ASTContext.cpp revision 3478eb6872d836600caf45b0f81c2065d685d6e0
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExternalASTSource.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/Basic/Builtins.h"
24#include "clang/Basic/SourceManager.h"
25#include "clang/Basic/TargetInfo.h"
26#include "llvm/ADT/SmallString.h"
27#include "llvm/ADT/StringExtras.h"
28#include "llvm/Support/MathExtras.h"
29#include "llvm/Support/raw_ostream.h"
30#include "RecordLayoutBuilder.h"
31
32using namespace clang;
33
34enum FloatingRank {
35  FloatRank, DoubleRank, LongDoubleRank
36};
37
38ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
39                       const TargetInfo &t,
40                       IdentifierTable &idents, SelectorTable &sels,
41                       Builtin::Context &builtins,
42                       bool FreeMem, unsigned size_reserve) :
43  GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
44  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0), jmp_bufDecl(0),
45  sigjmp_bufDecl(0), BlockDescriptorType(0), BlockDescriptorExtendedType(0),
46  SourceMgr(SM), LangOpts(LOpts),
47  LoadedExternalComments(false), FreeMemory(FreeMem), Target(t),
48  Idents(idents), Selectors(sels),
49  BuiltinInfo(builtins), ExternalSource(0), PrintingPolicy(LOpts) {
50  ObjCIdRedefinitionType = QualType();
51  ObjCClassRedefinitionType = QualType();
52  ObjCSelRedefinitionType = QualType();
53  if (size_reserve > 0) Types.reserve(size_reserve);
54  TUDecl = TranslationUnitDecl::Create(*this);
55  InitBuiltinTypes();
56}
57
58ASTContext::~ASTContext() {
59  // Release the DenseMaps associated with DeclContext objects.
60  // FIXME: Is this the ideal solution?
61  ReleaseDeclContextMaps();
62
63  if (FreeMemory) {
64    // Deallocate all the types.
65    while (!Types.empty()) {
66      Types.back()->Destroy(*this);
67      Types.pop_back();
68    }
69
70    for (llvm::FoldingSet<ExtQuals>::iterator
71         I = ExtQualNodes.begin(), E = ExtQualNodes.end(); I != E; ) {
72      // Increment in loop to prevent using deallocated memory.
73      Deallocate(&*I++);
74    }
75  }
76
77  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
78       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
79    // Increment in loop to prevent using deallocated memory.
80    ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
81    delete R;
82  }
83
84  for (llvm::DenseMap<const ObjCContainerDecl*,
85                      const ASTRecordLayout*>::iterator
86       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; ) {
87    // Increment in loop to prevent using deallocated memory.
88    ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
89    delete R;
90  }
91
92  // Destroy nested-name-specifiers.
93  for (llvm::FoldingSet<NestedNameSpecifier>::iterator
94         NNS = NestedNameSpecifiers.begin(),
95         NNSEnd = NestedNameSpecifiers.end();
96       NNS != NNSEnd; ) {
97    // Increment in loop to prevent using deallocated memory.
98    (*NNS++).Destroy(*this);
99  }
100
101  if (GlobalNestedNameSpecifier)
102    GlobalNestedNameSpecifier->Destroy(*this);
103
104  TUDecl->Destroy(*this);
105}
106
107void
108ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
109  ExternalSource.reset(Source.take());
110}
111
112void ASTContext::PrintStats() const {
113  fprintf(stderr, "*** AST Context Stats:\n");
114  fprintf(stderr, "  %d types total.\n", (int)Types.size());
115
116  unsigned counts[] = {
117#define TYPE(Name, Parent) 0,
118#define ABSTRACT_TYPE(Name, Parent)
119#include "clang/AST/TypeNodes.def"
120    0 // Extra
121  };
122
123  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
124    Type *T = Types[i];
125    counts[(unsigned)T->getTypeClass()]++;
126  }
127
128  unsigned Idx = 0;
129  unsigned TotalBytes = 0;
130#define TYPE(Name, Parent)                                              \
131  if (counts[Idx])                                                      \
132    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
133  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
134  ++Idx;
135#define ABSTRACT_TYPE(Name, Parent)
136#include "clang/AST/TypeNodes.def"
137
138  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
139
140  if (ExternalSource.get()) {
141    fprintf(stderr, "\n");
142    ExternalSource->PrintStats();
143  }
144}
145
146
147void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
148  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
149  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
150  Types.push_back(Ty);
151}
152
153void ASTContext::InitBuiltinTypes() {
154  assert(VoidTy.isNull() && "Context reinitialized?");
155
156  // C99 6.2.5p19.
157  InitBuiltinType(VoidTy,              BuiltinType::Void);
158
159  // C99 6.2.5p2.
160  InitBuiltinType(BoolTy,              BuiltinType::Bool);
161  // C99 6.2.5p3.
162  if (LangOpts.CharIsSigned)
163    InitBuiltinType(CharTy,            BuiltinType::Char_S);
164  else
165    InitBuiltinType(CharTy,            BuiltinType::Char_U);
166  // C99 6.2.5p4.
167  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
168  InitBuiltinType(ShortTy,             BuiltinType::Short);
169  InitBuiltinType(IntTy,               BuiltinType::Int);
170  InitBuiltinType(LongTy,              BuiltinType::Long);
171  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
172
173  // C99 6.2.5p6.
174  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
175  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
176  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
177  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
178  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
179
180  // C99 6.2.5p10.
181  InitBuiltinType(FloatTy,             BuiltinType::Float);
182  InitBuiltinType(DoubleTy,            BuiltinType::Double);
183  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
184
185  // GNU extension, 128-bit integers.
186  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
187  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
188
189  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
190    InitBuiltinType(WCharTy,           BuiltinType::WChar);
191  else // C99
192    WCharTy = getFromTargetType(Target.getWCharType());
193
194  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
195    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
196  else // C99
197    Char16Ty = getFromTargetType(Target.getChar16Type());
198
199  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
200    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
201  else // C99
202    Char32Ty = getFromTargetType(Target.getChar32Type());
203
204  // Placeholder type for functions.
205  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
206
207  // Placeholder type for type-dependent expressions whose type is
208  // completely unknown. No code should ever check a type against
209  // DependentTy and users should never see it; however, it is here to
210  // help diagnose failures to properly check for type-dependent
211  // expressions.
212  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
213
214  // Placeholder type for C++0x auto declarations whose real type has
215  // not yet been deduced.
216  InitBuiltinType(UndeducedAutoTy, BuiltinType::UndeducedAuto);
217
218  // C99 6.2.5p11.
219  FloatComplexTy      = getComplexType(FloatTy);
220  DoubleComplexTy     = getComplexType(DoubleTy);
221  LongDoubleComplexTy = getComplexType(LongDoubleTy);
222
223  BuiltinVaListType = QualType();
224
225  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
226  ObjCIdTypedefType = QualType();
227  ObjCClassTypedefType = QualType();
228  ObjCSelTypedefType = QualType();
229
230  // Builtin types for 'id', 'Class', and 'SEL'.
231  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
232  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
233  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
234
235  ObjCConstantStringType = QualType();
236
237  // void * type
238  VoidPtrTy = getPointerType(VoidTy);
239
240  // nullptr type (C++0x 2.14.7)
241  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
242}
243
244MemberSpecializationInfo *
245ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
246  assert(Var->isStaticDataMember() && "Not a static data member");
247  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
248    = InstantiatedFromStaticDataMember.find(Var);
249  if (Pos == InstantiatedFromStaticDataMember.end())
250    return 0;
251
252  return Pos->second;
253}
254
255void
256ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
257                                                TemplateSpecializationKind TSK) {
258  assert(Inst->isStaticDataMember() && "Not a static data member");
259  assert(Tmpl->isStaticDataMember() && "Not a static data member");
260  assert(!InstantiatedFromStaticDataMember[Inst] &&
261         "Already noted what static data member was instantiated from");
262  InstantiatedFromStaticDataMember[Inst]
263    = new (*this) MemberSpecializationInfo(Tmpl, TSK);
264}
265
266NamedDecl *
267ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
268  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
269    = InstantiatedFromUsingDecl.find(UUD);
270  if (Pos == InstantiatedFromUsingDecl.end())
271    return 0;
272
273  return Pos->second;
274}
275
276void
277ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
278  assert((isa<UsingDecl>(Pattern) ||
279          isa<UnresolvedUsingValueDecl>(Pattern) ||
280          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
281         "pattern decl is not a using decl");
282  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
283  InstantiatedFromUsingDecl[Inst] = Pattern;
284}
285
286UsingShadowDecl *
287ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
288  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
289    = InstantiatedFromUsingShadowDecl.find(Inst);
290  if (Pos == InstantiatedFromUsingShadowDecl.end())
291    return 0;
292
293  return Pos->second;
294}
295
296void
297ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
298                                               UsingShadowDecl *Pattern) {
299  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
300  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
301}
302
303FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
304  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
305    = InstantiatedFromUnnamedFieldDecl.find(Field);
306  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
307    return 0;
308
309  return Pos->second;
310}
311
312void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
313                                                     FieldDecl *Tmpl) {
314  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
315  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
316  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
317         "Already noted what unnamed field was instantiated from");
318
319  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
320}
321
322namespace {
323  class BeforeInTranslationUnit
324    : std::binary_function<SourceRange, SourceRange, bool> {
325    SourceManager *SourceMgr;
326
327  public:
328    explicit BeforeInTranslationUnit(SourceManager *SM) : SourceMgr(SM) { }
329
330    bool operator()(SourceRange X, SourceRange Y) {
331      return SourceMgr->isBeforeInTranslationUnit(X.getBegin(), Y.getBegin());
332    }
333  };
334}
335
336/// \brief Determine whether the given comment is a Doxygen-style comment.
337///
338/// \param Start the start of the comment text.
339///
340/// \param End the end of the comment text.
341///
342/// \param Member whether we want to check whether this is a member comment
343/// (which requires a < after the Doxygen-comment delimiter). Otherwise,
344/// we only return true when we find a non-member comment.
345static bool
346isDoxygenComment(SourceManager &SourceMgr, SourceRange Comment,
347                 bool Member = false) {
348  const char *BufferStart
349    = SourceMgr.getBufferData(SourceMgr.getFileID(Comment.getBegin())).first;
350  const char *Start = BufferStart + SourceMgr.getFileOffset(Comment.getBegin());
351  const char* End = BufferStart + SourceMgr.getFileOffset(Comment.getEnd());
352
353  if (End - Start < 4)
354    return false;
355
356  assert(Start[0] == '/' && "Not a comment?");
357  if (Start[1] == '*' && !(Start[2] == '!' || Start[2] == '*'))
358    return false;
359  if (Start[1] == '/' && !(Start[2] == '!' || Start[2] == '/'))
360    return false;
361
362  return (Start[3] == '<') == Member;
363}
364
365/// \brief Retrieve the comment associated with the given declaration, if
366/// it has one.
367const char *ASTContext::getCommentForDecl(const Decl *D) {
368  if (!D)
369    return 0;
370
371  // Check whether we have cached a comment string for this declaration
372  // already.
373  llvm::DenseMap<const Decl *, std::string>::iterator Pos
374    = DeclComments.find(D);
375  if (Pos != DeclComments.end())
376    return Pos->second.c_str();
377
378  // If we have an external AST source and have not yet loaded comments from
379  // that source, do so now.
380  if (ExternalSource && !LoadedExternalComments) {
381    std::vector<SourceRange> LoadedComments;
382    ExternalSource->ReadComments(LoadedComments);
383
384    if (!LoadedComments.empty())
385      Comments.insert(Comments.begin(), LoadedComments.begin(),
386                      LoadedComments.end());
387
388    LoadedExternalComments = true;
389  }
390
391  // If there are no comments anywhere, we won't find anything.
392  if (Comments.empty())
393    return 0;
394
395  // If the declaration doesn't map directly to a location in a file, we
396  // can't find the comment.
397  SourceLocation DeclStartLoc = D->getLocStart();
398  if (DeclStartLoc.isInvalid() || !DeclStartLoc.isFileID())
399    return 0;
400
401  // Find the comment that occurs just before this declaration.
402  std::vector<SourceRange>::iterator LastComment
403    = std::lower_bound(Comments.begin(), Comments.end(),
404                       SourceRange(DeclStartLoc),
405                       BeforeInTranslationUnit(&SourceMgr));
406
407  // Decompose the location for the start of the declaration and find the
408  // beginning of the file buffer.
409  std::pair<FileID, unsigned> DeclStartDecomp
410    = SourceMgr.getDecomposedLoc(DeclStartLoc);
411  const char *FileBufferStart
412    = SourceMgr.getBufferData(DeclStartDecomp.first).first;
413
414  // First check whether we have a comment for a member.
415  if (LastComment != Comments.end() &&
416      !isa<TagDecl>(D) && !isa<NamespaceDecl>(D) &&
417      isDoxygenComment(SourceMgr, *LastComment, true)) {
418    std::pair<FileID, unsigned> LastCommentEndDecomp
419      = SourceMgr.getDecomposedLoc(LastComment->getEnd());
420    if (DeclStartDecomp.first == LastCommentEndDecomp.first &&
421        SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second)
422          == SourceMgr.getLineNumber(LastCommentEndDecomp.first,
423                                     LastCommentEndDecomp.second)) {
424      // The Doxygen member comment comes after the declaration starts and
425      // is on the same line and in the same file as the declaration. This
426      // is the comment we want.
427      std::string &Result = DeclComments[D];
428      Result.append(FileBufferStart +
429                      SourceMgr.getFileOffset(LastComment->getBegin()),
430                    FileBufferStart + LastCommentEndDecomp.second + 1);
431      return Result.c_str();
432    }
433  }
434
435  if (LastComment == Comments.begin())
436    return 0;
437  --LastComment;
438
439  // Decompose the end of the comment.
440  std::pair<FileID, unsigned> LastCommentEndDecomp
441    = SourceMgr.getDecomposedLoc(LastComment->getEnd());
442
443  // If the comment and the declaration aren't in the same file, then they
444  // aren't related.
445  if (DeclStartDecomp.first != LastCommentEndDecomp.first)
446    return 0;
447
448  // Check that we actually have a Doxygen comment.
449  if (!isDoxygenComment(SourceMgr, *LastComment))
450    return 0;
451
452  // Compute the starting line for the declaration and for the end of the
453  // comment (this is expensive).
454  unsigned DeclStartLine
455    = SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second);
456  unsigned CommentEndLine
457    = SourceMgr.getLineNumber(LastCommentEndDecomp.first,
458                              LastCommentEndDecomp.second);
459
460  // If the comment does not end on the line prior to the declaration, then
461  // the comment is not associated with the declaration at all.
462  if (CommentEndLine + 1 != DeclStartLine)
463    return 0;
464
465  // We have a comment, but there may be more comments on the previous lines.
466  // Keep looking so long as the comments are still Doxygen comments and are
467  // still adjacent.
468  unsigned ExpectedLine
469    = SourceMgr.getSpellingLineNumber(LastComment->getBegin()) - 1;
470  std::vector<SourceRange>::iterator FirstComment = LastComment;
471  while (FirstComment != Comments.begin()) {
472    // Look at the previous comment
473    --FirstComment;
474    std::pair<FileID, unsigned> Decomp
475      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
476
477    // If this previous comment is in a different file, we're done.
478    if (Decomp.first != DeclStartDecomp.first) {
479      ++FirstComment;
480      break;
481    }
482
483    // If this comment is not a Doxygen comment, we're done.
484    if (!isDoxygenComment(SourceMgr, *FirstComment)) {
485      ++FirstComment;
486      break;
487    }
488
489    // If the line number is not what we expected, we're done.
490    unsigned Line = SourceMgr.getLineNumber(Decomp.first, Decomp.second);
491    if (Line != ExpectedLine) {
492      ++FirstComment;
493      break;
494    }
495
496    // Set the next expected line number.
497    ExpectedLine
498      = SourceMgr.getSpellingLineNumber(FirstComment->getBegin()) - 1;
499  }
500
501  // The iterator range [FirstComment, LastComment] contains all of the
502  // BCPL comments that, together, are associated with this declaration.
503  // Form a single comment block string for this declaration that concatenates
504  // all of these comments.
505  std::string &Result = DeclComments[D];
506  while (FirstComment != LastComment) {
507    std::pair<FileID, unsigned> DecompStart
508      = SourceMgr.getDecomposedLoc(FirstComment->getBegin());
509    std::pair<FileID, unsigned> DecompEnd
510      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
511    Result.append(FileBufferStart + DecompStart.second,
512                  FileBufferStart + DecompEnd.second + 1);
513    ++FirstComment;
514  }
515
516  // Append the last comment line.
517  Result.append(FileBufferStart +
518                  SourceMgr.getFileOffset(LastComment->getBegin()),
519                FileBufferStart + LastCommentEndDecomp.second + 1);
520  return Result.c_str();
521}
522
523//===----------------------------------------------------------------------===//
524//                         Type Sizing and Analysis
525//===----------------------------------------------------------------------===//
526
527/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
528/// scalar floating point type.
529const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
530  const BuiltinType *BT = T->getAs<BuiltinType>();
531  assert(BT && "Not a floating point type!");
532  switch (BT->getKind()) {
533  default: assert(0 && "Not a floating point type!");
534  case BuiltinType::Float:      return Target.getFloatFormat();
535  case BuiltinType::Double:     return Target.getDoubleFormat();
536  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
537  }
538}
539
540/// getDeclAlign - Return a conservative estimate of the alignment of the
541/// specified decl.  Note that bitfields do not have a valid alignment, so
542/// this method will assert on them.
543/// If @p RefAsPointee, references are treated like their underlying type
544/// (for alignof), else they're treated like pointers (for CodeGen).
545CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) {
546  unsigned Align = Target.getCharWidth();
547
548  if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
549    Align = std::max(Align, AA->getMaxAlignment());
550
551  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
552    QualType T = VD->getType();
553    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
554      if (RefAsPointee)
555        T = RT->getPointeeType();
556      else
557        T = getPointerType(RT->getPointeeType());
558    }
559    if (!T->isIncompleteType() && !T->isFunctionType()) {
560      // Incomplete or function types default to 1.
561      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
562        T = cast<ArrayType>(T)->getElementType();
563
564      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
565    }
566  }
567
568  return CharUnits::fromQuantity(Align / Target.getCharWidth());
569}
570
571/// getTypeSize - Return the size of the specified type, in bits.  This method
572/// does not work on incomplete types.
573///
574/// FIXME: Pointers into different addr spaces could have different sizes and
575/// alignment requirements: getPointerInfo should take an AddrSpace, this
576/// should take a QualType, &c.
577std::pair<uint64_t, unsigned>
578ASTContext::getTypeInfo(const Type *T) {
579  uint64_t Width=0;
580  unsigned Align=8;
581  switch (T->getTypeClass()) {
582#define TYPE(Class, Base)
583#define ABSTRACT_TYPE(Class, Base)
584#define NON_CANONICAL_TYPE(Class, Base)
585#define DEPENDENT_TYPE(Class, Base) case Type::Class:
586#include "clang/AST/TypeNodes.def"
587    assert(false && "Should not see dependent types");
588    break;
589
590  case Type::FunctionNoProto:
591  case Type::FunctionProto:
592    // GCC extension: alignof(function) = 32 bits
593    Width = 0;
594    Align = 32;
595    break;
596
597  case Type::IncompleteArray:
598  case Type::VariableArray:
599    Width = 0;
600    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
601    break;
602
603  case Type::ConstantArray: {
604    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
605
606    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
607    Width = EltInfo.first*CAT->getSize().getZExtValue();
608    Align = EltInfo.second;
609    break;
610  }
611  case Type::ExtVector:
612  case Type::Vector: {
613    const VectorType *VT = cast<VectorType>(T);
614    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
615    Width = EltInfo.first*VT->getNumElements();
616    Align = Width;
617    // If the alignment is not a power of 2, round up to the next power of 2.
618    // This happens for non-power-of-2 length vectors.
619    if (VT->getNumElements() & (VT->getNumElements()-1)) {
620      Align = llvm::NextPowerOf2(Align);
621      Width = llvm::RoundUpToAlignment(Width, Align);
622    }
623    break;
624  }
625
626  case Type::Builtin:
627    switch (cast<BuiltinType>(T)->getKind()) {
628    default: assert(0 && "Unknown builtin type!");
629    case BuiltinType::Void:
630      // GCC extension: alignof(void) = 8 bits.
