;
2690          } else {
2691            SynthesizePID = PID;
2692          }
2693        }
2694      }
2695    }
2696  }
2697
2698  // FIXME: This is not very efficient.
2699  S = "T";
2700
2701  // Encode result type.
2702  // GCC has some special rules regarding encoding of properties which
2703  // closely resembles encoding of ivars.
2704  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
2705                             true /* outermost type */,
2706                             true /* encoding for property */);
2707
2708  if (PD->isReadOnly()) {
2709    S += ",R";
2710  } else {
2711    switch (PD->getSetterKind()) {
2712    case ObjCPropertyDecl::Assign: break;
2713    case ObjCPropertyDecl::Copy:   S += ",C"; break;
2714    case ObjCPropertyDecl::Retain: S += ",&"; break;
2715    }
2716  }
2717
2718  // It really isn't clear at all what this means, since properties
2719  // are "dynamic by default".
2720  if (Dynamic)
2721    S += ",D";
2722
2723  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
2724    S += ",N";
2725
2726  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
2727    S += ",G";
2728    S += PD->getGetterName().getAsString();
2729  }
2730
2731  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
2732    S += ",S";
2733    S += PD->getSetterName().getAsString();
2734  }
2735
2736  if (SynthesizePID) {
2737    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
2738    S += ",V";
2739    S += OID->getNameAsString();
2740  }
2741
2742  // FIXME: OBJCGC: weak & strong
2743}
2744
2745/// getLegacyIntegralTypeEncoding -
2746/// Another legacy compatibility encoding: 32-bit longs are encoded as
2747/// 'l' or 'L' , but not always.  For typedefs, we need to use
2748/// 'i' or 'I' instead if encoding a struct field, or a pointer!
2749///
2750void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
2751  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
2752    if (const BuiltinType *BT = PointeeTy->getAsBuiltinType()) {
2753      if (BT->getKind() == BuiltinType::ULong &&
2754          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
2755        PointeeTy = UnsignedIntTy;
2756      else
2757        if (BT->getKind() == BuiltinType::Long &&
2758            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
2759          PointeeTy = IntTy;
2760    }
2761  }
2762}
2763
2764void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
2765                                        const FieldDecl *Field) {
2766  // We follow the behavior of gcc, expanding structures which are
2767  // directly pointed to, and expanding embedded structures. Note that
2768  // these rules are sufficient to prevent recursive encoding of the
2769  // same type.
2770  getObjCEncodingForTypeImpl(T, S, true, true, Field,
2771                             true /* outermost type */);
2772}
2773
2774static void EncodeBitField(const ASTContext *Context, std::string& S,
2775                           const FieldDecl *FD) {
2776  const Expr *E = FD->getBitWidth();
2777  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
2778  ASTContext *Ctx = const_cast<ASTContext*>(Context);
2779  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
2780  S += 'b';
2781  S += llvm::utostr(N);
2782}
2783
2784void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
2785                                            bool ExpandPointedToStructures,
2786                                            bool ExpandStructures,
2787                                            const FieldDecl *FD,
2788                                            bool OutermostType,
2789                                            bool EncodingProperty) {
2790  if (const BuiltinType *BT = T->getAsBuiltinType()) {
2791    if (FD && FD->isBitField())
2792      return EncodeBitField(this, S, FD);
2793    char encoding;
2794    switch (BT->getKind()) {
2795    default: assert(0 && "Unhandled builtin type kind");
2796    case BuiltinType::Void:       encoding = 'v'; break;
2797    case BuiltinType::Bool:       encoding = 'B'; break;
2798    case BuiltinType::Char_U:
2799    case BuiltinType::UChar:      encoding = 'C'; break;
2800    case BuiltinType::UShort:     encoding = 'S'; break;
2801    case BuiltinType::UInt:       encoding = 'I'; break;
2802    case BuiltinType::ULong:
2803        encoding =
2804          (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q';
2805        break;
2806    case BuiltinType::UInt128:    encoding = 'T'; break;
2807    case BuiltinType::ULongLong:  encoding = 'Q'; break;
2808    case BuiltinType::Char_S:
2809    case BuiltinType::SChar:      encoding = 'c'; break;
2810    case BuiltinType::Short:      encoding = 's'; break;
2811    case BuiltinType::Int:        encoding = 'i'; break;
2812    case BuiltinType::Long:
2813      encoding =
2814        (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q';
2815      break;
2816    case BuiltinType::LongLong:   encoding = 'q'; break;
2817    case BuiltinType::Int128:     encoding = 't'; break;
2818    case BuiltinType::Float:      encoding = 'f'; break;
2819    case BuiltinType::Double:     encoding = 'd'; break;
2820    case BuiltinType::LongDouble: encoding = 'd'; break;
2821    }
2822
2823    S += encoding;
2824    return;
2825  }
2826
2827  if (const ComplexType *CT = T->getAsComplexType()) {
2828    S += 'j';
2829    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
2830                               false);
2831    return;
2832  }
2833
2834  if (const PointerType *PT = T->getAs<PointerType>()) {
2835    QualType PointeeTy = PT->getPointeeType();
2836    bool isReadOnly = false;
2837    // For historical/compatibility reasons, the read-only qualifier of the
2838    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
2839    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
2840    // Also, do not emit the 'r' for anything but the outermost type!
2841    if (isa<TypedefType>(T.getTypePtr())) {
2842      if (OutermostType && T.isConstQualified()) {
2843        isReadOnly = true;
2844        S += 'r';
2845      }
2846    } else if (OutermostType) {
2847      QualType P = PointeeTy;
2848      while (P->getAs<PointerType>())
2849        P = P->getAs<PointerType>()->getPointeeType();
2850      if (P.isConstQualified()) {
2851        isReadOnly = true;
2852        S += 'r';
2853      }
2854    }
2855    if (isReadOnly) {
2856      // Another legacy compatibility encoding. Some ObjC qualifier and type
2857      // combinations need to be rearranged.
2858      // Rewrite "in const" from "nr" to "rn"
2859      const char * s = S.c_str();
2860      int len = S.length();
2861      if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
2862        std::string replace = "rn";
2863        S.replace(S.end()-2, S.end(), replace);
2864      }
2865    }
2866    if (isObjCSelType(PointeeTy)) {
2867      S += ':';
2868      return;
2869    }
2870
2871    if (PointeeTy->isCharType()) {
2872      // char pointer types should be encoded as '*' unless it is a
2873      // type that has been typedef'd to 'BOOL'.
