ASTContext.cpp revision 2f47cab092cd2dcbfe7e003fa865499caf198dc2
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/CommentCommandTraits.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/TypeLoc.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExternalASTSource.h"
24#include "clang/AST/ASTMutationListener.h"
25#include "clang/AST/RecordLayout.h"
26#include "clang/AST/Mangle.h"
27#include "clang/Basic/Builtins.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "llvm/ADT/SmallString.h"
31#include "llvm/ADT/StringExtras.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/Support/Capacity.h"
35#include "CXXABI.h"
36#include <map>
37
38using namespace clang;
39
40unsigned ASTContext::NumImplicitDefaultConstructors;
41unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
42unsigned ASTContext::NumImplicitCopyConstructors;
43unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
44unsigned ASTContext::NumImplicitMoveConstructors;
45unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
46unsigned ASTContext::NumImplicitCopyAssignmentOperators;
47unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
48unsigned ASTContext::NumImplicitMoveAssignmentOperators;
49unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
50unsigned ASTContext::NumImplicitDestructors;
51unsigned ASTContext::NumImplicitDestructorsDeclared;
52
53enum FloatingRank {
54  HalfRank, FloatRank, DoubleRank, LongDoubleRank
55};
56
57RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
58  if (!CommentsLoaded && ExternalSource) {
59    ExternalSource->ReadComments();
60    CommentsLoaded = true;
61  }
62
63  assert(D);
64
65  // User can not attach documentation to implicit declarations.
66  if (D->isImplicit())
67    return NULL;
68
69  // User can not attach documentation to implicit instantiations.
70  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
71    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
72      return NULL;
73  }
74
75  // TODO: handle comments for function parameters properly.
76  if (isa<ParmVarDecl>(D))
77    return NULL;
78
79  // TODO: we could look up template parameter documentation in the template
80  // documentation.
81  if (isa<TemplateTypeParmDecl>(D) ||
82      isa<NonTypeTemplateParmDecl>(D) ||
83      isa<TemplateTemplateParmDecl>(D))
84    return NULL;
85
86  ArrayRef<RawComment *> RawComments = Comments.getComments();
87
88  // If there are no comments anywhere, we won't find anything.
89  if (RawComments.empty())
90    return NULL;
91
92  // Find declaration location.
93  // For Objective-C declarations we generally don't expect to have multiple
94  // declarators, thus use declaration starting location as the "declaration
95  // location".
96  // For all other declarations multiple declarators are used quite frequently,
97  // so we use the location of the identifier as the "declaration location".
98  SourceLocation DeclLoc;
99  if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
100      isa<ObjCPropertyDecl>(D) ||
101      isa<RedeclarableTemplateDecl>(D) ||
102      isa<ClassTemplateSpecializationDecl>(D))
103    DeclLoc = D->getLocStart();
104  else
105    DeclLoc = D->getLocation();
106
107  // If the declaration doesn't map directly to a location in a file, we
108  // can't find the comment.
109  if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
110    return NULL;
111
112  // Find the comment that occurs just after this declaration.
113  ArrayRef<RawComment *>::iterator Comment;
114  {
115    // When searching for comments during parsing, the comment we are looking
116    // for is usually among the last two comments we parsed -- check them
117    // first.
118    RawComment CommentAtDeclLoc(SourceMgr, SourceRange(DeclLoc));
119    BeforeThanCompare<RawComment> Compare(SourceMgr);
120    ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
121    bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
122    if (!Found && RawComments.size() >= 2) {
123      MaybeBeforeDecl--;
124      Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
125    }
126
127    if (Found) {
128      Comment = MaybeBeforeDecl + 1;
129      assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),
130                                         &CommentAtDeclLoc, Compare));
131    } else {
132      // Slow path.
133      Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
134                                 &CommentAtDeclLoc, Compare);
135    }
136  }
137
138  // Decompose the location for the declaration and find the beginning of the
139  // file buffer.
140  std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
141
142  // First check whether we have a trailing comment.
143  if (Comment != RawComments.end() &&
144      (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() &&
145      (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D))) {
146    std::pair<FileID, unsigned> CommentBeginDecomp
147      = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
148    // Check that Doxygen trailing comment comes after the declaration, starts
149    // on the same line and in the same file as the declaration.
150    if (DeclLocDecomp.first == CommentBeginDecomp.first &&
151        SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
152          == SourceMgr.getLineNumber(CommentBeginDecomp.first,
153                                     CommentBeginDecomp.second)) {
154      return *Comment;
155    }
156  }
157
158  // The comment just after the declaration was not a trailing comment.
159  // Let's look at the previous comment.
160  if (Comment == RawComments.begin())
161    return NULL;
162  --Comment;
163
164  // Check that we actually have a non-member Doxygen comment.
165  if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment())
166    return NULL;
167
168  // Decompose the end of the comment.
169  std::pair<FileID, unsigned> CommentEndDecomp
170    = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
171
172  // If the comment and the declaration aren't in the same file, then they
173  // aren't related.
174  if (DeclLocDecomp.first != CommentEndDecomp.first)
175    return NULL;
176
177  // Get the corresponding buffer.
178  bool Invalid = false;
179  const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
180                                               &Invalid).data();
181  if (Invalid)
182    return NULL;
183
184  // Extract text between the comment and declaration.
185  StringRef Text(Buffer + CommentEndDecomp.second,
186                 DeclLocDecomp.second - CommentEndDecomp.second);
187
188  // There should be no other declarations or preprocessor directives between
189  // comment and declaration.
190  if (Text.find_first_of(",;{}#@") != StringRef::npos)
191    return NULL;
192
193  return *Comment;
194}
195
196namespace {
197/// If we have a 'templated' declaration for a template, adjust 'D' to
198/// refer to the actual template.
199const Decl *adjustDeclToTemplate(const Decl *D) {
200  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
201    if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
202      D = FTD;
203  } else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
204    if (const ClassTemplateDecl *CTD = RD->getDescribedClassTemplate())
205      D = CTD;
206  }
207  // FIXME: Alias templates?
208  return D;
209}
210} // unnamed namespace
211
212const RawComment *ASTContext::getRawCommentForAnyRedecl(const Decl *D) const {
213  D = adjustDeclToTemplate(D);
214
215  // Check whether we have cached a comment for this declaration already.
216  {
217    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
218        RedeclComments.find(D);
219    if (Pos != RedeclComments.end()) {
220      const RawCommentAndCacheFlags &Raw = Pos->second;
221      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl)
222        return Raw.getRaw();
223    }
224  }
225
226  // Search for comments attached to declarations in the redeclaration chain.
227  const RawComment *RC = NULL;
228  for (Decl::redecl_iterator I = D->redecls_begin(),
229                             E = D->redecls_end();
230       I != E; ++I) {
231    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
232        RedeclComments.find(*I);
233    if (Pos != RedeclComments.end()) {
234      const RawCommentAndCacheFlags &Raw = Pos->second;
235      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
236        RC = Raw.getRaw();
237        break;
238      }
239    } else {
240      RC = getRawCommentForDeclNoCache(*I);
241      RawCommentAndCacheFlags Raw;
242      if (RC) {
243        Raw.setRaw(RC);
244        Raw.setKind(RawCommentAndCacheFlags::FromDecl);
245      } else
246        Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl);
247      RedeclComments[*I] = Raw;
248      if (RC)
249        break;
250    }
251  }
252
253  // If we found a comment, it should be a documentation comment.
254  assert(!RC || RC->isDocumentation());
255
256  // Update cache for every declaration in the redeclaration chain.
257  RawCommentAndCacheFlags Raw;
258  Raw.setRaw(RC);
259  Raw.setKind(RawCommentAndCacheFlags::FromRedecl);
260
261  for (Decl::redecl_iterator I = D->redecls_begin(),
262                             E = D->redecls_end();
263       I != E; ++I) {
264    RawCommentAndCacheFlags &R = RedeclComments[*I];
265    if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl)
266      R = Raw;
267  }
268
269  return RC;
270}
271
272comments::FullComment *ASTContext::getCommentForDecl(const Decl *D) const {
273  D = adjustDeclToTemplate(D);
274  const Decl *Canonical = D->getCanonicalDecl();
275  llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
276      ParsedComments.find(Canonical);
277  if (Pos != ParsedComments.end())
278    return Pos->second;
279
280  const RawComment *RC = getRawCommentForAnyRedecl(D);
281  if (!RC)
282    return NULL;
283
284  comments::FullComment *FC = RC->parse(*this, D);
285  ParsedComments[Canonical] = FC;
286  return FC;
287}
288
289void
290ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
291                                               TemplateTemplateParmDecl *Parm) {
292  ID.AddInteger(Parm->getDepth());
293  ID.AddInteger(Parm->getPosition());
294  ID.AddBoolean(Parm->isParameterPack());
295
296  TemplateParameterList *Params = Parm->getTemplateParameters();
297  ID.AddInteger(Params->size());
298  for (TemplateParameterList::const_iterator P = Params->begin(),
299                                          PEnd = Params->end();
300       P != PEnd; ++P) {
301    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
302      ID.AddInteger(0);
303      ID.AddBoolean(TTP->isParameterPack());
304      continue;
305    }
306
307    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
308      ID.AddInteger(1);
309      ID.AddBoolean(NTTP->isParameterPack());
310      ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
311      if (NTTP->isExpandedParameterPack()) {
312        ID.AddBoolean(true);
313        ID.AddInteger(NTTP->getNumExpansionTypes());
314        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
315          QualType T = NTTP->getExpansionType(I);
316          ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
317        }
318      } else
319        ID.AddBoolean(false);
320      continue;
321    }
322
323    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
324    ID.AddInteger(2);
325    Profile(ID, TTP);
326  }
327}
328
329TemplateTemplateParmDecl *
330ASTContext::getCanonicalTemplateTemplateParmDecl(
331                                          TemplateTemplateParmDecl *TTP) const {
332  // Check if we already have a canonical template template parameter.
333  llvm::FoldingSetNodeID ID;
334  CanonicalTemplateTemplateParm::Profile(ID, TTP);
335  void *InsertPos = 0;
336  CanonicalTemplateTemplateParm *Canonical
337    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
338  if (Canonical)
339    return Canonical->getParam();
340
341  // Build a canonical template parameter list.
342  TemplateParameterList *Params = TTP->getTemplateParameters();
343  SmallVector<NamedDecl *, 4> CanonParams;
344  CanonParams.reserve(Params->size());
345  for (TemplateParameterList::const_iterator P = Params->begin(),
346                                          PEnd = Params->end();
347       P != PEnd; ++P) {
348    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
349      CanonParams.push_back(
350                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
351                                               SourceLocation(),
352                                               SourceLocation(),
353                                               TTP->getDepth(),
354                                               TTP->getIndex(), 0, false,
355                                               TTP->isParameterPack()));
356    else if (NonTypeTemplateParmDecl *NTTP
357             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
358      QualType T = getCanonicalType(NTTP->getType());
359      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
360      NonTypeTemplateParmDecl *Param;
361      if (NTTP->isExpandedParameterPack()) {
362        SmallVector<QualType, 2> ExpandedTypes;
363        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
364        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
365          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
366          ExpandedTInfos.push_back(
367                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
368        }
369
370        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
371                                                SourceLocation(),
372                                                SourceLocation(),
373                                                NTTP->getDepth(),
374                                                NTTP->getPosition(), 0,
375                                                T,
376                                                TInfo,
377                                                ExpandedTypes.data(),
378                                                ExpandedTypes.size(),
379                                                ExpandedTInfos.data());
380      } else {
381        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
382                                                SourceLocation(),
383                                                SourceLocation(),
384                                                NTTP->getDepth(),
385                                                NTTP->getPosition(), 0,
386                                                T,
387                                                NTTP->isParameterPack(),
388                                                TInfo);
389      }
390      CanonParams.push_back(Param);
391
392    } else
393      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
394                                           cast<TemplateTemplateParmDecl>(*P)));
395  }
396
397  TemplateTemplateParmDecl *CanonTTP
398    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
399                                       SourceLocation(), TTP->getDepth(),
400                                       TTP->getPosition(),
401                                       TTP->isParameterPack(),
402                                       0,
403                         TemplateParameterList::Create(*this, SourceLocation(),
404                                                       SourceLocation(),
405                                                       CanonParams.data(),
406                                                       CanonParams.size(),
407                                                       SourceLocation()));
408
409  // Get the new insert position for the node we care about.
410  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
411  assert(Canonical == 0 && "Shouldn't be in the map!");
412  (void)Canonical;
413
414  // Create the canonical template template parameter entry.
415  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
416  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
417  return CanonTTP;
418}
419
420CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
421  if (!LangOpts.CPlusPlus) return 0;
422
423  switch (T.getCXXABI()) {
424  case CXXABI_ARM:
425    return CreateARMCXXABI(*this);
426  case CXXABI_Itanium:
427    return CreateItaniumCXXABI(*this);
428  case CXXABI_Microsoft:
429    return CreateMicrosoftCXXABI(*this);
430  }
431  llvm_unreachable("Invalid CXXABI type!");
432}
433
434static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
435                                             const LangOptions &LOpts) {
436  if (LOpts.FakeAddressSpaceMap) {
437    // The fake address space map must have a distinct entry for each
438    // language-specific address space.
439    static const unsigned FakeAddrSpaceMap[] = {
440      1, // opencl_global
441      2, // opencl_local
442      3, // opencl_constant
443      4, // cuda_device
444      5, // cuda_constant
445      6  // cuda_shared
446    };
447    return &FakeAddrSpaceMap;
448  } else {
449    return &T.getAddressSpaceMap();
450  }
451}
452
453ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
454                       const TargetInfo *t,
455                       IdentifierTable &idents, SelectorTable &sels,
456                       Builtin::Context &builtins,
457                       unsigned size_reserve,
458                       bool DelayInitialization)
459  : FunctionProtoTypes(this_()),
460    TemplateSpecializationTypes(this_()),
461    DependentTemplateSpecializationTypes(this_()),
462    SubstTemplateTemplateParmPacks(this_()),
463    GlobalNestedNameSpecifier(0),
464    Int128Decl(0), UInt128Decl(0),
465    BuiltinVaListDecl(0),
466    ObjCIdDecl(0), ObjCSelDecl(0), ObjCClassDecl(0), ObjCProtocolClassDecl(0),
467    CFConstantStringTypeDecl(0), ObjCInstanceTypeDecl(0),
468    FILEDecl(0),
469    jmp_bufDecl(0), sigjmp_bufDecl(0), ucontext_tDecl(0),
470    BlockDescriptorType(0), BlockDescriptorExtendedType(0),
471    cudaConfigureCallDecl(0),
472    NullTypeSourceInfo(QualType()),
473    FirstLocalImport(), LastLocalImport(),
474    SourceMgr(SM), LangOpts(LOpts),
475    AddrSpaceMap(0), Target(t), PrintingPolicy(LOpts),
476    Idents(idents), Selectors(sels),
477    BuiltinInfo(builtins),
478    DeclarationNames(*this),
479    ExternalSource(0), Listener(0),
480    Comments(SM), CommentsLoaded(false),
481    LastSDM(0, 0),
482    UniqueBlockByRefTypeID(0)
483{
484  if (size_reserve > 0) Types.reserve(size_reserve);
485  TUDecl = TranslationUnitDecl::Create(*this);
486
487  if (!DelayInitialization) {
488    assert(t && "No target supplied for ASTContext initialization");
489    InitBuiltinTypes(*t);
490  }
491}
492
493ASTContext::~ASTContext() {
494  // Release the DenseMaps associated with DeclContext objects.
495  // FIXME: Is this the ideal solution?
496  ReleaseDeclContextMaps();
497
498  // Call all of the deallocation functions.
499  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
500    Deallocations[I].first(Deallocations[I].second);
501
502  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
503  // because they can contain DenseMaps.
504  for (llvm::DenseMap<const ObjCContainerDecl*,
505       const ASTRecordLayout*>::iterator
506       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
507    // Increment in loop to prevent using deallocated memory.
508    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
509      R->Destroy(*this);
510
511  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
512       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
513    // Increment in loop to prevent using deallocated memory.
514    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
515      R->Destroy(*this);
516  }
517
518  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
519                                                    AEnd = DeclAttrs.end();
520       A != AEnd; ++A)
521    A->second->~AttrVec();
522}
523
524void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
525  Deallocations.push_back(std::make_pair(Callback, Data));
526}
527
528void
529ASTContext::setExternalSource(OwningPtr<ExternalASTSource> &Source) {
530  ExternalSource.reset(Source.take());
531}
532
533void ASTContext::PrintStats() const {
534  llvm::errs() << "\n*** AST Context Stats:\n";
535  llvm::errs() << "  " << Types.size() << " types total.\n";
536
537  unsigned counts[] = {
538#define TYPE(Name, Parent) 0,
539#define ABSTRACT_TYPE(Name, Parent)
540#include "clang/AST/TypeNodes.def"
541    0 // Extra
542  };
543
544  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
545    Type *T = Types[i];
546    counts[(unsigned)T->getTypeClass()]++;
547  }
548
549  unsigned Idx = 0;
550  unsigned TotalBytes = 0;
551#define TYPE(Name, Parent)                                              \
552  if (counts[Idx])                                                      \
553    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
554                 << " types\n";                                         \
555  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
556  ++Idx;
557#define ABSTRACT_TYPE(Name, Parent)
558#include "clang/AST/TypeNodes.def"
559
560  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
561
562  // Implicit special member functions.
563  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
564               << NumImplicitDefaultConstructors
565               << " implicit default constructors created\n";
566  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
567               << NumImplicitCopyConstructors
568               << " implicit copy constructors created\n";
569  if (getLangOpts().CPlusPlus)
570    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
571                 << NumImplicitMoveConstructors
572                 << " implicit move constructors created\n";
573  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
574               << NumImplicitCopyAssignmentOperators
575               << " implicit copy assignment operators created\n";
576  if (getLangOpts().CPlusPlus)
577    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
578                 << NumImplicitMoveAssignmentOperators
579                 << " implicit move assignment operators created\n";
580  llvm::errs() << NumImplicitDestructorsDeclared << "/"
581               << NumImplicitDestructors
582               << " implicit destructors created\n";
583
584  if (ExternalSource.get()) {
585    llvm::errs() << "\n";
586    ExternalSource->PrintStats();
587  }
588
589  BumpAlloc.PrintStats();
590}
591
592TypedefDecl *ASTContext::getInt128Decl() const {
593  if (!Int128Decl) {
594    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(Int128Ty);
595    Int128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
596                                     getTranslationUnitDecl(),
597                                     SourceLocation(),
598                                     SourceLocation(),
599                                     &Idents.get("__int128_t"),
600                                     TInfo);
601  }
602
603  return Int128Decl;
604}
605
606TypedefDecl *ASTContext::getUInt128Decl() const {
607  if (!UInt128Decl) {
608    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(UnsignedInt128Ty);
609    UInt128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
610                                     getTranslationUnitDecl(),
611                                     SourceLocation(),
612                                     SourceLocation(),
613                                     &Idents.get("__uint128_t"),
614                                     TInfo);
615  }
616
617  return UInt128Decl;
618}
619
620void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
621  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
622  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
623  Types.push_back(Ty);
624}
625
626void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
627  assert((!this->Target || this->Target == &Target) &&
628         "Incorrect target reinitialization");
629  assert(VoidTy.isNull() && "Context reinitialized?");
630
631  this->Target = &Target;
632
633  ABI.reset(createCXXABI(Target));
634  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
635
636  // C99 6.2.5p19.
637  InitBuiltinType(VoidTy,              BuiltinType::Void);
638
639  // C99 6.2.5p2.
640  InitBuiltinType(BoolTy,              BuiltinType::Bool);
641  // C99 6.2.5p3.
642  if (LangOpts.CharIsSigned)
643    InitBuiltinType(CharTy,            BuiltinType::Char_S);
644  else
645    InitBuiltinType(CharTy,            BuiltinType::Char_U);
646  // C99 6.2.5p4.
647  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
648  InitBuiltinType(ShortTy,             BuiltinType::Short);
649  InitBuiltinType(IntTy,               BuiltinType::Int);
650  InitBuiltinType(LongTy,              BuiltinType::Long);
651  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
652
653  // C99 6.2.5p6.
654  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
655  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
656  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
657  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
658  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
659
660  // C99 6.2.5p10.
661  InitBuiltinType(FloatTy,             BuiltinType::Float);
662  InitBuiltinType(DoubleTy,            BuiltinType::Double);
663  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
664
665  // GNU extension, 128-bit integers.
666  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
667  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
668
669  if (LangOpts.CPlusPlus) { // C++ 3.9.1p5
670    if (TargetInfo::isTypeSigned(Target.getWCharType()))
671      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
672    else  // -fshort-wchar makes wchar_t be unsigned.
673      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
674  } else // C99
675    WCharTy = getFromTargetType(Target.getWCharType());
676
677  WIntTy = getFromTargetType(Target.getWIntType());
678
679  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
680    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
681  else // C99
682    Char16Ty = getFromTargetType(Target.getChar16Type());
683
684  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
685    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
686  else // C99
687    Char32Ty = getFromTargetType(Target.getChar32Type());
688
689  // Placeholder type for type-dependent expressions whose type is
690  // completely unknown. No code should ever check a type against
691  // DependentTy and users should never see it; however, it is here to
692  // help diagnose failures to properly check for type-dependent
693  // expressions.
694  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
695
696  // Placeholder type for functions.
697  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
698
699  // Placeholder type for bound members.
700  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
701
702  // Placeholder type for pseudo-objects.
703  InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
704
705  // "any" type; useful for debugger-like clients.
706  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
707
708  // Placeholder type for unbridged ARC casts.
709  InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
710
711  // C99 6.2.5p11.
712  FloatComplexTy      = getComplexType(FloatTy);
713  DoubleComplexTy     = getComplexType(DoubleTy);
714  LongDoubleComplexTy = getComplexType(LongDoubleTy);
715
716  // Builtin types for 'id', 'Class', and 'SEL'.
717  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
718  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
719  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
720
721  // Builtin type for __objc_yes and __objc_no
722  ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
723                       SignedCharTy : BoolTy);
724
725  ObjCConstantStringType = QualType();
726
727  // void * type
728  VoidPtrTy = getPointerType(VoidTy);
729
730  // nullptr type (C++0x 2.14.7)
731  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
732
733  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
734  InitBuiltinType(HalfTy, BuiltinType::Half);
735
736  // Builtin type used to help define __builtin_va_list.
737  VaListTagTy = QualType();
738}
739
740DiagnosticsEngine &ASTContext::getDiagnostics() const {
741  return SourceMgr.getDiagnostics();
742}
743
744AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
745  AttrVec *&Result = DeclAttrs[D];
746  if (!Result) {
747    void *Mem = Allocate(sizeof(AttrVec));
748    Result = new (Mem) AttrVec;
749  }
750
751  return *Result;
752}
753
754/// \brief Erase the attributes corresponding to the given declaration.
755void ASTContext::eraseDeclAttrs(const Decl *D) {
756  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
757  if (Pos != DeclAttrs.end()) {
758    Pos->second->~AttrVec();
759    DeclAttrs.erase(Pos);
760  }
761}
762
763MemberSpecializationInfo *
764ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
765  assert(Var->isStaticDataMember() && "Not a static data member");
766  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
767    = InstantiatedFromStaticDataMember.find(Var);
768  if (Pos == InstantiatedFromStaticDataMember.end())
769    return 0;
770
771  return Pos->second;
772}
773
774void
775ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
776                                                TemplateSpecializationKind TSK,
777                                          SourceLocation PointOfInstantiation) {
778  assert(Inst->isStaticDataMember() && "Not a static data member");
779  assert(Tmpl->isStaticDataMember() && "Not a static data member");
780  assert(!InstantiatedFromStaticDataMember[Inst] &&
781         "Already noted what static data member was instantiated from");
782  InstantiatedFromStaticDataMember[Inst]
783    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
784}
785
786FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
787                                                     const FunctionDecl *FD){
788  assert(FD && "Specialization is 0");
789  llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
790    = ClassScopeSpecializationPattern.find(FD);
791  if (Pos == ClassScopeSpecializationPattern.end())
792    return 0;
793
794  return Pos->second;
795}
796
797void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
798                                        FunctionDecl *Pattern) {
799  assert(FD && "Specialization is 0");
800  assert(Pattern && "Class scope specialization pattern is 0");
801  ClassScopeSpecializationPattern[FD] = Pattern;
802}
803
804NamedDecl *
805ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
806  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
807    = InstantiatedFromUsingDecl.find(UUD);
808  if (Pos == InstantiatedFromUsingDecl.end())
809    return 0;
810
811  return Pos->second;
812}
813
814void
815ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
816  assert((isa<UsingDecl>(Pattern) ||
817          isa<UnresolvedUsingValueDecl>(Pattern) ||
818          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
819         "pattern decl is not a using decl");
820  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
821  InstantiatedFromUsingDecl[Inst] = Pattern;
822}
823
824UsingShadowDecl *
825ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
826  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
827    = InstantiatedFromUsingShadowDecl.find(Inst);
828  if (Pos == InstantiatedFromUsingShadowDecl.end())
829    return 0;
830
831  return Pos->second;
832}
833
834void
835ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
836                                               UsingShadowDecl *Pattern) {
837  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
838  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
839}
840
841FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
842  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
843    = InstantiatedFromUnnamedFieldDecl.find(Field);
844  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
845    return 0;
846
847  return Pos->second;
848}
849
850void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
851                                                     FieldDecl *Tmpl) {
852  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
853  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
854  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
855         "Already noted what unnamed field was instantiated from");
856
857  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
858}
859
860bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
861                                    const FieldDecl *LastFD) const {
862  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
863          FD->getBitWidthValue(*this) == 0);
864}
865
866bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
867                                             const FieldDecl *LastFD) const {
868  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
869          FD->getBitWidthValue(*this) == 0 &&
870          LastFD->getBitWidthValue(*this) != 0);
871}
872
873bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
874                                         const FieldDecl *LastFD) const {
875  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
876          FD->getBitWidthValue(*this) &&
877          LastFD->getBitWidthValue(*this));
878}
879
880bool ASTContext::NonBitfieldFollowsBitfield(const FieldDecl *FD,
881                                         const FieldDecl *LastFD) const {
882  return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
883          LastFD->getBitWidthValue(*this));
884}
885
886bool ASTContext::BitfieldFollowsNonBitfield(const FieldDecl *FD,
887                                             const FieldDecl *LastFD) const {
888  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
889          FD->getBitWidthValue(*this));
890}
891
892ASTContext::overridden_cxx_method_iterator
893ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
894  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
895    = OverriddenMethods.find(Method);
896  if (Pos == OverriddenMethods.end())
897    return 0;
898
899  return Pos->second.begin();
900}
901
902ASTContext::overridden_cxx_method_iterator
903ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
904  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
905    = OverriddenMethods.find(Method);
906  if (Pos == OverriddenMethods.end())
907    return 0;
908
909  return Pos->second.end();
910}
911
912unsigned
913ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
914  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
915    = OverriddenMethods.find(Method);
916  if (Pos == OverriddenMethods.end())
917    return 0;
918
919  return Pos->second.size();
920}
921
922void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
923                                     const CXXMethodDecl *Overridden) {
924  OverriddenMethods[Method].push_back(Overridden);
925}
926
927void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
928  assert(!Import->NextLocalImport && "Import declaration already in the chain");
929  assert(!Import->isFromASTFile() && "Non-local import declaration");
930  if (!FirstLocalImport) {
931    FirstLocalImport = Import;
932    LastLocalImport = Import;
933    return;
934  }
935
936  LastLocalImport->NextLocalImport = Import;
937  LastLocalImport = Import;
938}
939
940//===----------------------------------------------------------------------===//
941//                         Type Sizing and Analysis
942//===----------------------------------------------------------------------===//
943
944/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
945/// scalar floating point type.
946const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
947  const BuiltinType *BT = T->getAs<BuiltinType>();
948  assert(BT && "Not a floating point type!");
949  switch (BT->getKind()) {
950  default: llvm_unreachable("Not a floating point type!");
951  case BuiltinType::Half:       return Target->getHalfFormat();
952  case BuiltinType::Float:      return Target->getFloatFormat();
953  case BuiltinType::Double:     return Target->getDoubleFormat();
954  case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
955  }
956}
957
958/// getDeclAlign - Return a conservative estimate of the alignment of the
959/// specified decl.  Note that bitfields do not have a valid alignment, so
960/// this method will assert on them.
961/// If @p RefAsPointee, references are treated like their underlying type
962/// (for alignof), else they're treated like pointers (for CodeGen).
963CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
964  unsigned Align = Target->getCharWidth();
965
966  bool UseAlignAttrOnly = false;
967  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
968    Align = AlignFromAttr;
969
970    // __attribute__((aligned)) can increase or decrease alignment
971    // *except* on a struct or struct member, where it only increases
972    // alignment unless 'packed' is also specified.
973    //
974    // It is an error for alignas to decrease alignment, so we can
975    // ignore that possibility;  Sema should diagnose it.
976    if (isa<FieldDecl>(D)) {
977      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
978        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
979    } else {
980      UseAlignAttrOnly = true;
981    }
982  }
983  else if (isa<FieldDecl>(D))
984      UseAlignAttrOnly =
985        D->hasAttr<PackedAttr>() ||
986        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
987
988  // If we're using the align attribute only, just ignore everything
989  // else about the declaration and its type.
990  if (UseAlignAttrOnly) {
991    // do nothing
992
993  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
994    QualType T = VD->getType();
995    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
996      if (RefAsPointee)
997        T = RT->getPointeeType();
998      else
999        T = getPointerType(RT->getPointeeType());
1000    }
1001    if (!T->isIncompleteType() && !T->isFunctionType()) {
1002      // Adjust alignments of declarations with array type by the
1003      // large-array alignment on the target.
