ASTContext.cpp revision 33500955d731c73717af52088b7fc0e7a85681e7
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExternalASTSource.h"
23#include "clang/AST/RecordLayout.h"
24#include "clang/Basic/Builtins.h"
25#include "clang/Basic/SourceManager.h"
26#include "clang/Basic/TargetInfo.h"
27#include "llvm/ADT/SmallString.h"
28#include "llvm/ADT/StringExtras.h"
29#include "llvm/Support/MathExtras.h"
30#include "llvm/Support/raw_ostream.h"
31
32using namespace clang;
33
34enum FloatingRank {
35  FloatRank, DoubleRank, LongDoubleRank
36};
37
38ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
39                       const TargetInfo &t,
40                       IdentifierTable &idents, SelectorTable &sels,
41                       Builtin::Context &builtins,
42                       bool FreeMem, unsigned size_reserve) :
43  GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
44  NSConstantStringTypeDecl(0),
45  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0), jmp_bufDecl(0),
46  sigjmp_bufDecl(0), BlockDescriptorType(0), BlockDescriptorExtendedType(0),
47  NullTypeSourceInfo(QualType()),
48  SourceMgr(SM), LangOpts(LOpts), FreeMemory(FreeMem), Target(t),
49  Idents(idents), Selectors(sels),
50  BuiltinInfo(builtins),
51  DeclarationNames(*this),
52  ExternalSource(0), PrintingPolicy(LOpts),
53  LastSDM(0, 0) {
54  ObjCIdRedefinitionType = QualType();
55  ObjCClassRedefinitionType = QualType();
56  ObjCSelRedefinitionType = QualType();
57  if (size_reserve > 0) Types.reserve(size_reserve);
58  TUDecl = TranslationUnitDecl::Create(*this);
59  InitBuiltinTypes();
60}
61
62ASTContext::~ASTContext() {
63  // Release the DenseMaps associated with DeclContext objects.
64  // FIXME: Is this the ideal solution?
65  ReleaseDeclContextMaps();
66
67  if (!FreeMemory) {
68    // Call all of the deallocation functions.
69    for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
70      Deallocations[I].first(Deallocations[I].second);
71  }
72
73  // Release all of the memory associated with overridden C++ methods.
74  for (llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::iterator
75         OM = OverriddenMethods.begin(), OMEnd = OverriddenMethods.end();
76       OM != OMEnd; ++OM)
77    OM->second.Destroy();
78
79  if (FreeMemory) {
80    // Deallocate all the types.
81    while (!Types.empty()) {
82      Types.back()->Destroy(*this);
83      Types.pop_back();
84    }
85
86    for (llvm::FoldingSet<ExtQuals>::iterator
87         I = ExtQualNodes.begin(), E = ExtQualNodes.end(); I != E; ) {
88      // Increment in loop to prevent using deallocated memory.
89      Deallocate(&*I++);
90    }
91
92    for (llvm::DenseMap<const ObjCContainerDecl*,
93         const ASTRecordLayout*>::iterator
94         I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; ) {
95      // Increment in loop to prevent using deallocated memory.
96      if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
97        R->Destroy(*this);
98    }
99  }
100
101  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
102  // even when using the BumpPtrAllocator because they can contain
103  // DenseMaps.
104  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
105       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
106    // Increment in loop to prevent using deallocated memory.
107    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
108      R->Destroy(*this);
109  }
110
111  // Destroy nested-name-specifiers.
112  for (llvm::FoldingSet<NestedNameSpecifier>::iterator
113         NNS = NestedNameSpecifiers.begin(),
114         NNSEnd = NestedNameSpecifiers.end();
115       NNS != NNSEnd; ) {
116    // Increment in loop to prevent using deallocated memory.
117    (*NNS++).Destroy(*this);
118  }
119
120  if (GlobalNestedNameSpecifier)
121    GlobalNestedNameSpecifier->Destroy(*this);
122
123  TUDecl->Destroy(*this);
124}
125
126void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
127  Deallocations.push_back(std::make_pair(Callback, Data));
128}
129
130void
131ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
132  ExternalSource.reset(Source.take());
133}
134
135void ASTContext::PrintStats() const {
136  fprintf(stderr, "*** AST Context Stats:\n");
137  fprintf(stderr, "  %d types total.\n", (int)Types.size());
138
139  unsigned counts[] = {
140#define TYPE(Name, Parent) 0,
141#define ABSTRACT_TYPE(Name, Parent)
142#include "clang/AST/TypeNodes.def"
143    0 // Extra
144  };
145
146  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
147    Type *T = Types[i];
148    counts[(unsigned)T->getTypeClass()]++;
149  }
150
151  unsigned Idx = 0;
152  unsigned TotalBytes = 0;
153#define TYPE(Name, Parent)                                              \
154  if (counts[Idx])                                                      \
155    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
156  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
157  ++Idx;
158#define ABSTRACT_TYPE(Name, Parent)
159#include "clang/AST/TypeNodes.def"
160
161  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
162
163  if (ExternalSource.get()) {
164    fprintf(stderr, "\n");
165    ExternalSource->PrintStats();
166  }
167}
168
169
170void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
171  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
172  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
173  Types.push_back(Ty);
174}
175
176void ASTContext::InitBuiltinTypes() {
177  assert(VoidTy.isNull() && "Context reinitialized?");
178
179  // C99 6.2.5p19.
180  InitBuiltinType(VoidTy,              BuiltinType::Void);
181
182  // C99 6.2.5p2.
183  InitBuiltinType(BoolTy,              BuiltinType::Bool);
184  // C99 6.2.5p3.
185  if (LangOpts.CharIsSigned)
186    InitBuiltinType(CharTy,            BuiltinType::Char_S);
187  else
188    InitBuiltinType(CharTy,            BuiltinType::Char_U);
189  // C99 6.2.5p4.
190  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
191  InitBuiltinType(ShortTy,             BuiltinType::Short);
192  InitBuiltinType(IntTy,               BuiltinType::Int);
193  InitBuiltinType(LongTy,              BuiltinType::Long);
194  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
195
196  // C99 6.2.5p6.
197  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
198  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
199  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
200  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
201  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
202
203  // C99 6.2.5p10.
204  InitBuiltinType(FloatTy,             BuiltinType::Float);
205  InitBuiltinType(DoubleTy,            BuiltinType::Double);
206  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
207
208  // GNU extension, 128-bit integers.
209  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
210  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
211
212  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
213    InitBuiltinType(WCharTy,           BuiltinType::WChar);
214  else // C99
215    WCharTy = getFromTargetType(Target.getWCharType());
216
217  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
218    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
219  else // C99
220    Char16Ty = getFromTargetType(Target.getChar16Type());
221
222  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
223    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
224  else // C99
225    Char32Ty = getFromTargetType(Target.getChar32Type());
226
227  // Placeholder type for functions.
228  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
229
230  // Placeholder type for type-dependent expressions whose type is
231  // completely unknown. No code should ever check a type against
232  // DependentTy and users should never see it; however, it is here to
233  // help diagnose failures to properly check for type-dependent
234  // expressions.
235  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
236
237  // Placeholder type for C++0x auto declarations whose real type has
238  // not yet been deduced.
239  InitBuiltinType(UndeducedAutoTy, BuiltinType::UndeducedAuto);
240
241  // C99 6.2.5p11.
242  FloatComplexTy      = getComplexType(FloatTy);
243  DoubleComplexTy     = getComplexType(DoubleTy);
244  LongDoubleComplexTy = getComplexType(LongDoubleTy);
245
246  BuiltinVaListType = QualType();
247
248  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
249  ObjCIdTypedefType = QualType();
250  ObjCClassTypedefType = QualType();
251  ObjCSelTypedefType = QualType();
252
253  // Builtin types for 'id', 'Class', and 'SEL'.
254  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
255  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
256  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
257
258  ObjCConstantStringType = QualType();
259
260  // void * type
261  VoidPtrTy = getPointerType(VoidTy);
262
263  // nullptr type (C++0x 2.14.7)
264  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
265}
266
267MemberSpecializationInfo *
268ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
269  assert(Var->isStaticDataMember() && "Not a static data member");
270  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
271    = InstantiatedFromStaticDataMember.find(Var);
272  if (Pos == InstantiatedFromStaticDataMember.end())
273    return 0;
274
275  return Pos->second;
276}
277
278void
279ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
280                                                TemplateSpecializationKind TSK) {
281  assert(Inst->isStaticDataMember() && "Not a static data member");
282  assert(Tmpl->isStaticDataMember() && "Not a static data member");
283  assert(!InstantiatedFromStaticDataMember[Inst] &&
284         "Already noted what static data member was instantiated from");
285  InstantiatedFromStaticDataMember[Inst]
286    = new (*this) MemberSpecializationInfo(Tmpl, TSK);
287}
288
289NamedDecl *
290ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
291  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
292    = InstantiatedFromUsingDecl.find(UUD);
293  if (Pos == InstantiatedFromUsingDecl.end())
294    return 0;
295
296  return Pos->second;
297}
298
299void
300ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
301  assert((isa<UsingDecl>(Pattern) ||
302          isa<UnresolvedUsingValueDecl>(Pattern) ||
303          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
304         "pattern decl is not a using decl");
305  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
306  InstantiatedFromUsingDecl[Inst] = Pattern;
307}
308
309UsingShadowDecl *
310ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
311  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
312    = InstantiatedFromUsingShadowDecl.find(Inst);
313  if (Pos == InstantiatedFromUsingShadowDecl.end())
314    return 0;
315
316  return Pos->second;
317}
318
319void
320ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
321                                               UsingShadowDecl *Pattern) {
322  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
323  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
324}
325
326FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
327  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
328    = InstantiatedFromUnnamedFieldDecl.find(Field);
329  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
330    return 0;
331
332  return Pos->second;
333}
334
335void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
336                                                     FieldDecl *Tmpl) {
337  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
338  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
339  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
340         "Already noted what unnamed field was instantiated from");
341
342  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
343}
344
345ASTContext::overridden_cxx_method_iterator
346ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
347  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
348    = OverriddenMethods.find(Method);
349  if (Pos == OverriddenMethods.end())
350    return 0;
351
352  return Pos->second.begin();
353}
354
355ASTContext::overridden_cxx_method_iterator
356ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
357  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
358    = OverriddenMethods.find(Method);
359  if (Pos == OverriddenMethods.end())
360    return 0;
361
362  return Pos->second.end();
363}
364
365void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
366                                     const CXXMethodDecl *Overridden) {
367  OverriddenMethods[Method].push_back(Overridden);
368}
369
370namespace {
371  class BeforeInTranslationUnit
372    : std::binary_function<SourceRange, SourceRange, bool> {
373    SourceManager *SourceMgr;
374
375  public:
376    explicit BeforeInTranslationUnit(SourceManager *SM) : SourceMgr(SM) { }
377
378    bool operator()(SourceRange X, SourceRange Y) {
379      return SourceMgr->isBeforeInTranslationUnit(X.getBegin(), Y.getBegin());
380    }
381  };
382}
383
384//===----------------------------------------------------------------------===//
385//                         Type Sizing and Analysis
386//===----------------------------------------------------------------------===//
387
388/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
389/// scalar floating point type.
390const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
391  const BuiltinType *BT = T->getAs<BuiltinType>();
392  assert(BT && "Not a floating point type!");
393  switch (BT->getKind()) {
394  default: assert(0 && "Not a floating point type!");
395  case BuiltinType::Float:      return Target.getFloatFormat();
396  case BuiltinType::Double:     return Target.getDoubleFormat();
397  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
398  }
399}
400
401/// getDeclAlign - Return a conservative estimate of the alignment of the
402/// specified decl.  Note that bitfields do not have a valid alignment, so
403/// this method will assert on them.
404/// If @p RefAsPointee, references are treated like their underlying type
405/// (for alignof), else they're treated like pointers (for CodeGen).
406CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) {
407  unsigned Align = Target.getCharWidth();
408
409  if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
410    Align = std::max(Align, AA->getMaxAlignment());
411
412  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
413    QualType T = VD->getType();
414    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
415      if (RefAsPointee)
416        T = RT->getPointeeType();
417      else
418        T = getPointerType(RT->getPointeeType());
419    }
420    if (!T->isIncompleteType() && !T->isFunctionType()) {
421      unsigned MinWidth = Target.getLargeArrayMinWidth();
422      unsigned ArrayAlign = Target.getLargeArrayAlign();
423      if (isa<VariableArrayType>(T) && MinWidth != 0)
424        Align = std::max(Align, ArrayAlign);
425      if (ConstantArrayType *CT = dyn_cast<ConstantArrayType>(T)) {
426        unsigned Size = getTypeSize(CT);
427        if (MinWidth != 0 && MinWidth <= Size)
428          Align = std::max(Align, ArrayAlign);
429      }
430      // Incomplete or function types default to 1.
431      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
432        T = cast<ArrayType>(T)->getElementType();
433
434      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
435    }
436    if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
437      // In the case of a field in a packed struct, we want the minimum
438      // of the alignment of the field and the alignment of the struct.
439      Align = std::min(Align,
440        getPreferredTypeAlign(FD->getParent()->getTypeForDecl()));
441    }
442  }
443
444  return CharUnits::fromQuantity(Align / Target.getCharWidth());
445}
446
447std::pair<CharUnits, CharUnits>
448ASTContext::getTypeInfoInChars(const Type *T) {
449  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
450  return std::make_pair(CharUnits::fromQuantity(Info.first / getCharWidth()),
451                        CharUnits::fromQuantity(Info.second / getCharWidth()));
452}
453
454std::pair<CharUnits, CharUnits>
455ASTContext::getTypeInfoInChars(QualType T) {
456  return getTypeInfoInChars(T.getTypePtr());
457}
458
459/// getTypeSize - Return the size of the specified type, in bits.  This method
460/// does not work on incomplete types.
461///
462/// FIXME: Pointers into different addr spaces could have different sizes and
463/// alignment requirements: getPointerInfo should take an AddrSpace, this
464/// should take a QualType, &c.
465std::pair<uint64_t, unsigned>
466ASTContext::getTypeInfo(const Type *T) {
467  uint64_t Width=0;
468  unsigned Align=8;
469  switch (T->getTypeClass()) {
470#define TYPE(Class, Base)
471#define ABSTRACT_TYPE(Class, Base)
472#define NON_CANONICAL_TYPE(Class, Base)
473#define DEPENDENT_TYPE(Class, Base) case Type::Class:
474#include "clang/AST/TypeNodes.def"
475    assert(false && "Should not see dependent types");
476    break;
477
478  case Type::FunctionNoProto:
479  case Type::FunctionProto:
480    // GCC extension: alignof(function) = 32 bits
481    Width = 0;
482    Align = 32;
483    break;
484
485  case Type::IncompleteArray:
486  case Type::VariableArray:
487    Width = 0;
488    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
489    break;
490
491  case Type::ConstantArray: {
492    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
493
494    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
495    Width = EltInfo.first*CAT->getSize().getZExtValue();
496    Align = EltInfo.second;
497    break;
498  }
499  case Type::ExtVector:
500  case Type::Vector: {
501    const VectorType *VT = cast<VectorType>(T);
502    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
503    Width = EltInfo.first*VT->getNumElements();
504    Align = Width;
505    // If the alignment is not a power of 2, round up to the next power of 2.
506    // This happens for non-power-of-2 length vectors.
507    if (Align & (Align-1)) {
508      Align = llvm::NextPowerOf2(Align);
509      Width = llvm::RoundUpToAlignment(Width, Align);
510    }
511    break;
512  }
513
514  case Type::Builtin:
515    switch (cast<BuiltinType>(T)->getKind()) {
516    default: assert(0 && "Unknown builtin type!");
517    case BuiltinType::Void:
518      // GCC extension: alignof(void) = 8 bits.
519      Width = 0;
520      Align = 8;
521      break;
522
523    case BuiltinType::Bool:
524      Width = Target.getBoolWidth();
525      Align = Target.getBoolAlign();
526      break;
527    case BuiltinType::Char_S:
528    case BuiltinType::Char_U:
529    case BuiltinType::UChar:
530    case BuiltinType::SChar:
531      Width = Target.getCharWidth();
532      Align = Target.getCharAlign();
533      break;
534    case BuiltinType::WChar:
535      Width = Target.getWCharWidth();
536      Align = Target.getWCharAlign();
537      break;
538    case BuiltinType::Char16:
539      Width = Target.getChar16Width();
540      Align = Target.getChar16Align();
541      break;
542    case BuiltinType::Char32:
543      Width = Target.getChar32Width();
544      Align = Target.getChar32Align();
545      break;
546    case BuiltinType::UShort:
547    case BuiltinType::Short:
548      Width = Target.getShortWidth();
549      Align = Target.getShortAlign();
550      break;
551    case BuiltinType::UInt:
552    case BuiltinType::Int:
553      Width = Target.getIntWidth();
554      Align = Target.getIntAlign();
555      break;
556    case BuiltinType::ULong:
557    case BuiltinType::Long:
558      Width = Target.getLongWidth();
559      Align = Target.getLongAlign();
560      break;
561    case BuiltinType::ULongLong:
562    case BuiltinType::LongLong:
563      Width = Target.getLongLongWidth();
564      Align = Target.getLongLongAlign();
565      break;
566    case BuiltinType::Int128:
567    case BuiltinType::UInt128:
568      Width = 128;
569      Align = 128; // int128_t is 128-bit aligned on all targets.
570      break;
571    case BuiltinType::Float:
572      Width = Target.getFloatWidth();
573      Align = Target.getFloatAlign();
574      break;
575    case BuiltinType::Double:
576      Width = Target.getDoubleWidth();
577      Align = Target.getDoubleAlign();
578      break;
579    case BuiltinType::LongDouble:
580      Width = Target.getLongDoubleWidth();
581      Align = Target.getLongDoubleAlign();
582      break;
583    case BuiltinType::NullPtr:
584      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
585      Align = Target.getPointerAlign(0); //   == sizeof(void*)
586      break;
587    }
588    break;
589  case Type::ObjCObjectPointer:
590    Width = Target.getPointerWidth(0);
591    Align = Target.getPointerAlign(0);
592    break;
593  case Type::BlockPointer: {
594    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
595    Width = Target.getPointerWidth(AS);
596    Align = Target.getPointerAlign(AS);
597    break;
598  }
599  case Type::LValueReference:
600  case Type::RValueReference: {
601    // alignof and sizeof should never enter this code path here, so we go
602    // the pointer route.
603    unsigned AS = cast<ReferenceType>(T)->getPointeeType().getAddressSpace();
604    Width = Target.getPointerWidth(AS);
605    Align = Target.getPointerAlign(AS);
606    break;
607  }
608  case Type::Pointer: {
609    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
610    Width = Target.getPointerWidth(AS);
611    Align = Target.getPointerAlign(AS);
612    break;
613  }
614  case Type::MemberPointer: {
615    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
616    std::pair<uint64_t, unsigned> PtrDiffInfo =
617      getTypeInfo(getPointerDiffType());
618    Width = PtrDiffInfo.first;
619    if (Pointee->isFunctionType())
620      Width *= 2;
621    Align = PtrDiffInfo.second;
622    break;
623  }
624  case Type::Complex: {
625    // Complex types have the same alignment as their elements, but twice the
626    // size.
627    std::pair<uint64_t, unsigned> EltInfo =
628      getTypeInfo(cast<ComplexType>(T)->getElementType());
629    Width = EltInfo.first*2;
630    Align = EltInfo.second;
631    break;
632  }
633  case Type::ObjCObject:
634    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
635  case Type::ObjCInterface: {
636    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
637    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
638    Width = Layout.getSize();
639    Align = Layout.getAlignment();
640    break;
641  }
642  case Type::Record:
643  case Type::Enum: {
644    const TagType *TT = cast<TagType>(T);
645
646    if (TT->getDecl()->isInvalidDecl()) {
647      Width = 1;
648      Align = 1;
649      break;
650    }
651
652    if (const EnumType *ET = dyn_cast<EnumType>(TT))
653      return getTypeInfo(ET->getDecl()->getIntegerType());
654
655    const RecordType *RT = cast<RecordType>(TT);
656    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
657    Width = Layout.getSize();
658    Align = Layout.getAlignment();
659    break;
660  }
661
662  case Type::SubstTemplateTypeParm:
663    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
664                       getReplacementType().getTypePtr());
665
666  case Type::Typedef: {
667    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
668    if (const AlignedAttr *Aligned = Typedef->getAttr<AlignedAttr>()) {
669      Align = std::max(Aligned->getMaxAlignment(),
670                       getTypeAlign(Typedef->getUnderlyingType().getTypePtr()));
671      Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
672    } else
673      return getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
674    break;
675  }
676
677  case Type::TypeOfExpr:
678    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
679                         .getTypePtr());
680
681  case Type::TypeOf:
682    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
683
684  case Type::Decltype:
685    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
686                        .getTypePtr());
687
688  case Type::Elaborated:
689    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
690
691  case Type::TemplateSpecialization:
692    assert(getCanonicalType(T) != T &&
693           "Cannot request the size of a dependent type");
694    // FIXME: this is likely to be wrong once we support template
695    // aliases, since a template alias could refer to a typedef that
696    // has an __aligned__ attribute on it.
697    return getTypeInfo(getCanonicalType(T));
698  }
699
700  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
701  return std::make_pair(Width, Align);
702}
703
704/// getTypeSizeInChars - Return the size of the specified type, in characters.
705/// This method does not work on incomplete types.
706CharUnits ASTContext::getTypeSizeInChars(QualType T) {
707  return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
708}
709CharUnits ASTContext::getTypeSizeInChars(const Type *T) {
710  return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
711}
712
713/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
714/// characters. This method does not work on incomplete types.
715CharUnits ASTContext::getTypeAlignInChars(QualType T) {
716  return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
717}
718CharUnits ASTContext::getTypeAlignInChars(const Type *T) {
719  return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
720}
721
722/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
723/// type for the current target in bits.  This can be different than the ABI
724/// alignment in cases where it is beneficial for performance to overalign
725/// a data type.
726unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
727  unsigned ABIAlign = getTypeAlign(T);
728
729  // Double and long long should be naturally aligned if possible.