2874      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
2875        S += '*';
2876        return;
2877      }
2878    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
2879      // GCC binary compat: Need to convert "struct objc_class *" to "#".
2880      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
2881        S += '#';
2882        return;
2883      }
2884      // GCC binary compat: Need to convert "struct objc_object *" to "@".
2885      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
2886        S += '@';
2887        return;
2888      }
2889      // fall through...
2890    }
2891    S += '^';
2892    getLegacyIntegralTypeEncoding(PointeeTy);
2893
2894    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
2895                               NULL);
2896    return;
2897  }
2898
2899  if (const ArrayType *AT =
2900      // Ignore type qualifiers etc.
2901        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
2902    if (isa<IncompleteArrayType>(AT)) {
2903      // Incomplete arrays are encoded as a pointer to the array element.
2904      S += '^';
2905
2906      getObjCEncodingForTypeImpl(AT->getElementType(), S,
2907                                 false, ExpandStructures, FD);
2908    } else {
2909      S += '[';
2910
2911      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2912        S += llvm::utostr(CAT->getSize().getZExtValue());
2913      else {
2914        //Variable length arrays are encoded as a regular array with 0 elements.
2915        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
2916        S += '0';
2917      }
2918
2919      getObjCEncodingForTypeImpl(AT->getElementType(), S,
2920                                 false, ExpandStructures, FD);
2921      S += ']';
2922    }
2923    return;
2924  }
2925
2926  if (T->getAsFunctionType()) {
2927    S += '?';
2928    return;
2929  }
2930
2931  if (const RecordType *RTy = T->getAs<RecordType>()) {
2932    RecordDecl *RDecl = RTy->getDecl();
2933    S += RDecl->isUnion() ? '(' : '{';
2934    // Anonymous structures print as '?'
2935    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
2936      S += II->getName();
2937    } else {
2938      S += '?';
2939    }
2940    if (ExpandStructures) {
2941      S += '=';
2942      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
2943                                   FieldEnd = RDecl->field_end();
2944           Field != FieldEnd; ++Field) {
2945        if (FD) {
2946          S += '"';
2947          S += Field->getNameAsString();
2948          S += '"';
2949        }
2950
2951        // Special case bit-fields.
2952        if (Field->isBitField()) {
2953          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
2954                                     (*Field));
2955        } else {
2956          QualType qt = Field->getType();
2957          getLegacyIntegralTypeEncoding(qt);
2958          getObjCEncodingForTypeImpl(qt, S, false, true,
2959                                     FD);
2960        }
2961      }
2962    }
2963    S += RDecl->isUnion() ? ')' : '}';
2964    return;
2965  }
2966
2967  if (T->isEnumeralType()) {
2968    if (FD && FD->isBitField())
2969      EncodeBitField(this, S, FD);
2970    else
2971      S += 'i';
2972    return;
2973  }
2974
2975  if (T->isBlockPointerType()) {
2976    S += "@?"; // Unlike a pointer-to-function, which is "^?".
2977    return;
2978  }
2979
2980  if (T->isObjCInterfaceType()) {
2981    // @encode(class_name)
2982    ObjCInterfaceDecl *OI = T->getAsObjCInterfaceType()->getDecl();
2983    S += '{';
2984    const IdentifierInfo *II = OI->getIdentifier();
2985    S += II->getName();
2986    S += '=';
2987    llvm::SmallVector<FieldDecl*, 32> RecFields;
2988    CollectObjCIvars(OI, RecFields);
2989    for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
2990      if (RecFields[i]->isBitField())
2991        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
2992                                   RecFields[i]);
2993      else
2994        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
2995                                   FD);
2996    }
2997    S += '}';
2998    return;
2999  }
3000
3001  if (const ObjCObjectPointerType *OPT = T->getAsObjCObjectPointerType()) {
3002    if (OPT->isObjCIdType()) {
3003      S += '@';
3004      return;
3005    }
3006
3007    if (OPT->isObjCClassType()) {
3008      S += '#';
3009      return;
3010    }
3011
3012    if (OPT->isObjCQualifiedIdType()) {
3013      getObjCEncodingForTypeImpl(getObjCIdType(), S,
3014                                 ExpandPointedToStructures,
3015                                 ExpandStructures, FD);
3016      if (FD || EncodingProperty) {
3017        // Note that we do extended encoding of protocol qualifer list
3018        // Only when doing ivar or property encoding.
3019        S += '"';
3020        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3021             E = OPT->qual_end(); I != E; ++I) {
3022          S += '<';
3023          S += (*I)->getNameAsString();
3024          S += '>';
3025        }
3026        S += '"';
3027      }
3028      return;
3029    }
3030
3031    QualType PointeeTy = OPT->getPointeeType();
3032    if (!EncodingProperty &&
3033        isa<TypedefType>(PointeeTy.getTypePtr())) {
3034      // Another historical/compatibility reason.
3035      // We encode the underlying type which comes out as
3036      // {...};
3037      S += '^';
3038      getObjCEncodingForTypeImpl(PointeeTy, S,
3039                                 false, ExpandPointedToStructures,
3040                                 NULL);
3041      return;
3042    }
3043
3044    S += '@';
3045    if (FD || EncodingProperty) {
3046      S += '"';
3047      S += OPT->getInterfaceDecl()->getNameAsCString();
3048      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3049           E = OPT->qual_end(); I != E; ++I) {
3050        S += '<';
3051        S += (*I)->getNameAsString();
3052        S += '>';
3053      }
3054      S += '"';
3055    }
3056    return;
3057  }
3058
3059  assert(0 && "@encode for type not implemented!");
3060}
3061
3062void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
3063                                                 std::string& S) const {
3064  if (QT & Decl::OBJC_TQ_In)
3065    S += 'n';
3066  if (QT & Decl::OBJC_TQ_Inout)
3067    S += 'N';
3068  if (QT & Decl::OBJC_TQ_Out)
3069    S += 'o';
3070  if (QT & Decl::OBJC_TQ_Bycopy)
3071    S += 'O';
3072  if (QT & Decl::OBJC_TQ_Byref)
3073    S += 'R';
3074  if (QT & Decl::OBJC_TQ_Oneway)
3075    S += 'V';
3076}
3077
3078void ASTContext::setBuiltinVaListType(QualType T) {
3079  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
3080
3081  BuiltinVaListType = T;
3082}
3083
3084void ASTContext::setObjCIdType(QualType T) {
3085  ObjCIdTypedefType = T;
3086}
3087
3088void ASTContext::setObjCSelType(QualType T) {
3089  ObjCSelType = T;
3090
3091  const TypedefType *TT = T->getAsTypedefType();
3092  if (!TT)
3093    return;
3094  TypedefDecl *TD = TT->getDecl();
3095
3096  // typedef struct objc_selector *SEL;
3097  const PointerType *ptr = TD->getUnderlyingType()->getAs<PointerType>();
3098  if (!ptr)
3099    return;
3100  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
3101  if (!rec)
3102    return;
3103  SelStructType = rec;
3104}
3105
3106void ASTContext::setObjCProtoType(QualType QT) {
3107  ObjCProtoType = QT;
3108}
3109
3110void ASTContext::setObjCClassType(QualType T) {
3111  ObjCClassTypedefType = T;
3112}
3113
3114void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
3115  assert(ObjCConstantStringType.isNull() &&
3116         "'NSConstantString' type already set!");
3117
3118  ObjCConstantStringType = getObjCInterfaceType(Decl);
3119}
3120
3121/// \brief Retrieve the template name that represents a qualified
3122/// template name such as \c std::vector.