1004      unsigned MinWidth = Target->getLargeArrayMinWidth();
1005      const ArrayType *arrayType;
1006      if (MinWidth && (arrayType = getAsArrayType(T))) {
1007        if (isa<VariableArrayType>(arrayType))
1008          Align = std::max(Align, Target->getLargeArrayAlign());
1009        else if (isa<ConstantArrayType>(arrayType) &&
1010                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1011          Align = std::max(Align, Target->getLargeArrayAlign());
1012
1013        // Walk through any array types while we're at it.
1014        T = getBaseElementType(arrayType);
1015      }
1016      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1017    }
1018
1019    // Fields can be subject to extra alignment constraints, like if
1020    // the field is packed, the struct is packed, or the struct has a
1021    // a max-field-alignment constraint (#pragma pack).  So calculate
1022    // the actual alignment of the field within the struct, and then
1023    // (as we're expected to) constrain that by the alignment of the type.
1024    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
1025      // So calculate the alignment of the field.
1026      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
1027
1028      // Start with the record's overall alignment.
1029      unsigned fieldAlign = toBits(layout.getAlignment());
1030
1031      // Use the GCD of that and the offset within the record.
1032      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
1033      if (offset > 0) {
1034        // Alignment is always a power of 2, so the GCD will be a power of 2,
1035        // which means we get to do this crazy thing instead of Euclid's.
1036        uint64_t lowBitOfOffset = offset & (~offset + 1);
1037        if (lowBitOfOffset < fieldAlign)
1038          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
1039      }
1040
1041      Align = std::min(Align, fieldAlign);
1042    }
1043  }
1044
1045  return toCharUnitsFromBits(Align);
1046}
1047
1048std::pair<CharUnits, CharUnits>
1049ASTContext::getTypeInfoInChars(const Type *T) const {
1050  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
1051  return std::make_pair(toCharUnitsFromBits(Info.first),
1052                        toCharUnitsFromBits(Info.second));
1053}
1054
1055std::pair<CharUnits, CharUnits>
1056ASTContext::getTypeInfoInChars(QualType T) const {
1057  return getTypeInfoInChars(T.getTypePtr());
1058}
1059
1060std::pair<uint64_t, unsigned> ASTContext::getTypeInfo(const Type *T) const {
1061  TypeInfoMap::iterator it = MemoizedTypeInfo.find(T);
1062  if (it != MemoizedTypeInfo.end())
1063    return it->second;
1064
1065  std::pair<uint64_t, unsigned> Info = getTypeInfoImpl(T);
1066  MemoizedTypeInfo.insert(std::make_pair(T, Info));
1067  return Info;
1068}
1069
1070/// getTypeInfoImpl - Return the size of the specified type, in bits.  This
1071/// method does not work on incomplete types.
1072///
1073/// FIXME: Pointers into different addr spaces could have different sizes and
1074/// alignment requirements: getPointerInfo should take an AddrSpace, this
1075/// should take a QualType, &c.
1076std::pair<uint64_t, unsigned>
1077ASTContext::getTypeInfoImpl(const Type *T) const {
1078  uint64_t Width=0;
1079  unsigned Align=8;
1080  switch (T->getTypeClass()) {
1081#define TYPE(Class, Base)
1082#define ABSTRACT_TYPE(Class, Base)
1083#define NON_CANONICAL_TYPE(Class, Base)
1084#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1085#include "clang/AST/TypeNodes.def"
1086    llvm_unreachable("Should not see dependent types");
1087
1088  case Type::FunctionNoProto:
1089  case Type::FunctionProto:
1090    // GCC extension: alignof(function) = 32 bits
1091    Width = 0;
1092    Align = 32;
1093    break;
1094
1095  case Type::IncompleteArray:
1096  case Type::VariableArray:
1097    Width = 0;
1098    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
1099    break;
1100
1101  case Type::ConstantArray: {
1102    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
1103
1104    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
1105    uint64_t Size = CAT->getSize().getZExtValue();
1106    assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) &&
1107           "Overflow in array type bit size evaluation");
1108    Width = EltInfo.first*Size;
1109    Align = EltInfo.second;
1110    Width = llvm::RoundUpToAlignment(Width, Align);
1111    break;
1112  }
1113  case Type::ExtVector:
1114  case Type::Vector: {
1115    const VectorType *VT = cast<VectorType>(T);
1116    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
1117    Width = EltInfo.first*VT->getNumElements();
1118    Align = Width;
1119    // If the alignment is not a power of 2, round up to the next power of 2.
1120    // This happens for non-power-of-2 length vectors.
1121    if (Align & (Align-1)) {
1122      Align = llvm::NextPowerOf2(Align);
1123      Width = llvm::RoundUpToAlignment(Width, Align);
1124    }
1125    // Adjust the alignment based on the target max.
1126    uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1127    if (TargetVectorAlign && TargetVectorAlign < Align)
1128      Align = TargetVectorAlign;
1129    break;
1130  }
1131
1132  case Type::Builtin:
1133    switch (cast<BuiltinType>(T)->getKind()) {
1134    default: llvm_unreachable("Unknown builtin type!");
1135    case BuiltinType::Void:
1136      // GCC extension: alignof(void) = 8 bits.
1137      Width = 0;
1138      Align = 8;
1139      break;
1140
1141    case BuiltinType::Bool:
1142      Width = Target->getBoolWidth();
1143      Align = Target->getBoolAlign();
1144      break;
1145    case BuiltinType::Char_S:
1146    case BuiltinType::Char_U:
1147    case BuiltinType::UChar:
1148    case BuiltinType::SChar:
1149      Width = Target->getCharWidth();
1150      Align = Target->getCharAlign();
1151      break;
1152    case BuiltinType::WChar_S:
1153    case BuiltinType::WChar_U:
1154      Width = Target->getWCharWidth();
1155      Align = Target->getWCharAlign();
1156      break;
1157    case BuiltinType::Char16:
1158      Width = Target->getChar16Width();
1159      Align = Target->getChar16Align();
1160      break;
1161    case BuiltinType::Char32:
1162      Width = Target->getChar32Width();
1163      Align = Target->getChar32Align();
1164      break;
1165    case BuiltinType::UShort:
1166    case BuiltinType::Short:
1167      Width = Target->getShortWidth();
1168      Align = Target->getShortAlign();
1169      break;
1170    case BuiltinType::UInt:
1171    case BuiltinType::Int:
1172      Width = Target->getIntWidth();
1173      Align = Target->getIntAlign();
1174      break;
1175    case BuiltinType::ULong:
1176    case BuiltinType::Long:
1177      Width = Target->getLongWidth();
1178      Align = Target->getLongAlign();
1179      break;
1180    case BuiltinType::ULongLong:
1181    case BuiltinType::LongLong:
1182      Width = Target->getLongLongWidth();
1183      Align = Target->getLongLongAlign();
1184      break;
1185    case BuiltinType::Int128:
1186    case BuiltinType::UInt128:
1187      Width = 128;
1188      Align = 128; // int128_t is 128-bit aligned on all targets.
1189      break;
1190    case BuiltinType::Half:
1191      Width = Target->getHalfWidth();
1192      Align = Target->getHalfAlign();
1193      break;
1194    case BuiltinType::Float:
1195      Width = Target->getFloatWidth();
1196      Align = Target->getFloatAlign();
1197      break;
1198    case BuiltinType::Double:
1199      Width = Target->getDoubleWidth();
1200      Align = Target->getDoubleAlign();
1201      break;
1202    case BuiltinType::LongDouble:
1203      Width = Target->getLongDoubleWidth();
1204      Align = Target->getLongDoubleAlign();
1205      break;
1206    case BuiltinType::NullPtr:
1207      Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
1208      Align = Target->getPointerAlign(0); //   == sizeof(void*)
1209      break;
1210    case BuiltinType::ObjCId:
1211    case BuiltinType::ObjCClass:
1212    case BuiltinType::ObjCSel:
1213      Width = Target->getPointerWidth(0);
1214      Align = Target->getPointerAlign(0);
1215      break;
1216    }
1217    break;
1218  case Type::ObjCObjectPointer:
1219    Width = Target->getPointerWidth(0);
1220    Align = Target->getPointerAlign(0);
1221    break;
1222  case Type::BlockPointer: {
1223    unsigned AS = getTargetAddressSpace(
1224        cast<BlockPointerType>(T)->getPointeeType());
1225    Width = Target->getPointerWidth(AS);
1226    Align = Target->getPointerAlign(AS);
1227    break;
1228  }
1229  case Type::LValueReference:
1230  case Type::RValueReference: {
1231    // alignof and sizeof should never enter this code path here, so we go
1232    // the pointer route.
1233    unsigned AS = getTargetAddressSpace(
1234        cast<ReferenceType>(T)->getPointeeType());
1235    Width = Target->getPointerWidth(AS);
1236    Align = Target->getPointerAlign(AS);
1237    break;
1238  }
1239  case Type::Pointer: {
1240    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
1241    Width = Target->getPointerWidth(AS);
1242    Align = Target->getPointerAlign(AS);
1243    break;
1244  }
1245  case Type::MemberPointer: {
1246    const MemberPointerType *MPT = cast<MemberPointerType>(T);
1247    std::pair<uint64_t, unsigned> PtrDiffInfo =
1248      getTypeInfo(getPointerDiffType());
1249    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
1250    Align = PtrDiffInfo.second;
1251    break;
1252  }
1253  case Type::Complex: {
1254    // Complex types have the same alignment as their elements, but twice the
1255    // size.
1256    std::pair<uint64_t, unsigned> EltInfo =
1257      getTypeInfo(cast<ComplexType>(T)->getElementType());
1258    Width = EltInfo.first*2;
1259    Align = EltInfo.second;
1260    break;
1261  }
1262  case Type::ObjCObject:
1263    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1264  case Type::ObjCInterface: {
1265    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1266    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1267    Width = toBits(Layout.getSize());
1268    Align = toBits(Layout.getAlignment());
1269    break;
1270  }
1271  case Type::Record:
1272  case Type::Enum: {
1273    const TagType *TT = cast<TagType>(T);
1274
1275    if (TT->getDecl()->isInvalidDecl()) {
1276      Width = 8;
1277      Align = 8;
1278      break;
1279    }
1280
1281    if (const EnumType *ET = dyn_cast<EnumType>(TT))
1282      return getTypeInfo(ET->getDecl()->getIntegerType());
1283
1284    const RecordType *RT = cast<RecordType>(TT);
1285    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1286    Width = toBits(Layout.getSize());
1287    Align = toBits(Layout.getAlignment());
1288    break;
1289  }
1290
1291  case Type::SubstTemplateTypeParm:
1292    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1293                       getReplacementType().getTypePtr());
1294
1295  case Type::Auto: {
1296    const AutoType *A = cast<AutoType>(T);
1297    assert(A->isDeduced() && "Cannot request the size of a dependent type");
1298    return getTypeInfo(A->getDeducedType().getTypePtr());
1299  }
1300
1301  case Type::Paren:
1302    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1303
1304  case Type::Typedef: {
1305    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1306    std::pair<uint64_t, unsigned> Info
1307      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1308    // If the typedef has an aligned attribute on it, it overrides any computed
1309    // alignment we have.  This violates the GCC documentation (which says that
1310    // attribute(aligned) can only round up) but matches its implementation.
1311    if (unsigned AttrAlign = Typedef->getMaxAlignment())
1312      Align = AttrAlign;
1313    else
1314      Align = Info.second;
1315    Width = Info.first;
1316    break;
1317  }
1318
1319  case Type::TypeOfExpr:
1320    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
1321                         .getTypePtr());
1322
1323  case Type::TypeOf:
1324    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
1325
1326  case Type::Decltype:
1327    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
1328                        .getTypePtr());
1329
1330  case Type::UnaryTransform:
1331    return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
1332
1333  case Type::Elaborated:
1334    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1335
1336  case Type::Attributed:
1337    return getTypeInfo(
1338                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1339
1340  case Type::TemplateSpecialization: {
1341    assert(getCanonicalType(T) != T &&
1342           "Cannot request the size of a dependent type");
1343    const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1344    // A type alias template specialization may refer to a typedef with the
1345    // aligned attribute on it.
1346    if (TST->isTypeAlias())
1347      return getTypeInfo(TST->getAliasedType().getTypePtr());
1348    else
1349      return getTypeInfo(getCanonicalType(T));
1350  }
1351
1352  case Type::Atomic: {
1353    std::pair<uint64_t, unsigned> Info
1354      = getTypeInfo(cast<AtomicType>(T)->getValueType());
1355    Width = Info.first;
1356    Align = Info.second;
1357    if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth() &&
1358        llvm::isPowerOf2_64(Width)) {
1359      // We can potentially perform lock-free atomic operations for this
1360      // type; promote the alignment appropriately.
1361      // FIXME: We could potentially promote the width here as well...
1362      // is that worthwhile?  (Non-struct atomic types generally have
1363      // power-of-two size anyway, but structs might not.  Requires a bit
1364      // of implementation work to make sure we zero out the extra bits.)
1365      Align = static_cast<unsigned>(Width);
1366    }
1367  }
1368
1369  }
1370
1371  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1372  return std::make_pair(Width, Align);
1373}
1374
1375/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1376CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1377  return CharUnits::fromQuantity(BitSize / getCharWidth());
1378}
1379
1380/// toBits - Convert a size in characters to a size in characters.
1381int64_t ASTContext::toBits(CharUnits CharSize) const {
1382  return CharSize.getQuantity() * getCharWidth();
1383}
1384
1385/// getTypeSizeInChars - Return the size of the specified type, in characters.
1386/// This method does not work on incomplete types.
1387CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1388  return toCharUnitsFromBits(getTypeSize(T));
1389}
1390CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1391  return toCharUnitsFromBits(getTypeSize(T));
1392}
1393
1394/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1395/// characters. This method does not work on incomplete types.
1396CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1397  return toCharUnitsFromBits(getTypeAlign(T));
1398}
1399CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1400  return toCharUnitsFromBits(getTypeAlign(T));
1401}
1402
1403/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1404/// type for the current target in bits.  This can be different than the ABI
1405/// alignment in cases where it is beneficial for performance to overalign
1406/// a data type.
1407unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1408  unsigned ABIAlign = getTypeAlign(T);
1409
1410  // Double and long long should be naturally aligned if possible.
1411  if (const ComplexType* CT = T->getAs<ComplexType>())
1412    T = CT->getElementType().getTypePtr();
1413  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1414      T->isSpecificBuiltinType(BuiltinType::LongLong) ||
1415      T->isSpecificBuiltinType(BuiltinType::ULongLong))
1416    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1417
1418  return ABIAlign;
1419}
1420
1421/// DeepCollectObjCIvars -
1422/// This routine first collects all declared, but not synthesized, ivars in
1423/// super class and then collects all ivars, including those synthesized for
1424/// current class. This routine is used for implementation of current class
1425/// when all ivars, declared and synthesized are known.
1426///
1427void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1428                                      bool leafClass,
1429                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1430  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1431    DeepCollectObjCIvars(SuperClass, false, Ivars);
1432  if (!leafClass) {
1433    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1434         E = OI->ivar_end(); I != E; ++I)
1435      Ivars.push_back(*I);
1436  } else {
1437    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1438    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1439         Iv= Iv->getNextIvar())
1440      Ivars.push_back(Iv);
1441  }
1442}
1443
1444/// CollectInheritedProtocols - Collect all protocols in current class and
1445/// those inherited by it.
1446void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1447                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1448  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1449    // We can use protocol_iterator here instead of
1450    // all_referenced_protocol_iterator since we are walking all categories.
1451    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1452         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1453      ObjCProtocolDecl *Proto = (*P);
1454      Protocols.insert(Proto->getCanonicalDecl());
1455      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1456           PE = Proto->protocol_end(); P != PE; ++P) {
1457        Protocols.insert((*P)->getCanonicalDecl());
1458        CollectInheritedProtocols(*P, Protocols);
1459      }
1460    }
1461
1462    // Categories of this Interface.
1463    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
1464         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
1465      CollectInheritedProtocols(CDeclChain, Protocols);
1466    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1467      while (SD) {
1468        CollectInheritedProtocols(SD, Protocols);
1469        SD = SD->getSuperClass();
1470      }
1471  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1472    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1473         PE = OC->protocol_end(); P != PE; ++P) {
1474      ObjCProtocolDecl *Proto = (*P);
1475      Protocols.insert(Proto->getCanonicalDecl());
1476      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1477           PE = Proto->protocol_end(); P != PE; ++P)
1478        CollectInheritedProtocols(*P, Protocols);
1479    }
1480  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1481    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1482         PE = OP->protocol_end(); P != PE; ++P) {
1483      ObjCProtocolDecl *Proto = (*P);
1484      Protocols.insert(Proto->getCanonicalDecl());
1485      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1486           PE = Proto->protocol_end(); P != PE; ++P)
1487        CollectInheritedProtocols(*P, Protocols);
1488    }
1489  }
1490}
1491
1492unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1493  unsigned count = 0;
1494  // Count ivars declared in class extension.
1495  for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
1496       CDecl = CDecl->getNextClassExtension())
1497    count += CDecl->ivar_size();
1498
1499  // Count ivar defined in this class's implementation.  This
1500  // includes synthesized ivars.
1501  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1502    count += ImplDecl->ivar_size();
1503
1504  return count;
1505}
1506
1507bool ASTContext::isSentinelNullExpr(const Expr *E) {
1508  if (!E)
1509    return false;
1510
1511  // nullptr_t is always treated as null.
1512  if (E->getType()->isNullPtrType()) return true;
1513
1514  if (E->getType()->isAnyPointerType() &&
1515      E->IgnoreParenCasts()->isNullPointerConstant(*this,
1516                                                Expr::NPC_ValueDependentIsNull))
1517    return true;
1518
1519  // Unfortunately, __null has type 'int'.
1520  if (isa<GNUNullExpr>(E)) return true;
1521
1522  return false;
1523}
1524
1525/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1526ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1527  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1528    I = ObjCImpls.find(D);
1529  if (I != ObjCImpls.end())
1530    return cast<ObjCImplementationDecl>(I->second);
1531  return 0;
1532}
1533/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1534ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1535  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1536    I = ObjCImpls.find(D);
1537  if (I != ObjCImpls.end())
1538    return cast<ObjCCategoryImplDecl>(I->second);
1539  return 0;
1540}
1541
1542/// \brief Set the implementation of ObjCInterfaceDecl.
1543void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1544                           ObjCImplementationDecl *ImplD) {
1545  assert(IFaceD && ImplD && "Passed null params");
1546  ObjCImpls[IFaceD] = ImplD;
1547}
1548/// \brief Set the implementation of ObjCCategoryDecl.
1549void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1550                           ObjCCategoryImplDecl *ImplD) {
1551  assert(CatD && ImplD && "Passed null params");
1552  ObjCImpls[CatD] = ImplD;
1553}
1554
1555ObjCInterfaceDecl *ASTContext::getObjContainingInterface(NamedDecl *ND) const {
1556  if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1557    return ID;
1558  if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1559    return CD->getClassInterface();
1560  if (ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1561    return IMD->getClassInterface();
1562
1563  return 0;
1564}
1565
1566/// \brief Get the copy initialization expression of VarDecl,or NULL if
1567/// none exists.
1568Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1569  assert(VD && "Passed null params");
1570  assert(VD->hasAttr<BlocksAttr>() &&
1571         "getBlockVarCopyInits - not __block var");
1572  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1573    I = BlockVarCopyInits.find(VD);
1574  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1575}
1576
1577/// \brief Set the copy inialization expression of a block var decl.
1578void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1579  assert(VD && Init && "Passed null params");
1580  assert(VD->hasAttr<BlocksAttr>() &&
1581         "setBlockVarCopyInits - not __block var");
1582  BlockVarCopyInits[VD] = Init;
1583}
1584
1585TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1586                                                 unsigned DataSize) const {
1587  if (!DataSize)
1588    DataSize = TypeLoc::getFullDataSizeForType(T);
1589  else
1590    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1591           "incorrect data size provided to CreateTypeSourceInfo!");
1592
1593  TypeSourceInfo *TInfo =
1594    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1595  new (TInfo) TypeSourceInfo(T);
1596  return TInfo;
1597}
1598
1599TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1600                                                     SourceLocation L) const {
1601  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1602  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1603  return DI;
1604}
1605
1606const ASTRecordLayout &
1607ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1608  return getObjCLayout(D, 0);
1609}
1610
1611const ASTRecordLayout &
1612ASTContext::getASTObjCImplementationLayout(
1613                                        const ObjCImplementationDecl *D) const {
1614  return getObjCLayout(D->getClassInterface(), D);
1615}
1616
1617//===----------------------------------------------------------------------===//
1618//                   Type creation/memoization methods
1619//===----------------------------------------------------------------------===//
1620
1621QualType
1622ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1623  unsigned fastQuals = quals.getFastQualifiers();
1624  quals.removeFastQualifiers();
1625
1626  // Check if we've already instantiated this type.
1627  llvm::FoldingSetNodeID ID;
1628  ExtQuals::Profile(ID, baseType, quals);
1629  void *insertPos = 0;
1630  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1631    assert(eq->getQualifiers() == quals);
1632    return QualType(eq, fastQuals);
1633  }
1634
1635  // If the base type is not canonical, make the appropriate canonical type.
1636  QualType canon;
1637  if (!baseType->isCanonicalUnqualified()) {
1638    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1639    canonSplit.Quals.addConsistentQualifiers(quals);
1640    canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
1641
1642    // Re-find the insert position.
1643    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1644  }
1645
1646  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1647  ExtQualNodes.InsertNode(eq, insertPos);
1648  return QualType(eq, fastQuals);
1649}
1650
1651QualType
1652ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1653  QualType CanT = getCanonicalType(T);
1654  if (CanT.getAddressSpace() == AddressSpace)
1655    return T;
1656
1657  // If we are composing extended qualifiers together, merge together
1658  // into one ExtQuals node.
1659  QualifierCollector Quals;
1660  const Type *TypeNode = Quals.strip(T);
1661
1662  // If this type already has an address space specified, it cannot get
1663  // another one.
1664  assert(!Quals.hasAddressSpace() &&
1665         "Type cannot be in multiple addr spaces!");
1666  Quals.addAddressSpace(AddressSpace);
1667
1668  return getExtQualType(TypeNode, Quals);
1669}
1670
1671QualType ASTContext::getObjCGCQualType(QualType T,
1672                                       Qualifiers::GC GCAttr) const {
1673  QualType CanT = getCanonicalType(T);
1674  if (CanT.getObjCGCAttr() == GCAttr)
1675    return T;
1676
1677  if (const PointerType *ptr = T->getAs<PointerType>()) {
1678    QualType Pointee = ptr->getPointeeType();
1679    if (Pointee->isAnyPointerType()) {
1680      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1681      return getPointerType(ResultType);
1682    }
1683  }
1684
1685  // If we are composing extended qualifiers together, merge together
1686  // into one ExtQuals node.
1687  QualifierCollector Quals;
1688  const Type *TypeNode = Quals.strip(T);
1689
1690  // If this type already has an ObjCGC specified, it cannot get
1691  // another one.
1692  assert(!Quals.hasObjCGCAttr() &&
1693         "Type cannot have multiple ObjCGCs!");
1694  Quals.addObjCGCAttr(GCAttr);
1695
1696  return getExtQualType(TypeNode, Quals);
1697}
1698
1699const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1700                                                   FunctionType::ExtInfo Info) {
1701  if (T->getExtInfo() == Info)
1702    return T;
1703
1704  QualType Result;
1705  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1706    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1707  } else {
1708    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1709    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1710    EPI.ExtInfo = Info;
1711    Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1712                             FPT->getNumArgs(), EPI);
1713  }
1714
1715  return cast<FunctionType>(Result.getTypePtr());
1716}
1717
1718/// getComplexType - Return the uniqued reference to the type for a complex
1719/// number with the specified element type.
1720QualType ASTContext::getComplexType(QualType T) const {
1721  // Unique pointers, to guarantee there is only one pointer of a particular
1722  // structure.
1723  llvm::FoldingSetNodeID ID;
1724  ComplexType::Profile(ID, T);
1725
1726  void *InsertPos = 0;
1727  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1728    return QualType(CT, 0);
1729
1730  // If the pointee type isn't canonical, this won't be a canonical type either,
1731  // so fill in the canonical type field.
1732  QualType Canonical;
1733  if (!T.isCanonical()) {
1734    Canonical = getComplexType(getCanonicalType(T));
1735
1736    // Get the new insert position for the node we care about.
1737    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1738    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1739  }
1740  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1741  Types.push_back(New);
1742  ComplexTypes.InsertNode(New, InsertPos);
1743  return QualType(New, 0);
1744}
1745
1746/// getPointerType - Return the uniqued reference to the type for a pointer to
1747/// the specified type.
1748QualType ASTContext::getPointerType(QualType T) const {
1749  // Unique pointers, to guarantee there is only one pointer of a particular
1750  // structure.
1751  llvm::FoldingSetNodeID ID;
1752  PointerType::Profile(ID, T);
1753
1754  void *InsertPos = 0;
1755  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1756    return QualType(PT, 0);
1757
1758  // If the pointee type isn't canonical, this won't be a canonical type either,
1759  // so fill in the canonical type field.
1760  QualType Canonical;
1761  if (!T.isCanonical()) {
1762    Canonical = getPointerType(getCanonicalType(T));
1763
1764    // Get the new insert position for the node we care about.
1765    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1766    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1767  }
1768  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1769  Types.push_back(New);
1770  PointerTypes.InsertNode(New, InsertPos);
1771  return QualType(New, 0);
1772}
1773
1774/// getBlockPointerType - Return the uniqued reference to the type for
1775/// a pointer to the specified block.
1776QualType ASTContext::getBlockPointerType(QualType T) const {
1777  assert(T->isFunctionType() && "block of function types only");
1778  // Unique pointers, to guarantee there is only one block of a particular
1779  // structure.
1780  llvm::FoldingSetNodeID ID;
1781  BlockPointerType::Profile(ID, T);
1782
1783  void *InsertPos = 0;
1784  if (BlockPointerType *PT =
1785        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1786    return QualType(PT, 0);
1787
1788  // If the block pointee type isn't canonical, this won't be a canonical
1789  // type either so fill in the canonical type field.
1790  QualType Canonical;
1791  if (!T.isCanonical()) {
1792    Canonical = getBlockPointerType(getCanonicalType(T));
1793
1794    // Get the new insert position for the node we care about.
1795    BlockPointerType *NewIP =
1796      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1797    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1798  }
1799  BlockPointerType *New
1800    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1801  Types.push_back(New);
1802  BlockPointerTypes.InsertNode(New, InsertPos);
1803  return QualType(New, 0);
1804}
1805
1806/// getLValueReferenceType - Return the uniqued reference to the type for an
1807/// lvalue reference to the specified type.
1808QualType
1809ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
1810  assert(getCanonicalType(T) != OverloadTy &&
1811         "Unresolved overloaded function type");
1812
1813  // Unique pointers, to guarantee there is only one pointer of a particular
1814  // structure.
1815  llvm::FoldingSetNodeID ID;
1816  ReferenceType::Profile(ID, T, SpelledAsLValue);
1817
1818  void *InsertPos = 0;
1819  if (LValueReferenceType *RT =
1820        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1821    return QualType(RT, 0);
1822
1823  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1824
1825  // If the referencee type isn't canonical, this won't be a canonical type
1826  // either, so fill in the canonical type field.
1827  QualType Canonical;
1828  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1829    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1830    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1831
1832    // Get the new insert position for the node we care about.
1833    LValueReferenceType *NewIP =
1834      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1835    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1836  }
1837
1838  LValueReferenceType *New
1839    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1840                                                     SpelledAsLValue);
1841  Types.push_back(New);
1842  LValueReferenceTypes.InsertNode(New, InsertPos);
1843
1844  return QualType(New, 0);
1845}
1846
1847/// getRValueReferenceType - Return the uniqued reference to the type for an
1848/// rvalue reference to the specified type.
1849QualType ASTContext::getRValueReferenceType(QualType T) const {
1850  // Unique pointers, to guarantee there is only one pointer of a particular
1851  // structure.
1852  llvm::FoldingSetNodeID ID;
1853  ReferenceType::Profile(ID, T, false);
1854
1855  void *InsertPos = 0;
1856  if (RValueReferenceType *RT =
1857        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1858    return QualType(RT, 0);
1859
1860  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1861
1862  // If the referencee type isn't canonical, this won't be a canonical type
1863  // either, so fill in the canonical type field.
1864  QualType Canonical;
1865  if (InnerRef || !T.isCanonical()) {
1866    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1867    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1868
1869    // Get the new insert position for the node we care about.
1870    RValueReferenceType *NewIP =
1871      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1872    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1873  }
1874
1875  RValueReferenceType *New
1876    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1877  Types.push_back(New);
1878  RValueReferenceTypes.InsertNode(New, InsertPos);
1879  return QualType(New, 0);
1880}
1881
1882/// getMemberPointerType - Return the uniqued reference to the type for a
1883/// member pointer to the specified type, in the specified class.
1884QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
1885  // Unique pointers, to guarantee there is only one pointer of a particular
1886  // structure.
1887  llvm::FoldingSetNodeID ID;
1888  MemberPointerType::Profile(ID, T, Cls);
1889
1890  void *InsertPos = 0;
1891  if (MemberPointerType *PT =
1892      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1893    return QualType(PT, 0);
1894
1895  // If the pointee or class type isn't canonical, this won't be a canonical
1896  // type either, so fill in the canonical type field.
1897  QualType Canonical;
1898  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1899    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1900
1901    // Get the new insert position for the node we care about.