631      Width = 0;
632      Align = 8;
633      break;
634
635    case BuiltinType::Bool:
636      Width = Target.getBoolWidth();
637      Align = Target.getBoolAlign();
638      break;
639    case BuiltinType::Char_S:
640    case BuiltinType::Char_U:
641    case BuiltinType::UChar:
642    case BuiltinType::SChar:
643      Width = Target.getCharWidth();
644      Align = Target.getCharAlign();
645      break;
646    case BuiltinType::WChar:
647      Width = Target.getWCharWidth();
648      Align = Target.getWCharAlign();
649      break;
650    case BuiltinType::Char16:
651      Width = Target.getChar16Width();
652      Align = Target.getChar16Align();
653      break;
654    case BuiltinType::Char32:
655      Width = Target.getChar32Width();
656      Align = Target.getChar32Align();
657      break;
658    case BuiltinType::UShort:
659    case BuiltinType::Short:
660      Width = Target.getShortWidth();
661      Align = Target.getShortAlign();
662      break;
663    case BuiltinType::UInt:
664    case BuiltinType::Int:
665      Width = Target.getIntWidth();
666      Align = Target.getIntAlign();
667      break;
668    case BuiltinType::ULong:
669    case BuiltinType::Long:
670      Width = Target.getLongWidth();
671      Align = Target.getLongAlign();
672      break;
673    case BuiltinType::ULongLong:
674    case BuiltinType::LongLong:
675      Width = Target.getLongLongWidth();
676      Align = Target.getLongLongAlign();
677      break;
678    case BuiltinType::Int128:
679    case BuiltinType::UInt128:
680      Width = 128;
681      Align = 128; // int128_t is 128-bit aligned on all targets.
682      break;
683    case BuiltinType::Float:
684      Width = Target.getFloatWidth();
685      Align = Target.getFloatAlign();
686      break;
687    case BuiltinType::Double:
688      Width = Target.getDoubleWidth();
689      Align = Target.getDoubleAlign();
690      break;
691    case BuiltinType::LongDouble:
692      Width = Target.getLongDoubleWidth();
693      Align = Target.getLongDoubleAlign();
694      break;
695    case BuiltinType::NullPtr:
696      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
697      Align = Target.getPointerAlign(0); //   == sizeof(void*)
698      break;
699    }
700    break;
701  case Type::ObjCObjectPointer:
702    Width = Target.getPointerWidth(0);
703    Align = Target.getPointerAlign(0);
704    break;
705  case Type::BlockPointer: {
706    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
707    Width = Target.getPointerWidth(AS);
708    Align = Target.getPointerAlign(AS);
709    break;
710  }
711  case Type::LValueReference:
712  case Type::RValueReference: {
713    // alignof and sizeof should never enter this code path here, so we go
714    // the pointer route.
715    unsigned AS = cast<ReferenceType>(T)->getPointeeType().getAddressSpace();
716    Width = Target.getPointerWidth(AS);
717    Align = Target.getPointerAlign(AS);
718    break;
719  }
720  case Type::Pointer: {
721    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
722    Width = Target.getPointerWidth(AS);
723    Align = Target.getPointerAlign(AS);
724    break;
725  }
726  case Type::MemberPointer: {
727    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
728    std::pair<uint64_t, unsigned> PtrDiffInfo =
729      getTypeInfo(getPointerDiffType());
730    Width = PtrDiffInfo.first;
731    if (Pointee->isFunctionType())
732      Width *= 2;
733    Align = PtrDiffInfo.second;
734    break;
735  }
736  case Type::Complex: {
737    // Complex types have the same alignment as their elements, but twice the
738    // size.
739    std::pair<uint64_t, unsigned> EltInfo =
740      getTypeInfo(cast<ComplexType>(T)->getElementType());
741    Width = EltInfo.first*2;
742    Align = EltInfo.second;
743    break;
744  }
745  case Type::ObjCInterface: {
746    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
747    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
748    Width = Layout.getSize();
749    Align = Layout.getAlignment();
750    break;
751  }
752  case Type::Record:
753  case Type::Enum: {
754    const TagType *TT = cast<TagType>(T);
755
756    if (TT->getDecl()->isInvalidDecl()) {
757      Width = 1;
758      Align = 1;
759      break;
760    }
761
762    if (const EnumType *ET = dyn_cast<EnumType>(TT))
763      return getTypeInfo(ET->getDecl()->getIntegerType());
764
765    const RecordType *RT = cast<RecordType>(TT);
766    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
767    Width = Layout.getSize();
768    Align = Layout.getAlignment();
769    break;
770  }
771
772  case Type::SubstTemplateTypeParm:
773    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
774                       getReplacementType().getTypePtr());
775
776  case Type::Elaborated:
777    return getTypeInfo(cast<ElaboratedType>(T)->getUnderlyingType()
778                         .getTypePtr());
779
780  case Type::Typedef: {
781    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
782    if (const AlignedAttr *Aligned = Typedef->getAttr<AlignedAttr>()) {
783      Align = std::max(Aligned->getMaxAlignment(),
784                       getTypeAlign(Typedef->getUnderlyingType().getTypePtr()));
785      Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
786    } else
787      return getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
788    break;
789  }
790
791  case Type::TypeOfExpr:
792    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
793                         .getTypePtr());
794
795  case Type::TypeOf:
796    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
797
798  case Type::Decltype:
799    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
800                        .getTypePtr());
801
802  case Type::QualifiedName:
803    return getTypeInfo(cast<QualifiedNameType>(T)->getNamedType().getTypePtr());
804
805  case Type::TemplateSpecialization:
806    assert(getCanonicalType(T) != T &&
807           "Cannot request the size of a dependent type");
808    // FIXME: this is likely to be wrong once we support template
809    // aliases, since a template alias could refer to a typedef that
810    // has an __aligned__ attribute on it.
811    return getTypeInfo(getCanonicalType(T));
812  }
813
814  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
815  return std::make_pair(Width, Align);
816}
817
818/// getTypeSizeInChars - Return the size of the specified type, in characters.
819/// This method does not work on incomplete types.
820CharUnits ASTContext::getTypeSizeInChars(QualType T) {
821  return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
822}
823CharUnits ASTContext::getTypeSizeInChars(const Type *T) {
824  return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
825}
826
827/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
828/// characters. This method does not work on incomplete types.
829CharUnits ASTContext::getTypeAlignInChars(QualType T) {
830  return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
831}
832CharUnits ASTContext::getTypeAlignInChars(const Type *T) {
833  return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
834}
835
836/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
837/// type for the current target in bits.  This can be different than the ABI
838/// alignment in cases where it is beneficial for performance to overalign
839/// a data type.
840unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
841  unsigned ABIAlign = getTypeAlign(T);
842
843  // Double and long long should be naturally aligned if possible.
844  if (const ComplexType* CT = T->getAs<ComplexType>())
845    T = CT->getElementType().getTypePtr();
846  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
847      T->isSpecificBuiltinType(BuiltinType::LongLong))
848    return std::max(ABIAlign, (unsigned)getTypeSize(T));
849
850  return ABIAlign;
851}
852
853static void CollectLocalObjCIvars(ASTContext *Ctx,
854                                  const ObjCInterfaceDecl *OI,
855                                  llvm::SmallVectorImpl<FieldDecl*> &Fields) {
856  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
857       E = OI->ivar_end(); I != E; ++I) {
858    ObjCIvarDecl *IVDecl = *I;
859    if (!IVDecl->isInvalidDecl())
860      Fields.push_back(cast<FieldDecl>(IVDecl));
861  }
862}
863
864void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
865                             llvm::SmallVectorImpl<FieldDecl*> &Fields) {
866  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
867    CollectObjCIvars(SuperClass, Fields);
868  CollectLocalObjCIvars(this, OI, Fields);
869}
870
871/// ShallowCollectObjCIvars -
872/// Collect all ivars, including those synthesized, in the current class.
873///
874void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
875                                 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars,
876                                 bool CollectSynthesized) {
877  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
878         E = OI->ivar_end(); I != E; ++I) {
879     Ivars.push_back(*I);
880  }
881  if (CollectSynthesized)
882    CollectSynthesizedIvars(OI, Ivars);
883}
884
885void ASTContext::CollectProtocolSynthesizedIvars(const ObjCProtocolDecl *PD,
886                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
887  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
888       E = PD->prop_end(); I != E; ++I)
889    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
890      Ivars.push_back(Ivar);
891
892  // Also look into nested protocols.
893  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
894       E = PD->protocol_end(); P != E; ++P)
895    CollectProtocolSynthesizedIvars(*P, Ivars);
896}
897
898/// CollectSynthesizedIvars -
899/// This routine collect synthesized ivars for the designated class.
900///
901void ASTContext::CollectSynthesizedIvars(const ObjCInterfaceDecl *OI,
902                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
903  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
904       E = OI->prop_end(); I != E; ++I) {
905    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
906      Ivars.push_back(Ivar);
907  }
908  // Also look into interface's protocol list for properties declared
909  // in the protocol and whose ivars are synthesized.
910  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
911       PE = OI->protocol_end(); P != PE; ++P) {
912    ObjCProtocolDecl *PD = (*P);
913    CollectProtocolSynthesizedIvars(PD, Ivars);
914  }
915}
916
917/// CollectInheritedProtocols - Collect all protocols in current class and
918/// those inherited by it.
919void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
920                          llvm::SmallVectorImpl<ObjCProtocolDecl*> &Protocols) {
921  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
922    for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
923         PE = OI->protocol_end(); P != PE; ++P) {
924      ObjCProtocolDecl *Proto = (*P);
925      Protocols.push_back(Proto);
926      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
927           PE = Proto->protocol_end(); P != PE; ++P)
928        CollectInheritedProtocols(*P, Protocols);
929      }
930
931    // Categories of this Interface.
932    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
933         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
934      CollectInheritedProtocols(CDeclChain, Protocols);
935    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
936      while (SD) {
937        CollectInheritedProtocols(SD, Protocols);
938        SD = SD->getSuperClass();
939      }
940    return;
941  }
942  if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
943    for (ObjCInterfaceDecl::protocol_iterator P = OC->protocol_begin(),
944         PE = OC->protocol_end(); P != PE; ++P) {
945      ObjCProtocolDecl *Proto = (*P);
946      Protocols.push_back(Proto);
947      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
948           PE = Proto->protocol_end(); P != PE; ++P)
949        CollectInheritedProtocols(*P, Protocols);
950    }
951    return;
952  }
953  if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
954    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
955         PE = OP->protocol_end(); P != PE; ++P) {
956      ObjCProtocolDecl *Proto = (*P);
957      Protocols.push_back(Proto);
958      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
959           PE = Proto->protocol_end(); P != PE; ++P)
960        CollectInheritedProtocols(*P, Protocols);
961    }
962    return;
963  }
964}
965
966unsigned ASTContext::CountProtocolSynthesizedIvars(const ObjCProtocolDecl *PD) {
967  unsigned count = 0;
968  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
969       E = PD->prop_end(); I != E; ++I)
970    if ((*I)->getPropertyIvarDecl())
971      ++count;
972
973  // Also look into nested protocols.
974  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
975       E = PD->protocol_end(); P != E; ++P)
976    count += CountProtocolSynthesizedIvars(*P);
977  return count;
978}
979
980unsigned ASTContext::CountSynthesizedIvars(const ObjCInterfaceDecl *OI) {
981  unsigned count = 0;
982  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
983       E = OI->prop_end(); I != E; ++I) {
984    if ((*I)->getPropertyIvarDecl())
985      ++count;
986  }
987  // Also look into interface's protocol list for properties declared
988  // in the protocol and whose ivars are synthesized.
989  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
990       PE = OI->protocol_end(); P != PE; ++P) {
991    ObjCProtocolDecl *PD = (*P);
992    count += CountProtocolSynthesizedIvars(PD);
993  }
994  return count;
995}
996
997/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
998ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
999  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1000    I = ObjCImpls.find(D);
1001  if (I != ObjCImpls.end())
1002    return cast<ObjCImplementationDecl>(I->second);
1003  return 0;
1004}
1005/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1006ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1007  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1008    I = ObjCImpls.find(D);
1009  if (I != ObjCImpls.end())
1010    return cast<ObjCCategoryImplDecl>(I->second);
1011  return 0;
1012}
1013
1014/// \brief Set the implementation of ObjCInterfaceDecl.
1015void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1016                           ObjCImplementationDecl *ImplD) {
1017  assert(IFaceD && ImplD && "Passed null params");
1018  ObjCImpls[IFaceD] = ImplD;
1019}
1020/// \brief Set the implementation of ObjCCategoryDecl.
1021void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1022                           ObjCCategoryImplDecl *ImplD) {
1023  assert(CatD && ImplD && "Passed null params");
1024  ObjCImpls[CatD] = ImplD;
1025}
1026
1027/// \brief Allocate an uninitialized TypeSourceInfo.
1028///
1029/// The caller should initialize the memory held by TypeSourceInfo using
1030/// the TypeLoc wrappers.
1031///
1032/// \param T the type that will be the basis for type source info. This type
1033/// should refer to how the declarator was written in source code, not to
1034/// what type semantic analysis resolved the declarator to.
1035TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1036                                                 unsigned DataSize) {
1037  if (!DataSize)
1038    DataSize = TypeLoc::getFullDataSizeForType(T);
1039  else
1040    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1041           "incorrect data size provided to CreateTypeSourceInfo!");
1042
1043  TypeSourceInfo *TInfo =
1044    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1045  new (TInfo) TypeSourceInfo(T);
1046  return TInfo;
1047}
1048
1049TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1050                                                     SourceLocation L) {
1051  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1052  DI->getTypeLoc().initialize(L);
1053  return DI;
1054}
1055
1056/// getInterfaceLayoutImpl - Get or compute information about the
1057/// layout of the given interface.
1058///
1059/// \param Impl - If given, also include the layout of the interface's
1060/// implementation. This may differ by including synthesized ivars.
1061const ASTRecordLayout &
1062ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
1063                          const ObjCImplementationDecl *Impl) {
1064  assert(!D->isForwardDecl() && "Invalid interface decl!");
1065
1066  // Look up this layout, if already laid out, return what we have.
1067  ObjCContainerDecl *Key =
1068    Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D;
1069  if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
1070    return *Entry;
1071
1072  // Add in synthesized ivar count if laying out an implementation.
1073  if (Impl) {
1074    unsigned SynthCount = CountSynthesizedIvars(D);
1075    // If there aren't any sythesized ivars then reuse the interface
1076    // entry. Note we can't cache this because we simply free all
1077    // entries later; however we shouldn't look up implementations
1078    // frequently.
1079    if (SynthCount == 0)
1080      return getObjCLayout(D, 0);
1081  }
1082
1083  const ASTRecordLayout *NewEntry =
1084    ASTRecordLayoutBuilder::ComputeLayout(*this, D, Impl);
1085  ObjCLayouts[Key] = NewEntry;
1086
1087  return *NewEntry;
1088}
1089
1090const ASTRecordLayout &
1091ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
1092  return getObjCLayout(D, 0);
1093}
1094
1095const ASTRecordLayout &
1096ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
1097  return getObjCLayout(D->getClassInterface(), D);
1098}
1099
1100/// getASTRecordLayout - Get or compute information about the layout of the
1101/// specified record (struct/union/class), which indicates its size and field
1102/// position information.
1103const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
1104  D = D->getDefinition();
1105  assert(D && "Cannot get layout of forward declarations!");
1106
1107  // Look up this layout, if already laid out, return what we have.
1108  // Note that we can't save a reference to the entry because this function
1109  // is recursive.
1110  const ASTRecordLayout *Entry = ASTRecordLayouts[D];
1111  if (Entry) return *Entry;
1112
1113  const ASTRecordLayout *NewEntry =
1114    ASTRecordLayoutBuilder::ComputeLayout(*this, D);
1115  ASTRecordLayouts[D] = NewEntry;
1116
1117  return *NewEntry;
1118}
1119
1120const CXXMethodDecl *ASTContext::getKeyFunction(const CXXRecordDecl *RD) {
1121  RD = cast<CXXRecordDecl>(RD->getDefinition());
1122  assert(RD && "Cannot get key function for forward declarations!");
1123
1124  const CXXMethodDecl *&Entry = KeyFunctions[RD];
1125  if (!Entry)
1126    Entry = ASTRecordLayoutBuilder::ComputeKeyFunction(RD);
1127  else
1128    assert(Entry == ASTRecordLayoutBuilder::ComputeKeyFunction(RD) &&
1129           "Key function changed!");
1130
1131  return Entry;
1132}
1133
1134//===----------------------------------------------------------------------===//
1135//                   Type creation/memoization methods
1136//===----------------------------------------------------------------------===//
1137
1138QualType ASTContext::getExtQualType(const Type *TypeNode, Qualifiers Quals) {
1139  unsigned Fast = Quals.getFastQualifiers();
1140  Quals.removeFastQualifiers();
1141
1142  // Check if we've already instantiated this type.
1143  llvm::FoldingSetNodeID ID;
1144  ExtQuals::Profile(ID, TypeNode, Quals);
1145  void *InsertPos = 0;
1146  if (ExtQuals *EQ = ExtQualNodes.FindNodeOrInsertPos(ID, InsertPos)) {
1147    assert(EQ->getQualifiers() == Quals);
1148    QualType T = QualType(EQ, Fast);
1149    return T;
1150  }
1151
1152  ExtQuals *New = new (*this, TypeAlignment) ExtQuals(*this, TypeNode, Quals);
1153  ExtQualNodes.InsertNode(New, InsertPos);
1154  QualType T = QualType(New, Fast);
1155  return T;
1156}
1157
1158QualType ASTContext::getVolatileType(QualType T) {
1159  QualType CanT = getCanonicalType(T);
1160  if (CanT.isVolatileQualified()) return T;
1161
1162  QualifierCollector Quals;
1163  const Type *TypeNode = Quals.strip(T);
1164  Quals.addVolatile();
1165
1166  return getExtQualType(TypeNode, Quals);
1167}
1168
1169QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
1170  QualType CanT = getCanonicalType(T);
1171  if (CanT.getAddressSpace() == AddressSpace)
1172    return T;
1173
1174  // If we are composing extended qualifiers together, merge together
1175  // into one ExtQuals node.
1176  QualifierCollector Quals;
1177  const Type *TypeNode = Quals.strip(T);
1178
1179  // If this type already has an address space specified, it cannot get
1180  // another one.
1181  assert(!Quals.hasAddressSpace() &&
1182         "Type cannot be in multiple addr spaces!");
1183  Quals.addAddressSpace(AddressSpace);
1184
1185  return getExtQualType(TypeNode, Quals);
1186}
1187
1188QualType ASTContext::getObjCGCQualType(QualType T,
1189                                       Qualifiers::GC GCAttr) {
1190  QualType CanT = getCanonicalType(T);
1191  if (CanT.getObjCGCAttr() == GCAttr)
1192    return T;
1193
1194  if (T->isPointerType()) {
1195    QualType Pointee = T->getAs<PointerType>()->getPointeeType();
1196    if (Pointee->isAnyPointerType()) {
1197      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1198      return getPointerType(ResultType);
1199    }
1200  }
1201
1202  // If we are composing extended qualifiers together, merge together
1203  // into one ExtQuals node.
1204  QualifierCollector Quals;
1205  const Type *TypeNode = Quals.strip(T);
1206
1207  // If this type already has an ObjCGC specified, it cannot get
1208  // another one.
1209  assert(!Quals.hasObjCGCAttr() &&
1210         "Type cannot have multiple ObjCGCs!");
1211  Quals.addObjCGCAttr(GCAttr);
1212
1213  return getExtQualType(TypeNode, Quals);
1214}
1215
1216static QualType getNoReturnCallConvType(ASTContext& Context, QualType T,
1217                                        bool AddNoReturn,
1218                                        CallingConv CallConv) {
1219  QualType ResultType;
1220  if (const PointerType *Pointer = T->getAs<PointerType>()) {
1221    QualType Pointee = Pointer->getPointeeType();
1222    ResultType = getNoReturnCallConvType(Context, Pointee, AddNoReturn,
1223                                         CallConv);
1224    if (ResultType == Pointee)
1225      return T;
1226
1227    ResultType = Context.getPointerType(ResultType);
1228  } else if (const BlockPointerType *BlockPointer
1229                                              = T->getAs<BlockPointerType>()) {
1230    QualType Pointee = BlockPointer->getPointeeType();
1231    ResultType = getNoReturnCallConvType(Context, Pointee, AddNoReturn,
1232                                         CallConv);
1233    if (ResultType == Pointee)
1234      return T;
1235
1236    ResultType = Context.getBlockPointerType(ResultType);
1237   } else if (const FunctionType *F = T->getAs<FunctionType>()) {
1238    if (F->getNoReturnAttr() == AddNoReturn && F->getCallConv() == CallConv)
1239      return T;
1240
1241    if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(F)) {
1242      ResultType = Context.getFunctionNoProtoType(FNPT->getResultType(),
1243                                                  AddNoReturn, CallConv);
1244    } else {
1245      const FunctionProtoType *FPT = cast<FunctionProtoType>(F);
1246      ResultType
1247        = Context.getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1248                                  FPT->getNumArgs(), FPT->isVariadic(),
1249                                  FPT->getTypeQuals(),
1250                                  FPT->hasExceptionSpec(),
1251                                  FPT->hasAnyExceptionSpec(),
1252                                  FPT->getNumExceptions(),
1253                                  FPT->exception_begin(),
1254                                  AddNoReturn, CallConv);
1255    }
1256  } else
1257    return T;
1258
1259  return Context.getQualifiedType(ResultType, T.getLocalQualifiers());
1260}
1261
1262QualType ASTContext::getNoReturnType(QualType T, bool AddNoReturn) {
1263  return getNoReturnCallConvType(*this, T, AddNoReturn, T.getCallConv());
1264}
1265
1266QualType ASTContext::getCallConvType(QualType T, CallingConv CallConv) {
1267  return getNoReturnCallConvType(*this, T, T.getNoReturnAttr(), CallConv);
1268}
1269
1270/// getComplexType - Return the uniqued reference to the type for a complex
1271/// number with the specified element type.
1272QualType ASTContext::getComplexType(QualType T) {
1273  // Unique pointers, to guarantee there is only one pointer of a particular
1274  // structure.
1275  llvm::FoldingSetNodeID ID;
1276  ComplexType::Profile(ID, T);
1277
1278  void *InsertPos = 0;
1279  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1280    return QualType(CT, 0);
1281
1282  // If the pointee type isn't canonical, this won't be a canonical type either,
1283  // so fill in the canonical type field.
1284  QualType Canonical;
1285  if (!T.isCanonical()) {
1286    Canonical = getComplexType(getCanonicalType(T));
1287
1288    // Get the new insert position for the node we care about.
1289    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1290    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1291  }
1292  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1293  Types.push_back(New);
1294  ComplexTypes.InsertNode(New, InsertPos);
1295  return QualType(New, 0);
1296}
1297
1298/// getPointerType - Return the uniqued reference to the type for a pointer to
1299/// the specified type.