3123TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
3124                                                  bool TemplateKeyword,
3125                                                  TemplateDecl *Template) {
3126  llvm::FoldingSetNodeID ID;
3127  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
3128
3129  void *InsertPos = 0;
3130  QualifiedTemplateName *QTN =
3131    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3132  if (!QTN) {
3133    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
3134    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
3135  }
3136
3137  return TemplateName(QTN);
3138}
3139
3140/// \brief Retrieve the template name that represents a qualified
3141/// template name such as \c std::vector.
3142TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
3143                                                  bool TemplateKeyword,
3144                                            OverloadedFunctionDecl *Template) {
3145  llvm::FoldingSetNodeID ID;
3146  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
3147
3148  void *InsertPos = 0;
3149  QualifiedTemplateName *QTN =
3150  QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3151  if (!QTN) {
3152    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
3153    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
3154  }
3155
3156  return TemplateName(QTN);
3157}
3158
3159/// \brief Retrieve the template name that represents a dependent
3160/// template name such as \c MetaFun::template apply.
3161TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3162                                                  const IdentifierInfo *Name) {
3163  assert(NNS->isDependent() && "Nested name specifier must be dependent");
3164
3165  llvm::FoldingSetNodeID ID;
3166  DependentTemplateName::Profile(ID, NNS, Name);
3167
3168  void *InsertPos = 0;
3169  DependentTemplateName *QTN =
3170    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3171
3172  if (QTN)
3173    return TemplateName(QTN);
3174
3175  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3176  if (CanonNNS == NNS) {
3177    QTN = new (*this,4) DependentTemplateName(NNS, Name);
3178  } else {
3179    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
3180    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
3181  }
3182
3183  DependentTemplateNames.InsertNode(QTN, InsertPos);
3184  return TemplateName(QTN);
3185}
3186
3187/// getFromTargetType - Given one of the integer types provided by
3188/// TargetInfo, produce the corresponding type. The unsigned @p Type
3189/// is actually a value of type @c TargetInfo::IntType.
3190QualType ASTContext::getFromTargetType(unsigned Type) const {
3191  switch (Type) {
3192  case TargetInfo::NoInt: return QualType();
3193  case TargetInfo::SignedShort: return ShortTy;
3194  case TargetInfo::UnsignedShort: return UnsignedShortTy;
3195  case TargetInfo::SignedInt: return IntTy;
3196  case TargetInfo::UnsignedInt: return UnsignedIntTy;
3197  case TargetInfo::SignedLong: return LongTy;
3198  case TargetInfo::UnsignedLong: return UnsignedLongTy;
3199  case TargetInfo::SignedLongLong: return LongLongTy;
3200  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
3201  }
3202
3203  assert(false && "Unhandled TargetInfo::IntType value");
3204  return QualType();
3205}
3206
3207//===----------------------------------------------------------------------===//
3208//                        Type Predicates.
3209//===----------------------------------------------------------------------===//
3210
3211/// isObjCNSObjectType - Return true if this is an NSObject object using
3212/// NSObject attribute on a c-style pointer type.
3213/// FIXME - Make it work directly on types.
3214/// FIXME: Move to Type.
3215///
3216bool ASTContext::isObjCNSObjectType(QualType Ty) const {
3217  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
3218    if (TypedefDecl *TD = TDT->getDecl())
3219      if (TD->getAttr<ObjCNSObjectAttr>())
3220        return true;
3221  }
3222  return false;
3223}
3224
3225/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
3226/// garbage collection attribute.
3227///
3228QualType::GCAttrTypes ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
3229  QualType::GCAttrTypes GCAttrs = QualType::GCNone;
3230  if (getLangOptions().ObjC1 &&
3231      getLangOptions().getGCMode() != LangOptions::NonGC) {
3232    GCAttrs = Ty.getObjCGCAttr();
3233    // Default behavious under objective-c's gc is for objective-c pointers
3234    // (or pointers to them) be treated as though they were declared
3235    // as __strong.
3236    if (GCAttrs == QualType::GCNone) {
3237      if (Ty->isObjCObjectPointerType())
3238        GCAttrs = QualType::Strong;
3239      else if (Ty->isPointerType())
3240        return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
3241    }
3242    // Non-pointers have none gc'able attribute regardless of the attribute
3243    // set on them.
3244    else if (!Ty->isAnyPointerType() && !Ty->isBlockPointerType())
3245      return QualType::GCNone;
3246  }
3247  return GCAttrs;
3248}
3249
3250//===----------------------------------------------------------------------===//
3251//                        Type Compatibility Testing
3252//===----------------------------------------------------------------------===//
3253
3254/// areCompatVectorTypes - Return true if the two specified vector types are
3255/// compatible.
3256static bool areCompatVectorTypes(const VectorType *LHS,
3257                                 const VectorType *RHS) {
3258  assert(LHS->isCanonical() && RHS->isCanonical());
3259  return LHS->getElementType() == RHS->getElementType() &&
3260         LHS->getNumElements() == RHS->getNumElements();
3261}
3262
3263//===----------------------------------------------------------------------===//
3264// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
3265//===----------------------------------------------------------------------===//
3266
3267/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
3268/// inheritance hierarchy of 'rProto'.