1902    MemberPointerType *NewIP =
1903      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1904    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1905  }
1906  MemberPointerType *New
1907    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1908  Types.push_back(New);
1909  MemberPointerTypes.InsertNode(New, InsertPos);
1910  return QualType(New, 0);
1911}
1912
1913/// getConstantArrayType - Return the unique reference to the type for an
1914/// array of the specified element type.
1915QualType ASTContext::getConstantArrayType(QualType EltTy,
1916                                          const llvm::APInt &ArySizeIn,
1917                                          ArrayType::ArraySizeModifier ASM,
1918                                          unsigned IndexTypeQuals) const {
1919  assert((EltTy->isDependentType() ||
1920          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1921         "Constant array of VLAs is illegal!");
1922
1923  // Convert the array size into a canonical width matching the pointer size for
1924  // the target.
1925  llvm::APInt ArySize(ArySizeIn);
1926  ArySize =
1927    ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
1928
1929  llvm::FoldingSetNodeID ID;
1930  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
1931
1932  void *InsertPos = 0;
1933  if (ConstantArrayType *ATP =
1934      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1935    return QualType(ATP, 0);
1936
1937  // If the element type isn't canonical or has qualifiers, this won't
1938  // be a canonical type either, so fill in the canonical type field.
1939  QualType Canon;
1940  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1941    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1942    Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
1943                                 ASM, IndexTypeQuals);
1944    Canon = getQualifiedType(Canon, canonSplit.Quals);
1945
1946    // Get the new insert position for the node we care about.
1947    ConstantArrayType *NewIP =
1948      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1949    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1950  }
1951
1952  ConstantArrayType *New = new(*this,TypeAlignment)
1953    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
1954  ConstantArrayTypes.InsertNode(New, InsertPos);
1955  Types.push_back(New);
1956  return QualType(New, 0);
1957}
1958
1959/// getVariableArrayDecayedType - Turns the given type, which may be
1960/// variably-modified, into the corresponding type with all the known
1961/// sizes replaced with [*].
1962QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
1963  // Vastly most common case.
1964  if (!type->isVariablyModifiedType()) return type;
1965
1966  QualType result;
1967
1968  SplitQualType split = type.getSplitDesugaredType();
1969  const Type *ty = split.Ty;
1970  switch (ty->getTypeClass()) {
1971#define TYPE(Class, Base)
1972#define ABSTRACT_TYPE(Class, Base)
1973#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1974#include "clang/AST/TypeNodes.def"
1975    llvm_unreachable("didn't desugar past all non-canonical types?");
1976
1977  // These types should never be variably-modified.
1978  case Type::Builtin:
1979  case Type::Complex:
1980  case Type::Vector:
1981  case Type::ExtVector:
1982  case Type::DependentSizedExtVector:
1983  case Type::ObjCObject:
1984  case Type::ObjCInterface:
1985  case Type::ObjCObjectPointer:
1986  case Type::Record:
1987  case Type::Enum:
1988  case Type::UnresolvedUsing:
1989  case Type::TypeOfExpr:
1990  case Type::TypeOf:
1991  case Type::Decltype:
1992  case Type::UnaryTransform:
1993  case Type::DependentName:
1994  case Type::InjectedClassName:
1995  case Type::TemplateSpecialization:
1996  case Type::DependentTemplateSpecialization:
1997  case Type::TemplateTypeParm:
1998  case Type::SubstTemplateTypeParmPack:
1999  case Type::Auto:
2000  case Type::PackExpansion:
2001    llvm_unreachable("type should never be variably-modified");
2002
2003  // These types can be variably-modified but should never need to
2004  // further decay.
2005  case Type::FunctionNoProto:
2006  case Type::FunctionProto:
2007  case Type::BlockPointer:
2008  case Type::MemberPointer:
2009    return type;
2010
2011  // These types can be variably-modified.  All these modifications
2012  // preserve structure except as noted by comments.
2013  // TODO: if we ever care about optimizing VLAs, there are no-op
2014  // optimizations available here.
2015  case Type::Pointer:
2016    result = getPointerType(getVariableArrayDecayedType(
2017                              cast<PointerType>(ty)->getPointeeType()));
2018    break;
2019
2020  case Type::LValueReference: {
2021    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
2022    result = getLValueReferenceType(
2023                 getVariableArrayDecayedType(lv->getPointeeType()),
2024                                    lv->isSpelledAsLValue());
2025    break;
2026  }
2027
2028  case Type::RValueReference: {
2029    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
2030    result = getRValueReferenceType(
2031                 getVariableArrayDecayedType(lv->getPointeeType()));
2032    break;
2033  }
2034
2035  case Type::Atomic: {
2036    const AtomicType *at = cast<AtomicType>(ty);
2037    result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
2038    break;
2039  }
2040
2041  case Type::ConstantArray: {
2042    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
2043    result = getConstantArrayType(
2044                 getVariableArrayDecayedType(cat->getElementType()),
2045                                  cat->getSize(),
2046                                  cat->getSizeModifier(),
2047                                  cat->getIndexTypeCVRQualifiers());
2048    break;
2049  }
2050
2051  case Type::DependentSizedArray: {
2052    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
2053    result = getDependentSizedArrayType(
2054                 getVariableArrayDecayedType(dat->getElementType()),
2055                                        dat->getSizeExpr(),
2056                                        dat->getSizeModifier(),
2057                                        dat->getIndexTypeCVRQualifiers(),
2058                                        dat->getBracketsRange());
2059    break;
2060  }
2061
2062  // Turn incomplete types into [*] types.
2063  case Type::IncompleteArray: {
2064    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
2065    result = getVariableArrayType(
2066                 getVariableArrayDecayedType(iat->getElementType()),
2067                                  /*size*/ 0,
2068                                  ArrayType::Normal,
2069                                  iat->getIndexTypeCVRQualifiers(),
2070                                  SourceRange());
2071    break;
2072  }
2073
2074  // Turn VLA types into [*] types.
2075  case Type::VariableArray: {
2076    const VariableArrayType *vat = cast<VariableArrayType>(ty);
2077    result = getVariableArrayType(
2078                 getVariableArrayDecayedType(vat->getElementType()),
2079                                  /*size*/ 0,
2080                                  ArrayType::Star,
2081                                  vat->getIndexTypeCVRQualifiers(),
2082                                  vat->getBracketsRange());
2083    break;
2084  }
2085  }
2086
2087  // Apply the top-level qualifiers from the original.
2088  return getQualifiedType(result, split.Quals);
2089}
2090
2091/// getVariableArrayType - Returns a non-unique reference to the type for a
2092/// variable array of the specified element type.
2093QualType ASTContext::getVariableArrayType(QualType EltTy,
2094                                          Expr *NumElts,
2095                                          ArrayType::ArraySizeModifier ASM,
2096                                          unsigned IndexTypeQuals,
2097                                          SourceRange Brackets) const {
2098  // Since we don't unique expressions, it isn't possible to unique VLA's
2099  // that have an expression provided for their size.
2100  QualType Canon;
2101
2102  // Be sure to pull qualifiers off the element type.
2103  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2104    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2105    Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
2106                                 IndexTypeQuals, Brackets);
2107    Canon = getQualifiedType(Canon, canonSplit.Quals);
2108  }
2109
2110  VariableArrayType *New = new(*this, TypeAlignment)
2111    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
2112
2113  VariableArrayTypes.push_back(New);
2114  Types.push_back(New);
2115  return QualType(New, 0);
2116}
2117
2118/// getDependentSizedArrayType - Returns a non-unique reference to
2119/// the type for a dependently-sized array of the specified element
2120/// type.
2121QualType ASTContext::getDependentSizedArrayType(QualType elementType,
2122                                                Expr *numElements,
2123                                                ArrayType::ArraySizeModifier ASM,
2124                                                unsigned elementTypeQuals,
2125                                                SourceRange brackets) const {
2126  assert((!numElements || numElements->isTypeDependent() ||
2127          numElements->isValueDependent()) &&
2128         "Size must be type- or value-dependent!");
2129
2130  // Dependently-sized array types that do not have a specified number
2131  // of elements will have their sizes deduced from a dependent
2132  // initializer.  We do no canonicalization here at all, which is okay
2133  // because they can't be used in most locations.
2134  if (!numElements) {
2135    DependentSizedArrayType *newType
2136      = new (*this, TypeAlignment)
2137          DependentSizedArrayType(*this, elementType, QualType(),
2138                                  numElements, ASM, elementTypeQuals,
2139                                  brackets);
2140    Types.push_back(newType);
2141    return QualType(newType, 0);
2142  }
2143
2144  // Otherwise, we actually build a new type every time, but we
2145  // also build a canonical type.
2146
2147  SplitQualType canonElementType = getCanonicalType(elementType).split();
2148
2149  void *insertPos = 0;
2150  llvm::FoldingSetNodeID ID;
2151  DependentSizedArrayType::Profile(ID, *this,
2152                                   QualType(canonElementType.Ty, 0),
2153                                   ASM, elementTypeQuals, numElements);
2154
2155  // Look for an existing type with these properties.
2156  DependentSizedArrayType *canonTy =
2157    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2158
2159  // If we don't have one, build one.
2160  if (!canonTy) {
2161    canonTy = new (*this, TypeAlignment)
2162      DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
2163                              QualType(), numElements, ASM, elementTypeQuals,
2164                              brackets);
2165    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
2166    Types.push_back(canonTy);
2167  }
2168
2169  // Apply qualifiers from the element type to the array.
2170  QualType canon = getQualifiedType(QualType(canonTy,0),
2171                                    canonElementType.Quals);
2172
2173  // If we didn't need extra canonicalization for the element type,
2174  // then just use that as our result.
2175  if (QualType(canonElementType.Ty, 0) == elementType)
2176    return canon;
2177
2178  // Otherwise, we need to build a type which follows the spelling
2179  // of the element type.
2180  DependentSizedArrayType *sugaredType
2181    = new (*this, TypeAlignment)
2182        DependentSizedArrayType(*this, elementType, canon, numElements,
2183                                ASM, elementTypeQuals, brackets);
2184  Types.push_back(sugaredType);
2185  return QualType(sugaredType, 0);
2186}
2187
2188QualType ASTContext::getIncompleteArrayType(QualType elementType,
2189                                            ArrayType::ArraySizeModifier ASM,
2190                                            unsigned elementTypeQuals) const {
2191  llvm::FoldingSetNodeID ID;
2192  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
2193
2194  void *insertPos = 0;
2195  if (IncompleteArrayType *iat =
2196       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
2197    return QualType(iat, 0);
2198
2199  // If the element type isn't canonical, this won't be a canonical type
2200  // either, so fill in the canonical type field.  We also have to pull
2201  // qualifiers off the element type.
2202  QualType canon;
2203
2204  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
2205    SplitQualType canonSplit = getCanonicalType(elementType).split();
2206    canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
2207                                   ASM, elementTypeQuals);
2208    canon = getQualifiedType(canon, canonSplit.Quals);
2209
2210    // Get the new insert position for the node we care about.
2211    IncompleteArrayType *existing =
2212      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2213    assert(!existing && "Shouldn't be in the map!"); (void) existing;
2214  }
2215
2216  IncompleteArrayType *newType = new (*this, TypeAlignment)
2217    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
2218
2219  IncompleteArrayTypes.InsertNode(newType, insertPos);
2220  Types.push_back(newType);
2221  return QualType(newType, 0);
2222}
2223
2224/// getVectorType - Return the unique reference to a vector type of
2225/// the specified element type and size. VectorType must be a built-in type.
2226QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
2227                                   VectorType::VectorKind VecKind) const {
2228  assert(vecType->isBuiltinType());
2229
2230  // Check if we've already instantiated a vector of this type.
2231  llvm::FoldingSetNodeID ID;
2232  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
2233
2234  void *InsertPos = 0;
2235  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2236    return QualType(VTP, 0);
2237
2238  // If the element type isn't canonical, this won't be a canonical type either,
2239  // so fill in the canonical type field.
2240  QualType Canonical;
2241  if (!vecType.isCanonical()) {
2242    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
2243
2244    // Get the new insert position for the node we care about.
2245    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2246    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2247  }
2248  VectorType *New = new (*this, TypeAlignment)
2249    VectorType(vecType, NumElts, Canonical, VecKind);
2250  VectorTypes.InsertNode(New, InsertPos);
2251  Types.push_back(New);
2252  return QualType(New, 0);
2253}
2254
2255/// getExtVectorType - Return the unique reference to an extended vector type of
2256/// the specified element type and size. VectorType must be a built-in type.
2257QualType
2258ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2259  assert(vecType->isBuiltinType() || vecType->isDependentType());
2260
2261  // Check if we've already instantiated a vector of this type.
2262  llvm::FoldingSetNodeID ID;
2263  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2264                      VectorType::GenericVector);
2265  void *InsertPos = 0;
2266  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2267    return QualType(VTP, 0);
2268
2269  // If the element type isn't canonical, this won't be a canonical type either,
2270  // so fill in the canonical type field.
2271  QualType Canonical;
2272  if (!vecType.isCanonical()) {
2273    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2274
2275    // Get the new insert position for the node we care about.
2276    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2277    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2278  }
2279  ExtVectorType *New = new (*this, TypeAlignment)
2280    ExtVectorType(vecType, NumElts, Canonical);
2281  VectorTypes.InsertNode(New, InsertPos);
2282  Types.push_back(New);
2283  return QualType(New, 0);
2284}
2285
2286QualType
2287ASTContext::getDependentSizedExtVectorType(QualType vecType,
2288                                           Expr *SizeExpr,
2289                                           SourceLocation AttrLoc) const {
2290  llvm::FoldingSetNodeID ID;
2291  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2292                                       SizeExpr);
2293
2294  void *InsertPos = 0;
2295  DependentSizedExtVectorType *Canon
2296    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2297  DependentSizedExtVectorType *New;
2298  if (Canon) {
2299    // We already have a canonical version of this array type; use it as
2300    // the canonical type for a newly-built type.
2301    New = new (*this, TypeAlignment)
2302      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2303                                  SizeExpr, AttrLoc);
2304  } else {
2305    QualType CanonVecTy = getCanonicalType(vecType);
2306    if (CanonVecTy == vecType) {
2307      New = new (*this, TypeAlignment)
2308        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2309                                    AttrLoc);
2310
2311      DependentSizedExtVectorType *CanonCheck
2312        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2313      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2314      (void)CanonCheck;
2315      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2316    } else {
2317      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2318                                                      SourceLocation());
2319      New = new (*this, TypeAlignment)
2320        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2321    }
2322  }
2323
2324  Types.push_back(New);
2325  return QualType(New, 0);
2326}
2327
2328/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2329///
2330QualType
2331ASTContext::getFunctionNoProtoType(QualType ResultTy,
2332                                   const FunctionType::ExtInfo &Info) const {
2333  const CallingConv DefaultCC = Info.getCC();
2334  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2335                               CC_X86StdCall : DefaultCC;
2336  // Unique functions, to guarantee there is only one function of a particular
2337  // structure.
2338  llvm::FoldingSetNodeID ID;
2339  FunctionNoProtoType::Profile(ID, ResultTy, Info);
2340
2341  void *InsertPos = 0;
2342  if (FunctionNoProtoType *FT =
2343        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2344    return QualType(FT, 0);
2345
2346  QualType Canonical;
2347  if (!ResultTy.isCanonical() ||
2348      getCanonicalCallConv(CallConv) != CallConv) {
2349    Canonical =
2350      getFunctionNoProtoType(getCanonicalType(ResultTy),
2351                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
2352
2353    // Get the new insert position for the node we care about.
2354    FunctionNoProtoType *NewIP =
2355      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2356    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2357  }
2358
2359  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2360  FunctionNoProtoType *New = new (*this, TypeAlignment)
2361    FunctionNoProtoType(ResultTy, Canonical, newInfo);
2362  Types.push_back(New);
2363  FunctionNoProtoTypes.InsertNode(New, InsertPos);
2364  return QualType(New, 0);
2365}
2366
2367/// getFunctionType - Return a normal function type with a typed argument
2368/// list.  isVariadic indicates whether the argument list includes '...'.
2369QualType
2370ASTContext::getFunctionType(QualType ResultTy,
2371                            const QualType *ArgArray, unsigned NumArgs,
2372                            const FunctionProtoType::ExtProtoInfo &EPI) const {
2373  // Unique functions, to guarantee there is only one function of a particular
2374  // structure.
2375  llvm::FoldingSetNodeID ID;
2376  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI, *this);
2377
2378  void *InsertPos = 0;
2379  if (FunctionProtoType *FTP =
2380        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2381    return QualType(FTP, 0);
2382
2383  // Determine whether the type being created is already canonical or not.
2384  bool isCanonical =
2385    EPI.ExceptionSpecType == EST_None && ResultTy.isCanonical() &&
2386    !EPI.HasTrailingReturn;
2387  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2388    if (!ArgArray[i].isCanonicalAsParam())
2389      isCanonical = false;
2390
2391  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2392  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2393                               CC_X86StdCall : DefaultCC;
2394
2395  // If this type isn't canonical, get the canonical version of it.
2396  // The exception spec is not part of the canonical type.
2397  QualType Canonical;
2398  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2399    SmallVector<QualType, 16> CanonicalArgs;
2400    CanonicalArgs.reserve(NumArgs);
2401    for (unsigned i = 0; i != NumArgs; ++i)
2402      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2403
2404    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2405    CanonicalEPI.HasTrailingReturn = false;
2406    CanonicalEPI.ExceptionSpecType = EST_None;
2407    CanonicalEPI.NumExceptions = 0;
2408    CanonicalEPI.ExtInfo
2409      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2410
2411    Canonical = getFunctionType(getCanonicalType(ResultTy),
2412                                CanonicalArgs.data(), NumArgs,
2413                                CanonicalEPI);
2414
2415    // Get the new insert position for the node we care about.
2416    FunctionProtoType *NewIP =
2417      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2418    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2419  }
2420
2421  // FunctionProtoType objects are allocated with extra bytes after
2422  // them for three variable size arrays at the end:
2423  //  - parameter types
2424  //  - exception types
2425  //  - consumed-arguments flags
2426  // Instead of the exception types, there could be a noexcept
2427  // expression, or information used to resolve the exception
2428  // specification.
2429  size_t Size = sizeof(FunctionProtoType) +
2430                NumArgs * sizeof(QualType);
2431  if (EPI.ExceptionSpecType == EST_Dynamic) {
2432    Size += EPI.NumExceptions * sizeof(QualType);
2433  } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2434    Size += sizeof(Expr*);
2435  } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
2436    Size += 2 * sizeof(FunctionDecl*);
2437  } else if (EPI.ExceptionSpecType == EST_Unevaluated) {
2438    Size += sizeof(FunctionDecl*);
2439  }
2440  if (EPI.ConsumedArguments)
2441    Size += NumArgs * sizeof(bool);
2442
2443  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2444  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2445  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2446  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, newEPI);
2447  Types.push_back(FTP);
2448  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2449  return QualType(FTP, 0);
2450}
2451
2452#ifndef NDEBUG
2453static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2454  if (!isa<CXXRecordDecl>(D)) return false;
2455  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2456  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2457    return true;
2458  if (RD->getDescribedClassTemplate() &&
2459      !isa<ClassTemplateSpecializationDecl>(RD))
2460    return true;
2461  return false;
2462}
2463#endif
2464
2465/// getInjectedClassNameType - Return the unique reference to the
2466/// injected class name type for the specified templated declaration.
2467QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2468                                              QualType TST) const {
2469  assert(NeedsInjectedClassNameType(Decl));
2470  if (Decl->TypeForDecl) {
2471    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2472  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
2473    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2474    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2475    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2476  } else {
2477    Type *newType =
2478      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2479    Decl->TypeForDecl = newType;
2480    Types.push_back(newType);
2481  }
2482  return QualType(Decl->TypeForDecl, 0);
2483}
2484
2485/// getTypeDeclType - Return the unique reference to the type for the
2486/// specified type declaration.
2487QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2488  assert(Decl && "Passed null for Decl param");
2489  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2490
2491  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2492    return getTypedefType(Typedef);
2493
2494  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2495         "Template type parameter types are always available.");
2496
2497  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2498    assert(!Record->getPreviousDecl() &&
2499           "struct/union has previous declaration");
2500    assert(!NeedsInjectedClassNameType(Record));
2501    return getRecordType(Record);
2502  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2503    assert(!Enum->getPreviousDecl() &&
2504           "enum has previous declaration");
2505    return getEnumType(Enum);
2506  } else if (const UnresolvedUsingTypenameDecl *Using =
2507               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2508    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2509    Decl->TypeForDecl = newType;
2510    Types.push_back(newType);
2511  } else
2512    llvm_unreachable("TypeDecl without a type?");
2513
2514  return QualType(Decl->TypeForDecl, 0);
2515}
2516
2517/// getTypedefType - Return the unique reference to the type for the
2518/// specified typedef name decl.
2519QualType
2520ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2521                           QualType Canonical) const {
2522  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2523
2524  if (Canonical.isNull())
2525    Canonical = getCanonicalType(Decl->getUnderlyingType());
2526  TypedefType *newType = new(*this, TypeAlignment)
2527    TypedefType(Type::Typedef, Decl, Canonical);
2528  Decl->TypeForDecl = newType;
2529  Types.push_back(newType);
2530  return QualType(newType, 0);
2531}
2532
2533QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2534  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2535
2536  if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
2537    if (PrevDecl->TypeForDecl)
2538      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2539
2540  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2541  Decl->TypeForDecl = newType;
2542  Types.push_back(newType);
2543  return QualType(newType, 0);
2544}
2545
2546QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2547  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2548
2549  if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
2550    if (PrevDecl->TypeForDecl)
2551      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2552
2553  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2554  Decl->TypeForDecl = newType;
2555  Types.push_back(newType);
2556  return QualType(newType, 0);
2557}
2558
2559QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2560                                       QualType modifiedType,
2561                                       QualType equivalentType) {
2562  llvm::FoldingSetNodeID id;
2563  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2564
2565  void *insertPos = 0;
2566  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2567  if (type) return QualType(type, 0);
2568
2569  QualType canon = getCanonicalType(equivalentType);
2570  type = new (*this, TypeAlignment)
2571           AttributedType(canon, attrKind, modifiedType, equivalentType);
2572
2573  Types.push_back(type);
2574  AttributedTypes.InsertNode(type, insertPos);
2575
2576  return QualType(type, 0);
2577}
2578
2579
2580/// \brief Retrieve a substitution-result type.
2581QualType
2582ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2583                                         QualType Replacement) const {
2584  assert(Replacement.isCanonical()
2585         && "replacement types must always be canonical");
2586
2587  llvm::FoldingSetNodeID ID;
2588  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2589  void *InsertPos = 0;
2590  SubstTemplateTypeParmType *SubstParm
2591    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2592
2593  if (!SubstParm) {
2594    SubstParm = new (*this, TypeAlignment)
2595      SubstTemplateTypeParmType(Parm, Replacement);
2596    Types.push_back(SubstParm);
2597    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2598  }
2599
2600  return QualType(SubstParm, 0);
2601}
2602
2603/// \brief Retrieve a
2604QualType ASTContext::getSubstTemplateTypeParmPackType(
2605                                          const TemplateTypeParmType *Parm,
2606                                              const TemplateArgument &ArgPack) {
2607#ifndef NDEBUG
2608  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2609                                    PEnd = ArgPack.pack_end();
2610       P != PEnd; ++P) {
2611    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2612    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2613  }
2614#endif
2615
2616  llvm::FoldingSetNodeID ID;
2617  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2618  void *InsertPos = 0;
2619  if (SubstTemplateTypeParmPackType *SubstParm
2620        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2621    return QualType(SubstParm, 0);
2622
2623  QualType Canon;
2624  if (!Parm->isCanonicalUnqualified()) {
2625    Canon = getCanonicalType(QualType(Parm, 0));
2626    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2627                                             ArgPack);
2628    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2629  }
2630
2631  SubstTemplateTypeParmPackType *SubstParm
2632    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2633                                                               ArgPack);
2634  Types.push_back(SubstParm);
2635  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2636  return QualType(SubstParm, 0);
2637}
2638
2639/// \brief Retrieve the template type parameter type for a template
2640/// parameter or parameter pack with the given depth, index, and (optionally)
2641/// name.
2642QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2643                                             bool ParameterPack,
2644                                             TemplateTypeParmDecl *TTPDecl) const {
2645  llvm::FoldingSetNodeID ID;
2646  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
2647  void *InsertPos = 0;
2648  TemplateTypeParmType *TypeParm
2649    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2650
2651  if (TypeParm)
2652    return QualType(TypeParm, 0);
2653
2654  if (TTPDecl) {
2655    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2656    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
2657
2658    TemplateTypeParmType *TypeCheck
2659      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2660    assert(!TypeCheck && "Template type parameter canonical type broken");
2661    (void)TypeCheck;
2662  } else
2663    TypeParm = new (*this, TypeAlignment)
2664      TemplateTypeParmType(Depth, Index, ParameterPack);
2665
2666  Types.push_back(TypeParm);
2667  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2668
2669  return QualType(TypeParm, 0);
2670}
2671
2672TypeSourceInfo *
2673ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2674                                              SourceLocation NameLoc,
2675                                        const TemplateArgumentListInfo &Args,
2676                                              QualType Underlying) const {
2677  assert(!Name.getAsDependentTemplateName() &&
2678         "No dependent template names here!");
2679  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
2680
2681  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2682  TemplateSpecializationTypeLoc TL
2683    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
2684  TL.setTemplateKeywordLoc(SourceLocation());
2685  TL.setTemplateNameLoc(NameLoc);
2686  TL.setLAngleLoc(Args.getLAngleLoc());
2687  TL.setRAngleLoc(Args.getRAngleLoc());
2688  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2689    TL.setArgLocInfo(i, Args[i].getLocInfo());
2690  return DI;
2691}
2692
2693QualType
2694ASTContext::getTemplateSpecializationType(TemplateName Template,
2695                                          const TemplateArgumentListInfo &Args,
2696                                          QualType Underlying) const {
2697  assert(!Template.getAsDependentTemplateName() &&
2698         "No dependent template names here!");
2699
2700  unsigned NumArgs = Args.size();
2701
2702  SmallVector<TemplateArgument, 4> ArgVec;
2703  ArgVec.reserve(NumArgs);
2704  for (unsigned i = 0; i != NumArgs; ++i)
2705    ArgVec.push_back(Args[i].getArgument());
2706
2707  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2708                                       Underlying);
2709}
2710
2711#ifndef NDEBUG
2712static bool hasAnyPackExpansions(const TemplateArgument *Args,
2713                                 unsigned NumArgs) {
2714  for (unsigned I = 0; I != NumArgs; ++I)
2715    if (Args[I].isPackExpansion())
2716      return true;
2717
2718  return true;
2719}
2720#endif
2721
2722QualType
2723ASTContext::getTemplateSpecializationType(TemplateName Template,
2724                                          const TemplateArgument *Args,
2725                                          unsigned NumArgs,
2726                                          QualType Underlying) const {
2727  assert(!Template.getAsDependentTemplateName() &&
2728         "No dependent template names here!");
2729  // Look through qualified template names.
2730  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2731    Template = TemplateName(QTN->getTemplateDecl());
2732
2733  bool IsTypeAlias =
2734    Template.getAsTemplateDecl() &&
2735    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
2736  QualType CanonType;
2737  if (!Underlying.isNull())
2738    CanonType = getCanonicalType(Underlying);
2739  else {
2740    // We can get here with an alias template when the specialization contains
2741    // a pack expansion that does not match up with a parameter pack.
2742    assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
2743           "Caller must compute aliased type");
2744    IsTypeAlias = false;
2745    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
2746                                                       NumArgs);
2747  }
2748
2749  // Allocate the (non-canonical) template specialization type, but don't
2750  // try to unique it: these types typically have location information that
2751  // we don't unique and don't want to lose.
2752  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
2753                       sizeof(TemplateArgument) * NumArgs +
2754                       (IsTypeAlias? sizeof(QualType) : 0),
2755                       TypeAlignment);
2756  TemplateSpecializationType *Spec
2757    = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
2758                                         IsTypeAlias ? Underlying : QualType());
2759
2760  Types.push_back(Spec);
2761  return QualType(Spec, 0);
2762}
2763
2764QualType
2765ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
2766                                                   const TemplateArgument *Args,
2767                                                   unsigned NumArgs) const {
2768  assert(!Template.getAsDependentTemplateName() &&
2769         "No dependent template names here!");
2770
2771  // Look through qualified template names.
2772  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2773    Template = TemplateName(QTN->getTemplateDecl());
2774
2775  // Build the canonical template specialization type.
2776  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
2777  SmallVector<TemplateArgument, 4> CanonArgs;
2778  CanonArgs.reserve(NumArgs);
2779  for (unsigned I = 0; I != NumArgs; ++I)
2780    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
2781
2782  // Determine whether this canonical template specialization type already
2783  // exists.
2784  llvm::FoldingSetNodeID ID;
2785  TemplateSpecializationType::Profile(ID, CanonTemplate,
2786                                      CanonArgs.data(), NumArgs, *this);
2787
2788  void *InsertPos = 0;
2789  TemplateSpecializationType *Spec
2790    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2791
2792  if (!Spec) {
2793    // Allocate a new canonical template specialization type.