1300QualType ASTContext::getPointerType(QualType T) {
1301  // Unique pointers, to guarantee there is only one pointer of a particular
1302  // structure.
1303  llvm::FoldingSetNodeID ID;
1304  PointerType::Profile(ID, T);
1305
1306  void *InsertPos = 0;
1307  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1308    return QualType(PT, 0);
1309
1310  // If the pointee type isn't canonical, this won't be a canonical type either,
1311  // so fill in the canonical type field.
1312  QualType Canonical;
1313  if (!T.isCanonical()) {
1314    Canonical = getPointerType(getCanonicalType(T));
1315
1316    // Get the new insert position for the node we care about.
1317    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1318    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1319  }
1320  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1321  Types.push_back(New);
1322  PointerTypes.InsertNode(New, InsertPos);
1323  return QualType(New, 0);
1324}
1325
1326/// getBlockPointerType - Return the uniqued reference to the type for
1327/// a pointer to the specified block.
1328QualType ASTContext::getBlockPointerType(QualType T) {
1329  assert(T->isFunctionType() && "block of function types only");
1330  // Unique pointers, to guarantee there is only one block of a particular
1331  // structure.
1332  llvm::FoldingSetNodeID ID;
1333  BlockPointerType::Profile(ID, T);
1334
1335  void *InsertPos = 0;
1336  if (BlockPointerType *PT =
1337        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1338    return QualType(PT, 0);
1339
1340  // If the block pointee type isn't canonical, this won't be a canonical
1341  // type either so fill in the canonical type field.
1342  QualType Canonical;
1343  if (!T.isCanonical()) {
1344    Canonical = getBlockPointerType(getCanonicalType(T));
1345
1346    // Get the new insert position for the node we care about.
1347    BlockPointerType *NewIP =
1348      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1349    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1350  }
1351  BlockPointerType *New
1352    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1353  Types.push_back(New);
1354  BlockPointerTypes.InsertNode(New, InsertPos);
1355  return QualType(New, 0);
1356}
1357
1358/// getLValueReferenceType - Return the uniqued reference to the type for an
1359/// lvalue reference to the specified type.
1360QualType ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) {
1361  // Unique pointers, to guarantee there is only one pointer of a particular
1362  // structure.
1363  llvm::FoldingSetNodeID ID;
1364  ReferenceType::Profile(ID, T, SpelledAsLValue);
1365
1366  void *InsertPos = 0;
1367  if (LValueReferenceType *RT =
1368        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1369    return QualType(RT, 0);
1370
1371  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1372
1373  // If the referencee type isn't canonical, this won't be a canonical type
1374  // either, so fill in the canonical type field.
1375  QualType Canonical;
1376  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1377    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1378    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1379
1380    // Get the new insert position for the node we care about.
1381    LValueReferenceType *NewIP =
1382      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1383    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1384  }
1385
1386  LValueReferenceType *New
1387    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1388                                                     SpelledAsLValue);
1389  Types.push_back(New);
1390  LValueReferenceTypes.InsertNode(New, InsertPos);
1391
1392  return QualType(New, 0);
1393}
1394
1395/// getRValueReferenceType - Return the uniqued reference to the type for an
1396/// rvalue reference to the specified type.
1397QualType ASTContext::getRValueReferenceType(QualType T) {
1398  // Unique pointers, to guarantee there is only one pointer of a particular
1399  // structure.
1400  llvm::FoldingSetNodeID ID;
1401  ReferenceType::Profile(ID, T, false);
1402
1403  void *InsertPos = 0;
1404  if (RValueReferenceType *RT =
1405        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1406    return QualType(RT, 0);
1407
1408  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1409
1410  // If the referencee type isn't canonical, this won't be a canonical type
1411  // either, so fill in the canonical type field.
1412  QualType Canonical;
1413  if (InnerRef || !T.isCanonical()) {
1414    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1415    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1416
1417    // Get the new insert position for the node we care about.
1418    RValueReferenceType *NewIP =
1419      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1420    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1421  }
1422
1423  RValueReferenceType *New
1424    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1425  Types.push_back(New);
1426  RValueReferenceTypes.InsertNode(New, InsertPos);
1427  return QualType(New, 0);
1428}
1429
1430/// getMemberPointerType - Return the uniqued reference to the type for a
1431/// member pointer to the specified type, in the specified class.
1432QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) {
1433  // Unique pointers, to guarantee there is only one pointer of a particular
1434  // structure.
1435  llvm::FoldingSetNodeID ID;
1436  MemberPointerType::Profile(ID, T, Cls);
1437
1438  void *InsertPos = 0;
1439  if (MemberPointerType *PT =
1440      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1441    return QualType(PT, 0);
1442
1443  // If the pointee or class type isn't canonical, this won't be a canonical
1444  // type either, so fill in the canonical type field.
1445  QualType Canonical;
1446  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1447    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1448
1449    // Get the new insert position for the node we care about.
1450    MemberPointerType *NewIP =
1451      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1452    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1453  }
1454  MemberPointerType *New
1455    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1456  Types.push_back(New);
1457  MemberPointerTypes.InsertNode(New, InsertPos);
1458  return QualType(New, 0);
1459}
1460
1461/// getConstantArrayType - Return the unique reference to the type for an
1462/// array of the specified element type.
1463QualType ASTContext::getConstantArrayType(QualType EltTy,
1464                                          const llvm::APInt &ArySizeIn,
1465                                          ArrayType::ArraySizeModifier ASM,
1466                                          unsigned EltTypeQuals) {
1467  assert((EltTy->isDependentType() ||
1468          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1469         "Constant array of VLAs is illegal!");
1470
1471  // Convert the array size into a canonical width matching the pointer size for
1472  // the target.
1473  llvm::APInt ArySize(ArySizeIn);
1474  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1475
1476  llvm::FoldingSetNodeID ID;
1477  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1478
1479  void *InsertPos = 0;
1480  if (ConstantArrayType *ATP =
1481      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1482    return QualType(ATP, 0);
1483
1484  // If the element type isn't canonical, this won't be a canonical type either,
1485  // so fill in the canonical type field.
1486  QualType Canonical;
1487  if (!EltTy.isCanonical()) {
1488    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1489                                     ASM, EltTypeQuals);
1490    // Get the new insert position for the node we care about.
1491    ConstantArrayType *NewIP =
1492      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1493    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1494  }
1495
1496  ConstantArrayType *New = new(*this,TypeAlignment)
1497    ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1498  ConstantArrayTypes.InsertNode(New, InsertPos);
1499  Types.push_back(New);
1500  return QualType(New, 0);
1501}
1502
1503/// getVariableArrayType - Returns a non-unique reference to the type for a
1504/// variable array of the specified element type.
1505QualType ASTContext::getVariableArrayType(QualType EltTy,
1506                                          Expr *NumElts,
1507                                          ArrayType::ArraySizeModifier ASM,
1508                                          unsigned EltTypeQuals,
1509                                          SourceRange Brackets) {
1510  // Since we don't unique expressions, it isn't possible to unique VLA's
1511  // that have an expression provided for their size.
1512
1513  VariableArrayType *New = new(*this, TypeAlignment)
1514    VariableArrayType(EltTy, QualType(), NumElts, ASM, EltTypeQuals, Brackets);
1515
1516  VariableArrayTypes.push_back(New);
1517  Types.push_back(New);
1518  return QualType(New, 0);
1519}
1520
1521/// getDependentSizedArrayType - Returns a non-unique reference to
1522/// the type for a dependently-sized array of the specified element
1523/// type.
1524QualType ASTContext::getDependentSizedArrayType(QualType EltTy,
1525                                                Expr *NumElts,
1526                                                ArrayType::ArraySizeModifier ASM,
1527                                                unsigned EltTypeQuals,
1528                                                SourceRange Brackets) {
1529  assert((!NumElts || NumElts->isTypeDependent() ||
1530          NumElts->isValueDependent()) &&
1531         "Size must be type- or value-dependent!");
1532
1533  void *InsertPos = 0;
1534  DependentSizedArrayType *Canon = 0;
1535  llvm::FoldingSetNodeID ID;
1536
1537  if (NumElts) {
1538    // Dependently-sized array types that do not have a specified
1539    // number of elements will have their sizes deduced from an
1540    // initializer.
1541    DependentSizedArrayType::Profile(ID, *this, getCanonicalType(EltTy), ASM,
1542                                     EltTypeQuals, NumElts);
1543
1544    Canon = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1545  }
1546
1547  DependentSizedArrayType *New;
1548  if (Canon) {
1549    // We already have a canonical version of this array type; use it as
1550    // the canonical type for a newly-built type.
1551    New = new (*this, TypeAlignment)
1552      DependentSizedArrayType(*this, EltTy, QualType(Canon, 0),
1553                              NumElts, ASM, EltTypeQuals, Brackets);
1554  } else {
1555    QualType CanonEltTy = getCanonicalType(EltTy);
1556    if (CanonEltTy == EltTy) {
1557      New = new (*this, TypeAlignment)
1558        DependentSizedArrayType(*this, EltTy, QualType(),
1559                                NumElts, ASM, EltTypeQuals, Brackets);
1560
1561      if (NumElts) {
1562        DependentSizedArrayType *CanonCheck
1563          = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1564        assert(!CanonCheck && "Dependent-sized canonical array type broken");
1565        (void)CanonCheck;
1566        DependentSizedArrayTypes.InsertNode(New, InsertPos);
1567      }
1568    } else {
1569      QualType Canon = getDependentSizedArrayType(CanonEltTy, NumElts,
1570                                                  ASM, EltTypeQuals,
1571                                                  SourceRange());
1572      New = new (*this, TypeAlignment)
1573        DependentSizedArrayType(*this, EltTy, Canon,
1574                                NumElts, ASM, EltTypeQuals, Brackets);
1575    }
1576  }
1577
1578  Types.push_back(New);
1579  return QualType(New, 0);
1580}
1581
1582QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1583                                            ArrayType::ArraySizeModifier ASM,
1584                                            unsigned EltTypeQuals) {
1585  llvm::FoldingSetNodeID ID;
1586  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1587
1588  void *InsertPos = 0;
1589  if (IncompleteArrayType *ATP =
1590       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1591    return QualType(ATP, 0);
1592
1593  // If the element type isn't canonical, this won't be a canonical type
1594  // either, so fill in the canonical type field.
1595  QualType Canonical;
1596
1597  if (!EltTy.isCanonical()) {
1598    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1599                                       ASM, EltTypeQuals);
1600
1601    // Get the new insert position for the node we care about.
1602    IncompleteArrayType *NewIP =
1603      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1604    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1605  }
1606
1607  IncompleteArrayType *New = new (*this, TypeAlignment)
1608    IncompleteArrayType(EltTy, Canonical, ASM, EltTypeQuals);
1609
1610  IncompleteArrayTypes.InsertNode(New, InsertPos);
1611  Types.push_back(New);
1612  return QualType(New, 0);
1613}
1614
1615/// getVectorType - Return the unique reference to a vector type of
1616/// the specified element type and size. VectorType must be a built-in type.
1617QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
1618                                   bool IsAltiVec, bool IsPixel) {
1619  BuiltinType *baseType;
1620
1621  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1622  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1623
1624  // Check if we've already instantiated a vector of this type.
1625  llvm::FoldingSetNodeID ID;
1626  VectorType::Profile(ID, vecType, NumElts, Type::Vector,
1627    IsAltiVec, IsPixel);
1628  void *InsertPos = 0;
1629  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1630    return QualType(VTP, 0);
1631
1632  // If the element type isn't canonical, this won't be a canonical type either,
1633  // so fill in the canonical type field.
1634  QualType Canonical;
1635  if (!vecType.isCanonical() || IsAltiVec || IsPixel) {
1636    Canonical = getVectorType(getCanonicalType(vecType),
1637      NumElts, false, false);
1638
1639    // Get the new insert position for the node we care about.
1640    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1641    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1642  }
1643  VectorType *New = new (*this, TypeAlignment)
1644    VectorType(vecType, NumElts, Canonical, IsAltiVec, IsPixel);
1645  VectorTypes.InsertNode(New, InsertPos);
1646  Types.push_back(New);
1647  return QualType(New, 0);
1648}
1649
1650/// getExtVectorType - Return the unique reference to an extended vector type of
1651/// the specified element type and size. VectorType must be a built-in type.
1652QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1653  BuiltinType *baseType;
1654
1655  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1656  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1657
1658  // Check if we've already instantiated a vector of this type.
1659  llvm::FoldingSetNodeID ID;
1660  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector, false, false);
1661  void *InsertPos = 0;
1662  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1663    return QualType(VTP, 0);
1664
1665  // If the element type isn't canonical, this won't be a canonical type either,
1666  // so fill in the canonical type field.
1667  QualType Canonical;
1668  if (!vecType.isCanonical()) {
1669    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1670
1671    // Get the new insert position for the node we care about.
1672    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1673    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1674  }
1675  ExtVectorType *New = new (*this, TypeAlignment)
1676    ExtVectorType(vecType, NumElts, Canonical);
1677  VectorTypes.InsertNode(New, InsertPos);
1678  Types.push_back(New);
1679  return QualType(New, 0);
1680}
1681
1682QualType ASTContext::getDependentSizedExtVectorType(QualType vecType,
1683                                                    Expr *SizeExpr,
1684                                                    SourceLocation AttrLoc) {
1685  llvm::FoldingSetNodeID ID;
1686  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1687                                       SizeExpr);
1688
1689  void *InsertPos = 0;
1690  DependentSizedExtVectorType *Canon
1691    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1692  DependentSizedExtVectorType *New;
1693  if (Canon) {
1694    // We already have a canonical version of this array type; use it as
1695    // the canonical type for a newly-built type.
1696    New = new (*this, TypeAlignment)
1697      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
1698                                  SizeExpr, AttrLoc);
1699  } else {
1700    QualType CanonVecTy = getCanonicalType(vecType);
1701    if (CanonVecTy == vecType) {
1702      New = new (*this, TypeAlignment)
1703        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
1704                                    AttrLoc);
1705
1706      DependentSizedExtVectorType *CanonCheck
1707        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1708      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
1709      (void)CanonCheck;
1710      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1711    } else {
1712      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1713                                                      SourceLocation());
1714      New = new (*this, TypeAlignment)
1715        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
1716    }
1717  }
1718
1719  Types.push_back(New);
1720  return QualType(New, 0);
1721}
1722
1723/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1724///
1725QualType ASTContext::getFunctionNoProtoType(QualType ResultTy, bool NoReturn,
1726                                            CallingConv CallConv) {
1727  // Unique functions, to guarantee there is only one function of a particular
1728  // structure.
1729  llvm::FoldingSetNodeID ID;
1730  FunctionNoProtoType::Profile(ID, ResultTy, NoReturn, CallConv);
1731
1732  void *InsertPos = 0;
1733  if (FunctionNoProtoType *FT =
1734        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1735    return QualType(FT, 0);
1736
1737  QualType Canonical;
1738  if (!ResultTy.isCanonical() ||
1739      getCanonicalCallConv(CallConv) != CallConv) {
1740    Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy), NoReturn,
1741                                       getCanonicalCallConv(CallConv));
1742
1743    // Get the new insert position for the node we care about.
1744    FunctionNoProtoType *NewIP =
1745      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1746    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1747  }
1748
1749  FunctionNoProtoType *New = new (*this, TypeAlignment)
1750    FunctionNoProtoType(ResultTy, Canonical, NoReturn, CallConv);
1751  Types.push_back(New);
1752  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1753  return QualType(New, 0);
1754}
1755
1756/// getFunctionType - Return a normal function type with a typed argument
1757/// list.  isVariadic indicates whether the argument list includes '...'.
1758QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1759                                     unsigned NumArgs, bool isVariadic,
1760                                     unsigned TypeQuals, bool hasExceptionSpec,
1761                                     bool hasAnyExceptionSpec, unsigned NumExs,
1762                                     const QualType *ExArray, bool NoReturn,
1763                                     CallingConv CallConv) {
1764  // Unique functions, to guarantee there is only one function of a particular
1765  // structure.
1766  llvm::FoldingSetNodeID ID;
1767  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1768                             TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1769                             NumExs, ExArray, NoReturn, CallConv);
1770
1771  void *InsertPos = 0;
1772  if (FunctionProtoType *FTP =
1773        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1774    return QualType(FTP, 0);
1775
1776  // Determine whether the type being created is already canonical or not.
1777  bool isCanonical = !hasExceptionSpec && ResultTy.isCanonical();
1778  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1779    if (!ArgArray[i].isCanonicalAsParam())
1780      isCanonical = false;
1781
1782  // If this type isn't canonical, get the canonical version of it.
1783  // The exception spec is not part of the canonical type.
1784  QualType Canonical;
1785  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
1786    llvm::SmallVector<QualType, 16> CanonicalArgs;
1787    CanonicalArgs.reserve(NumArgs);
1788    for (unsigned i = 0; i != NumArgs; ++i)
1789      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
1790
1791    Canonical = getFunctionType(getCanonicalType(ResultTy),
1792                                CanonicalArgs.data(), NumArgs,
1793                                isVariadic, TypeQuals, false,
1794                                false, 0, 0, NoReturn,
1795                                getCanonicalCallConv(CallConv));
1796
1797    // Get the new insert position for the node we care about.
1798    FunctionProtoType *NewIP =
1799      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1800    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1801  }
1802
1803  // FunctionProtoType objects are allocated with extra bytes after them
1804  // for two variable size arrays (for parameter and exception types) at the
1805  // end of them.
1806  FunctionProtoType *FTP =
1807    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1808                                 NumArgs*sizeof(QualType) +
1809                                 NumExs*sizeof(QualType), TypeAlignment);
1810  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1811                              TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1812                              ExArray, NumExs, Canonical, NoReturn, CallConv);
1813  Types.push_back(FTP);
1814  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1815  return QualType(FTP, 0);
1816}
1817
1818/// getTypeDeclType - Return the unique reference to the type for the
1819/// specified type declaration.
1820QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) {
1821  assert(Decl && "Passed null for Decl param");
1822  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1823
1824  if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1825    return getTypedefType(Typedef);
1826  else if (isa<TemplateTypeParmDecl>(Decl)) {
1827    assert(false && "Template type parameter types are always available.");
1828  } else if (ObjCInterfaceDecl *ObjCInterface
1829               = dyn_cast<ObjCInterfaceDecl>(Decl))
1830    return getObjCInterfaceType(ObjCInterface);
1831
1832  if (RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1833    if (PrevDecl)
1834      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1835    else
1836      Decl->TypeForDecl = new (*this, TypeAlignment) RecordType(Record);
1837  } else if (EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1838    if (PrevDecl)
1839      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1840    else
1841      Decl->TypeForDecl = new (*this, TypeAlignment) EnumType(Enum);
1842  } else if (UnresolvedUsingTypenameDecl *Using =
1843               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
1844    Decl->TypeForDecl = new (*this, TypeAlignment) UnresolvedUsingType(Using);
1845  } else
1846    assert(false && "TypeDecl without a type?");
1847
1848  if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
1849  return QualType(Decl->TypeForDecl, 0);
1850}
1851
1852/// getTypedefType - Return the unique reference to the type for the
1853/// specified typename decl.
1854QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
1855  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1856
1857  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1858  Decl->TypeForDecl = new(*this, TypeAlignment)
1859    TypedefType(Type::Typedef, Decl, Canonical);
1860  Types.push_back(Decl->TypeForDecl);
1861  return QualType(Decl->TypeForDecl, 0);
1862}
1863
1864/// \brief Retrieve a substitution-result type.
1865QualType
1866ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
1867                                         QualType Replacement) {
1868  assert(Replacement.isCanonical()
1869         && "replacement types must always be canonical");
1870
1871  llvm::FoldingSetNodeID ID;
1872  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
1873  void *InsertPos = 0;
1874  SubstTemplateTypeParmType *SubstParm
1875    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1876
1877  if (!SubstParm) {
1878    SubstParm = new (*this, TypeAlignment)
1879      SubstTemplateTypeParmType(Parm, Replacement);
1880    Types.push_back(SubstParm);
1881    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
1882  }
1883
1884  return QualType(SubstParm, 0);
1885}
1886
1887/// \brief Retrieve the template type parameter type for a template
1888/// parameter or parameter pack with the given depth, index, and (optionally)
1889/// name.
1890QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1891                                             bool ParameterPack,
1892                                             IdentifierInfo *Name) {
1893  llvm::FoldingSetNodeID ID;
1894  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
1895  void *InsertPos = 0;
1896  TemplateTypeParmType *TypeParm
1897    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1898
1899  if (TypeParm)
1900    return QualType(TypeParm, 0);
1901
1902  if (Name) {
1903    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
1904    TypeParm = new (*this, TypeAlignment)
1905      TemplateTypeParmType(Depth, Index, ParameterPack, Name, Canon);
1906
1907    TemplateTypeParmType *TypeCheck
1908      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1909    assert(!TypeCheck && "Template type parameter canonical type broken");
1910    (void)TypeCheck;
1911  } else
1912    TypeParm = new (*this, TypeAlignment)
1913      TemplateTypeParmType(Depth, Index, ParameterPack);
1914
1915  Types.push_back(TypeParm);
1916  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1917
1918  return QualType(TypeParm, 0);
1919}
1920
1921QualType
1922ASTContext::getTemplateSpecializationType(TemplateName Template,
1923                                          const TemplateArgumentListInfo &Args,
1924                                          QualType Canon) {
1925  unsigned NumArgs = Args.size();
1926
1927  llvm::SmallVector<TemplateArgument, 4> ArgVec;
1928  ArgVec.reserve(NumArgs);
1929  for (unsigned i = 0; i != NumArgs; ++i)
1930    ArgVec.push_back(Args[i].getArgument());
1931
1932  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs, Canon);
1933}
1934
1935QualType
1936ASTContext::getTemplateSpecializationType(TemplateName Template,
1937                                          const TemplateArgument *Args,
1938                                          unsigned NumArgs,
1939                                          QualType Canon) {
1940  if (!Canon.isNull())
1941    Canon = getCanonicalType(Canon);
1942  else {
1943    // Build the canonical template specialization type.