3269static bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
3270                                           ObjCProtocolDecl *rProto) {
3271  if (lProto == rProto)
3272    return true;
3273  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
3274       E = rProto->protocol_end(); PI != E; ++PI)
3275    if (ProtocolCompatibleWithProtocol(lProto, *PI))
3276      return true;
3277  return false;
3278}
3279
3280/// ClassImplementsProtocol - Checks that 'lProto' protocol
3281/// has been implemented in IDecl class, its super class or categories (if
3282/// lookupCategory is true).
3283static bool ClassImplementsProtocol(ObjCProtocolDecl *lProto,
3284                                    ObjCInterfaceDecl *IDecl,
3285                                    bool lookupCategory,
3286                                    bool RHSIsQualifiedID = false) {
3287
3288  // 1st, look up the class.
3289  const ObjCList<ObjCProtocolDecl> &Protocols =
3290    IDecl->getReferencedProtocols();
3291
3292  for (ObjCList<ObjCProtocolDecl>::iterator PI = Protocols.begin(),
3293       E = Protocols.end(); PI != E; ++PI) {
3294    if (ProtocolCompatibleWithProtocol(lProto, *PI))
3295      return true;
3296    // This is dubious and is added to be compatible with gcc.  In gcc, it is
3297    // also allowed assigning a protocol-qualified 'id' type to a LHS object
3298    // when protocol in qualified LHS is in list of protocols in the rhs 'id'
3299    // object. This IMO, should be a bug.
3300    // FIXME: Treat this as an extension, and flag this as an error when GCC
3301    // extensions are not enabled.
3302    if (RHSIsQualifiedID && ProtocolCompatibleWithProtocol(*PI, lProto))
3303      return true;
3304  }
3305
3306  // 2nd, look up the category.
3307  if (lookupCategory)
3308    for (ObjCCategoryDecl *CDecl = IDecl->getCategoryList(); CDecl;
3309         CDecl = CDecl->getNextClassCategory()) {
3310      for (ObjCCategoryDecl::protocol_iterator PI = CDecl->protocol_begin(),
3311           E = CDecl->protocol_end(); PI != E; ++PI)
3312        if (ProtocolCompatibleWithProtocol(lProto, *PI))
3313          return true;
3314    }
3315
3316  // 3rd, look up the super class(s)
3317  if (IDecl->getSuperClass())
3318    return
3319      ClassImplementsProtocol(lProto, IDecl->getSuperClass(), lookupCategory,
3320                              RHSIsQualifiedID);
3321
3322  return false;
3323}
3324
3325/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
3326/// return true if lhs's protocols conform to rhs's protocol; false
3327/// otherwise.
3328bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
3329  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
3330    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
3331  return false;
3332}
3333
3334/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
3335/// ObjCQualifiedIDType.
3336bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
3337                                                   bool compare) {
3338  // Allow id<P..> and an 'id' or void* type in all cases.
3339  if (lhs->isVoidPointerType() ||
3340      lhs->isObjCIdType() || lhs->isObjCClassType())
3341    return true;
3342  else if (rhs->isVoidPointerType() ||
3343           rhs->isObjCIdType() || rhs->isObjCClassType())
3344    return true;
3345
3346  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
3347    const ObjCObjectPointerType *rhsOPT = rhs->getAsObjCObjectPointerType();
3348
3349    if (!rhsOPT) return false;
3350
3351    if (rhsOPT->qual_empty()) {
3352      // If the RHS is a unqualified interface pointer "NSString*",
3353      // make sure we check the class hierarchy.
3354      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
3355        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3356             E = lhsQID->qual_end(); I != E; ++I) {
3357          // when comparing an id<P> on lhs with a static type on rhs,
3358          // see if static class implements all of id's protocols, directly or
3359          // through its super class and categories.
3360          if (!ClassImplementsProtocol(*I, rhsID, true))
3361            return false;
3362        }
3363      }
3364      // If there are no qualifiers and no interface, we have an 'id'.
3365      return true;
3366    }
3367    // Both the right and left sides have qualifiers.
3368    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3369         E = lhsQID->qual_end(); I != E; ++I) {
3370      ObjCProtocolDecl *lhsProto = *I;
3371      bool match = false;
3372
3373      // when comparing an id<P> on lhs with a static type on rhs,
3374      // see if static class implements all of id's protocols, directly or
3375      // through its super class and categories.
3376      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
3377           E = rhsOPT->qual_end(); J != E; ++J) {
3378        ObjCProtocolDecl *rhsProto = *J;
3379        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
3380            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
3381          match = true;
3382          break;
3383        }
3384      }
3385      // If the RHS is a qualified interface pointer "NSString<P>*",
3386      // make sure we check the class hierarchy.
3387      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
3388        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3389             E = lhsQID->qual_end(); I != E; ++I) {
3390          // when comparing an id<P> on lhs with a static type on rhs,
3391          // see if static class implements all of id's protocols, directly or
3392          // through its super class and categories.
3393          if (ClassImplementsProtocol(*I, rhsID, true)) {
3394            match = true;
3395            break;
3396          }
3397        }
3398      }
3399      if (!match)
3400        return false;
3401    }
3402
3403    return true;
3404  }
3405
3406  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
3407  assert(rhsQID && "One of the LHS/RHS should be id<x>");
3408
3409  if (const ObjCObjectPointerType *lhsOPT =
3410        lhs->getAsObjCInterfacePointerType()) {
3411    if (lhsOPT->qual_empty()) {
3412      bool match = false;
3413      if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
3414        for (ObjCObjectPointerType::qual_iterator I = rhsQID->qual_begin(),
3415             E = rhsQID->qual_end(); I != E; ++I) {
3416          // when comparing an id<P> on lhs with a static type on rhs,
3417          // see if static class implements all of id's protocols, directly or
3418          // through its super class and categories.
3419          if (ClassImplementsProtocol(*I, lhsID, true)) {
3420            match = true;
3421            break;
3422          }
3423        }
3424        if (!match)
3425          return false;
3426      }
3427      return true;
3428    }
3429    // Both the right and left sides have qualifiers.
3430    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
3431         E = lhsOPT->qual_end(); I != E; ++I) {
3432      ObjCProtocolDecl *lhsProto = *I;
3433      bool match = false;
3434
3435      // when comparing an id<P> on lhs with a static type on rhs,
3436      // see if static class implements all of id's protocols, directly or
3437      // through its super class and categories.