730  if (const ComplexType* CT = T->getAs<ComplexType>())
731    T = CT->getElementType().getTypePtr();
732  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
733      T->isSpecificBuiltinType(BuiltinType::LongLong))
734    return std::max(ABIAlign, (unsigned)getTypeSize(T));
735
736  return ABIAlign;
737}
738
739static void CollectLocalObjCIvars(ASTContext *Ctx,
740                                  const ObjCInterfaceDecl *OI,
741                                  llvm::SmallVectorImpl<FieldDecl*> &Fields) {
742  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
743       E = OI->ivar_end(); I != E; ++I) {
744    ObjCIvarDecl *IVDecl = *I;
745    if (!IVDecl->isInvalidDecl())
746      Fields.push_back(cast<FieldDecl>(IVDecl));
747  }
748}
749
750void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
751                             llvm::SmallVectorImpl<FieldDecl*> &Fields) {
752  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
753    CollectObjCIvars(SuperClass, Fields);
754  CollectLocalObjCIvars(this, OI, Fields);
755}
756
757/// ShallowCollectObjCIvars -
758/// Collect all ivars, including those synthesized, in the current class.
759///
760void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
761                                 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
762  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
763         E = OI->ivar_end(); I != E; ++I) {
764     Ivars.push_back(*I);
765  }
766
767  CollectNonClassIvars(OI, Ivars);
768}
769
770/// CollectNonClassIvars -
771/// This routine collects all other ivars which are not declared in the class.
772/// This includes synthesized ivars (via @synthesize) and those in
773//  class's @implementation.
774///
775void ASTContext::CollectNonClassIvars(const ObjCInterfaceDecl *OI,
776                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
777  // Find ivars declared in class extension.
778  if (const ObjCCategoryDecl *CDecl = OI->getClassExtension()) {
779    for (ObjCCategoryDecl::ivar_iterator I = CDecl->ivar_begin(),
780         E = CDecl->ivar_end(); I != E; ++I) {
781      Ivars.push_back(*I);
782    }
783  }
784
785  // Also add any ivar defined in this class's implementation.  This
786  // includes synthesized ivars.
787  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation()) {
788    for (ObjCImplementationDecl::ivar_iterator I = ImplDecl->ivar_begin(),
789         E = ImplDecl->ivar_end(); I != E; ++I)
790      Ivars.push_back(*I);
791  }
792}
793
794/// CollectInheritedProtocols - Collect all protocols in current class and
795/// those inherited by it.
796void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
797                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
798  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
799    for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
800         PE = OI->protocol_end(); P != PE; ++P) {
801      ObjCProtocolDecl *Proto = (*P);
802      Protocols.insert(Proto);
803      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
804           PE = Proto->protocol_end(); P != PE; ++P) {
805        Protocols.insert(*P);
806        CollectInheritedProtocols(*P, Protocols);
807      }
808    }
809
810    // Categories of this Interface.
811    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
812         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
813      CollectInheritedProtocols(CDeclChain, Protocols);
814    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
815      while (SD) {
816        CollectInheritedProtocols(SD, Protocols);
817        SD = SD->getSuperClass();
818      }
819  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
820    for (ObjCInterfaceDecl::protocol_iterator P = OC->protocol_begin(),
821         PE = OC->protocol_end(); P != PE; ++P) {
822      ObjCProtocolDecl *Proto = (*P);
823      Protocols.insert(Proto);
824      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
825           PE = Proto->protocol_end(); P != PE; ++P)
826        CollectInheritedProtocols(*P, Protocols);
827    }
828  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
829    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
830         PE = OP->protocol_end(); P != PE; ++P) {
831      ObjCProtocolDecl *Proto = (*P);
832      Protocols.insert(Proto);
833      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
834           PE = Proto->protocol_end(); P != PE; ++P)
835        CollectInheritedProtocols(*P, Protocols);
836    }
837  }
838}
839
840unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) {
841  unsigned count = 0;
842  // Count ivars declared in class extension.
843  if (const ObjCCategoryDecl *CDecl = OI->getClassExtension())
844    count += CDecl->ivar_size();
845
846  // Count ivar defined in this class's implementation.  This
847  // includes synthesized ivars.
848  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
849    count += ImplDecl->ivar_size();
850
851  return count;
852}
853
854/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
855ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
856  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
857    I = ObjCImpls.find(D);
858  if (I != ObjCImpls.end())
859    return cast<ObjCImplementationDecl>(I->second);
860  return 0;
861}
862/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
863ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
864  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
865    I = ObjCImpls.find(D);
866  if (I != ObjCImpls.end())
867    return cast<ObjCCategoryImplDecl>(I->second);
868  return 0;
869}
870
871/// \brief Set the implementation of ObjCInterfaceDecl.
872void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
873                           ObjCImplementationDecl *ImplD) {
874  assert(IFaceD && ImplD && "Passed null params");
875  ObjCImpls[IFaceD] = ImplD;
876}
877/// \brief Set the implementation of ObjCCategoryDecl.
878void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
879                           ObjCCategoryImplDecl *ImplD) {
880  assert(CatD && ImplD && "Passed null params");
881  ObjCImpls[CatD] = ImplD;
882}
883
884/// \brief Allocate an uninitialized TypeSourceInfo.
885///
886/// The caller should initialize the memory held by TypeSourceInfo using
887/// the TypeLoc wrappers.
888///
889/// \param T the type that will be the basis for type source info. This type
890/// should refer to how the declarator was written in source code, not to
891/// what type semantic analysis resolved the declarator to.
892TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
893                                                 unsigned DataSize) {
894  if (!DataSize)
895    DataSize = TypeLoc::getFullDataSizeForType(T);
896  else
897    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
898           "incorrect data size provided to CreateTypeSourceInfo!");
899
900  TypeSourceInfo *TInfo =
901    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
902  new (TInfo) TypeSourceInfo(T);
903  return TInfo;
904}
905
906TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
907                                                     SourceLocation L) {
908  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
909  DI->getTypeLoc().initialize(L);
910  return DI;
911}
912
913const ASTRecordLayout &
914ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
915  return getObjCLayout(D, 0);
916}
917
918const ASTRecordLayout &
919ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
920  return getObjCLayout(D->getClassInterface(), D);
921}
922
923//===----------------------------------------------------------------------===//
924//                   Type creation/memoization methods
925//===----------------------------------------------------------------------===//
926
927QualType ASTContext::getExtQualType(const Type *TypeNode, Qualifiers Quals) {
928  unsigned Fast = Quals.getFastQualifiers();
929  Quals.removeFastQualifiers();
930
931  // Check if we've already instantiated this type.
932  llvm::FoldingSetNodeID ID;
933  ExtQuals::Profile(ID, TypeNode, Quals);
934  void *InsertPos = 0;
935  if (ExtQuals *EQ = ExtQualNodes.FindNodeOrInsertPos(ID, InsertPos)) {
936    assert(EQ->getQualifiers() == Quals);
937    QualType T = QualType(EQ, Fast);
938    return T;
939  }
940
941  ExtQuals *New = new (*this, TypeAlignment) ExtQuals(*this, TypeNode, Quals);
942  ExtQualNodes.InsertNode(New, InsertPos);
943  QualType T = QualType(New, Fast);
944  return T;
945}
946
947QualType ASTContext::getVolatileType(QualType T) {
948  QualType CanT = getCanonicalType(T);
949  if (CanT.isVolatileQualified()) return T;
950
951  QualifierCollector Quals;
952  const Type *TypeNode = Quals.strip(T);
953  Quals.addVolatile();
954
955  return getExtQualType(TypeNode, Quals);
956}
957
958QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
959  QualType CanT = getCanonicalType(T);
960  if (CanT.getAddressSpace() == AddressSpace)
961    return T;
962
963  // If we are composing extended qualifiers together, merge together
964  // into one ExtQuals node.
965  QualifierCollector Quals;
966  const Type *TypeNode = Quals.strip(T);
967
968  // If this type already has an address space specified, it cannot get
969  // another one.
970  assert(!Quals.hasAddressSpace() &&
971         "Type cannot be in multiple addr spaces!");
972  Quals.addAddressSpace(AddressSpace);
973
974  return getExtQualType(TypeNode, Quals);
975}
976
977QualType ASTContext::getObjCGCQualType(QualType T,
978                                       Qualifiers::GC GCAttr) {
979  QualType CanT = getCanonicalType(T);
980  if (CanT.getObjCGCAttr() == GCAttr)
981    return T;
982
983  if (T->isPointerType()) {
984    QualType Pointee = T->getAs<PointerType>()->getPointeeType();
985    if (Pointee->isAnyPointerType()) {
986      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
987      return getPointerType(ResultType);
988    }
989  }
990
991  // If we are composing extended qualifiers together, merge together
992  // into one ExtQuals node.
993  QualifierCollector Quals;
994  const Type *TypeNode = Quals.strip(T);
995
996  // If this type already has an ObjCGC specified, it cannot get
997  // another one.
998  assert(!Quals.hasObjCGCAttr() &&
999         "Type cannot have multiple ObjCGCs!");
1000  Quals.addObjCGCAttr(GCAttr);
1001
1002  return getExtQualType(TypeNode, Quals);
1003}
1004
1005static QualType getExtFunctionType(ASTContext& Context, QualType T,
1006                                        const FunctionType::ExtInfo &Info) {
1007  QualType ResultType;
1008  if (const PointerType *Pointer = T->getAs<PointerType>()) {
1009    QualType Pointee = Pointer->getPointeeType();
1010    ResultType = getExtFunctionType(Context, Pointee, Info);
1011    if (ResultType == Pointee)
1012      return T;
1013
1014    ResultType = Context.getPointerType(ResultType);
1015  } else if (const BlockPointerType *BlockPointer
1016                                              = T->getAs<BlockPointerType>()) {
1017    QualType Pointee = BlockPointer->getPointeeType();
1018    ResultType = getExtFunctionType(Context, Pointee, Info);
1019    if (ResultType == Pointee)
1020      return T;
1021
1022    ResultType = Context.getBlockPointerType(ResultType);
1023   } else if (const FunctionType *F = T->getAs<FunctionType>()) {
1024    if (F->getExtInfo() == Info)
1025      return T;
1026
1027    if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(F)) {
1028      ResultType = Context.getFunctionNoProtoType(FNPT->getResultType(),
1029                                                  Info);
1030    } else {
1031      const FunctionProtoType *FPT = cast<FunctionProtoType>(F);
1032      ResultType
1033        = Context.getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1034                                  FPT->getNumArgs(), FPT->isVariadic(),
1035                                  FPT->getTypeQuals(),
1036                                  FPT->hasExceptionSpec(),
1037                                  FPT->hasAnyExceptionSpec(),
1038                                  FPT->getNumExceptions(),
1039                                  FPT->exception_begin(),
1040                                  Info);
1041    }
1042  } else
1043    return T;
1044
1045  return Context.getQualifiedType(ResultType, T.getLocalQualifiers());
1046}
1047
1048QualType ASTContext::getNoReturnType(QualType T, bool AddNoReturn) {
1049  FunctionType::ExtInfo Info = getFunctionExtInfo(T);
1050  return getExtFunctionType(*this, T,
1051                                 Info.withNoReturn(AddNoReturn));
1052}
1053
1054QualType ASTContext::getCallConvType(QualType T, CallingConv CallConv) {
1055  FunctionType::ExtInfo Info = getFunctionExtInfo(T);
1056  return getExtFunctionType(*this, T,
1057                            Info.withCallingConv(CallConv));
1058}
1059
1060QualType ASTContext::getRegParmType(QualType T, unsigned RegParm) {
1061  FunctionType::ExtInfo Info = getFunctionExtInfo(T);
1062  return getExtFunctionType(*this, T,
1063                                 Info.withRegParm(RegParm));
1064}
1065
1066/// getComplexType - Return the uniqued reference to the type for a complex
1067/// number with the specified element type.
1068QualType ASTContext::getComplexType(QualType T) {
1069  // Unique pointers, to guarantee there is only one pointer of a particular
1070  // structure.
1071  llvm::FoldingSetNodeID ID;
1072  ComplexType::Profile(ID, T);
1073
1074  void *InsertPos = 0;
1075  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1076    return QualType(CT, 0);
1077
1078  // If the pointee type isn't canonical, this won't be a canonical type either,
1079  // so fill in the canonical type field.
1080  QualType Canonical;
1081  if (!T.isCanonical()) {
1082    Canonical = getComplexType(getCanonicalType(T));
1083
1084    // Get the new insert position for the node we care about.
1085    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1086    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1087  }
1088  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1089  Types.push_back(New);
1090  ComplexTypes.InsertNode(New, InsertPos);
1091  return QualType(New, 0);
1092}
1093
1094/// getPointerType - Return the uniqued reference to the type for a pointer to
1095/// the specified type.
1096QualType ASTContext::getPointerType(QualType T) {
1097  // Unique pointers, to guarantee there is only one pointer of a particular
1098  // structure.
1099  llvm::FoldingSetNodeID ID;
1100  PointerType::Profile(ID, T);
1101
1102  void *InsertPos = 0;
1103  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1104    return QualType(PT, 0);
1105
1106  // If the pointee type isn't canonical, this won't be a canonical type either,
1107  // so fill in the canonical type field.
1108  QualType Canonical;
1109  if (!T.isCanonical()) {
1110    Canonical = getPointerType(getCanonicalType(T));
1111
1112    // Get the new insert position for the node we care about.
1113    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1114    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1115  }
1116  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1117  Types.push_back(New);
1118  PointerTypes.InsertNode(New, InsertPos);
1119  return QualType(New, 0);
1120}
1121
1122/// getBlockPointerType - Return the uniqued reference to the type for
1123/// a pointer to the specified block.
1124QualType ASTContext::getBlockPointerType(QualType T) {
1125  assert(T->isFunctionType() && "block of function types only");
1126  // Unique pointers, to guarantee there is only one block of a particular
1127  // structure.
1128  llvm::FoldingSetNodeID ID;
1129  BlockPointerType::Profile(ID, T);
1130
1131  void *InsertPos = 0;
1132  if (BlockPointerType *PT =
1133        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1134    return QualType(PT, 0);
1135
1136  // If the block pointee type isn't canonical, this won't be a canonical
1137  // type either so fill in the canonical type field.
1138  QualType Canonical;
1139  if (!T.isCanonical()) {
1140    Canonical = getBlockPointerType(getCanonicalType(T));
1141
1142    // Get the new insert position for the node we care about.
1143    BlockPointerType *NewIP =
1144      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1145    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1146  }
1147  BlockPointerType *New
1148    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1149  Types.push_back(New);
1150  BlockPointerTypes.InsertNode(New, InsertPos);
1151  return QualType(New, 0);
1152}
1153
1154/// getLValueReferenceType - Return the uniqued reference to the type for an
1155/// lvalue reference to the specified type.
1156QualType ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) {
1157  // Unique pointers, to guarantee there is only one pointer of a particular
1158  // structure.
1159  llvm::FoldingSetNodeID ID;
1160  ReferenceType::Profile(ID, T, SpelledAsLValue);
1161
1162  void *InsertPos = 0;
1163  if (LValueReferenceType *RT =
1164        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1165    return QualType(RT, 0);
1166
1167  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1168
1169  // If the referencee type isn't canonical, this won't be a canonical type
1170  // either, so fill in the canonical type field.
1171  QualType Canonical;
1172  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1173    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1174    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1175
1176    // Get the new insert position for the node we care about.
1177    LValueReferenceType *NewIP =
1178      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1179    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1180  }
1181
1182  LValueReferenceType *New
1183    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1184                                                     SpelledAsLValue);
1185  Types.push_back(New);
1186  LValueReferenceTypes.InsertNode(New, InsertPos);
1187
1188  return QualType(New, 0);
1189}
1190
1191/// getRValueReferenceType - Return the uniqued reference to the type for an
1192/// rvalue reference to the specified type.
1193QualType ASTContext::getRValueReferenceType(QualType T) {
1194  // Unique pointers, to guarantee there is only one pointer of a particular
1195  // structure.
1196  llvm::FoldingSetNodeID ID;
1197  ReferenceType::Profile(ID, T, false);
1198
1199  void *InsertPos = 0;
1200  if (RValueReferenceType *RT =
1201        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1202    return QualType(RT, 0);
1203
1204  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1205
1206  // If the referencee type isn't canonical, this won't be a canonical type
1207  // either, so fill in the canonical type field.
1208  QualType Canonical;
1209  if (InnerRef || !T.isCanonical()) {
1210    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1211    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1212
1213    // Get the new insert position for the node we care about.
1214    RValueReferenceType *NewIP =
1215      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1216    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1217  }
1218
1219  RValueReferenceType *New
1220    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1221  Types.push_back(New);
1222  RValueReferenceTypes.InsertNode(New, InsertPos);
1223  return QualType(New, 0);
1224}
1225
1226/// getMemberPointerType - Return the uniqued reference to the type for a
1227/// member pointer to the specified type, in the specified class.
1228QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) {
1229  // Unique pointers, to guarantee there is only one pointer of a particular
1230  // structure.
1231  llvm::FoldingSetNodeID ID;
1232  MemberPointerType::Profile(ID, T, Cls);
1233
1234  void *InsertPos = 0;
1235  if (MemberPointerType *PT =
1236      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1237    return QualType(PT, 0);
1238
1239  // If the pointee or class type isn't canonical, this won't be a canonical
1240  // type either, so fill in the canonical type field.
1241  QualType Canonical;
1242  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1243    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1244
1245    // Get the new insert position for the node we care about.
1246    MemberPointerType *NewIP =
1247      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1248    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1249  }
1250  MemberPointerType *New
1251    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1252  Types.push_back(New);
1253  MemberPointerTypes.InsertNode(New, InsertPos);
1254  return QualType(New, 0);
1255}
1256
1257/// getConstantArrayType - Return the unique reference to the type for an
1258/// array of the specified element type.
1259QualType ASTContext::getConstantArrayType(QualType EltTy,
1260                                          const llvm::APInt &ArySizeIn,
1261                                          ArrayType::ArraySizeModifier ASM,
1262                                          unsigned EltTypeQuals) {
1263  assert((EltTy->isDependentType() ||
1264          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1265         "Constant array of VLAs is illegal!");
1266
1267  // Convert the array size into a canonical width matching the pointer size for
1268  // the target.
1269  llvm::APInt ArySize(ArySizeIn);
1270  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1271
1272  llvm::FoldingSetNodeID ID;
1273  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1274
1275  void *InsertPos = 0;
1276  if (ConstantArrayType *ATP =
1277      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1278    return QualType(ATP, 0);
1279
1280  // If the element type isn't canonical, this won't be a canonical type either,
1281  // so fill in the canonical type field.
1282  QualType Canonical;
1283  if (!EltTy.isCanonical()) {
1284    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1285                                     ASM, EltTypeQuals);
1286    // Get the new insert position for the node we care about.
1287    ConstantArrayType *NewIP =
1288      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1289    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1290  }
1291
1292  ConstantArrayType *New = new(*this,TypeAlignment)
1293    ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1294  ConstantArrayTypes.InsertNode(New, InsertPos);
1295  Types.push_back(New);
1296  return QualType(New, 0);
1297}
1298
1299/// getVariableArrayType - Returns a non-unique reference to the type for a
1300/// variable array of the specified element type.
1301QualType ASTContext::getVariableArrayType(QualType EltTy,
1302                                          Expr *NumElts,
1303                                          ArrayType::ArraySizeModifier ASM,
1304                                          unsigned EltTypeQuals,
1305                                          SourceRange Brackets) {
1306  // Since we don't unique expressions, it isn't possible to unique VLA's
1307  // that have an expression provided for their size.
1308  QualType CanonType;
1309
1310  if (!EltTy.isCanonical()) {
1311    if (NumElts)
1312      NumElts->Retain();
1313    CanonType = getVariableArrayType(getCanonicalType(EltTy), NumElts, ASM,
1314                                     EltTypeQuals, Brackets);
1315  }
1316
1317  VariableArrayType *New = new(*this, TypeAlignment)
1318    VariableArrayType(EltTy, CanonType, NumElts, ASM, EltTypeQuals, Brackets);
1319
1320  VariableArrayTypes.push_back(New);
1321  Types.push_back(New);
1322  return QualType(New, 0);
1323}
1324
1325/// getDependentSizedArrayType - Returns a non-unique reference to
1326/// the type for a dependently-sized array of the specified element
1327/// type.
1328QualType ASTContext::getDependentSizedArrayType(QualType EltTy,
1329                                                Expr *NumElts,
1330                                                ArrayType::ArraySizeModifier ASM,
1331                                                unsigned EltTypeQuals,
1332                                                SourceRange Brackets) {
1333  assert((!NumElts || NumElts->isTypeDependent() ||
1334          NumElts->isValueDependent()) &&
1335         "Size must be type- or value-dependent!");
1336
1337  void *InsertPos = 0;
1338  DependentSizedArrayType *Canon = 0;
1339  llvm::FoldingSetNodeID ID;
1340
1341  if (NumElts) {
1342    // Dependently-sized array types that do not have a specified
1343    // number of elements will have their sizes deduced from an
1344    // initializer.
1345    DependentSizedArrayType::Profile(ID, *this, getCanonicalType(EltTy), ASM,
1346                                     EltTypeQuals, NumElts);
1347
1348    Canon = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1349  }
1350
1351  DependentSizedArrayType *New;
1352  if (Canon) {
1353    // We already have a canonical version of this array type; use it as
1354    // the canonical type for a newly-built type.