2794    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2795                          sizeof(TemplateArgument) * NumArgs),
2796                         TypeAlignment);
2797    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
2798                                                CanonArgs.data(), NumArgs,
2799                                                QualType(), QualType());
2800    Types.push_back(Spec);
2801    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
2802  }
2803
2804  assert(Spec->isDependentType() &&
2805         "Non-dependent template-id type must have a canonical type");
2806  return QualType(Spec, 0);
2807}
2808
2809QualType
2810ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
2811                              NestedNameSpecifier *NNS,
2812                              QualType NamedType) const {
2813  llvm::FoldingSetNodeID ID;
2814  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
2815
2816  void *InsertPos = 0;
2817  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2818  if (T)
2819    return QualType(T, 0);
2820
2821  QualType Canon = NamedType;
2822  if (!Canon.isCanonical()) {
2823    Canon = getCanonicalType(NamedType);
2824    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2825    assert(!CheckT && "Elaborated canonical type broken");
2826    (void)CheckT;
2827  }
2828
2829  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
2830  Types.push_back(T);
2831  ElaboratedTypes.InsertNode(T, InsertPos);
2832  return QualType(T, 0);
2833}
2834
2835QualType
2836ASTContext::getParenType(QualType InnerType) const {
2837  llvm::FoldingSetNodeID ID;
2838  ParenType::Profile(ID, InnerType);
2839
2840  void *InsertPos = 0;
2841  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2842  if (T)
2843    return QualType(T, 0);
2844
2845  QualType Canon = InnerType;
2846  if (!Canon.isCanonical()) {
2847    Canon = getCanonicalType(InnerType);
2848    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2849    assert(!CheckT && "Paren canonical type broken");
2850    (void)CheckT;
2851  }
2852
2853  T = new (*this) ParenType(InnerType, Canon);
2854  Types.push_back(T);
2855  ParenTypes.InsertNode(T, InsertPos);
2856  return QualType(T, 0);
2857}
2858
2859QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
2860                                          NestedNameSpecifier *NNS,
2861                                          const IdentifierInfo *Name,
2862                                          QualType Canon) const {
2863  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2864
2865  if (Canon.isNull()) {
2866    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2867    ElaboratedTypeKeyword CanonKeyword = Keyword;
2868    if (Keyword == ETK_None)
2869      CanonKeyword = ETK_Typename;
2870
2871    if (CanonNNS != NNS || CanonKeyword != Keyword)
2872      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
2873  }
2874
2875  llvm::FoldingSetNodeID ID;
2876  DependentNameType::Profile(ID, Keyword, NNS, Name);
2877
2878  void *InsertPos = 0;
2879  DependentNameType *T
2880    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2881  if (T)
2882    return QualType(T, 0);
2883
2884  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
2885  Types.push_back(T);
2886  DependentNameTypes.InsertNode(T, InsertPos);
2887  return QualType(T, 0);
2888}
2889
2890QualType
2891ASTContext::getDependentTemplateSpecializationType(
2892                                 ElaboratedTypeKeyword Keyword,
2893                                 NestedNameSpecifier *NNS,
2894                                 const IdentifierInfo *Name,
2895                                 const TemplateArgumentListInfo &Args) const {
2896  // TODO: avoid this copy
2897  SmallVector<TemplateArgument, 16> ArgCopy;
2898  for (unsigned I = 0, E = Args.size(); I != E; ++I)
2899    ArgCopy.push_back(Args[I].getArgument());
2900  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
2901                                                ArgCopy.size(),
2902                                                ArgCopy.data());
2903}
2904
2905QualType
2906ASTContext::getDependentTemplateSpecializationType(
2907                                 ElaboratedTypeKeyword Keyword,
2908                                 NestedNameSpecifier *NNS,
2909                                 const IdentifierInfo *Name,
2910                                 unsigned NumArgs,
2911                                 const TemplateArgument *Args) const {
2912  assert((!NNS || NNS->isDependent()) &&
2913         "nested-name-specifier must be dependent");
2914
2915  llvm::FoldingSetNodeID ID;
2916  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
2917                                               Name, NumArgs, Args);
2918
2919  void *InsertPos = 0;
2920  DependentTemplateSpecializationType *T
2921    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2922  if (T)
2923    return QualType(T, 0);
2924
2925  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2926
2927  ElaboratedTypeKeyword CanonKeyword = Keyword;
2928  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
2929
2930  bool AnyNonCanonArgs = false;
2931  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
2932  for (unsigned I = 0; I != NumArgs; ++I) {
2933    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
2934    if (!CanonArgs[I].structurallyEquals(Args[I]))
2935      AnyNonCanonArgs = true;
2936  }
2937
2938  QualType Canon;
2939  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
2940    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
2941                                                   Name, NumArgs,
2942                                                   CanonArgs.data());
2943
2944    // Find the insert position again.
2945    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2946  }
2947
2948  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
2949                        sizeof(TemplateArgument) * NumArgs),
2950                       TypeAlignment);
2951  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
2952                                                    Name, NumArgs, Args, Canon);
2953  Types.push_back(T);
2954  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
2955  return QualType(T, 0);
2956}
2957
2958QualType ASTContext::getPackExpansionType(QualType Pattern,
2959                                      llvm::Optional<unsigned> NumExpansions) {
2960  llvm::FoldingSetNodeID ID;
2961  PackExpansionType::Profile(ID, Pattern, NumExpansions);
2962
2963  assert(Pattern->containsUnexpandedParameterPack() &&
2964         "Pack expansions must expand one or more parameter packs");
2965  void *InsertPos = 0;
2966  PackExpansionType *T
2967    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2968  if (T)
2969    return QualType(T, 0);
2970
2971  QualType Canon;
2972  if (!Pattern.isCanonical()) {
2973    Canon = getCanonicalType(Pattern);
2974    // The canonical type might not contain an unexpanded parameter pack, if it
2975    // contains an alias template specialization which ignores one of its
2976    // parameters.
2977    if (Canon->containsUnexpandedParameterPack()) {
2978      Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
2979
2980      // Find the insert position again, in case we inserted an element into
2981      // PackExpansionTypes and invalidated our insert position.
2982      PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2983    }
2984  }
2985
2986  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
2987  Types.push_back(T);
2988  PackExpansionTypes.InsertNode(T, InsertPos);
2989  return QualType(T, 0);
2990}
2991
2992/// CmpProtocolNames - Comparison predicate for sorting protocols
2993/// alphabetically.
2994static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2995                            const ObjCProtocolDecl *RHS) {
2996  return LHS->getDeclName() < RHS->getDeclName();
2997}
2998
2999static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
3000                                unsigned NumProtocols) {
3001  if (NumProtocols == 0) return true;
3002
3003  if (Protocols[0]->getCanonicalDecl() != Protocols[0])
3004    return false;
3005
3006  for (unsigned i = 1; i != NumProtocols; ++i)
3007    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
3008        Protocols[i]->getCanonicalDecl() != Protocols[i])
3009      return false;
3010  return true;
3011}
3012
3013static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
3014                                   unsigned &NumProtocols) {
3015  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
3016
3017  // Sort protocols, keyed by name.
3018  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
3019
3020  // Canonicalize.
3021  for (unsigned I = 0, N = NumProtocols; I != N; ++I)
3022    Protocols[I] = Protocols[I]->getCanonicalDecl();
3023
3024  // Remove duplicates.
3025  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
3026  NumProtocols = ProtocolsEnd-Protocols;
3027}
3028
3029QualType ASTContext::getObjCObjectType(QualType BaseType,
3030                                       ObjCProtocolDecl * const *Protocols,
3031                                       unsigned NumProtocols) const {
3032  // If the base type is an interface and there aren't any protocols
3033  // to add, then the interface type will do just fine.
3034  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
3035    return BaseType;
3036
3037  // Look in the folding set for an existing type.
3038  llvm::FoldingSetNodeID ID;
3039  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
3040  void *InsertPos = 0;
3041  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
3042    return QualType(QT, 0);
3043
3044  // Build the canonical type, which has the canonical base type and
3045  // a sorted-and-uniqued list of protocols.
3046  QualType Canonical;
3047  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
3048  if (!ProtocolsSorted || !BaseType.isCanonical()) {
3049    if (!ProtocolsSorted) {
3050      SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
3051                                                     Protocols + NumProtocols);
3052      unsigned UniqueCount = NumProtocols;
3053
3054      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
3055      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3056                                    &Sorted[0], UniqueCount);
3057    } else {
3058      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3059                                    Protocols, NumProtocols);
3060    }
3061
3062    // Regenerate InsertPos.
3063    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
3064  }
3065
3066  unsigned Size = sizeof(ObjCObjectTypeImpl);
3067  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
3068  void *Mem = Allocate(Size, TypeAlignment);
3069  ObjCObjectTypeImpl *T =
3070    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
3071
3072  Types.push_back(T);
3073  ObjCObjectTypes.InsertNode(T, InsertPos);
3074  return QualType(T, 0);
3075}
3076
3077/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
3078/// the given object type.
3079QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
3080  llvm::FoldingSetNodeID ID;
3081  ObjCObjectPointerType::Profile(ID, ObjectT);
3082
3083  void *InsertPos = 0;
3084  if (ObjCObjectPointerType *QT =
3085              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3086    return QualType(QT, 0);
3087
3088  // Find the canonical object type.
3089  QualType Canonical;
3090  if (!ObjectT.isCanonical()) {
3091    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
3092
3093    // Regenerate InsertPos.
3094    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3095  }
3096
3097  // No match.
3098  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
3099  ObjCObjectPointerType *QType =
3100    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
3101
3102  Types.push_back(QType);
3103  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
3104  return QualType(QType, 0);
3105}
3106
3107/// getObjCInterfaceType - Return the unique reference to the type for the
3108/// specified ObjC interface decl. The list of protocols is optional.
3109QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
3110                                          ObjCInterfaceDecl *PrevDecl) const {
3111  if (Decl->TypeForDecl)
3112    return QualType(Decl->TypeForDecl, 0);
3113
3114  if (PrevDecl) {
3115    assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
3116    Decl->TypeForDecl = PrevDecl->TypeForDecl;
3117    return QualType(PrevDecl->TypeForDecl, 0);
3118  }
3119
3120  // Prefer the definition, if there is one.
3121  if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
3122    Decl = Def;
3123
3124  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
3125  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
3126  Decl->TypeForDecl = T;
3127  Types.push_back(T);
3128  return QualType(T, 0);
3129}
3130
3131/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
3132/// TypeOfExprType AST's (since expression's are never shared). For example,
3133/// multiple declarations that refer to "typeof(x)" all contain different
3134/// DeclRefExpr's. This doesn't effect the type checker, since it operates
3135/// on canonical type's (which are always unique).
3136QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
3137  TypeOfExprType *toe;
3138  if (tofExpr->isTypeDependent()) {
3139    llvm::FoldingSetNodeID ID;
3140    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
3141
3142    void *InsertPos = 0;
3143    DependentTypeOfExprType *Canon
3144      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
3145    if (Canon) {
3146      // We already have a "canonical" version of an identical, dependent
3147      // typeof(expr) type. Use that as our canonical type.
3148      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
3149                                          QualType((TypeOfExprType*)Canon, 0));
3150    } else {
3151      // Build a new, canonical typeof(expr) type.
3152      Canon
3153        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
3154      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
3155      toe = Canon;
3156    }
3157  } else {
3158    QualType Canonical = getCanonicalType(tofExpr->getType());
3159    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
3160  }
3161  Types.push_back(toe);
3162  return QualType(toe, 0);
3163}
3164
3165/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
3166/// TypeOfType AST's. The only motivation to unique these nodes would be
3167/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
3168/// an issue. This doesn't effect the type checker, since it operates
3169/// on canonical type's (which are always unique).
3170QualType ASTContext::getTypeOfType(QualType tofType) const {
3171  QualType Canonical = getCanonicalType(tofType);
3172  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
3173  Types.push_back(tot);
3174  return QualType(tot, 0);
3175}
3176
3177
3178/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
3179/// DecltypeType AST's. The only motivation to unique these nodes would be
3180/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
3181/// an issue. This doesn't effect the type checker, since it operates
3182/// on canonical types (which are always unique).
3183QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
3184  DecltypeType *dt;
3185
3186  // C++0x [temp.type]p2:
3187  //   If an expression e involves a template parameter, decltype(e) denotes a
3188  //   unique dependent type. Two such decltype-specifiers refer to the same
3189  //   type only if their expressions are equivalent (14.5.6.1).
3190  if (e->isInstantiationDependent()) {
3191    llvm::FoldingSetNodeID ID;
3192    DependentDecltypeType::Profile(ID, *this, e);
3193
3194    void *InsertPos = 0;
3195    DependentDecltypeType *Canon
3196      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
3197    if (Canon) {
3198      // We already have a "canonical" version of an equivalent, dependent
3199      // decltype type. Use that as our canonical type.
3200      dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3201                                       QualType((DecltypeType*)Canon, 0));
3202    } else {
3203      // Build a new, canonical typeof(expr) type.
3204      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
3205      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
3206      dt = Canon;
3207    }
3208  } else {
3209    dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3210                                      getCanonicalType(UnderlyingType));
3211  }
3212  Types.push_back(dt);
3213  return QualType(dt, 0);
3214}
3215
3216/// getUnaryTransformationType - We don't unique these, since the memory
3217/// savings are minimal and these are rare.
3218QualType ASTContext::getUnaryTransformType(QualType BaseType,
3219                                           QualType UnderlyingType,
3220                                           UnaryTransformType::UTTKind Kind)
3221    const {
3222  UnaryTransformType *Ty =
3223    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
3224                                                   Kind,
3225                                 UnderlyingType->isDependentType() ?
3226                                 QualType() : getCanonicalType(UnderlyingType));
3227  Types.push_back(Ty);
3228  return QualType(Ty, 0);
3229}
3230
3231/// getAutoType - We only unique auto types after they've been deduced.
3232QualType ASTContext::getAutoType(QualType DeducedType) const {
3233  void *InsertPos = 0;
3234  if (!DeducedType.isNull()) {
3235    // Look in the folding set for an existing type.
3236    llvm::FoldingSetNodeID ID;
3237    AutoType::Profile(ID, DeducedType);
3238    if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
3239      return QualType(AT, 0);
3240  }
3241
3242  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
3243  Types.push_back(AT);
3244  if (InsertPos)
3245    AutoTypes.InsertNode(AT, InsertPos);
3246  return QualType(AT, 0);
3247}
3248
3249/// getAtomicType - Return the uniqued reference to the atomic type for
3250/// the given value type.
3251QualType ASTContext::getAtomicType(QualType T) const {
3252  // Unique pointers, to guarantee there is only one pointer of a particular
3253  // structure.
3254  llvm::FoldingSetNodeID ID;
3255  AtomicType::Profile(ID, T);
3256
3257  void *InsertPos = 0;
3258  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
3259    return QualType(AT, 0);
3260
3261  // If the atomic value type isn't canonical, this won't be a canonical type
3262  // either, so fill in the canonical type field.
3263  QualType Canonical;
3264  if (!T.isCanonical()) {
3265    Canonical = getAtomicType(getCanonicalType(T));
3266
3267    // Get the new insert position for the node we care about.
3268    AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
3269    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
3270  }
3271  AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
3272  Types.push_back(New);
3273  AtomicTypes.InsertNode(New, InsertPos);
3274  return QualType(New, 0);
3275}
3276
3277/// getAutoDeductType - Get type pattern for deducing against 'auto'.
3278QualType ASTContext::getAutoDeductType() const {
3279  if (AutoDeductTy.isNull())
3280    AutoDeductTy = getAutoType(QualType());
3281  assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern");
3282  return AutoDeductTy;
3283}
3284
3285/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
3286QualType ASTContext::getAutoRRefDeductType() const {
3287  if (AutoRRefDeductTy.isNull())
3288    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3289  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3290  return AutoRRefDeductTy;
3291}
3292
3293/// getTagDeclType - Return the unique reference to the type for the
3294/// specified TagDecl (struct/union/class/enum) decl.
3295QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3296  assert (Decl);
3297  // FIXME: What is the design on getTagDeclType when it requires casting
3298  // away const?  mutable?
3299  return getTypeDeclType(const_cast<TagDecl*>(Decl));
3300}
3301
3302/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3303/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3304/// needs to agree with the definition in <stddef.h>.
3305CanQualType ASTContext::getSizeType() const {
3306  return getFromTargetType(Target->getSizeType());
3307}
3308
3309/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
3310CanQualType ASTContext::getIntMaxType() const {
3311  return getFromTargetType(Target->getIntMaxType());
3312}
3313
3314/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
3315CanQualType ASTContext::getUIntMaxType() const {
3316  return getFromTargetType(Target->getUIntMaxType());
3317}
3318
3319/// getSignedWCharType - Return the type of "signed wchar_t".
3320/// Used when in C++, as a GCC extension.
3321QualType ASTContext::getSignedWCharType() const {
3322  // FIXME: derive from "Target" ?
3323  return WCharTy;
3324}
3325
3326/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3327/// Used when in C++, as a GCC extension.
3328QualType ASTContext::getUnsignedWCharType() const {
3329  // FIXME: derive from "Target" ?
3330  return UnsignedIntTy;
3331}
3332
3333/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3334/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
3335QualType ASTContext::getPointerDiffType() const {
3336  return getFromTargetType(Target->getPtrDiffType(0));
3337}
3338
3339//===----------------------------------------------------------------------===//
3340//                              Type Operators
3341//===----------------------------------------------------------------------===//
3342
3343CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3344  // Push qualifiers into arrays, and then discard any remaining
3345  // qualifiers.
3346  T = getCanonicalType(T);
3347  T = getVariableArrayDecayedType(T);
3348  const Type *Ty = T.getTypePtr();
3349  QualType Result;
3350  if (isa<ArrayType>(Ty)) {
3351    Result = getArrayDecayedType(QualType(Ty,0));
3352  } else if (isa<FunctionType>(Ty)) {
3353    Result = getPointerType(QualType(Ty, 0));
3354  } else {
3355    Result = QualType(Ty, 0);
3356  }
3357
3358  return CanQualType::CreateUnsafe(Result);
3359}
3360
3361QualType ASTContext::getUnqualifiedArrayType(QualType type,
3362                                             Qualifiers &quals) {
3363  SplitQualType splitType = type.getSplitUnqualifiedType();
3364
3365  // FIXME: getSplitUnqualifiedType() actually walks all the way to
3366  // the unqualified desugared type and then drops it on the floor.
3367  // We then have to strip that sugar back off with
3368  // getUnqualifiedDesugaredType(), which is silly.
3369  const ArrayType *AT =
3370    dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
3371
3372  // If we don't have an array, just use the results in splitType.
3373  if (!AT) {
3374    quals = splitType.Quals;
3375    return QualType(splitType.Ty, 0);
3376  }
3377
3378  // Otherwise, recurse on the array's element type.
3379  QualType elementType = AT->getElementType();
3380  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3381
3382  // If that didn't change the element type, AT has no qualifiers, so we
3383  // can just use the results in splitType.
3384  if (elementType == unqualElementType) {
3385    assert(quals.empty()); // from the recursive call
3386    quals = splitType.Quals;
3387    return QualType(splitType.Ty, 0);
3388  }
3389
3390  // Otherwise, add in the qualifiers from the outermost type, then
3391  // build the type back up.
3392  quals.addConsistentQualifiers(splitType.Quals);
3393
3394  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3395    return getConstantArrayType(unqualElementType, CAT->getSize(),
3396                                CAT->getSizeModifier(), 0);
3397  }
3398
3399  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3400    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3401  }
3402
3403  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3404    return getVariableArrayType(unqualElementType,
3405                                VAT->getSizeExpr(),
3406                                VAT->getSizeModifier(),
3407                                VAT->getIndexTypeCVRQualifiers(),
3408                                VAT->getBracketsRange());
3409  }
3410
3411  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
3412  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
3413                                    DSAT->getSizeModifier(), 0,
3414                                    SourceRange());
3415}
3416
3417/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
3418/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
3419/// they point to and return true. If T1 and T2 aren't pointer types
3420/// or pointer-to-member types, or if they are not similar at this
3421/// level, returns false and leaves T1 and T2 unchanged. Top-level
3422/// qualifiers on T1 and T2 are ignored. This function will typically
3423/// be called in a loop that successively "unwraps" pointer and
3424/// pointer-to-member types to compare them at each level.
3425bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3426  const PointerType *T1PtrType = T1->getAs<PointerType>(),
3427                    *T2PtrType = T2->getAs<PointerType>();
3428  if (T1PtrType && T2PtrType) {
3429    T1 = T1PtrType->getPointeeType();
3430    T2 = T2PtrType->getPointeeType();
3431    return true;
3432  }
3433
3434  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3435                          *T2MPType = T2->getAs<MemberPointerType>();
3436  if (T1MPType && T2MPType &&
3437      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3438                             QualType(T2MPType->getClass(), 0))) {
3439    T1 = T1MPType->getPointeeType();
3440    T2 = T2MPType->getPointeeType();
3441    return true;
3442  }
3443
3444  if (getLangOpts().ObjC1) {
3445    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3446                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
3447    if (T1OPType && T2OPType) {
3448      T1 = T1OPType->getPointeeType();
3449      T2 = T2OPType->getPointeeType();
3450      return true;
3451    }
3452  }
3453
3454  // FIXME: Block pointers, too?
3455
3456  return false;
3457}
3458
3459DeclarationNameInfo
3460ASTContext::getNameForTemplate(TemplateName Name,
3461                               SourceLocation NameLoc) const {
3462  switch (Name.getKind()) {
3463  case TemplateName::QualifiedTemplate:
3464  case TemplateName::Template:
3465    // DNInfo work in progress: CHECKME: what about DNLoc?
3466    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3467                               NameLoc);
3468
3469  case TemplateName::OverloadedTemplate: {
3470    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3471    // DNInfo work in progress: CHECKME: what about DNLoc?
3472    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3473  }
3474
3475  case TemplateName::DependentTemplate: {
3476    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3477    DeclarationName DName;
3478    if (DTN->isIdentifier()) {
3479      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3480      return DeclarationNameInfo(DName, NameLoc);
3481    } else {
3482      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3483      // DNInfo work in progress: FIXME: source locations?
3484      DeclarationNameLoc DNLoc;
3485      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3486      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3487      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3488    }
3489  }
3490
3491  case TemplateName::SubstTemplateTemplateParm: {
3492    SubstTemplateTemplateParmStorage *subst
3493      = Name.getAsSubstTemplateTemplateParm();
3494    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3495                               NameLoc);
3496  }
3497
3498  case TemplateName::SubstTemplateTemplateParmPack: {
3499    SubstTemplateTemplateParmPackStorage *subst
3500      = Name.getAsSubstTemplateTemplateParmPack();
3501    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3502                               NameLoc);
3503  }
3504  }
3505
3506  llvm_unreachable("bad template name kind!");
3507}
3508
3509TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3510  switch (Name.getKind()) {
3511  case TemplateName::QualifiedTemplate:
3512  case TemplateName::Template: {
3513    TemplateDecl *Template = Name.getAsTemplateDecl();
3514    if (TemplateTemplateParmDecl *TTP
3515          = dyn_cast<TemplateTemplateParmDecl>(Template))
3516      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3517
3518    // The canonical template name is the canonical template declaration.
3519    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3520  }
3521
3522  case TemplateName::OverloadedTemplate:
3523    llvm_unreachable("cannot canonicalize overloaded template");
3524
3525  case TemplateName::DependentTemplate: {
3526    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3527    assert(DTN && "Non-dependent template names must refer to template decls.");
3528    return DTN->CanonicalTemplateName;
3529  }
3530
3531  case TemplateName::SubstTemplateTemplateParm: {
3532    SubstTemplateTemplateParmStorage *subst
3533      = Name.getAsSubstTemplateTemplateParm();
3534    return getCanonicalTemplateName(subst->getReplacement());
3535  }
3536
3537  case TemplateName::SubstTemplateTemplateParmPack: {
3538    SubstTemplateTemplateParmPackStorage *subst
3539                                  = Name.getAsSubstTemplateTemplateParmPack();
3540    TemplateTemplateParmDecl *canonParameter
3541      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3542    TemplateArgument canonArgPack
3543      = getCanonicalTemplateArgument(subst->getArgumentPack());
3544    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3545  }
3546  }
3547
3548  llvm_unreachable("bad template name!");
3549}
3550
3551bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3552  X = getCanonicalTemplateName(X);
3553  Y = getCanonicalTemplateName(Y);
3554  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3555}
3556
3557TemplateArgument
3558ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3559  switch (Arg.getKind()) {
3560    case TemplateArgument::Null:
3561      return Arg;
3562
3563    case TemplateArgument::Expression:
3564      return Arg;
3565
3566    case TemplateArgument::Declaration: {
3567      if (Decl *D = Arg.getAsDecl())
3568          return TemplateArgument(D->getCanonicalDecl());
3569      return TemplateArgument((Decl*)0);
3570    }
3571
3572    case TemplateArgument::Template:
3573      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3574
3575    case TemplateArgument::TemplateExpansion:
3576      return TemplateArgument(getCanonicalTemplateName(
3577                                         Arg.getAsTemplateOrTemplatePattern()),
3578                              Arg.getNumTemplateExpansions());
3579
3580    case TemplateArgument::Integral:
3581      return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
3582
3583    case TemplateArgument::Type:
3584      return TemplateArgument(getCanonicalType(Arg.getAsType()));
3585
3586    case TemplateArgument::Pack: {
3587      if (Arg.pack_size() == 0)
3588        return Arg;
3589
3590      TemplateArgument *CanonArgs
3591        = new (*this) TemplateArgument[Arg.pack_size()];
3592      unsigned Idx = 0;
3593      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
3594                                        AEnd = Arg.pack_end();
3595           A != AEnd; (void)++A, ++Idx)
3596        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
3597
3598      return TemplateArgument(CanonArgs, Arg.pack_size());
3599    }
3600  }
3601
3602  // Silence GCC warning
3603  llvm_unreachable("Unhandled template argument kind");
3604}
3605
3606NestedNameSpecifier *
3607ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
3608  if (!NNS)
3609    return 0;
3610
3611  switch (NNS->getKind()) {
3612  case NestedNameSpecifier::Identifier:
3613    // Canonicalize the prefix but keep the identifier the same.
3614    return NestedNameSpecifier::Create(*this,
3615                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
3616                                       NNS->getAsIdentifier());
3617
3618  case NestedNameSpecifier::Namespace:
3619    // A namespace is canonical; build a nested-name-specifier with
3620    // this namespace and no prefix.
3621    return NestedNameSpecifier::Create(*this, 0,
3622                                 NNS->getAsNamespace()->getOriginalNamespace());
3623
3624  case NestedNameSpecifier::NamespaceAlias:
3625    // A namespace is canonical; build a nested-name-specifier with
3626    // this namespace and no prefix.
3627    return NestedNameSpecifier::Create(*this, 0,
3628                                    NNS->getAsNamespaceAlias()->getNamespace()
3629                                                      ->getOriginalNamespace());
3630
3631  case NestedNameSpecifier::TypeSpec:
3632  case NestedNameSpecifier::TypeSpecWithTemplate: {
3633    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
3634
3635    // If we have some kind of dependent-named type (e.g., "typename T::type"),
3636    // break it apart into its prefix and identifier, then reconsititute those
3637    // as the canonical nested-name-specifier. This is required to canonicalize
3638    // a dependent nested-name-specifier involving typedefs of dependent-name
3639    // types, e.g.,
3640    //   typedef typename T::type T1;
3641    //   typedef typename T1::type T2;
3642    if (const DependentNameType *DNT = T->getAs<DependentNameType>())
3643      return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
3644                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
3645
3646    // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
3647    // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
3648    // first place?
3649    return NestedNameSpecifier::Create(*this, 0, false,
3650                                       const_cast<Type*>(T.getTypePtr()));
3651  }
3652
3653  case NestedNameSpecifier::Global:
3654    // The global specifier is canonical and unique.
3655    return NNS;
3656  }
3657
3658  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
3659}
3660
3661
3662const ArrayType *ASTContext::getAsArrayType(QualType T) const {
3663  // Handle the non-qualified case efficiently.
3664  if (!T.hasLocalQualifiers()) {
3665    // Handle the common positive case fast.
3666    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
3667      return AT;
3668  }
3669
3670  // Handle the common negative case fast.
3671  if (!isa<ArrayType>(T.getCanonicalType()))
3672    return 0;
3673
3674  // Apply any qualifiers from the array type to the element type.  This
3675  // implements C99 6.7.3p8: "If the specification of an array type includes
3676  // any type qualifiers, the element type is so qualified, not the array type."
3677
3678  // If we get here, we either have type qualifiers on the type, or we have
3679  // sugar such as a typedef in the way.  If we have type qualifiers on the type
3680  // we must propagate them down into the element type.
3681
3682  SplitQualType split = T.getSplitDesugaredType();
3683  Qualifiers qs = split.Quals;
3684
3685  // If we have a simple case, just return now.
3686  const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
3687  if (ATy == 0 || qs.empty())
3688    return ATy;
3689
3690  // Otherwise, we have an array and we have qualifiers on it.  Push the
3691  // qualifiers into the array element type and return a new array type.
3692  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
3693
3694  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
3695    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
3696                                                CAT->getSizeModifier(),
3697                                           CAT->getIndexTypeCVRQualifiers()));
3698  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
3699    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
3700                                                  IAT->getSizeModifier(),
3701                                           IAT->getIndexTypeCVRQualifiers()));
3702
3703  if (const DependentSizedArrayType *DSAT
3704        = dyn_cast<DependentSizedArrayType>(ATy))
3705    return cast<ArrayType>(
3706                     getDependentSizedArrayType(NewEltTy,
3707                                                DSAT->getSizeExpr(),
3708                                                DSAT->getSizeModifier(),
3709                                              DSAT->getIndexTypeCVRQualifiers(),
3710                                                DSAT->getBracketsRange()));
3711
3712  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
3713  return cast<ArrayType>(getVariableArrayType(NewEltTy,
3714                                              VAT->getSizeExpr(),
3715                                              VAT->getSizeModifier(),
3716                                              VAT->getIndexTypeCVRQualifiers(),
3717                                              VAT->getBracketsRange()));
3718}
3719
3720QualType ASTContext::getAdjustedParameterType(QualType T) const {
3721  // C99 6.7.5.3p7:
3722  //   A declaration of a parameter as "array of type" shall be
3723  //   adjusted to "qualified pointer to type", where the type
3724  //   qualifiers (if any) are those specified within the [ and ] of
3725  //   the array type derivation.