3438      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
3439           E = rhsQID->qual_end(); J != E; ++J) {
3440        ObjCProtocolDecl *rhsProto = *J;
3441        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
3442            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
3443          match = true;
3444          break;
3445        }
3446      }
3447      if (!match)
3448        return false;
3449    }
3450    return true;
3451  }
3452  return false;
3453}
3454
3455/// canAssignObjCInterfaces - Return true if the two interface types are
3456/// compatible for assignment from RHS to LHS.  This handles validation of any
3457/// protocol qualifiers on the LHS or RHS.
3458///
3459bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
3460                                         const ObjCObjectPointerType *RHSOPT) {
3461  // If either type represents the built-in 'id' or 'Class' types, return true.
3462  if (LHSOPT->isObjCBuiltinType() || RHSOPT->isObjCBuiltinType())
3463    return true;
3464
3465  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
3466    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
3467                                             QualType(RHSOPT,0),
3468                                             false);
3469
3470  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
3471  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
3472  if (LHS && RHS) // We have 2 user-defined types.
3473    return canAssignObjCInterfaces(LHS, RHS);
3474
3475  return false;
3476}
3477
3478bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
3479                                         const ObjCInterfaceType *RHS) {
3480  // Verify that the base decls are compatible: the RHS must be a subclass of
3481  // the LHS.
3482  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
3483    return false;
3484
3485  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
3486  // protocol qualified at all, then we are good.
3487  if (LHS->getNumProtocols() == 0)
3488    return true;
3489
3490  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
3491  // isn't a superset.
3492  if (RHS->getNumProtocols() == 0)
3493    return true;  // FIXME: should return false!
3494
3495  for (ObjCInterfaceType::qual_iterator LHSPI = LHS->qual_begin(),
3496                                        LHSPE = LHS->qual_end();
3497       LHSPI != LHSPE; LHSPI++) {
3498    bool RHSImplementsProtocol = false;
3499
3500    // If the RHS doesn't implement the protocol on the left, the types
3501    // are incompatible.
3502    for (ObjCInterfaceType::qual_iterator RHSPI = RHS->qual_begin(),
3503                                          RHSPE = RHS->qual_end();
3504         RHSPI != RHSPE; RHSPI++) {
3505      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
3506        RHSImplementsProtocol = true;
3507        break;
3508      }
3509    }
3510    // FIXME: For better diagnostics, consider passing back the protocol name.
3511    if (!RHSImplementsProtocol)
3512      return false;
3513  }
3514  // The RHS implements all protocols listed on the LHS.
3515  return true;
3516}
3517
3518bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
3519  // get the "pointed to" types
3520  const ObjCObjectPointerType *LHSOPT = LHS->getAsObjCObjectPointerType();
3521  const ObjCObjectPointerType *RHSOPT = RHS->getAsObjCObjectPointerType();
3522
3523  if (!LHSOPT || !RHSOPT)
3524    return false;
3525
3526  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
3527         canAssignObjCInterfaces(RHSOPT, LHSOPT);
3528}
3529
3530/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
3531/// both shall have the identically qualified version of a compatible type.
3532/// C99 6.2.7p1: Two types have compatible types if their types are the
3533/// same. See 6.7.[2,3,5] for additional rules.
3534bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
3535  return !mergeTypes(LHS, RHS).isNull();
3536}
3537
3538QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
3539  const FunctionType *lbase = lhs->getAsFunctionType();
3540  const FunctionType *rbase = rhs->getAsFunctionType();
3541  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
3542  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
3543  bool allLTypes = true;
3544  bool allRTypes = true;
3545
3546  // Check return type
3547  QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
3548  if (retType.isNull()) return QualType();
3549  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
3550    allLTypes = false;
3551  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
3552    allRTypes = false;
3553  // FIXME: double check this
3554  bool NoReturn = lbase->getNoReturnAttr() || rbase->getNoReturnAttr();
3555  if (NoReturn != lbase->getNoReturnAttr())
3556    allLTypes = false;
3557  if (NoReturn != rbase->getNoReturnAttr())
3558    allRTypes = false;
3559
3560  if (lproto && rproto) { // two C99 style function prototypes
3561    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
3562           "C++ shouldn't be here");
3563    unsigned lproto_nargs = lproto->getNumArgs();
3564    unsigned rproto_nargs = rproto->getNumArgs();
3565
3566    // Compatible functions must have the same number of arguments
3567    if (lproto_nargs != rproto_nargs)
3568      return QualType();
3569
3570    // Variadic and non-variadic functions aren't compatible
3571    if (lproto->isVariadic() != rproto->isVariadic())
3572      return QualType();
3573
3574    if (lproto->getTypeQuals() != rproto->getTypeQuals())
3575      return QualType();
3576
3577    // Check argument compatibility
3578    llvm::SmallVector<QualType, 10> types;
3579    for (unsigned i = 0; i < lproto_nargs; i++) {
3580      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
3581      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
3582      QualType argtype = mergeTypes(largtype, rargtype);
3583      if (argtype.isNull()) return QualType();
3584      types.push_back(argtype);
3585      if (getCanonicalType(argtype) != getCanonicalType(largtype))
3586        allLTypes = false;
3587      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
3588        allRTypes = false;
3589    }
3590    if (allLTypes) return lhs;
3591    if (allRTypes) return rhs;
3592    return getFunctionType(retType, types.begin(), types.size(),
3593                           lproto->isVariadic(), lproto->getTypeQuals(),
3594                           NoReturn);
3595  }
3596
3597  if (lproto) allRTypes = false;
3598  if (rproto) allLTypes = false;
3599
3600  const FunctionProtoType *proto = lproto ? lproto : rproto;
3601  if (proto) {
3602    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
3603    if (proto->isVariadic()) return QualType();
3604    // Check that the types are compatible with the types that
3605    // would result from default argument promotions (C99 6.7.5.3p15).
3606    // The only types actually affected are promotable integer
3607    // types and floats, which would be passed as a different
3608    // type depending on whether the prototype is visible.
3609    unsigned proto_nargs = proto->getNumArgs();
3610    for (unsigned i = 0; i < proto_nargs; ++i) {
3611      QualType argTy = proto->getArgType(i);
3612      if (argTy->isPromotableIntegerType() ||
3613          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
3614        return QualType();
3615    }
3616
3617    if (allLTypes) return lhs;
3618    if (allRTypes) return rhs;
3619    return getFunctionType(retType, proto->arg_type_begin(),
3620                           proto->getNumArgs(), proto->isVariadic(),
3621                           proto->getTypeQuals(), NoReturn);
3622  }
3623
3624  if (allLTypes) return lhs;
3625  if (allRTypes) return rhs;
3626  return getFunctionNoProtoType(retType, NoReturn);
3627}
3628
3629QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
3630  // C++ [expr]: If an expression initially has the type "reference to T", the
3631  // type is adjusted to "T" prior to any further analysis, the expression
3632  // designates the object or function denoted by the reference, and the
3633  // expression is an lvalue unless the reference is an rvalue reference and
3634  // the expression is a function call (possibly inside parentheses).