1944    TemplateName CanonTemplate = getCanonicalTemplateName(Template);
1945    llvm::SmallVector<TemplateArgument, 4> CanonArgs;
1946    CanonArgs.reserve(NumArgs);
1947    for (unsigned I = 0; I != NumArgs; ++I)
1948      CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
1949
1950    // Determine whether this canonical template specialization type already
1951    // exists.
1952    llvm::FoldingSetNodeID ID;
1953    TemplateSpecializationType::Profile(ID, CanonTemplate,
1954                                        CanonArgs.data(), NumArgs, *this);
1955
1956    void *InsertPos = 0;
1957    TemplateSpecializationType *Spec
1958      = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1959
1960    if (!Spec) {
1961      // Allocate a new canonical template specialization type.
1962      void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1963                            sizeof(TemplateArgument) * NumArgs),
1964                           TypeAlignment);
1965      Spec = new (Mem) TemplateSpecializationType(*this, CanonTemplate,
1966                                                  CanonArgs.data(), NumArgs,
1967                                                  Canon);
1968      Types.push_back(Spec);
1969      TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1970    }
1971
1972    if (Canon.isNull())
1973      Canon = QualType(Spec, 0);
1974    assert(Canon->isDependentType() &&
1975           "Non-dependent template-id type must have a canonical type");
1976  }
1977
1978  // Allocate the (non-canonical) template specialization type, but don't
1979  // try to unique it: these types typically have location information that
1980  // we don't unique and don't want to lose.
1981  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1982                        sizeof(TemplateArgument) * NumArgs),
1983                       TypeAlignment);
1984  TemplateSpecializationType *Spec
1985    = new (Mem) TemplateSpecializationType(*this, Template, Args, NumArgs,
1986                                           Canon);
1987
1988  Types.push_back(Spec);
1989  return QualType(Spec, 0);
1990}
1991
1992QualType
1993ASTContext::getQualifiedNameType(NestedNameSpecifier *NNS,
1994                                 QualType NamedType) {
1995  llvm::FoldingSetNodeID ID;
1996  QualifiedNameType::Profile(ID, NNS, NamedType);
1997
1998  void *InsertPos = 0;
1999  QualifiedNameType *T
2000    = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2001  if (T)
2002    return QualType(T, 0);
2003
2004  QualType Canon = NamedType;
2005  if (!Canon.isCanonical()) {
2006    Canon = getCanonicalType(NamedType);
2007    QualifiedNameType *CheckT
2008      = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2009    assert(!CheckT && "Qualified name canonical type broken");
2010    (void)CheckT;
2011  }
2012
2013  T = new (*this) QualifiedNameType(NNS, NamedType, Canon);
2014  Types.push_back(T);
2015  QualifiedNameTypes.InsertNode(T, InsertPos);
2016  return QualType(T, 0);
2017}
2018
2019QualType ASTContext::getTypenameType(NestedNameSpecifier *NNS,
2020                                     const IdentifierInfo *Name,
2021                                     QualType Canon) {
2022  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2023
2024  if (Canon.isNull()) {
2025    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2026    if (CanonNNS != NNS)
2027      Canon = getTypenameType(CanonNNS, Name);
2028  }
2029
2030  llvm::FoldingSetNodeID ID;
2031  TypenameType::Profile(ID, NNS, Name);
2032
2033  void *InsertPos = 0;
2034  TypenameType *T
2035    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
2036  if (T)
2037    return QualType(T, 0);
2038
2039  T = new (*this) TypenameType(NNS, Name, Canon);
2040  Types.push_back(T);
2041  TypenameTypes.InsertNode(T, InsertPos);
2042  return QualType(T, 0);
2043}
2044
2045QualType
2046ASTContext::getTypenameType(NestedNameSpecifier *NNS,
2047                            const TemplateSpecializationType *TemplateId,
2048                            QualType Canon) {
2049  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2050
2051  llvm::FoldingSetNodeID ID;
2052  TypenameType::Profile(ID, NNS, TemplateId);
2053
2054  void *InsertPos = 0;
2055  TypenameType *T
2056    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
2057  if (T)
2058    return QualType(T, 0);
2059
2060  if (Canon.isNull()) {
2061    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2062    QualType CanonType = getCanonicalType(QualType(TemplateId, 0));
2063    if (CanonNNS != NNS || CanonType != QualType(TemplateId, 0)) {
2064      const TemplateSpecializationType *CanonTemplateId
2065        = CanonType->getAs<TemplateSpecializationType>();
2066      assert(CanonTemplateId &&
2067             "Canonical type must also be a template specialization type");
2068      Canon = getTypenameType(CanonNNS, CanonTemplateId);
2069    }
2070
2071    TypenameType *CheckT
2072      = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
2073    assert(!CheckT && "Typename canonical type is broken"); (void)CheckT;
2074  }
2075
2076  T = new (*this) TypenameType(NNS, TemplateId, Canon);
2077  Types.push_back(T);
2078  TypenameTypes.InsertNode(T, InsertPos);
2079  return QualType(T, 0);
2080}
2081
2082QualType
2083ASTContext::getElaboratedType(QualType UnderlyingType,
2084                              ElaboratedType::TagKind Tag) {
2085  llvm::FoldingSetNodeID ID;
2086  ElaboratedType::Profile(ID, UnderlyingType, Tag);
2087
2088  void *InsertPos = 0;
2089  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2090  if (T)
2091    return QualType(T, 0);
2092
2093  QualType Canon = UnderlyingType;
2094  if (!Canon.isCanonical()) {
2095    Canon = getCanonicalType(Canon);
2096    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2097    assert(!CheckT && "Elaborated canonical type is broken"); (void)CheckT;
2098  }
2099
2100  T = new (*this) ElaboratedType(UnderlyingType, Tag, Canon);
2101  Types.push_back(T);
2102  ElaboratedTypes.InsertNode(T, InsertPos);
2103  return QualType(T, 0);
2104}
2105
2106/// CmpProtocolNames - Comparison predicate for sorting protocols
2107/// alphabetically.
2108static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2109                            const ObjCProtocolDecl *RHS) {
2110  return LHS->getDeclName() < RHS->getDeclName();
2111}
2112
2113static bool areSortedAndUniqued(ObjCProtocolDecl **Protocols,
2114                                unsigned NumProtocols) {
2115  if (NumProtocols == 0) return true;
2116
2117  for (unsigned i = 1; i != NumProtocols; ++i)
2118    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
2119      return false;
2120  return true;
2121}
2122
2123static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2124                                   unsigned &NumProtocols) {
2125  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2126
2127  // Sort protocols, keyed by name.
2128  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2129
2130  // Remove duplicates.
2131  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2132  NumProtocols = ProtocolsEnd-Protocols;
2133}
2134
2135/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2136/// the given interface decl and the conforming protocol list.
2137QualType ASTContext::getObjCObjectPointerType(QualType InterfaceT,
2138                                              ObjCProtocolDecl **Protocols,
2139                                              unsigned NumProtocols) {
2140  llvm::FoldingSetNodeID ID;
2141  ObjCObjectPointerType::Profile(ID, InterfaceT, Protocols, NumProtocols);
2142
2143  void *InsertPos = 0;
2144  if (ObjCObjectPointerType *QT =
2145              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2146    return QualType(QT, 0);
2147
2148  // Sort the protocol list alphabetically to canonicalize it.
2149  QualType Canonical;
2150  if (!InterfaceT.isCanonical() ||
2151      !areSortedAndUniqued(Protocols, NumProtocols)) {
2152    if (!areSortedAndUniqued(Protocols, NumProtocols)) {
2153      llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(NumProtocols);
2154      unsigned UniqueCount = NumProtocols;
2155
2156      std::copy(Protocols, Protocols + NumProtocols, Sorted.begin());
2157      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2158
2159      Canonical = getObjCObjectPointerType(getCanonicalType(InterfaceT),
2160                                           &Sorted[0], UniqueCount);
2161    } else {
2162      Canonical = getObjCObjectPointerType(getCanonicalType(InterfaceT),
2163                                           Protocols, NumProtocols);
2164    }
2165
2166    // Regenerate InsertPos.
2167    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2168  }
2169
2170  // No match.
2171  unsigned Size = sizeof(ObjCObjectPointerType)
2172                + NumProtocols * sizeof(ObjCProtocolDecl *);
2173  void *Mem = Allocate(Size, TypeAlignment);
2174  ObjCObjectPointerType *QType = new (Mem) ObjCObjectPointerType(Canonical,
2175                                                                 InterfaceT,
2176                                                                 Protocols,
2177                                                                 NumProtocols);
2178
2179  Types.push_back(QType);
2180  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2181  return QualType(QType, 0);
2182}
2183
2184/// getObjCInterfaceType - Return the unique reference to the type for the
2185/// specified ObjC interface decl. The list of protocols is optional.
2186QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
2187                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
2188  llvm::FoldingSetNodeID ID;
2189  ObjCInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
2190
2191  void *InsertPos = 0;
2192  if (ObjCInterfaceType *QT =
2193      ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
2194    return QualType(QT, 0);
2195
2196  // Sort the protocol list alphabetically to canonicalize it.
2197  QualType Canonical;
2198  if (NumProtocols && !areSortedAndUniqued(Protocols, NumProtocols)) {
2199    llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(NumProtocols);
2200    std::copy(Protocols, Protocols + NumProtocols, Sorted.begin());
2201
2202    unsigned UniqueCount = NumProtocols;
2203    SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2204
2205    Canonical = getObjCInterfaceType(Decl, &Sorted[0], UniqueCount);
2206
2207    ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos);
2208  }
2209
2210  unsigned Size = sizeof(ObjCInterfaceType)
2211    + NumProtocols * sizeof(ObjCProtocolDecl *);
2212  void *Mem = Allocate(Size, TypeAlignment);
2213  ObjCInterfaceType *QType = new (Mem) ObjCInterfaceType(Canonical,
2214                                        const_cast<ObjCInterfaceDecl*>(Decl),
2215                                                         Protocols,
2216                                                         NumProtocols);
2217
2218  Types.push_back(QType);
2219  ObjCInterfaceTypes.InsertNode(QType, InsertPos);
2220  return QualType(QType, 0);
2221}
2222
2223/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2224/// TypeOfExprType AST's (since expression's are never shared). For example,
2225/// multiple declarations that refer to "typeof(x)" all contain different
2226/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2227/// on canonical type's (which are always unique).
2228QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
2229  TypeOfExprType *toe;
2230  if (tofExpr->isTypeDependent()) {
2231    llvm::FoldingSetNodeID ID;
2232    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2233
2234    void *InsertPos = 0;
2235    DependentTypeOfExprType *Canon
2236      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2237    if (Canon) {
2238      // We already have a "canonical" version of an identical, dependent
2239      // typeof(expr) type. Use that as our canonical type.
2240      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2241                                          QualType((TypeOfExprType*)Canon, 0));
2242    }
2243    else {
2244      // Build a new, canonical typeof(expr) type.
2245      Canon
2246        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2247      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2248      toe = Canon;
2249    }
2250  } else {
2251    QualType Canonical = getCanonicalType(tofExpr->getType());
2252    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2253  }
2254  Types.push_back(toe);
2255  return QualType(toe, 0);
2256}
2257
2258/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2259/// TypeOfType AST's. The only motivation to unique these nodes would be
2260/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2261/// an issue. This doesn't effect the type checker, since it operates
2262/// on canonical type's (which are always unique).
2263QualType ASTContext::getTypeOfType(QualType tofType) {
2264  QualType Canonical = getCanonicalType(tofType);
2265  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2266  Types.push_back(tot);
2267  return QualType(tot, 0);
2268}
2269
2270/// getDecltypeForExpr - Given an expr, will return the decltype for that
2271/// expression, according to the rules in C++0x [dcl.type.simple]p4
2272static QualType getDecltypeForExpr(const Expr *e, ASTContext &Context) {
2273  if (e->isTypeDependent())
2274    return Context.DependentTy;
2275
2276  // If e is an id expression or a class member access, decltype(e) is defined
2277  // as the type of the entity named by e.
2278  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2279    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2280      return VD->getType();
2281  }
2282  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2283    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2284      return FD->getType();
2285  }
2286  // If e is a function call or an invocation of an overloaded operator,
2287  // (parentheses around e are ignored), decltype(e) is defined as the
2288  // return type of that function.
2289  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2290    return CE->getCallReturnType();
2291
2292  QualType T = e->getType();
2293
2294  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2295  // defined as T&, otherwise decltype(e) is defined as T.
2296  if (e->isLvalue(Context) == Expr::LV_Valid)
2297    T = Context.getLValueReferenceType(T);
2298
2299  return T;
2300}
2301
2302/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2303/// DecltypeType AST's. The only motivation to unique these nodes would be
2304/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2305/// an issue. This doesn't effect the type checker, since it operates
2306/// on canonical type's (which are always unique).
2307QualType ASTContext::getDecltypeType(Expr *e) {
2308  DecltypeType *dt;
2309  if (e->isTypeDependent()) {
2310    llvm::FoldingSetNodeID ID;
2311    DependentDecltypeType::Profile(ID, *this, e);
2312
2313    void *InsertPos = 0;
2314    DependentDecltypeType *Canon
2315      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2316    if (Canon) {
2317      // We already have a "canonical" version of an equivalent, dependent
2318      // decltype type. Use that as our canonical type.
2319      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2320                                       QualType((DecltypeType*)Canon, 0));
2321    }
2322    else {
2323      // Build a new, canonical typeof(expr) type.
2324      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2325      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2326      dt = Canon;
2327    }
2328  } else {
2329    QualType T = getDecltypeForExpr(e, *this);
2330    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2331  }
2332  Types.push_back(dt);
2333  return QualType(dt, 0);
2334}
2335
2336/// getTagDeclType - Return the unique reference to the type for the
2337/// specified TagDecl (struct/union/class/enum) decl.
2338QualType ASTContext::getTagDeclType(const TagDecl *Decl) {
2339  assert (Decl);
2340  // FIXME: What is the design on getTagDeclType when it requires casting
2341  // away const?  mutable?
2342  return getTypeDeclType(const_cast<TagDecl*>(Decl));
2343}
2344
2345/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2346/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2347/// needs to agree with the definition in <stddef.h>.
2348CanQualType ASTContext::getSizeType() const {
2349  return getFromTargetType(Target.getSizeType());
2350}
2351
2352/// getSignedWCharType - Return the type of "signed wchar_t".
2353/// Used when in C++, as a GCC extension.
2354QualType ASTContext::getSignedWCharType() const {
2355  // FIXME: derive from "Target" ?
2356  return WCharTy;
2357}
2358
2359/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2360/// Used when in C++, as a GCC extension.
2361QualType ASTContext::getUnsignedWCharType() const {
2362  // FIXME: derive from "Target" ?
2363  return UnsignedIntTy;
2364}
2365
2366/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2367/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2368QualType ASTContext::getPointerDiffType() const {
2369  return getFromTargetType(Target.getPtrDiffType(0));
2370}
2371
2372//===----------------------------------------------------------------------===//
2373//                              Type Operators
2374//===----------------------------------------------------------------------===//
2375
2376CanQualType ASTContext::getCanonicalParamType(QualType T) {
2377  // Push qualifiers into arrays, and then discard any remaining
2378  // qualifiers.
2379  T = getCanonicalType(T);
2380  const Type *Ty = T.getTypePtr();
2381
2382  QualType Result;
2383  if (isa<ArrayType>(Ty)) {
2384    Result = getArrayDecayedType(QualType(Ty,0));
2385  } else if (isa<FunctionType>(Ty)) {
2386    Result = getPointerType(QualType(Ty, 0));
2387  } else {
2388    Result = QualType(Ty, 0);
2389  }
2390
2391  return CanQualType::CreateUnsafe(Result);
2392}
2393
2394/// getCanonicalType - Return the canonical (structural) type corresponding to
2395/// the specified potentially non-canonical type.  The non-canonical version
2396/// of a type may have many "decorated" versions of types.  Decorators can
2397/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
2398/// to be free of any of these, allowing two canonical types to be compared
2399/// for exact equality with a simple pointer comparison.
2400CanQualType ASTContext::getCanonicalType(QualType T) {
2401  QualifierCollector Quals;
2402  const Type *Ptr = Quals.strip(T);
2403  QualType CanType = Ptr->getCanonicalTypeInternal();
2404
2405  // The canonical internal type will be the canonical type *except*
2406  // that we push type qualifiers down through array types.
2407
2408  // If there are no new qualifiers to push down, stop here.
2409  if (!Quals.hasQualifiers())
2410    return CanQualType::CreateUnsafe(CanType);
2411
2412  // If the type qualifiers are on an array type, get the canonical
2413  // type of the array with the qualifiers applied to the element
2414  // type.
2415  ArrayType *AT = dyn_cast<ArrayType>(CanType);
2416  if (!AT)
2417    return CanQualType::CreateUnsafe(getQualifiedType(CanType, Quals));
2418
2419  // Get the canonical version of the element with the extra qualifiers on it.
2420  // This can recursively sink qualifiers through multiple levels of arrays.
2421  QualType NewEltTy = getQualifiedType(AT->getElementType(), Quals);
2422  NewEltTy = getCanonicalType(NewEltTy);
2423
2424  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2425    return CanQualType::CreateUnsafe(
2426             getConstantArrayType(NewEltTy, CAT->getSize(),
2427                                  CAT->getSizeModifier(),
2428                                  CAT->getIndexTypeCVRQualifiers()));
2429  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
2430    return CanQualType::CreateUnsafe(
2431             getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
2432                                    IAT->getIndexTypeCVRQualifiers()));
2433
2434  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
2435    return CanQualType::CreateUnsafe(
2436             getDependentSizedArrayType(NewEltTy,
2437                                        DSAT->getSizeExpr() ?
2438                                          DSAT->getSizeExpr()->Retain() : 0,
2439                                        DSAT->getSizeModifier(),
2440                                        DSAT->getIndexTypeCVRQualifiers(),
2441                        DSAT->getBracketsRange())->getCanonicalTypeInternal());
2442
2443  VariableArrayType *VAT = cast<VariableArrayType>(AT);
2444  return CanQualType::CreateUnsafe(getVariableArrayType(NewEltTy,
2445                                                        VAT->getSizeExpr() ?
2446                                              VAT->getSizeExpr()->Retain() : 0,
2447                                                        VAT->getSizeModifier(),
2448                                              VAT->getIndexTypeCVRQualifiers(),
2449                                                     VAT->getBracketsRange()));
2450}
2451
2452QualType ASTContext::getUnqualifiedArrayType(QualType T,
2453                                             Qualifiers &Quals) {
2454  Quals = T.getQualifiers();
2455  if (!isa<ArrayType>(T)) {
2456    return T.getUnqualifiedType();
2457  }
2458
2459  const ArrayType *AT = cast<ArrayType>(T);
2460  QualType Elt = AT->getElementType();
2461  QualType UnqualElt = getUnqualifiedArrayType(Elt, Quals);
2462  if (Elt == UnqualElt)
2463    return T;
2464
2465  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(T)) {
2466    return getConstantArrayType(UnqualElt, CAT->getSize(),
2467                                CAT->getSizeModifier(), 0);
2468  }
2469
2470  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(T)) {
2471    return getIncompleteArrayType(UnqualElt, IAT->getSizeModifier(), 0);
2472  }
2473
2474  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(T);
2475  return getDependentSizedArrayType(UnqualElt, DSAT->getSizeExpr()->Retain(),
2476                                    DSAT->getSizeModifier(), 0,
2477                                    SourceRange());
2478}
2479
2480DeclarationName ASTContext::getNameForTemplate(TemplateName Name) {
2481  if (TemplateDecl *TD = Name.getAsTemplateDecl())
2482    return TD->getDeclName();
2483
2484  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
2485    if (DTN->isIdentifier()) {
2486      return DeclarationNames.getIdentifier(DTN->getIdentifier());
2487    } else {
2488      return DeclarationNames.getCXXOperatorName(DTN->getOperator());
2489    }
2490  }
2491
2492  OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
2493  assert(Storage);
2494  return (*Storage->begin())->getDeclName();
2495}
2496
2497TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
2498  // If this template name refers to a template, the canonical
2499  // template name merely stores the template itself.