3726  if (T->isArrayType())
3727    return getArrayDecayedType(T);
3728
3729  // C99 6.7.5.3p8:
3730  //   A declaration of a parameter as "function returning type"
3731  //   shall be adjusted to "pointer to function returning type", as
3732  //   in 6.3.2.1.
3733  if (T->isFunctionType())
3734    return getPointerType(T);
3735
3736  return T;
3737}
3738
3739QualType ASTContext::getSignatureParameterType(QualType T) const {
3740  T = getVariableArrayDecayedType(T);
3741  T = getAdjustedParameterType(T);
3742  return T.getUnqualifiedType();
3743}
3744
3745/// getArrayDecayedType - Return the properly qualified result of decaying the
3746/// specified array type to a pointer.  This operation is non-trivial when
3747/// handling typedefs etc.  The canonical type of "T" must be an array type,
3748/// this returns a pointer to a properly qualified element of the array.
3749///
3750/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
3751QualType ASTContext::getArrayDecayedType(QualType Ty) const {
3752  // Get the element type with 'getAsArrayType' so that we don't lose any
3753  // typedefs in the element type of the array.  This also handles propagation
3754  // of type qualifiers from the array type into the element type if present
3755  // (C99 6.7.3p8).
3756  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
3757  assert(PrettyArrayType && "Not an array type!");
3758
3759  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
3760
3761  // int x[restrict 4] ->  int *restrict
3762  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
3763}
3764
3765QualType ASTContext::getBaseElementType(const ArrayType *array) const {
3766  return getBaseElementType(array->getElementType());
3767}
3768
3769QualType ASTContext::getBaseElementType(QualType type) const {
3770  Qualifiers qs;
3771  while (true) {
3772    SplitQualType split = type.getSplitDesugaredType();
3773    const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
3774    if (!array) break;
3775
3776    type = array->getElementType();
3777    qs.addConsistentQualifiers(split.Quals);
3778  }
3779
3780  return getQualifiedType(type, qs);
3781}
3782
3783/// getConstantArrayElementCount - Returns number of constant array elements.
3784uint64_t
3785ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
3786  uint64_t ElementCount = 1;
3787  do {
3788    ElementCount *= CA->getSize().getZExtValue();
3789    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
3790  } while (CA);
3791  return ElementCount;
3792}
3793
3794/// getFloatingRank - Return a relative rank for floating point types.
3795/// This routine will assert if passed a built-in type that isn't a float.
3796static FloatingRank getFloatingRank(QualType T) {
3797  if (const ComplexType *CT = T->getAs<ComplexType>())
3798    return getFloatingRank(CT->getElementType());
3799
3800  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
3801  switch (T->getAs<BuiltinType>()->getKind()) {
3802  default: llvm_unreachable("getFloatingRank(): not a floating type");
3803  case BuiltinType::Half:       return HalfRank;
3804  case BuiltinType::Float:      return FloatRank;
3805  case BuiltinType::Double:     return DoubleRank;
3806  case BuiltinType::LongDouble: return LongDoubleRank;
3807  }
3808}
3809
3810/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
3811/// point or a complex type (based on typeDomain/typeSize).
3812/// 'typeDomain' is a real floating point or complex type.
3813/// 'typeSize' is a real floating point or complex type.
3814QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
3815                                                       QualType Domain) const {
3816  FloatingRank EltRank = getFloatingRank(Size);
3817  if (Domain->isComplexType()) {
3818    switch (EltRank) {
3819    case HalfRank: llvm_unreachable("Complex half is not supported");
3820    case FloatRank:      return FloatComplexTy;
3821    case DoubleRank:     return DoubleComplexTy;
3822    case LongDoubleRank: return LongDoubleComplexTy;
3823    }
3824  }
3825
3826  assert(Domain->isRealFloatingType() && "Unknown domain!");
3827  switch (EltRank) {
3828  case HalfRank: llvm_unreachable("Half ranks are not valid here");
3829  case FloatRank:      return FloatTy;
3830  case DoubleRank:     return DoubleTy;
3831  case LongDoubleRank: return LongDoubleTy;
3832  }
3833  llvm_unreachable("getFloatingRank(): illegal value for rank");
3834}
3835
3836/// getFloatingTypeOrder - Compare the rank of the two specified floating
3837/// point types, ignoring the domain of the type (i.e. 'double' ==
3838/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3839/// LHS < RHS, return -1.
3840int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
3841  FloatingRank LHSR = getFloatingRank(LHS);
3842  FloatingRank RHSR = getFloatingRank(RHS);
3843
3844  if (LHSR == RHSR)
3845    return 0;
3846  if (LHSR > RHSR)
3847    return 1;
3848  return -1;
3849}
3850
3851/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
3852/// routine will assert if passed a built-in type that isn't an integer or enum,
3853/// or if it is not canonicalized.
3854unsigned ASTContext::getIntegerRank(const Type *T) const {
3855  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
3856
3857  switch (cast<BuiltinType>(T)->getKind()) {
3858  default: llvm_unreachable("getIntegerRank(): not a built-in integer");
3859  case BuiltinType::Bool:
3860    return 1 + (getIntWidth(BoolTy) << 3);
3861  case BuiltinType::Char_S:
3862  case BuiltinType::Char_U:
3863  case BuiltinType::SChar:
3864  case BuiltinType::UChar:
3865    return 2 + (getIntWidth(CharTy) << 3);
3866  case BuiltinType::Short:
3867  case BuiltinType::UShort:
3868    return 3 + (getIntWidth(ShortTy) << 3);
3869  case BuiltinType::Int:
3870  case BuiltinType::UInt:
3871    return 4 + (getIntWidth(IntTy) << 3);
3872  case BuiltinType::Long:
3873  case BuiltinType::ULong:
3874    return 5 + (getIntWidth(LongTy) << 3);
3875  case BuiltinType::LongLong:
3876  case BuiltinType::ULongLong:
3877    return 6 + (getIntWidth(LongLongTy) << 3);
3878  case BuiltinType::Int128:
3879  case BuiltinType::UInt128:
3880    return 7 + (getIntWidth(Int128Ty) << 3);
3881  }
3882}
3883
3884/// \brief Whether this is a promotable bitfield reference according
3885/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
3886///
3887/// \returns the type this bit-field will promote to, or NULL if no
3888/// promotion occurs.
3889QualType ASTContext::isPromotableBitField(Expr *E) const {
3890  if (E->isTypeDependent() || E->isValueDependent())
3891    return QualType();
3892
3893  FieldDecl *Field = E->getBitField();
3894  if (!Field)
3895    return QualType();
3896
3897  QualType FT = Field->getType();
3898
3899  uint64_t BitWidth = Field->getBitWidthValue(*this);
3900  uint64_t IntSize = getTypeSize(IntTy);
3901  // GCC extension compatibility: if the bit-field size is less than or equal
3902  // to the size of int, it gets promoted no matter what its type is.
3903  // For instance, unsigned long bf : 4 gets promoted to signed int.
3904  if (BitWidth < IntSize)
3905    return IntTy;
3906
3907  if (BitWidth == IntSize)
3908    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
3909
3910  // Types bigger than int are not subject to promotions, and therefore act
3911  // like the base type.
3912  // FIXME: This doesn't quite match what gcc does, but what gcc does here
3913  // is ridiculous.
3914  return QualType();
3915}
3916
3917/// getPromotedIntegerType - Returns the type that Promotable will
3918/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
3919/// integer type.
3920QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
3921  assert(!Promotable.isNull());
3922  assert(Promotable->isPromotableIntegerType());
3923  if (const EnumType *ET = Promotable->getAs<EnumType>())
3924    return ET->getDecl()->getPromotionType();
3925
3926  if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
3927    // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
3928    // (3.9.1) can be converted to a prvalue of the first of the following
3929    // types that can represent all the values of its underlying type:
3930    // int, unsigned int, long int, unsigned long int, long long int, or
3931    // unsigned long long int [...]
3932    // FIXME: Is there some better way to compute this?
3933    if (BT->getKind() == BuiltinType::WChar_S ||
3934        BT->getKind() == BuiltinType::WChar_U ||
3935        BT->getKind() == BuiltinType::Char16 ||
3936        BT->getKind() == BuiltinType::Char32) {
3937      bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
3938      uint64_t FromSize = getTypeSize(BT);
3939      QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
3940                                  LongLongTy, UnsignedLongLongTy };
3941      for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
3942        uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
3943        if (FromSize < ToSize ||
3944            (FromSize == ToSize &&
3945             FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
3946          return PromoteTypes[Idx];
3947      }
3948      llvm_unreachable("char type should fit into long long");
3949    }
3950  }
3951
3952  // At this point, we should have a signed or unsigned integer type.
3953  if (Promotable->isSignedIntegerType())
3954    return IntTy;
3955  uint64_t PromotableSize = getTypeSize(Promotable);
3956  uint64_t IntSize = getTypeSize(IntTy);
3957  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
3958  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
3959}
3960
3961/// \brief Recurses in pointer/array types until it finds an objc retainable
3962/// type and returns its ownership.
3963Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
3964  while (!T.isNull()) {
3965    if (T.getObjCLifetime() != Qualifiers::OCL_None)
3966      return T.getObjCLifetime();
3967    if (T->isArrayType())
3968      T = getBaseElementType(T);
3969    else if (const PointerType *PT = T->getAs<PointerType>())
3970      T = PT->getPointeeType();
3971    else if (const ReferenceType *RT = T->getAs<ReferenceType>())
3972      T = RT->getPointeeType();
3973    else
3974      break;
3975  }
3976
3977  return Qualifiers::OCL_None;
3978}
3979
3980/// getIntegerTypeOrder - Returns the highest ranked integer type:
3981/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3982/// LHS < RHS, return -1.
3983int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
3984  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
3985  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
3986  if (LHSC == RHSC) return 0;
3987
3988  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
3989  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
3990
3991  unsigned LHSRank = getIntegerRank(LHSC);
3992  unsigned RHSRank = getIntegerRank(RHSC);
3993
3994  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
3995    if (LHSRank == RHSRank) return 0;
3996    return LHSRank > RHSRank ? 1 : -1;
3997  }
3998
3999  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
4000  if (LHSUnsigned) {
4001    // If the unsigned [LHS] type is larger, return it.
4002    if (LHSRank >= RHSRank)
4003      return 1;
4004
4005    // If the signed type can represent all values of the unsigned type, it
4006    // wins.  Because we are dealing with 2's complement and types that are
4007    // powers of two larger than each other, this is always safe.
4008    return -1;
4009  }
4010
4011  // If the unsigned [RHS] type is larger, return it.
4012  if (RHSRank >= LHSRank)
4013    return -1;
4014
4015  // If the signed type can represent all values of the unsigned type, it
4016  // wins.  Because we are dealing with 2's complement and types that are
4017  // powers of two larger than each other, this is always safe.
4018  return 1;
4019}
4020
4021static RecordDecl *
4022CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
4023                 DeclContext *DC, IdentifierInfo *Id) {
4024  SourceLocation Loc;
4025  if (Ctx.getLangOpts().CPlusPlus)
4026    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4027  else
4028    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4029}
4030
4031// getCFConstantStringType - Return the type used for constant CFStrings.
4032QualType ASTContext::getCFConstantStringType() const {
4033  if (!CFConstantStringTypeDecl) {
4034    CFConstantStringTypeDecl =
4035      CreateRecordDecl(*this, TTK_Struct, TUDecl,
4036                       &Idents.get("NSConstantString"));
4037    CFConstantStringTypeDecl->startDefinition();
4038
4039    QualType FieldTypes[4];
4040
4041    // const int *isa;
4042    FieldTypes[0] = getPointerType(IntTy.withConst());
4043    // int flags;
4044    FieldTypes[1] = IntTy;
4045    // const char *str;
4046    FieldTypes[2] = getPointerType(CharTy.withConst());
4047    // long length;
4048    FieldTypes[3] = LongTy;
4049
4050    // Create fields
4051    for (unsigned i = 0; i < 4; ++i) {
4052      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
4053                                           SourceLocation(),
4054                                           SourceLocation(), 0,
4055                                           FieldTypes[i], /*TInfo=*/0,
4056                                           /*BitWidth=*/0,
4057                                           /*Mutable=*/false,
4058                                           ICIS_NoInit);
4059      Field->setAccess(AS_public);
4060      CFConstantStringTypeDecl->addDecl(Field);
4061    }
4062
4063    CFConstantStringTypeDecl->completeDefinition();
4064  }
4065
4066  return getTagDeclType(CFConstantStringTypeDecl);
4067}
4068
4069void ASTContext::setCFConstantStringType(QualType T) {
4070  const RecordType *Rec = T->getAs<RecordType>();
4071  assert(Rec && "Invalid CFConstantStringType");
4072  CFConstantStringTypeDecl = Rec->getDecl();
4073}
4074
4075QualType ASTContext::getBlockDescriptorType() const {
4076  if (BlockDescriptorType)
4077    return getTagDeclType(BlockDescriptorType);
4078
4079  RecordDecl *T;
4080  // FIXME: Needs the FlagAppleBlock bit.
4081  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4082                       &Idents.get("__block_descriptor"));
4083  T->startDefinition();
4084
4085  QualType FieldTypes[] = {
4086    UnsignedLongTy,
4087    UnsignedLongTy,
4088  };
4089
4090  const char *FieldNames[] = {
4091    "reserved",
4092    "Size"
4093  };
4094
4095  for (size_t i = 0; i < 2; ++i) {
4096    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4097                                         SourceLocation(),
4098                                         &Idents.get(FieldNames[i]),
4099                                         FieldTypes[i], /*TInfo=*/0,
4100                                         /*BitWidth=*/0,
4101                                         /*Mutable=*/false,
4102                                         ICIS_NoInit);
4103    Field->setAccess(AS_public);
4104    T->addDecl(Field);
4105  }
4106
4107  T->completeDefinition();
4108
4109  BlockDescriptorType = T;
4110
4111  return getTagDeclType(BlockDescriptorType);
4112}
4113
4114QualType ASTContext::getBlockDescriptorExtendedType() const {
4115  if (BlockDescriptorExtendedType)
4116    return getTagDeclType(BlockDescriptorExtendedType);
4117
4118  RecordDecl *T;
4119  // FIXME: Needs the FlagAppleBlock bit.
4120  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4121                       &Idents.get("__block_descriptor_withcopydispose"));
4122  T->startDefinition();
4123
4124  QualType FieldTypes[] = {
4125    UnsignedLongTy,
4126    UnsignedLongTy,
4127    getPointerType(VoidPtrTy),
4128    getPointerType(VoidPtrTy)
4129  };
4130
4131  const char *FieldNames[] = {
4132    "reserved",
4133    "Size",
4134    "CopyFuncPtr",
4135    "DestroyFuncPtr"
4136  };
4137
4138  for (size_t i = 0; i < 4; ++i) {
4139    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4140                                         SourceLocation(),
4141                                         &Idents.get(FieldNames[i]),
4142                                         FieldTypes[i], /*TInfo=*/0,
4143                                         /*BitWidth=*/0,
4144                                         /*Mutable=*/false,
4145                                         ICIS_NoInit);
4146    Field->setAccess(AS_public);
4147    T->addDecl(Field);
4148  }
4149
4150  T->completeDefinition();
4151
4152  BlockDescriptorExtendedType = T;
4153
4154  return getTagDeclType(BlockDescriptorExtendedType);
4155}
4156
4157bool ASTContext::BlockRequiresCopying(QualType Ty) const {
4158  if (Ty->isObjCRetainableType())
4159    return true;
4160  if (getLangOpts().CPlusPlus) {
4161    if (const RecordType *RT = Ty->getAs<RecordType>()) {
4162      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4163      return RD->hasConstCopyConstructor();
4164
4165    }
4166  }
4167  return false;
4168}
4169
4170QualType
4171ASTContext::BuildByRefType(StringRef DeclName, QualType Ty) const {
4172  //  type = struct __Block_byref_1_X {
4173  //    void *__isa;
4174  //    struct __Block_byref_1_X *__forwarding;
4175  //    unsigned int __flags;
4176  //    unsigned int __size;
4177  //    void *__copy_helper;            // as needed
4178  //    void *__destroy_help            // as needed
4179  //    int X;
4180  //  } *
4181
4182  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
4183
4184  // FIXME: Move up
4185  SmallString<36> Name;
4186  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
4187                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
4188  RecordDecl *T;
4189  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get(Name.str()));
4190  T->startDefinition();
4191  QualType Int32Ty = IntTy;
4192  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
4193  QualType FieldTypes[] = {
4194    getPointerType(VoidPtrTy),
4195    getPointerType(getTagDeclType(T)),
4196    Int32Ty,
4197    Int32Ty,
4198    getPointerType(VoidPtrTy),
4199    getPointerType(VoidPtrTy),
4200    Ty
4201  };
4202
4203  StringRef FieldNames[] = {
4204    "__isa",
4205    "__forwarding",
4206    "__flags",
4207    "__size",
4208    "__copy_helper",
4209    "__destroy_helper",
4210    DeclName,
4211  };
4212
4213  for (size_t i = 0; i < 7; ++i) {
4214    if (!HasCopyAndDispose && i >=4 && i <= 5)
4215      continue;
4216    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4217                                         SourceLocation(),
4218                                         &Idents.get(FieldNames[i]),
4219                                         FieldTypes[i], /*TInfo=*/0,
4220                                         /*BitWidth=*/0, /*Mutable=*/false,
4221                                         ICIS_NoInit);
4222    Field->setAccess(AS_public);
4223    T->addDecl(Field);
4224  }
4225
4226  T->completeDefinition();
4227
4228  return getPointerType(getTagDeclType(T));
4229}
4230
4231TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
4232  if (!ObjCInstanceTypeDecl)
4233    ObjCInstanceTypeDecl = TypedefDecl::Create(*this,
4234                                               getTranslationUnitDecl(),
4235                                               SourceLocation(),
4236                                               SourceLocation(),
4237                                               &Idents.get("instancetype"),
4238                                     getTrivialTypeSourceInfo(getObjCIdType()));
4239  return ObjCInstanceTypeDecl;
4240}
4241
4242// This returns true if a type has been typedefed to BOOL:
4243// typedef <type> BOOL;
4244static bool isTypeTypedefedAsBOOL(QualType T) {
4245  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
4246    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
4247      return II->isStr("BOOL");
4248
4249  return false;
4250}
4251
4252/// getObjCEncodingTypeSize returns size of type for objective-c encoding
4253/// purpose.
4254CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
4255  if (!type->isIncompleteArrayType() && type->isIncompleteType())
4256    return CharUnits::Zero();
4257
4258  CharUnits sz = getTypeSizeInChars(type);
4259
4260  // Make all integer and enum types at least as large as an int
4261  if (sz.isPositive() && type->isIntegralOrEnumerationType())
4262    sz = std::max(sz, getTypeSizeInChars(IntTy));
4263  // Treat arrays as pointers, since that's how they're passed in.
4264  else if (type->isArrayType())
4265    sz = getTypeSizeInChars(VoidPtrTy);
4266  return sz;
4267}
4268
4269static inline
4270std::string charUnitsToString(const CharUnits &CU) {
4271  return llvm::itostr(CU.getQuantity());
4272}
4273
4274/// getObjCEncodingForBlock - Return the encoded type for this block
4275/// declaration.
4276std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4277  std::string S;
4278
4279  const BlockDecl *Decl = Expr->getBlockDecl();
4280  QualType BlockTy =
4281      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4282  // Encode result type.
4283  getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
4284  // Compute size of all parameters.
4285  // Start with computing size of a pointer in number of bytes.
4286  // FIXME: There might(should) be a better way of doing this computation!
4287  SourceLocation Loc;
4288  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4289  CharUnits ParmOffset = PtrSize;
4290  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
4291       E = Decl->param_end(); PI != E; ++PI) {
4292    QualType PType = (*PI)->getType();
4293    CharUnits sz = getObjCEncodingTypeSize(PType);
4294    if (sz.isZero())
4295      continue;
4296    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4297    ParmOffset += sz;
4298  }
4299  // Size of the argument frame
4300  S += charUnitsToString(ParmOffset);
4301  // Block pointer and offset.
4302  S += "@?0";
4303
4304  // Argument types.
4305  ParmOffset = PtrSize;
4306  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
4307       Decl->param_end(); PI != E; ++PI) {
4308    ParmVarDecl *PVDecl = *PI;
4309    QualType PType = PVDecl->getOriginalType();
4310    if (const ArrayType *AT =
4311          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4312      // Use array's original type only if it has known number of
4313      // elements.
4314      if (!isa<ConstantArrayType>(AT))
4315        PType = PVDecl->getType();
4316    } else if (PType->isFunctionType())
4317      PType = PVDecl->getType();
4318    getObjCEncodingForType(PType, S);
4319    S += charUnitsToString(ParmOffset);
4320    ParmOffset += getObjCEncodingTypeSize(PType);
4321  }
4322
4323  return S;
4324}
4325
4326bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4327                                                std::string& S) {
4328  // Encode result type.
4329  getObjCEncodingForType(Decl->getResultType(), S);
4330  CharUnits ParmOffset;
4331  // Compute size of all parameters.
4332  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4333       E = Decl->param_end(); PI != E; ++PI) {
4334    QualType PType = (*PI)->getType();
4335    CharUnits sz = getObjCEncodingTypeSize(PType);
4336    if (sz.isZero())
4337      continue;
4338
4339    assert (sz.isPositive() &&
4340        "getObjCEncodingForFunctionDecl - Incomplete param type");
4341    ParmOffset += sz;
4342  }
4343  S += charUnitsToString(ParmOffset);
4344  ParmOffset = CharUnits::Zero();
4345
4346  // Argument types.
4347  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4348       E = Decl->param_end(); PI != E; ++PI) {
4349    ParmVarDecl *PVDecl = *PI;
4350    QualType PType = PVDecl->getOriginalType();
4351    if (const ArrayType *AT =
4352          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4353      // Use array's original type only if it has known number of
4354      // elements.
4355      if (!isa<ConstantArrayType>(AT))
4356        PType = PVDecl->getType();
4357    } else if (PType->isFunctionType())
4358      PType = PVDecl->getType();
4359    getObjCEncodingForType(PType, S);
4360    S += charUnitsToString(ParmOffset);
4361    ParmOffset += getObjCEncodingTypeSize(PType);
4362  }
4363
4364  return false;
4365}
4366
4367/// getObjCEncodingForMethodParameter - Return the encoded type for a single
4368/// method parameter or return type. If Extended, include class names and
4369/// block object types.
4370void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
4371                                                   QualType T, std::string& S,
4372                                                   bool Extended) const {
4373  // Encode type qualifer, 'in', 'inout', etc. for the parameter.
4374  getObjCEncodingForTypeQualifier(QT, S);
4375  // Encode parameter type.
4376  getObjCEncodingForTypeImpl(T, S, true, true, 0,
4377                             true     /*OutermostType*/,
4378                             false    /*EncodingProperty*/,
4379                             false    /*StructField*/,
4380                             Extended /*EncodeBlockParameters*/,
4381                             Extended /*EncodeClassNames*/);
4382}
4383
4384/// getObjCEncodingForMethodDecl - Return the encoded type for this method
4385/// declaration.
4386bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4387                                              std::string& S,
4388                                              bool Extended) const {
4389  // FIXME: This is not very efficient.
4390  // Encode return type.
4391  getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
4392                                    Decl->getResultType(), S, Extended);
4393  // Compute size of all parameters.
4394  // Start with computing size of a pointer in number of bytes.
4395  // FIXME: There might(should) be a better way of doing this computation!
4396  SourceLocation Loc;
4397  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4398  // The first two arguments (self and _cmd) are pointers; account for
4399  // their size.
4400  CharUnits ParmOffset = 2 * PtrSize;
4401  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4402       E = Decl->sel_param_end(); PI != E; ++PI) {
4403    QualType PType = (*PI)->getType();
4404    CharUnits sz = getObjCEncodingTypeSize(PType);
4405    if (sz.isZero())
4406      continue;
4407
4408    assert (sz.isPositive() &&
4409        "getObjCEncodingForMethodDecl - Incomplete param type");
4410    ParmOffset += sz;
4411  }
4412  S += charUnitsToString(ParmOffset);
4413  S += "@0:";
4414  S += charUnitsToString(PtrSize);
4415
4416  // Argument types.
4417  ParmOffset = 2 * PtrSize;
4418  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4419       E = Decl->sel_param_end(); PI != E; ++PI) {
4420    const ParmVarDecl *PVDecl = *PI;
4421    QualType PType = PVDecl->getOriginalType();
4422    if (const ArrayType *AT =
4423          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4424      // Use array's original type only if it has known number of
4425      // elements.
4426      if (!isa<ConstantArrayType>(AT))
4427        PType = PVDecl->getType();
4428    } else if (PType->isFunctionType())
4429      PType = PVDecl->getType();
4430    getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
4431                                      PType, S, Extended);
4432    S += charUnitsToString(ParmOffset);
4433    ParmOffset += getObjCEncodingTypeSize(PType);
4434  }
4435
4436  return false;
4437}
4438
4439/// getObjCEncodingForPropertyDecl - Return the encoded type for this
4440/// property declaration. If non-NULL, Container must be either an
4441/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4442/// NULL when getting encodings for protocol properties.
4443/// Property attributes are stored as a comma-delimited C string. The simple
4444/// attributes readonly and bycopy are encoded as single characters. The
4445/// parametrized attributes, getter=name, setter=name, and ivar=name, are
4446/// encoded as single characters, followed by an identifier. Property types
4447/// are also encoded as a parametrized attribute. The characters used to encode
4448/// these attributes are defined by the following enumeration:
4449/// @code
4450/// enum PropertyAttributes {
4451/// kPropertyReadOnly = 'R',   // property is read-only.
4452/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4453/// kPropertyByref = '&',  // property is a reference to the value last assigned
4454/// kPropertyDynamic = 'D',    // property is dynamic
4455/// kPropertyGetter = 'G',     // followed by getter selector name
4456/// kPropertySetter = 'S',     // followed by setter selector name
4457/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4458/// kPropertyType = 'T'              // followed by old-style type encoding.
4459/// kPropertyWeak = 'W'              // 'weak' property
4460/// kPropertyStrong = 'P'            // property GC'able
4461/// kPropertyNonAtomic = 'N'         // property non-atomic
4462/// };
4463/// @endcode
4464void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4465                                                const Decl *Container,
4466                                                std::string& S) const {
4467  // Collect information from the property implementation decl(s).
4468  bool Dynamic = false;
4469  ObjCPropertyImplDecl *SynthesizePID = 0;
4470
4471  // FIXME: Duplicated code due to poor abstraction.
4472  if (Container) {
4473    if (const ObjCCategoryImplDecl *CID =
4474        dyn_cast<ObjCCategoryImplDecl>(Container)) {
4475      for (ObjCCategoryImplDecl::propimpl_iterator
4476             i = CID->propimpl_begin(), e = CID->propimpl_end();
4477           i != e; ++i) {
4478        ObjCPropertyImplDecl *PID = *i;
4479        if (PID->getPropertyDecl() == PD) {
4480          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4481            Dynamic = true;
4482          } else {
4483            SynthesizePID = PID;
4484          }
4485        }
4486      }
4487    } else {
4488      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4489      for (ObjCCategoryImplDecl::propimpl_iterator
4490             i = OID->propimpl_begin(), e = OID->propimpl_end();
4491           i != e; ++i) {
4492        ObjCPropertyImplDecl *PID = *i;
4493        if (PID->getPropertyDecl() == PD) {
4494          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4495            Dynamic = true;
4496          } else {
4497            SynthesizePID = PID;
4498          }
4499        }
4500      }
4501    }
4502  }
4503
4504  // FIXME: This is not very efficient.
4505  S = "T";
4506
4507  // Encode result type.
4508  // GCC has some special rules regarding encoding of properties which
4509  // closely resembles encoding of ivars.
4510  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4511                             true /* outermost type */,
4512                             true /* encoding for property */);
4513
4514  if (PD->isReadOnly()) {
4515    S += ",R";
4516  } else {
4517    switch (PD->getSetterKind()) {
4518    case ObjCPropertyDecl::Assign: break;
4519    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4520    case ObjCPropertyDecl::Retain: S += ",&"; break;
4521    case ObjCPropertyDecl::Weak:   S += ",W"; break;
4522    }
4523  }
4524
4525  // It really isn't clear at all what this means, since properties
4526  // are "dynamic by default".
4527  if (Dynamic)
4528    S += ",D";
4529
4530  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4531    S += ",N";
4532
4533  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4534    S += ",G";
4535    S += PD->getGetterName().getAsString();
4536  }
4537
4538  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4539    S += ",S";
4540    S += PD->getSetterName().getAsString();
4541  }
4542
4543  if (SynthesizePID) {
4544    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4545    S += ",V";
4546    S += OID->getNameAsString();
4547  }
4548
4549  // FIXME: OBJCGC: weak & strong
4550}
4551
4552/// getLegacyIntegralTypeEncoding -
4553/// Another legacy compatibility encoding: 32-bit longs are encoded as
4554/// 'l' or 'L' , but not always.  For typedefs, we need to use
4555/// 'i' or 'I' instead if encoding a struct field, or a pointer!