1355    New = new (*this, TypeAlignment)
1356      DependentSizedArrayType(*this, EltTy, QualType(Canon, 0),
1357                              NumElts, ASM, EltTypeQuals, Brackets);
1358  } else {
1359    QualType CanonEltTy = getCanonicalType(EltTy);
1360    if (CanonEltTy == EltTy) {
1361      New = new (*this, TypeAlignment)
1362        DependentSizedArrayType(*this, EltTy, QualType(),
1363                                NumElts, ASM, EltTypeQuals, Brackets);
1364
1365      if (NumElts) {
1366        DependentSizedArrayType *CanonCheck
1367          = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1368        assert(!CanonCheck && "Dependent-sized canonical array type broken");
1369        (void)CanonCheck;
1370        DependentSizedArrayTypes.InsertNode(New, InsertPos);
1371      }
1372    } else {
1373      QualType Canon = getDependentSizedArrayType(CanonEltTy, NumElts,
1374                                                  ASM, EltTypeQuals,
1375                                                  SourceRange());
1376      New = new (*this, TypeAlignment)
1377        DependentSizedArrayType(*this, EltTy, Canon,
1378                                NumElts, ASM, EltTypeQuals, Brackets);
1379    }
1380  }
1381
1382  Types.push_back(New);
1383  return QualType(New, 0);
1384}
1385
1386QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1387                                            ArrayType::ArraySizeModifier ASM,
1388                                            unsigned EltTypeQuals) {
1389  llvm::FoldingSetNodeID ID;
1390  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1391
1392  void *InsertPos = 0;
1393  if (IncompleteArrayType *ATP =
1394       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1395    return QualType(ATP, 0);
1396
1397  // If the element type isn't canonical, this won't be a canonical type
1398  // either, so fill in the canonical type field.
1399  QualType Canonical;
1400
1401  if (!EltTy.isCanonical()) {
1402    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1403                                       ASM, EltTypeQuals);
1404
1405    // Get the new insert position for the node we care about.
1406    IncompleteArrayType *NewIP =
1407      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1408    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1409  }
1410
1411  IncompleteArrayType *New = new (*this, TypeAlignment)
1412    IncompleteArrayType(EltTy, Canonical, ASM, EltTypeQuals);
1413
1414  IncompleteArrayTypes.InsertNode(New, InsertPos);
1415  Types.push_back(New);
1416  return QualType(New, 0);
1417}
1418
1419/// getVectorType - Return the unique reference to a vector type of
1420/// the specified element type and size. VectorType must be a built-in type.
1421QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
1422                                   bool IsAltiVec, bool IsPixel) {
1423  BuiltinType *baseType;
1424
1425  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1426  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1427
1428  // Check if we've already instantiated a vector of this type.
1429  llvm::FoldingSetNodeID ID;
1430  VectorType::Profile(ID, vecType, NumElts, Type::Vector,
1431    IsAltiVec, IsPixel);
1432  void *InsertPos = 0;
1433  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1434    return QualType(VTP, 0);
1435
1436  // If the element type isn't canonical, this won't be a canonical type either,
1437  // so fill in the canonical type field.
1438  QualType Canonical;
1439  if (!vecType.isCanonical() || IsAltiVec || IsPixel) {
1440    Canonical = getVectorType(getCanonicalType(vecType),
1441      NumElts, false, false);
1442
1443    // Get the new insert position for the node we care about.
1444    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1445    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1446  }
1447  VectorType *New = new (*this, TypeAlignment)
1448    VectorType(vecType, NumElts, Canonical, IsAltiVec, IsPixel);
1449  VectorTypes.InsertNode(New, InsertPos);
1450  Types.push_back(New);
1451  return QualType(New, 0);
1452}
1453
1454/// getExtVectorType - Return the unique reference to an extended vector type of
1455/// the specified element type and size. VectorType must be a built-in type.
1456QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1457  BuiltinType *baseType;
1458
1459  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1460  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1461
1462  // Check if we've already instantiated a vector of this type.
1463  llvm::FoldingSetNodeID ID;
1464  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector, false, false);
1465  void *InsertPos = 0;
1466  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1467    return QualType(VTP, 0);
1468
1469  // If the element type isn't canonical, this won't be a canonical type either,
1470  // so fill in the canonical type field.
1471  QualType Canonical;
1472  if (!vecType.isCanonical()) {
1473    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1474
1475    // Get the new insert position for the node we care about.
1476    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1477    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1478  }
1479  ExtVectorType *New = new (*this, TypeAlignment)
1480    ExtVectorType(vecType, NumElts, Canonical);
1481  VectorTypes.InsertNode(New, InsertPos);
1482  Types.push_back(New);
1483  return QualType(New, 0);
1484}
1485
1486QualType ASTContext::getDependentSizedExtVectorType(QualType vecType,
1487                                                    Expr *SizeExpr,
1488                                                    SourceLocation AttrLoc) {
1489  llvm::FoldingSetNodeID ID;
1490  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1491                                       SizeExpr);
1492
1493  void *InsertPos = 0;
1494  DependentSizedExtVectorType *Canon
1495    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1496  DependentSizedExtVectorType *New;
1497  if (Canon) {
1498    // We already have a canonical version of this array type; use it as
1499    // the canonical type for a newly-built type.
1500    New = new (*this, TypeAlignment)
1501      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
1502                                  SizeExpr, AttrLoc);
1503  } else {
1504    QualType CanonVecTy = getCanonicalType(vecType);
1505    if (CanonVecTy == vecType) {
1506      New = new (*this, TypeAlignment)
1507        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
1508                                    AttrLoc);
1509
1510      DependentSizedExtVectorType *CanonCheck
1511        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1512      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
1513      (void)CanonCheck;
1514      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1515    } else {
1516      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1517                                                      SourceLocation());
1518      New = new (*this, TypeAlignment)
1519        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
1520    }
1521  }
1522
1523  Types.push_back(New);
1524  return QualType(New, 0);
1525}
1526
1527/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1528///
1529QualType ASTContext::getFunctionNoProtoType(QualType ResultTy,
1530                                            const FunctionType::ExtInfo &Info) {
1531  const CallingConv CallConv = Info.getCC();
1532  // Unique functions, to guarantee there is only one function of a particular
1533  // structure.
1534  llvm::FoldingSetNodeID ID;
1535  FunctionNoProtoType::Profile(ID, ResultTy, Info);
1536
1537  void *InsertPos = 0;
1538  if (FunctionNoProtoType *FT =
1539        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1540    return QualType(FT, 0);
1541
1542  QualType Canonical;
1543  if (!ResultTy.isCanonical() ||
1544      getCanonicalCallConv(CallConv) != CallConv) {
1545    Canonical =
1546      getFunctionNoProtoType(getCanonicalType(ResultTy),
1547                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
1548
1549    // Get the new insert position for the node we care about.
1550    FunctionNoProtoType *NewIP =
1551      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1552    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1553  }
1554
1555  FunctionNoProtoType *New = new (*this, TypeAlignment)
1556    FunctionNoProtoType(ResultTy, Canonical, Info);
1557  Types.push_back(New);
1558  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1559  return QualType(New, 0);
1560}
1561
1562/// getFunctionType - Return a normal function type with a typed argument
1563/// list.  isVariadic indicates whether the argument list includes '...'.
1564QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1565                                     unsigned NumArgs, bool isVariadic,
1566                                     unsigned TypeQuals, bool hasExceptionSpec,
1567                                     bool hasAnyExceptionSpec, unsigned NumExs,
1568                                     const QualType *ExArray,
1569                                     const FunctionType::ExtInfo &Info) {
1570  const CallingConv CallConv= Info.getCC();
1571  // Unique functions, to guarantee there is only one function of a particular
1572  // structure.
1573  llvm::FoldingSetNodeID ID;
1574  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1575                             TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1576                             NumExs, ExArray, Info);
1577
1578  void *InsertPos = 0;
1579  if (FunctionProtoType *FTP =
1580        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1581    return QualType(FTP, 0);
1582
1583  // Determine whether the type being created is already canonical or not.
1584  bool isCanonical = !hasExceptionSpec && ResultTy.isCanonical();
1585  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1586    if (!ArgArray[i].isCanonicalAsParam())
1587      isCanonical = false;
1588
1589  // If this type isn't canonical, get the canonical version of it.
1590  // The exception spec is not part of the canonical type.
1591  QualType Canonical;
1592  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
1593    llvm::SmallVector<QualType, 16> CanonicalArgs;
1594    CanonicalArgs.reserve(NumArgs);
1595    for (unsigned i = 0; i != NumArgs; ++i)
1596      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
1597
1598    Canonical = getFunctionType(getCanonicalType(ResultTy),
1599                                CanonicalArgs.data(), NumArgs,
1600                                isVariadic, TypeQuals, false,
1601                                false, 0, 0,
1602                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
1603
1604    // Get the new insert position for the node we care about.
1605    FunctionProtoType *NewIP =
1606      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1607    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1608  }
1609
1610  // FunctionProtoType objects are allocated with extra bytes after them
1611  // for two variable size arrays (for parameter and exception types) at the
1612  // end of them.
1613  FunctionProtoType *FTP =
1614    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1615                                 NumArgs*sizeof(QualType) +
1616                                 NumExs*sizeof(QualType), TypeAlignment);
1617  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1618                              TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1619                              ExArray, NumExs, Canonical, Info);
1620  Types.push_back(FTP);
1621  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1622  return QualType(FTP, 0);
1623}
1624
1625#ifndef NDEBUG
1626static bool NeedsInjectedClassNameType(const RecordDecl *D) {
1627  if (!isa<CXXRecordDecl>(D)) return false;
1628  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
1629  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
1630    return true;
1631  if (RD->getDescribedClassTemplate() &&
1632      !isa<ClassTemplateSpecializationDecl>(RD))
1633    return true;
1634  return false;
1635}
1636#endif
1637
1638/// getInjectedClassNameType - Return the unique reference to the
1639/// injected class name type for the specified templated declaration.
1640QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
1641                                              QualType TST) {
1642  assert(NeedsInjectedClassNameType(Decl));
1643  if (Decl->TypeForDecl) {
1644    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
1645  } else if (CXXRecordDecl *PrevDecl
1646               = cast_or_null<CXXRecordDecl>(Decl->getPreviousDeclaration())) {
1647    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
1648    Decl->TypeForDecl = PrevDecl->TypeForDecl;
1649    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
1650  } else {
1651    Decl->TypeForDecl =
1652      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
1653    Types.push_back(Decl->TypeForDecl);
1654  }
1655  return QualType(Decl->TypeForDecl, 0);
1656}
1657
1658/// getTypeDeclType - Return the unique reference to the type for the
1659/// specified type declaration.
1660QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) {
1661  assert(Decl && "Passed null for Decl param");
1662  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
1663
1664  if (const TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1665    return getTypedefType(Typedef);
1666
1667  assert(!isa<TemplateTypeParmDecl>(Decl) &&
1668         "Template type parameter types are always available.");
1669
1670  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1671    assert(!Record->getPreviousDeclaration() &&
1672           "struct/union has previous declaration");
1673    assert(!NeedsInjectedClassNameType(Record));
1674    Decl->TypeForDecl = new (*this, TypeAlignment) RecordType(Record);
1675  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1676    assert(!Enum->getPreviousDeclaration() &&
1677           "enum has previous declaration");
1678    Decl->TypeForDecl = new (*this, TypeAlignment) EnumType(Enum);
1679  } else if (const UnresolvedUsingTypenameDecl *Using =
1680               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
1681    Decl->TypeForDecl = new (*this, TypeAlignment) UnresolvedUsingType(Using);
1682  } else
1683    llvm_unreachable("TypeDecl without a type?");
1684
1685  Types.push_back(Decl->TypeForDecl);
1686  return QualType(Decl->TypeForDecl, 0);
1687}
1688
1689/// getTypedefType - Return the unique reference to the type for the
1690/// specified typename decl.
1691QualType ASTContext::getTypedefType(const TypedefDecl *Decl) {
1692  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1693
1694  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1695  Decl->TypeForDecl = new(*this, TypeAlignment)
1696    TypedefType(Type::Typedef, Decl, Canonical);
1697  Types.push_back(Decl->TypeForDecl);
1698  return QualType(Decl->TypeForDecl, 0);
1699}
1700
1701/// \brief Retrieve a substitution-result type.
1702QualType
1703ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
1704                                         QualType Replacement) {
1705  assert(Replacement.isCanonical()
1706         && "replacement types must always be canonical");
1707
1708  llvm::FoldingSetNodeID ID;
1709  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
1710  void *InsertPos = 0;
1711  SubstTemplateTypeParmType *SubstParm
1712    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1713
1714  if (!SubstParm) {
1715    SubstParm = new (*this, TypeAlignment)
1716      SubstTemplateTypeParmType(Parm, Replacement);
1717    Types.push_back(SubstParm);
1718    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
1719  }
1720
1721  return QualType(SubstParm, 0);
1722}
1723
1724/// \brief Retrieve the template type parameter type for a template
1725/// parameter or parameter pack with the given depth, index, and (optionally)
1726/// name.
1727QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1728                                             bool ParameterPack,
1729                                             IdentifierInfo *Name) {
1730  llvm::FoldingSetNodeID ID;
1731  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
1732  void *InsertPos = 0;
1733  TemplateTypeParmType *TypeParm
1734    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1735
1736  if (TypeParm)
1737    return QualType(TypeParm, 0);
1738
1739  if (Name) {
1740    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
1741    TypeParm = new (*this, TypeAlignment)
1742      TemplateTypeParmType(Depth, Index, ParameterPack, Name, Canon);
1743
1744    TemplateTypeParmType *TypeCheck
1745      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1746    assert(!TypeCheck && "Template type parameter canonical type broken");
1747    (void)TypeCheck;
1748  } else
1749    TypeParm = new (*this, TypeAlignment)
1750      TemplateTypeParmType(Depth, Index, ParameterPack);
1751
1752  Types.push_back(TypeParm);
1753  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1754
1755  return QualType(TypeParm, 0);
1756}
1757
1758TypeSourceInfo *
1759ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
1760                                              SourceLocation NameLoc,
1761                                        const TemplateArgumentListInfo &Args,
1762                                              QualType CanonType) {
1763  QualType TST = getTemplateSpecializationType(Name, Args, CanonType);
1764
1765  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
1766  TemplateSpecializationTypeLoc TL
1767    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1768  TL.setTemplateNameLoc(NameLoc);
1769  TL.setLAngleLoc(Args.getLAngleLoc());
1770  TL.setRAngleLoc(Args.getRAngleLoc());
1771  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1772    TL.setArgLocInfo(i, Args[i].getLocInfo());
1773  return DI;
1774}
1775
1776QualType
1777ASTContext::getTemplateSpecializationType(TemplateName Template,
1778                                          const TemplateArgumentListInfo &Args,
1779                                          QualType Canon,
1780                                          bool IsCurrentInstantiation) {
1781  unsigned NumArgs = Args.size();
1782
1783  llvm::SmallVector<TemplateArgument, 4> ArgVec;
1784  ArgVec.reserve(NumArgs);
1785  for (unsigned i = 0; i != NumArgs; ++i)
1786    ArgVec.push_back(Args[i].getArgument());
1787
1788  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
1789                                       Canon, IsCurrentInstantiation);
1790}
1791
1792QualType
1793ASTContext::getTemplateSpecializationType(TemplateName Template,
1794                                          const TemplateArgument *Args,
1795                                          unsigned NumArgs,
1796                                          QualType Canon,
1797                                          bool IsCurrentInstantiation) {
1798  if (!Canon.isNull())
1799    Canon = getCanonicalType(Canon);
1800  else {
1801    assert(!IsCurrentInstantiation &&
1802           "current-instantiation specializations should always "
1803           "have a canonical type");
1804
1805    // Build the canonical template specialization type.
1806    TemplateName CanonTemplate = getCanonicalTemplateName(Template);
1807    llvm::SmallVector<TemplateArgument, 4> CanonArgs;
1808    CanonArgs.reserve(NumArgs);
1809    for (unsigned I = 0; I != NumArgs; ++I)
1810      CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
1811
1812    // Determine whether this canonical template specialization type already
1813    // exists.
1814    llvm::FoldingSetNodeID ID;
1815    TemplateSpecializationType::Profile(ID, CanonTemplate, false,
1816                                        CanonArgs.data(), NumArgs, *this);
1817
1818    void *InsertPos = 0;
1819    TemplateSpecializationType *Spec
1820      = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1821
1822    if (!Spec) {
1823      // Allocate a new canonical template specialization type.
1824      void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1825                            sizeof(TemplateArgument) * NumArgs),
1826                           TypeAlignment);
1827      Spec = new (Mem) TemplateSpecializationType(*this, CanonTemplate, false,
1828                                                  CanonArgs.data(), NumArgs,
1829                                                  Canon);
1830      Types.push_back(Spec);
1831      TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1832    }
1833
1834    if (Canon.isNull())
1835      Canon = QualType(Spec, 0);
1836    assert(Canon->isDependentType() &&
1837           "Non-dependent template-id type must have a canonical type");
1838  }
1839
1840  // Allocate the (non-canonical) template specialization type, but don't
1841  // try to unique it: these types typically have location information that
1842  // we don't unique and don't want to lose.
1843  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1844                        sizeof(TemplateArgument) * NumArgs),
1845                       TypeAlignment);
1846  TemplateSpecializationType *Spec
1847    = new (Mem) TemplateSpecializationType(*this, Template,
1848                                           IsCurrentInstantiation,
1849                                           Args, NumArgs,
1850                                           Canon);
1851
1852  Types.push_back(Spec);
1853  return QualType(Spec, 0);
1854}
1855
1856QualType
1857ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
1858                              NestedNameSpecifier *NNS,
1859                              QualType NamedType) {
1860  llvm::FoldingSetNodeID ID;
1861  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
1862
1863  void *InsertPos = 0;
1864  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
1865  if (T)
1866    return QualType(T, 0);
1867
1868  QualType Canon = NamedType;
1869  if (!Canon.isCanonical()) {
1870    Canon = getCanonicalType(NamedType);
1871    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
1872    assert(!CheckT && "Elaborated canonical type broken");
1873    (void)CheckT;
1874  }
1875
1876  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
1877  Types.push_back(T);
1878  ElaboratedTypes.InsertNode(T, InsertPos);
1879  return QualType(T, 0);
1880}
1881
1882QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
1883                                          NestedNameSpecifier *NNS,
1884                                          const IdentifierInfo *Name,
1885                                          QualType Canon) {
1886  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1887
1888  if (Canon.isNull()) {
1889    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1890    ElaboratedTypeKeyword CanonKeyword = Keyword;
1891    if (Keyword == ETK_None)
1892      CanonKeyword = ETK_Typename;
1893
1894    if (CanonNNS != NNS || CanonKeyword != Keyword)
1895      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
1896  }
1897
1898  llvm::FoldingSetNodeID ID;
1899  DependentNameType::Profile(ID, Keyword, NNS, Name);
1900
1901  void *InsertPos = 0;
1902  DependentNameType *T
1903    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1904  if (T)
1905    return QualType(T, 0);
1906
1907  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
1908  Types.push_back(T);
1909  DependentNameTypes.InsertNode(T, InsertPos);
1910  return QualType(T, 0);
1911}
1912
1913QualType
1914ASTContext::getDependentTemplateSpecializationType(
1915                                 ElaboratedTypeKeyword Keyword,
1916                                 NestedNameSpecifier *NNS,
1917                                 const IdentifierInfo *Name,
1918                                 const TemplateArgumentListInfo &Args) {
1919  // TODO: avoid this copy
1920  llvm::SmallVector<TemplateArgument, 16> ArgCopy;
1921  for (unsigned I = 0, E = Args.size(); I != E; ++I)
1922    ArgCopy.push_back(Args[I].getArgument());
1923  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
1924                                                ArgCopy.size(),
1925                                                ArgCopy.data());
1926}
1927
1928QualType
1929ASTContext::getDependentTemplateSpecializationType(
1930                                 ElaboratedTypeKeyword Keyword,
1931                                 NestedNameSpecifier *NNS,
1932                                 const IdentifierInfo *Name,
1933                                 unsigned NumArgs,
1934                                 const TemplateArgument *Args) {
1935  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1936
1937  llvm::FoldingSetNodeID ID;
1938  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
1939                                               Name, NumArgs, Args);
1940
1941  void *InsertPos = 0;
1942  DependentTemplateSpecializationType *T
1943    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1944  if (T)
1945    return QualType(T, 0);
1946
1947  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1948
1949  ElaboratedTypeKeyword CanonKeyword = Keyword;
1950  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
1951
1952  bool AnyNonCanonArgs = false;
1953  llvm::SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
1954  for (unsigned I = 0; I != NumArgs; ++I) {
1955    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
1956    if (!CanonArgs[I].structurallyEquals(Args[I]))
1957      AnyNonCanonArgs = true;
1958  }
1959
1960  QualType Canon;
1961  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
1962    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
1963                                                   Name, NumArgs,
1964                                                   CanonArgs.data());
1965
1966    // Find the insert position again.
1967    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1968  }
1969
1970  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
1971                        sizeof(TemplateArgument) * NumArgs),
1972                       TypeAlignment);
1973  T = new (Mem) DependentTemplateSpecializationType(*this, Keyword, NNS,
1974                                                    Name, NumArgs, Args, Canon);
1975  Types.push_back(T);
1976  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
1977  return QualType(T, 0);
1978}
1979
1980/// CmpProtocolNames - Comparison predicate for sorting protocols
1981/// alphabetically.
1982static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
1983                            const ObjCProtocolDecl *RHS) {
1984  return LHS->getDeclName() < RHS->getDeclName();
1985}
1986
1987static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
1988                                unsigned NumProtocols) {
1989  if (NumProtocols == 0) return true;
1990
1991  for (unsigned i = 1; i != NumProtocols; ++i)
1992    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
1993      return false;
1994  return true;
1995}
1996
1997static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
1998                                   unsigned &NumProtocols) {
1999  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2000
2001  // Sort protocols, keyed by name.
2002  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2003
2004  // Remove duplicates.
2005  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2006  NumProtocols = ProtocolsEnd-Protocols;
2007}
2008
2009QualType ASTContext::getObjCObjectType(QualType BaseType,
2010                                       ObjCProtocolDecl * const *Protocols,
2011                                       unsigned NumProtocols) {
2012  // If the base type is an interface and there aren't any protocols
2013  // to add, then the interface type will do just fine.
2014  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
2015    return BaseType;
2016
2017  // Look in the folding set for an existing type.
2018  llvm::FoldingSetNodeID ID;
2019  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
2020  void *InsertPos = 0;
2021  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
2022    return QualType(QT, 0);
2023
2024  // Build the canonical type, which has the canonical base type and
2025  // a sorted-and-uniqued list of protocols.