2500  if (TemplateDecl *Template = Name.getAsTemplateDecl())
2501    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
2502
2503  assert(!Name.getAsOverloadedTemplate());
2504
2505  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
2506  assert(DTN && "Non-dependent template names must refer to template decls.");
2507  return DTN->CanonicalTemplateName;
2508}
2509
2510bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
2511  X = getCanonicalTemplateName(X);
2512  Y = getCanonicalTemplateName(Y);
2513  return X.getAsVoidPointer() == Y.getAsVoidPointer();
2514}
2515
2516TemplateArgument
2517ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) {
2518  switch (Arg.getKind()) {
2519    case TemplateArgument::Null:
2520      return Arg;
2521
2522    case TemplateArgument::Expression:
2523      return Arg;
2524
2525    case TemplateArgument::Declaration:
2526      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
2527
2528    case TemplateArgument::Template:
2529      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
2530
2531    case TemplateArgument::Integral:
2532      return TemplateArgument(*Arg.getAsIntegral(),
2533                              getCanonicalType(Arg.getIntegralType()));
2534
2535    case TemplateArgument::Type:
2536      return TemplateArgument(getCanonicalType(Arg.getAsType()));
2537
2538    case TemplateArgument::Pack: {
2539      // FIXME: Allocate in ASTContext
2540      TemplateArgument *CanonArgs = new TemplateArgument[Arg.pack_size()];
2541      unsigned Idx = 0;
2542      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
2543                                        AEnd = Arg.pack_end();
2544           A != AEnd; (void)++A, ++Idx)
2545        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
2546
2547      TemplateArgument Result;
2548      Result.setArgumentPack(CanonArgs, Arg.pack_size(), false);
2549      return Result;
2550    }
2551  }
2552
2553  // Silence GCC warning
2554  assert(false && "Unhandled template argument kind");
2555  return TemplateArgument();
2556}
2557
2558NestedNameSpecifier *
2559ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
2560  if (!NNS)
2561    return 0;
2562
2563  switch (NNS->getKind()) {
2564  case NestedNameSpecifier::Identifier:
2565    // Canonicalize the prefix but keep the identifier the same.
2566    return NestedNameSpecifier::Create(*this,
2567                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
2568                                       NNS->getAsIdentifier());
2569
2570  case NestedNameSpecifier::Namespace:
2571    // A namespace is canonical; build a nested-name-specifier with
2572    // this namespace and no prefix.
2573    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
2574
2575  case NestedNameSpecifier::TypeSpec:
2576  case NestedNameSpecifier::TypeSpecWithTemplate: {
2577    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
2578    return NestedNameSpecifier::Create(*this, 0,
2579                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
2580                                       T.getTypePtr());
2581  }
2582
2583  case NestedNameSpecifier::Global:
2584    // The global specifier is canonical and unique.
2585    return NNS;
2586  }
2587
2588  // Required to silence a GCC warning
2589  return 0;
2590}
2591
2592
2593const ArrayType *ASTContext::getAsArrayType(QualType T) {
2594  // Handle the non-qualified case efficiently.
2595  if (!T.hasLocalQualifiers()) {
2596    // Handle the common positive case fast.
2597    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
2598      return AT;
2599  }
2600
2601  // Handle the common negative case fast.
2602  QualType CType = T->getCanonicalTypeInternal();
2603  if (!isa<ArrayType>(CType))
2604    return 0;
2605
2606  // Apply any qualifiers from the array type to the element type.  This
2607  // implements C99 6.7.3p8: "If the specification of an array type includes
2608  // any type qualifiers, the element type is so qualified, not the array type."
2609
2610  // If we get here, we either have type qualifiers on the type, or we have
2611  // sugar such as a typedef in the way.  If we have type qualifiers on the type
2612  // we must propagate them down into the element type.
2613
2614  QualifierCollector Qs;
2615  const Type *Ty = Qs.strip(T.getDesugaredType());
2616
2617  // If we have a simple case, just return now.
2618  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
2619  if (ATy == 0 || Qs.empty())
2620    return ATy;
2621
2622  // Otherwise, we have an array and we have qualifiers on it.  Push the
2623  // qualifiers into the array element type and return a new array type.
2624  // Get the canonical version of the element with the extra qualifiers on it.
2625  // This can recursively sink qualifiers through multiple levels of arrays.
2626  QualType NewEltTy = getQualifiedType(ATy->getElementType(), Qs);
2627
2628  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
2629    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
2630                                                CAT->getSizeModifier(),
2631                                           CAT->getIndexTypeCVRQualifiers()));
2632  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
2633    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
2634                                                  IAT->getSizeModifier(),
2635                                           IAT->getIndexTypeCVRQualifiers()));
2636
2637  if (const DependentSizedArrayType *DSAT
2638        = dyn_cast<DependentSizedArrayType>(ATy))
2639    return cast<ArrayType>(
2640                     getDependentSizedArrayType(NewEltTy,
2641                                                DSAT->getSizeExpr() ?
2642                                              DSAT->getSizeExpr()->Retain() : 0,
2643                                                DSAT->getSizeModifier(),
2644                                              DSAT->getIndexTypeCVRQualifiers(),
2645                                                DSAT->getBracketsRange()));
2646
2647  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
2648  return cast<ArrayType>(getVariableArrayType(NewEltTy,
2649                                              VAT->getSizeExpr() ?
2650                                              VAT->getSizeExpr()->Retain() : 0,
2651                                              VAT->getSizeModifier(),
2652                                              VAT->getIndexTypeCVRQualifiers(),
2653                                              VAT->getBracketsRange()));
2654}
2655
2656
2657/// getArrayDecayedType - Return the properly qualified result of decaying the
2658/// specified array type to a pointer.  This operation is non-trivial when
2659/// handling typedefs etc.  The canonical type of "T" must be an array type,
2660/// this returns a pointer to a properly qualified element of the array.
2661///
2662/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2663QualType ASTContext::getArrayDecayedType(QualType Ty) {
2664  // Get the element type with 'getAsArrayType' so that we don't lose any
2665  // typedefs in the element type of the array.  This also handles propagation
2666  // of type qualifiers from the array type into the element type if present
2667  // (C99 6.7.3p8).
2668  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
2669  assert(PrettyArrayType && "Not an array type!");
2670
2671  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
2672
2673  // int x[restrict 4] ->  int *restrict
2674  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
2675}
2676
2677QualType ASTContext::getBaseElementType(QualType QT) {
2678  QualifierCollector Qs;
2679  while (true) {
2680    const Type *UT = Qs.strip(QT);
2681    if (const ArrayType *AT = getAsArrayType(QualType(UT,0))) {
2682      QT = AT->getElementType();
2683    } else {
2684      return Qs.apply(QT);
2685    }
2686  }
2687}
2688
2689QualType ASTContext::getBaseElementType(const ArrayType *AT) {
2690  QualType ElemTy = AT->getElementType();
2691
2692  if (const ArrayType *AT = getAsArrayType(ElemTy))
2693    return getBaseElementType(AT);
2694
2695  return ElemTy;
2696}
2697
2698/// getConstantArrayElementCount - Returns number of constant array elements.
2699uint64_t
2700ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
2701  uint64_t ElementCount = 1;
2702  do {
2703    ElementCount *= CA->getSize().getZExtValue();
2704    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
2705  } while (CA);
2706  return ElementCount;
2707}
2708
2709/// getFloatingRank - Return a relative rank for floating point types.
2710/// This routine will assert if passed a built-in type that isn't a float.
2711static FloatingRank getFloatingRank(QualType T) {
2712  if (const ComplexType *CT = T->getAs<ComplexType>())
2713    return getFloatingRank(CT->getElementType());
2714
2715  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
2716  switch (T->getAs<BuiltinType>()->getKind()) {
2717  default: assert(0 && "getFloatingRank(): not a floating type");
2718  case BuiltinType::Float:      return FloatRank;
2719  case BuiltinType::Double:     return DoubleRank;
2720  case BuiltinType::LongDouble: return LongDoubleRank;
2721  }
2722}
2723
2724/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
2725/// point or a complex type (based on typeDomain/typeSize).
2726/// 'typeDomain' is a real floating point or complex type.
2727/// 'typeSize' is a real floating point or complex type.
2728QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
2729                                                       QualType Domain) const {
2730  FloatingRank EltRank = getFloatingRank(Size);
2731  if (Domain->isComplexType()) {
2732    switch (EltRank) {
2733    default: assert(0 && "getFloatingRank(): illegal value for rank");
2734    case FloatRank:      return FloatComplexTy;
2735    case DoubleRank:     return DoubleComplexTy;
2736    case LongDoubleRank: return LongDoubleComplexTy;
2737    }
2738  }
2739
2740  assert(Domain->isRealFloatingType() && "Unknown domain!");
2741  switch (EltRank) {
2742  default: assert(0 && "getFloatingRank(): illegal value for rank");
2743  case FloatRank:      return FloatTy;
2744  case DoubleRank:     return DoubleTy;
2745  case LongDoubleRank: return LongDoubleTy;
2746  }
2747}
2748
2749/// getFloatingTypeOrder - Compare the rank of the two specified floating
2750/// point types, ignoring the domain of the type (i.e. 'double' ==
2751/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2752/// LHS < RHS, return -1.
2753int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
2754  FloatingRank LHSR = getFloatingRank(LHS);
2755  FloatingRank RHSR = getFloatingRank(RHS);
2756
2757  if (LHSR == RHSR)
2758    return 0;
2759  if (LHSR > RHSR)
2760    return 1;
2761  return -1;
2762}
2763
2764/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
2765/// routine will assert if passed a built-in type that isn't an integer or enum,
2766/// or if it is not canonicalized.
2767unsigned ASTContext::getIntegerRank(Type *T) {
2768  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
2769  if (EnumType* ET = dyn_cast<EnumType>(T))
2770    T = ET->getDecl()->getPromotionType().getTypePtr();
2771
2772  if (T->isSpecificBuiltinType(BuiltinType::WChar))
2773    T = getFromTargetType(Target.getWCharType()).getTypePtr();
2774
2775  if (T->isSpecificBuiltinType(BuiltinType::Char16))
2776    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
2777
2778  if (T->isSpecificBuiltinType(BuiltinType::Char32))
2779    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
2780
2781  switch (cast<BuiltinType>(T)->getKind()) {
2782  default: assert(0 && "getIntegerRank(): not a built-in integer");
2783  case BuiltinType::Bool:
2784    return 1 + (getIntWidth(BoolTy) << 3);
2785  case BuiltinType::Char_S:
2786  case BuiltinType::Char_U:
2787  case BuiltinType::SChar:
2788  case BuiltinType::UChar:
2789    return 2 + (getIntWidth(CharTy) << 3);
2790  case BuiltinType::Short:
2791  case BuiltinType::UShort:
2792    return 3 + (getIntWidth(ShortTy) << 3);
2793  case BuiltinType::Int:
2794  case BuiltinType::UInt:
2795    return 4 + (getIntWidth(IntTy) << 3);
2796  case BuiltinType::Long:
2797  case BuiltinType::ULong:
2798    return 5 + (getIntWidth(LongTy) << 3);
2799  case BuiltinType::LongLong:
2800  case BuiltinType::ULongLong:
2801    return 6 + (getIntWidth(LongLongTy) << 3);
2802  case BuiltinType::Int128:
2803  case BuiltinType::UInt128:
2804    return 7 + (getIntWidth(Int128Ty) << 3);
2805  }
2806}
2807
2808/// \brief Whether this is a promotable bitfield reference according
2809/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
2810///
2811/// \returns the type this bit-field will promote to, or NULL if no
2812/// promotion occurs.
2813QualType ASTContext::isPromotableBitField(Expr *E) {
2814  FieldDecl *Field = E->getBitField();
2815  if (!Field)
2816    return QualType();
2817
2818  QualType FT = Field->getType();
2819
2820  llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
2821  uint64_t BitWidth = BitWidthAP.getZExtValue();
2822  uint64_t IntSize = getTypeSize(IntTy);
2823  // GCC extension compatibility: if the bit-field size is less than or equal
2824  // to the size of int, it gets promoted no matter what its type is.
2825  // For instance, unsigned long bf : 4 gets promoted to signed int.
2826  if (BitWidth < IntSize)
2827    return IntTy;
2828
2829  if (BitWidth == IntSize)
2830    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
2831
2832  // Types bigger than int are not subject to promotions, and therefore act
2833  // like the base type.
2834  // FIXME: This doesn't quite match what gcc does, but what gcc does here
2835  // is ridiculous.
2836  return QualType();
2837}
2838
2839/// getPromotedIntegerType - Returns the type that Promotable will
2840/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
2841/// integer type.
2842QualType ASTContext::getPromotedIntegerType(QualType Promotable) {
2843  assert(!Promotable.isNull());
2844  assert(Promotable->isPromotableIntegerType());
2845  if (const EnumType *ET = Promotable->getAs<EnumType>())
2846    return ET->getDecl()->getPromotionType();
2847  if (Promotable->isSignedIntegerType())
2848    return IntTy;
2849  uint64_t PromotableSize = getTypeSize(Promotable);
2850  uint64_t IntSize = getTypeSize(IntTy);
2851  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
2852  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
2853}
2854
2855/// getIntegerTypeOrder - Returns the highest ranked integer type:
2856/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2857/// LHS < RHS, return -1.
2858int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
2859  Type *LHSC = getCanonicalType(LHS).getTypePtr();
2860  Type *RHSC = getCanonicalType(RHS).getTypePtr();
2861  if (LHSC == RHSC) return 0;
2862
2863  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
2864  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
2865
2866  unsigned LHSRank = getIntegerRank(LHSC);
2867  unsigned RHSRank = getIntegerRank(RHSC);
2868
2869  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
2870    if (LHSRank == RHSRank) return 0;
2871    return LHSRank > RHSRank ? 1 : -1;
2872  }
2873
2874  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
2875  if (LHSUnsigned) {
2876    // If the unsigned [LHS] type is larger, return it.
2877    if (LHSRank >= RHSRank)
2878      return 1;
2879
2880    // If the signed type can represent all values of the unsigned type, it
2881    // wins.  Because we are dealing with 2's complement and types that are
2882    // powers of two larger than each other, this is always safe.
2883    return -1;
2884  }
2885
2886  // If the unsigned [RHS] type is larger, return it.
2887  if (RHSRank >= LHSRank)
2888    return -1;
2889
2890  // If the signed type can represent all values of the unsigned type, it
2891  // wins.  Because we are dealing with 2's complement and types that are
2892  // powers of two larger than each other, this is always safe.
2893  return 1;
2894}
2895
2896static RecordDecl *
2897CreateRecordDecl(ASTContext &Ctx, RecordDecl::TagKind TK, DeclContext *DC,
2898                 SourceLocation L, IdentifierInfo *Id) {
2899  if (Ctx.getLangOptions().CPlusPlus)
2900    return CXXRecordDecl::Create(Ctx, TK, DC, L, Id);
2901  else
2902    return RecordDecl::Create(Ctx, TK, DC, L, Id);
2903}
2904
2905// getCFConstantStringType - Return the type used for constant CFStrings.
2906QualType ASTContext::getCFConstantStringType() {
2907  if (!CFConstantStringTypeDecl) {
2908    CFConstantStringTypeDecl =
2909      CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2910                       &Idents.get("NSConstantString"));
2911    CFConstantStringTypeDecl->startDefinition();
2912
2913    QualType FieldTypes[4];
2914
2915    // const int *isa;
2916    FieldTypes[0] = getPointerType(IntTy.withConst());
2917    // int flags;
2918    FieldTypes[1] = IntTy;
2919    // const char *str;
2920    FieldTypes[2] = getPointerType(CharTy.withConst());
2921    // long length;
2922    FieldTypes[3] = LongTy;
2923
2924    // Create fields
2925    for (unsigned i = 0; i < 4; ++i) {
2926      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
2927                                           SourceLocation(), 0,
2928                                           FieldTypes[i], /*TInfo=*/0,
2929                                           /*BitWidth=*/0,
2930                                           /*Mutable=*/false);
2931      CFConstantStringTypeDecl->addDecl(Field);
2932    }
2933
2934    CFConstantStringTypeDecl->completeDefinition();
2935  }
2936
2937  return getTagDeclType(CFConstantStringTypeDecl);
2938}
2939
2940void ASTContext::setCFConstantStringType(QualType T) {
2941  const RecordType *Rec = T->getAs<RecordType>();
2942  assert(Rec && "Invalid CFConstantStringType");
2943  CFConstantStringTypeDecl = Rec->getDecl();
2944}
2945
2946QualType ASTContext::getObjCFastEnumerationStateType() {
2947  if (!ObjCFastEnumerationStateTypeDecl) {
2948    ObjCFastEnumerationStateTypeDecl =
2949      CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2950                       &Idents.get("__objcFastEnumerationState"));
2951    ObjCFastEnumerationStateTypeDecl->startDefinition();
2952
2953    QualType FieldTypes[] = {
2954      UnsignedLongTy,
2955      getPointerType(ObjCIdTypedefType),
2956      getPointerType(UnsignedLongTy),
2957      getConstantArrayType(UnsignedLongTy,
2958                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2959    };
2960
2961    for (size_t i = 0; i < 4; ++i) {
2962      FieldDecl *Field = FieldDecl::Create(*this,
2963                                           ObjCFastEnumerationStateTypeDecl,
2964                                           SourceLocation(), 0,
2965                                           FieldTypes[i], /*TInfo=*/0,
2966                                           /*BitWidth=*/0,
2967                                           /*Mutable=*/false);
2968      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
2969    }
2970
2971    ObjCFastEnumerationStateTypeDecl->completeDefinition();
2972  }
2973
2974  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
2975}
2976
2977QualType ASTContext::getBlockDescriptorType() {
2978  if (BlockDescriptorType)
2979    return getTagDeclType(BlockDescriptorType);
2980
2981  RecordDecl *T;
2982  // FIXME: Needs the FlagAppleBlock bit.
2983  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2984                       &Idents.get("__block_descriptor"));
2985  T->startDefinition();
2986
2987  QualType FieldTypes[] = {
2988    UnsignedLongTy,
2989    UnsignedLongTy,
2990  };
2991
2992  const char *FieldNames[] = {
2993    "reserved",
2994    "Size"
2995  };
2996
2997  for (size_t i = 0; i < 2; ++i) {
2998    FieldDecl *Field = FieldDecl::Create(*this,
2999                                         T,
3000                                         SourceLocation(),
3001                                         &Idents.get(FieldNames[i]),
3002                                         FieldTypes[i], /*TInfo=*/0,
3003                                         /*BitWidth=*/0,
3004                                         /*Mutable=*/false);
3005    T->addDecl(Field);
3006  }
3007
3008  T->completeDefinition();
3009
3010  BlockDescriptorType = T;
3011
3012  return getTagDeclType(BlockDescriptorType);
3013}
3014
3015void ASTContext::setBlockDescriptorType(QualType T) {
3016  const RecordType *Rec = T->getAs<RecordType>();
3017  assert(Rec && "Invalid BlockDescriptorType");
3018  BlockDescriptorType = Rec->getDecl();
3019}
3020
3021QualType ASTContext::getBlockDescriptorExtendedType() {
3022  if (BlockDescriptorExtendedType)
3023    return getTagDeclType(BlockDescriptorExtendedType);
3024
3025  RecordDecl *T;
3026  // FIXME: Needs the FlagAppleBlock bit.
3027  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
3028                       &Idents.get("__block_descriptor_withcopydispose"));
3029  T->startDefinition();
3030
3031  QualType FieldTypes[] = {
3032    UnsignedLongTy,
3033    UnsignedLongTy,
3034    getPointerType(VoidPtrTy),
3035    getPointerType(VoidPtrTy)
3036  };
3037
3038  const char *FieldNames[] = {
3039    "reserved",
3040    "Size",
3041    "CopyFuncPtr",
3042    "DestroyFuncPtr"
3043  };
3044
3045  for (size_t i = 0; i < 4; ++i) {
3046    FieldDecl *Field = FieldDecl::Create(*this,
3047                                         T,
3048                                         SourceLocation(),
3049                                         &Idents.get(FieldNames[i]),
3050                                         FieldTypes[i], /*TInfo=*/0,
3051                                         /*BitWidth=*/0,
3052                                         /*Mutable=*/false);
3053    T->addDecl(Field);
3054  }
3055
3056  T->completeDefinition();
3057
3058  BlockDescriptorExtendedType = T;
3059
3060  return getTagDeclType(BlockDescriptorExtendedType);
3061}
3062
3063void ASTContext::setBlockDescriptorExtendedType(QualType T) {
3064  const RecordType *Rec = T->getAs<RecordType>();
3065  assert(Rec && "Invalid BlockDescriptorType");
3066  BlockDescriptorExtendedType = Rec->getDecl();
3067}
3068
3069bool ASTContext::BlockRequiresCopying(QualType Ty) {
3070  if (Ty->isBlockPointerType())
3071    return true;
3072  if (isObjCNSObjectType(Ty))
3073    return true;
3074  if (Ty->isObjCObjectPointerType())
3075    return true;
3076  return false;
3077}
3078
3079QualType ASTContext::BuildByRefType(const char *DeclName, QualType Ty) {
3080  //  type = struct __Block_byref_1_X {
3081  //    void *__isa;
3082  //    struct __Block_byref_1_X *__forwarding;
3083  //    unsigned int __flags;
3084  //    unsigned int __size;
3085  //    void *__copy_helper;		// as needed
3086  //    void *__destroy_help		// as needed
3087  //    int X;
3088  //  } *
3089
3090  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
3091
3092  // FIXME: Move up
3093  static unsigned int UniqueBlockByRefTypeID = 0;
3094  llvm::SmallString<36> Name;
3095  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
3096                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
3097  RecordDecl *T;
3098  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
3099                       &Idents.get(Name.str()));
3100  T->startDefinition();
3101  QualType Int32Ty = IntTy;
3102  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
3103  QualType FieldTypes[] = {
3104    getPointerType(VoidPtrTy),
3105    getPointerType(getTagDeclType(T)),
3106    Int32Ty,
3107    Int32Ty,
3108    getPointerType(VoidPtrTy),
3109    getPointerType(VoidPtrTy),
3110    Ty
3111  };
3112
3113  const char *FieldNames[] = {
3114    "__isa",
3115    "__forwarding",
3116    "__flags",
3117    "__size",
3118    "__copy_helper",
3119    "__destroy_helper",
3120    DeclName,
3121  };
3122
3123  for (size_t i = 0; i < 7; ++i) {
3124    if (!HasCopyAndDispose && i >=4 && i <= 5)
3125      continue;
3126    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3127                                         &Idents.get(FieldNames[i]),
3128                                         FieldTypes[i], /*TInfo=*/0,
3129                                         /*BitWidth=*/0, /*Mutable=*/false);
3130    T->addDecl(Field);
3131  }
3132
3133  T->completeDefinition();
3134
3135  return getPointerType(getTagDeclType(T));
3136}
3137
3138
3139QualType ASTContext::getBlockParmType(
3140  bool BlockHasCopyDispose,
3141  llvm::SmallVector<const Expr *, 8> &BlockDeclRefDecls) {
3142  // FIXME: Move up
3143  static unsigned int UniqueBlockParmTypeID = 0;
3144  llvm::SmallString<36> Name;
3145  llvm::raw_svector_ostream(Name) << "__block_literal_"
3146                                  << ++UniqueBlockParmTypeID;
3147  RecordDecl *T;
3148  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
3149                       &Idents.get(Name.str()));
3150  T->startDefinition();
3151  QualType FieldTypes[] = {
3152    getPointerType(VoidPtrTy),
3153    IntTy,
3154    IntTy,
3155    getPointerType(VoidPtrTy),
3156    (BlockHasCopyDispose ?