4556///
4557void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4558  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4559    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4560      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4561        PointeeTy = UnsignedIntTy;
4562      else
4563        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4564          PointeeTy = IntTy;
4565    }
4566  }
4567}
4568
4569void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
4570                                        const FieldDecl *Field) const {
4571  // We follow the behavior of gcc, expanding structures which are
4572  // directly pointed to, and expanding embedded structures. Note that
4573  // these rules are sufficient to prevent recursive encoding of the
4574  // same type.
4575  getObjCEncodingForTypeImpl(T, S, true, true, Field,
4576                             true /* outermost type */);
4577}
4578
4579static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
4580    switch (T->getAs<BuiltinType>()->getKind()) {
4581    default: llvm_unreachable("Unhandled builtin type kind");
4582    case BuiltinType::Void:       return 'v';
4583    case BuiltinType::Bool:       return 'B';
4584    case BuiltinType::Char_U:
4585    case BuiltinType::UChar:      return 'C';
4586    case BuiltinType::UShort:     return 'S';
4587    case BuiltinType::UInt:       return 'I';
4588    case BuiltinType::ULong:
4589        return C->getIntWidth(T) == 32 ? 'L' : 'Q';
4590    case BuiltinType::UInt128:    return 'T';
4591    case BuiltinType::ULongLong:  return 'Q';
4592    case BuiltinType::Char_S:
4593    case BuiltinType::SChar:      return 'c';
4594    case BuiltinType::Short:      return 's';
4595    case BuiltinType::WChar_S:
4596    case BuiltinType::WChar_U:
4597    case BuiltinType::Int:        return 'i';
4598    case BuiltinType::Long:
4599      return C->getIntWidth(T) == 32 ? 'l' : 'q';
4600    case BuiltinType::LongLong:   return 'q';
4601    case BuiltinType::Int128:     return 't';
4602    case BuiltinType::Float:      return 'f';
4603    case BuiltinType::Double:     return 'd';
4604    case BuiltinType::LongDouble: return 'D';
4605    }
4606}
4607
4608static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
4609  EnumDecl *Enum = ET->getDecl();
4610
4611  // The encoding of an non-fixed enum type is always 'i', regardless of size.
4612  if (!Enum->isFixed())
4613    return 'i';
4614
4615  // The encoding of a fixed enum type matches its fixed underlying type.
4616  return ObjCEncodingForPrimitiveKind(C, Enum->getIntegerType());
4617}
4618
4619static void EncodeBitField(const ASTContext *Ctx, std::string& S,
4620                           QualType T, const FieldDecl *FD) {
4621  assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
4622  S += 'b';
4623  // The NeXT runtime encodes bit fields as b followed by the number of bits.
4624  // The GNU runtime requires more information; bitfields are encoded as b,
4625  // then the offset (in bits) of the first element, then the type of the
4626  // bitfield, then the size in bits.  For example, in this structure:
4627  //
4628  // struct
4629  // {
4630  //    int integer;
4631  //    int flags:2;
4632  // };
4633  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
4634  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
4635  // information is not especially sensible, but we're stuck with it for
4636  // compatibility with GCC, although providing it breaks anything that
4637  // actually uses runtime introspection and wants to work on both runtimes...
4638  if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
4639    const RecordDecl *RD = FD->getParent();
4640    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
4641    S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
4642    if (const EnumType *ET = T->getAs<EnumType>())
4643      S += ObjCEncodingForEnumType(Ctx, ET);
4644    else
4645      S += ObjCEncodingForPrimitiveKind(Ctx, T);
4646  }
4647  S += llvm::utostr(FD->getBitWidthValue(*Ctx));
4648}
4649
4650// FIXME: Use SmallString for accumulating string.
4651void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
4652                                            bool ExpandPointedToStructures,
4653                                            bool ExpandStructures,
4654                                            const FieldDecl *FD,
4655                                            bool OutermostType,
4656                                            bool EncodingProperty,
4657                                            bool StructField,
4658                                            bool EncodeBlockParameters,
4659                                            bool EncodeClassNames) const {
4660  if (T->getAs<BuiltinType>()) {
4661    if (FD && FD->isBitField())
4662      return EncodeBitField(this, S, T, FD);
4663    S += ObjCEncodingForPrimitiveKind(this, T);
4664    return;
4665  }
4666
4667  if (const ComplexType *CT = T->getAs<ComplexType>()) {
4668    S += 'j';
4669    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
4670                               false);
4671    return;
4672  }
4673
4674  // encoding for pointer or r3eference types.
4675  QualType PointeeTy;
4676  if (const PointerType *PT = T->getAs<PointerType>()) {
4677    if (PT->isObjCSelType()) {
4678      S += ':';
4679      return;
4680    }
4681    PointeeTy = PT->getPointeeType();
4682  }
4683  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4684    PointeeTy = RT->getPointeeType();
4685  if (!PointeeTy.isNull()) {
4686    bool isReadOnly = false;
4687    // For historical/compatibility reasons, the read-only qualifier of the
4688    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
4689    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
4690    // Also, do not emit the 'r' for anything but the outermost type!
4691    if (isa<TypedefType>(T.getTypePtr())) {
4692      if (OutermostType && T.isConstQualified()) {
4693        isReadOnly = true;
4694        S += 'r';
4695      }
4696    } else if (OutermostType) {
4697      QualType P = PointeeTy;
4698      while (P->getAs<PointerType>())
4699        P = P->getAs<PointerType>()->getPointeeType();
4700      if (P.isConstQualified()) {
4701        isReadOnly = true;
4702        S += 'r';
4703      }
4704    }
4705    if (isReadOnly) {
4706      // Another legacy compatibility encoding. Some ObjC qualifier and type
4707      // combinations need to be rearranged.
4708      // Rewrite "in const" from "nr" to "rn"
4709      if (StringRef(S).endswith("nr"))
4710        S.replace(S.end()-2, S.end(), "rn");
4711    }
4712
4713    if (PointeeTy->isCharType()) {
4714      // char pointer types should be encoded as '*' unless it is a
4715      // type that has been typedef'd to 'BOOL'.
4716      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
4717        S += '*';
4718        return;
4719      }
4720    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
4721      // GCC binary compat: Need to convert "struct objc_class *" to "#".
4722      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
4723        S += '#';
4724        return;
4725      }
4726      // GCC binary compat: Need to convert "struct objc_object *" to "@".
4727      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
4728        S += '@';
4729        return;
4730      }
4731      // fall through...
4732    }
4733    S += '^';
4734    getLegacyIntegralTypeEncoding(PointeeTy);
4735
4736    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
4737                               NULL);
4738    return;
4739  }
4740
4741  if (const ArrayType *AT =
4742      // Ignore type qualifiers etc.
4743        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
4744    if (isa<IncompleteArrayType>(AT) && !StructField) {
4745      // Incomplete arrays are encoded as a pointer to the array element.
4746      S += '^';
4747
4748      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4749                                 false, ExpandStructures, FD);
4750    } else {
4751      S += '[';
4752
4753      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
4754        if (getTypeSize(CAT->getElementType()) == 0)
4755          S += '0';
4756        else
4757          S += llvm::utostr(CAT->getSize().getZExtValue());
4758      } else {
4759        //Variable length arrays are encoded as a regular array with 0 elements.
4760        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
4761               "Unknown array type!");
4762        S += '0';
4763      }
4764
4765      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4766                                 false, ExpandStructures, FD);
4767      S += ']';
4768    }
4769    return;
4770  }
4771
4772  if (T->getAs<FunctionType>()) {
4773    S += '?';
4774    return;
4775  }
4776
4777  if (const RecordType *RTy = T->getAs<RecordType>()) {
4778    RecordDecl *RDecl = RTy->getDecl();
4779    S += RDecl->isUnion() ? '(' : '{';
4780    // Anonymous structures print as '?'
4781    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
4782      S += II->getName();
4783      if (ClassTemplateSpecializationDecl *Spec
4784          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
4785        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
4786        std::string TemplateArgsStr
4787          = TemplateSpecializationType::PrintTemplateArgumentList(
4788                                            TemplateArgs.data(),
4789                                            TemplateArgs.size(),
4790                                            (*this).getPrintingPolicy());
4791
4792        S += TemplateArgsStr;
4793      }
4794    } else {
4795      S += '?';
4796    }
4797    if (ExpandStructures) {
4798      S += '=';
4799      if (!RDecl->isUnion()) {
4800        getObjCEncodingForStructureImpl(RDecl, S, FD);
4801      } else {
4802        for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4803                                     FieldEnd = RDecl->field_end();
4804             Field != FieldEnd; ++Field) {
4805          if (FD) {
4806            S += '"';
4807            S += Field->getNameAsString();
4808            S += '"';
4809          }
4810
4811          // Special case bit-fields.
4812          if (Field->isBitField()) {
4813            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
4814                                       *Field);
4815          } else {
4816            QualType qt = Field->getType();
4817            getLegacyIntegralTypeEncoding(qt);
4818            getObjCEncodingForTypeImpl(qt, S, false, true,
4819                                       FD, /*OutermostType*/false,
4820                                       /*EncodingProperty*/false,
4821                                       /*StructField*/true);
4822          }
4823        }
4824      }
4825    }
4826    S += RDecl->isUnion() ? ')' : '}';
4827    return;
4828  }
4829
4830  if (const EnumType *ET = T->getAs<EnumType>()) {
4831    if (FD && FD->isBitField())
4832      EncodeBitField(this, S, T, FD);
4833    else
4834      S += ObjCEncodingForEnumType(this, ET);
4835    return;
4836  }
4837
4838  if (const BlockPointerType *BT = T->getAs<BlockPointerType>()) {
4839    S += "@?"; // Unlike a pointer-to-function, which is "^?".
4840    if (EncodeBlockParameters) {
4841      const FunctionType *FT = BT->getPointeeType()->getAs<FunctionType>();
4842
4843      S += '<';
4844      // Block return type
4845      getObjCEncodingForTypeImpl(FT->getResultType(), S,
4846                                 ExpandPointedToStructures, ExpandStructures,
4847                                 FD,
4848                                 false /* OutermostType */,
4849                                 EncodingProperty,
4850                                 false /* StructField */,
4851                                 EncodeBlockParameters,
4852                                 EncodeClassNames);
4853      // Block self
4854      S += "@?";
4855      // Block parameters
4856      if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
4857        for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
4858               E = FPT->arg_type_end(); I && (I != E); ++I) {
4859          getObjCEncodingForTypeImpl(*I, S,
4860                                     ExpandPointedToStructures,
4861                                     ExpandStructures,
4862                                     FD,
4863                                     false /* OutermostType */,
4864                                     EncodingProperty,
4865                                     false /* StructField */,
4866                                     EncodeBlockParameters,
4867                                     EncodeClassNames);
4868        }
4869      }
4870      S += '>';
4871    }
4872    return;
4873  }
4874
4875  // Ignore protocol qualifiers when mangling at this level.
4876  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
4877    T = OT->getBaseType();
4878
4879  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
4880    // @encode(class_name)
4881    ObjCInterfaceDecl *OI = OIT->getDecl();
4882    S += '{';
4883    const IdentifierInfo *II = OI->getIdentifier();
4884    S += II->getName();
4885    S += '=';
4886    SmallVector<const ObjCIvarDecl*, 32> Ivars;
4887    DeepCollectObjCIvars(OI, true, Ivars);
4888    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
4889      const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
4890      if (Field->isBitField())
4891        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
4892      else
4893        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
4894    }
4895    S += '}';
4896    return;
4897  }
4898
4899  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
4900    if (OPT->isObjCIdType()) {
4901      S += '@';
4902      return;
4903    }
4904
4905    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
4906      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
4907      // Since this is a binary compatibility issue, need to consult with runtime
4908      // folks. Fortunately, this is a *very* obsure construct.
4909      S += '#';
4910      return;
4911    }
4912
4913    if (OPT->isObjCQualifiedIdType()) {
4914      getObjCEncodingForTypeImpl(getObjCIdType(), S,
4915                                 ExpandPointedToStructures,
4916                                 ExpandStructures, FD);
4917      if (FD || EncodingProperty || EncodeClassNames) {
4918        // Note that we do extended encoding of protocol qualifer list
4919        // Only when doing ivar or property encoding.
4920        S += '"';
4921        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4922             E = OPT->qual_end(); I != E; ++I) {
4923          S += '<';
4924          S += (*I)->getNameAsString();
4925          S += '>';
4926        }
4927        S += '"';
4928      }
4929      return;
4930    }
4931
4932    QualType PointeeTy = OPT->getPointeeType();
4933    if (!EncodingProperty &&
4934        isa<TypedefType>(PointeeTy.getTypePtr())) {
4935      // Another historical/compatibility reason.
4936      // We encode the underlying type which comes out as
4937      // {...};
4938      S += '^';
4939      getObjCEncodingForTypeImpl(PointeeTy, S,
4940                                 false, ExpandPointedToStructures,
4941                                 NULL);
4942      return;
4943    }
4944
4945    S += '@';
4946    if (OPT->getInterfaceDecl() &&
4947        (FD || EncodingProperty || EncodeClassNames)) {
4948      S += '"';
4949      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
4950      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4951           E = OPT->qual_end(); I != E; ++I) {
4952        S += '<';
4953        S += (*I)->getNameAsString();
4954        S += '>';
4955      }
4956      S += '"';
4957    }
4958    return;
4959  }
4960
4961  // gcc just blithely ignores member pointers.
4962  // TODO: maybe there should be a mangling for these
4963  if (T->getAs<MemberPointerType>())
4964    return;
4965
4966  if (T->isVectorType()) {
4967    // This matches gcc's encoding, even though technically it is
4968    // insufficient.
4969    // FIXME. We should do a better job than gcc.
4970    return;
4971  }
4972
4973  llvm_unreachable("@encode for type not implemented!");
4974}
4975
4976void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
4977                                                 std::string &S,
4978                                                 const FieldDecl *FD,
4979                                                 bool includeVBases) const {
4980  assert(RDecl && "Expected non-null RecordDecl");
4981  assert(!RDecl->isUnion() && "Should not be called for unions");
4982  if (!RDecl->getDefinition())
4983    return;
4984
4985  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
4986  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
4987  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
4988
4989  if (CXXRec) {
4990    for (CXXRecordDecl::base_class_iterator
4991           BI = CXXRec->bases_begin(),
4992           BE = CXXRec->bases_end(); BI != BE; ++BI) {
4993      if (!BI->isVirtual()) {
4994        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4995        if (base->isEmpty())
4996          continue;
4997        uint64_t offs = toBits(layout.getBaseClassOffset(base));
4998        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4999                                  std::make_pair(offs, base));
5000      }
5001    }
5002  }
5003
5004  unsigned i = 0;
5005  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
5006                               FieldEnd = RDecl->field_end();
5007       Field != FieldEnd; ++Field, ++i) {
5008    uint64_t offs = layout.getFieldOffset(i);
5009    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5010                              std::make_pair(offs, *Field));
5011  }
5012
5013  if (CXXRec && includeVBases) {
5014    for (CXXRecordDecl::base_class_iterator
5015           BI = CXXRec->vbases_begin(),
5016           BE = CXXRec->vbases_end(); BI != BE; ++BI) {
5017      CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5018      if (base->isEmpty())
5019        continue;
5020      uint64_t offs = toBits(layout.getVBaseClassOffset(base));
5021      if (FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
5022        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
5023                                  std::make_pair(offs, base));
5024    }
5025  }
5026
5027  CharUnits size;
5028  if (CXXRec) {
5029    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
5030  } else {
5031    size = layout.getSize();
5032  }
5033
5034  uint64_t CurOffs = 0;
5035  std::multimap<uint64_t, NamedDecl *>::iterator
5036    CurLayObj = FieldOrBaseOffsets.begin();
5037
5038  if (CXXRec && CXXRec->isDynamicClass() &&
5039      (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
5040    if (FD) {
5041      S += "\"_vptr$";
5042      std::string recname = CXXRec->getNameAsString();
5043      if (recname.empty()) recname = "?";
5044      S += recname;
5045      S += '"';
5046    }
5047    S += "^^?";
5048    CurOffs += getTypeSize(VoidPtrTy);
5049  }
5050
5051  if (!RDecl->hasFlexibleArrayMember()) {
5052    // Mark the end of the structure.
5053    uint64_t offs = toBits(size);
5054    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5055                              std::make_pair(offs, (NamedDecl*)0));
5056  }
5057
5058  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
5059    assert(CurOffs <= CurLayObj->first);
5060
5061    if (CurOffs < CurLayObj->first) {
5062      uint64_t padding = CurLayObj->first - CurOffs;
5063      // FIXME: There doesn't seem to be a way to indicate in the encoding that
5064      // packing/alignment of members is different that normal, in which case
5065      // the encoding will be out-of-sync with the real layout.
5066      // If the runtime switches to just consider the size of types without
5067      // taking into account alignment, we could make padding explicit in the
5068      // encoding (e.g. using arrays of chars). The encoding strings would be
5069      // longer then though.
5070      CurOffs += padding;
5071    }
5072
5073    NamedDecl *dcl = CurLayObj->second;
5074    if (dcl == 0)
5075      break; // reached end of structure.
5076
5077    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
5078      // We expand the bases without their virtual bases since those are going
5079      // in the initial structure. Note that this differs from gcc which
5080      // expands virtual bases each time one is encountered in the hierarchy,
5081      // making the encoding type bigger than it really is.
5082      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
5083      assert(!base->isEmpty());
5084      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
5085    } else {
5086      FieldDecl *field = cast<FieldDecl>(dcl);
5087      if (FD) {
5088        S += '"';
5089        S += field->getNameAsString();
5090        S += '"';
5091      }
5092
5093      if (field->isBitField()) {
5094        EncodeBitField(this, S, field->getType(), field);
5095        CurOffs += field->getBitWidthValue(*this);
5096      } else {
5097        QualType qt = field->getType();
5098        getLegacyIntegralTypeEncoding(qt);
5099        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
5100                                   /*OutermostType*/false,
5101                                   /*EncodingProperty*/false,
5102                                   /*StructField*/true);
5103        CurOffs += getTypeSize(field->getType());
5104      }
5105    }
5106  }
5107}
5108
5109void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
5110                                                 std::string& S) const {
5111  if (QT & Decl::OBJC_TQ_In)
5112    S += 'n';
5113  if (QT & Decl::OBJC_TQ_Inout)
5114    S += 'N';
5115  if (QT & Decl::OBJC_TQ_Out)
5116    S += 'o';
5117  if (QT & Decl::OBJC_TQ_Bycopy)
5118    S += 'O';
5119  if (QT & Decl::OBJC_TQ_Byref)
5120    S += 'R';
5121  if (QT & Decl::OBJC_TQ_Oneway)
5122    S += 'V';
5123}
5124
5125TypedefDecl *ASTContext::getObjCIdDecl() const {
5126  if (!ObjCIdDecl) {
5127    QualType T = getObjCObjectType(ObjCBuiltinIdTy, 0, 0);
5128    T = getObjCObjectPointerType(T);
5129    TypeSourceInfo *IdInfo = getTrivialTypeSourceInfo(T);
5130    ObjCIdDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5131                                     getTranslationUnitDecl(),
5132                                     SourceLocation(), SourceLocation(),
5133                                     &Idents.get("id"), IdInfo);
5134  }
5135
5136  return ObjCIdDecl;
5137}
5138
5139TypedefDecl *ASTContext::getObjCSelDecl() const {
5140  if (!ObjCSelDecl) {
5141    QualType SelT = getPointerType(ObjCBuiltinSelTy);
5142    TypeSourceInfo *SelInfo = getTrivialTypeSourceInfo(SelT);
5143    ObjCSelDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5144                                      getTranslationUnitDecl(),
5145                                      SourceLocation(), SourceLocation(),
5146                                      &Idents.get("SEL"), SelInfo);
5147  }
5148  return ObjCSelDecl;
5149}
5150
5151TypedefDecl *ASTContext::getObjCClassDecl() const {
5152  if (!ObjCClassDecl) {
5153    QualType T = getObjCObjectType(ObjCBuiltinClassTy, 0, 0);
5154    T = getObjCObjectPointerType(T);
5155    TypeSourceInfo *ClassInfo = getTrivialTypeSourceInfo(T);
5156    ObjCClassDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5157                                        getTranslationUnitDecl(),
5158                                        SourceLocation(), SourceLocation(),
5159                                        &Idents.get("Class"), ClassInfo);
5160  }
5161
5162  return ObjCClassDecl;
5163}
5164
5165ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
5166  if (!ObjCProtocolClassDecl) {
5167    ObjCProtocolClassDecl
5168      = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
5169                                  SourceLocation(),
5170                                  &Idents.get("Protocol"),
5171                                  /*PrevDecl=*/0,
5172                                  SourceLocation(), true);
5173  }
5174
5175  return ObjCProtocolClassDecl;
5176}
5177
5178//===----------------------------------------------------------------------===//
5179// __builtin_va_list Construction Functions
5180//===----------------------------------------------------------------------===//
5181
5182static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
5183  // typedef char* __builtin_va_list;
5184  QualType CharPtrType = Context->getPointerType(Context->CharTy);
5185  TypeSourceInfo *TInfo
5186    = Context->getTrivialTypeSourceInfo(CharPtrType);
5187
5188  TypedefDecl *VaListTypeDecl
5189    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5190                          Context->getTranslationUnitDecl(),
5191                          SourceLocation(), SourceLocation(),
5192                          &Context->Idents.get("__builtin_va_list"),
5193                          TInfo);
5194  return VaListTypeDecl;
5195}
5196
5197static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
5198  // typedef void* __builtin_va_list;
5199  QualType VoidPtrType = Context->getPointerType(Context->VoidTy);
5200  TypeSourceInfo *TInfo
5201    = Context->getTrivialTypeSourceInfo(VoidPtrType);
5202
5203  TypedefDecl *VaListTypeDecl
5204    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5205                          Context->getTranslationUnitDecl(),
5206                          SourceLocation(), SourceLocation(),
5207                          &Context->Idents.get("__builtin_va_list"),
5208                          TInfo);
5209  return VaListTypeDecl;
5210}
5211
5212static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
5213  // typedef struct __va_list_tag {
5214  RecordDecl *VaListTagDecl;
5215
5216  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5217                                   Context->getTranslationUnitDecl(),
5218                                   &Context->Idents.get("__va_list_tag"));
5219  VaListTagDecl->startDefinition();
5220
5221  const size_t NumFields = 5;
5222  QualType FieldTypes[NumFields];
5223  const char *FieldNames[NumFields];
5224
5225  //   unsigned char gpr;
5226  FieldTypes[0] = Context->UnsignedCharTy;
5227  FieldNames[0] = "gpr";
5228
5229  //   unsigned char fpr;
5230  FieldTypes[1] = Context->UnsignedCharTy;
5231  FieldNames[1] = "fpr";
5232
5233  //   unsigned short reserved;
5234  FieldTypes[2] = Context->UnsignedShortTy;
5235  FieldNames[2] = "reserved";
5236
5237  //   void* overflow_arg_area;
5238  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5239  FieldNames[3] = "overflow_arg_area";
5240
5241  //   void* reg_save_area;
5242  FieldTypes[4] = Context->getPointerType(Context->VoidTy);
5243  FieldNames[4] = "reg_save_area";
5244
5245  // Create fields
5246  for (unsigned i = 0; i < NumFields; ++i) {
5247    FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
5248                                         SourceLocation(),
5249                                         SourceLocation(),
5250                                         &Context->Idents.get(FieldNames[i]),
5251                                         FieldTypes[i], /*TInfo=*/0,
5252                                         /*BitWidth=*/0,
5253                                         /*Mutable=*/false,
5254                                         ICIS_NoInit);
5255    Field->setAccess(AS_public);
5256    VaListTagDecl->addDecl(Field);
5257  }
5258  VaListTagDecl->completeDefinition();
5259  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5260  Context->VaListTagTy = VaListTagType;
5261
5262  // } __va_list_tag;
5263  TypedefDecl *VaListTagTypedefDecl
5264    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5265                          Context->getTranslationUnitDecl(),
5266                          SourceLocation(), SourceLocation(),
5267                          &Context->Idents.get("__va_list_tag"),
5268                          Context->getTrivialTypeSourceInfo(VaListTagType));
5269  QualType VaListTagTypedefType =
5270    Context->getTypedefType(VaListTagTypedefDecl);
5271
5272  // typedef __va_list_tag __builtin_va_list[1];
5273  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5274  QualType VaListTagArrayType
5275    = Context->getConstantArrayType(VaListTagTypedefType,
5276                                    Size, ArrayType::Normal, 0);
5277  TypeSourceInfo *TInfo
5278    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5279  TypedefDecl *VaListTypedefDecl
5280    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5281                          Context->getTranslationUnitDecl(),
5282                          SourceLocation(), SourceLocation(),
5283                          &Context->Idents.get("__builtin_va_list"),
5284                          TInfo);
5285
5286  return VaListTypedefDecl;
5287}
5288
5289static TypedefDecl *
5290CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
5291  // typedef struct __va_list_tag {
5292  RecordDecl *VaListTagDecl;
5293  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5294                                   Context->getTranslationUnitDecl(),
5295                                   &Context->Idents.get("__va_list_tag"));
5296  VaListTagDecl->startDefinition();
5297
5298  const size_t NumFields = 4;
5299  QualType FieldTypes[NumFields];
5300  const char *FieldNames[NumFields];
5301
5302  //   unsigned gp_offset;
5303  FieldTypes[0] = Context->UnsignedIntTy;
5304  FieldNames[0] = "gp_offset";
5305
5306  //   unsigned fp_offset;
5307  FieldTypes[1] = Context->UnsignedIntTy;
5308  FieldNames[1] = "fp_offset";
5309
5310  //   void* overflow_arg_area;
5311  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5312  FieldNames[2] = "overflow_arg_area";
5313
5314  //   void* reg_save_area;
5315  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5316  FieldNames[3] = "reg_save_area";
5317
5318  // Create fields
5319  for (unsigned i = 0; i < NumFields; ++i) {
5320    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5321                                         VaListTagDecl,
5322                                         SourceLocation(),
5323                                         SourceLocation(),
5324                                         &Context->Idents.get(FieldNames[i]),
5325                                         FieldTypes[i], /*TInfo=*/0,
5326                                         /*BitWidth=*/0,
5327                                         /*Mutable=*/false,
5328                                         ICIS_NoInit);
5329    Field->setAccess(AS_public);
5330    VaListTagDecl->addDecl(Field);
5331  }
5332  VaListTagDecl->completeDefinition();
5333  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5334  Context->VaListTagTy = VaListTagType;
5335
5336  // } __va_list_tag;
5337  TypedefDecl *VaListTagTypedefDecl
5338    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5339                          Context->getTranslationUnitDecl(),
5340                          SourceLocation(), SourceLocation(),
5341                          &Context->Idents.get("__va_list_tag"),
5342                          Context->getTrivialTypeSourceInfo(VaListTagType));
5343  QualType VaListTagTypedefType =
5344    Context->getTypedefType(VaListTagTypedefDecl);
5345
5346  // typedef __va_list_tag __builtin_va_list[1];
5347  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5348  QualType VaListTagArrayType
5349    = Context->getConstantArrayType(VaListTagTypedefType,
5350                                      Size, ArrayType::Normal,0);
5351  TypeSourceInfo *TInfo
5352    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5353  TypedefDecl *VaListTypedefDecl
5354    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5355                          Context->getTranslationUnitDecl(),
5356                          SourceLocation(), SourceLocation(),
5357                          &Context->Idents.get("__builtin_va_list"),
5358                          TInfo);
5359
5360  return VaListTypedefDecl;
5361}
5362
5363static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
5364  // typedef int __builtin_va_list[4];
5365  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
5366  QualType IntArrayType
5367    = Context->getConstantArrayType(Context->IntTy,
5368				    Size, ArrayType::Normal, 0);
5369  TypedefDecl *VaListTypedefDecl
5370    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5371                          Context->getTranslationUnitDecl(),
5372                          SourceLocation(), SourceLocation(),
5373                          &Context->Idents.get("__builtin_va_list"),
5374                          Context->getTrivialTypeSourceInfo(IntArrayType));
5375
5376  return VaListTypedefDecl;
5377}
5378
5379static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
5380                                     TargetInfo::BuiltinVaListKind Kind) {
5381  switch (Kind) {
5382  case TargetInfo::CharPtrBuiltinVaList:
5383    return CreateCharPtrBuiltinVaListDecl(Context);
5384  case TargetInfo::VoidPtrBuiltinVaList:
5385    return CreateVoidPtrBuiltinVaListDecl(Context);
5386  case TargetInfo::PowerABIBuiltinVaList:
5387    return CreatePowerABIBuiltinVaListDecl(Context);
5388  case TargetInfo::X86_64ABIBuiltinVaList:
5389    return CreateX86_64ABIBuiltinVaListDecl(Context);
5390  case TargetInfo::PNaClABIBuiltinVaList:
5391    return CreatePNaClABIBuiltinVaListDecl(Context);
5392  }
5393
5394  llvm_unreachable("Unhandled __builtin_va_list type kind");
5395}
5396
5397TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
5398  if (!BuiltinVaListDecl)
5399    BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
5400
5401  return BuiltinVaListDecl;
5402}
5403
5404QualType ASTContext::getVaListTagType() const {
5405  // Force the creation of VaListTagTy by building the __builtin_va_list
5406  // declaration.