2026  QualType Canonical;
2027  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
2028  if (!ProtocolsSorted || !BaseType.isCanonical()) {
2029    if (!ProtocolsSorted) {
2030      llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
2031                                                     Protocols + NumProtocols);
2032      unsigned UniqueCount = NumProtocols;
2033
2034      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2035      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2036                                    &Sorted[0], UniqueCount);
2037    } else {
2038      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2039                                    Protocols, NumProtocols);
2040    }
2041
2042    // Regenerate InsertPos.
2043    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
2044  }
2045
2046  unsigned Size = sizeof(ObjCObjectTypeImpl);
2047  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
2048  void *Mem = Allocate(Size, TypeAlignment);
2049  ObjCObjectTypeImpl *T =
2050    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
2051
2052  Types.push_back(T);
2053  ObjCObjectTypes.InsertNode(T, InsertPos);
2054  return QualType(T, 0);
2055}
2056
2057/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2058/// the given object type.
2059QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) {
2060  llvm::FoldingSetNodeID ID;
2061  ObjCObjectPointerType::Profile(ID, ObjectT);
2062
2063  void *InsertPos = 0;
2064  if (ObjCObjectPointerType *QT =
2065              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2066    return QualType(QT, 0);
2067
2068  // Find the canonical object type.
2069  QualType Canonical;
2070  if (!ObjectT.isCanonical()) {
2071    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
2072
2073    // Regenerate InsertPos.
2074    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2075  }
2076
2077  // No match.
2078  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
2079  ObjCObjectPointerType *QType =
2080    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
2081
2082  Types.push_back(QType);
2083  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2084  return QualType(QType, 0);
2085}
2086
2087/// getObjCInterfaceType - Return the unique reference to the type for the
2088/// specified ObjC interface decl. The list of protocols is optional.
2089QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl) {
2090  if (Decl->TypeForDecl)
2091    return QualType(Decl->TypeForDecl, 0);
2092
2093  // FIXME: redeclarations?
2094  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
2095  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
2096  Decl->TypeForDecl = T;
2097  Types.push_back(T);
2098  return QualType(T, 0);
2099}
2100
2101/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2102/// TypeOfExprType AST's (since expression's are never shared). For example,
2103/// multiple declarations that refer to "typeof(x)" all contain different
2104/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2105/// on canonical type's (which are always unique).
2106QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
2107  TypeOfExprType *toe;
2108  if (tofExpr->isTypeDependent()) {
2109    llvm::FoldingSetNodeID ID;
2110    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2111
2112    void *InsertPos = 0;
2113    DependentTypeOfExprType *Canon
2114      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2115    if (Canon) {
2116      // We already have a "canonical" version of an identical, dependent
2117      // typeof(expr) type. Use that as our canonical type.
2118      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2119                                          QualType((TypeOfExprType*)Canon, 0));
2120    }
2121    else {
2122      // Build a new, canonical typeof(expr) type.
2123      Canon
2124        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2125      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2126      toe = Canon;
2127    }
2128  } else {
2129    QualType Canonical = getCanonicalType(tofExpr->getType());
2130    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2131  }
2132  Types.push_back(toe);
2133  return QualType(toe, 0);
2134}
2135
2136/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2137/// TypeOfType AST's. The only motivation to unique these nodes would be
2138/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2139/// an issue. This doesn't effect the type checker, since it operates
2140/// on canonical type's (which are always unique).
2141QualType ASTContext::getTypeOfType(QualType tofType) {
2142  QualType Canonical = getCanonicalType(tofType);
2143  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2144  Types.push_back(tot);
2145  return QualType(tot, 0);
2146}
2147
2148/// getDecltypeForExpr - Given an expr, will return the decltype for that
2149/// expression, according to the rules in C++0x [dcl.type.simple]p4
2150static QualType getDecltypeForExpr(const Expr *e, ASTContext &Context) {
2151  if (e->isTypeDependent())
2152    return Context.DependentTy;
2153
2154  // If e is an id expression or a class member access, decltype(e) is defined
2155  // as the type of the entity named by e.
2156  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2157    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2158      return VD->getType();
2159  }
2160  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2161    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2162      return FD->getType();
2163  }
2164  // If e is a function call or an invocation of an overloaded operator,
2165  // (parentheses around e are ignored), decltype(e) is defined as the
2166  // return type of that function.
2167  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2168    return CE->getCallReturnType();
2169
2170  QualType T = e->getType();
2171
2172  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2173  // defined as T&, otherwise decltype(e) is defined as T.
2174  if (e->isLvalue(Context) == Expr::LV_Valid)
2175    T = Context.getLValueReferenceType(T);
2176
2177  return T;
2178}
2179
2180/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2181/// DecltypeType AST's. The only motivation to unique these nodes would be
2182/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2183/// an issue. This doesn't effect the type checker, since it operates
2184/// on canonical type's (which are always unique).
2185QualType ASTContext::getDecltypeType(Expr *e) {
2186  DecltypeType *dt;
2187  if (e->isTypeDependent()) {
2188    llvm::FoldingSetNodeID ID;
2189    DependentDecltypeType::Profile(ID, *this, e);
2190
2191    void *InsertPos = 0;
2192    DependentDecltypeType *Canon
2193      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2194    if (Canon) {
2195      // We already have a "canonical" version of an equivalent, dependent
2196      // decltype type. Use that as our canonical type.
2197      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2198                                       QualType((DecltypeType*)Canon, 0));
2199    }
2200    else {
2201      // Build a new, canonical typeof(expr) type.
2202      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2203      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2204      dt = Canon;
2205    }
2206  } else {
2207    QualType T = getDecltypeForExpr(e, *this);
2208    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2209  }
2210  Types.push_back(dt);
2211  return QualType(dt, 0);
2212}
2213
2214/// getTagDeclType - Return the unique reference to the type for the
2215/// specified TagDecl (struct/union/class/enum) decl.
2216QualType ASTContext::getTagDeclType(const TagDecl *Decl) {
2217  assert (Decl);
2218  // FIXME: What is the design on getTagDeclType when it requires casting
2219  // away const?  mutable?
2220  return getTypeDeclType(const_cast<TagDecl*>(Decl));
2221}
2222
2223/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2224/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2225/// needs to agree with the definition in <stddef.h>.
2226CanQualType ASTContext::getSizeType() const {
2227  return getFromTargetType(Target.getSizeType());
2228}
2229
2230/// getSignedWCharType - Return the type of "signed wchar_t".
2231/// Used when in C++, as a GCC extension.
2232QualType ASTContext::getSignedWCharType() const {
2233  // FIXME: derive from "Target" ?
2234  return WCharTy;
2235}
2236
2237/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2238/// Used when in C++, as a GCC extension.
2239QualType ASTContext::getUnsignedWCharType() const {
2240  // FIXME: derive from "Target" ?
2241  return UnsignedIntTy;
2242}
2243
2244/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2245/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2246QualType ASTContext::getPointerDiffType() const {
2247  return getFromTargetType(Target.getPtrDiffType(0));
2248}
2249
2250//===----------------------------------------------------------------------===//
2251//                              Type Operators
2252//===----------------------------------------------------------------------===//
2253
2254CanQualType ASTContext::getCanonicalParamType(QualType T) {
2255  // Push qualifiers into arrays, and then discard any remaining
2256  // qualifiers.
2257  T = getCanonicalType(T);
2258  const Type *Ty = T.getTypePtr();
2259
2260  QualType Result;
2261  if (isa<ArrayType>(Ty)) {
2262    Result = getArrayDecayedType(QualType(Ty,0));
2263  } else if (isa<FunctionType>(Ty)) {
2264    Result = getPointerType(QualType(Ty, 0));
2265  } else {
2266    Result = QualType(Ty, 0);
2267  }
2268
2269  return CanQualType::CreateUnsafe(Result);
2270}
2271
2272/// getCanonicalType - Return the canonical (structural) type corresponding to
2273/// the specified potentially non-canonical type.  The non-canonical version
2274/// of a type may have many "decorated" versions of types.  Decorators can
2275/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
2276/// to be free of any of these, allowing two canonical types to be compared
2277/// for exact equality with a simple pointer comparison.
2278CanQualType ASTContext::getCanonicalType(QualType T) {
2279  QualifierCollector Quals;
2280  const Type *Ptr = Quals.strip(T);
2281  QualType CanType = Ptr->getCanonicalTypeInternal();
2282
2283  // The canonical internal type will be the canonical type *except*
2284  // that we push type qualifiers down through array types.
2285
2286  // If there are no new qualifiers to push down, stop here.
2287  if (!Quals.hasQualifiers())
2288    return CanQualType::CreateUnsafe(CanType);
2289
2290  // If the type qualifiers are on an array type, get the canonical
2291  // type of the array with the qualifiers applied to the element
2292  // type.
2293  ArrayType *AT = dyn_cast<ArrayType>(CanType);
2294  if (!AT)
2295    return CanQualType::CreateUnsafe(getQualifiedType(CanType, Quals));
2296
2297  // Get the canonical version of the element with the extra qualifiers on it.
2298  // This can recursively sink qualifiers through multiple levels of arrays.
2299  QualType NewEltTy = getQualifiedType(AT->getElementType(), Quals);
2300  NewEltTy = getCanonicalType(NewEltTy);
2301
2302  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2303    return CanQualType::CreateUnsafe(
2304             getConstantArrayType(NewEltTy, CAT->getSize(),
2305                                  CAT->getSizeModifier(),
2306                                  CAT->getIndexTypeCVRQualifiers()));
2307  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
2308    return CanQualType::CreateUnsafe(
2309             getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
2310                                    IAT->getIndexTypeCVRQualifiers()));
2311
2312  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
2313    return CanQualType::CreateUnsafe(
2314             getDependentSizedArrayType(NewEltTy,
2315                                        DSAT->getSizeExpr() ?
2316                                          DSAT->getSizeExpr()->Retain() : 0,
2317                                        DSAT->getSizeModifier(),
2318                                        DSAT->getIndexTypeCVRQualifiers(),
2319                        DSAT->getBracketsRange())->getCanonicalTypeInternal());
2320
2321  VariableArrayType *VAT = cast<VariableArrayType>(AT);
2322  return CanQualType::CreateUnsafe(getVariableArrayType(NewEltTy,
2323                                                        VAT->getSizeExpr() ?
2324                                              VAT->getSizeExpr()->Retain() : 0,
2325                                                        VAT->getSizeModifier(),
2326                                              VAT->getIndexTypeCVRQualifiers(),
2327                                                     VAT->getBracketsRange()));
2328}
2329
2330QualType ASTContext::getUnqualifiedArrayType(QualType T,
2331                                             Qualifiers &Quals) {
2332  Quals = T.getQualifiers();
2333  const ArrayType *AT = getAsArrayType(T);
2334  if (!AT) {
2335    return T.getUnqualifiedType();
2336  }
2337
2338  QualType Elt = AT->getElementType();
2339  QualType UnqualElt = getUnqualifiedArrayType(Elt, Quals);
2340  if (Elt == UnqualElt)
2341    return T;
2342
2343  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
2344    return getConstantArrayType(UnqualElt, CAT->getSize(),
2345                                CAT->getSizeModifier(), 0);
2346  }
2347
2348  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
2349    return getIncompleteArrayType(UnqualElt, IAT->getSizeModifier(), 0);
2350  }
2351
2352  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
2353    return getVariableArrayType(UnqualElt,
2354                                VAT->getSizeExpr() ?
2355                                VAT->getSizeExpr()->Retain() : 0,
2356                                VAT->getSizeModifier(),
2357                                VAT->getIndexTypeCVRQualifiers(),
2358                                VAT->getBracketsRange());
2359  }
2360
2361  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
2362  return getDependentSizedArrayType(UnqualElt, DSAT->getSizeExpr()->Retain(),
2363                                    DSAT->getSizeModifier(), 0,
2364                                    SourceRange());
2365}
2366
2367/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
2368/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
2369/// they point to and return true. If T1 and T2 aren't pointer types
2370/// or pointer-to-member types, or if they are not similar at this
2371/// level, returns false and leaves T1 and T2 unchanged. Top-level
2372/// qualifiers on T1 and T2 are ignored. This function will typically
2373/// be called in a loop that successively "unwraps" pointer and
2374/// pointer-to-member types to compare them at each level.
2375bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
2376  const PointerType *T1PtrType = T1->getAs<PointerType>(),
2377                    *T2PtrType = T2->getAs<PointerType>();
2378  if (T1PtrType && T2PtrType) {
2379    T1 = T1PtrType->getPointeeType();
2380    T2 = T2PtrType->getPointeeType();
2381    return true;
2382  }
2383
2384  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
2385                          *T2MPType = T2->getAs<MemberPointerType>();
2386  if (T1MPType && T2MPType &&
2387      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
2388                             QualType(T2MPType->getClass(), 0))) {
2389    T1 = T1MPType->getPointeeType();
2390    T2 = T2MPType->getPointeeType();
2391    return true;
2392  }
2393
2394  if (getLangOptions().ObjC1) {
2395    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
2396                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
2397    if (T1OPType && T2OPType) {
2398      T1 = T1OPType->getPointeeType();
2399      T2 = T2OPType->getPointeeType();
2400      return true;
2401    }
2402  }
2403
2404  // FIXME: Block pointers, too?
2405
2406  return false;
2407}
2408
2409DeclarationName ASTContext::getNameForTemplate(TemplateName Name) {
2410  if (TemplateDecl *TD = Name.getAsTemplateDecl())
2411    return TD->getDeclName();
2412
2413  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
2414    if (DTN->isIdentifier()) {
2415      return DeclarationNames.getIdentifier(DTN->getIdentifier());
2416    } else {
2417      return DeclarationNames.getCXXOperatorName(DTN->getOperator());
2418    }
2419  }
2420
2421  OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
2422  assert(Storage);
2423  return (*Storage->begin())->getDeclName();
2424}
2425
2426TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
2427  // If this template name refers to a template, the canonical
2428  // template name merely stores the template itself.
2429  if (TemplateDecl *Template = Name.getAsTemplateDecl())
2430    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
2431
2432  assert(!Name.getAsOverloadedTemplate());
2433
2434  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
2435  assert(DTN && "Non-dependent template names must refer to template decls.");
2436  return DTN->CanonicalTemplateName;
2437}
2438
2439bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
2440  X = getCanonicalTemplateName(X);
2441  Y = getCanonicalTemplateName(Y);
2442  return X.getAsVoidPointer() == Y.getAsVoidPointer();
2443}
2444
2445TemplateArgument
2446ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) {
2447  switch (Arg.getKind()) {
2448    case TemplateArgument::Null:
2449      return Arg;
2450
2451    case TemplateArgument::Expression:
2452      return Arg;
2453
2454    case TemplateArgument::Declaration:
2455      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
2456
2457    case TemplateArgument::Template:
2458      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
2459
2460    case TemplateArgument::Integral:
2461      return TemplateArgument(*Arg.getAsIntegral(),
2462                              getCanonicalType(Arg.getIntegralType()));
2463
2464    case TemplateArgument::Type:
2465      return TemplateArgument(getCanonicalType(Arg.getAsType()));
2466
2467    case TemplateArgument::Pack: {
2468      // FIXME: Allocate in ASTContext
2469      TemplateArgument *CanonArgs = new TemplateArgument[Arg.pack_size()];
2470      unsigned Idx = 0;
2471      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
2472                                        AEnd = Arg.pack_end();
2473           A != AEnd; (void)++A, ++Idx)
2474        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
2475
2476      TemplateArgument Result;
2477      Result.setArgumentPack(CanonArgs, Arg.pack_size(), false);
2478      return Result;
2479    }
2480  }
2481
2482  // Silence GCC warning
2483  assert(false && "Unhandled template argument kind");
2484  return TemplateArgument();
2485}
2486
2487NestedNameSpecifier *
2488ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
2489  if (!NNS)
2490    return 0;
2491
2492  switch (NNS->getKind()) {
2493  case NestedNameSpecifier::Identifier:
2494    // Canonicalize the prefix but keep the identifier the same.
2495    return NestedNameSpecifier::Create(*this,
2496                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
2497                                       NNS->getAsIdentifier());
2498
2499  case NestedNameSpecifier::Namespace:
2500    // A namespace is canonical; build a nested-name-specifier with
2501    // this namespace and no prefix.
2502    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
2503
2504  case NestedNameSpecifier::TypeSpec:
2505  case NestedNameSpecifier::TypeSpecWithTemplate: {
2506    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
2507    return NestedNameSpecifier::Create(*this, 0,
2508                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
2509                                       T.getTypePtr());
2510  }
2511
2512  case NestedNameSpecifier::Global:
2513    // The global specifier is canonical and unique.
2514    return NNS;
2515  }
2516
2517  // Required to silence a GCC warning
2518  return 0;
2519}
2520
2521
2522const ArrayType *ASTContext::getAsArrayType(QualType T) {
2523  // Handle the non-qualified case efficiently.
2524  if (!T.hasLocalQualifiers()) {
2525    // Handle the common positive case fast.
2526    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
2527      return AT;
2528  }
2529
2530  // Handle the common negative case fast.
2531  QualType CType = T->getCanonicalTypeInternal();
2532  if (!isa<ArrayType>(CType))
2533    return 0;
2534
2535  // Apply any qualifiers from the array type to the element type.  This
2536  // implements C99 6.7.3p8: "If the specification of an array type includes
2537  // any type qualifiers, the element type is so qualified, not the array type."
2538
2539  // If we get here, we either have type qualifiers on the type, or we have
2540  // sugar such as a typedef in the way.  If we have type qualifiers on the type
2541  // we must propagate them down into the element type.
2542
2543  QualifierCollector Qs;
2544  const Type *Ty = Qs.strip(T.getDesugaredType());
2545
2546  // If we have a simple case, just return now.
2547  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
2548  if (ATy == 0 || Qs.empty())
2549    return ATy;
2550
2551  // Otherwise, we have an array and we have qualifiers on it.  Push the
2552  // qualifiers into the array element type and return a new array type.
2553  // Get the canonical version of the element with the extra qualifiers on it.
2554  // This can recursively sink qualifiers through multiple levels of arrays.
2555  QualType NewEltTy = getQualifiedType(ATy->getElementType(), Qs);
2556
2557  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
2558    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
2559                                                CAT->getSizeModifier(),
2560                                           CAT->getIndexTypeCVRQualifiers()));
2561  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
2562    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
2563                                                  IAT->getSizeModifier(),
2564                                           IAT->getIndexTypeCVRQualifiers()));
2565
2566  if (const DependentSizedArrayType *DSAT
2567        = dyn_cast<DependentSizedArrayType>(ATy))
2568    return cast<ArrayType>(
2569                     getDependentSizedArrayType(NewEltTy,
2570                                                DSAT->getSizeExpr() ?
2571                                              DSAT->getSizeExpr()->Retain() : 0,
2572                                                DSAT->getSizeModifier(),
2573                                              DSAT->getIndexTypeCVRQualifiers(),
2574                                                DSAT->getBracketsRange()));
2575
2576  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
2577  return cast<ArrayType>(getVariableArrayType(NewEltTy,
2578                                              VAT->getSizeExpr() ?
2579                                              VAT->getSizeExpr()->Retain() : 0,
2580                                              VAT->getSizeModifier(),
2581                                              VAT->getIndexTypeCVRQualifiers(),
2582                                              VAT->getBracketsRange()));
2583}
2584
2585
2586/// getArrayDecayedType - Return the properly qualified result of decaying the
2587/// specified array type to a pointer.  This operation is non-trivial when
2588/// handling typedefs etc.  The canonical type of "T" must be an array type,
2589/// this returns a pointer to a properly qualified element of the array.
2590///
2591/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2592QualType ASTContext::getArrayDecayedType(QualType Ty) {
2593  // Get the element type with 'getAsArrayType' so that we don't lose any
2594  // typedefs in the element type of the array.  This also handles propagation
2595  // of type qualifiers from the array type into the element type if present
2596  // (C99 6.7.3p8).
2597  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
2598  assert(PrettyArrayType && "Not an array type!");
2599
2600  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
2601
2602  // int x[restrict 4] ->  int *restrict
2603  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
2604}
2605
2606QualType ASTContext::getBaseElementType(QualType QT) {
2607  QualifierCollector Qs;
2608  while (const ArrayType *AT = getAsArrayType(QualType(Qs.strip(QT), 0)))
2609    QT = AT->getElementType();
2610  return Qs.apply(QT);
2611}
2612
2613QualType ASTContext::getBaseElementType(const ArrayType *AT) {
2614  QualType ElemTy = AT->getElementType();
2615
2616  if (const ArrayType *AT = getAsArrayType(ElemTy))
2617    return getBaseElementType(AT);
2618
2619  return ElemTy;
2620}
2621
2622/// getConstantArrayElementCount - Returns number of constant array elements.
2623uint64_t
2624ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
2625  uint64_t ElementCount = 1;
2626  do {
2627    ElementCount *= CA->getSize().getZExtValue();
2628    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
2629  } while (CA);
2630  return ElementCount;
2631}
2632
2633/// getFloatingRank - Return a relative rank for floating point types.
2634/// This routine will assert if passed a built-in type that isn't a float.
2635static FloatingRank getFloatingRank(QualType T) {
2636  if (const ComplexType *CT = T->getAs<ComplexType>())
2637    return getFloatingRank(CT->getElementType());
2638
2639  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
2640  switch (T->getAs<BuiltinType>()->getKind()) {
2641  default: assert(0 && "getFloatingRank(): not a floating type");
2642  case BuiltinType::Float:      return FloatRank;
2643  case BuiltinType::Double:     return DoubleRank;
2644  case BuiltinType::LongDouble: return LongDoubleRank;
2645  }
2646}
2647
2648/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
2649/// point or a complex type (based on typeDomain/typeSize).
2650/// 'typeDomain' is a real floating point or complex type.
2651/// 'typeSize' is a real floating point or complex type.
2652QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
2653                                                       QualType Domain) const {
2654  FloatingRank EltRank = getFloatingRank(Size);
2655  if (Domain->isComplexType()) {
2656    switch (EltRank) {
2657    default: assert(0 && "getFloatingRank(): illegal value for rank");
2658    case FloatRank:      return FloatComplexTy;
2659    case DoubleRank:     return DoubleComplexTy;
2660    case LongDoubleRank: return LongDoubleComplexTy;
2661    }
2662  }
2663
2664  assert(Domain->isRealFloatingType() && "Unknown domain!");
2665  switch (EltRank) {
2666  default: assert(0 && "getFloatingRank(): illegal value for rank");
2667  case FloatRank:      return FloatTy;
2668  case DoubleRank:     return DoubleTy;
2669  case LongDoubleRank: return LongDoubleTy;
2670  }
2671}
2672
2673/// getFloatingTypeOrder - Compare the rank of the two specified floating
2674/// point types, ignoring the domain of the type (i.e. 'double' ==
2675/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2676/// LHS < RHS, return -1.