3635  // FIXME: C++ shouldn't be going through here!  The rules are different
3636  // enough that they should be handled separately.
3637  // FIXME: Merging of lvalue and rvalue references is incorrect. C++ *really*
3638  // shouldn't be going through here!
3639  if (const ReferenceType *RT = LHS->getAs<ReferenceType>())
3640    LHS = RT->getPointeeType();
3641  if (const ReferenceType *RT = RHS->getAs<ReferenceType>())
3642    RHS = RT->getPointeeType();
3643
3644  QualType LHSCan = getCanonicalType(LHS),
3645           RHSCan = getCanonicalType(RHS);
3646
3647  // If two types are identical, they are compatible.
3648  if (LHSCan == RHSCan)
3649    return LHS;
3650
3651  // If the qualifiers are different, the types aren't compatible
3652  // Note that we handle extended qualifiers later, in the
3653  // case for ExtQualType.
3654  if (LHSCan.getCVRQualifiers() != RHSCan.getCVRQualifiers())
3655    return QualType();
3656
3657  Type::TypeClass LHSClass = LHSCan->getTypeClass();
3658  Type::TypeClass RHSClass = RHSCan->getTypeClass();
3659
3660  // We want to consider the two function types to be the same for these
3661  // comparisons, just force one to the other.
3662  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
3663  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
3664
3665  // Strip off objc_gc attributes off the top level so they can be merged.
3666  // This is a complete mess, but the attribute itself doesn't make much sense.
3667  if (RHSClass == Type::ExtQual) {
3668    QualType::GCAttrTypes GCAttr = RHSCan.getObjCGCAttr();
3669    if (GCAttr != QualType::GCNone) {
3670      QualType::GCAttrTypes GCLHSAttr = LHSCan.getObjCGCAttr();
3671      // __weak attribute must appear on both declarations.
3672      // __strong attribue is redundant if other decl is an objective-c
3673      // object pointer (or decorated with __strong attribute); otherwise
3674      // issue error.
3675      if ((GCAttr == QualType::Weak && GCLHSAttr != GCAttr) ||
3676          (GCAttr == QualType::Strong && GCLHSAttr != GCAttr &&
3677           !LHSCan->isObjCObjectPointerType()))
3678        return QualType();
3679
3680      RHS = QualType(cast<ExtQualType>(RHS.getDesugaredType())->getBaseType(),
3681                     RHS.getCVRQualifiers());
3682      QualType Result = mergeTypes(LHS, RHS);
3683      if (!Result.isNull()) {
3684        if (Result.getObjCGCAttr() == QualType::GCNone)
3685          Result = getObjCGCQualType(Result, GCAttr);
3686        else if (Result.getObjCGCAttr() != GCAttr)
3687          Result = QualType();
3688      }
3689      return Result;
3690    }
3691  }
3692  if (LHSClass == Type::ExtQual) {
3693    QualType::GCAttrTypes GCAttr = LHSCan.getObjCGCAttr();
3694    if (GCAttr != QualType::GCNone) {
3695      QualType::GCAttrTypes GCRHSAttr = RHSCan.getObjCGCAttr();
3696      // __weak attribute must appear on both declarations. __strong
3697      // __strong attribue is redundant if other decl is an objective-c
3698      // object pointer (or decorated with __strong attribute); otherwise
3699      // issue error.
3700      if ((GCAttr == QualType::Weak && GCRHSAttr != GCAttr) ||
3701          (GCAttr == QualType::Strong && GCRHSAttr != GCAttr &&
3702           !RHSCan->isObjCObjectPointerType()))
3703        return QualType();
3704
3705      LHS = QualType(cast<ExtQualType>(LHS.getDesugaredType())->getBaseType(),
3706                     LHS.getCVRQualifiers());
3707      QualType Result = mergeTypes(LHS, RHS);
3708      if (!Result.isNull()) {
3709        if (Result.getObjCGCAttr() == QualType::GCNone)
3710          Result = getObjCGCQualType(Result, GCAttr);
3711        else if (Result.getObjCGCAttr() != GCAttr)
3712          Result = QualType();
3713      }
3714      return Result;
3715    }
3716  }
3717
3718  // Same as above for arrays
3719  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
3720    LHSClass = Type::ConstantArray;
3721  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
3722    RHSClass = Type::ConstantArray;
3723
3724  // Canonicalize ExtVector -> Vector.
3725  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
3726  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
3727
3728  // If the canonical type classes don't match.
3729  if (LHSClass != RHSClass) {
3730    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
3731    // a signed integer type, or an unsigned integer type.
3732    if (const EnumType* ETy = LHS->getAsEnumType()) {
3733      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
3734        return RHS;
3735    }
3736    if (const EnumType* ETy = RHS->getAsEnumType()) {
3737      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
3738        return LHS;
3739    }
3740
3741    return QualType();
3742  }
3743
3744  // The canonical type classes match.