3157     getPointerType(getBlockDescriptorExtendedType()) :
3158     getPointerType(getBlockDescriptorType()))
3159  };
3160
3161  const char *FieldNames[] = {
3162    "__isa",
3163    "__flags",
3164    "__reserved",
3165    "__FuncPtr",
3166    "__descriptor"
3167  };
3168
3169  for (size_t i = 0; i < 5; ++i) {
3170    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3171                                         &Idents.get(FieldNames[i]),
3172                                         FieldTypes[i], /*TInfo=*/0,
3173                                         /*BitWidth=*/0, /*Mutable=*/false);
3174    T->addDecl(Field);
3175  }
3176
3177  for (size_t i = 0; i < BlockDeclRefDecls.size(); ++i) {
3178    const Expr *E = BlockDeclRefDecls[i];
3179    const BlockDeclRefExpr *BDRE = dyn_cast<BlockDeclRefExpr>(E);
3180    clang::IdentifierInfo *Name = 0;
3181    if (BDRE) {
3182      const ValueDecl *D = BDRE->getDecl();
3183      Name = &Idents.get(D->getName());
3184    }
3185    QualType FieldType = E->getType();
3186
3187    if (BDRE && BDRE->isByRef())
3188      FieldType = BuildByRefType(BDRE->getDecl()->getNameAsCString(),
3189                                 FieldType);
3190
3191    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3192                                         Name, FieldType, /*TInfo=*/0,
3193                                         /*BitWidth=*/0, /*Mutable=*/false);
3194    T->addDecl(Field);
3195  }
3196
3197  T->completeDefinition();
3198
3199  return getPointerType(getTagDeclType(T));
3200}
3201
3202void ASTContext::setObjCFastEnumerationStateType(QualType T) {
3203  const RecordType *Rec = T->getAs<RecordType>();
3204  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
3205  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
3206}
3207
3208// This returns true if a type has been typedefed to BOOL:
3209// typedef <type> BOOL;
3210static bool isTypeTypedefedAsBOOL(QualType T) {
3211  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3212    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3213      return II->isStr("BOOL");
3214
3215  return false;
3216}
3217
3218/// getObjCEncodingTypeSize returns size of type for objective-c encoding
3219/// purpose.
3220CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) {
3221  CharUnits sz = getTypeSizeInChars(type);
3222
3223  // Make all integer and enum types at least as large as an int
3224  if (sz.isPositive() && type->isIntegralType())
3225    sz = std::max(sz, getTypeSizeInChars(IntTy));
3226  // Treat arrays as pointers, since that's how they're passed in.
3227  else if (type->isArrayType())
3228    sz = getTypeSizeInChars(VoidPtrTy);
3229  return sz;
3230}
3231
3232static inline
3233std::string charUnitsToString(const CharUnits &CU) {
3234  return llvm::itostr(CU.getQuantity());
3235}
3236
3237/// getObjCEncodingForBlockDecl - Return the encoded type for this method
3238/// declaration.
3239void ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr,
3240                                             std::string& S) {
3241  const BlockDecl *Decl = Expr->getBlockDecl();
3242  QualType BlockTy =
3243      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
3244  // Encode result type.
3245  getObjCEncodingForType(cast<FunctionType>(BlockTy)->getResultType(), S);
3246  // Compute size of all parameters.
3247  // Start with computing size of a pointer in number of bytes.
3248  // FIXME: There might(should) be a better way of doing this computation!
3249  SourceLocation Loc;
3250  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3251  CharUnits ParmOffset = PtrSize;
3252  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3253       E = Decl->param_end(); PI != E; ++PI) {
3254    QualType PType = (*PI)->getType();
3255    CharUnits sz = getObjCEncodingTypeSize(PType);
3256    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
3257    ParmOffset += sz;
3258  }
3259  // Size of the argument frame
3260  S += charUnitsToString(ParmOffset);
3261  // Block pointer and offset.
3262  S += "@?0";
3263  ParmOffset = PtrSize;
3264
3265  // Argument types.
3266  ParmOffset = PtrSize;
3267  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
3268       Decl->param_end(); PI != E; ++PI) {
3269    ParmVarDecl *PVDecl = *PI;
3270    QualType PType = PVDecl->getOriginalType();
3271    if (const ArrayType *AT =
3272          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3273      // Use array's original type only if it has known number of
3274      // elements.
3275      if (!isa<ConstantArrayType>(AT))
3276        PType = PVDecl->getType();
3277    } else if (PType->isFunctionType())
3278      PType = PVDecl->getType();
3279    getObjCEncodingForType(PType, S);
3280    S += charUnitsToString(ParmOffset);
3281    ParmOffset += getObjCEncodingTypeSize(PType);
3282  }
3283}
3284
3285/// getObjCEncodingForMethodDecl - Return the encoded type for this method
3286/// declaration.
3287void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
3288                                              std::string& S) {
3289  // FIXME: This is not very efficient.
3290  // Encode type qualifer, 'in', 'inout', etc. for the return type.
3291  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
3292  // Encode result type.
3293  getObjCEncodingForType(Decl->getResultType(), S);
3294  // Compute size of all parameters.
3295  // Start with computing size of a pointer in number of bytes.
3296  // FIXME: There might(should) be a better way of doing this computation!
3297  SourceLocation Loc;
3298  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3299  // The first two arguments (self and _cmd) are pointers; account for
3300  // their size.
3301  CharUnits ParmOffset = 2 * PtrSize;
3302  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3303       E = Decl->param_end(); PI != E; ++PI) {
3304    QualType PType = (*PI)->getType();
3305    CharUnits sz = getObjCEncodingTypeSize(PType);
3306    assert (sz.isPositive() &&
3307        "getObjCEncodingForMethodDecl - Incomplete param type");
3308    ParmOffset += sz;
3309  }
3310  S += charUnitsToString(ParmOffset);
3311  S += "@0:";
3312  S += charUnitsToString(PtrSize);
3313
3314  // Argument types.
3315  ParmOffset = 2 * PtrSize;
3316  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3317       E = Decl->param_end(); PI != E; ++PI) {
3318    ParmVarDecl *PVDecl = *PI;
3319    QualType PType = PVDecl->getOriginalType();
3320    if (const ArrayType *AT =
3321          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3322      // Use array's original type only if it has known number of
3323      // elements.
3324      if (!isa<ConstantArrayType>(AT))
3325        PType = PVDecl->getType();
3326    } else if (PType->isFunctionType())
3327      PType = PVDecl->getType();
3328    // Process argument qualifiers for user supplied arguments; such as,
3329    // 'in', 'inout', etc.
3330    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
3331    getObjCEncodingForType(PType, S);
3332    S += charUnitsToString(ParmOffset);
3333    ParmOffset += getObjCEncodingTypeSize(PType);
3334  }
3335}
3336
3337/// getObjCEncodingForPropertyDecl - Return the encoded type for this
3338/// property declaration. If non-NULL, Container must be either an
3339/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
3340/// NULL when getting encodings for protocol properties.
3341/// Property attributes are stored as a comma-delimited C string. The simple
3342/// attributes readonly and bycopy are encoded as single characters. The
3343/// parametrized attributes, getter=name, setter=name, and ivar=name, are
3344/// encoded as single characters, followed by an identifier. Property types
3345/// are also encoded as a parametrized attribute. The characters used to encode
3346/// these attributes are defined by the following enumeration:
3347/// @code
3348/// enum PropertyAttributes {
3349/// kPropertyReadOnly = 'R',   // property is read-only.
3350/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
3351/// kPropertyByref = '&',  // property is a reference to the value last assigned
3352/// kPropertyDynamic = 'D',    // property is dynamic
3353/// kPropertyGetter = 'G',     // followed by getter selector name
3354/// kPropertySetter = 'S',     // followed by setter selector name
3355/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
3356/// kPropertyType = 't'              // followed by old-style type encoding.
3357/// kPropertyWeak = 'W'              // 'weak' property
3358/// kPropertyStrong = 'P'            // property GC'able
3359/// kPropertyNonAtomic = 'N'         // property non-atomic
3360/// };
3361/// @endcode
3362void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
3363                                                const Decl *Container,
3364                                                std::string& S) {
3365  // Collect information from the property implementation decl(s).
3366  bool Dynamic = false;
3367  ObjCPropertyImplDecl *SynthesizePID = 0;
3368
3369  // FIXME: Duplicated code due to poor abstraction.
3370  if (Container) {
3371    if (const ObjCCategoryImplDecl *CID =
3372        dyn_cast<ObjCCategoryImplDecl>(Container)) {
3373      for (ObjCCategoryImplDecl::propimpl_iterator
3374             i = CID->propimpl_begin(), e = CID->propimpl_end();
3375           i != e; ++i) {
3376        ObjCPropertyImplDecl *PID = *i;
3377        if (PID->getPropertyDecl() == PD) {
3378          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3379            Dynamic = true;
3380          } else {
3381            SynthesizePID = PID;
3382          }
3383        }
3384      }
3385    } else {
3386      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
3387      for (ObjCCategoryImplDecl::propimpl_iterator
3388             i = OID->propimpl_begin(), e = OID->propimpl_end();
3389           i != e; ++i) {
3390        ObjCPropertyImplDecl *PID = *i;
3391        if (PID->getPropertyDecl() == PD) {
3392          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3393            Dynamic = true;
3394          } else {
3395            SynthesizePID = PID;
3396          }
3397        }
3398      }
3399    }
3400  }
3401
3402  // FIXME: This is not very efficient.
3403  S = "T";
3404
3405  // Encode result type.
3406  // GCC has some special rules regarding encoding of properties which
3407  // closely resembles encoding of ivars.
3408  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
3409                             true /* outermost type */,
3410                             true /* encoding for property */);
3411
3412  if (PD->isReadOnly()) {
3413    S += ",R";
3414  } else {
3415    switch (PD->getSetterKind()) {
3416    case ObjCPropertyDecl::Assign: break;
3417    case ObjCPropertyDecl::Copy:   S += ",C"; break;
3418    case ObjCPropertyDecl::Retain: S += ",&"; break;
3419    }
3420  }
3421
3422  // It really isn't clear at all what this means, since properties
3423  // are "dynamic by default".
3424  if (Dynamic)
3425    S += ",D";
3426
3427  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
3428    S += ",N";
3429
3430  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
3431    S += ",G";
3432    S += PD->getGetterName().getAsString();
3433  }
3434
3435  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
3436    S += ",S";
3437    S += PD->getSetterName().getAsString();
3438  }
3439
3440  if (SynthesizePID) {
3441    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
3442    S += ",V";
3443    S += OID->getNameAsString();
3444  }
3445
3446  // FIXME: OBJCGC: weak & strong
3447}
3448
3449/// getLegacyIntegralTypeEncoding -
3450/// Another legacy compatibility encoding: 32-bit longs are encoded as
3451/// 'l' or 'L' , but not always.  For typedefs, we need to use
3452/// 'i' or 'I' instead if encoding a struct field, or a pointer!
3453///
3454void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
3455  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
3456    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
3457      if (BT->getKind() == BuiltinType::ULong &&
3458          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3459        PointeeTy = UnsignedIntTy;
3460      else
3461        if (BT->getKind() == BuiltinType::Long &&
3462            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3463          PointeeTy = IntTy;
3464    }
3465  }
3466}
3467
3468void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
3469                                        const FieldDecl *Field) {
3470  // We follow the behavior of gcc, expanding structures which are
3471  // directly pointed to, and expanding embedded structures. Note that
3472  // these rules are sufficient to prevent recursive encoding of the
3473  // same type.
3474  getObjCEncodingForTypeImpl(T, S, true, true, Field,
3475                             true /* outermost type */);
3476}
3477
3478static void EncodeBitField(const ASTContext *Context, std::string& S,
3479                           const FieldDecl *FD) {
3480  const Expr *E = FD->getBitWidth();
3481  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
3482  ASTContext *Ctx = const_cast<ASTContext*>(Context);
3483  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
3484  S += 'b';
3485  S += llvm::utostr(N);
3486}
3487
3488// FIXME: Use SmallString for accumulating string.
3489void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
3490                                            bool ExpandPointedToStructures,
3491                                            bool ExpandStructures,
3492                                            const FieldDecl *FD,
3493                                            bool OutermostType,
3494                                            bool EncodingProperty) {
3495  if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
3496    if (FD && FD->isBitField())
3497      return EncodeBitField(this, S, FD);
3498    char encoding;
3499    switch (BT->getKind()) {
3500    default: assert(0 && "Unhandled builtin type kind");
3501    case BuiltinType::Void:       encoding = 'v'; break;
3502    case BuiltinType::Bool:       encoding = 'B'; break;
3503    case BuiltinType::Char_U:
3504    case BuiltinType::UChar:      encoding = 'C'; break;
3505    case BuiltinType::UShort:     encoding = 'S'; break;
3506    case BuiltinType::UInt:       encoding = 'I'; break;
3507    case BuiltinType::ULong:
3508        encoding =
3509          (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q';
3510        break;
3511    case BuiltinType::UInt128:    encoding = 'T'; break;
3512    case BuiltinType::ULongLong:  encoding = 'Q'; break;
3513    case BuiltinType::Char_S:
3514    case BuiltinType::SChar:      encoding = 'c'; break;
3515    case BuiltinType::Short:      encoding = 's'; break;
3516    case BuiltinType::Int:        encoding = 'i'; break;
3517    case BuiltinType::Long:
3518      encoding =
3519        (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q';
3520      break;
3521    case BuiltinType::LongLong:   encoding = 'q'; break;
3522    case BuiltinType::Int128:     encoding = 't'; break;
3523    case BuiltinType::Float:      encoding = 'f'; break;
3524    case BuiltinType::Double:     encoding = 'd'; break;
3525    case BuiltinType::LongDouble: encoding = 'd'; break;
3526    }
3527
3528    S += encoding;
3529    return;
3530  }
3531
3532  if (const ComplexType *CT = T->getAs<ComplexType>()) {
3533    S += 'j';
3534    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
3535                               false);
3536    return;
3537  }
3538
3539  if (const PointerType *PT = T->getAs<PointerType>()) {
3540    if (PT->isObjCSelType()) {
3541      S += ':';
3542      return;
3543    }
3544    QualType PointeeTy = PT->getPointeeType();
3545
3546    bool isReadOnly = false;
3547    // For historical/compatibility reasons, the read-only qualifier of the
3548    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
3549    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
3550    // Also, do not emit the 'r' for anything but the outermost type!
3551    if (isa<TypedefType>(T.getTypePtr())) {
3552      if (OutermostType && T.isConstQualified()) {
3553        isReadOnly = true;
3554        S += 'r';
3555      }
3556    } else if (OutermostType) {
3557      QualType P = PointeeTy;
3558      while (P->getAs<PointerType>())
3559        P = P->getAs<PointerType>()->getPointeeType();
3560      if (P.isConstQualified()) {
3561        isReadOnly = true;
3562        S += 'r';
3563      }
3564    }
3565    if (isReadOnly) {
3566      // Another legacy compatibility encoding. Some ObjC qualifier and type
3567      // combinations need to be rearranged.
3568      // Rewrite "in const" from "nr" to "rn"
3569      const char * s = S.c_str();
3570      int len = S.length();
3571      if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
3572        std::string replace = "rn";
3573        S.replace(S.end()-2, S.end(), replace);
3574      }
3575    }
3576
3577    if (PointeeTy->isCharType()) {
3578      // char pointer types should be encoded as '*' unless it is a
3579      // type that has been typedef'd to 'BOOL'.
3580      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
3581        S += '*';
3582        return;
3583      }
3584    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
3585      // GCC binary compat: Need to convert "struct objc_class *" to "#".
3586      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
3587        S += '#';
3588        return;
3589      }
3590      // GCC binary compat: Need to convert "struct objc_object *" to "@".
3591      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
3592        S += '@';
3593        return;
3594      }
3595      // fall through...
3596    }
3597    S += '^';
3598    getLegacyIntegralTypeEncoding(PointeeTy);
3599
3600    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
3601                               NULL);
3602    return;
3603  }
3604
3605  if (const ArrayType *AT =
3606      // Ignore type qualifiers etc.
3607        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
3608    if (isa<IncompleteArrayType>(AT)) {
3609      // Incomplete arrays are encoded as a pointer to the array element.
3610      S += '^';
3611
3612      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3613                                 false, ExpandStructures, FD);
3614    } else {
3615      S += '[';
3616
3617      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
3618        S += llvm::utostr(CAT->getSize().getZExtValue());
3619      else {
3620        //Variable length arrays are encoded as a regular array with 0 elements.
3621        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
3622        S += '0';
3623      }
3624
3625      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3626                                 false, ExpandStructures, FD);
3627      S += ']';
3628    }
3629    return;
3630  }
3631
3632  if (T->getAs<FunctionType>()) {
3633    S += '?';
3634    return;
3635  }
3636
3637  if (const RecordType *RTy = T->getAs<RecordType>()) {
3638    RecordDecl *RDecl = RTy->getDecl();
3639    S += RDecl->isUnion() ? '(' : '{';
3640    // Anonymous structures print as '?'
3641    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
3642      S += II->getName();
3643    } else {
3644      S += '?';
3645    }
3646    if (ExpandStructures) {
3647      S += '=';
3648      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
3649                                   FieldEnd = RDecl->field_end();
3650           Field != FieldEnd; ++Field) {
3651        if (FD) {
3652          S += '"';
3653          S += Field->getNameAsString();
3654          S += '"';
3655        }
3656
3657        // Special case bit-fields.
3658        if (Field->isBitField()) {
3659          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
3660                                     (*Field));
3661        } else {
3662          QualType qt = Field->getType();
3663          getLegacyIntegralTypeEncoding(qt);
3664          getObjCEncodingForTypeImpl(qt, S, false, true,
3665                                     FD);
3666        }
3667      }
3668    }
3669    S += RDecl->isUnion() ? ')' : '}';
3670    return;
3671  }
3672
3673  if (T->isEnumeralType()) {
3674    if (FD && FD->isBitField())
3675      EncodeBitField(this, S, FD);
3676    else
3677      S += 'i';
3678    return;
3679  }
3680
3681  if (T->isBlockPointerType()) {
3682    S += "@?"; // Unlike a pointer-to-function, which is "^?".
3683    return;
3684  }
3685
3686  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
3687    // @encode(class_name)
3688    ObjCInterfaceDecl *OI = OIT->getDecl();
3689    S += '{';
3690    const IdentifierInfo *II = OI->getIdentifier();
3691    S += II->getName();
3692    S += '=';
3693    llvm::SmallVector<FieldDecl*, 32> RecFields;
3694    CollectObjCIvars(OI, RecFields);
3695    for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
3696      if (RecFields[i]->isBitField())
3697        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3698                                   RecFields[i]);
3699      else
3700        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3701                                   FD);
3702    }
3703    S += '}';
3704    return;
3705  }
3706
3707  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
3708    if (OPT->isObjCIdType()) {
3709      S += '@';
3710      return;
3711    }
3712
3713    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
3714      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
3715      // Since this is a binary compatibility issue, need to consult with runtime
3716      // folks. Fortunately, this is a *very* obsure construct.
3717      S += '#';
3718      return;
3719    }
3720
3721    if (OPT->isObjCQualifiedIdType()) {
3722      getObjCEncodingForTypeImpl(getObjCIdType(), S,
3723                                 ExpandPointedToStructures,
3724                                 ExpandStructures, FD);
3725      if (FD || EncodingProperty) {
3726        // Note that we do extended encoding of protocol qualifer list
3727        // Only when doing ivar or property encoding.
3728        S += '"';
3729        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3730             E = OPT->qual_end(); I != E; ++I) {
3731          S += '<';
3732          S += (*I)->getNameAsString();
3733          S += '>';
3734        }
3735        S += '"';
3736      }
3737      return;
3738    }
3739
3740    QualType PointeeTy = OPT->getPointeeType();
3741    if (!EncodingProperty &&
3742        isa<TypedefType>(PointeeTy.getTypePtr())) {
3743      // Another historical/compatibility reason.