2677int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
2678  FloatingRank LHSR = getFloatingRank(LHS);
2679  FloatingRank RHSR = getFloatingRank(RHS);
2680
2681  if (LHSR == RHSR)
2682    return 0;
2683  if (LHSR > RHSR)
2684    return 1;
2685  return -1;
2686}
2687
2688/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
2689/// routine will assert if passed a built-in type that isn't an integer or enum,
2690/// or if it is not canonicalized.
2691unsigned ASTContext::getIntegerRank(Type *T) {
2692  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
2693  if (EnumType* ET = dyn_cast<EnumType>(T))
2694    T = ET->getDecl()->getPromotionType().getTypePtr();
2695
2696  if (T->isSpecificBuiltinType(BuiltinType::WChar))
2697    T = getFromTargetType(Target.getWCharType()).getTypePtr();
2698
2699  if (T->isSpecificBuiltinType(BuiltinType::Char16))
2700    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
2701
2702  if (T->isSpecificBuiltinType(BuiltinType::Char32))
2703    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
2704
2705  switch (cast<BuiltinType>(T)->getKind()) {
2706  default: assert(0 && "getIntegerRank(): not a built-in integer");
2707  case BuiltinType::Bool:
2708    return 1 + (getIntWidth(BoolTy) << 3);
2709  case BuiltinType::Char_S:
2710  case BuiltinType::Char_U:
2711  case BuiltinType::SChar:
2712  case BuiltinType::UChar:
2713    return 2 + (getIntWidth(CharTy) << 3);
2714  case BuiltinType::Short:
2715  case BuiltinType::UShort:
2716    return 3 + (getIntWidth(ShortTy) << 3);
2717  case BuiltinType::Int:
2718  case BuiltinType::UInt:
2719    return 4 + (getIntWidth(IntTy) << 3);
2720  case BuiltinType::Long:
2721  case BuiltinType::ULong:
2722    return 5 + (getIntWidth(LongTy) << 3);
2723  case BuiltinType::LongLong:
2724  case BuiltinType::ULongLong:
2725    return 6 + (getIntWidth(LongLongTy) << 3);
2726  case BuiltinType::Int128:
2727  case BuiltinType::UInt128:
2728    return 7 + (getIntWidth(Int128Ty) << 3);
2729  }
2730}
2731
2732/// \brief Whether this is a promotable bitfield reference according
2733/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
2734///
2735/// \returns the type this bit-field will promote to, or NULL if no
2736/// promotion occurs.
2737QualType ASTContext::isPromotableBitField(Expr *E) {
2738  if (E->isTypeDependent() || E->isValueDependent())
2739    return QualType();
2740
2741  FieldDecl *Field = E->getBitField();
2742  if (!Field)
2743    return QualType();
2744
2745  QualType FT = Field->getType();
2746
2747  llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
2748  uint64_t BitWidth = BitWidthAP.getZExtValue();
2749  uint64_t IntSize = getTypeSize(IntTy);
2750  // GCC extension compatibility: if the bit-field size is less than or equal
2751  // to the size of int, it gets promoted no matter what its type is.
2752  // For instance, unsigned long bf : 4 gets promoted to signed int.
2753  if (BitWidth < IntSize)
2754    return IntTy;
2755
2756  if (BitWidth == IntSize)
2757    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
2758
2759  // Types bigger than int are not subject to promotions, and therefore act
2760  // like the base type.
2761  // FIXME: This doesn't quite match what gcc does, but what gcc does here
2762  // is ridiculous.
2763  return QualType();
2764}
2765
2766/// getPromotedIntegerType - Returns the type that Promotable will
2767/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
2768/// integer type.
2769QualType ASTContext::getPromotedIntegerType(QualType Promotable) {
2770  assert(!Promotable.isNull());
2771  assert(Promotable->isPromotableIntegerType());
2772  if (const EnumType *ET = Promotable->getAs<EnumType>())
2773    return ET->getDecl()->getPromotionType();
2774  if (Promotable->isSignedIntegerType())
2775    return IntTy;
2776  uint64_t PromotableSize = getTypeSize(Promotable);
2777  uint64_t IntSize = getTypeSize(IntTy);
2778  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
2779  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
2780}
2781
2782/// getIntegerTypeOrder - Returns the highest ranked integer type:
2783/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2784/// LHS < RHS, return -1.
2785int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
2786  Type *LHSC = getCanonicalType(LHS).getTypePtr();
2787  Type *RHSC = getCanonicalType(RHS).getTypePtr();
2788  if (LHSC == RHSC) return 0;
2789
2790  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
2791  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
2792
2793  unsigned LHSRank = getIntegerRank(LHSC);
2794  unsigned RHSRank = getIntegerRank(RHSC);
2795
2796  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
2797    if (LHSRank == RHSRank) return 0;
2798    return LHSRank > RHSRank ? 1 : -1;
2799  }
2800
2801  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
2802  if (LHSUnsigned) {
2803    // If the unsigned [LHS] type is larger, return it.
2804    if (LHSRank >= RHSRank)
2805      return 1;
2806
2807    // If the signed type can represent all values of the unsigned type, it
2808    // wins.  Because we are dealing with 2's complement and types that are
2809    // powers of two larger than each other, this is always safe.
2810    return -1;
2811  }
2812
2813  // If the unsigned [RHS] type is larger, return it.
2814  if (RHSRank >= LHSRank)
2815    return -1;
2816
2817  // If the signed type can represent all values of the unsigned type, it
2818  // wins.  Because we are dealing with 2's complement and types that are
2819  // powers of two larger than each other, this is always safe.
2820  return 1;
2821}
2822
2823static RecordDecl *
2824CreateRecordDecl(ASTContext &Ctx, RecordDecl::TagKind TK, DeclContext *DC,
2825                 SourceLocation L, IdentifierInfo *Id) {
2826  if (Ctx.getLangOptions().CPlusPlus)
2827    return CXXRecordDecl::Create(Ctx, TK, DC, L, Id);
2828  else
2829    return RecordDecl::Create(Ctx, TK, DC, L, Id);
2830}
2831
2832// getCFConstantStringType - Return the type used for constant CFStrings.
2833QualType ASTContext::getCFConstantStringType() {
2834  if (!CFConstantStringTypeDecl) {
2835    CFConstantStringTypeDecl =
2836      CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
2837                       &Idents.get("NSConstantString"));
2838    CFConstantStringTypeDecl->startDefinition();
2839
2840    QualType FieldTypes[4];
2841
2842    // const int *isa;
2843    FieldTypes[0] = getPointerType(IntTy.withConst());
2844    // int flags;
2845    FieldTypes[1] = IntTy;
2846    // const char *str;
2847    FieldTypes[2] = getPointerType(CharTy.withConst());
2848    // long length;
2849    FieldTypes[3] = LongTy;
2850
2851    // Create fields
2852    for (unsigned i = 0; i < 4; ++i) {
2853      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
2854                                           SourceLocation(), 0,
2855                                           FieldTypes[i], /*TInfo=*/0,
2856                                           /*BitWidth=*/0,
2857                                           /*Mutable=*/false);
2858      Field->setAccess(AS_public);
2859      CFConstantStringTypeDecl->addDecl(Field);
2860    }
2861
2862    CFConstantStringTypeDecl->completeDefinition();
2863  }
2864
2865  return getTagDeclType(CFConstantStringTypeDecl);
2866}
2867
2868void ASTContext::setCFConstantStringType(QualType T) {
2869  const RecordType *Rec = T->getAs<RecordType>();
2870  assert(Rec && "Invalid CFConstantStringType");
2871  CFConstantStringTypeDecl = Rec->getDecl();
2872}
2873
2874// getNSConstantStringType - Return the type used for constant NSStrings.
2875QualType ASTContext::getNSConstantStringType() {
2876  if (!NSConstantStringTypeDecl) {
2877    NSConstantStringTypeDecl =
2878    CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
2879                     &Idents.get("__builtin_NSString"));
2880    NSConstantStringTypeDecl->startDefinition();
2881
2882    QualType FieldTypes[3];
2883
2884    // const int *isa;
2885    FieldTypes[0] = getPointerType(IntTy.withConst());
2886    // const char *str;
2887    FieldTypes[1] = getPointerType(CharTy.withConst());
2888    // unsigned int length;
2889    FieldTypes[2] = UnsignedIntTy;
2890
2891    // Create fields
2892    for (unsigned i = 0; i < 3; ++i) {
2893      FieldDecl *Field = FieldDecl::Create(*this, NSConstantStringTypeDecl,
2894                                           SourceLocation(), 0,
2895                                           FieldTypes[i], /*TInfo=*/0,
2896                                           /*BitWidth=*/0,
2897                                           /*Mutable=*/false);
2898      Field->setAccess(AS_public);
2899      NSConstantStringTypeDecl->addDecl(Field);
2900    }
2901
2902    NSConstantStringTypeDecl->completeDefinition();
2903  }
2904
2905  return getTagDeclType(NSConstantStringTypeDecl);
2906}
2907
2908void ASTContext::setNSConstantStringType(QualType T) {
2909  const RecordType *Rec = T->getAs<RecordType>();
2910  assert(Rec && "Invalid NSConstantStringType");
2911  NSConstantStringTypeDecl = Rec->getDecl();
2912}
2913
2914QualType ASTContext::getObjCFastEnumerationStateType() {
2915  if (!ObjCFastEnumerationStateTypeDecl) {
2916    ObjCFastEnumerationStateTypeDecl =
2917      CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
2918                       &Idents.get("__objcFastEnumerationState"));
2919    ObjCFastEnumerationStateTypeDecl->startDefinition();
2920
2921    QualType FieldTypes[] = {
2922      UnsignedLongTy,
2923      getPointerType(ObjCIdTypedefType),
2924      getPointerType(UnsignedLongTy),
2925      getConstantArrayType(UnsignedLongTy,
2926                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2927    };
2928
2929    for (size_t i = 0; i < 4; ++i) {
2930      FieldDecl *Field = FieldDecl::Create(*this,
2931                                           ObjCFastEnumerationStateTypeDecl,
2932                                           SourceLocation(), 0,
2933                                           FieldTypes[i], /*TInfo=*/0,
2934                                           /*BitWidth=*/0,
2935                                           /*Mutable=*/false);
2936      Field->setAccess(AS_public);
2937      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
2938    }
2939    if (getLangOptions().CPlusPlus)
2940      if (CXXRecordDecl *CXXRD =
2941            dyn_cast<CXXRecordDecl>(ObjCFastEnumerationStateTypeDecl))
2942        CXXRD->setEmpty(false);
2943
2944    ObjCFastEnumerationStateTypeDecl->completeDefinition();
2945  }
2946
2947  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
2948}
2949
2950QualType ASTContext::getBlockDescriptorType() {
2951  if (BlockDescriptorType)
2952    return getTagDeclType(BlockDescriptorType);
2953
2954  RecordDecl *T;
2955  // FIXME: Needs the FlagAppleBlock bit.
2956  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
2957                       &Idents.get("__block_descriptor"));
2958  T->startDefinition();
2959
2960  QualType FieldTypes[] = {
2961    UnsignedLongTy,
2962    UnsignedLongTy,
2963  };
2964
2965  const char *FieldNames[] = {
2966    "reserved",
2967    "Size"
2968  };
2969
2970  for (size_t i = 0; i < 2; ++i) {
2971    FieldDecl *Field = FieldDecl::Create(*this,
2972                                         T,
2973                                         SourceLocation(),
2974                                         &Idents.get(FieldNames[i]),
2975                                         FieldTypes[i], /*TInfo=*/0,
2976                                         /*BitWidth=*/0,
2977                                         /*Mutable=*/false);
2978    Field->setAccess(AS_public);
2979    T->addDecl(Field);
2980  }
2981
2982  T->completeDefinition();
2983
2984  BlockDescriptorType = T;
2985
2986  return getTagDeclType(BlockDescriptorType);
2987}
2988
2989void ASTContext::setBlockDescriptorType(QualType T) {
2990  const RecordType *Rec = T->getAs<RecordType>();
2991  assert(Rec && "Invalid BlockDescriptorType");
2992  BlockDescriptorType = Rec->getDecl();
2993}
2994
2995QualType ASTContext::getBlockDescriptorExtendedType() {
2996  if (BlockDescriptorExtendedType)
2997    return getTagDeclType(BlockDescriptorExtendedType);
2998
2999  RecordDecl *T;
3000  // FIXME: Needs the FlagAppleBlock bit.
3001  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3002                       &Idents.get("__block_descriptor_withcopydispose"));
3003  T->startDefinition();
3004
3005  QualType FieldTypes[] = {
3006    UnsignedLongTy,
3007    UnsignedLongTy,
3008    getPointerType(VoidPtrTy),
3009    getPointerType(VoidPtrTy)
3010  };
3011
3012  const char *FieldNames[] = {
3013    "reserved",
3014    "Size",
3015    "CopyFuncPtr",
3016    "DestroyFuncPtr"
3017  };
3018
3019  for (size_t i = 0; i < 4; ++i) {
3020    FieldDecl *Field = FieldDecl::Create(*this,
3021                                         T,
3022                                         SourceLocation(),
3023                                         &Idents.get(FieldNames[i]),
3024                                         FieldTypes[i], /*TInfo=*/0,
3025                                         /*BitWidth=*/0,
3026                                         /*Mutable=*/false);
3027    Field->setAccess(AS_public);
3028    T->addDecl(Field);
3029  }
3030
3031  T->completeDefinition();
3032
3033  BlockDescriptorExtendedType = T;
3034
3035  return getTagDeclType(BlockDescriptorExtendedType);
3036}
3037
3038void ASTContext::setBlockDescriptorExtendedType(QualType T) {
3039  const RecordType *Rec = T->getAs<RecordType>();
3040  assert(Rec && "Invalid BlockDescriptorType");
3041  BlockDescriptorExtendedType = Rec->getDecl();
3042}
3043
3044bool ASTContext::BlockRequiresCopying(QualType Ty) {
3045  if (Ty->isBlockPointerType())
3046    return true;
3047  if (isObjCNSObjectType(Ty))
3048    return true;
3049  if (Ty->isObjCObjectPointerType())
3050    return true;
3051  return false;
3052}
3053
3054QualType ASTContext::BuildByRefType(const char *DeclName, QualType Ty) {
3055  //  type = struct __Block_byref_1_X {
3056  //    void *__isa;
3057  //    struct __Block_byref_1_X *__forwarding;
3058  //    unsigned int __flags;
3059  //    unsigned int __size;
3060  //    void *__copy_helper;		// as needed
3061  //    void *__destroy_help		// as needed
3062  //    int X;
3063  //  } *
3064
3065  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
3066
3067  // FIXME: Move up
3068  static unsigned int UniqueBlockByRefTypeID = 0;
3069  llvm::SmallString<36> Name;
3070  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
3071                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
3072  RecordDecl *T;
3073  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3074                       &Idents.get(Name.str()));
3075  T->startDefinition();
3076  QualType Int32Ty = IntTy;
3077  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
3078  QualType FieldTypes[] = {
3079    getPointerType(VoidPtrTy),
3080    getPointerType(getTagDeclType(T)),
3081    Int32Ty,
3082    Int32Ty,
3083    getPointerType(VoidPtrTy),
3084    getPointerType(VoidPtrTy),
3085    Ty
3086  };
3087
3088  const char *FieldNames[] = {
3089    "__isa",
3090    "__forwarding",
3091    "__flags",
3092    "__size",
3093    "__copy_helper",
3094    "__destroy_helper",
3095    DeclName,
3096  };
3097
3098  for (size_t i = 0; i < 7; ++i) {
3099    if (!HasCopyAndDispose && i >=4 && i <= 5)
3100      continue;
3101    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3102                                         &Idents.get(FieldNames[i]),
3103                                         FieldTypes[i], /*TInfo=*/0,
3104                                         /*BitWidth=*/0, /*Mutable=*/false);
3105    Field->setAccess(AS_public);
3106    T->addDecl(Field);
3107  }
3108
3109  T->completeDefinition();
3110
3111  return getPointerType(getTagDeclType(T));
3112}
3113
3114
3115QualType ASTContext::getBlockParmType(
3116  bool BlockHasCopyDispose,
3117  llvm::SmallVectorImpl<const Expr *> &Layout) {
3118
3119  // FIXME: Move up
3120  static unsigned int UniqueBlockParmTypeID = 0;
3121  llvm::SmallString<36> Name;
3122  llvm::raw_svector_ostream(Name) << "__block_literal_"
3123                                  << ++UniqueBlockParmTypeID;
3124  RecordDecl *T;
3125  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3126                       &Idents.get(Name.str()));
3127  T->startDefinition();
3128  QualType FieldTypes[] = {
3129    getPointerType(VoidPtrTy),
3130    IntTy,
3131    IntTy,
3132    getPointerType(VoidPtrTy),
3133    (BlockHasCopyDispose ?
3134     getPointerType(getBlockDescriptorExtendedType()) :
3135     getPointerType(getBlockDescriptorType()))
3136  };
3137
3138  const char *FieldNames[] = {
3139    "__isa",
3140    "__flags",
3141    "__reserved",
3142    "__FuncPtr",
3143    "__descriptor"
3144  };
3145
3146  for (size_t i = 0; i < 5; ++i) {
3147    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3148                                         &Idents.get(FieldNames[i]),
3149                                         FieldTypes[i], /*TInfo=*/0,
3150                                         /*BitWidth=*/0, /*Mutable=*/false);
3151    Field->setAccess(AS_public);
3152    T->addDecl(Field);
3153  }
3154
3155  for (unsigned i = 0; i < Layout.size(); ++i) {
3156    const Expr *E = Layout[i];
3157
3158    QualType FieldType = E->getType();
3159    IdentifierInfo *FieldName = 0;
3160    if (isa<CXXThisExpr>(E)) {
3161      FieldName = &Idents.get("this");
3162    } else if (const BlockDeclRefExpr *BDRE = dyn_cast<BlockDeclRefExpr>(E)) {
3163      const ValueDecl *D = BDRE->getDecl();
3164      FieldName = D->getIdentifier();
3165      if (BDRE->isByRef())
3166        FieldType = BuildByRefType(D->getNameAsCString(), FieldType);
3167    } else {
3168      // Padding.
3169      assert(isa<ConstantArrayType>(FieldType) &&
3170             isa<DeclRefExpr>(E) &&
3171             !cast<DeclRefExpr>(E)->getDecl()->getDeclName() &&
3172             "doesn't match characteristics of padding decl");
3173    }
3174
3175    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3176                                         FieldName, FieldType, /*TInfo=*/0,
3177                                         /*BitWidth=*/0, /*Mutable=*/false);
3178    Field->setAccess(AS_public);
3179    T->addDecl(Field);
3180  }
3181
3182  T->completeDefinition();
3183
3184  return getPointerType(getTagDeclType(T));
3185}
3186
3187void ASTContext::setObjCFastEnumerationStateType(QualType T) {
3188  const RecordType *Rec = T->getAs<RecordType>();
3189  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
3190  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
3191}
3192
3193// This returns true if a type has been typedefed to BOOL:
3194// typedef <type> BOOL;
3195static bool isTypeTypedefedAsBOOL(QualType T) {
3196  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3197    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3198      return II->isStr("BOOL");
3199
3200  return false;
3201}
3202
3203/// getObjCEncodingTypeSize returns size of type for objective-c encoding
3204/// purpose.
3205CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) {
3206  CharUnits sz = getTypeSizeInChars(type);
3207
3208  // Make all integer and enum types at least as large as an int
3209  if (sz.isPositive() && type->isIntegralType())
3210    sz = std::max(sz, getTypeSizeInChars(IntTy));
3211  // Treat arrays as pointers, since that's how they're passed in.
3212  else if (type->isArrayType())
3213    sz = getTypeSizeInChars(VoidPtrTy);
3214  return sz;
3215}
3216
3217static inline
3218std::string charUnitsToString(const CharUnits &CU) {
3219  return llvm::itostr(CU.getQuantity());
3220}
3221
3222/// getObjCEncodingForBlockDecl - Return the encoded type for this block
3223/// declaration.
3224void ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr,
3225                                             std::string& S) {
3226  const BlockDecl *Decl = Expr->getBlockDecl();
3227  QualType BlockTy =
3228      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
3229  // Encode result type.
3230  getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
3231  // Compute size of all parameters.
3232  // Start with computing size of a pointer in number of bytes.
3233  // FIXME: There might(should) be a better way of doing this computation!
3234  SourceLocation Loc;
3235  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3236  CharUnits ParmOffset = PtrSize;
3237  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
3238       E = Decl->param_end(); PI != E; ++PI) {
3239    QualType PType = (*PI)->getType();
3240    CharUnits sz = getObjCEncodingTypeSize(PType);
3241    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
3242    ParmOffset += sz;
3243  }
3244  // Size of the argument frame
3245  S += charUnitsToString(ParmOffset);
3246  // Block pointer and offset.
3247  S += "@?0";
3248  ParmOffset = PtrSize;
3249
3250  // Argument types.
3251  ParmOffset = PtrSize;
3252  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
3253       Decl->param_end(); PI != E; ++PI) {
3254    ParmVarDecl *PVDecl = *PI;
3255    QualType PType = PVDecl->getOriginalType();
3256    if (const ArrayType *AT =
3257          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3258      // Use array's original type only if it has known number of
3259      // elements.
3260      if (!isa<ConstantArrayType>(AT))
3261        PType = PVDecl->getType();
3262    } else if (PType->isFunctionType())
3263      PType = PVDecl->getType();
3264    getObjCEncodingForType(PType, S);
3265    S += charUnitsToString(ParmOffset);
3266    ParmOffset += getObjCEncodingTypeSize(PType);
3267  }
3268}
3269
3270/// getObjCEncodingForMethodDecl - Return the encoded type for this method
3271/// declaration.