3745  switch (LHSClass) {
3746#define TYPE(Class, Base)
3747#define ABSTRACT_TYPE(Class, Base)
3748#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3749#define DEPENDENT_TYPE(Class, Base) case Type::Class:
3750#include "clang/AST/TypeNodes.def"
3751    assert(false && "Non-canonical and dependent types shouldn't get here");
3752    return QualType();
3753
3754  case Type::LValueReference:
3755  case Type::RValueReference:
3756  case Type::MemberPointer:
3757    assert(false && "C++ should never be in mergeTypes");
3758    return QualType();
3759
3760  case Type::IncompleteArray:
3761  case Type::VariableArray:
3762  case Type::FunctionProto:
3763  case Type::ExtVector:
3764    assert(false && "Types are eliminated above");
3765    return QualType();
3766
3767  case Type::Pointer:
3768  {
3769    // Merge two pointer types, while trying to preserve typedef info
3770    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
3771    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
3772    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
3773    if (ResultType.isNull()) return QualType();
3774    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
3775      return LHS;
3776    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
3777      return RHS;
3778    return getPointerType(ResultType);
3779  }
3780  case Type::BlockPointer:
3781  {
3782    // Merge two block pointer types, while trying to preserve typedef info
3783    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
3784    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
3785    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
3786    if (ResultType.isNull()) return QualType();
3787    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
3788      return LHS;
3789    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
3790      return RHS;
3791    return getBlockPointerType(ResultType);
3792  }
3793  case Type::ConstantArray:
3794  {
3795    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
3796    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
3797    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
3798      return QualType();
3799
3800    QualType LHSElem = getAsArrayType(LHS)->getElementType();
3801    QualType RHSElem = getAsArrayType(RHS)->getElementType();
3802    QualType ResultType = mergeTypes(LHSElem, RHSElem);
3803    if (ResultType.isNull()) return QualType();
3804    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
3805      return LHS;
3806    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
3807      return RHS;
3808    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
3809                                          ArrayType::ArraySizeModifier(), 0);
3810    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
3811                                          ArrayType::ArraySizeModifier(), 0);
3812    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
3813    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
3814    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
3815      return LHS;
3816    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
3817      return RHS;
3818    if (LVAT) {
3819      // FIXME: This isn't correct! But tricky to implement because
3820      // the array's size has to be the size of LHS, but the type
3821      // has to be different.
3822      return LHS;
3823    }
3824    if (RVAT) {
3825      // FIXME: This isn't correct! But tricky to implement because
3826      // the array's size has to be the size of RHS, but the type
3827      // has to be different.
3828      return RHS;
3829    }
3830    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
3831    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
3832    return getIncompleteArrayType(ResultType,
3833                                  ArrayType::ArraySizeModifier(), 0);
3834  }
3835  case Type::FunctionNoProto:
3836    return mergeFunctionTypes(LHS, RHS);
3837  case Type::Record:
3838  case Type::Enum:
3839    return QualType();
3840  case Type::Builtin:
3841    // Only exactly equal builtin types are compatible, which is tested above.
3842    return QualType();
3843  case Type::Complex:
3844    // Distinct complex types are incompatible.
3845    return QualType();
3846  case Type::Vector:
3847    // FIXME: The merged type should be an ExtVector!
3848    if (areCompatVectorTypes(LHS->getAsVectorType(), RHS->getAsVectorType()))
3849      return LHS;
3850    return QualType();
3851  case Type::ObjCInterface: {
3852    // Check if the interfaces are assignment compatible.
3853    // FIXME: This should be type compatibility, e.g. whether
3854    // "LHS x; RHS x;" at global scope is legal.
3855    const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
3856    const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
3857    if (LHSIface && RHSIface &&
3858        canAssignObjCInterfaces(LHSIface, RHSIface))
3859      return LHS;
3860
3861    return QualType();
3862  }
3863  case Type::ObjCObjectPointer: {
3864    if (canAssignObjCInterfaces(LHS->getAsObjCObjectPointerType(),
3865                                RHS->getAsObjCObjectPointerType()))
3866      return LHS;
3867
3868    return QualType();
3869  }
3870  case Type::FixedWidthInt:
3871    // Distinct fixed-width integers are not compatible.
3872    return QualType();
3873  case Type::ExtQual:
3874    // FIXME: ExtQual types can be compatible even if they're not
3875    // identical!
3876    return QualType();
3877    // First attempt at an implementation, but I'm not really sure it's
3878    // right...
3879#if 0
3880    ExtQualType* LQual = cast<ExtQualType>(LHSCan);
3881    ExtQualType* RQual = cast<ExtQualType>(RHSCan);
3882    if (LQual->getAddressSpace() != RQual->getAddressSpace() ||
3883        LQual->getObjCGCAttr() != RQual->getObjCGCAttr())
3884      return QualType();
3885    QualType LHSBase, RHSBase, ResultType, ResCanUnqual;
3886    LHSBase = QualType(LQual->getBaseType(), 0);
3887    RHSBase = QualType(RQual->getBaseType(), 0);
3888    ResultType = mergeTypes(LHSBase, RHSBase);
3889    if (ResultType.isNull()) return QualType();
3890    ResCanUnqual = getCanonicalType(ResultType).getUnqualifiedType();
3891    if (LHSCan.getUnqualifiedType() == ResCanUnqual)
3892      return LHS;
3893    if (RHSCan.getUnqualifiedType() == ResCanUnqual)
3894      return RHS;
3895    ResultType = getAddrSpaceQualType(ResultType, LQual->getAddressSpace());
3896    ResultType = getObjCGCQualType(ResultType, LQual->getObjCGCAttr());
3897    ResultType.setCVRQualifiers(LHSCan.getCVRQualifiers());
3898    return ResultType;
3899#endif
3900
3901  case Type::TemplateSpecialization:
3902    assert(false && "Dependent types have no size");
3903    break;
3904  }
3905
3906  return QualType();
3907}
3908
3909//===----------------------------------------------------------------------===//
3910//                         Integer Predicates
3911//===----------------------------------------------------------------------===//
3912
3913unsigned ASTContext::getIntWidth(QualType T) {
3914  if (T == BoolTy)
3915    return 1;
3916  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T)) {
3917    return FWIT->getWidth();
3918  }
3919  // For builtin types, just use the standard type sizing method
3920  return (unsigned)getTypeSize(T);
3921}
3922
3923QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
3924  assert(T->isSignedIntegerType() && "Unexpected type");
3925  if (const EnumType* ETy = T->getAsEnumType())
3926    T = ETy->getDecl()->getIntegerType();
3927  const BuiltinType* BTy = T->getAsBuiltinType();
3928  assert (BTy && "Unexpected signed integer type");
3929  switch (BTy->getKind()) {
3930  case BuiltinType::Char_S:
3931  case BuiltinType::SChar:
3932    return UnsignedCharTy;
3933  case BuiltinType::Short:
3934    return UnsignedShortTy;
3935  case BuiltinType::Int:
3936    return UnsignedIntTy;
3937  case BuiltinType::Long:
3938    return UnsignedLongTy;
3939  case BuiltinType::LongLong:
3940    return UnsignedLongLongTy;
3941  case BuiltinType::Int128:
3942    return UnsignedInt128Ty;
3943  default:
3944    assert(0 && "Unexpected signed integer type");
3945    return QualType();
3946  }
3947}
3948
3949ExternalASTSource::~ExternalASTSource() { }
3950
3951void ExternalASTSource::PrintStats() { }
3952
3953
3954//===----------------------------------------------------------------------===//
3955//                          Builtin Type Computation
3956//===----------------------------------------------------------------------===//
3957
3958/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
3959/// pointer over the consumed characters.  This returns the resultant type.