3744      // We encode the underlying type which comes out as
3745      // {...};
3746      S += '^';
3747      getObjCEncodingForTypeImpl(PointeeTy, S,
3748                                 false, ExpandPointedToStructures,
3749                                 NULL);
3750      return;
3751    }
3752
3753    S += '@';
3754    if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
3755      S += '"';
3756      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
3757      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3758           E = OPT->qual_end(); I != E; ++I) {
3759        S += '<';
3760        S += (*I)->getNameAsString();
3761        S += '>';
3762      }
3763      S += '"';
3764    }
3765    return;
3766  }
3767
3768  assert(0 && "@encode for type not implemented!");
3769}
3770
3771void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
3772                                                 std::string& S) const {
3773  if (QT & Decl::OBJC_TQ_In)
3774    S += 'n';
3775  if (QT & Decl::OBJC_TQ_Inout)
3776    S += 'N';
3777  if (QT & Decl::OBJC_TQ_Out)
3778    S += 'o';
3779  if (QT & Decl::OBJC_TQ_Bycopy)
3780    S += 'O';
3781  if (QT & Decl::OBJC_TQ_Byref)
3782    S += 'R';
3783  if (QT & Decl::OBJC_TQ_Oneway)
3784    S += 'V';
3785}
3786
3787void ASTContext::setBuiltinVaListType(QualType T) {
3788  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
3789
3790  BuiltinVaListType = T;
3791}
3792
3793void ASTContext::setObjCIdType(QualType T) {
3794  ObjCIdTypedefType = T;
3795}
3796
3797void ASTContext::setObjCSelType(QualType T) {
3798  ObjCSelTypedefType = T;
3799}
3800
3801void ASTContext::setObjCProtoType(QualType QT) {
3802  ObjCProtoType = QT;
3803}
3804
3805void ASTContext::setObjCClassType(QualType T) {
3806  ObjCClassTypedefType = T;
3807}
3808
3809void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
3810  assert(ObjCConstantStringType.isNull() &&
3811         "'NSConstantString' type already set!");
3812
3813  ObjCConstantStringType = getObjCInterfaceType(Decl);
3814}
3815
3816/// \brief Retrieve the template name that corresponds to a non-empty
3817/// lookup.
3818TemplateName ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
3819                                                   UnresolvedSetIterator End) {
3820  unsigned size = End - Begin;
3821  assert(size > 1 && "set is not overloaded!");
3822
3823  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
3824                          size * sizeof(FunctionTemplateDecl*));
3825  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
3826
3827  NamedDecl **Storage = OT->getStorage();
3828  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
3829    NamedDecl *D = *I;
3830    assert(isa<FunctionTemplateDecl>(D) ||
3831           (isa<UsingShadowDecl>(D) &&
3832            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
3833    *Storage++ = D;
3834  }
3835
3836  return TemplateName(OT);
3837}
3838
3839/// \brief Retrieve the template name that represents a qualified
3840/// template name such as \c std::vector.
3841TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
3842                                                  bool TemplateKeyword,
3843                                                  TemplateDecl *Template) {
3844  // FIXME: Canonicalization?
3845  llvm::FoldingSetNodeID ID;
3846  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
3847
3848  void *InsertPos = 0;
3849  QualifiedTemplateName *QTN =
3850    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3851  if (!QTN) {
3852    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
3853    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
3854  }
3855
3856  return TemplateName(QTN);
3857}
3858
3859/// \brief Retrieve the template name that represents a dependent
3860/// template name such as \c MetaFun::template apply.
3861TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3862                                                  const IdentifierInfo *Name) {
3863  assert((!NNS || NNS->isDependent()) &&
3864         "Nested name specifier must be dependent");
3865
3866  llvm::FoldingSetNodeID ID;
3867  DependentTemplateName::Profile(ID, NNS, Name);
3868
3869  void *InsertPos = 0;
3870  DependentTemplateName *QTN =
3871    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3872
3873  if (QTN)
3874    return TemplateName(QTN);
3875
3876  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3877  if (CanonNNS == NNS) {
3878    QTN = new (*this,4) DependentTemplateName(NNS, Name);
3879  } else {
3880    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
3881    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
3882    DependentTemplateName *CheckQTN =
3883      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3884    assert(!CheckQTN && "Dependent type name canonicalization broken");
3885    (void)CheckQTN;
3886  }
3887
3888  DependentTemplateNames.InsertNode(QTN, InsertPos);
3889  return TemplateName(QTN);
3890}
3891
3892/// \brief Retrieve the template name that represents a dependent
3893/// template name such as \c MetaFun::template operator+.
3894TemplateName
3895ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3896                                     OverloadedOperatorKind Operator) {
3897  assert((!NNS || NNS->isDependent()) &&
3898         "Nested name specifier must be dependent");
3899
3900  llvm::FoldingSetNodeID ID;
3901  DependentTemplateName::Profile(ID, NNS, Operator);
3902
3903  void *InsertPos = 0;
3904  DependentTemplateName *QTN
3905    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3906
3907  if (QTN)
3908    return TemplateName(QTN);
3909
3910  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3911  if (CanonNNS == NNS) {
3912    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
3913  } else {
3914    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
3915    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
3916
3917    DependentTemplateName *CheckQTN
3918      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3919    assert(!CheckQTN && "Dependent template name canonicalization broken");
3920    (void)CheckQTN;
3921  }
3922
3923  DependentTemplateNames.InsertNode(QTN, InsertPos);
3924  return TemplateName(QTN);
3925}
3926
3927/// getFromTargetType - Given one of the integer types provided by
3928/// TargetInfo, produce the corresponding type. The unsigned @p Type
3929/// is actually a value of type @c TargetInfo::IntType.
3930CanQualType ASTContext::getFromTargetType(unsigned Type) const {
3931  switch (Type) {
3932  case TargetInfo::NoInt: return CanQualType();
3933  case TargetInfo::SignedShort: return ShortTy;
3934  case TargetInfo::UnsignedShort: return UnsignedShortTy;
3935  case TargetInfo::SignedInt: return IntTy;
3936  case TargetInfo::UnsignedInt: return UnsignedIntTy;
3937  case TargetInfo::SignedLong: return LongTy;
3938  case TargetInfo::UnsignedLong: return UnsignedLongTy;
3939  case TargetInfo::SignedLongLong: return LongLongTy;
3940  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
3941  }
3942
3943  assert(false && "Unhandled TargetInfo::IntType value");
3944  return CanQualType();
3945}
3946
3947//===----------------------------------------------------------------------===//
3948//                        Type Predicates.
3949//===----------------------------------------------------------------------===//
3950
3951/// isObjCNSObjectType - Return true if this is an NSObject object using
3952/// NSObject attribute on a c-style pointer type.
3953/// FIXME - Make it work directly on types.
3954/// FIXME: Move to Type.
3955///
3956bool ASTContext::isObjCNSObjectType(QualType Ty) const {
3957  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
3958    if (TypedefDecl *TD = TDT->getDecl())
3959      if (TD->getAttr<ObjCNSObjectAttr>())
3960        return true;
3961  }
3962  return false;
3963}
3964
3965/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
3966/// garbage collection attribute.
3967///
3968Qualifiers::GC ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
3969  Qualifiers::GC GCAttrs = Qualifiers::GCNone;
3970  if (getLangOptions().ObjC1 &&
3971      getLangOptions().getGCMode() != LangOptions::NonGC) {
3972    GCAttrs = Ty.getObjCGCAttr();
3973    // Default behavious under objective-c's gc is for objective-c pointers
3974    // (or pointers to them) be treated as though they were declared
3975    // as __strong.
3976    if (GCAttrs == Qualifiers::GCNone) {
3977      if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
3978        GCAttrs = Qualifiers::Strong;
3979      else if (Ty->isPointerType())
3980        return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
3981    }
3982    // Non-pointers have none gc'able attribute regardless of the attribute
3983    // set on them.
3984    else if (!Ty->isAnyPointerType() && !Ty->isBlockPointerType())
3985      return Qualifiers::GCNone;
3986  }
3987  return GCAttrs;
3988}
3989
3990//===----------------------------------------------------------------------===//
3991//                        Type Compatibility Testing
3992//===----------------------------------------------------------------------===//
3993
3994/// areCompatVectorTypes - Return true if the two specified vector types are
3995/// compatible.
3996static bool areCompatVectorTypes(const VectorType *LHS,
3997                                 const VectorType *RHS) {
3998  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
3999  return LHS->getElementType() == RHS->getElementType() &&
4000         LHS->getNumElements() == RHS->getNumElements();
4001}
4002
4003//===----------------------------------------------------------------------===//
4004// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
4005//===----------------------------------------------------------------------===//
4006
4007/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
4008/// inheritance hierarchy of 'rProto'.
4009bool ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
4010                                                ObjCProtocolDecl *rProto) {
4011  if (lProto == rProto)
4012    return true;
4013  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
4014       E = rProto->protocol_end(); PI != E; ++PI)
4015    if (ProtocolCompatibleWithProtocol(lProto, *PI))
4016      return true;
4017  return false;
4018}
4019
4020/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
4021/// return true if lhs's protocols conform to rhs's protocol; false
4022/// otherwise.
4023bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
4024  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
4025    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
4026  return false;
4027}
4028
4029/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
4030/// ObjCQualifiedIDType.
4031bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
4032                                                   bool compare) {
4033  // Allow id<P..> and an 'id' or void* type in all cases.
4034  if (lhs->isVoidPointerType() ||
4035      lhs->isObjCIdType() || lhs->isObjCClassType())
4036    return true;
4037  else if (rhs->isVoidPointerType() ||
4038           rhs->isObjCIdType() || rhs->isObjCClassType())
4039    return true;
4040
4041  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
4042    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
4043
4044    if (!rhsOPT) return false;
4045
4046    if (rhsOPT->qual_empty()) {
4047      // If the RHS is a unqualified interface pointer "NSString*",
4048      // make sure we check the class hierarchy.
4049      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4050        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4051             E = lhsQID->qual_end(); I != E; ++I) {
4052          // when comparing an id<P> on lhs with a static type on rhs,
4053          // see if static class implements all of id's protocols, directly or
4054          // through its super class and categories.
4055          if (!rhsID->ClassImplementsProtocol(*I, true))
4056            return false;
4057        }
4058      }
4059      // If there are no qualifiers and no interface, we have an 'id'.
4060      return true;
4061    }
4062    // Both the right and left sides have qualifiers.
4063    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4064         E = lhsQID->qual_end(); I != E; ++I) {
4065      ObjCProtocolDecl *lhsProto = *I;
4066      bool match = false;
4067
4068      // when comparing an id<P> on lhs with a static type on rhs,
4069      // see if static class implements all of id's protocols, directly or
4070      // through its super class and categories.
4071      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
4072           E = rhsOPT->qual_end(); J != E; ++J) {
4073        ObjCProtocolDecl *rhsProto = *J;
4074        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4075            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4076          match = true;
4077          break;
4078        }
4079      }
4080      // If the RHS is a qualified interface pointer "NSString<P>*",
4081      // make sure we check the class hierarchy.
4082      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4083        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4084             E = lhsQID->qual_end(); I != E; ++I) {
4085          // when comparing an id<P> on lhs with a static type on rhs,
4086          // see if static class implements all of id's protocols, directly or
4087          // through its super class and categories.
4088          if (rhsID->ClassImplementsProtocol(*I, true)) {
4089            match = true;
4090            break;
4091          }
4092        }
4093      }
4094      if (!match)
4095        return false;
4096    }
4097
4098    return true;
4099  }
4100
4101  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
4102  assert(rhsQID && "One of the LHS/RHS should be id<x>");
4103
4104  if (const ObjCObjectPointerType *lhsOPT =
4105        lhs->getAsObjCInterfacePointerType()) {
4106    if (lhsOPT->qual_empty()) {
4107      bool match = false;
4108      if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
4109        for (ObjCObjectPointerType::qual_iterator I = rhsQID->qual_begin(),
4110             E = rhsQID->qual_end(); I != E; ++I) {
4111          // when comparing an id<P> on lhs with a static type on rhs,
4112          // see if static class implements all of id's protocols, directly or
4113          // through its super class and categories.
4114          if (lhsID->ClassImplementsProtocol(*I, true)) {
4115            match = true;
4116            break;
4117          }
4118        }
4119        if (!match)
4120          return false;
4121      }
4122      return true;
4123    }
4124    // Both the right and left sides have qualifiers.
4125    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
4126         E = lhsOPT->qual_end(); I != E; ++I) {
4127      ObjCProtocolDecl *lhsProto = *I;
4128      bool match = false;
4129
4130      // when comparing an id<P> on lhs with a static type on rhs,
4131      // see if static class implements all of id's protocols, directly or
4132      // through its super class and categories.
4133      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
4134           E = rhsQID->qual_end(); J != E; ++J) {
4135        ObjCProtocolDecl *rhsProto = *J;
4136        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4137            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4138          match = true;
4139          break;
4140        }
4141      }
4142      if (!match)
4143        return false;
4144    }
4145    return true;
4146  }
4147  return false;
4148}
4149
4150/// canAssignObjCInterfaces - Return true if the two interface types are
4151/// compatible for assignment from RHS to LHS.  This handles validation of any
4152/// protocol qualifiers on the LHS or RHS.
4153///
4154bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
4155                                         const ObjCObjectPointerType *RHSOPT) {
4156  // If either type represents the built-in 'id' or 'Class' types, return true.
4157  if (LHSOPT->isObjCBuiltinType() || RHSOPT->isObjCBuiltinType())
4158    return true;
4159
4160  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
4161    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4162                                             QualType(RHSOPT,0),
4163                                             false);
4164
4165  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4166  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4167  if (LHS && RHS) // We have 2 user-defined types.
4168    return canAssignObjCInterfaces(LHS, RHS);
4169
4170  return false;
4171}
4172
4173/// getIntersectionOfProtocols - This routine finds the intersection of set
4174/// of protocols inherited from two distinct objective-c pointer objects.
4175/// It is used to build composite qualifier list of the composite type of
4176/// the conditional expression involving two objective-c pointer objects.
4177static
4178void getIntersectionOfProtocols(ASTContext &Context,
4179                                const ObjCObjectPointerType *LHSOPT,
4180                                const ObjCObjectPointerType *RHSOPT,
4181      llvm::SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
4182
4183  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4184  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4185
4186  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
4187  unsigned LHSNumProtocols = LHS->getNumProtocols();
4188  if (LHSNumProtocols > 0)
4189    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
4190  else {
4191    llvm::SmallVector<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
4192     Context.CollectInheritedProtocols(LHS->getDecl(), LHSInheritedProtocols);
4193    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
4194                                LHSInheritedProtocols.end());
4195  }
4196
4197  unsigned RHSNumProtocols = RHS->getNumProtocols();
4198  if (RHSNumProtocols > 0) {
4199    ObjCProtocolDecl **RHSProtocols = (ObjCProtocolDecl **)RHS->qual_begin();
4200    for (unsigned i = 0; i < RHSNumProtocols; ++i)
4201      if (InheritedProtocolSet.count(RHSProtocols[i]))
4202        IntersectionOfProtocols.push_back(RHSProtocols[i]);
4203  }
4204  else {
4205    llvm::SmallVector<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
4206    Context.CollectInheritedProtocols(RHS->getDecl(), RHSInheritedProtocols);
4207    // FIXME. This may cause duplication of protocols in the list, but should
4208    // be harmless.
4209    for (unsigned i = 0, len = RHSInheritedProtocols.size(); i < len; ++i)
4210      if (InheritedProtocolSet.count(RHSInheritedProtocols[i]))
4211        IntersectionOfProtocols.push_back(RHSInheritedProtocols[i]);
4212  }
4213}
4214
4215/// areCommonBaseCompatible - Returns common base class of the two classes if
4216/// one found. Note that this is O'2 algorithm. But it will be called as the
4217/// last type comparison in a ?-exp of ObjC pointer types before a
4218/// warning is issued. So, its invokation is extremely rare.
4219QualType ASTContext::areCommonBaseCompatible(
4220                                          const ObjCObjectPointerType *LHSOPT,
4221                                          const ObjCObjectPointerType *RHSOPT) {
4222  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4223  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4224  if (!LHS || !RHS)
4225    return QualType();
4226
4227  while (const ObjCInterfaceDecl *LHSIDecl = LHS->getDecl()->getSuperClass()) {
4228    QualType LHSTy = getObjCInterfaceType(LHSIDecl);
4229    LHS = LHSTy->getAs<ObjCInterfaceType>();
4230    if (canAssignObjCInterfaces(LHS, RHS)) {
4231      llvm::SmallVector<ObjCProtocolDecl *, 8> IntersectionOfProtocols;
4232      getIntersectionOfProtocols(*this,
4233                                 LHSOPT, RHSOPT, IntersectionOfProtocols);
4234      if (IntersectionOfProtocols.empty())
4235        LHSTy = getObjCObjectPointerType(LHSTy);
4236      else
4237        LHSTy = getObjCObjectPointerType(LHSTy, &IntersectionOfProtocols[0],
4238                                                IntersectionOfProtocols.size());
4239      return LHSTy;
4240    }
4241  }
4242
4243  return QualType();
4244}
4245
4246bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
4247                                         const ObjCInterfaceType *RHS) {
4248  // Verify that the base decls are compatible: the RHS must be a subclass of
4249  // the LHS.
4250  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
4251    return false;
4252
4253  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
4254  // protocol qualified at all, then we are good.
4255  if (LHS->getNumProtocols() == 0)
4256    return true;
4257
4258  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
4259  // isn't a superset.
4260  if (RHS->getNumProtocols() == 0)
4261    return true;  // FIXME: should return false!
4262
4263  for (ObjCInterfaceType::qual_iterator LHSPI = LHS->qual_begin(),
4264                                        LHSPE = LHS->qual_end();
4265       LHSPI != LHSPE; LHSPI++) {
4266    bool RHSImplementsProtocol = false;
4267
4268    // If the RHS doesn't implement the protocol on the left, the types
4269    // are incompatible.
4270    for (ObjCInterfaceType::qual_iterator RHSPI = RHS->qual_begin(),
4271                                          RHSPE = RHS->qual_end();
4272         RHSPI != RHSPE; RHSPI++) {
4273      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
4274        RHSImplementsProtocol = true;
4275        break;
4276      }
4277    }
4278    // FIXME: For better diagnostics, consider passing back the protocol name.
4279    if (!RHSImplementsProtocol)
4280      return false;
4281  }
4282  // The RHS implements all protocols listed on the LHS.
4283  return true;
4284}
4285
4286bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
4287  // get the "pointed to" types
4288  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
4289  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
4290
4291  if (!LHSOPT || !RHSOPT)
4292    return false;
4293
4294  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
4295         canAssignObjCInterfaces(RHSOPT, LHSOPT);
4296}
4297
4298/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
4299/// both shall have the identically qualified version of a compatible type.
4300/// C99 6.2.7p1: Two types have compatible types if their types are the
4301/// same. See 6.7.[2,3,5] for additional rules.
4302bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
4303  if (getLangOptions().CPlusPlus)
4304    return hasSameType(LHS, RHS);
4305
4306  return !mergeTypes(LHS, RHS).isNull();
4307}
4308
4309QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
4310  const FunctionType *lbase = lhs->getAs<FunctionType>();
4311  const FunctionType *rbase = rhs->getAs<FunctionType>();
4312  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
4313  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
4314  bool allLTypes = true;
4315  bool allRTypes = true;
4316
4317  // Check return type
4318  QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
4319  if (retType.isNull()) return QualType();
4320  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
4321    allLTypes = false;
4322  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
4323    allRTypes = false;
4324  // FIXME: double check this
4325  bool NoReturn = lbase->getNoReturnAttr() || rbase->getNoReturnAttr();
4326  if (NoReturn != lbase->getNoReturnAttr())
4327    allLTypes = false;
4328  if (NoReturn != rbase->getNoReturnAttr())
4329    allRTypes = false;
4330  CallingConv lcc = lbase->getCallConv();
4331  CallingConv rcc = rbase->getCallConv();
4332  // Compatible functions must have compatible calling conventions
4333  if (!isSameCallConv(lcc, rcc))
4334    return QualType();
4335
4336  if (lproto && rproto) { // two C99 style function prototypes
4337    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
4338           "C++ shouldn't be here");
4339    unsigned lproto_nargs = lproto->getNumArgs();
4340    unsigned rproto_nargs = rproto->getNumArgs();
4341
4342    // Compatible functions must have the same number of arguments
4343    if (lproto_nargs != rproto_nargs)
4344      return QualType();
4345
4346    // Variadic and non-variadic functions aren't compatible
4347    if (lproto->isVariadic() != rproto->isVariadic())
4348      return QualType();
4349
4350    if (lproto->getTypeQuals() != rproto->getTypeQuals())
4351      return QualType();
4352
4353    // Check argument compatibility
4354    llvm::SmallVector<QualType, 10> types;
4355    for (unsigned i = 0; i < lproto_nargs; i++) {
4356      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
4357      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
4358      QualType argtype = mergeTypes(largtype, rargtype);
4359      if (argtype.isNull()) return QualType();
4360      types.push_back(argtype);
4361      if (getCanonicalType(argtype) != getCanonicalType(largtype))
4362        allLTypes = false;
4363      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
4364        allRTypes = false;
4365    }
4366    if (allLTypes) return lhs;
4367    if (allRTypes) return rhs;
4368    return getFunctionType(retType, types.begin(), types.size(),
4369                           lproto->isVariadic(), lproto->getTypeQuals(),
4370                           NoReturn, lcc);
4371  }
4372
4373  if (lproto) allRTypes = false;
4374  if (rproto) allLTypes = false;
4375
4376  const FunctionProtoType *proto = lproto ? lproto : rproto;
4377  if (proto) {
4378    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
4379    if (proto->isVariadic()) return QualType();
4380    // Check that the types are compatible with the types that
4381    // would result from default argument promotions (C99 6.7.5.3p15).
4382    // The only types actually affected are promotable integer
4383    // types and floats, which would be passed as a different
4384    // type depending on whether the prototype is visible.
4385    unsigned proto_nargs = proto->getNumArgs();
4386    for (unsigned i = 0; i < proto_nargs; ++i) {
4387      QualType argTy = proto->getArgType(i);
4388
4389      // Look at the promotion type of enum types, since that is the type used
4390      // to pass enum values.