3272void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
3273                                              std::string& S) {
3274  // FIXME: This is not very efficient.
3275  // Encode type qualifer, 'in', 'inout', etc. for the return type.
3276  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
3277  // Encode result type.
3278  getObjCEncodingForType(Decl->getResultType(), S);
3279  // Compute size of all parameters.
3280  // Start with computing size of a pointer in number of bytes.
3281  // FIXME: There might(should) be a better way of doing this computation!
3282  SourceLocation Loc;
3283  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3284  // The first two arguments (self and _cmd) are pointers; account for
3285  // their size.
3286  CharUnits ParmOffset = 2 * PtrSize;
3287  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3288       E = Decl->sel_param_end(); PI != E; ++PI) {
3289    QualType PType = (*PI)->getType();
3290    CharUnits sz = getObjCEncodingTypeSize(PType);
3291    assert (sz.isPositive() &&
3292        "getObjCEncodingForMethodDecl - Incomplete param type");
3293    ParmOffset += sz;
3294  }
3295  S += charUnitsToString(ParmOffset);
3296  S += "@0:";
3297  S += charUnitsToString(PtrSize);
3298
3299  // Argument types.
3300  ParmOffset = 2 * PtrSize;
3301  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3302       E = Decl->sel_param_end(); PI != E; ++PI) {
3303    ParmVarDecl *PVDecl = *PI;
3304    QualType PType = PVDecl->getOriginalType();
3305    if (const ArrayType *AT =
3306          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3307      // Use array's original type only if it has known number of
3308      // elements.
3309      if (!isa<ConstantArrayType>(AT))
3310        PType = PVDecl->getType();
3311    } else if (PType->isFunctionType())
3312      PType = PVDecl->getType();
3313    // Process argument qualifiers for user supplied arguments; such as,
3314    // 'in', 'inout', etc.
3315    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
3316    getObjCEncodingForType(PType, S);
3317    S += charUnitsToString(ParmOffset);
3318    ParmOffset += getObjCEncodingTypeSize(PType);
3319  }
3320}
3321
3322/// getObjCEncodingForPropertyDecl - Return the encoded type for this
3323/// property declaration. If non-NULL, Container must be either an
3324/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
3325/// NULL when getting encodings for protocol properties.
3326/// Property attributes are stored as a comma-delimited C string. The simple
3327/// attributes readonly and bycopy are encoded as single characters. The
3328/// parametrized attributes, getter=name, setter=name, and ivar=name, are
3329/// encoded as single characters, followed by an identifier. Property types
3330/// are also encoded as a parametrized attribute. The characters used to encode
3331/// these attributes are defined by the following enumeration:
3332/// @code
3333/// enum PropertyAttributes {
3334/// kPropertyReadOnly = 'R',   // property is read-only.
3335/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
3336/// kPropertyByref = '&',  // property is a reference to the value last assigned
3337/// kPropertyDynamic = 'D',    // property is dynamic
3338/// kPropertyGetter = 'G',     // followed by getter selector name
3339/// kPropertySetter = 'S',     // followed by setter selector name
3340/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
3341/// kPropertyType = 't'              // followed by old-style type encoding.
3342/// kPropertyWeak = 'W'              // 'weak' property
3343/// kPropertyStrong = 'P'            // property GC'able
3344/// kPropertyNonAtomic = 'N'         // property non-atomic
3345/// };
3346/// @endcode
3347void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
3348                                                const Decl *Container,
3349                                                std::string& S) {
3350  // Collect information from the property implementation decl(s).
3351  bool Dynamic = false;
3352  ObjCPropertyImplDecl *SynthesizePID = 0;
3353
3354  // FIXME: Duplicated code due to poor abstraction.
3355  if (Container) {
3356    if (const ObjCCategoryImplDecl *CID =
3357        dyn_cast<ObjCCategoryImplDecl>(Container)) {
3358      for (ObjCCategoryImplDecl::propimpl_iterator
3359             i = CID->propimpl_begin(), e = CID->propimpl_end();
3360           i != e; ++i) {
3361        ObjCPropertyImplDecl *PID = *i;
3362        if (PID->getPropertyDecl() == PD) {
3363          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3364            Dynamic = true;
3365          } else {
3366            SynthesizePID = PID;
3367          }
3368        }
3369      }
3370    } else {
3371      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
3372      for (ObjCCategoryImplDecl::propimpl_iterator
3373             i = OID->propimpl_begin(), e = OID->propimpl_end();
3374           i != e; ++i) {
3375        ObjCPropertyImplDecl *PID = *i;
3376        if (PID->getPropertyDecl() == PD) {
3377          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3378            Dynamic = true;
3379          } else {
3380            SynthesizePID = PID;
3381          }
3382        }
3383      }
3384    }
3385  }
3386
3387  // FIXME: This is not very efficient.
3388  S = "T";
3389
3390  // Encode result type.
3391  // GCC has some special rules regarding encoding of properties which
3392  // closely resembles encoding of ivars.
3393  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
3394                             true /* outermost type */,
3395                             true /* encoding for property */);
3396
3397  if (PD->isReadOnly()) {
3398    S += ",R";
3399  } else {
3400    switch (PD->getSetterKind()) {
3401    case ObjCPropertyDecl::Assign: break;
3402    case ObjCPropertyDecl::Copy:   S += ",C"; break;
3403    case ObjCPropertyDecl::Retain: S += ",&"; break;
3404    }
3405  }
3406
3407  // It really isn't clear at all what this means, since properties
3408  // are "dynamic by default".
3409  if (Dynamic)
3410    S += ",D";
3411
3412  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
3413    S += ",N";
3414
3415  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
3416    S += ",G";
3417    S += PD->getGetterName().getAsString();
3418  }
3419
3420  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
3421    S += ",S";
3422    S += PD->getSetterName().getAsString();
3423  }
3424
3425  if (SynthesizePID) {
3426    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
3427    S += ",V";
3428    S += OID->getNameAsString();
3429  }
3430
3431  // FIXME: OBJCGC: weak & strong
3432}
3433
3434/// getLegacyIntegralTypeEncoding -
3435/// Another legacy compatibility encoding: 32-bit longs are encoded as
3436/// 'l' or 'L' , but not always.  For typedefs, we need to use
3437/// 'i' or 'I' instead if encoding a struct field, or a pointer!
3438///
3439void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
3440  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
3441    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
3442      if (BT->getKind() == BuiltinType::ULong &&
3443          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3444        PointeeTy = UnsignedIntTy;
3445      else
3446        if (BT->getKind() == BuiltinType::Long &&
3447            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3448          PointeeTy = IntTy;
3449    }
3450  }
3451}
3452
3453void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
3454                                        const FieldDecl *Field) {
3455  // We follow the behavior of gcc, expanding structures which are
3456  // directly pointed to, and expanding embedded structures. Note that
3457  // these rules are sufficient to prevent recursive encoding of the
3458  // same type.
3459  getObjCEncodingForTypeImpl(T, S, true, true, Field,
3460                             true /* outermost type */);
3461}
3462
3463static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
3464    switch (T->getAs<BuiltinType>()->getKind()) {
3465    default: assert(0 && "Unhandled builtin type kind");
3466    case BuiltinType::Void:       return 'v';
3467    case BuiltinType::Bool:       return 'B';
3468    case BuiltinType::Char_U:
3469    case BuiltinType::UChar:      return 'C';
3470    case BuiltinType::UShort:     return 'S';
3471    case BuiltinType::UInt:       return 'I';
3472    case BuiltinType::ULong:
3473        return
3474          (const_cast<ASTContext *>(C))->getIntWidth(T) == 32 ? 'L' : 'Q';
3475    case BuiltinType::UInt128:    return 'T';
3476    case BuiltinType::ULongLong:  return 'Q';
3477    case BuiltinType::Char_S:
3478    case BuiltinType::SChar:      return 'c';
3479    case BuiltinType::Short:      return 's';
3480    case BuiltinType::Int:        return 'i';
3481    case BuiltinType::Long:
3482      return
3483        (const_cast<ASTContext *>(C))->getIntWidth(T) == 32 ? 'l' : 'q';
3484    case BuiltinType::LongLong:   return 'q';
3485    case BuiltinType::Int128:     return 't';
3486    case BuiltinType::Float:      return 'f';
3487    case BuiltinType::Double:     return 'd';
3488    case BuiltinType::LongDouble: return 'd';
3489    }
3490}
3491
3492static void EncodeBitField(const ASTContext *Context, std::string& S,
3493                           QualType T, const FieldDecl *FD) {
3494  const Expr *E = FD->getBitWidth();
3495  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
3496  ASTContext *Ctx = const_cast<ASTContext*>(Context);
3497  S += 'b';
3498  // The NeXT runtime encodes bit fields as b followed by the number of bits.
3499  // The GNU runtime requires more information; bitfields are encoded as b,
3500  // then the offset (in bits) of the first element, then the type of the
3501  // bitfield, then the size in bits.  For example, in this structure:
3502  //
3503  // struct
3504  // {
3505  //    int integer;
3506  //    int flags:2;
3507  // };
3508  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
3509  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
3510  // information is not especially sensible, but we're stuck with it for
3511  // compatibility with GCC, although providing it breaks anything that
3512  // actually uses runtime introspection and wants to work on both runtimes...
3513  if (!Ctx->getLangOptions().NeXTRuntime) {
3514    const RecordDecl *RD = FD->getParent();
3515    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
3516    // FIXME: This same linear search is also used in ExprConstant - it might
3517    // be better if the FieldDecl stored its offset.  We'd be increasing the
3518    // size of the object slightly, but saving some time every time it is used.
3519    unsigned i = 0;
3520    for (RecordDecl::field_iterator Field = RD->field_begin(),
3521                                 FieldEnd = RD->field_end();
3522         Field != FieldEnd; (void)++Field, ++i) {
3523      if (*Field == FD)
3524        break;
3525    }
3526    S += llvm::utostr(RL.getFieldOffset(i));
3527    S += ObjCEncodingForPrimitiveKind(Context, T);
3528  }
3529  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
3530  S += llvm::utostr(N);
3531}
3532
3533// FIXME: Use SmallString for accumulating string.
3534void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
3535                                            bool ExpandPointedToStructures,
3536                                            bool ExpandStructures,
3537                                            const FieldDecl *FD,
3538                                            bool OutermostType,
3539                                            bool EncodingProperty) {
3540  if (T->getAs<BuiltinType>()) {
3541    if (FD && FD->isBitField())
3542      return EncodeBitField(this, S, T, FD);
3543    S += ObjCEncodingForPrimitiveKind(this, T);
3544    return;
3545  }
3546
3547  if (const ComplexType *CT = T->getAs<ComplexType>()) {
3548    S += 'j';
3549    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
3550                               false);
3551    return;
3552  }
3553
3554  // encoding for pointer or r3eference types.
3555  QualType PointeeTy;
3556  if (const PointerType *PT = T->getAs<PointerType>()) {
3557    if (PT->isObjCSelType()) {
3558      S += ':';
3559      return;
3560    }
3561    PointeeTy = PT->getPointeeType();
3562  }
3563  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
3564    PointeeTy = RT->getPointeeType();
3565  if (!PointeeTy.isNull()) {
3566    bool isReadOnly = false;
3567    // For historical/compatibility reasons, the read-only qualifier of the
3568    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
3569    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
3570    // Also, do not emit the 'r' for anything but the outermost type!
3571    if (isa<TypedefType>(T.getTypePtr())) {
3572      if (OutermostType && T.isConstQualified()) {
3573        isReadOnly = true;
3574        S += 'r';
3575      }
3576    } else if (OutermostType) {
3577      QualType P = PointeeTy;
3578      while (P->getAs<PointerType>())
3579        P = P->getAs<PointerType>()->getPointeeType();
3580      if (P.isConstQualified()) {
3581        isReadOnly = true;
3582        S += 'r';
3583      }
3584    }
3585    if (isReadOnly) {
3586      // Another legacy compatibility encoding. Some ObjC qualifier and type
3587      // combinations need to be rearranged.
3588      // Rewrite "in const" from "nr" to "rn"
3589      if (llvm::StringRef(S).endswith("nr"))
3590        S.replace(S.end()-2, S.end(), "rn");
3591    }
3592
3593    if (PointeeTy->isCharType()) {
3594      // char pointer types should be encoded as '*' unless it is a
3595      // type that has been typedef'd to 'BOOL'.
3596      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
3597        S += '*';
3598        return;
3599      }
3600    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
3601      // GCC binary compat: Need to convert "struct objc_class *" to "#".
3602      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
3603        S += '#';
3604        return;
3605      }
3606      // GCC binary compat: Need to convert "struct objc_object *" to "@".
3607      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
3608        S += '@';
3609        return;
3610      }
3611      // fall through...
3612    }
3613    S += '^';
3614    getLegacyIntegralTypeEncoding(PointeeTy);
3615
3616    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
3617                               NULL);
3618    return;
3619  }
3620
3621  if (const ArrayType *AT =
3622      // Ignore type qualifiers etc.
3623        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
3624    if (isa<IncompleteArrayType>(AT)) {
3625      // Incomplete arrays are encoded as a pointer to the array element.
3626      S += '^';
3627
3628      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3629                                 false, ExpandStructures, FD);
3630    } else {
3631      S += '[';
3632
3633      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
3634        S += llvm::utostr(CAT->getSize().getZExtValue());
3635      else {
3636        //Variable length arrays are encoded as a regular array with 0 elements.
3637        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
3638        S += '0';
3639      }
3640
3641      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3642                                 false, ExpandStructures, FD);
3643      S += ']';
3644    }
3645    return;
3646  }
3647
3648  if (T->getAs<FunctionType>()) {
3649    S += '?';
3650    return;
3651  }
3652
3653  if (const RecordType *RTy = T->getAs<RecordType>()) {
3654    RecordDecl *RDecl = RTy->getDecl();
3655    S += RDecl->isUnion() ? '(' : '{';
3656    // Anonymous structures print as '?'
3657    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
3658      S += II->getName();
3659      if (ClassTemplateSpecializationDecl *Spec
3660          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
3661        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
3662        std::string TemplateArgsStr
3663          = TemplateSpecializationType::PrintTemplateArgumentList(
3664                                            TemplateArgs.getFlatArgumentList(),
3665                                            TemplateArgs.flat_size(),
3666                                            (*this).PrintingPolicy);
3667
3668        S += TemplateArgsStr;
3669      }
3670    } else {
3671      S += '?';
3672    }
3673    if (ExpandStructures) {
3674      S += '=';
3675      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
3676                                   FieldEnd = RDecl->field_end();
3677           Field != FieldEnd; ++Field) {
3678        if (FD) {
3679          S += '"';
3680          S += Field->getNameAsString();
3681          S += '"';
3682        }
3683
3684        // Special case bit-fields.
3685        if (Field->isBitField()) {
3686          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
3687                                     (*Field));
3688        } else {
3689          QualType qt = Field->getType();
3690          getLegacyIntegralTypeEncoding(qt);
3691          getObjCEncodingForTypeImpl(qt, S, false, true,
3692                                     FD);
3693        }
3694      }
3695    }
3696    S += RDecl->isUnion() ? ')' : '}';
3697    return;
3698  }
3699
3700  if (T->isEnumeralType()) {
3701    if (FD && FD->isBitField())
3702      EncodeBitField(this, S, T, FD);
3703    else
3704      S += 'i';
3705    return;
3706  }
3707
3708  if (T->isBlockPointerType()) {
3709    S += "@?"; // Unlike a pointer-to-function, which is "^?".
3710    return;
3711  }
3712
3713  // Ignore protocol qualifiers when mangling at this level.
3714  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
3715    T = OT->getBaseType();
3716
3717  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
3718    // @encode(class_name)
3719    ObjCInterfaceDecl *OI = OIT->getDecl();
3720    S += '{';
3721    const IdentifierInfo *II = OI->getIdentifier();
3722    S += II->getName();
3723    S += '=';
3724    llvm::SmallVector<FieldDecl*, 32> RecFields;
3725    CollectObjCIvars(OI, RecFields);
3726    for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
3727      if (RecFields[i]->isBitField())
3728        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3729                                   RecFields[i]);
3730      else
3731        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3732                                   FD);
3733    }
3734    S += '}';
3735    return;
3736  }
3737
3738  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
3739    if (OPT->isObjCIdType()) {
3740      S += '@';
3741      return;
3742    }
3743
3744    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
3745      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
3746      // Since this is a binary compatibility issue, need to consult with runtime
3747      // folks. Fortunately, this is a *very* obsure construct.
3748      S += '#';
3749      return;
3750    }
3751
3752    if (OPT->isObjCQualifiedIdType()) {
3753      getObjCEncodingForTypeImpl(getObjCIdType(), S,
3754                                 ExpandPointedToStructures,
3755                                 ExpandStructures, FD);
3756      if (FD || EncodingProperty) {
3757        // Note that we do extended encoding of protocol qualifer list
3758        // Only when doing ivar or property encoding.
3759        S += '"';
3760        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3761             E = OPT->qual_end(); I != E; ++I) {
3762          S += '<';
3763          S += (*I)->getNameAsString();
3764          S += '>';
3765        }
3766        S += '"';
3767      }
3768      return;
3769    }
3770
3771    QualType PointeeTy = OPT->getPointeeType();
3772    if (!EncodingProperty &&
3773        isa<TypedefType>(PointeeTy.getTypePtr())) {
3774      // Another historical/compatibility reason.
3775      // We encode the underlying type which comes out as
3776      // {...};
3777      S += '^';
3778      getObjCEncodingForTypeImpl(PointeeTy, S,
3779                                 false, ExpandPointedToStructures,
3780                                 NULL);
3781      return;
3782    }
3783
3784    S += '@';
3785    if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
3786      S += '"';
3787      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
3788      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3789           E = OPT->qual_end(); I != E; ++I) {
3790        S += '<';
3791        S += (*I)->getNameAsString();
3792        S += '>';
3793      }
3794      S += '"';
3795    }
3796    return;
3797  }
3798
3799  // gcc just blithely ignores member pointers.
3800  // TODO: maybe there should be a mangling for these
3801  if (T->getAs<MemberPointerType>())
3802    return;
3803
3804  assert(0 && "@encode for type not implemented!");
3805}
3806
3807void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
3808                                                 std::string& S) const {
3809  if (QT & Decl::OBJC_TQ_In)
3810    S += 'n';
3811  if (QT & Decl::OBJC_TQ_Inout)
3812    S += 'N';
3813  if (QT & Decl::OBJC_TQ_Out)
3814    S += 'o';
3815  if (QT & Decl::OBJC_TQ_Bycopy)
3816    S += 'O';
3817  if (QT & Decl::OBJC_TQ_Byref)
3818    S += 'R';
3819  if (QT & Decl::OBJC_TQ_Oneway)
3820    S += 'V';
3821}
3822
3823void ASTContext::setBuiltinVaListType(QualType T) {
3824  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
3825
3826  BuiltinVaListType = T;
3827}
3828
3829void ASTContext::setObjCIdType(QualType T) {
3830  ObjCIdTypedefType = T;
3831}
3832
3833void ASTContext::setObjCSelType(QualType T) {
3834  ObjCSelTypedefType = T;
3835}
3836
3837void ASTContext::setObjCProtoType(QualType QT) {
3838  ObjCProtoType = QT;
3839}
3840
3841void ASTContext::setObjCClassType(QualType T) {
3842  ObjCClassTypedefType = T;
3843}
3844
3845void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
3846  assert(ObjCConstantStringType.isNull() &&
3847         "'NSConstantString' type already set!");
3848
3849  ObjCConstantStringType = getObjCInterfaceType(Decl);
3850}
3851
3852/// \brief Retrieve the template name that corresponds to a non-empty
3853/// lookup.
3854TemplateName ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
3855                                                   UnresolvedSetIterator End) {
3856  unsigned size = End - Begin;
3857  assert(size > 1 && "set is not overloaded!");
3858
3859  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
3860                          size * sizeof(FunctionTemplateDecl*));
3861  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
3862
3863  NamedDecl **Storage = OT->getStorage();
3864  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
3865    NamedDecl *D = *I;
3866    assert(isa<FunctionTemplateDecl>(D) ||
3867           (isa<UsingShadowDecl>(D) &&
3868            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
3869    *Storage++ = D;
3870  }
3871
3872  return TemplateName(OT);
3873}
3874
3875/// \brief Retrieve the template name that represents a qualified
3876/// template name such as \c std::vector.
3877TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
3878                                                  bool TemplateKeyword,
3879                                                  TemplateDecl *Template) {
3880  // FIXME: Canonicalization?
3881  llvm::FoldingSetNodeID ID;
3882  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
3883
3884  void *InsertPos = 0;
3885  QualifiedTemplateName *QTN =
3886    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3887  if (!QTN) {
3888    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
3889    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
3890  }
3891
3892  return TemplateName(QTN);
3893}
3894
3895/// \brief Retrieve the template name that represents a dependent
3896/// template name such as \c MetaFun::template apply.
3897TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3898                                                  const IdentifierInfo *Name) {
3899  assert((!NNS || NNS->isDependent()) &&
3900         "Nested name specifier must be dependent");
3901
3902  llvm::FoldingSetNodeID ID;
3903  DependentTemplateName::Profile(ID, NNS, Name);
3904
3905  void *InsertPos = 0;
3906  DependentTemplateName *QTN =
3907    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3908
3909  if (QTN)
3910    return TemplateName(QTN);
3911
3912  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3913  if (CanonNNS == NNS) {
3914    QTN = new (*this,4) DependentTemplateName(NNS, Name);
3915  } else {
3916    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
3917    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
3918    DependentTemplateName *CheckQTN =
3919      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3920    assert(!CheckQTN && "Dependent type name canonicalization broken");
3921    (void)CheckQTN;
3922  }
3923
3924  DependentTemplateNames.InsertNode(QTN, InsertPos);
3925  return TemplateName(QTN);
3926}
3927
3928/// \brief Retrieve the template name that represents a dependent
3929/// template name such as \c MetaFun::template operator+.