5407  if (VaListTagTy.isNull())
5408    (void) getBuiltinVaListDecl();
5409
5410  return VaListTagTy;
5411}
5412
5413void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
5414  assert(ObjCConstantStringType.isNull() &&
5415         "'NSConstantString' type already set!");
5416
5417  ObjCConstantStringType = getObjCInterfaceType(Decl);
5418}
5419
5420/// \brief Retrieve the template name that corresponds to a non-empty
5421/// lookup.
5422TemplateName
5423ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
5424                                      UnresolvedSetIterator End) const {
5425  unsigned size = End - Begin;
5426  assert(size > 1 && "set is not overloaded!");
5427
5428  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
5429                          size * sizeof(FunctionTemplateDecl*));
5430  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
5431
5432  NamedDecl **Storage = OT->getStorage();
5433  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
5434    NamedDecl *D = *I;
5435    assert(isa<FunctionTemplateDecl>(D) ||
5436           (isa<UsingShadowDecl>(D) &&
5437            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
5438    *Storage++ = D;
5439  }
5440
5441  return TemplateName(OT);
5442}
5443
5444/// \brief Retrieve the template name that represents a qualified
5445/// template name such as \c std::vector.
5446TemplateName
5447ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
5448                                     bool TemplateKeyword,
5449                                     TemplateDecl *Template) const {
5450  assert(NNS && "Missing nested-name-specifier in qualified template name");
5451
5452  // FIXME: Canonicalization?
5453  llvm::FoldingSetNodeID ID;
5454  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
5455
5456  void *InsertPos = 0;
5457  QualifiedTemplateName *QTN =
5458    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5459  if (!QTN) {
5460    QTN = new (*this, llvm::alignOf<QualifiedTemplateName>())
5461        QualifiedTemplateName(NNS, TemplateKeyword, Template);
5462    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
5463  }
5464
5465  return TemplateName(QTN);
5466}
5467
5468/// \brief Retrieve the template name that represents a dependent
5469/// template name such as \c MetaFun::template apply.
5470TemplateName
5471ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5472                                     const IdentifierInfo *Name) const {
5473  assert((!NNS || NNS->isDependent()) &&
5474         "Nested name specifier must be dependent");
5475
5476  llvm::FoldingSetNodeID ID;
5477  DependentTemplateName::Profile(ID, NNS, Name);
5478
5479  void *InsertPos = 0;
5480  DependentTemplateName *QTN =
5481    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5482
5483  if (QTN)
5484    return TemplateName(QTN);
5485
5486  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5487  if (CanonNNS == NNS) {
5488    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
5489        DependentTemplateName(NNS, Name);
5490  } else {
5491    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
5492    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
5493        DependentTemplateName(NNS, Name, Canon);
5494    DependentTemplateName *CheckQTN =
5495      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5496    assert(!CheckQTN && "Dependent type name canonicalization broken");
5497    (void)CheckQTN;
5498  }
5499
5500  DependentTemplateNames.InsertNode(QTN, InsertPos);
5501  return TemplateName(QTN);
5502}
5503
5504/// \brief Retrieve the template name that represents a dependent
5505/// template name such as \c MetaFun::template operator+.
5506TemplateName
5507ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5508                                     OverloadedOperatorKind Operator) const {
5509  assert((!NNS || NNS->isDependent()) &&
5510         "Nested name specifier must be dependent");
5511
5512  llvm::FoldingSetNodeID ID;
5513  DependentTemplateName::Profile(ID, NNS, Operator);
5514
5515  void *InsertPos = 0;
5516  DependentTemplateName *QTN
5517    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5518
5519  if (QTN)
5520    return TemplateName(QTN);
5521
5522  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5523  if (CanonNNS == NNS) {
5524    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
5525        DependentTemplateName(NNS, Operator);
5526  } else {
5527    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
5528    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
5529        DependentTemplateName(NNS, Operator, Canon);
5530
5531    DependentTemplateName *CheckQTN
5532      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5533    assert(!CheckQTN && "Dependent template name canonicalization broken");
5534    (void)CheckQTN;
5535  }
5536
5537  DependentTemplateNames.InsertNode(QTN, InsertPos);
5538  return TemplateName(QTN);
5539}
5540
5541TemplateName
5542ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
5543                                         TemplateName replacement) const {
5544  llvm::FoldingSetNodeID ID;
5545  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
5546
5547  void *insertPos = 0;
5548  SubstTemplateTemplateParmStorage *subst
5549    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
5550
5551  if (!subst) {
5552    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
5553    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
5554  }
5555
5556  return TemplateName(subst);
5557}
5558
5559TemplateName
5560ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
5561                                       const TemplateArgument &ArgPack) const {
5562  ASTContext &Self = const_cast<ASTContext &>(*this);
5563  llvm::FoldingSetNodeID ID;
5564  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
5565
5566  void *InsertPos = 0;
5567  SubstTemplateTemplateParmPackStorage *Subst
5568    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
5569
5570  if (!Subst) {
5571    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
5572                                                           ArgPack.pack_size(),
5573                                                         ArgPack.pack_begin());
5574    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
5575  }
5576
5577  return TemplateName(Subst);
5578}
5579
5580/// getFromTargetType - Given one of the integer types provided by
5581/// TargetInfo, produce the corresponding type. The unsigned @p Type
5582/// is actually a value of type @c TargetInfo::IntType.
5583CanQualType ASTContext::getFromTargetType(unsigned Type) const {
5584  switch (Type) {
5585  case TargetInfo::NoInt: return CanQualType();
5586  case TargetInfo::SignedShort: return ShortTy;
5587  case TargetInfo::UnsignedShort: return UnsignedShortTy;
5588  case TargetInfo::SignedInt: return IntTy;
5589  case TargetInfo::UnsignedInt: return UnsignedIntTy;
5590  case TargetInfo::SignedLong: return LongTy;
5591  case TargetInfo::UnsignedLong: return UnsignedLongTy;
5592  case TargetInfo::SignedLongLong: return LongLongTy;
5593  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
5594  }
5595
5596  llvm_unreachable("Unhandled TargetInfo::IntType value");
5597}
5598
5599//===----------------------------------------------------------------------===//
5600//                        Type Predicates.
5601//===----------------------------------------------------------------------===//
5602
5603/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
5604/// garbage collection attribute.
5605///
5606Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
5607  if (getLangOpts().getGC() == LangOptions::NonGC)
5608    return Qualifiers::GCNone;
5609
5610  assert(getLangOpts().ObjC1);
5611  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
5612
5613  // Default behaviour under objective-C's gc is for ObjC pointers
5614  // (or pointers to them) be treated as though they were declared
5615  // as __strong.
5616  if (GCAttrs == Qualifiers::GCNone) {
5617    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
5618      return Qualifiers::Strong;
5619    else if (Ty->isPointerType())
5620      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
5621  } else {
5622    // It's not valid to set GC attributes on anything that isn't a
5623    // pointer.
5624#ifndef NDEBUG
5625    QualType CT = Ty->getCanonicalTypeInternal();
5626    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
5627      CT = AT->getElementType();
5628    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
5629#endif
5630  }
5631  return GCAttrs;
5632}
5633
5634//===----------------------------------------------------------------------===//
5635//                        Type Compatibility Testing
5636//===----------------------------------------------------------------------===//
5637
5638/// areCompatVectorTypes - Return true if the two specified vector types are
5639/// compatible.
5640static bool areCompatVectorTypes(const VectorType *LHS,
5641                                 const VectorType *RHS) {
5642  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
5643  return LHS->getElementType() == RHS->getElementType() &&
5644         LHS->getNumElements() == RHS->getNumElements();
5645}
5646
5647bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
5648                                          QualType SecondVec) {
5649  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
5650  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
5651
5652  if (hasSameUnqualifiedType(FirstVec, SecondVec))
5653    return true;
5654
5655  // Treat Neon vector types and most AltiVec vector types as if they are the
5656  // equivalent GCC vector types.
5657  const VectorType *First = FirstVec->getAs<VectorType>();
5658  const VectorType *Second = SecondVec->getAs<VectorType>();
5659  if (First->getNumElements() == Second->getNumElements() &&
5660      hasSameType(First->getElementType(), Second->getElementType()) &&
5661      First->getVectorKind() != VectorType::AltiVecPixel &&
5662      First->getVectorKind() != VectorType::AltiVecBool &&
5663      Second->getVectorKind() != VectorType::AltiVecPixel &&
5664      Second->getVectorKind() != VectorType::AltiVecBool)
5665    return true;
5666
5667  return false;
5668}
5669
5670//===----------------------------------------------------------------------===//
5671// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
5672//===----------------------------------------------------------------------===//
5673
5674/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
5675/// inheritance hierarchy of 'rProto'.
5676bool
5677ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
5678                                           ObjCProtocolDecl *rProto) const {
5679  if (declaresSameEntity(lProto, rProto))
5680    return true;
5681  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
5682       E = rProto->protocol_end(); PI != E; ++PI)
5683    if (ProtocolCompatibleWithProtocol(lProto, *PI))
5684      return true;
5685  return false;
5686}
5687
5688/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
5689/// return true if lhs's protocols conform to rhs's protocol; false
5690/// otherwise.
5691bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
5692  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
5693    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
5694  return false;
5695}
5696
5697/// ObjCQualifiedClassTypesAreCompatible - compare  Class<p,...> and
5698/// Class<p1, ...>.
5699bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
5700                                                      QualType rhs) {
5701  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
5702  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5703  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
5704
5705  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5706       E = lhsQID->qual_end(); I != E; ++I) {
5707    bool match = false;
5708    ObjCProtocolDecl *lhsProto = *I;
5709    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5710         E = rhsOPT->qual_end(); J != E; ++J) {
5711      ObjCProtocolDecl *rhsProto = *J;
5712      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
5713        match = true;
5714        break;
5715      }
5716    }
5717    if (!match)
5718      return false;
5719  }
5720  return true;
5721}
5722
5723/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
5724/// ObjCQualifiedIDType.
5725bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
5726                                                   bool compare) {
5727  // Allow id<P..> and an 'id' or void* type in all cases.
5728  if (lhs->isVoidPointerType() ||
5729      lhs->isObjCIdType() || lhs->isObjCClassType())
5730    return true;
5731  else if (rhs->isVoidPointerType() ||
5732           rhs->isObjCIdType() || rhs->isObjCClassType())
5733    return true;
5734
5735  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
5736    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5737
5738    if (!rhsOPT) return false;
5739
5740    if (rhsOPT->qual_empty()) {
5741      // If the RHS is a unqualified interface pointer "NSString*",
5742      // make sure we check the class hierarchy.
5743      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5744        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5745             E = lhsQID->qual_end(); I != E; ++I) {
5746          // when comparing an id<P> on lhs with a static type on rhs,
5747          // see if static class implements all of id's protocols, directly or
5748          // through its super class and categories.
5749          if (!rhsID->ClassImplementsProtocol(*I, true))
5750            return false;
5751        }
5752      }
5753      // If there are no qualifiers and no interface, we have an 'id'.
5754      return true;
5755    }
5756    // Both the right and left sides have qualifiers.
5757    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5758         E = lhsQID->qual_end(); I != E; ++I) {
5759      ObjCProtocolDecl *lhsProto = *I;
5760      bool match = false;
5761
5762      // when comparing an id<P> on lhs with a static type on rhs,
5763      // see if static class implements all of id's protocols, directly or
5764      // through its super class and categories.
5765      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5766           E = rhsOPT->qual_end(); J != E; ++J) {
5767        ObjCProtocolDecl *rhsProto = *J;
5768        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5769            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5770          match = true;
5771          break;
5772        }
5773      }
5774      // If the RHS is a qualified interface pointer "NSString<P>*",
5775      // make sure we check the class hierarchy.
5776      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5777        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5778             E = lhsQID->qual_end(); I != E; ++I) {
5779          // when comparing an id<P> on lhs with a static type on rhs,
5780          // see if static class implements all of id's protocols, directly or
5781          // through its super class and categories.
5782          if (rhsID->ClassImplementsProtocol(*I, true)) {
5783            match = true;
5784            break;
5785          }
5786        }
5787      }
5788      if (!match)
5789        return false;
5790    }
5791
5792    return true;
5793  }
5794
5795  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
5796  assert(rhsQID && "One of the LHS/RHS should be id<x>");
5797
5798  if (const ObjCObjectPointerType *lhsOPT =
5799        lhs->getAsObjCInterfacePointerType()) {
5800    // If both the right and left sides have qualifiers.
5801    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
5802         E = lhsOPT->qual_end(); I != E; ++I) {
5803      ObjCProtocolDecl *lhsProto = *I;
5804      bool match = false;
5805
5806      // when comparing an id<P> on rhs with a static type on lhs,
5807      // see if static class implements all of id's protocols, directly or
5808      // through its super class and categories.
5809      // First, lhs protocols in the qualifier list must be found, direct
5810      // or indirect in rhs's qualifier list or it is a mismatch.
5811      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5812           E = rhsQID->qual_end(); J != E; ++J) {
5813        ObjCProtocolDecl *rhsProto = *J;
5814        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5815            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5816          match = true;
5817          break;
5818        }
5819      }
5820      if (!match)
5821        return false;
5822    }
5823
5824    // Static class's protocols, or its super class or category protocols
5825    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
5826    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
5827      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5828      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
5829      // This is rather dubious but matches gcc's behavior. If lhs has
5830      // no type qualifier and its class has no static protocol(s)
5831      // assume that it is mismatch.
5832      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
5833        return false;
5834      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5835           LHSInheritedProtocols.begin(),
5836           E = LHSInheritedProtocols.end(); I != E; ++I) {
5837        bool match = false;
5838        ObjCProtocolDecl *lhsProto = (*I);
5839        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5840             E = rhsQID->qual_end(); J != E; ++J) {
5841          ObjCProtocolDecl *rhsProto = *J;
5842          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5843              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5844            match = true;
5845            break;
5846          }
5847        }
5848        if (!match)
5849          return false;
5850      }
5851    }
5852    return true;
5853  }
5854  return false;
5855}
5856
5857/// canAssignObjCInterfaces - Return true if the two interface types are
5858/// compatible for assignment from RHS to LHS.  This handles validation of any
5859/// protocol qualifiers on the LHS or RHS.
5860///
5861bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
5862                                         const ObjCObjectPointerType *RHSOPT) {
5863  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5864  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5865
5866  // If either type represents the built-in 'id' or 'Class' types, return true.
5867  if (LHS->isObjCUnqualifiedIdOrClass() ||
5868      RHS->isObjCUnqualifiedIdOrClass())
5869    return true;
5870
5871  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
5872    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5873                                             QualType(RHSOPT,0),
5874                                             false);
5875
5876  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
5877    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
5878                                                QualType(RHSOPT,0));
5879
5880  // If we have 2 user-defined types, fall into that path.
5881  if (LHS->getInterface() && RHS->getInterface())
5882    return canAssignObjCInterfaces(LHS, RHS);
5883
5884  return false;
5885}
5886
5887/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
5888/// for providing type-safety for objective-c pointers used to pass/return
5889/// arguments in block literals. When passed as arguments, passing 'A*' where
5890/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
5891/// not OK. For the return type, the opposite is not OK.
5892bool ASTContext::canAssignObjCInterfacesInBlockPointer(
5893                                         const ObjCObjectPointerType *LHSOPT,
5894                                         const ObjCObjectPointerType *RHSOPT,
5895                                         bool BlockReturnType) {
5896  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
5897    return true;
5898
5899  if (LHSOPT->isObjCBuiltinType()) {
5900    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
5901  }
5902
5903  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
5904    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5905                                             QualType(RHSOPT,0),
5906                                             false);
5907
5908  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
5909  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
5910  if (LHS && RHS)  { // We have 2 user-defined types.
5911    if (LHS != RHS) {
5912      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
5913        return BlockReturnType;
5914      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
5915        return !BlockReturnType;
5916    }
5917    else
5918      return true;
5919  }
5920  return false;
5921}
5922
5923/// getIntersectionOfProtocols - This routine finds the intersection of set
5924/// of protocols inherited from two distinct objective-c pointer objects.
5925/// It is used to build composite qualifier list of the composite type of
5926/// the conditional expression involving two objective-c pointer objects.
5927static
5928void getIntersectionOfProtocols(ASTContext &Context,
5929                                const ObjCObjectPointerType *LHSOPT,
5930                                const ObjCObjectPointerType *RHSOPT,
5931      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
5932
5933  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5934  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5935  assert(LHS->getInterface() && "LHS must have an interface base");
5936  assert(RHS->getInterface() && "RHS must have an interface base");
5937
5938  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
5939  unsigned LHSNumProtocols = LHS->getNumProtocols();
5940  if (LHSNumProtocols > 0)
5941    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
5942  else {
5943    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5944    Context.CollectInheritedProtocols(LHS->getInterface(),
5945                                      LHSInheritedProtocols);
5946    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
5947                                LHSInheritedProtocols.end());
5948  }
5949
5950  unsigned RHSNumProtocols = RHS->getNumProtocols();
5951  if (RHSNumProtocols > 0) {
5952    ObjCProtocolDecl **RHSProtocols =
5953      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
5954    for (unsigned i = 0; i < RHSNumProtocols; ++i)
5955      if (InheritedProtocolSet.count(RHSProtocols[i]))
5956        IntersectionOfProtocols.push_back(RHSProtocols[i]);
5957  } else {
5958    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
5959    Context.CollectInheritedProtocols(RHS->getInterface(),
5960                                      RHSInheritedProtocols);
5961    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5962         RHSInheritedProtocols.begin(),
5963         E = RHSInheritedProtocols.end(); I != E; ++I)
5964      if (InheritedProtocolSet.count((*I)))
5965        IntersectionOfProtocols.push_back((*I));
5966  }
5967}
5968
5969/// areCommonBaseCompatible - Returns common base class of the two classes if
5970/// one found. Note that this is O'2 algorithm. But it will be called as the
5971/// last type comparison in a ?-exp of ObjC pointer types before a
5972/// warning is issued. So, its invokation is extremely rare.
5973QualType ASTContext::areCommonBaseCompatible(
5974                                          const ObjCObjectPointerType *Lptr,
5975                                          const ObjCObjectPointerType *Rptr) {
5976  const ObjCObjectType *LHS = Lptr->getObjectType();
5977  const ObjCObjectType *RHS = Rptr->getObjectType();
5978  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
5979  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
5980  if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
5981    return QualType();
5982
5983  do {
5984    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
5985    if (canAssignObjCInterfaces(LHS, RHS)) {
5986      SmallVector<ObjCProtocolDecl *, 8> Protocols;
5987      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
5988
5989      QualType Result = QualType(LHS, 0);
5990      if (!Protocols.empty())
5991        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
5992      Result = getObjCObjectPointerType(Result);
5993      return Result;
5994    }
5995  } while ((LDecl = LDecl->getSuperClass()));
5996
5997  return QualType();
5998}
5999
6000bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
6001                                         const ObjCObjectType *RHS) {
6002  assert(LHS->getInterface() && "LHS is not an interface type");
6003  assert(RHS->getInterface() && "RHS is not an interface type");
6004
6005  // Verify that the base decls are compatible: the RHS must be a subclass of
6006  // the LHS.
6007  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
6008    return false;
6009
6010  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
6011  // protocol qualified at all, then we are good.
6012  if (LHS->getNumProtocols() == 0)
6013    return true;
6014
6015  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
6016  // more detailed analysis is required.
6017  if (RHS->getNumProtocols() == 0) {
6018    // OK, if LHS is a superclass of RHS *and*
6019    // this superclass is assignment compatible with LHS.
6020    // false otherwise.
6021    bool IsSuperClass =
6022      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
6023    if (IsSuperClass) {
6024      // OK if conversion of LHS to SuperClass results in narrowing of types
6025      // ; i.e., SuperClass may implement at least one of the protocols
6026      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
6027      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
6028      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
6029      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
6030      // If super class has no protocols, it is not a match.
6031      if (SuperClassInheritedProtocols.empty())
6032        return false;
6033
6034      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6035           LHSPE = LHS->qual_end();
6036           LHSPI != LHSPE; LHSPI++) {
6037        bool SuperImplementsProtocol = false;
6038        ObjCProtocolDecl *LHSProto = (*LHSPI);
6039
6040        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6041             SuperClassInheritedProtocols.begin(),
6042             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
6043          ObjCProtocolDecl *SuperClassProto = (*I);
6044          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
6045            SuperImplementsProtocol = true;
6046            break;
6047          }
6048        }
6049        if (!SuperImplementsProtocol)
6050          return false;
6051      }
6052      return true;
6053    }
6054    return false;
6055  }
6056
6057  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6058                                     LHSPE = LHS->qual_end();
6059       LHSPI != LHSPE; LHSPI++) {
6060    bool RHSImplementsProtocol = false;
6061
6062    // If the RHS doesn't implement the protocol on the left, the types
6063    // are incompatible.
6064    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
6065                                       RHSPE = RHS->qual_end();
6066         RHSPI != RHSPE; RHSPI++) {
6067      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
6068        RHSImplementsProtocol = true;
6069        break;
6070      }
6071    }
6072    // FIXME: For better diagnostics, consider passing back the protocol name.
6073    if (!RHSImplementsProtocol)
6074      return false;
6075  }
6076  // The RHS implements all protocols listed on the LHS.
6077  return true;
6078}
6079
6080bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
6081  // get the "pointed to" types
6082  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
6083  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
6084
6085  if (!LHSOPT || !RHSOPT)
6086    return false;
6087
6088  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
6089         canAssignObjCInterfaces(RHSOPT, LHSOPT);
6090}
6091
6092bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
6093  return canAssignObjCInterfaces(
6094                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
6095                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
6096}
6097
6098/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
6099/// both shall have the identically qualified version of a compatible type.
6100/// C99 6.2.7p1: Two types have compatible types if their types are the
6101/// same. See 6.7.[2,3,5] for additional rules.
6102bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
6103                                    bool CompareUnqualified) {
6104  if (getLangOpts().CPlusPlus)
6105    return hasSameType(LHS, RHS);
6106
6107  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
6108}
6109
6110bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
6111  return typesAreCompatible(LHS, RHS);
6112}
6113
6114bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
6115  return !mergeTypes(LHS, RHS, true).isNull();
6116}
6117
6118/// mergeTransparentUnionType - if T is a transparent union type and a member
6119/// of T is compatible with SubType, return the merged type, else return
6120/// QualType()
6121QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
6122                                               bool OfBlockPointer,
6123                                               bool Unqualified) {
6124  if (const RecordType *UT = T->getAsUnionType()) {
6125    RecordDecl *UD = UT->getDecl();
6126    if (UD->hasAttr<TransparentUnionAttr>()) {
6127      for (RecordDecl::field_iterator it = UD->field_begin(),
6128           itend = UD->field_end(); it != itend; ++it) {
6129        QualType ET = it->getType().getUnqualifiedType();
6130        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
6131        if (!MT.isNull())
6132          return MT;
6133      }
6134    }
6135  }
6136
6137  return QualType();
6138}
6139
6140/// mergeFunctionArgumentTypes - merge two types which appear as function
6141/// argument types
6142QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
6143                                                bool OfBlockPointer,
6144                                                bool Unqualified) {
6145  // GNU extension: two types are compatible if they appear as a function
6146  // argument, one of the types is a transparent union type and the other
6147  // type is compatible with a union member
6148  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
6149                                              Unqualified);
6150  if (!lmerge.isNull())
6151    return lmerge;
6152
6153  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
6154                                              Unqualified);
6155  if (!rmerge.isNull())
6156    return rmerge;
6157
6158  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
6159}
6160
6161QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
6162                                        bool OfBlockPointer,
6163                                        bool Unqualified) {
6164  const FunctionType *lbase = lhs->getAs<FunctionType>();
6165  const FunctionType *rbase = rhs->getAs<FunctionType>();
6166  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
6167  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
6168  bool allLTypes = true;
6169  bool allRTypes = true;
6170
6171  // Check return type
6172  QualType retType;
6173  if (OfBlockPointer) {
6174    QualType RHS = rbase->getResultType();
6175    QualType LHS = lbase->getResultType();
6176    bool UnqualifiedResult = Unqualified;
6177    if (!UnqualifiedResult)
6178      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
6179    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
6180  }
6181  else
6182    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
6183                         Unqualified);
6184  if (retType.isNull()) return QualType();
6185
6186  if (Unqualified)
6187    retType = retType.getUnqualifiedType();
6188
6189  CanQualType LRetType = getCanonicalType(lbase->getResultType());
6190  CanQualType RRetType = getCanonicalType(rbase->getResultType());
6191  if (Unqualified) {
6192    LRetType = LRetType.getUnqualifiedType();
6193    RRetType = RRetType.getUnqualifiedType();
6194  }
6195
6196  if (getCanonicalType(retType) != LRetType)
6197    allLTypes = false;
6198  if (getCanonicalType(retType) != RRetType)
6199    allRTypes = false;
6200
6201  // FIXME: double check this
6202  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
6203  //                           rbase->getRegParmAttr() != 0 &&
6204  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
6205  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
6206  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
6207
6208  // Compatible functions must have compatible calling conventions
6209  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
6210    return QualType();
6211
6212  // Regparm is part of the calling convention.
6213  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
6214    return QualType();
6215  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
6216    return QualType();
6217
6218  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
6219    return QualType();
6220
6221  // functypes which return are preferred over those that do not.
6222  if (lbaseInfo.getNoReturn() && !rbaseInfo.getNoReturn())
6223    allLTypes = false;
6224  else if (!lbaseInfo.getNoReturn() && rbaseInfo.getNoReturn())
6225    allRTypes = false;
6226  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
6227  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
6228
6229  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
6230
6231  if (lproto && rproto) { // two C99 style function prototypes
6232    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
6233           "C++ shouldn't be here");
6234    unsigned lproto_nargs = lproto->getNumArgs();
6235    unsigned rproto_nargs = rproto->getNumArgs();
6236
6237    // Compatible functions must have the same number of arguments
6238    if (lproto_nargs != rproto_nargs)
6239      return QualType();
6240
6241    // Variadic and non-variadic functions aren't compatible
6242    if (lproto->isVariadic() != rproto->isVariadic())
6243      return QualType();
6244
6245    if (lproto->getTypeQuals() != rproto->getTypeQuals())
6246      return QualType();
6247
6248    if (LangOpts.ObjCAutoRefCount &&
6249        !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
6250      return QualType();
6251
6252    // Check argument compatibility
6253    SmallVector<QualType, 10> types;
6254    for (unsigned i = 0; i < lproto_nargs; i++) {
6255      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
6256      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
6257      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
6258                                                    OfBlockPointer,
6259                                                    Unqualified);
6260      if (argtype.isNull()) return QualType();
6261
6262      if (Unqualified)
6263        argtype = argtype.getUnqualifiedType();
6264
6265      types.push_back(argtype);
6266      if (Unqualified) {
6267        largtype = largtype.getUnqualifiedType();
6268        rargtype = rargtype.getUnqualifiedType();
6269      }
6270
6271      if (getCanonicalType(argtype) != getCanonicalType(largtype))
6272        allLTypes = false;
6273      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
6274        allRTypes = false;
6275    }
6276
6277    if (allLTypes) return lhs;
6278    if (allRTypes) return rhs;
6279
6280    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
6281    EPI.ExtInfo = einfo;
6282    return getFunctionType(retType, types.begin(), types.size(), EPI);
6283  }
6284
6285  if (lproto) allRTypes = false;
6286  if (rproto) allLTypes = false;
6287
6288  const FunctionProtoType *proto = lproto ? lproto : rproto;
6289  if (proto) {
6290    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
6291    if (proto->isVariadic()) return QualType();
6292    // Check that the types are compatible with the types that
6293    // would result from default argument promotions (C99 6.7.5.3p15).
6294    // The only types actually affected are promotable integer
6295    // types and floats, which would be passed as a different
6296    // type depending on whether the prototype is visible.
6297    unsigned proto_nargs = proto->getNumArgs();
6298    for (unsigned i = 0; i < proto_nargs; ++i) {
6299      QualType argTy = proto->getArgType(i);
6300
6301      // Look at the promotion type of enum types, since that is the type used
6302      // to pass enum values.
6303      if (const EnumType *Enum = argTy->getAs<EnumType>())
6304        argTy = Enum->getDecl()->getPromotionType();
6305
6306      if (argTy->isPromotableIntegerType() ||
6307          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
6308        return QualType();
6309    }
6310
6311    if (allLTypes) return lhs;
6312    if (allRTypes) return rhs;
6313
6314    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
6315    EPI.ExtInfo = einfo;
6316    return getFunctionType(retType, proto->arg_type_begin(),
6317                           proto->getNumArgs(), EPI);
6318  }
6319
6320  if (allLTypes) return lhs;
6321  if (allRTypes) return rhs;
6322  return getFunctionNoProtoType(retType, einfo);
6323}
6324
6325QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
6326                                bool OfBlockPointer,
6327                                bool Unqualified, bool BlockReturnType) {
6328  // C++ [expr]: If an expression initially has the type "reference to T", the
6329  // type is adjusted to "T" prior to any further analysis, the expression
6330  // designates the object or function denoted by the reference, and the
6331  // expression is an lvalue unless the reference is an rvalue reference and
6332  // the expression is a function call (possibly inside parentheses).
6333  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
6334  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
6335
6336  if (Unqualified) {
6337    LHS = LHS.getUnqualifiedType();
6338    RHS = RHS.getUnqualifiedType();
6339  }
6340
6341  QualType LHSCan = getCanonicalType(LHS),
6342           RHSCan = getCanonicalType(RHS);
6343
6344  // If two types are identical, they are compatible.
6345  if (LHSCan == RHSCan)
6346    return LHS;
6347
6348  // If the qualifiers are different, the types aren't compatible... mostly.