4391      if (const EnumType *Enum = argTy->getAs<EnumType>())
4392        argTy = Enum->getDecl()->getPromotionType();
4393
4394      if (argTy->isPromotableIntegerType() ||
4395          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
4396        return QualType();
4397    }
4398
4399    if (allLTypes) return lhs;
4400    if (allRTypes) return rhs;
4401    return getFunctionType(retType, proto->arg_type_begin(),
4402                           proto->getNumArgs(), proto->isVariadic(),
4403                           proto->getTypeQuals(), NoReturn, lcc);
4404  }
4405
4406  if (allLTypes) return lhs;
4407  if (allRTypes) return rhs;
4408  return getFunctionNoProtoType(retType, NoReturn, lcc);
4409}
4410
4411QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
4412  // C++ [expr]: If an expression initially has the type "reference to T", the
4413  // type is adjusted to "T" prior to any further analysis, the expression
4414  // designates the object or function denoted by the reference, and the
4415  // expression is an lvalue unless the reference is an rvalue reference and
4416  // the expression is a function call (possibly inside parentheses).
4417  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
4418  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
4419
4420  QualType LHSCan = getCanonicalType(LHS),
4421           RHSCan = getCanonicalType(RHS);
4422
4423  // If two types are identical, they are compatible.
4424  if (LHSCan == RHSCan)
4425    return LHS;
4426
4427  // If the qualifiers are different, the types aren't compatible... mostly.
4428  Qualifiers LQuals = LHSCan.getLocalQualifiers();
4429  Qualifiers RQuals = RHSCan.getLocalQualifiers();
4430  if (LQuals != RQuals) {
4431    // If any of these qualifiers are different, we have a type
4432    // mismatch.
4433    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
4434        LQuals.getAddressSpace() != RQuals.getAddressSpace())
4435      return QualType();
4436
4437    // Exactly one GC qualifier difference is allowed: __strong is
4438    // okay if the other type has no GC qualifier but is an Objective
4439    // C object pointer (i.e. implicitly strong by default).  We fix
4440    // this by pretending that the unqualified type was actually
4441    // qualified __strong.
4442    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
4443    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
4444    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
4445
4446    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
4447      return QualType();
4448
4449    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
4450      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
4451    }
4452    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
4453      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
4454    }
4455    return QualType();
4456  }
4457
4458  // Okay, qualifiers are equal.
4459
4460  Type::TypeClass LHSClass = LHSCan->getTypeClass();
4461  Type::TypeClass RHSClass = RHSCan->getTypeClass();
4462
4463  // We want to consider the two function types to be the same for these
4464  // comparisons, just force one to the other.
4465  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
4466  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
4467
4468  // Same as above for arrays
4469  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
4470    LHSClass = Type::ConstantArray;
4471  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
4472    RHSClass = Type::ConstantArray;
4473
4474  // Canonicalize ExtVector -> Vector.
4475  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
4476  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
4477
4478  // If the canonical type classes don't match.
4479  if (LHSClass != RHSClass) {
4480    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
4481    // a signed integer type, or an unsigned integer type.
4482    // Compatibility is based on the underlying type, not the promotion
4483    // type.
4484    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
4485      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
4486        return RHS;
4487    }
4488    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
4489      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
4490        return LHS;
4491    }
4492
4493    return QualType();
4494  }
4495
4496  // The canonical type classes match.
4497  switch (LHSClass) {
4498#define TYPE(Class, Base)
4499#define ABSTRACT_TYPE(Class, Base)
4500#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
4501#define DEPENDENT_TYPE(Class, Base) case Type::Class:
4502#include "clang/AST/TypeNodes.def"
4503    assert(false && "Non-canonical and dependent types shouldn't get here");
4504    return QualType();
4505
4506  case Type::LValueReference:
4507  case Type::RValueReference:
4508  case Type::MemberPointer:
4509    assert(false && "C++ should never be in mergeTypes");
4510    return QualType();
4511
4512  case Type::IncompleteArray:
4513  case Type::VariableArray:
4514  case Type::FunctionProto:
4515  case Type::ExtVector:
4516    assert(false && "Types are eliminated above");
4517    return QualType();
4518
4519  case Type::Pointer:
4520  {
4521    // Merge two pointer types, while trying to preserve typedef info
4522    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
4523    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
4524    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
4525    if (ResultType.isNull()) return QualType();
4526    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4527      return LHS;
4528    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4529      return RHS;
4530    return getPointerType(ResultType);
4531  }
4532  case Type::BlockPointer:
4533  {
4534    // Merge two block pointer types, while trying to preserve typedef info
4535    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
4536    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
4537    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
4538    if (ResultType.isNull()) return QualType();
4539    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4540      return LHS;
4541    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4542      return RHS;
4543    return getBlockPointerType(ResultType);
4544  }
4545  case Type::ConstantArray:
4546  {
4547    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
4548    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
4549    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
4550      return QualType();
4551
4552    QualType LHSElem = getAsArrayType(LHS)->getElementType();
4553    QualType RHSElem = getAsArrayType(RHS)->getElementType();
4554    QualType ResultType = mergeTypes(LHSElem, RHSElem);
4555    if (ResultType.isNull()) return QualType();
4556    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4557      return LHS;
4558    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4559      return RHS;
4560    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
4561                                          ArrayType::ArraySizeModifier(), 0);
4562    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
4563                                          ArrayType::ArraySizeModifier(), 0);
4564    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
4565    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
4566    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4567      return LHS;
4568    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4569      return RHS;
4570    if (LVAT) {
4571      // FIXME: This isn't correct! But tricky to implement because
4572      // the array's size has to be the size of LHS, but the type
4573      // has to be different.
4574      return LHS;
4575    }
4576    if (RVAT) {
4577      // FIXME: This isn't correct! But tricky to implement because
4578      // the array's size has to be the size of RHS, but the type
4579      // has to be different.
4580      return RHS;
4581    }
4582    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
4583    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
4584    return getIncompleteArrayType(ResultType,
4585                                  ArrayType::ArraySizeModifier(), 0);
4586  }
4587  case Type::FunctionNoProto:
4588    return mergeFunctionTypes(LHS, RHS);
4589  case Type::Record:
4590  case Type::Enum:
4591    return QualType();
4592  case Type::Builtin:
4593    // Only exactly equal builtin types are compatible, which is tested above.
4594    return QualType();
4595  case Type::Complex:
4596    // Distinct complex types are incompatible.
4597    return QualType();
4598  case Type::Vector:
4599    // FIXME: The merged type should be an ExtVector!
4600    if (areCompatVectorTypes(LHS->getAs<VectorType>(), RHS->getAs<VectorType>()))
4601      return LHS;
4602    return QualType();
4603  case Type::ObjCInterface: {
4604    // Check if the interfaces are assignment compatible.
4605    // FIXME: This should be type compatibility, e.g. whether
4606    // "LHS x; RHS x;" at global scope is legal.
4607    const ObjCInterfaceType* LHSIface = LHS->getAs<ObjCInterfaceType>();
4608    const ObjCInterfaceType* RHSIface = RHS->getAs<ObjCInterfaceType>();
4609    if (LHSIface && RHSIface &&
4610        canAssignObjCInterfaces(LHSIface, RHSIface))
4611      return LHS;
4612
4613    return QualType();
4614  }
4615  case Type::ObjCObjectPointer: {
4616    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
4617                                RHS->getAs<ObjCObjectPointerType>()))
4618      return LHS;
4619
4620    return QualType();
4621  }
4622  case Type::TemplateSpecialization:
4623    assert(false && "Dependent types have no size");
4624    break;
4625  }
4626
4627  return QualType();
4628}
4629
4630//===----------------------------------------------------------------------===//
4631//                         Integer Predicates
4632//===----------------------------------------------------------------------===//
4633
4634unsigned ASTContext::getIntWidth(QualType T) {
4635  if (T->isBooleanType())
4636    return 1;
4637  if (EnumType *ET = dyn_cast<EnumType>(T))
4638    T = ET->getDecl()->getIntegerType();
4639  // For builtin types, just use the standard type sizing method
4640  return (unsigned)getTypeSize(T);
4641}
4642
4643QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
4644  assert(T->isSignedIntegerType() && "Unexpected type");
4645
4646  // Turn <4 x signed int> -> <4 x unsigned int>
4647  if (const VectorType *VTy = T->getAs<VectorType>())
4648    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
4649             VTy->getNumElements(), VTy->isAltiVec(), VTy->isPixel());
4650
4651  // For enums, we return the unsigned version of the base type.
4652  if (const EnumType *ETy = T->getAs<EnumType>())
4653    T = ETy->getDecl()->getIntegerType();
4654
4655  const BuiltinType *BTy = T->getAs<BuiltinType>();
4656  assert(BTy && "Unexpected signed integer type");
4657  switch (BTy->getKind()) {
4658  case BuiltinType::Char_S:
4659  case BuiltinType::SChar:
4660    return UnsignedCharTy;
4661  case BuiltinType::Short:
4662    return UnsignedShortTy;
4663  case BuiltinType::Int:
4664    return UnsignedIntTy;
4665  case BuiltinType::Long:
4666    return UnsignedLongTy;
4667  case BuiltinType::LongLong:
4668    return UnsignedLongLongTy;
4669  case BuiltinType::Int128:
4670    return UnsignedInt128Ty;
4671  default:
4672    assert(0 && "Unexpected signed integer type");
4673    return QualType();
4674  }
4675}
4676
4677ExternalASTSource::~ExternalASTSource() { }
4678
4679void ExternalASTSource::PrintStats() { }
4680
4681
4682//===----------------------------------------------------------------------===//
4683//                          Builtin Type Computation
4684//===----------------------------------------------------------------------===//
4685
4686/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
4687/// pointer over the consumed characters.  This returns the resultant type.
4688static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context,
4689                                  ASTContext::GetBuiltinTypeError &Error,
4690                                  bool AllowTypeModifiers = true) {
4691  // Modifiers.
4692  int HowLong = 0;
4693  bool Signed = false, Unsigned = false;
4694
4695  // Read the modifiers first.
4696  bool Done = false;
4697  while (!Done) {
4698    switch (*Str++) {
4699    default: Done = true; --Str; break;
4700    case 'S':
4701      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
4702      assert(!Signed && "Can't use 'S' modifier multiple times!");
4703      Signed = true;
4704      break;
4705    case 'U':
4706      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
4707      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
4708      Unsigned = true;
4709      break;
4710    case 'L':
4711      assert(HowLong <= 2 && "Can't have LLLL modifier");
4712      ++HowLong;
4713      break;
4714    }
4715  }
4716
4717  QualType Type;
4718
4719  // Read the base type.
4720  switch (*Str++) {
4721  default: assert(0 && "Unknown builtin type letter!");
4722  case 'v':
4723    assert(HowLong == 0 && !Signed && !Unsigned &&
4724           "Bad modifiers used with 'v'!");
4725    Type = Context.VoidTy;
4726    break;
4727  case 'f':
4728    assert(HowLong == 0 && !Signed && !Unsigned &&
4729           "Bad modifiers used with 'f'!");
4730    Type = Context.FloatTy;
4731    break;
4732  case 'd':
4733    assert(HowLong < 2 && !Signed && !Unsigned &&
4734           "Bad modifiers used with 'd'!");
4735    if (HowLong)
4736      Type = Context.LongDoubleTy;
4737    else
4738      Type = Context.DoubleTy;
4739    break;
4740  case 's':
4741    assert(HowLong == 0 && "Bad modifiers used with 's'!");
4742    if (Unsigned)
4743      Type = Context.UnsignedShortTy;
4744    else
4745      Type = Context.ShortTy;
4746    break;
4747  case 'i':
4748    if (HowLong == 3)
4749      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
4750    else if (HowLong == 2)
4751      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
4752    else if (HowLong == 1)
4753      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
4754    else
4755      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
4756    break;
4757  case 'c':
4758    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
4759    if (Signed)
4760      Type = Context.SignedCharTy;
4761    else if (Unsigned)
4762      Type = Context.UnsignedCharTy;
4763    else
4764      Type = Context.CharTy;
4765    break;
4766  case 'b': // boolean
4767    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
4768    Type = Context.BoolTy;
4769    break;
4770  case 'z':  // size_t.
4771    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
4772    Type = Context.getSizeType();
4773    break;
4774  case 'F':
4775    Type = Context.getCFConstantStringType();
4776    break;
4777  case 'a':
4778    Type = Context.getBuiltinVaListType();
4779    assert(!Type.isNull() && "builtin va list type not initialized!");
4780    break;
4781  case 'A':
4782    // This is a "reference" to a va_list; however, what exactly
4783    // this means depends on how va_list is defined. There are two
4784    // different kinds of va_list: ones passed by value, and ones
4785    // passed by reference.  An example of a by-value va_list is
4786    // x86, where va_list is a char*. An example of by-ref va_list
4787    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
4788    // we want this argument to be a char*&; for x86-64, we want
4789    // it to be a __va_list_tag*.
4790    Type = Context.getBuiltinVaListType();
4791    assert(!Type.isNull() && "builtin va list type not initialized!");
4792    if (Type->isArrayType()) {
4793      Type = Context.getArrayDecayedType(Type);
4794    } else {
4795      Type = Context.getLValueReferenceType(Type);
4796    }
4797    break;
4798  case 'V': {
4799    char *End;
4800    unsigned NumElements = strtoul(Str, &End, 10);
4801    assert(End != Str && "Missing vector size");
4802
4803    Str = End;
4804
4805    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4806    // FIXME: Don't know what to do about AltiVec.
4807    Type = Context.getVectorType(ElementType, NumElements, false, false);
4808    break;
4809  }
4810  case 'X': {
4811    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4812    Type = Context.getComplexType(ElementType);
4813    break;
4814  }
4815  case 'P':
4816    Type = Context.getFILEType();
4817    if (Type.isNull()) {
4818      Error = ASTContext::GE_Missing_stdio;
4819      return QualType();
4820    }
4821    break;
4822  case 'J':
4823    if (Signed)
4824      Type = Context.getsigjmp_bufType();
4825    else
4826      Type = Context.getjmp_bufType();
4827
4828    if (Type.isNull()) {
4829      Error = ASTContext::GE_Missing_setjmp;
4830      return QualType();
4831    }
4832    break;
4833  }
4834
4835  if (!AllowTypeModifiers)
4836    return Type;
4837
4838  Done = false;
4839  while (!Done) {
4840    switch (*Str++) {
4841      default: Done = true; --Str; break;
4842      case '*':
4843        Type = Context.getPointerType(Type);
4844        break;
4845      case '&':
4846        Type = Context.getLValueReferenceType(Type);
4847        break;
4848      // FIXME: There's no way to have a built-in with an rvalue ref arg.
4849      case 'C':
4850        Type = Type.withConst();
4851        break;
4852      case 'D':
4853        Type = Context.getVolatileType(Type);
4854        break;
4855    }
4856  }
4857
4858  return Type;
4859}
4860
4861/// GetBuiltinType - Return the type for the specified builtin.
4862QualType ASTContext::GetBuiltinType(unsigned id,
4863                                    GetBuiltinTypeError &Error) {
4864  const char *TypeStr = BuiltinInfo.GetTypeString(id);
4865
4866  llvm::SmallVector<QualType, 8> ArgTypes;
4867
4868  Error = GE_None;
4869  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error);
4870  if (Error != GE_None)
4871    return QualType();
4872  while (TypeStr[0] && TypeStr[0] != '.') {
4873    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error);
4874    if (Error != GE_None)
4875      return QualType();
4876
4877    // Do array -> pointer decay.  The builtin should use the decayed type.
4878    if (Ty->isArrayType())
4879      Ty = getArrayDecayedType(Ty);
4880
4881    ArgTypes.push_back(Ty);
4882  }
4883
4884  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
4885         "'.' should only occur at end of builtin type list!");
4886
4887  // handle untyped/variadic arguments "T c99Style();" or "T cppStyle(...);".
4888  if (ArgTypes.size() == 0 && TypeStr[0] == '.')
4889    return getFunctionNoProtoType(ResType);
4890  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(),
4891                         TypeStr[0] == '.', 0);
4892}
4893
4894QualType
4895ASTContext::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
4896  // Perform the usual unary conversions. We do this early so that
4897  // integral promotions to "int" can allow us to exit early, in the
4898  // lhs == rhs check. Also, for conversion purposes, we ignore any
4899  // qualifiers.  For example, "const float" and "float" are
4900  // equivalent.
4901  if (lhs->isPromotableIntegerType())
4902    lhs = getPromotedIntegerType(lhs);
4903  else
4904    lhs = lhs.getUnqualifiedType();
4905  if (rhs->isPromotableIntegerType())
4906    rhs = getPromotedIntegerType(rhs);
4907  else
4908    rhs = rhs.getUnqualifiedType();
4909
4910  // If both types are identical, no conversion is needed.
4911  if (lhs == rhs)
4912    return lhs;
4913
4914  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
4915  // The caller can deal with this (e.g. pointer + int).
4916  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
4917    return lhs;
4918
4919  // At this point, we have two different arithmetic types.
4920
4921  // Handle complex types first (C99 6.3.1.8p1).
4922  if (lhs->isComplexType() || rhs->isComplexType()) {
4923    // if we have an integer operand, the result is the complex type.
4924    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
4925      // convert the rhs to the lhs complex type.
4926      return lhs;
4927    }
4928    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
4929      // convert the lhs to the rhs complex type.
4930      return rhs;
4931    }
4932    // This handles complex/complex, complex/float, or float/complex.
4933    // When both operands are complex, the shorter operand is converted to the
4934    // type of the longer, and that is the type of the result. This corresponds
4935    // to what is done when combining two real floating-point operands.
4936    // The fun begins when size promotion occur across type domains.
4937    // From H&S 6.3.4: When one operand is complex and the other is a real
4938    // floating-point type, the less precise type is converted, within it's
4939    // real or complex domain, to the precision of the other type. For example,
4940    // when combining a "long double" with a "double _Complex", the
4941    // "double _Complex" is promoted to "long double _Complex".
4942    int result = getFloatingTypeOrder(lhs, rhs);
4943
4944    if (result > 0) { // The left side is bigger, convert rhs.
4945      rhs = getFloatingTypeOfSizeWithinDomain(lhs, rhs);
4946    } else if (result < 0) { // The right side is bigger, convert lhs.
4947      lhs = getFloatingTypeOfSizeWithinDomain(rhs, lhs);
4948    }
4949    // At this point, lhs and rhs have the same rank/size. Now, make sure the
4950    // domains match. This is a requirement for our implementation, C99
4951    // does not require this promotion.
4952    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
4953      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
4954        return rhs;
4955      } else { // handle "_Complex double, double".
4956        return lhs;
4957      }
4958    }
4959    return lhs; // The domain/size match exactly.
4960  }
4961  // Now handle "real" floating types (i.e. float, double, long double).
4962  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
4963    // if we have an integer operand, the result is the real floating type.
4964    if (rhs->isIntegerType()) {
4965      // convert rhs to the lhs floating point type.
4966      return lhs;
4967    }
4968    if (rhs->isComplexIntegerType()) {
4969      // convert rhs to the complex floating point type.
4970      return getComplexType(lhs);
4971    }
4972    if (lhs->isIntegerType()) {
4973      // convert lhs to the rhs floating point type.
4974      return rhs;
4975    }
4976    if (lhs->isComplexIntegerType()) {
4977      // convert lhs to the complex floating point type.
4978      return getComplexType(rhs);
4979    }
4980    // We have two real floating types, float/complex combos were handled above.
4981    // Convert the smaller operand to the bigger result.
4982    int result = getFloatingTypeOrder(lhs, rhs);
4983    if (result > 0) // convert the rhs
4984      return lhs;
4985    assert(result < 0 && "illegal float comparison");
4986    return rhs;   // convert the lhs
4987  }
4988  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
4989    // Handle GCC complex int extension.
4990    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
4991    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
4992
4993    if (lhsComplexInt && rhsComplexInt) {
4994      if (getIntegerTypeOrder(lhsComplexInt->getElementType(),
4995                              rhsComplexInt->getElementType()) >= 0)
4996        return lhs; // convert the rhs
4997      return rhs;
4998    } else if (lhsComplexInt && rhs->isIntegerType()) {
4999      // convert the rhs to the lhs complex type.
5000      return lhs;
5001    } else if (rhsComplexInt && lhs->isIntegerType()) {
5002      // convert the lhs to the rhs complex type.
5003      return rhs;
5004    }
5005  }
5006  // Finally, we have two differing integer types.
5007  // The rules for this case are in C99 6.3.1.8
5008  int compare = getIntegerTypeOrder(lhs, rhs);
5009  bool lhsSigned = lhs->isSignedIntegerType(),
5010       rhsSigned = rhs->isSignedIntegerType();
5011  QualType destType;
5012  if (lhsSigned == rhsSigned) {
5013    // Same signedness; use the higher-ranked type
5014    destType = compare >= 0 ? lhs : rhs;
5015  } else if (compare != (lhsSigned ? 1 : -1)) {
5016    // The unsigned type has greater than or equal rank to the
5017    // signed type, so use the unsigned type
5018    destType = lhsSigned ? rhs : lhs;
5019  } else if (getIntWidth(lhs) != getIntWidth(rhs)) {
5020    // The two types are different widths; if we are here, that
5021    // means the signed type is larger than the unsigned type, so
5022    // use the signed type.
5023    destType = lhsSigned ? lhs : rhs;
5024  } else {
5025    // The signed type is higher-ranked than the unsigned type,
5026    // but isn't actually any bigger (like unsigned int and long
5027    // on most 32-bit systems).  Use the unsigned type corresponding
5028    // to the signed type.
5029    destType = getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
5030  }
5031  return destType;
5032}
5033