3930TemplateName
3931ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3932                                     OverloadedOperatorKind Operator) {
3933  assert((!NNS || NNS->isDependent()) &&
3934         "Nested name specifier must be dependent");
3935
3936  llvm::FoldingSetNodeID ID;
3937  DependentTemplateName::Profile(ID, NNS, Operator);
3938
3939  void *InsertPos = 0;
3940  DependentTemplateName *QTN
3941    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3942
3943  if (QTN)
3944    return TemplateName(QTN);
3945
3946  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3947  if (CanonNNS == NNS) {
3948    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
3949  } else {
3950    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
3951    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
3952
3953    DependentTemplateName *CheckQTN
3954      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3955    assert(!CheckQTN && "Dependent template name canonicalization broken");
3956    (void)CheckQTN;
3957  }
3958
3959  DependentTemplateNames.InsertNode(QTN, InsertPos);
3960  return TemplateName(QTN);
3961}
3962
3963/// getFromTargetType - Given one of the integer types provided by
3964/// TargetInfo, produce the corresponding type. The unsigned @p Type
3965/// is actually a value of type @c TargetInfo::IntType.
3966CanQualType ASTContext::getFromTargetType(unsigned Type) const {
3967  switch (Type) {
3968  case TargetInfo::NoInt: return CanQualType();
3969  case TargetInfo::SignedShort: return ShortTy;
3970  case TargetInfo::UnsignedShort: return UnsignedShortTy;
3971  case TargetInfo::SignedInt: return IntTy;
3972  case TargetInfo::UnsignedInt: return UnsignedIntTy;
3973  case TargetInfo::SignedLong: return LongTy;
3974  case TargetInfo::UnsignedLong: return UnsignedLongTy;
3975  case TargetInfo::SignedLongLong: return LongLongTy;
3976  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
3977  }
3978
3979  assert(false && "Unhandled TargetInfo::IntType value");
3980  return CanQualType();
3981}
3982
3983//===----------------------------------------------------------------------===//
3984//                        Type Predicates.
3985//===----------------------------------------------------------------------===//
3986
3987/// isObjCNSObjectType - Return true if this is an NSObject object using
3988/// NSObject attribute on a c-style pointer type.
3989/// FIXME - Make it work directly on types.
3990/// FIXME: Move to Type.
3991///
3992bool ASTContext::isObjCNSObjectType(QualType Ty) const {
3993  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
3994    if (TypedefDecl *TD = TDT->getDecl())
3995      if (TD->getAttr<ObjCNSObjectAttr>())
3996        return true;
3997  }
3998  return false;
3999}
4000
4001/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
4002/// garbage collection attribute.
4003///
4004Qualifiers::GC ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
4005  Qualifiers::GC GCAttrs = Qualifiers::GCNone;
4006  if (getLangOptions().ObjC1 &&
4007      getLangOptions().getGCMode() != LangOptions::NonGC) {
4008    GCAttrs = Ty.getObjCGCAttr();
4009    // Default behavious under objective-c's gc is for objective-c pointers
4010    // (or pointers to them) be treated as though they were declared
4011    // as __strong.
4012    if (GCAttrs == Qualifiers::GCNone) {
4013      if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4014        GCAttrs = Qualifiers::Strong;
4015      else if (Ty->isPointerType())
4016        return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
4017    }
4018    // Non-pointers have none gc'able attribute regardless of the attribute
4019    // set on them.
4020    else if (!Ty->isAnyPointerType() && !Ty->isBlockPointerType())
4021      return Qualifiers::GCNone;
4022  }
4023  return GCAttrs;
4024}
4025
4026//===----------------------------------------------------------------------===//
4027//                        Type Compatibility Testing
4028//===----------------------------------------------------------------------===//
4029
4030/// areCompatVectorTypes - Return true if the two specified vector types are
4031/// compatible.
4032static bool areCompatVectorTypes(const VectorType *LHS,
4033                                 const VectorType *RHS) {
4034  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
4035  return LHS->getElementType() == RHS->getElementType() &&
4036         LHS->getNumElements() == RHS->getNumElements();
4037}
4038
4039//===----------------------------------------------------------------------===//
4040// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
4041//===----------------------------------------------------------------------===//
4042
4043/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
4044/// inheritance hierarchy of 'rProto'.
4045bool ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
4046                                                ObjCProtocolDecl *rProto) {
4047  if (lProto == rProto)
4048    return true;
4049  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
4050       E = rProto->protocol_end(); PI != E; ++PI)
4051    if (ProtocolCompatibleWithProtocol(lProto, *PI))
4052      return true;
4053  return false;
4054}
4055
4056/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
4057/// return true if lhs's protocols conform to rhs's protocol; false
4058/// otherwise.
4059bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
4060  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
4061    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
4062  return false;
4063}
4064
4065/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
4066/// ObjCQualifiedIDType.
4067bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
4068                                                   bool compare) {
4069  // Allow id<P..> and an 'id' or void* type in all cases.
4070  if (lhs->isVoidPointerType() ||
4071      lhs->isObjCIdType() || lhs->isObjCClassType())
4072    return true;
4073  else if (rhs->isVoidPointerType() ||
4074           rhs->isObjCIdType() || rhs->isObjCClassType())
4075    return true;
4076
4077  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
4078    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
4079
4080    if (!rhsOPT) return false;
4081
4082    if (rhsOPT->qual_empty()) {
4083      // If the RHS is a unqualified interface pointer "NSString*",
4084      // make sure we check the class hierarchy.
4085      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4086        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4087             E = lhsQID->qual_end(); I != E; ++I) {
4088          // when comparing an id<P> on lhs with a static type on rhs,
4089          // see if static class implements all of id's protocols, directly or
4090          // through its super class and categories.
4091          if (!rhsID->ClassImplementsProtocol(*I, true))
4092            return false;
4093        }
4094      }
4095      // If there are no qualifiers and no interface, we have an 'id'.
4096      return true;
4097    }
4098    // Both the right and left sides have qualifiers.
4099    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4100         E = lhsQID->qual_end(); I != E; ++I) {
4101      ObjCProtocolDecl *lhsProto = *I;
4102      bool match = false;
4103
4104      // when comparing an id<P> on lhs with a static type on rhs,
4105      // see if static class implements all of id's protocols, directly or
4106      // through its super class and categories.
4107      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
4108           E = rhsOPT->qual_end(); J != E; ++J) {
4109        ObjCProtocolDecl *rhsProto = *J;
4110        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4111            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4112          match = true;
4113          break;
4114        }
4115      }
4116      // If the RHS is a qualified interface pointer "NSString<P>*",
4117      // make sure we check the class hierarchy.
4118      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4119        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4120             E = lhsQID->qual_end(); I != E; ++I) {
4121          // when comparing an id<P> on lhs with a static type on rhs,
4122          // see if static class implements all of id's protocols, directly or
4123          // through its super class and categories.
4124          if (rhsID->ClassImplementsProtocol(*I, true)) {
4125            match = true;
4126            break;
4127          }
4128        }
4129      }
4130      if (!match)
4131        return false;
4132    }
4133
4134    return true;
4135  }
4136
4137  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
4138  assert(rhsQID && "One of the LHS/RHS should be id<x>");
4139
4140  if (const ObjCObjectPointerType *lhsOPT =
4141        lhs->getAsObjCInterfacePointerType()) {
4142    if (lhsOPT->qual_empty()) {
4143      bool match = false;
4144      if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
4145        for (ObjCObjectPointerType::qual_iterator I = rhsQID->qual_begin(),
4146             E = rhsQID->qual_end(); I != E; ++I) {
4147          // when comparing an id<P> on lhs with a static type on rhs,
4148          // see if static class implements all of id's protocols, directly or
4149          // through its super class and categories.
4150          if (lhsID->ClassImplementsProtocol(*I, true)) {
4151            match = true;
4152            break;
4153          }
4154        }
4155        if (!match)
4156          return false;
4157      }
4158      return true;
4159    }
4160    // Both the right and left sides have qualifiers.
4161    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
4162         E = lhsOPT->qual_end(); I != E; ++I) {
4163      ObjCProtocolDecl *lhsProto = *I;
4164      bool match = false;
4165
4166      // when comparing an id<P> on lhs with a static type on rhs,
4167      // see if static class implements all of id's protocols, directly or
4168      // through its super class and categories.
4169      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
4170           E = rhsQID->qual_end(); J != E; ++J) {
4171        ObjCProtocolDecl *rhsProto = *J;
4172        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4173            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4174          match = true;
4175          break;
4176        }
4177      }
4178      if (!match)
4179        return false;
4180    }
4181    return true;
4182  }
4183  return false;
4184}
4185
4186/// canAssignObjCInterfaces - Return true if the two interface types are
4187/// compatible for assignment from RHS to LHS.  This handles validation of any
4188/// protocol qualifiers on the LHS or RHS.
4189///
4190bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
4191                                         const ObjCObjectPointerType *RHSOPT) {
4192  const ObjCObjectType* LHS = LHSOPT->getObjectType();
4193  const ObjCObjectType* RHS = RHSOPT->getObjectType();
4194
4195  // If either type represents the built-in 'id' or 'Class' types, return true.
4196  if (LHS->isObjCUnqualifiedIdOrClass() ||
4197      RHS->isObjCUnqualifiedIdOrClass())
4198    return true;
4199
4200  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
4201    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4202                                             QualType(RHSOPT,0),
4203                                             false);
4204
4205  // If we have 2 user-defined types, fall into that path.
4206  if (LHS->getInterface() && RHS->getInterface())
4207    return canAssignObjCInterfaces(LHS, RHS);
4208
4209  return false;
4210}
4211
4212/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
4213/// for providing type-safty for objective-c pointers used to pass/return
4214/// arguments in block literals. When passed as arguments, passing 'A*' where
4215/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
4216/// not OK. For the return type, the opposite is not OK.
4217bool ASTContext::canAssignObjCInterfacesInBlockPointer(
4218                                         const ObjCObjectPointerType *LHSOPT,
4219                                         const ObjCObjectPointerType *RHSOPT) {
4220  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
4221    return true;
4222
4223  if (LHSOPT->isObjCBuiltinType()) {
4224    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
4225  }
4226
4227  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
4228    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4229                                             QualType(RHSOPT,0),
4230                                             false);
4231
4232  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4233  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4234  if (LHS && RHS)  { // We have 2 user-defined types.
4235    if (LHS != RHS) {
4236      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
4237        return false;
4238      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
4239        return true;
4240    }
4241    else
4242      return true;
4243  }
4244  return false;
4245}
4246
4247/// getIntersectionOfProtocols - This routine finds the intersection of set
4248/// of protocols inherited from two distinct objective-c pointer objects.
4249/// It is used to build composite qualifier list of the composite type of
4250/// the conditional expression involving two objective-c pointer objects.
4251static
4252void getIntersectionOfProtocols(ASTContext &Context,
4253                                const ObjCObjectPointerType *LHSOPT,
4254                                const ObjCObjectPointerType *RHSOPT,
4255      llvm::SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
4256
4257  const ObjCObjectType* LHS = LHSOPT->getObjectType();
4258  const ObjCObjectType* RHS = RHSOPT->getObjectType();
4259  assert(LHS->getInterface() && "LHS must have an interface base");
4260  assert(RHS->getInterface() && "RHS must have an interface base");
4261
4262  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
4263  unsigned LHSNumProtocols = LHS->getNumProtocols();
4264  if (LHSNumProtocols > 0)
4265    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
4266  else {
4267    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
4268    Context.CollectInheritedProtocols(LHS->getInterface(),
4269                                      LHSInheritedProtocols);
4270    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
4271                                LHSInheritedProtocols.end());
4272  }
4273
4274  unsigned RHSNumProtocols = RHS->getNumProtocols();
4275  if (RHSNumProtocols > 0) {
4276    ObjCProtocolDecl **RHSProtocols =
4277      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
4278    for (unsigned i = 0; i < RHSNumProtocols; ++i)
4279      if (InheritedProtocolSet.count(RHSProtocols[i]))
4280        IntersectionOfProtocols.push_back(RHSProtocols[i]);
4281  }
4282  else {
4283    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
4284    Context.CollectInheritedProtocols(RHS->getInterface(),
4285                                      RHSInheritedProtocols);
4286    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
4287         RHSInheritedProtocols.begin(),
4288         E = RHSInheritedProtocols.end(); I != E; ++I)
4289      if (InheritedProtocolSet.count((*I)))
4290        IntersectionOfProtocols.push_back((*I));
4291  }
4292}
4293
4294/// areCommonBaseCompatible - Returns common base class of the two classes if
4295/// one found. Note that this is O'2 algorithm. But it will be called as the
4296/// last type comparison in a ?-exp of ObjC pointer types before a
4297/// warning is issued. So, its invokation is extremely rare.
4298QualType ASTContext::areCommonBaseCompatible(
4299                                          const ObjCObjectPointerType *Lptr,
4300                                          const ObjCObjectPointerType *Rptr) {
4301  const ObjCObjectType *LHS = Lptr->getObjectType();
4302  const ObjCObjectType *RHS = Rptr->getObjectType();
4303  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
4304  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
4305  if (!LDecl || !RDecl)
4306    return QualType();
4307
4308  while ((LDecl = LDecl->getSuperClass())) {
4309    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
4310    if (canAssignObjCInterfaces(LHS, RHS)) {
4311      llvm::SmallVector<ObjCProtocolDecl *, 8> Protocols;
4312      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
4313
4314      QualType Result = QualType(LHS, 0);
4315      if (!Protocols.empty())
4316        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
4317      Result = getObjCObjectPointerType(Result);
4318      return Result;
4319    }
4320  }
4321
4322  return QualType();
4323}
4324
4325bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
4326                                         const ObjCObjectType *RHS) {
4327  assert(LHS->getInterface() && "LHS is not an interface type");
4328  assert(RHS->getInterface() && "RHS is not an interface type");
4329
4330  // Verify that the base decls are compatible: the RHS must be a subclass of
4331  // the LHS.
4332  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
4333    return false;
4334
4335  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
4336  // protocol qualified at all, then we are good.
4337  if (LHS->getNumProtocols() == 0)
4338    return true;
4339
4340  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
4341  // isn't a superset.
4342  if (RHS->getNumProtocols() == 0)
4343    return true;  // FIXME: should return false!
4344
4345  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
4346                                     LHSPE = LHS->qual_end();
4347       LHSPI != LHSPE; LHSPI++) {
4348    bool RHSImplementsProtocol = false;
4349
4350    // If the RHS doesn't implement the protocol on the left, the types
4351    // are incompatible.
4352    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
4353                                       RHSPE = RHS->qual_end();
4354         RHSPI != RHSPE; RHSPI++) {
4355      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
4356        RHSImplementsProtocol = true;
4357        break;
4358      }
4359    }
4360    // FIXME: For better diagnostics, consider passing back the protocol name.
4361    if (!RHSImplementsProtocol)
4362      return false;
4363  }
4364  // The RHS implements all protocols listed on the LHS.
4365  return true;
4366}
4367
4368bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
4369  // get the "pointed to" types
4370  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
4371  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
4372
4373  if (!LHSOPT || !RHSOPT)
4374    return false;
4375
4376  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
4377         canAssignObjCInterfaces(RHSOPT, LHSOPT);
4378}
4379
4380/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
4381/// both shall have the identically qualified version of a compatible type.
4382/// C99 6.2.7p1: Two types have compatible types if their types are the
4383/// same. See 6.7.[2,3,5] for additional rules.
4384bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
4385  if (getLangOptions().CPlusPlus)
4386    return hasSameType(LHS, RHS);
4387
4388  return !mergeTypes(LHS, RHS).isNull();
4389}
4390
4391bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
4392  return !mergeTypes(LHS, RHS, true).isNull();
4393}
4394
4395QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
4396                                        bool OfBlockPointer) {
4397  const FunctionType *lbase = lhs->getAs<FunctionType>();
4398  const FunctionType *rbase = rhs->getAs<FunctionType>();
4399  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
4400  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
4401  bool allLTypes = true;
4402  bool allRTypes = true;
4403
4404  // Check return type
4405  QualType retType;
4406  if (OfBlockPointer)
4407    retType = mergeTypes(rbase->getResultType(), lbase->getResultType(), true);
4408  else
4409   retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
4410  if (retType.isNull()) return QualType();
4411  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
4412    allLTypes = false;
4413  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
4414    allRTypes = false;
4415  // FIXME: double check this
4416  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
4417  //                           rbase->getRegParmAttr() != 0 &&
4418  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
4419  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
4420  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
4421  unsigned RegParm = lbaseInfo.getRegParm() == 0 ? rbaseInfo.getRegParm() :
4422      lbaseInfo.getRegParm();
4423  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
4424  if (NoReturn != lbaseInfo.getNoReturn() ||
4425      RegParm != lbaseInfo.getRegParm())
4426    allLTypes = false;
4427  if (NoReturn != rbaseInfo.getNoReturn() ||
4428      RegParm != rbaseInfo.getRegParm())
4429    allRTypes = false;
4430  CallingConv lcc = lbaseInfo.getCC();
4431  CallingConv rcc = rbaseInfo.getCC();
4432  // Compatible functions must have compatible calling conventions
4433  if (!isSameCallConv(lcc, rcc))
4434    return QualType();
4435
4436  if (lproto && rproto) { // two C99 style function prototypes
4437    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
4438           "C++ shouldn't be here");
4439    unsigned lproto_nargs = lproto->getNumArgs();
4440    unsigned rproto_nargs = rproto->getNumArgs();
4441
4442    // Compatible functions must have the same number of arguments
4443    if (lproto_nargs != rproto_nargs)
4444      return QualType();
4445
4446    // Variadic and non-variadic functions aren't compatible
4447    if (lproto->isVariadic() != rproto->isVariadic())
4448      return QualType();
4449
4450    if (lproto->getTypeQuals() != rproto->getTypeQuals())
4451      return QualType();
4452
4453    // Check argument compatibility
4454    llvm::SmallVector<QualType, 10> types;
4455    for (unsigned i = 0; i < lproto_nargs; i++) {
4456      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
4457      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
4458      QualType argtype = mergeTypes(largtype, rargtype, OfBlockPointer);
4459      if (argtype.isNull()) return QualType();
4460      types.push_back(argtype);
4461      if (getCanonicalType(argtype) != getCanonicalType(largtype))
4462        allLTypes = false;
4463      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
4464        allRTypes = false;
4465    }
4466    if (allLTypes) return lhs;
4467    if (allRTypes) return rhs;
4468    return getFunctionType(retType, types.begin(), types.size(),
4469                           lproto->isVariadic(), lproto->getTypeQuals(),
4470                           false, false, 0, 0,
4471                           FunctionType::ExtInfo(NoReturn, RegParm, lcc));
4472  }
4473
4474  if (lproto) allRTypes = false;
4475  if (rproto) allLTypes = false;
4476
4477  const FunctionProtoType *proto = lproto ? lproto : rproto;
4478  if (proto) {
4479    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
4480    if (proto->isVariadic()) return QualType();
4481    // Check that the types are compatible with the types that
4482    // would result from default argument promotions (C99 6.7.5.3p15).
4483    // The only types actually affected are promotable integer
4484    // types and floats, which would be passed as a different
4485    // type depending on whether the prototype is visible.
4486    unsigned proto_nargs = proto->getNumArgs();
4487    for (unsigned i = 0; i < proto_nargs; ++i) {
4488      QualType argTy = proto->getArgType(i);
4489
4490      // Look at the promotion type of enum types, since that is the type used
4491      // to pass enum values.
4492      if (const EnumType *Enum = argTy->getAs<EnumType>())
4493        argTy = Enum->getDecl()->getPromotionType();
4494
4495      if (argTy->isPromotableIntegerType() ||
4496          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
4497        return QualType();
4498    }
4499
4500    if (allLTypes) return lhs;
4501    if (allRTypes) return rhs;
4502    return getFunctionType(retType, proto->arg_type_begin(),
4503                           proto->getNumArgs(), proto->isVariadic(),
4504                           proto->getTypeQuals(),
4505                           false, false, 0, 0,
4506                           FunctionType::ExtInfo(NoReturn, RegParm, lcc));
4507  }
4508
4509  if (allLTypes) return lhs;
4510  if (allRTypes) return rhs;
4511  FunctionType::ExtInfo Info(NoReturn, RegParm, lcc);
4512  return getFunctionNoProtoType(retType, Info);
4513}
4514
4515QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
4516                                bool OfBlockPointer) {
4517  // C++ [expr]: If an expression initially has the type "reference to T", the
4518  // type is adjusted to "T" prior to any further analysis, the expression
4519  // designates the object or function denoted by the reference, and the
4520  // expression is an lvalue unless the reference is an rvalue reference and
4521  // the expression is a function call (possibly inside parentheses).
4522  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
4523  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
4524
4525  QualType LHSCan = getCanonicalType(LHS),
4526           RHSCan = getCanonicalType(RHS);
4527
4528  // If two types are identical, they are compatible.
4529  if (LHSCan == RHSCan)
4530    return LHS;
4531
4532  // If the qualifiers are different, the types aren't compatible... mostly.
4533  Qualifiers LQuals = LHSCan.getLocalQualifiers();
4534  Qualifiers RQuals = RHSCan.getLocalQualifiers();
4535  if (LQuals != RQuals) {
4536    // If any of these qualifiers are different, we have a type
4537    // mismatch.
4538    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
4539        LQuals.getAddressSpace() != RQuals.getAddressSpace())
4540      return QualType();
4541
4542    // Exactly one GC qualifier difference is allowed: __strong is
4543    // okay if the other type has no GC qualifier but is an Objective
4544    // C object pointer (i.e. implicitly strong by default).  We fix
4545    // this by pretending that the unqualified type was actually
4546    // qualified __strong.
4547    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
4548    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
4549    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
4550
4551    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
4552      return QualType();
4553
4554    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
4555      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
4556    }
4557    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
4558      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
4559    }
4560    return QualType();
4561  }
4562
4563  // Okay, qualifiers are equal.
4564
4565  Type::TypeClass LHSClass = LHSCan->getTypeClass();
4566  Type::TypeClass RHSClass = RHSCan->getTypeClass();
4567
4568  // We want to consider the two function types to be the same for these
4569  // comparisons, just force one to the other.
4570  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
4571  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
4572
4573  // Same as above for arrays
4574  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
4575    LHSClass = Type::ConstantArray;
4576  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
4577    RHSClass = Type::ConstantArray;
4578
4579  // ObjCInterfaces are just specialized ObjCObjects.