3960static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context,
3961                                  ASTContext::GetBuiltinTypeError &Error,
3962                                  bool AllowTypeModifiers = true) {
3963  // Modifiers.
3964  int HowLong = 0;
3965  bool Signed = false, Unsigned = false;
3966
3967  // Read the modifiers first.
3968  bool Done = false;
3969  while (!Done) {
3970    switch (*Str++) {
3971    default: Done = true; --Str; break;
3972    case 'S':
3973      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
3974      assert(!Signed && "Can't use 'S' modifier multiple times!");
3975      Signed = true;
3976      break;
3977    case 'U':
3978      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
3979      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
3980      Unsigned = true;
3981      break;
3982    case 'L':
3983      assert(HowLong <= 2 && "Can't have LLLL modifier");
3984      ++HowLong;
3985      break;
3986    }
3987  }
3988
3989  QualType Type;
3990
3991  // Read the base type.
3992  switch (*Str++) {
3993  default: assert(0 && "Unknown builtin type letter!");
3994  case 'v':
3995    assert(HowLong == 0 && !Signed && !Unsigned &&
3996           "Bad modifiers used with 'v'!");
3997    Type = Context.VoidTy;
3998    break;
3999  case 'f':
4000    assert(HowLong == 0 && !Signed && !Unsigned &&
4001           "Bad modifiers used with 'f'!");
4002    Type = Context.FloatTy;
4003    break;
4004  case 'd':
4005    assert(HowLong < 2 && !Signed && !Unsigned &&
4006           "Bad modifiers used with 'd'!");
4007    if (HowLong)
4008      Type = Context.LongDoubleTy;
4009    else
4010      Type = Context.DoubleTy;
4011    break;
4012  case 's':
4013    assert(HowLong == 0 && "Bad modifiers used with 's'!");
4014    if (Unsigned)
4015      Type = Context.UnsignedShortTy;
4016    else
4017      Type = Context.ShortTy;
4018    break;
4019  case 'i':
4020    if (HowLong == 3)
4021      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
4022    else if (HowLong == 2)
4023      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
4024    else if (HowLong == 1)
4025      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
4026    else
4027      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
4028    break;
4029  case 'c':
4030    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
4031    if (Signed)
4032      Type = Context.SignedCharTy;
4033    else if (Unsigned)
4034      Type = Context.UnsignedCharTy;
4035    else
4036      Type = Context.CharTy;
4037    break;
4038  case 'b': // boolean
4039    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
4040    Type = Context.BoolTy;
4041    break;
4042  case 'z':  // size_t.
4043    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
4044    Type = Context.getSizeType();
4045    break;
4046  case 'F':
4047    Type = Context.getCFConstantStringType();
4048    break;
4049  case 'a':
4050    Type = Context.getBuiltinVaListType();
4051    assert(!Type.isNull() && "builtin va list type not initialized!");
4052    break;
4053  case 'A':
4054    // This is a "reference" to a va_list; however, what exactly
4055    // this means depends on how va_list is defined. There are two
4056    // different kinds of va_list: ones passed by value, and ones
4057    // passed by reference.  An example of a by-value va_list is
4058    // x86, where va_list is a char*. An example of by-ref va_list
4059    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
4060    // we want this argument to be a char*&; for x86-64, we want
4061    // it to be a __va_list_tag*.
4062    Type = Context.getBuiltinVaListType();
4063    assert(!Type.isNull() && "builtin va list type not initialized!");
4064    if (Type->isArrayType()) {
4065      Type = Context.getArrayDecayedType(Type);
4066    } else {
4067      Type = Context.getLValueReferenceType(Type);
4068    }
4069    break;
4070  case 'V': {
4071    char *End;
4072    unsigned NumElements = strtoul(Str, &End, 10);
4073    assert(End != Str && "Missing vector size");
4074
4075    Str = End;
4076
4077    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4078    Type = Context.getVectorType(ElementType, NumElements);
4079    break;
4080  }
4081  case 'P':
4082    Type = Context.getFILEType();
4083    if (Type.isNull()) {
4084      Error = ASTContext::GE_Missing_stdio;
4085      return QualType();
4086    }
4087    break;
4088  case 'J':
4089    if (Signed)
4090      Type = Context.getsigjmp_bufType();
4091    else
4092      Type = Context.getjmp_bufType();
4093
4094    if (Type.isNull()) {
4095      Error = ASTContext::GE_Missing_setjmp;
4096      return QualType();
4097    }
4098    break;
4099  }
4100
4101  if (!AllowTypeModifiers)
4102    return Type;
4103
4104  Done = false;
4105  while (!Done) {
4106    switch (*Str++) {
4107      default: Done = true; --Str; break;
4108      case '*':
4109        Type = Context.getPointerType(Type);
4110        break;
4111      case '&':
4112        Type = Context.getLValueReferenceType(Type);
4113        break;
4114      // FIXME: There's no way to have a built-in with an rvalue ref arg.
4115      case 'C':
4116        Type = Type.getQualifiedType(QualType::Const);
4117        break;
4118    }
4119  }
4120
4121  return Type;
4122}
4123
4124/// GetBuiltinType - Return the type for the specified builtin.
4125QualType ASTContext::GetBuiltinType(unsigned id,
4126                                    GetBuiltinTypeError &Error) {
4127  const char *TypeStr = BuiltinInfo.GetTypeString(id);
4128
4129  llvm::SmallVector<QualType, 8> ArgTypes;
4130
4131  Error = GE_None;
4132  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error);
4133  if (Error != GE_None)
4134    return QualType();
4135  while (TypeStr[0] && TypeStr[0] != '.') {
4136    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error);
4137    if (Error != GE_None)
4138      return QualType();
4139
4140    // Do array -> pointer decay.  The builtin should use the decayed type.
4141    if (Ty->isArrayType())
4142      Ty = getArrayDecayedType(Ty);
4143
4144    ArgTypes.push_back(Ty);
4145  }
4146
4147  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
4148         "'.' should only occur at end of builtin type list!");
4149
4150  // handle untyped/variadic arguments "T c99Style();" or "T cppStyle(...);".
4151  if (ArgTypes.size() == 0 && TypeStr[0] == '.')
4152    return getFunctionNoProtoType(ResType);
4153  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(),
4154                         TypeStr[0] == '.', 0);
4155}
4156