6349  Qualifiers LQuals = LHSCan.getLocalQualifiers();
6350  Qualifiers RQuals = RHSCan.getLocalQualifiers();
6351  if (LQuals != RQuals) {
6352    // If any of these qualifiers are different, we have a type
6353    // mismatch.
6354    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
6355        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
6356        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
6357      return QualType();
6358
6359    // Exactly one GC qualifier difference is allowed: __strong is
6360    // okay if the other type has no GC qualifier but is an Objective
6361    // C object pointer (i.e. implicitly strong by default).  We fix
6362    // this by pretending that the unqualified type was actually
6363    // qualified __strong.
6364    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
6365    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
6366    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
6367
6368    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
6369      return QualType();
6370
6371    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
6372      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
6373    }
6374    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
6375      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
6376    }
6377    return QualType();
6378  }
6379
6380  // Okay, qualifiers are equal.
6381
6382  Type::TypeClass LHSClass = LHSCan->getTypeClass();
6383  Type::TypeClass RHSClass = RHSCan->getTypeClass();
6384
6385  // We want to consider the two function types to be the same for these
6386  // comparisons, just force one to the other.
6387  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
6388  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
6389
6390  // Same as above for arrays
6391  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
6392    LHSClass = Type::ConstantArray;
6393  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
6394    RHSClass = Type::ConstantArray;
6395
6396  // ObjCInterfaces are just specialized ObjCObjects.
6397  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
6398  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
6399
6400  // Canonicalize ExtVector -> Vector.
6401  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
6402  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
6403
6404  // If the canonical type classes don't match.
6405  if (LHSClass != RHSClass) {
6406    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
6407    // a signed integer type, or an unsigned integer type.
6408    // Compatibility is based on the underlying type, not the promotion
6409    // type.
6410    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
6411      QualType TINT = ETy->getDecl()->getIntegerType();
6412      if (!TINT.isNull() && hasSameType(TINT, RHSCan.getUnqualifiedType()))
6413        return RHS;
6414    }
6415    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
6416      QualType TINT = ETy->getDecl()->getIntegerType();
6417      if (!TINT.isNull() && hasSameType(TINT, LHSCan.getUnqualifiedType()))
6418        return LHS;
6419    }
6420    // allow block pointer type to match an 'id' type.
6421    if (OfBlockPointer && !BlockReturnType) {
6422       if (LHS->isObjCIdType() && RHS->isBlockPointerType())
6423         return LHS;
6424      if (RHS->isObjCIdType() && LHS->isBlockPointerType())
6425        return RHS;
6426    }
6427
6428    return QualType();
6429  }
6430
6431  // The canonical type classes match.
6432  switch (LHSClass) {
6433#define TYPE(Class, Base)
6434#define ABSTRACT_TYPE(Class, Base)
6435#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
6436#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
6437#define DEPENDENT_TYPE(Class, Base) case Type::Class:
6438#include "clang/AST/TypeNodes.def"
6439    llvm_unreachable("Non-canonical and dependent types shouldn't get here");
6440
6441  case Type::LValueReference:
6442  case Type::RValueReference:
6443  case Type::MemberPointer:
6444    llvm_unreachable("C++ should never be in mergeTypes");
6445
6446  case Type::ObjCInterface:
6447  case Type::IncompleteArray:
6448  case Type::VariableArray:
6449  case Type::FunctionProto:
6450  case Type::ExtVector:
6451    llvm_unreachable("Types are eliminated above");
6452
6453  case Type::Pointer:
6454  {
6455    // Merge two pointer types, while trying to preserve typedef info
6456    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
6457    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
6458    if (Unqualified) {
6459      LHSPointee = LHSPointee.getUnqualifiedType();
6460      RHSPointee = RHSPointee.getUnqualifiedType();
6461    }
6462    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
6463                                     Unqualified);
6464    if (ResultType.isNull()) return QualType();
6465    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
6466      return LHS;
6467    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
6468      return RHS;
6469    return getPointerType(ResultType);
6470  }
6471  case Type::BlockPointer:
6472  {
6473    // Merge two block pointer types, while trying to preserve typedef info
6474    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
6475    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
6476    if (Unqualified) {
6477      LHSPointee = LHSPointee.getUnqualifiedType();
6478      RHSPointee = RHSPointee.getUnqualifiedType();
6479    }
6480    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
6481                                     Unqualified);
6482    if (ResultType.isNull()) return QualType();
6483    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
6484      return LHS;
6485    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
6486      return RHS;
6487    return getBlockPointerType(ResultType);
6488  }
6489  case Type::Atomic:
6490  {
6491    // Merge two pointer types, while trying to preserve typedef info
6492    QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
6493    QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
6494    if (Unqualified) {
6495      LHSValue = LHSValue.getUnqualifiedType();
6496      RHSValue = RHSValue.getUnqualifiedType();
6497    }
6498    QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
6499                                     Unqualified);
6500    if (ResultType.isNull()) return QualType();
6501    if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
6502      return LHS;
6503    if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
6504      return RHS;
6505    return getAtomicType(ResultType);
6506  }
6507  case Type::ConstantArray:
6508  {
6509    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
6510    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
6511    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
6512      return QualType();
6513
6514    QualType LHSElem = getAsArrayType(LHS)->getElementType();
6515    QualType RHSElem = getAsArrayType(RHS)->getElementType();
6516    if (Unqualified) {
6517      LHSElem = LHSElem.getUnqualifiedType();
6518      RHSElem = RHSElem.getUnqualifiedType();
6519    }
6520
6521    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
6522    if (ResultType.isNull()) return QualType();
6523    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6524      return LHS;
6525    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6526      return RHS;
6527    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
6528                                          ArrayType::ArraySizeModifier(), 0);
6529    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
6530                                          ArrayType::ArraySizeModifier(), 0);
6531    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
6532    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
6533    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6534      return LHS;
6535    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6536      return RHS;
6537    if (LVAT) {
6538      // FIXME: This isn't correct! But tricky to implement because
6539      // the array's size has to be the size of LHS, but the type
6540      // has to be different.
6541      return LHS;
6542    }
6543    if (RVAT) {
6544      // FIXME: This isn't correct! But tricky to implement because
6545      // the array's size has to be the size of RHS, but the type
6546      // has to be different.
6547      return RHS;
6548    }
6549    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
6550    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
6551    return getIncompleteArrayType(ResultType,
6552                                  ArrayType::ArraySizeModifier(), 0);
6553  }
6554  case Type::FunctionNoProto:
6555    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
6556  case Type::Record:
6557  case Type::Enum:
6558    return QualType();
6559  case Type::Builtin:
6560    // Only exactly equal builtin types are compatible, which is tested above.
6561    return QualType();
6562  case Type::Complex:
6563    // Distinct complex types are incompatible.
6564    return QualType();
6565  case Type::Vector:
6566    // FIXME: The merged type should be an ExtVector!
6567    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
6568                             RHSCan->getAs<VectorType>()))
6569      return LHS;
6570    return QualType();
6571  case Type::ObjCObject: {
6572    // Check if the types are assignment compatible.
6573    // FIXME: This should be type compatibility, e.g. whether
6574    // "LHS x; RHS x;" at global scope is legal.
6575    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
6576    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
6577    if (canAssignObjCInterfaces(LHSIface, RHSIface))
6578      return LHS;
6579
6580    return QualType();
6581  }
6582  case Type::ObjCObjectPointer: {
6583    if (OfBlockPointer) {
6584      if (canAssignObjCInterfacesInBlockPointer(
6585                                          LHS->getAs<ObjCObjectPointerType>(),
6586                                          RHS->getAs<ObjCObjectPointerType>(),
6587                                          BlockReturnType))
6588        return LHS;
6589      return QualType();
6590    }
6591    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
6592                                RHS->getAs<ObjCObjectPointerType>()))
6593      return LHS;
6594
6595    return QualType();
6596  }
6597  }
6598
6599  llvm_unreachable("Invalid Type::Class!");
6600}
6601
6602bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
6603                   const FunctionProtoType *FromFunctionType,
6604                   const FunctionProtoType *ToFunctionType) {
6605  if (FromFunctionType->hasAnyConsumedArgs() !=
6606      ToFunctionType->hasAnyConsumedArgs())
6607    return false;
6608  FunctionProtoType::ExtProtoInfo FromEPI =
6609    FromFunctionType->getExtProtoInfo();
6610  FunctionProtoType::ExtProtoInfo ToEPI =
6611    ToFunctionType->getExtProtoInfo();
6612  if (FromEPI.ConsumedArguments && ToEPI.ConsumedArguments)
6613    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
6614         ArgIdx != NumArgs; ++ArgIdx)  {
6615      if (FromEPI.ConsumedArguments[ArgIdx] !=
6616          ToEPI.ConsumedArguments[ArgIdx])
6617        return false;
6618    }
6619  return true;
6620}
6621
6622/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
6623/// 'RHS' attributes and returns the merged version; including for function
6624/// return types.
6625QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
6626  QualType LHSCan = getCanonicalType(LHS),
6627  RHSCan = getCanonicalType(RHS);
6628  // If two types are identical, they are compatible.
6629  if (LHSCan == RHSCan)
6630    return LHS;
6631  if (RHSCan->isFunctionType()) {
6632    if (!LHSCan->isFunctionType())
6633      return QualType();
6634    QualType OldReturnType =
6635      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
6636    QualType NewReturnType =
6637      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
6638    QualType ResReturnType =
6639      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
6640    if (ResReturnType.isNull())
6641      return QualType();
6642    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
6643      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
6644      // In either case, use OldReturnType to build the new function type.
6645      const FunctionType *F = LHS->getAs<FunctionType>();
6646      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
6647        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6648        EPI.ExtInfo = getFunctionExtInfo(LHS);
6649        QualType ResultType
6650          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
6651                            FPT->getNumArgs(), EPI);
6652        return ResultType;
6653      }
6654    }
6655    return QualType();
6656  }
6657
6658  // If the qualifiers are different, the types can still be merged.
6659  Qualifiers LQuals = LHSCan.getLocalQualifiers();
6660  Qualifiers RQuals = RHSCan.getLocalQualifiers();
6661  if (LQuals != RQuals) {
6662    // If any of these qualifiers are different, we have a type mismatch.
6663    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
6664        LQuals.getAddressSpace() != RQuals.getAddressSpace())
6665      return QualType();
6666
6667    // Exactly one GC qualifier difference is allowed: __strong is
6668    // okay if the other type has no GC qualifier but is an Objective
6669    // C object pointer (i.e. implicitly strong by default).  We fix
6670    // this by pretending that the unqualified type was actually
6671    // qualified __strong.
6672    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
6673    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
6674    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
6675
6676    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
6677      return QualType();
6678
6679    if (GC_L == Qualifiers::Strong)
6680      return LHS;
6681    if (GC_R == Qualifiers::Strong)
6682      return RHS;
6683    return QualType();
6684  }
6685
6686  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
6687    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6688    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6689    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
6690    if (ResQT == LHSBaseQT)
6691      return LHS;
6692    if (ResQT == RHSBaseQT)
6693      return RHS;
6694  }
6695  return QualType();
6696}
6697
6698//===----------------------------------------------------------------------===//
6699//                         Integer Predicates
6700//===----------------------------------------------------------------------===//
6701
6702unsigned ASTContext::getIntWidth(QualType T) const {
6703  if (const EnumType *ET = dyn_cast<EnumType>(T))
6704    T = ET->getDecl()->getIntegerType();
6705  if (T->isBooleanType())
6706    return 1;
6707  // For builtin types, just use the standard type sizing method
6708  return (unsigned)getTypeSize(T);
6709}
6710
6711QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
6712  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
6713
6714  // Turn <4 x signed int> -> <4 x unsigned int>
6715  if (const VectorType *VTy = T->getAs<VectorType>())
6716    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
6717                         VTy->getNumElements(), VTy->getVectorKind());
6718
6719  // For enums, we return the unsigned version of the base type.
6720  if (const EnumType *ETy = T->getAs<EnumType>())
6721    T = ETy->getDecl()->getIntegerType();
6722
6723  const BuiltinType *BTy = T->getAs<BuiltinType>();
6724  assert(BTy && "Unexpected signed integer type");
6725  switch (BTy->getKind()) {
6726  case BuiltinType::Char_S:
6727  case BuiltinType::SChar:
6728    return UnsignedCharTy;
6729  case BuiltinType::Short:
6730    return UnsignedShortTy;
6731  case BuiltinType::Int:
6732    return UnsignedIntTy;
6733  case BuiltinType::Long:
6734    return UnsignedLongTy;
6735  case BuiltinType::LongLong:
6736    return UnsignedLongLongTy;
6737  case BuiltinType::Int128:
6738    return UnsignedInt128Ty;
6739  default:
6740    llvm_unreachable("Unexpected signed integer type");
6741  }
6742}
6743
6744ASTMutationListener::~ASTMutationListener() { }
6745
6746
6747//===----------------------------------------------------------------------===//
6748//                          Builtin Type Computation
6749//===----------------------------------------------------------------------===//
6750
6751/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
6752/// pointer over the consumed characters.  This returns the resultant type.  If
6753/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
6754/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
6755/// a vector of "i*".
6756///
6757/// RequiresICE is filled in on return to indicate whether the value is required
6758/// to be an Integer Constant Expression.
6759static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
6760                                  ASTContext::GetBuiltinTypeError &Error,
6761                                  bool &RequiresICE,
6762                                  bool AllowTypeModifiers) {
6763  // Modifiers.
6764  int HowLong = 0;
6765  bool Signed = false, Unsigned = false;
6766  RequiresICE = false;
6767
6768  // Read the prefixed modifiers first.
6769  bool Done = false;
6770  while (!Done) {
6771    switch (*Str++) {
6772    default: Done = true; --Str; break;
6773    case 'I':
6774      RequiresICE = true;
6775      break;
6776    case 'S':
6777      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
6778      assert(!Signed && "Can't use 'S' modifier multiple times!");
6779      Signed = true;
6780      break;
6781    case 'U':
6782      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
6783      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
6784      Unsigned = true;
6785      break;
6786    case 'L':
6787      assert(HowLong <= 2 && "Can't have LLLL modifier");
6788      ++HowLong;
6789      break;
6790    }
6791  }
6792
6793  QualType Type;
6794
6795  // Read the base type.
6796  switch (*Str++) {
6797  default: llvm_unreachable("Unknown builtin type letter!");
6798  case 'v':
6799    assert(HowLong == 0 && !Signed && !Unsigned &&
6800           "Bad modifiers used with 'v'!");
6801    Type = Context.VoidTy;
6802    break;
6803  case 'f':
6804    assert(HowLong == 0 && !Signed && !Unsigned &&
6805           "Bad modifiers used with 'f'!");
6806    Type = Context.FloatTy;
6807    break;
6808  case 'd':
6809    assert(HowLong < 2 && !Signed && !Unsigned &&
6810           "Bad modifiers used with 'd'!");
6811    if (HowLong)
6812      Type = Context.LongDoubleTy;
6813    else
6814      Type = Context.DoubleTy;
6815    break;
6816  case 's':
6817    assert(HowLong == 0 && "Bad modifiers used with 's'!");
6818    if (Unsigned)
6819      Type = Context.UnsignedShortTy;
6820    else
6821      Type = Context.ShortTy;
6822    break;
6823  case 'i':
6824    if (HowLong == 3)
6825      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
6826    else if (HowLong == 2)
6827      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
6828    else if (HowLong == 1)
6829      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
6830    else
6831      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
6832    break;
6833  case 'c':
6834    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
6835    if (Signed)
6836      Type = Context.SignedCharTy;
6837    else if (Unsigned)
6838      Type = Context.UnsignedCharTy;
6839    else
6840      Type = Context.CharTy;
6841    break;
6842  case 'b': // boolean
6843    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
6844    Type = Context.BoolTy;
6845    break;
6846  case 'z':  // size_t.
6847    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
6848    Type = Context.getSizeType();
6849    break;
6850  case 'F':
6851    Type = Context.getCFConstantStringType();
6852    break;
6853  case 'G':
6854    Type = Context.getObjCIdType();
6855    break;
6856  case 'H':
6857    Type = Context.getObjCSelType();
6858    break;
6859  case 'a':
6860    Type = Context.getBuiltinVaListType();
6861    assert(!Type.isNull() && "builtin va list type not initialized!");
6862    break;
6863  case 'A':
6864    // This is a "reference" to a va_list; however, what exactly
6865    // this means depends on how va_list is defined. There are two
6866    // different kinds of va_list: ones passed by value, and ones
6867    // passed by reference.  An example of a by-value va_list is
6868    // x86, where va_list is a char*. An example of by-ref va_list
6869    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
6870    // we want this argument to be a char*&; for x86-64, we want
6871    // it to be a __va_list_tag*.
6872    Type = Context.getBuiltinVaListType();
6873    assert(!Type.isNull() && "builtin va list type not initialized!");
6874    if (Type->isArrayType())
6875      Type = Context.getArrayDecayedType(Type);
6876    else
6877      Type = Context.getLValueReferenceType(Type);
6878    break;
6879  case 'V': {
6880    char *End;
6881    unsigned NumElements = strtoul(Str, &End, 10);
6882    assert(End != Str && "Missing vector size");
6883    Str = End;
6884
6885    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
6886                                             RequiresICE, false);
6887    assert(!RequiresICE && "Can't require vector ICE");
6888
6889    // TODO: No way to make AltiVec vectors in builtins yet.
6890    Type = Context.getVectorType(ElementType, NumElements,
6891                                 VectorType::GenericVector);
6892    break;
6893  }
6894  case 'E': {
6895    char *End;
6896
6897    unsigned NumElements = strtoul(Str, &End, 10);
6898    assert(End != Str && "Missing vector size");
6899
6900    Str = End;
6901
6902    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
6903                                             false);
6904    Type = Context.getExtVectorType(ElementType, NumElements);
6905    break;
6906  }
6907  case 'X': {
6908    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
6909                                             false);
6910    assert(!RequiresICE && "Can't require complex ICE");
6911    Type = Context.getComplexType(ElementType);
6912    break;
6913  }
6914  case 'Y' : {
6915    Type = Context.getPointerDiffType();
6916    break;
6917  }
6918  case 'P':
6919    Type = Context.getFILEType();
6920    if (Type.isNull()) {
6921      Error = ASTContext::GE_Missing_stdio;
6922      return QualType();
6923    }
6924    break;
6925  case 'J':
6926    if (Signed)
6927      Type = Context.getsigjmp_bufType();
6928    else
6929      Type = Context.getjmp_bufType();
6930
6931    if (Type.isNull()) {
6932      Error = ASTContext::GE_Missing_setjmp;
6933      return QualType();
6934    }
6935    break;
6936  case 'K':
6937    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
6938    Type = Context.getucontext_tType();
6939
6940    if (Type.isNull()) {
6941      Error = ASTContext::GE_Missing_ucontext;
6942      return QualType();
6943    }
6944    break;
6945  }
6946
6947  // If there are modifiers and if we're allowed to parse them, go for it.
6948  Done = !AllowTypeModifiers;
6949  while (!Done) {
6950    switch (char c = *Str++) {
6951    default: Done = true; --Str; break;
6952    case '*':
6953    case '&': {
6954      // Both pointers and references can have their pointee types
6955      // qualified with an address space.
6956      char *End;
6957      unsigned AddrSpace = strtoul(Str, &End, 10);
6958      if (End != Str && AddrSpace != 0) {
6959        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
6960        Str = End;
6961      }
6962      if (c == '*')
6963        Type = Context.getPointerType(Type);
6964      else
6965        Type = Context.getLValueReferenceType(Type);
6966      break;
6967    }
6968    // FIXME: There's no way to have a built-in with an rvalue ref arg.
6969    case 'C':
6970      Type = Type.withConst();
6971      break;
6972    case 'D':
6973      Type = Context.getVolatileType(Type);
6974      break;
6975    case 'R':
6976      Type = Type.withRestrict();
6977      break;
6978    }
6979  }
6980
6981  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
6982         "Integer constant 'I' type must be an integer");
6983
6984  return Type;
6985}
6986
6987/// GetBuiltinType - Return the type for the specified builtin.
6988QualType ASTContext::GetBuiltinType(unsigned Id,
6989                                    GetBuiltinTypeError &Error,
6990                                    unsigned *IntegerConstantArgs) const {
6991  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
6992
6993  SmallVector<QualType, 8> ArgTypes;
6994
6995  bool RequiresICE = false;
6996  Error = GE_None;
6997  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
6998                                       RequiresICE, true);
6999  if (Error != GE_None)
7000    return QualType();
7001
7002  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
7003
7004  while (TypeStr[0] && TypeStr[0] != '.') {
7005    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
7006    if (Error != GE_None)
7007      return QualType();
7008
7009    // If this argument is required to be an IntegerConstantExpression and the
7010    // caller cares, fill in the bitmask we return.
7011    if (RequiresICE && IntegerConstantArgs)
7012      *IntegerConstantArgs |= 1 << ArgTypes.size();
7013
7014    // Do array -> pointer decay.  The builtin should use the decayed type.
7015    if (Ty->isArrayType())
7016      Ty = getArrayDecayedType(Ty);
7017
7018    ArgTypes.push_back(Ty);
7019  }
7020
7021  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
7022         "'.' should only occur at end of builtin type list!");
7023
7024  FunctionType::ExtInfo EI;
7025  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
7026
7027  bool Variadic = (TypeStr[0] == '.');
7028
7029  // We really shouldn't be making a no-proto type here, especially in C++.
7030  if (ArgTypes.empty() && Variadic)
7031    return getFunctionNoProtoType(ResType, EI);
7032
7033  FunctionProtoType::ExtProtoInfo EPI;
7034  EPI.ExtInfo = EI;
7035  EPI.Variadic = Variadic;
7036
7037  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
7038}
7039
7040GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
7041  GVALinkage External = GVA_StrongExternal;
7042
7043  Linkage L = FD->getLinkage();
7044  switch (L) {
7045  case NoLinkage:
7046  case InternalLinkage:
7047  case UniqueExternalLinkage:
7048    return GVA_Internal;
7049
7050  case ExternalLinkage:
7051    switch (FD->getTemplateSpecializationKind()) {
7052    case TSK_Undeclared:
7053    case TSK_ExplicitSpecialization:
7054      External = GVA_StrongExternal;
7055      break;
7056
7057    case TSK_ExplicitInstantiationDefinition:
7058      return GVA_ExplicitTemplateInstantiation;
7059
7060    case TSK_ExplicitInstantiationDeclaration:
7061    case TSK_ImplicitInstantiation:
7062      External = GVA_TemplateInstantiation;
7063      break;
7064    }
7065  }
7066
7067  if (!FD->isInlined())
7068    return External;
7069
7070  if (!getLangOpts().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
7071    // GNU or C99 inline semantics. Determine whether this symbol should be
7072    // externally visible.
7073    if (FD->isInlineDefinitionExternallyVisible())
7074      return External;
7075
7076    // C99 inline semantics, where the symbol is not externally visible.
7077    return GVA_C99Inline;
7078  }
7079
7080  // C++0x [temp.explicit]p9:
7081  //   [ Note: The intent is that an inline function that is the subject of
7082  //   an explicit instantiation declaration will still be implicitly
7083  //   instantiated when used so that the body can be considered for
7084  //   inlining, but that no out-of-line copy of the inline function would be
7085  //   generated in the translation unit. -- end note ]
7086  if (FD->getTemplateSpecializationKind()
7087                                       == TSK_ExplicitInstantiationDeclaration)
7088    return GVA_C99Inline;
7089
7090  return GVA_CXXInline;
7091}
7092
7093GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
7094  // If this is a static data member, compute the kind of template
7095  // specialization. Otherwise, this variable is not part of a
7096  // template.
7097  TemplateSpecializationKind TSK = TSK_Undeclared;
7098  if (VD->isStaticDataMember())
7099    TSK = VD->getTemplateSpecializationKind();
7100
7101  Linkage L = VD->getLinkage();
7102  if (L == ExternalLinkage && getLangOpts().CPlusPlus &&
7103      VD->getType()->getLinkage() == UniqueExternalLinkage)
7104    L = UniqueExternalLinkage;
7105
7106  switch (L) {
7107  case NoLinkage:
7108  case InternalLinkage:
7109  case UniqueExternalLinkage:
7110    return GVA_Internal;
7111
7112  case ExternalLinkage:
7113    switch (TSK) {
7114    case TSK_Undeclared:
7115    case TSK_ExplicitSpecialization:
7116      return GVA_StrongExternal;
7117
7118    case TSK_ExplicitInstantiationDeclaration:
7119      llvm_unreachable("Variable should not be instantiated");
7120      // Fall through to treat this like any other instantiation.
7121
7122    case TSK_ExplicitInstantiationDefinition:
7123      return GVA_ExplicitTemplateInstantiation;
7124
7125    case TSK_ImplicitInstantiation:
7126      return GVA_TemplateInstantiation;
7127    }
7128  }
7129
7130  llvm_unreachable("Invalid Linkage!");
7131}
7132
7133bool ASTContext::DeclMustBeEmitted(const Decl *D) {
7134  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7135    if (!VD->isFileVarDecl())
7136      return false;
7137  } else if (!isa<FunctionDecl>(D))
7138    return false;
7139
7140  // Weak references don't produce any output by themselves.
7141  if (D->hasAttr<WeakRefAttr>())
7142    return false;
7143
7144  // Aliases and used decls are required.
7145  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
7146    return true;
7147
7148  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7149    // Forward declarations aren't required.
7150    if (!FD->doesThisDeclarationHaveABody())
7151      return FD->doesDeclarationForceExternallyVisibleDefinition();
7152
7153    // Constructors and destructors are required.
7154    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
7155      return true;
7156
7157    // The key function for a class is required.
7158    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
7159      const CXXRecordDecl *RD = MD->getParent();
7160      if (MD->isOutOfLine() && RD->isDynamicClass()) {
7161        const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
7162        if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
7163          return true;
7164      }
7165    }
7166
7167    GVALinkage Linkage = GetGVALinkageForFunction(FD);
7168
7169    // static, static inline, always_inline, and extern inline functions can
7170    // always be deferred.  Normal inline functions can be deferred in C99/C++.
7171    // Implicit template instantiations can also be deferred in C++.
7172    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
7173        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
7174      return false;
7175    return true;
7176  }
7177
7178  const VarDecl *VD = cast<VarDecl>(D);
7179  assert(VD->isFileVarDecl() && "Expected file scoped var");
7180
7181  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
7182    return false;
7183
7184  // Structs that have non-trivial constructors or destructors are required.
7185
7186  // FIXME: Handle references.
7187  // FIXME: Be more selective about which constructors we care about.
7188  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
7189    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
7190      if (RD->hasDefinition() && !(RD->hasTrivialDefaultConstructor() &&
7191                                   RD->hasTrivialCopyConstructor() &&
7192                                   RD->hasTrivialMoveConstructor() &&
7193                                   RD->hasTrivialDestructor()))
7194        return true;
7195    }
7196  }
7197
7198  GVALinkage L = GetGVALinkageForVariable(VD);
7199  if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
7200    if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
7201      return false;
7202  }
7203
7204  return true;
7205}
7206
7207CallingConv ASTContext::getDefaultCXXMethodCallConv(bool isVariadic) {
7208  // Pass through to the C++ ABI object
7209  return ABI->getDefaultMethodCallConv(isVariadic);
7210}
7211
7212CallingConv ASTContext::getCanonicalCallConv(CallingConv CC) const {
7213  if (CC == CC_C && !LangOpts.MRTD && getTargetInfo().getCXXABI() != CXXABI_Microsoft)
7214    return CC_Default;
7215  return CC;
7216}
7217
7218bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
7219  // Pass through to the C++ ABI object
7220  return ABI->isNearlyEmpty(RD);
7221}
7222
7223MangleContext *ASTContext::createMangleContext() {
7224  switch (Target->getCXXABI()) {
7225  case CXXABI_ARM:
7226  case CXXABI_Itanium:
7227    return createItaniumMangleContext(*this, getDiagnostics());
7228  case CXXABI_Microsoft:
7229    return createMicrosoftMangleContext(*this, getDiagnostics());
7230  }
7231  llvm_unreachable("Unsupported ABI");
7232}
7233
7234CXXABI::~CXXABI() {}
7235
7236size_t ASTContext::getSideTableAllocatedMemory() const {
7237  return ASTRecordLayouts.getMemorySize()
7238    + llvm::capacity_in_bytes(ObjCLayouts)
7239    + llvm::capacity_in_bytes(KeyFunctions)
7240    + llvm::capacity_in_bytes(ObjCImpls)
7241    + llvm::capacity_in_bytes(BlockVarCopyInits)
7242    + llvm::capacity_in_bytes(DeclAttrs)
7243    + llvm::capacity_in_bytes(InstantiatedFromStaticDataMember)
7244    + llvm::capacity_in_bytes(InstantiatedFromUsingDecl)
7245    + llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl)
7246    + llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl)
7247    + llvm::capacity_in_bytes(OverriddenMethods)
7248    + llvm::capacity_in_bytes(Types)
7249    + llvm::capacity_in_bytes(VariableArrayTypes)
7250    + llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
7251}
7252
7253unsigned ASTContext::getLambdaManglingNumber(CXXMethodDecl *CallOperator) {
7254  CXXRecordDecl *Lambda = CallOperator->getParent();
7255  return LambdaMangleContexts[Lambda->getDeclContext()]
7256           .getManglingNumber(CallOperator);
7257}
7258
7259
7260void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
7261  ParamIndices[D] = index;
7262}
7263
7264unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
7265  ParameterIndexTable::const_iterator I = ParamIndices.find(D);
7266  assert(I != ParamIndices.end() &&
7267         "ParmIndices lacks entry set by ParmVarDecl");
7268  return I->second;
7269}
7270