4580  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
4581  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
4582
4583  // Canonicalize ExtVector -> Vector.
4584  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
4585  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
4586
4587  // If the canonical type classes don't match.
4588  if (LHSClass != RHSClass) {
4589    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
4590    // a signed integer type, or an unsigned integer type.
4591    // Compatibility is based on the underlying type, not the promotion
4592    // type.
4593    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
4594      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
4595        return RHS;
4596    }
4597    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
4598      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
4599        return LHS;
4600    }
4601
4602    return QualType();
4603  }
4604
4605  // The canonical type classes match.
4606  switch (LHSClass) {
4607#define TYPE(Class, Base)
4608#define ABSTRACT_TYPE(Class, Base)
4609#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
4610#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
4611#define DEPENDENT_TYPE(Class, Base) case Type::Class:
4612#include "clang/AST/TypeNodes.def"
4613    assert(false && "Non-canonical and dependent types shouldn't get here");
4614    return QualType();
4615
4616  case Type::LValueReference:
4617  case Type::RValueReference:
4618  case Type::MemberPointer:
4619    assert(false && "C++ should never be in mergeTypes");
4620    return QualType();
4621
4622  case Type::ObjCInterface:
4623  case Type::IncompleteArray:
4624  case Type::VariableArray:
4625  case Type::FunctionProto:
4626  case Type::ExtVector:
4627    assert(false && "Types are eliminated above");
4628    return QualType();
4629
4630  case Type::Pointer:
4631  {
4632    // Merge two pointer types, while trying to preserve typedef info
4633    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
4634    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
4635    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
4636    if (ResultType.isNull()) return QualType();
4637    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4638      return LHS;
4639    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4640      return RHS;
4641    return getPointerType(ResultType);
4642  }
4643  case Type::BlockPointer:
4644  {
4645    // Merge two block pointer types, while trying to preserve typedef info
4646    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
4647    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
4648    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer);
4649    if (ResultType.isNull()) return QualType();
4650    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4651      return LHS;
4652    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4653      return RHS;
4654    return getBlockPointerType(ResultType);
4655  }
4656  case Type::ConstantArray:
4657  {
4658    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
4659    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
4660    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
4661      return QualType();
4662
4663    QualType LHSElem = getAsArrayType(LHS)->getElementType();
4664    QualType RHSElem = getAsArrayType(RHS)->getElementType();
4665    QualType ResultType = mergeTypes(LHSElem, RHSElem);
4666    if (ResultType.isNull()) return QualType();
4667    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4668      return LHS;
4669    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4670      return RHS;
4671    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
4672                                          ArrayType::ArraySizeModifier(), 0);
4673    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
4674                                          ArrayType::ArraySizeModifier(), 0);
4675    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
4676    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
4677    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4678      return LHS;
4679    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4680      return RHS;
4681    if (LVAT) {
4682      // FIXME: This isn't correct! But tricky to implement because
4683      // the array's size has to be the size of LHS, but the type
4684      // has to be different.
4685      return LHS;
4686    }
4687    if (RVAT) {
4688      // FIXME: This isn't correct! But tricky to implement because
4689      // the array's size has to be the size of RHS, but the type
4690      // has to be different.
4691      return RHS;
4692    }
4693    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
4694    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
4695    return getIncompleteArrayType(ResultType,
4696                                  ArrayType::ArraySizeModifier(), 0);
4697  }
4698  case Type::FunctionNoProto:
4699    return mergeFunctionTypes(LHS, RHS, OfBlockPointer);
4700  case Type::Record:
4701  case Type::Enum:
4702    return QualType();
4703  case Type::Builtin:
4704    // Only exactly equal builtin types are compatible, which is tested above.
4705    return QualType();
4706  case Type::Complex:
4707    // Distinct complex types are incompatible.
4708    return QualType();
4709  case Type::Vector:
4710    // FIXME: The merged type should be an ExtVector!
4711    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
4712                             RHSCan->getAs<VectorType>()))
4713      return LHS;
4714    return QualType();
4715  case Type::ObjCObject: {
4716    // Check if the types are assignment compatible.
4717    // FIXME: This should be type compatibility, e.g. whether
4718    // "LHS x; RHS x;" at global scope is legal.
4719    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
4720    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
4721    if (canAssignObjCInterfaces(LHSIface, RHSIface))
4722      return LHS;
4723
4724    return QualType();
4725  }
4726  case Type::ObjCObjectPointer: {
4727    if (OfBlockPointer) {
4728      if (canAssignObjCInterfacesInBlockPointer(
4729                                          LHS->getAs<ObjCObjectPointerType>(),
4730                                          RHS->getAs<ObjCObjectPointerType>()))
4731      return LHS;
4732      return QualType();
4733    }
4734    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
4735                                RHS->getAs<ObjCObjectPointerType>()))
4736      return LHS;
4737
4738    return QualType();
4739    }
4740  }
4741
4742  return QualType();
4743}
4744
4745/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
4746/// 'RHS' attributes and returns the merged version; including for function
4747/// return types.
4748QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
4749  QualType LHSCan = getCanonicalType(LHS),
4750  RHSCan = getCanonicalType(RHS);
4751  // If two types are identical, they are compatible.
4752  if (LHSCan == RHSCan)
4753    return LHS;
4754  if (RHSCan->isFunctionType()) {
4755    if (!LHSCan->isFunctionType())
4756      return QualType();
4757    QualType OldReturnType =
4758      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
4759    QualType NewReturnType =
4760      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
4761    QualType ResReturnType =
4762      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
4763    if (ResReturnType.isNull())
4764      return QualType();
4765    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
4766      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
4767      // In either case, use OldReturnType to build the new function type.
4768      const FunctionType *F = LHS->getAs<FunctionType>();
4769      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
4770        FunctionType::ExtInfo Info = getFunctionExtInfo(LHS);
4771        QualType ResultType
4772          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
4773                                  FPT->getNumArgs(), FPT->isVariadic(),
4774                                  FPT->getTypeQuals(),
4775                                  FPT->hasExceptionSpec(),
4776                                  FPT->hasAnyExceptionSpec(),
4777                                  FPT->getNumExceptions(),
4778                                  FPT->exception_begin(),
4779                                  Info);
4780        return ResultType;
4781      }
4782    }
4783    return QualType();
4784  }
4785
4786  // If the qualifiers are different, the types can still be merged.
4787  Qualifiers LQuals = LHSCan.getLocalQualifiers();
4788  Qualifiers RQuals = RHSCan.getLocalQualifiers();
4789  if (LQuals != RQuals) {
4790    // If any of these qualifiers are different, we have a type mismatch.
4791    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
4792        LQuals.getAddressSpace() != RQuals.getAddressSpace())
4793      return QualType();
4794
4795    // Exactly one GC qualifier difference is allowed: __strong is
4796    // okay if the other type has no GC qualifier but is an Objective
4797    // C object pointer (i.e. implicitly strong by default).  We fix
4798    // this by pretending that the unqualified type was actually
4799    // qualified __strong.
4800    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
4801    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
4802    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
4803
4804    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
4805      return QualType();
4806
4807    if (GC_L == Qualifiers::Strong)
4808      return LHS;
4809    if (GC_R == Qualifiers::Strong)
4810      return RHS;
4811    return QualType();
4812  }
4813
4814  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
4815    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
4816    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
4817    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
4818    if (ResQT == LHSBaseQT)
4819      return LHS;
4820    if (ResQT == RHSBaseQT)
4821      return RHS;
4822  }
4823  return QualType();
4824}
4825
4826//===----------------------------------------------------------------------===//
4827//                         Integer Predicates
4828//===----------------------------------------------------------------------===//
4829
4830unsigned ASTContext::getIntWidth(QualType T) {
4831  if (T->isBooleanType())
4832    return 1;
4833  if (EnumType *ET = dyn_cast<EnumType>(T))
4834    T = ET->getDecl()->getIntegerType();
4835  // For builtin types, just use the standard type sizing method
4836  return (unsigned)getTypeSize(T);
4837}
4838
4839QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
4840  assert(T->isSignedIntegerType() && "Unexpected type");
4841
4842  // Turn <4 x signed int> -> <4 x unsigned int>
4843  if (const VectorType *VTy = T->getAs<VectorType>())
4844    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
4845             VTy->getNumElements(), VTy->isAltiVec(), VTy->isPixel());
4846
4847  // For enums, we return the unsigned version of the base type.
4848  if (const EnumType *ETy = T->getAs<EnumType>())
4849    T = ETy->getDecl()->getIntegerType();
4850
4851  const BuiltinType *BTy = T->getAs<BuiltinType>();
4852  assert(BTy && "Unexpected signed integer type");
4853  switch (BTy->getKind()) {
4854  case BuiltinType::Char_S:
4855  case BuiltinType::SChar:
4856    return UnsignedCharTy;
4857  case BuiltinType::Short:
4858    return UnsignedShortTy;
4859  case BuiltinType::Int:
4860    return UnsignedIntTy;
4861  case BuiltinType::Long:
4862    return UnsignedLongTy;
4863  case BuiltinType::LongLong:
4864    return UnsignedLongLongTy;
4865  case BuiltinType::Int128:
4866    return UnsignedInt128Ty;
4867  default:
4868    assert(0 && "Unexpected signed integer type");
4869    return QualType();
4870  }
4871}
4872
4873ExternalASTSource::~ExternalASTSource() { }
4874
4875void ExternalASTSource::PrintStats() { }
4876
4877
4878//===----------------------------------------------------------------------===//
4879//                          Builtin Type Computation
4880//===----------------------------------------------------------------------===//
4881
4882/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
4883/// pointer over the consumed characters.  This returns the resultant type.
4884static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context,
4885                                  ASTContext::GetBuiltinTypeError &Error,
4886                                  bool AllowTypeModifiers = true) {
4887  // Modifiers.
4888  int HowLong = 0;
4889  bool Signed = false, Unsigned = false;
4890
4891  // Read the modifiers first.
4892  bool Done = false;
4893  while (!Done) {
4894    switch (*Str++) {
4895    default: Done = true; --Str; break;
4896    case 'S':
4897      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
4898      assert(!Signed && "Can't use 'S' modifier multiple times!");
4899      Signed = true;
4900      break;
4901    case 'U':
4902      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
4903      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
4904      Unsigned = true;
4905      break;
4906    case 'L':
4907      assert(HowLong <= 2 && "Can't have LLLL modifier");
4908      ++HowLong;
4909      break;
4910    }
4911  }
4912
4913  QualType Type;
4914
4915  // Read the base type.
4916  switch (*Str++) {
4917  default: assert(0 && "Unknown builtin type letter!");
4918  case 'v':
4919    assert(HowLong == 0 && !Signed && !Unsigned &&
4920           "Bad modifiers used with 'v'!");
4921    Type = Context.VoidTy;
4922    break;
4923  case 'f':
4924    assert(HowLong == 0 && !Signed && !Unsigned &&
4925           "Bad modifiers used with 'f'!");
4926    Type = Context.FloatTy;
4927    break;
4928  case 'd':
4929    assert(HowLong < 2 && !Signed && !Unsigned &&
4930           "Bad modifiers used with 'd'!");
4931    if (HowLong)
4932      Type = Context.LongDoubleTy;
4933    else
4934      Type = Context.DoubleTy;
4935    break;
4936  case 's':
4937    assert(HowLong == 0 && "Bad modifiers used with 's'!");
4938    if (Unsigned)
4939      Type = Context.UnsignedShortTy;
4940    else
4941      Type = Context.ShortTy;
4942    break;
4943  case 'i':
4944    if (HowLong == 3)
4945      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
4946    else if (HowLong == 2)
4947      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
4948    else if (HowLong == 1)
4949      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
4950    else
4951      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
4952    break;
4953  case 'c':
4954    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
4955    if (Signed)
4956      Type = Context.SignedCharTy;
4957    else if (Unsigned)
4958      Type = Context.UnsignedCharTy;
4959    else
4960      Type = Context.CharTy;
4961    break;
4962  case 'b': // boolean
4963    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
4964    Type = Context.BoolTy;
4965    break;
4966  case 'z':  // size_t.
4967    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
4968    Type = Context.getSizeType();
4969    break;
4970  case 'F':
4971    Type = Context.getCFConstantStringType();
4972    break;
4973  case 'a':
4974    Type = Context.getBuiltinVaListType();
4975    assert(!Type.isNull() && "builtin va list type not initialized!");
4976    break;
4977  case 'A':
4978    // This is a "reference" to a va_list; however, what exactly
4979    // this means depends on how va_list is defined. There are two
4980    // different kinds of va_list: ones passed by value, and ones
4981    // passed by reference.  An example of a by-value va_list is
4982    // x86, where va_list is a char*. An example of by-ref va_list
4983    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
4984    // we want this argument to be a char*&; for x86-64, we want
4985    // it to be a __va_list_tag*.
4986    Type = Context.getBuiltinVaListType();
4987    assert(!Type.isNull() && "builtin va list type not initialized!");
4988    if (Type->isArrayType()) {
4989      Type = Context.getArrayDecayedType(Type);
4990    } else {
4991      Type = Context.getLValueReferenceType(Type);
4992    }
4993    break;
4994  case 'V': {
4995    char *End;
4996    unsigned NumElements = strtoul(Str, &End, 10);
4997    assert(End != Str && "Missing vector size");
4998
4999    Str = End;
5000
5001    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
5002    // FIXME: Don't know what to do about AltiVec.
5003    Type = Context.getVectorType(ElementType, NumElements, false, false);
5004    break;
5005  }
5006  case 'X': {
5007    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
5008    Type = Context.getComplexType(ElementType);
5009    break;
5010  }
5011  case 'P':
5012    Type = Context.getFILEType();
5013    if (Type.isNull()) {
5014      Error = ASTContext::GE_Missing_stdio;
5015      return QualType();
5016    }
5017    break;
5018  case 'J':
5019    if (Signed)
5020      Type = Context.getsigjmp_bufType();
5021    else
5022      Type = Context.getjmp_bufType();
5023
5024    if (Type.isNull()) {
5025      Error = ASTContext::GE_Missing_setjmp;
5026      return QualType();
5027    }
5028    break;
5029  }
5030
5031  if (!AllowTypeModifiers)
5032    return Type;
5033
5034  Done = false;
5035  while (!Done) {
5036    switch (char c = *Str++) {
5037      default: Done = true; --Str; break;
5038      case '*':
5039      case '&':
5040        {
5041          // Both pointers and references can have their pointee types
5042          // qualified with an address space.
5043          char *End;
5044          unsigned AddrSpace = strtoul(Str, &End, 10);
5045          if (End != Str && AddrSpace != 0) {
5046            Type = Context.getAddrSpaceQualType(Type, AddrSpace);
5047            Str = End;
5048          }
5049        }
5050        if (c == '*')
5051          Type = Context.getPointerType(Type);
5052        else
5053          Type = Context.getLValueReferenceType(Type);
5054        break;
5055      // FIXME: There's no way to have a built-in with an rvalue ref arg.
5056      case 'C':
5057        Type = Type.withConst();
5058        break;
5059      case 'D':
5060        Type = Context.getVolatileType(Type);
5061        break;
5062    }
5063  }
5064
5065  return Type;
5066}
5067
5068/// GetBuiltinType - Return the type for the specified builtin.
5069QualType ASTContext::GetBuiltinType(unsigned id,
5070                                    GetBuiltinTypeError &Error) {
5071  const char *TypeStr = BuiltinInfo.GetTypeString(id);
5072
5073  llvm::SmallVector<QualType, 8> ArgTypes;
5074
5075  Error = GE_None;
5076  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error);
5077  if (Error != GE_None)
5078    return QualType();
5079  while (TypeStr[0] && TypeStr[0] != '.') {
5080    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error);
5081    if (Error != GE_None)
5082      return QualType();
5083
5084    // Do array -> pointer decay.  The builtin should use the decayed type.
5085    if (Ty->isArrayType())
5086      Ty = getArrayDecayedType(Ty);
5087
5088    ArgTypes.push_back(Ty);
5089  }
5090
5091  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
5092         "'.' should only occur at end of builtin type list!");
5093
5094  // handle untyped/variadic arguments "T c99Style();" or "T cppStyle(...);".
5095  if (ArgTypes.size() == 0 && TypeStr[0] == '.')
5096    return getFunctionNoProtoType(ResType);
5097
5098  // FIXME: Should we create noreturn types?
5099  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(),
5100                         TypeStr[0] == '.', 0, false, false, 0, 0,
5101                         FunctionType::ExtInfo());
5102}
5103
5104QualType
5105ASTContext::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
5106  // Perform the usual unary conversions. We do this early so that
5107  // integral promotions to "int" can allow us to exit early, in the
5108  // lhs == rhs check. Also, for conversion purposes, we ignore any
5109  // qualifiers.  For example, "const float" and "float" are
5110  // equivalent.
5111  if (lhs->isPromotableIntegerType())
5112    lhs = getPromotedIntegerType(lhs);
5113  else
5114    lhs = lhs.getUnqualifiedType();
5115  if (rhs->isPromotableIntegerType())
5116    rhs = getPromotedIntegerType(rhs);
5117  else
5118    rhs = rhs.getUnqualifiedType();
5119
5120  // If both types are identical, no conversion is needed.
5121  if (lhs == rhs)
5122    return lhs;
5123
5124  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
5125  // The caller can deal with this (e.g. pointer + int).
5126  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
5127    return lhs;
5128
5129  // At this point, we have two different arithmetic types.
5130
5131  // Handle complex types first (C99 6.3.1.8p1).
5132  if (lhs->isComplexType() || rhs->isComplexType()) {
5133    // if we have an integer operand, the result is the complex type.
5134    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
5135      // convert the rhs to the lhs complex type.
5136      return lhs;
5137    }
5138    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
5139      // convert the lhs to the rhs complex type.
5140      return rhs;
5141    }
5142    // This handles complex/complex, complex/float, or float/complex.
5143    // When both operands are complex, the shorter operand is converted to the
5144    // type of the longer, and that is the type of the result. This corresponds
5145    // to what is done when combining two real floating-point operands.
5146    // The fun begins when size promotion occur across type domains.
5147    // From H&S 6.3.4: When one operand is complex and the other is a real
5148    // floating-point type, the less precise type is converted, within it's
5149    // real or complex domain, to the precision of the other type. For example,
5150    // when combining a "long double" with a "double _Complex", the
5151    // "double _Complex" is promoted to "long double _Complex".
5152    int result = getFloatingTypeOrder(lhs, rhs);
5153
5154    if (result > 0) { // The left side is bigger, convert rhs.
5155      rhs = getFloatingTypeOfSizeWithinDomain(lhs, rhs);
5156    } else if (result < 0) { // The right side is bigger, convert lhs.
5157      lhs = getFloatingTypeOfSizeWithinDomain(rhs, lhs);
5158    }
5159    // At this point, lhs and rhs have the same rank/size. Now, make sure the
5160    // domains match. This is a requirement for our implementation, C99
5161    // does not require this promotion.
5162    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
5163      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
5164        return rhs;
5165      } else { // handle "_Complex double, double".
5166        return lhs;
5167      }
5168    }
5169    return lhs; // The domain/size match exactly.
5170  }
5171  // Now handle "real" floating types (i.e. float, double, long double).
5172  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
5173    // if we have an integer operand, the result is the real floating type.
5174    if (rhs->isIntegerType()) {
5175      // convert rhs to the lhs floating point type.
5176      return lhs;
5177    }
5178    if (rhs->isComplexIntegerType()) {
5179      // convert rhs to the complex floating point type.
5180      return getComplexType(lhs);
5181    }
5182    if (lhs->isIntegerType()) {
5183      // convert lhs to the rhs floating point type.
5184      return rhs;
5185    }
5186    if (lhs->isComplexIntegerType()) {
5187      // convert lhs to the complex floating point type.
5188      return getComplexType(rhs);
5189    }
5190    // We have two real floating types, float/complex combos were handled above.
5191    // Convert the smaller operand to the bigger result.
5192    int result = getFloatingTypeOrder(lhs, rhs);
5193    if (result > 0) // convert the rhs
5194      return lhs;
5195    assert(result < 0 && "illegal float comparison");
5196    return rhs;   // convert the lhs
5197  }
5198  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
5199    // Handle GCC complex int extension.
5200    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
5201    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
5202
5203    if (lhsComplexInt && rhsComplexInt) {
5204      if (getIntegerTypeOrder(lhsComplexInt->getElementType(),
5205                              rhsComplexInt->getElementType()) >= 0)
5206        return lhs; // convert the rhs
5207      return rhs;
5208    } else if (lhsComplexInt && rhs->isIntegerType()) {
5209      // convert the rhs to the lhs complex type.
5210      return lhs;
5211    } else if (rhsComplexInt && lhs->isIntegerType()) {
5212      // convert the lhs to the rhs complex type.
5213      return rhs;
5214    }
5215  }
5216  // Finally, we have two differing integer types.
5217  // The rules for this case are in C99 6.3.1.8
5218  int compare = getIntegerTypeOrder(lhs, rhs);
5219  bool lhsSigned = lhs->isSignedIntegerType(),
5220       rhsSigned = rhs->isSignedIntegerType();
5221  QualType destType;
5222  if (lhsSigned == rhsSigned) {
5223    // Same signedness; use the higher-ranked type
5224    destType = compare >= 0 ? lhs : rhs;
5225  } else if (compare != (lhsSigned ? 1 : -1)) {
5226    // The unsigned type has greater than or equal rank to the
5227    // signed type, so use the unsigned type
5228    destType = lhsSigned ? rhs : lhs;
5229  } else if (getIntWidth(lhs) != getIntWidth(rhs)) {
5230    // The two types are different widths; if we are here, that
5231    // means the signed type is larger than the unsigned type, so
5232    // use the signed type.
5233    destType = lhsSigned ? lhs : rhs;
5234  } else {
5235    // The signed type is higher-ranked than the unsigned type,
5236    // but isn't actually any bigger (like unsigned int and long
5237    // on most 32-bit systems).  Use the unsigned type corresponding
5238    // to the signed type.
5239    destType = getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
5240  }
5241  return destType;
5242}
5243